
[Team LiB]

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

• Academic

Learning XSLT

By Michael Fitzgerald

Publisher: O'Reilly

Pub Date: November 2003

ISBN: 0-596-00327-7

Pages: 368

Learning XSLT moves smoothly from the simple to complex, illustrating all aspects of XSLT 1.0
through step-by-step examples that you'll practice as you work through the book. Thorough in its
coverage of the language, the book makes few assumptions about what you may already know.
You'll learn about XSLT's template-based syntax, how XSLT templates work with each other, and gain
an understanding of XSLT variables. Learning XSLT also explains how the XML Path Language (XPath)
is used by XSLT and provides a glimpse of what the future holds for XSLT 2.0 and XPath 2.0.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

• Academic

Learning XSLT

By Michael Fitzgerald

Publisher: O'Reilly

Pub Date: November 2003

ISBN: 0-596-00327-7

Pages: 368

 Copyright

 Preface

 Who Should Read This Book?

 About the Examples

 XSLT and XPath Reference

 How This Book Is Organized

 Conventions Used in This Book

 Using Examples

 Comments and Questions

 Acknowledgments

 Chapter 1. Transforming Documents with XSLT

 Section 1.1. How XSLT Works

 Section 1.2. Using Client-Side XSLT in a Browser

 Section 1.3. Using apply-templates

http://lib.ommolketab.ir

 Section 1.4. Summary

 Chapter 2. Building New Documents with XSLT

 Section 2.1. Outputting Text

 Section 2.2. Literal Result Elements

 Section 2.3. Using the Element Called element

 Section 2.4. Adding Attributes

 Section 2.5. Outputting Comments

 Section 2.6. Outputting Processing Instructions

 Section 2.7. One Final Example

 Section 2.8. Summary

 Chapter 3. Controlling Output

 Section 3.1. The Output Method

 Section 3.2. Outputting XML

 Section 3.3. Outputting HTML

 Section 3.4. Outputting Text

 Section 3.5. Using a QName Output Method

 Section 3.6. Media Types

 Section 3.7. Summary

 Chapter 4. Traversing the Tree

 Section 4.1. The XPath Data Model

 Section 4.2. Location Paths

 Section 4.3. Expressions

 Section 4.4. What Is a Pattern?

 Section 4.5. Predicates

 Section 4.6. Axes

 Section 4.7. Name and Node Tests

 Section 4.8. Doing the Math with Expressions

 Section 4.9. Summary

 Chapter 5. XPath and XSLT Functions

 Section 5.1. Boolean Functions

 Section 5.2. Node-Set Functions

 Section 5.3. Number Functions

 Section 5.4. String Functions

 Section 5.5. Summary

 Chapter 6. Copying Nodes

 Section 6.1. The copy Element

 Section 6.2. The copy-of Element

 Section 6.3. Copying Nodes from Two Documents

 Section 6.4. Summary

 Chapter 7. Using Variables and Parameters

 Section 7.1. Defining Variables and Parameters

http://lib.ommolketab.ir

 Section 7.2. Using Variables

 Section 7.3. Using Parameters

 Section 7.4. Invoking Templates with Parameters

 Section 7.5. Using Result Tree Fragments

 Section 7.6. Summary

 Chapter 8. Sorting Things Out

 Section 8.1. Simple Ascending Sort

 Section 8.2. Reversing the Sort

 Section 8.3. By the Numbers

 Section 8.4. Multiple Sorts

 Section 8.5. The lang and case-order Attributes

 Section 8.6. Summary

 Chapter 9. Numbering Lists

 Section 9.1. Numbered Lists

 Section 9.2. Alphabetical Lists

 Section 9.3. Roman Numerals

 Section 9.4. Inserting an Individual Formatted Value

 Section 9.5. Numbering Levels

 Section 9.6. The from Attribute

 Section 9.7. The lang and letter-value Attributes

 Section 9.8. More Help with Formatted Numbers

 Section 9.9. Summary

 Chapter 10. Templates

 Section 10.1. Template Priority

 Section 10.2. Calling a Named Template

 Section 10.3. Using Templates with Parameters

 Section 10.4. Modes

 Section 10.5. Built-in Template Rules

 Section 10.6. Summary

 Chapter 11. Using Keys

 Section 11.1. A Simple Key

 Section 11.2. More Than One Key

 Section 11.3. Using a Parameter with Keys

 Section 11.4. Cross-Referencing with Keys

 Section 11.5. Grouping with Keys

 Section 11.6. Summary

 Chapter 12. Conditional Processing

 Section 12.1. The if Element

 Section 12.2. The choose and when Elements

 Section 12.3. Summary

 Chapter 13. Working with Multiple Documents

http://lib.ommolketab.ir

 Section 13.1. Including Stylesheets

 Section 13.2. Importing Stylesheets

 Section 13.3. Using the document() Function

 Section 13.4. Summary

 Chapter 14. Alternative Stylesheets

 Section 14.1. A Literal Result Element Stylesheet

 Section 14.2. An Embedded Stylesheet

 Section 14.3. Aliasing a Namespace

 Section 14.4. Excluding Namespaces

 Section 14.5. Summary

 Chapter 15. Extensions

 Section 15.1. Xalan, Saxon, and EXSLT Extensions

 Section 15.2. Using a Saxon Extension Attribute

 Section 15.3. Result Tree Fragment to Node-Set

 Section 15.4. Using EXSLT

 Section 15.5. Fallback Behavior

 Section 15.6. Checking for Extension Availability

 Section 15.7. Summary

 Chapter 16. XSLT 2.0 and XPath 2.0

 Section 16.1. New XSLT 2.0 Features

 Section 16.2. New XPath 2.0 Features

 Section 16.3. Multiple Result Trees

 Section 16.4. Using Regular Expressions

 Section 16.5. Grouping in XSLT 2.0

 Section 16.6. Extension Functions

 Section 16.7. Summary

 Chapter 17. Writing an XSLT ProcessorInterface

 Section 17.1. Running an XSLT Processor from Java

 Section 17.2. Writing an XSLT Processor with C#

 Section 17.3. Summary

 Chapter 18. Parting Words

 Section 18.1. The Ox Documentation Tool

 Section 18.2. Signing Off

 Appendix A. XSLT Processors

 Section A.1. Installing and Running XSLT Processors

 Section A.2. Using jd.xslt

 Glossary

 Colophon

 Index

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Copyright

Copyright © 2004 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps.

The association between the image of a Marabou stork and the topic of XSLT is a trademark of
O'Reilly & Asso ciates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir

[Team LiB]

Preface
Extensible Stylesheet Language Transformations (XSLT) and its companion, the XML Path Language
(XPath), are arguably the two most widely used XML-related specifications to come out of the World
Wide Web Consortium (W3C) since XML 1.0 (http://www.w3.org/TR/REC-xml.html).

XSLT 1.0 (http://www.w3.org/TR/xslt) and XPath 1.0 (http://www.w3.org/TR/xpath) appeared as
W3C recommendations in November 1999, about a year and a half after XML. While XSLT and XPath
have detractors, they are generally well-accepted in the XML community. One reason why is that
XSLT is a relatively easy-to-learn, declarative language. As a declarative language, XSLT relies on an
underlying implementation in a programming language such as Java or C++ to get its work done.
This book intends to get you doing useful work with XSLT the same day you start reading it.

[Team LiB]

http://www.w3.org/TR/REC-xml.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://lib.ommolketab.ir

[Team LiB]

Who Should Read This Book?

This book is for anyone who wants to get up to speed quickly with XSLT. It is designed around over
200 XML and XSLT examples files-nearly every XSLT feature that this book explores, in fact, is
demonstrated by an example that you can run through yourself with the XSLT processor of your
choice (Apache's Xalan C++ processor is used with most examples; see http://xml.apache.org). It
doesn't matter if you're an XML neophyte or a seasoned programmer, this book is designed to help
make your learning fast-paced and rewarding.

[Team LiB]

http://xml.apache.org
http://lib.ommolketab.ir

[Team LiB]

About the Examples

As a writer, I have labored for about 20 years under the assumption that we all learn best by doing.
That's why this book is heavily laden with hands-on examples. All the examples in this book, except
for an occasional fragment, are available for download from
http://www.oreilly.com/catalog/learnxslt/. The examples are organized into directories that are
associated with each of the chapters, as in examples/ch01, examples/ch02, examples/ch03, and so
on. The XML documents and XSLT stylesheets used in the examples are intentionally simple so as to
not obscure the principles they teach with too much distracting markup. These working examples will
provide models for you to do about anything you can do with XSLT.

[Team LiB]

http://www.oreilly.com/catalog/learnxslt/
http://lib.ommolketab.ir

[Team LiB]

XSLT and XPath Reference

This book doesn't contain reference material for XSLT or XPath. Doug Tidwell's XSLT (O'Reilly) does a
good job with its reference material, and I recommend you get a copy of that book. The download for
this book offers a small Java program called Ox that gives you access to reference information at the
command prompt (in examples/Ox). For example, if you have a recent Java Runtime Environment
(JRE) installed on you computer, you can enter a line such as the following at a command or shell
prompt:

java -jar ox.jar xsl:text

Ox will then return information about the XSLT instruction element text on your screen. You'll learn

more about how to use Ox in Chapter 18.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

How This Book Is Organized

Learning XSLT is organized into 18 chapters. Here is a brief synopsis of each:

Chapter 1

Introduces you to some basic XSLT terminology and the process of transforming documents
with XSLT processors on the command line, in a browser, and in a graphical application.

Chapter 2

Shows you how to build a new, transformed XML document by adding elements, attributes, and
text using XSLT instruction elements or literal result elements. It also shows you how to create
comments and processing instructions with XSLT.

Chapter 3

Explains and demonstrates the differences between XML, XHTML, HTML, and text output.
Covers indentation, XML declarations, document type declarations, CDATA sections, and media
types. Also discusses whitespace issues.

Chapter 4

Introduces you to XPath, showing you how to use location paths, patterns, and expressions.
Explains the seven basic node types, and introduces result tree fragments.

Chapter 5

Shows you how to use XPath and XSLT functions in expressions.

Chapter 6

Demonstrates how to copy nodes using deep or shallow copy techniques.

http://lib.ommolketab.ir

Chapter 7

Talks you through the use of variables and parameters.

Chapter 8

Reveals how to sort nodes alphabetically and numerically.

Chapter 9

Explains how to display formatted numbers in a result tree, including lists that are numbered
either alphabetically, with Roman numerals, or numerically.

Chapter 10

Discusses template priority, shows you how to name templates and later invoke them by
name, and also shows you how to use parameters and modes with templates and explains
what built-in templates are.

Chapter 11

With XSLT, you can associate a key with a value and then use this key to find nodes in a
document. This chapter explains how to use keys, including a grouping technique.

Chapter 12

Illustrates how to process nodes with the if and when instructions.

Chapter 13

Shows how you can use more than one source document for a transformation, as well as how
to use more than one stylesheet. Also reveals the difference between including and importing
stylesheets.

Chapter 14

Demonstrates several possible alternative stylesheets, such as a literal result element
stylesheet and an embedded stylesheet.

http://lib.ommolketab.ir

Chapter 15

Explores the use of extension elements, attributes, and functions made available with some of
the more popular processors.

Chapter 16

The XSLT 2.0 and XPath 2.0 specifications aren't quite ready for prime time, but they are
building momentum and interest, and are nearing completion. This chapter introduces you to
some of the more important new features of these new specs.

Chapter 17

Using APIs from Java and C#, you can create a custom wrapper for your preferred XSLT
processor. This chapter uses code in both languages to show you how.

Chapter 18

Reviews important XSLT resources and demonstrates how to use the Ox documentation tool for
XSLT and XPath reference.

Appendix, XSLT Processors

Helps you find, install, and use a variety of XSLT processors, most of them for free. This
appendix also presents some of the basic tenets of using Java processors.

GlossaryGlossary

A glossary of general XML, XSLT, and XPath terms.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Conventions Used in This Book

The following font conventions are used in this book:

Plain text

Indicates menu titles, menu options, and menu buttons.

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix activities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Using Examples

This book is here to help you get your job done. In general, you may use the code, stylesheets, or
documents in this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product's documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example, "ActionScript: The Definitive Guide, Second Edition by Colin
Moock. Copyright 2001 O'Reilly & Associates, Inc., 0-596-0036-X."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/learnxslt/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

[Team LiB]

http://www.oreilly.com/catalog/learnxslt/
http://www.oreilly.com
http://lib.ommolketab.ir

[Team LiB]

Acknowledgments

I want to thank the editor of Learning XSLT, Simon St. Laurent, for giving me the opportunity to write
this book for O'Reilly. I also appreciate the many useful comments provided by the technical
reviewers-Michael Kay, Evan Lenz, Jeff Maggard, Sal Mangano, and Dave Pawson. They collectively
saved me from a lot of embarrassment! Finally, I want to thank my wife Cristi for her love and
support, without which I could not do what I do, nor would I probably want to do what I do.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 1. Transforming Documents with
XSLT
Extensible Stylesheet Language Transformations, or XSLT, is a straightforward language that allows
you to transform existing XML documents into new XML, Hypertext Markup Language (HTML),
Extensible Hypertext Markup Language (XHTML), or plain text documents. XML Path Language, or
XPath, is a companion technology to XSLT that helps identify and find nodes in XML
documents-elements, attributes, and other structures.

Here are a few ways you can put XSLT to work:

Transforming an XML document into an HTML or XHTML document for display in a web browser

Converting from one markup vocabulary to another, such as from Docbook
(http://www.docbook.org) to XHTML

Extracting plain text out of an XML document for use in a non-XML application or environment

Building a new German language document by pulling and repurposing all the German text from
a multilingual XML document

This is barely a start. There are many other ways that you can use XSLT, and you'll get acquainted
with a number of them in the chapters that follow.

This book assumes that you don't know much about XSLT, but that you are ready to put it to work.
Through a series of numerous hands-on examples, Learning XSLT guides you through many features
of XSLT 1.0 and XPath 1.0, while at the same time introducing you to XSLT 2.0 and XPath 2.0.

If you don't know much about XML yet, it shouldn't be a problem because I'll also cover many of the
basics of XML in this book. Technical terms are usually defined when they first appear and in a
glossary at the end of the book. The XML specification is located at http://www.w3.org/TR/REC-
xml.html.

Another specification closely related to XSLT is Extensible Stylesheet Language, or XSL, commonly
referred to as XSL-FO (see http://www.w3.org/TR/xsl/). XSL-FO is a language for applying styles and
formatting to XML documents. It is similar to Cascading Style Sheets (CSS), but it is written in XML
and is somewhat more extensive. (FO is short for formatting objects.) Initially, XSLT and XSL-FO
were developed in a single specification, but they were later split into separate initiatives. This book
does not cover XSL-FO; to learn more about this language, I suggest that you pick up a copy of Dave
Pawson's XSL-FO, also published by O'Reilly.

[Team LiB]

http://www.docbook.org
http://www.w3.org/TR/REC-
http://www.w3.org/TR/xsl/
http://lib.ommolketab.ir

[Team LiB]

1.1 How XSLT Works

About the quickest way to get you acquainted with how XSLT works is through simple, progressive
examples that you can do yourself. The first example walks you through the process of transforming
a very brief XML document using a minimal XSLT stylesheet. You transform documents using a
processor that complies with the XSLT 1.0 specification.

All the documents and stylesheets discussed in this book can be found in the example archive
available for download at http://www.oreilly.com/catalog/learnxslt/learningxslt.zip. All example files
mentioned in a particular chapter are in the examples directory of the archive, under the subdirectory
for that chapter (such as examples/ch01, examples/ch02, and so forth). Throughout the book, I
assume that these examples are installed at C:\LearningXSLT\examples on Windows or in something
like /usr/mike/learningxslt/examples on a Unix machine.

1.1.1 A Ridiculous XML Document

Now consider the ridiculously brief XML document contained in the file msg.xml:

<msg/>

There isn't much to this document, but it's perfectly legal, well-formed XML. It's just a single, empty
element with no content. Technically, it's an empty element tag.

Because it is the only element in the document, msg is the document element. The document element

is sometimes called the root element, but this is not to be confused with the root node, which will be
explained later in this chapter. The first element in any well-formed XML document is always
considered the document element, as long as it also contains all other elements in the document (if it
has any other elements in it). In order for XML to be well-formed, it must follow the syntax rules laid
out in the XML specification. I'll highlight well-formedness rules throughout this book, when
appropriate.

A document element is the minimum structure needed to have a well-formed XML document,
assuming that the characters used for the element name are legal XML name characters, as they are
in the case of msg, and that angle brackets (< and >) surround the tag, and the slash (/) shows up in
the right place. In an empty element tag, the slash appears after the element name, as in <msg/>.

Tags are part of what's called markup in XML.

1.1.2 A First XSLT Stylesheet

You can use the XSLT stylesheet msg.xsl to transform msg.xml:

<stylesheet version="1.0"
xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="text"/>

http://www.oreilly.com/catalog/learnxslt/learningxslt.zip
http://lib.ommolketab.ir

<template match="msg">Found it!</template>

</stylesheet>

Before transforming msg.xml with msg.xsl, I'll discuss what's in this stylesheet. You'll notice that
XSLT is written in XML. This allows you to use some of the same tools to process XSLT stylesheets
that you would use to process other XML documents.

1.1.2.1 The stylesheet element

The first element in msg.xsl is stylesheet:

<stylesheet version="1.0"
xmlns="http://www.w3.org/1999/XSL/Transform">

This is the document element for stylesheet, one of two possible document elements in XSLT. The
other possible document element is transform, which is actually just a synonym for stylesheet.
You can use one or the other, but, for some reason, I see stylesheet used more often than
transform, so I'll knuckle under and use it also. Whenever I refer to stylesheet in this book, the
same information applies to the transform element as well. You are free to choose either for the
stylesheets you write. The stylesheet and transform elements are documented in Section 2.2 of

the XSLT specification (this W3C recommendation is available at http://www.w3.org/TR/xslt).

The version attribute in stylesheet is required, along with its value of 1.0. (Attributes are explained

in Section 1.2.1.1, later in this chapter.) An XSLT processor may support Versions 1.1 and 2.0 as the
value of version, but this support is only experimental at this point (see Chapter 16). The
stylesheet element has other possible attributes beside version, but don't worry about those yet.

1.1.2.2 The XSLT namespace

The xmlns attribute is a special attribute for declaring a namespace. This attribute, together with a

Uniform Resource Identifier (URI) value, is called a namespace declaration:

xmlns="http://www.w3.org/1999/XSL/Transform"

Such a declaration is not peculiar to stylesheet elements, but is more or less universal in XML,

meaning that you can use it on any XML element. Nevertheless, an XSLT stylesheet must always
declare a namespace for itself in order for it to work properly with an XSLT processor. The official
namespace name, or URI, for XSLT is http://www.w3.org/1999/XSL/Transform. A namespace name
is always a URI.

The special xmlns attribute is described in the XML namespaces specification, officially, "Namespaces

in XML" (http://www.w3.org/TR/REC-xml-names). A namespace declaration associates a namespace
name with elements and attributes that attempt to make such names unambiguous.

http://www.w3.org/TR/xslt
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/TR/REC-xml-names
http://lib.ommolketab.ir

The Namespace Prefix

You can also associate a namespace name with a prefix, and then use the prefix with
elements and attributes. More often than not, the XSLT elements are prefixed with xsl,
such as in xsl:stylesheet. While the xsl prefix is commonly used in XSLT, these three

letters are only a convention, and you are not required to use them. You can use any
prefix you want, as long as the characters are legal for XML names. (See Sections 2.2 and
2.3 of the XML specification at http://www.w3.org/TR/REC-xml.html for details on what
characters are legal for XML names.) For simplicity, I avoid using a prefix in the first few
XSLT examples in the book, but I will start using xsl when the stylesheets get a little

more complicated because a prefix will help sort out namespaces more readily. You'll learn
more about namespaces, including how to use prefixes, in Chapter 2.

1.1.2.3 The output element

The stylesheet element is followed by an optional output element. This element has 10 possible
attributes, but I'll only cover method right now:

<output method="text"/>

The value text in the method attribute signals that you want the output to be plain text. The default
output method for XSLT is xml, and another possible value is html. XSLT 2.0 also offers xhtml (see
Chapter 16). There's more to tell about the output element, but I'll leave it at that until Chapter 3.
In the XSLT specification, the output element is discussed in Section 16.

1.1.2.4 The template element

Next up in msg.xsl is the template element. This element is really at the heart of what XSLT is and

does. A template rule consists of two parts: a pattern to match, and a sequence constructor (so
named in XSLT 2.0). The match attribute of template contains a pattern, and the pattern in this
instance is merely the name of the element msg:

<template match="msg">Found it!</template>

A pattern attempts to identify nodes in a source document, but has some limitations, which will come
more fully to light in Chapter 4. A sequence constructor is a list of things telling the processor what to
do when a pattern is matched. This very simple sequence constructor just tells the processor to write
the text Found it! when the pattern is matched. (I won't use the phrase sequence constructor much

in this book but will usually just use the term template instead.) Put another way, when an XSLT
processor finds the msg element in the source document msg.xml, it writes the text Found it! from

the template to output. When a template writes text from its content to the result tree, or triggers
some other sort of output, the template is said to be instantiated.

The source document becomes a source tree when it is processed by an XSLT processor. Such source
documents are usually files containing XML documents, such as msg.xml. The result of a
transformation becomes a result tree within the processor. The result tree is then serialized to
standard output (most often the computer's display screen) or to an output file. The source or result

http://www.w3.org/TR/REC-xml.html
http://lib.ommolketab.ir

of a transformation, however, doesn't have to be a file. A source tree could be built just as easily
from an input stream as from a file, and a result tree could be serialized as an output stream.

The output and template elements are called top-level elements. They are two

of a dozen possible top-level elements that are defined in XSLT 1.0. They are
called top-level elements because they are contained within the stylesheet

element.

1.1.2.4.1 The root node

Another way you could write a location path is with a slash (/). In XPath, a slash by itself indicates

the root node or starting point of the document, which comes before the first element in the
document or document element. A node in XPath represents a distinct part of an XML document. A
few examples of nodes are the root node, element nodes, and attribute nodes. (You'll get a more
complete explanation of nodes in Chapter 4.)

In root.xsl, the match attribute in template matches a root node in any source document:

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="text"/>

<template match="/">Found it!</template>

</stylesheet>

The msg element is the document element of msg.xml, and it is really the only element in msg.xml.
The template in root.xsl only matches the root node (/), which demarcates the point at which

processing begins, before the document element. But because the template processes the children of
the root node, it finds msg in the source tree as a matter of course.

Because of a feature called built-in templates, this stylesheet will produce the same results as
msg.xsl. Just trust me on this for now: it would be overwhelming at this point to go into all the
ramifications of the built-in templates. I will say this, though: built-in templates automatically find
nodes that are not specifically matched by a template. This can rattle nerves at first, but you'll get
more comfortable with built-in templates soon enough.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

1.2 Using Client-Side XSLT in a Browser

Now comes the action. An XSLT processor is probably readily available to you on your computer in a
browser such as Microsoft Internet Explorer (IE) Version 6 or later, Netscape Navigator (Netscape)
Version 7.1 or later, or Mozilla Version 1.4 or later. All three of these browsers have client-side XSLT
processing ability already built-in.

A common way to apply an XSLT stylesheet like msg.xsl to the document msg.xml in a browser is by
using a processing instruction. You can see a processing instruction in a slightly altered version of
msg.xml called msg-pi.xml. Open the file msg-pi.xml from examples/ch01 with one of the browsers
mentioned. The result tree (a result twig, really) is displayed. Figure 1-1 shows you what the result
looks like in IE Version 6, with service pack 1 (SP1). I explain how msg-pi.xml works in the section
"The XML Stylesheet Processing Instruction" which follows.

Figure 1-1. Transforming msg-pi.xml with Internet Explorer

When the XSLT processor in the browser found the pattern identified by the template in msg.xsl, it
wrote the string Found it! onto the browser's canvas or rendering space.

If you look at the source for the page using View Source or View Page
Source, you will see that the source tree for the transformation (the document
msg-pi.xml) is displayed, not the result tree.

http://lib.ommolketab.ir

XSLT Support in Browsers

You'll get a chance to try out a variety of XSLT processors when running the examples in
this book. Fortunately, the latest versions of IE, Netscape, and Mozilla (including Mozilla
Firebird), which I'll use with many examples, have built-in XML and XSLT support. IE of
course works on the Windows platform, but Netscape and Mozilla work on the big three:
Windows, Macintosh, and Linux.

Earlier browsers did not support XML and XSLT for the obvious reason that neither XML
nor XSLT existed when the browsers came out. Fortunately, it's fairly easy to upgrade to
the latest version of a browser. And a nice thing about IE, Netscape, and Mozilla is that
they are all free to download.

If your browser doesn't seem to work with an example in the book, it's probably because
you have an older version of that browser that doesn't support XSLT. I won't often
mention the version number of a browser when I use it in an example, so it's generally a
good idea to install the latest browser of your choice on your computer.

To download or upgrade IE, go to http://www.microsoft.com/windows/ie/; for Netscape
upgrades, point your browser at http://channels.netscape.com/ns/browsers/; and for
Mozilla, go to http://www.mozilla.org.

To say the least, there are other good browsers out there besides IE, Netscape, and
Mozilla. Other popular choices are Opera (http://www.opera.com) or Safari
(http://www.apple.com/safari/; Mac only), but Opera and Safari do not at this moment
support XSLT on the client side (the page-requesting side rather than the page-serving
side). Consequently, I won't be using Opera or Safari with any examples in this book.

1.2.1 The XML Stylesheet Processing Instruction

To apply an XSLT stylesheet to an XML document with a browser, you must first add an XML
stylesheet processing instruction to the document. This is the case with msg-pi.xml, which is why you
can display it in an XSLT-aware browser. A processing instruction, or PI, allows you to include
instructions for an application in an XML document.

The document msg-pi.xml, which you displayed earlier in a browser, contains an XML stylesheet PI:

<?xml-stylesheet href="msg.xsl" type="text/xsl"?>
<msg/>

The XML stylesheet PI should always come before the document element (msg in this case), and is

part of what is called the prolog of an XML document. The purpose of this PI is similar to one of the
purposes of the link tag in HTML, that is, to associate a stylesheet with the document. Usually, there

is only one XML stylesheet PI in a document, but under certain circumstances, you can have more
than one.

http://www.microsoft.com/windows/ie/
http://channels.netscape.com/ns/browsers/
http://www.mozilla.org
http://www.opera.com
http://www.apple.com/safari/
http://lib.ommolketab.ir

For the official story on PIs in XML, refer to Section 2.6 of the XML specification.
The xml-stylesheet PI is documented in the W3C Recommendation

"Associating Style Sheets with XML Documents" (http://www.w3.org/TR/xml-
stylesheet/).

In the XML stylesheet PI, the term xml-stylesheet is the target of the PI. The target identifies the
name, purpose, or intent of the PI. This assumes that the application understands what the PI target
is. Home-grown PIs are usually application-specific, but the XML stylesheet PI is widely supported and
understood. If you invent a new, unique PI target, you also have to write the code to process your PI.

1.2.1.1 Attributes and pseudoattributes

In XML, attributes may only appear in element start tags or empty element tags, as shown in this
element start tag (from message.xml):

<message priority="low">

This message element contains an attribute, with priority as the attribute name and low as the
attribute value. The attribute name and value are separated by an equals sign (=). In well-formed

XML, attribute values must always be surrounded by either single (') or double (") quotes. The quotes
must not be mixed together. You can read more about attributes in Section 3.1 of the XML
specification.

The constructs that follow the target in the XML stylesheet PI, href and type, are not attributes but
are pseudoattributes. PIs can contain any legal XML characters between the target and the closing ?
>, not just text that looks like attributes. For example, the following PI is perfectly legal:

<?do not go gentle into that good night?>

The first word following <? is do. This is the target of the PI, and there must be no space between <?
and the target. The target is followed by the data not go gentle into that good night. This may

not be complete nonsense to a Dylan Thomas fan, but a PI will be nonsense to an application unless
the PI contains a target and other data that the application understands and knows what to do with
it. If an XML processor does not understand the content of a PI, the consequences are not dire. The
processor will simply ignore the PI and move on. Pseudoattributes structure the data so processors
may have an easier time interpreting it.

The href pseudoattribute contains a value that is a URI reference. This URI specifies the relative

location of the stylesheet msg.xsl. An XSLT processor knows where to find resources relative to its
base URI. The base URI is usually the directory that holds the source document. The other
pseudoattribute, type, identifies the content type of the stylesheet, text/xsl. The content type

identifies the content of the stylesheet as XSL or XSLT text.

A content type of application/xsl or text/xslt may also work with some
applications, but text/xsl works consistently. There is some confusion over

what content type should be used for XSLT, but let's not get into that
brouhaha. Just know that text/xsl is widely accepted and works consistently.

http://www.w3.org/TR/xml-
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

1.3 Using apply-templates

One possible element that can be contained inside of a template element is apply-templates.
Because apply-templates is contained in template, it is called a child element of template. In
XSLT, apply-templates is also termed an instruction element. An instruction element in XSLT is

always contained within something called a template. A template is a series of transformation
instructions that usually appear within a template element, but not always. A few other elements

can contain instructions, as you will see later on. XSLT 1.0 has a number of instruction elements that
will eventually be explained and discussed in this book.

The apply-templates element triggers the processing of the children of the node in the source

document that the template matches. These children (child nodes) can be elements, attributes, text,
comments, and processing instructions. If the apply-templates element has a select attribute, the
XSLT processor searches exclusively for other nodes that match the value of the select attribute.

These nodes are then subject to being processed by other templates in the stylesheet that match
those nodes.

Let's not fret about what all that means right now. It's hard to follow exactly what XSLT is doing
when you are just starting out. I'll cover more about how apply-templates works in the next

chapter.

1.3.1 Analysis of message.xml

To understand how apply-templates works, first take a look at the document message.xml in

examples/ch01:

<?xml version="1.0"?>

<message priority="low">Hey, XSLT isn't so hard after all!</message>

The message element in message.xml has an attribute in its start tag: the priority attribute with a
value of low. Also, this element is not empty; it holds the string Hey, XSLT isn't so hard after all!

In the terminology of XML, this text is called parsed character data, and in the terminology of XPath,
this text is called a text node.

http://lib.ommolketab.ir

Character Data and Unicode

Character data, indeed any character that appears in an XML document, must be a
Unicode character that falls within XML's overall legal subset of Unicode. XML supports
ISO/IEC 10646-1 Universal Multi-Octet Character Set, or USC, which is roughly but not
strictly interchangeable with Unicode. When referring to the characters that XML supports,
most people talk about these characters as Unicode, and so that's what I'll do, too.

Unicode is slowly and surely extending its reach to include, as near as possible, all the
character-based writing systems in the world. This obviously goes way beyond the 128-
character range of the basic Latin 7-bit ASCII standard. (ASCII, or the American Standard
Code for Information Interchange, is a standard of the American National Standards
Institute, or ANSI.) Because XML embraces Unicode, it is being used all over the world. In
fact, XML is sometimes affectionately referred to as "Unicode with pointy brackets."

It is important to note that a number of Unicode characters are prohibited from XML-for
example, most C0 control characters are not allowed characters such as null (0x0000),
backspace (0x0008), and form feed (0x000C). The C0 characters comprise the first 32
characters of Unicode, in the hexadecimal range 0000 through 001F. Sections 2.2, 2.3,
and 2.4, and Appendix B, of the XML specification go into painstaking detail about what
characters can go where in an XML document. You can find out more about Unicode at
http://www.unicode.org and about ISO/IEC specs at http://www.iso.ch.

1.3.1.1 The XML declaration

Before the message element, at the beginning of this document, is something that looks like a

processing instruction, but it's not. It's called an XML declaration.

The XML declaration is optional. You don't have to use one if you don't want to, but it's generally a
good idea. If you do use one, however, it must be on the first line to appear in the XML document.
Because it must appear before the document element, that also means that an XML declaration is
part of the prolog, like the XML stylesheet PI.

If present, an XML declaration must provide version information. Version information appears in the
form of a pseudoattribute, version, with a value representing a version number, which is almost
always 1.0. Other values are possible, but none are authorized at the moment because an XML

version later than 1.0 has not yet been approved.

XML 1.1, which mainly adds more characters to the XML Unicode character
repertoire, is currently under consideration, and may become a W3C
recommendation by the time you read this book or shortly thereafter. You can
see the XML 1.1 spec at http://www.w3.org/TR/xml11/.

You can also declare character encoding for a document with an XML declaration, and whether a
document stands alone. The XML declaration will be covered in more detail in Chapter 3. See Section
2.8 of the XML specification for more information on XML declarations.

http://www.unicode.org
http://www.iso.ch
http://www.w3.org/TR/xml11/
http://lib.ommolketab.ir

The stylesheet message.xsl in examples/ch01 includes the apply-templates element:

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="text"/>

<template match="message">
 <apply-templates/>
</template>

</stylesheet>

Now you'll get a chance to apply this stylesheet to message.xml and see what happens. Instead of
using a browser as you did earlier, this time you'll have a chance to use Xalan, an open source XSLT
processor from Apache, written in both C++ and Java. The C++, command-line version of Xalan runs
on Windows plus several flavors of Unix, including Linux. (When I refer to Unix in this book, it usually
applies to Linux; when I refer to Xalan, I mean Xalan C++, unless I mention the Java version
specifically.)

1.3.2 Running Xalan

To run Xalan, you also need the C++ version of Xerces, Apache's XML parser. You can find both
Xalan C++ and Xerces C++ on http://xml.apache.org. After downloading and installing them, you
need to add the location of Xalan and Xerces to your path variable. If you are unsure about how to
install Xalan or Xerces, or what a path variable is, you'll get help in the appendix.

Once Xalan and Xerces are installed, while still working in examples/ch01 directory, type the
following line in a Unix shell window or at a Windows command prompt:

xalan message.xml message.xsl

If successful, the following results should be printed on your screen:

Hey, XSLT isn't so hard after all!

So what just happened? Instead of the processor writing content from the stylesheet into the result
tree by using instructions in the stylesheet message.xsl, Xalan grabbed content from the document
message.xml. This is because, once the template found a matching element (the message element),
apply-templates processes its children. The only child that message had available to process was a
child text node-the string Hey, XSLT isn't so hard after all!

The reason why this works is because of a built-in template that automatically renders text nodes.
You'll learn more about how apply-templates and built-in templates work in more detail in later
chapters. If you want to go into more depth, you can read about apply-templates in Section 5.4 of

the XSLT specification.

1.3.3 More About Xalan C++

If you enter the name xalan on a command line, without any arguments, you will see a response like
this:

http://xml.apache.org
http://lib.ommolketab.ir

Xalan version 1.5.0
Xerces version 2.2.0
Usage: Xalan [options] source stylesheet
Options:
 -a Use xml-stylesheet PI, not the 'stylesheet' argument
 -e encoding Force the specified encoding for the output.
 -i integer Indent the specified amount.
 -m Omit the META tag in HTML output.
 -o filename Write output to the specified file.
 -p name expression Sets a stylesheet parameter.
 -u Disable escaping of URLs in HTML output.
 -v Validates source documents.
 -? Display this message.
 - A dash as the 'source' argument reads from stdin.
 - A dash as the 'stylesheet' argument reads from stdin.
 '-' cannot be used for both arguments.)

The command-line interface for Xalan offers you several options that I want to bring to your
attention. For example, if you want to direct the result tree from the processor to a file, you can use
the -o option:

xalan -o message.txt message.xml message.xsl

The result of the transformation is redirected to the file named message.txt. Depending on your
platform (Unix or Windows), use the cat or type command to display the contents of the file

message.txt:

Hey, XSLT isn't so hard after all!

As with a browser, you can also use Xalan with a document that has an XML stylesheet PI, such as
message-pi.xml:

<?xml version="1.0"?>
<?xml-stylesheet href="message.xsl" type="text/xsl"?>
<message priority="low">Hey, XSLT isn't so hard after all!</message>

To process this document with the stylesheet in its stylesheet PI, use Xalan's -a option on the

command line, like this:

xalan -a message-pi.xml

The results of the command should be the same as when you specified both the document and the
stylesheet as arguments to Xalan.

1.3.4 Using Other XSLT Processors

There are a growing number of XSLT processors available. Many of them are free, and many are
available on more than one platform. In this chapter, I have already discussed the Xalan command-
line processor, but I will also demonstrate others throughout the book.

Generally, I use Xalan on the command line, which runs on either Windows or Unix, but you can also

http://lib.ommolketab.ir

choose to use a browser if you wish, or another command-line processor, such as Michael Kay's
Instant Saxon-a Windows executable, command-line application written in Java. Another option is
Microsoft's MSXSL, which also runs in a Windows command prompt. You may prefer to use a
processor with a Java interpreter, or you may want to use one of these XSLT processors with a
graphical user interface, such as:

Victor Pavlov's CookTop (http://www.xmlcooktop.com)

Architag's xRay2 (http://architag.com/xray/)

Altova's xmlspy (http://www.xmlspy.com)

SyncRO Soft's <oXygen/> (http://www.oxygenxml.com)

eXcelon's Stylus Studio (http://www.stylusstudio.com)

I'll demonstrate here how to use one of these graphical editors: xRay2.

1.3.5 Using xRay2

Architag's xRay2 is a free, graphical XML editor with XSLT processing capability. It is available for
download from http://www.architag.com/xray. xRay2 runs only on the Windows platform. Assuming
that you have successfully downloaded and installed xRay2, follow these steps to process a source
document with a stylesheet:

Launch the xRay2 application.1.

Open the file message.xml with File Open from your working directory, such as from
C:\LearningXSLT\examples\ch01\.

2.

Open the file message.xsl with File Open.3.

Choose File New XSLT Transform.4.

In the XML Document pull-down menu, select message.xml (see the result in Figure 1-2).5.

In the XSLT Program pull-down menu, select message.xsl (see what it should look like in Figure
1-3).

6.

If it is not already checked, check Auto-update.7.

The result of the transformation should appear in the transform window (see Figure 1-4).8.

Those are the steps for transforming a file with xRay2. When I suggest transforming a document
anywhere in this book, you can use xRay2-or any other XSLT processor you prefer-instead of the
one suggested in the example (unless there is a specifically noted feature of the processor used in
the example).

Figure 1-2. message.xml in xRay2

http://www.xmlcooktop.com
http://architag.com/xray/
http://www.xmlspy.com
http://www.oxygenxml.com
http://www.stylusstudio.com
http://www.architag.com/xray
http://lib.ommolketab.ir

Figure 1-3. message.xsl in xRay2

Figure 1-4. Result of transforming message.xml with message.xsl in
xRay2

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

1.4 Summary

This chapter has given you a little taste of XSLT-how it works and a few things you can do with it.
After reading this introduction, you should understand the ground rules of XSLT stylesheets and the
steps involved in transforming documents with a browser, a command-line processor like Xalan, or a
processor with a graphical interface, such as xRay2. In the next chapter, you will learn how to create
elements, attributes, text, comments, and processing instructions in a result tree using both XSLT
instruction elements and literal result elements.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 2. Building New Documents with
XSLT
In the first chapter of this book, you got acquainted with the basics of how XSLT works. This chapter
will take you a few steps further by showing you how to add text and markup to your result tree with
XSLT templates.

First, you'll add literal text to your output. Then you'll work with literal result elements, that is,
elements that are represented literally in templates. You'll also learn how to add content with the
text, element, attribute, attribute-set, comment, and processing-instruction elements. In

addition, you'll get your first encounter with attribute value templates, which provide a way to define
templates inside attribute values.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

2.1 Outputting Text

You can put plain, literal text into an XSLT template, and it will be written to a result tree when the template containing the text
is processed. You saw this work in the very first example in the book (msg.xsl in Chapter 1). I'll go into more detail about
adding literal text in this section.

Look at the single-element document text.xml in examples/ch02 (this directory is where all example files mentioned in this
chapter can be found):

<?xml version="1.0"?>

<message>You can easily add text to your output.</message>

With text.xml in mind, consider the stylesheet txt.xsl :

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="text"/>

<template match="/">Message: <apply-templates/></template>

</stylesheet>

When applied to text.xml , here is what generally happens, although the actual order of events may vary internally in a
processor:

The template rule in txt.xsl matches the root node (/), the beginning point of the source document.1.

The implicit, built-in template for elements then matches message .2.

The text "Message: " (including one space) is written to the result tree.3.

apply-templates processes the text child node of a message using the built-in template for text.4.

The built-in template for text picks up the text node "You can easily add text to your output."5.

The output is serialized.6.

Apply txt.xsl to text.xml using Xalan:

xalan text.xml txt.xsl

This gives you the following output:

Message: You can easily add text to your output.

The txt.xsl stylesheet writes the little tidbit of literal text, "Message: ", from its template onto the output, and also grabs some
text out of text.xml , and then ultimately puts them together in the result tree. You can do the same thing with the XSLT
instruction element text .

http://lib.ommolketab.ir

2.1.1 Using the text Element

Instead of literal text, you can use XSLT's text instruction element to write text to a result tree. Instruction elements, you'll
remember, are elements that are legal only inside templates. Using the text element gives you more control over result text

than literal text can.

The template rule in lf.xsl contains some literal text, including whitespace:

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="text"/>

<template match="/">Message:
 <apply-templates/>
</template>

</stylesheet>

When you apply lf.xsl to text.xml with Xalan like this:

xalan text.xml lf.xsl

the whitespace-a linefeed and some space-is preserved in the result:

Message:
 You can easily add text to your output.

The XSLT processor sees the whitespace in the stylesheet as literal text and outputs it as such. The XSLT instruction element
text allows you to take control over the whitespace that appears in your template.

In contrast, the stylesheet text.xsl uses the text instruction element:

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="text"/>

<template match="/">
 <text>Message: </text>
 <apply-templates/>
</template>

</stylesheet>

When you insert text like this, the only whitespace that is preserved is what is contained in the text element-a single space.

Try it to see what happens:

xalan text.xml text.xsl

This gives you the same output you got with txt.xsl , with no hidden whitespace:

Message: You can easily add text to your output.

Back in the stylesheet txt.xsl , recall how things are laid out in the template element:

http://lib.ommolketab.ir

<template match="/">Message: <apply-templates/></template>

The literal text "Message: " comes immediately after the template start tag. The reason is that if you use any literal text that is
not whitespace in a template, an XSLT processor interprets adjacent whitespace in the template element as significant. Any

whitespace that is considered significant is preserved and sent along to output.

To see more of how whitespace effects literal text in a result, look at the stylesheet whitespace.xsl :

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="text"/>

<template match="/">
Message:

 <apply-templates/>

 ...including whitespace!
</template>

</stylesheet>

Now, process it against text.xml to see what happens:

xalan text.xml whitespace.xsl

Observe how the whitespace is preserved, both from above and below the apply-templates element:

Message:

 You can easily add text to your output.

 ...including whitespace!

If no nonwhitespace literal text follows apply-templates (that is, if you removed "...including whitespace!" from within
template in whitespace.xsl), the latter whitespace would not be preserved.

Whitespace is obviously hard to see. I recommend that you make a copy of whitespace.xsl and experiment with whitespace to
see what happens when you process it.

Netscape and Mozilla, by the way, preserve the whitespace-only text nodes in output from
whitespace.xsl , but IE does not. Use whitespace-pi.xml to test this in a browser if you like, but keep in
mind that such output can vary as browser versions increment upward.

If you use text elements, the other whitespace within template elements becomes insignificant and is discarded when
processed. You'll find that whitespace is easier to control if you use text elements. The control.xsl stylesheet uses text

elements to handle the whitespace in its template:

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="text"/>

<template match="/">

http://lib.ommolketab.ir

 <text>Message: </text>
 <text>

 </text>
 <text>
 </text>
 <apply-templates/>
 <text>

 ...and whitespace, too!</text>
</template>

</stylesheet>

The control.xsl stylesheet has four text elements, two of which contain only whitespace, including one that inserts a pair of line
breaks. Because you can see the start and end tags of text elements, it becomes easier to judge where the whitespace is,

making it easier to control. To see the result, process it with text.xml :

xalan text.xml control.xsl

As an alternative, you could also insert line breaks by using character references , like this:

<text>

</text>

This instance of the text element contains character references to two line breaks in succession. A character reference begins
with an ampersand (&) and ends with a semicolon (;). In XML, you can use decimal or hexadecimal character references. The
decimal character reference
 represents the linefeed character using the decimal number 10, preceded by a pound sign (#
). A hexadecimal character reference uses a hexadecimal number preceded by a pound sign and the letter x (#x). You can also
use
 or
 , which are equivalent hexadecimal character references to the decimal reference
 .

Why Linefeeds?

You might be wondering why I use a linefeed line-end character (
) instead of a carriage return () or

carriage return/linefeed combination. The reason is because when a document is processed with a compliant XML
processor, the line ends are all changed to linefeeds anyway. In other words, if an XML processor encounters a
carriage return or a carriage return/linefeed combination, these characters are converted into linefeeds during
processing. You can read about this in Section 2.11 of the XML specification.

2.1.1.1 The disable-output-escaping attribute

The text element has one optional attribute: disable-output-escaping . XSLT does not require processors to support this
attribute (see Section 16.4 of the XSLT specification), but most do. This attribute can have one of two values, either yes or no .
The default is no , meaning the same whether the disable-output-escaping attribute is not present or if its value is no . What

does this attribute do? Hang on-this is going to take a bit of explaining.

In XML, some characters are forbidden in certain contexts. Two notable characters that fit into this category are the left angle
bracket or less-than sign (<) and the ampersand (&). It's fine to use these characters in markup, such as when beginning a tag
with < . You can't, however, use a < in character data (the strings that appear between tags) or in an attribute value. The
reason is that the < is a road sign to an XML processor. When an XML processor munches on an XML document, if it sees a < , it

http://lib.ommolketab.ir

says in effect, "Oh. We're starting a new tag here. Branch to the code that handles that." Therefore, you can see why we aren't
allowed to use < directly in XML, except in markup.

There is a way out, though. XML provides several ways to represent these characters by escaping them with an entity or
character reference whenever you want to use them where they are normally not allowed. Escaping a character essentially hides
it from the processor. The most common way to escape characters like < and & is by referencing predefined entities. You'll find

XML's built-in, predefined entity references listed in Table 2-1 .

Table 2-1. Predefined entities in XML 1.0

Character Entity reference Numeric character reference

< (less-than) < <

& (ampersand) & &

> (greater-than) > >

" (quotation) " "

' (apostrophe) ' '

The greater-than entity is provided so that XML can be compatible with Standard Generalized Markup Language (SGML). The >

character alone is permissible in character data and in attribute values, escaped or not. (For SGML compatibility, you always
need to escape the > character if it appears as part of the sequence]]> , which is used to end CDATA sections. CDATA sections

are described in more detail in Chapter 3 .)

XML, by the way, is a legal subset of SGML, an international standard. SGML is a product of the
International Organization for Standardization (ISO), and you can find the SGML specifications on the
ISO web site, http://www.iso.ch . But have your credit card ready: you have to pay for most ISO
specifications (sometimes dearly), unlike W3C specifications, which are free to download.

The " and ' entities allow you to include double and single quotes in attribute values. A second matching quote

should indicate the close of an attribute value. If not escaped, a misplaced matching quote signals a fatal error, if not followed
by well-formed markup. (See Section 1.2 of the XML specification.) I say matching because if an attribute value is surrounded
by double quotes, it can contain single quotes in its value (as in "'value' "). The reverse is also true, that is, single quotes can
enclose double quotes ('"value" ').

You have to escape an ampersand in character content because the ampersand itself is used to escape characters in entity and
character references! If that's confusing, a few examples should clear things up. I'll now show you how the disable-output-
escaping attribute works.

The little document escape.xml contains the name of a famous publisher:

<title>O'Reilly</title>

The stylesheet noescape.xsl adds some new text to this title using the default, which is to not disable output escaping:

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="xml" omit-xml-declaration="yes"/>

http://lib.ommolketab.ir

<template match="/">
 <publisher xmlns="">
 <value-of select="title" xmlns="http://www.w3.org/1999/XSL/Transform"/>
 <text disable-output-escaping="no" xmlns="http://www.w3.org/1999/XSL/Transform"> & Associates</text>
 </publisher>
</template>

</stylesheet>

noescape.xsl uses the xml output method. You can't see the effect of output escaping when the output method is text , so you
have to use either the xml or html methods. You'll learn more about output methods later in this chapter and in Chapter 3 .

This stylesheet also redeclares the XSLT namespace several times (on the value-of and text elements). You'll see how to

circumvent this cumbersome practice with a namespace prefix in "Adding a Namespace Prefix," later in this chapter.

To see output escaping in action, process escape.xml with this command:

xalan escape.xml noescape.xsl

Here is the result:

<publisher>O'Reilly & Associates</publisher>

disable-output-escaping with a value of no has the same effect as having no attribute at all, that is, the output is escaped
and & is preserved in the result.

The following stylesheet, escape.xsl , disables output escaping:

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="xml" omit-xml-declaration="yes"/>

<template match="/">
 <publisher xmlns="">
 <value-of select="title" xmlns="http://www.w3.org/1999/XSL/Transform"/>
 <text disable-output-escaping="yes" xmlns="http://www.w3.org/1999/XSL/Transform"> & Associates</text>
 </publisher>
</template>

</stylesheet>

Process this:

xalan escape.xml escape.xsl

and you get:

<publisher>O'Reilly & Associates</publisher>

In escape.xsl , escaping is turned off so that & is not preserved. You get only the ampersand in the result. The publisher

element, which appears in both escape.xsl and noescape.xsl , is a literal result element. Let me explain what that is.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

2.2 Literal Result Elements

A literal result element is any XML element that is represented literally in a template, is not in the XSLT
namespace, and is written literally onto the result tree when processed. Such elements must be well-formed within
the stylesheet, according to the rules in XML 1.0.

The example stylesheet tedious.xsl , which produces XML output, contains an instance of the msg literal result

element from a different namespace:

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="xml" indent="yes"/>
<template match="/">
 <msg xmlns="http://www.wyeast.net/msg">
 <apply-templates xmlns="http://www.w3.org/1999/XSL/Transform"/>
 </msg>
</template>

</stylesheet>

Here is literal.xml :

<?xml version="1.0"?>

<message>You can use literal result elements in stylesheets.</message>

If you apply this stylesheet to literal.xml :

xalan literal.xml tedious.xsl

you will get this output:

<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns="http://www.wyeast.net/msg">You can use literal result elements in stylesheets.</msg>

Because this stylesheet uses the XML output method, XML declaration was written to the result tree. The literal
result element, along with its namespace declaration, was also written.

2.2.1 Adding a Namespace Prefix

In tedious.xsl , the msg element has its own namespace declaration. This is because the XSLT processor would
reject the stylesheet if it did not have a namespace declaration. The apply-templates element that follows must

also redeclare the XSLT namespace because the processor will produce unexpected results without it. (Try it and
you'll see.)

Ok, ok. This is getting a little confusing. If you had to add a namespace declaration to every literal element and
then to following XSLT elements, that would add up to a lot of error-prone typing. So, it's time to start using a
prefix with the XSLT namespace.

http://lib.ommolketab.ir

The conventional prefix for XSLT is xsl , but you can choose another one if you like. Here is a rewrite of tedious.xsl
that uses the xsl prefix with the XSLT namespace declaration. It's called notsotedious.xsl :

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
 <msg>
 <xsl:apply-templates/>
 </msg>
</xsl:template>

</xsl:stylesheet>

This version of the stylesheet drops the namespace declaration for msg because it's no longer required to have one.
Likewise, you don't have to redeclare the XSLT namespace for apply-templates either.

If you apply notsotedious.xsl to literal.xml :

xalan literal.xml notsotedious.xsl

it produces:

<?xml version="1.0" encoding="UTF-8"?>
<msg>You can use literal result elements in stylesheets.</msg>

When you use a prefix with a namespace declaration on the XSLT document element stylesheet , as in

notsotedious.xsl , you don't have to repeat the declaration on any other element in the document that uses the
same prefix-you only have to declare it once. Throughout the rest of the book, I'll usually use an xsl prefix in a

stylesheet.

QNames and NCNames

An element or attribute name that is qualified by a namespace is called a qualified name , or QName
for short. In normal XSLT, two examples of QNames are stylesheet or xsl:stylesheet . Both are

(or should be) qualified by the namespace name http://www.w3.org/1999/XSL/Transform . A QName
may have a prefix, such as xsl , which is separated by a colon from its local part or local name, as in
stylesheet . A QName may also consist only of a local part. If a local part is qualified with a

namespace, and there is no prefix, it should be qualified by a default namespace declaration . You'll
learn about default declarations in Section 2.2.3.2 , later in this chapter.

An element or attribute name that is not qualified with a namespace is unofficially called a non-
colonized name , or, officially, an NCName. As spelled out in XML 1.0, a colon was allowed in XML
names, even as the first character of a name. For example, names like doc:type or even :type were

and still are legal, even if they are not qualified with a namespace. But there was little notion of
namespaces in early 1998 when XML 1.0 came out, so if a colon occurred in a name, it was considered
a legal name character. Nevertheless, XML names with colons that are not namespace-qualified are
undefined in XSLT and don't work. Avoid them and be happier!

The XML namespaces specification created the term NCName . It is an XML name minus the colon, and
it makes way for the special treatment of the colon in XML namespace-aware processing. If an XML

http://lib.ommolketab.ir

processor is not up to date and does not support namespaces (most do so now), colons will not be
treated specially in names. You can read more about QNames and NCNames in Sections 3 and 4 of the
XML namespaces specification.

If namespaces sound somewhat confusing to you, you are in good company. Namespaces in XML are
here to stay, but they are admittedly befuddling and difficult to explain.

Here is another simple example of a literal result element, expanded with a few more details. The template in the
stylesheet literal.xsl contains a literal result element paragraph :

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:template match="/">
 <paragraph><xsl:apply-templates/></paragraph>
</xsl:template>

</xsl:stylesheet>

The output element specifies the xml output method, instead of the text method, and turns indentation on
(indent="yes "). When the xml output method is set, XSLT processors will write an XML declaration on the first

line of the result tree (as you saw earlier).

When the output element's indent attribute has a value of yes , the processor will add some indentation to make

the output more human-readable. The amount of indentation will vary from processor to processor because the
XSLT specification states only that, in regard to indentation, an "XSLT processor may add additional whitespace
when outputting the result tree" (see Section 16). The modal may add gives implementers some free rein on how
they put indentation into practice. Some implementers, in fact, don't implement indentation at all, although they
are allowed to do so.

Apply literal.xsl to literal.xml with the command:

xalan literal.xml literal.xsl

and you will see the following results:

<?xml version="1.0" encoding="UTF-8"?>
<paragraph>You can use literal result elements in stylesheets.</paragraph>

Using the stylesheet, the processor replaced the document element message from the source tree with the literal
result element paragraph in the result tree. In its output, Xalan also included an encoding declaration in the XML

declaration.

The encoding declaration takes the form of an attribute specification (encoding="UTF-8 "). The encoding

declaration provides an encoding name, such as UTF-8, that indicates the intended character encoding for the
document. The encoding name is not case sensitive; for example, both UTF-8 or utf-8 work fine. Xalan uses

uppercase when outputting an encoding declaration, while Saxon uses lowercase. You'll learn more about encoding
declarations and character encoding in Chapter 3 .

2.2.2 Literal Result Elements for HTML

Taking this a few steps further, the stylesheet html.xsl produces HTML output using literal result elements:

http://lib.ommolketab.ir

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html" indent="yes"/>
<xsl:template match="/">
 <html>
 <head>
 <title>HTML Output</title>
 </head>
 <body>
 <p><xsl:apply-templates/></p>
 </body>
 </html>
</xsl:template>

</xsl:stylesheet>

The output method is now html , so no XML declaration will be written to the output. Indentation is the default for
the html method, though it is shown explicitly in the output element (indent="yes "). The tags for the resulting

document are probably familiar to you, and they are near the minimum necessary for an HTML document to
display anything. For reference, you can find the current W3C specification for HTML Version 4.01 at
http://www.w3.org/TR/html401/ .

Now, use Xalan to apply the stylesheet to literal.xml , and save the result in a file:

xalan -o literal.html literal.xml html.xsl

This transformation will construct the following result tree and save it to the file literal.html :

<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>HTML Output</title>
</head>
<body>
<p>You can use literal result elements in stylesheets.</p>
</body>
</html>

By default, Xalan's indentation depth is zero, but as a general rule, start tags begin on new lines. Saxon's default
indentation depth is three spaces, with start tags on new lines as well.

2.2.2.1 The META tag

Xalan automatically adds a META tag to the head element. This META tag is an apparent attempt to get Hypertext
Transfer Protocol (HTTP) to bind or override the value of the META tag's content attribute (text/html;
charset=UTF-8) to the Content-Type field of its response header. In other words, if you request this document

with HTTP, such as with a web browser, the server that hosts the document will issue an HTTP response header,
and one of the fields or lines in that header should be labeled Content-Type , as shown here:

HTTP/1.1 200 OK
Date: Thu, 01 Jan 2003 00:00:01 GMT
Server: Apache/1.3.27

http://www.w3.org/TR/html401/
http://lib.ommolketab.ir

Last-Modified: Thu, 31 Dec 2002 23:59:59 GMT
ETag: "8b6172-c7-3e3878a8"
Accept-Ranges: bytes
Content-Length: 199
Connection: close
Content-Type: text/html; charset=UTF-8

I cannot guarantee that the content of the META tag will wind up in the Content-Type header field, though that's
what it logically seems to be trying to do. You can tell Xalan to not output the META tag by using the -m option on

the command line. For example, the command:

xalan -m literal.xml html.xsl

will produce HTML output without the META tag:

<html>
<head>
<title>HTML Output</title>
</head>
<body>
<p>You can use literal result elements in stylesheets.</p>
</body>
</html>

The apply-templates element in html.xsl brought the content of message from literal.xml into the content of the p

element in the resulting HTML. If you open the document literal.html in the Mozilla Firebird web browser, it should
look like Figure 2-1 . (Firebird is a leaner and faster branch of Mozilla.)

Figure 2-1. Displaying literal.html in Mozilla Firebird

2.2.3 XHTML Literal Result Elements

The XML document doc.xml uses a minimal set of elements to express a rather simple document structure:

<?xml version="1.0"?>

<doc styletype="text/css">

<css>
 h1 {font-family: sans-serif; font-size: 24pt}
 p {font-size: 16pt}
</css>

<title>Using Literal Result Elements</title>

http://lib.ommolketab.ir

<heading>What Is a Literal Result Element?</heading>

<paragraph>You can use literal result elements in
stylesheets. A literal result element is any non-XSLT element,
including any attributes, that can be written literally in a
template, and that will be pushed literally onto the
result tree when processed.</paragraph>

</doc>

The document element doc in doc.xml is the container, so to speak, for the whole document. This element has a
single attribute, styletype , that ostensibly provides a content type for a CSS stylesheet. The css element holds a

few CSS rules, which don't apply to any elements in doc.xml , but they'll come in handy later when you move to
XHTML. The title , heading , and paragraph elements that follow have fairly obvious roles. Now look at the

stylesheet doc.xsl , which you can use to transform doc.xml into XHTML:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="doc">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title><xsl:apply-templates select="title"/></title>
 <style type="{@styletype}">
 <xsl:apply-templates select="css"/>
 </style>
 </head>
 <body>
 <h1><xsl:apply-templates select="heading"/></h1>
 <p><xsl:apply-templates select="paragraph"/></p>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

The output method is XML again, because XHTML is really a vocabulary of XML. (XSLT 1.0 does not support a
specific xhtml output method, but XSLT 2.0 does.) With indentation on (yes), the output will be more readable.
The literal result element for html has a namespace declaration for XHTML 1.0.

As a vocabulary of XML, XHTML 1.0 has requirements that go beyond those of HTML, an SGML vocabulary. For
example, all XHTML tags must be in lowercase, and must be closed properly, either with an end tag or in the form
of an empty element tag. Attribute values must be enclosed in matching double or single quotes. In other words,
because XHTML is XML, it must be well-formed.

Looking back at doc.xsl , what about the braces in the value of style 's type attribute? That's called an attribute

value template in XSLT.

2.2.3.1 Attribute value templates

An attribute value template provides a way to bring computed data into attribute values. Think for a moment why

http://lib.ommolketab.ir

such a syntax is needed. You know that the markup character < is not allowed in attribute values. That's a rule
from the XML 1.0 specification. So, you couldn't use something like a value-of element in an attribute value. And
you can't use entity references such as < as you normally would in an attribute value of a literal result element

because an XSLT processor will interpret these references as literal text. These are a few reasons why XSLT
provides this special syntax.

The following line in doc.xsl contains an attribute value template:

<style type="{@styletype}">

Because it is processing the doc element, and eventually all its children, the processor uncovers the attribute
styletype on doc . In the stylesheet, the braces ({ }) enclose the attribute value template. Everything in the
braces is computed rather than copied through. The at sign (@) syntax comes from XPath and indicates that the

following item in the location path is an attribute you're looking for in the context node. The XSLT processor then
picks up the value of the styletype attribute from the source tree and places it at this same spot in the output,

giving you:

<style type="text/css">

in the result tree. (You can read more about attribute value templates in Section 7.6.2 of the XSLT specification.)

Now process this transformation and save the result in the file:

xalan -o doc.html doc.xml doc.xsl

The resulting file doc.html will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Using Literal Result Elements</title>
<style type="text/css">
 h1 {font-family: sans-serif; font-size: 24pt}
 p {font-size: 16pt}
</style>
</head>
<body>
<h1>What Is a Literal Result Element?</h1>
<p>You can use literal result elements in stylesheets.
A literal result element is any non-XSLT element,
including any attributes, that can be written literally in a
template, and that will be pushed literally onto the
result tree when processed.</p>
</body>
</html>

Figure 2-2 shows what doc.html looks like in Netscape 7.1. Actually, you can either open doc.html or doc-pi.xml
and you'll be looking at essentially the same document.

Figure 2-2. Displaying doc.html in Netscape 7.1

http://lib.ommolketab.ir

2.2.3.2 Applying namespaces

Before moving on, I want to call your attention to the namespace declaration in doc.html . This, which originated in
a literal result element in doc.xsl , is considered a default namespace declaration:

<html xmlns="http://www.w3.org/1999/xhtml">

The URI http://www.w3.org/1999/xhtml , by the way, is the official namespace for XHTML 1.0. No prefix appears
on any element or attribute in the resulting document. A default namespace declaration applies to the element on
which it was declared, and also to any child elements that follow that element, but default declarations never apply
to attributes.

There is little to no risk of having a name conflict between attribute names. For example, take two elements that
both can have an attribute with the same name. With or without a namespace declaration, there won't be a name
conflict because an attribute's domain, so to speak, is limited to the element that owns it. You can only use an
attribute once on a given element-attribute names must be unique within the element. If, however, two attributes
have the same name, and one is qualified with a namespace prefix (a QName with a prefix), those names won't
conflict. For example, in the following fragment, the invoice start tag has two attributes:

<invoice order="293-7756-11" new:order="2003-08-31-4556">

There are two order attributes, but because one is qualified with a prefix, the names won't collide, and you don't

break the rule of using an attribute more than once. For more details, see Section 5.2 of the XML namespaces
specification.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

2.3 Using the Element Called element

Literal result elements aren't the only way to create elements on the result tree. You can also use the XSLT instruction element . The following document, element.xml , is

similar to literal.xml , which you saw earlier in this chapter:

<?xml version="1.0"?>

<message>You can use the element element to create elements on the result tree.
</message>

Unlike literal.xsl , the stylesheet element.xsl uses element instead of a literal result element to create a new element in the output:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="message">
 <xsl:element name="{concat('my', name())}"><xsl:apply-templates/></xsl:element>
 </xsl:template>

</xsl:stylesheet>

element has three attributes. The name attribute is required as it obviously specifies a name for the element. In this example, the name attribute uses an attribute value
template to compute a name for the element. In other words, the name of the element is computed by using the concat() and name() functions to contrive a new name

based on the name of the current node. This is useful when you don't have the name of a node until you actually perform the transformation (at runtime).

You don't have to use an attribute value template in the value of name -you could use any legal XML name you want in the value. Computing the name, however, is one
justification for using element . Another justification is using attribute sets, which you'll learn about presently. Otherwise, you might as well use a literal result element, but the

choice remains yours.

2.3.1 The namespace attribute

element has two other attributes beside name : namespace and use-attribute-sets , which are optional. I'll discuss namespace here, and I'll explain how to work with use-
attribute-sets in Section 2.4.1 , a little later in this chapter.

The namespace attribute identifies a namespace name to associate with the element. If element 's name attribute contains a QName with a prefix, the processor will usually
associate the namespace name in the namespace attribute with the prefix in the QName, though it is not required to do so (see Section 7.1.2 of the XSLT spec). You can use
either a namespace URI in namespace or you can compute the namespace with an attribute value template. The stylesheet namespace.xsl uses a namespace URI:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
 <xsl:element name="doc:paragraph" namespace="http://www.example.com/documents">
 <xsl:apply-templates/>
 </xsl:element>
</xsl:template>

http://lib.ommolketab.ir

</xsl:stylesheet>

Apply this stylesheet to element.xml :

xalan element.xml namespace.xsl

and you will see what I'm talking about:

<?xml version="1.0" encoding="UTF-8"?>
<doc:paragraph xmlns:doc="http://www.example.com/documents">You can use the element element to create elements on the result tree.</doc:paragraph>

When the XSLT processor encounters the namespace name http://www.example.com/documents in namespace and the QName doc:paragraph in name , it associates the
prefix doc with the namespace name http://www.example.com/documents in the namespace declaration, as you can see. (I should say it usually associates the doc prefix with

the namespace URI, unless there is a clash.)

Likewise, if you declare this namespace name and prefix on the document element in the stylesheet, as in rootns.xsl :

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:doc="http://www.example.com/documents">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <xsl:element name="doc:paragraph"><xsl:apply-templates/></xsl:element>
 </xsl:template>

</xsl:stylesheet>

Transforming element.xml against rootns.xsl using:

xalan element.xml rootns.xsl

will produce the same result as transforming element.xml against namespace.xsl :

<?xml version="1.0" encoding="UTF-8"?>
<doc:paragraph xmlns:doc="http://www.example.com/documents">You can use the
element element to create elements on the result tree.</doc:paragraph>

This section has only covered a few basics about element . You will get to see element at work in a larger example in the later section, Section 2.7 . Now let's add an attribute
or two to the paragraph element with the attribute instruction.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

2.4 Adding Attributes

To add a single, nonliteral attribute to paragraph in a result tree, all you have to do is add an XSLT attribute element as a child of element . The stylesheet attribute.xsl does just that:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <xsl:element name="paragraph">
 <xsl:attribute name="priority">medium</xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>

</xsl:stylesheet>

Like element , attribute can have name and namespace attributes. Again, the name attribute, which specifies the name of an attribute for the result tree, is required, while namespace is not. The namespace attribute works pretty much
like it does in element . The values of both name and namespace can be computed by using an attribute value template, just as in element .

Apply attribute.xml (which contains no attributes) to attribute.xsl with:

xalan attribute.xml attribute.xsl

to produce a result with a priority attribute:

<?xml version="1.0" encoding="UTF-8"?>
<paragraph priority="medium">You can use the attribute element to create attributes on the result tree.</paragraph>

The next stylesheet, attributes.xsl , adds two more attributes to paragraph for a total of three attributes. One of the additional attributes will have a namespace, and one will not:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
 <xsl:element name="paragraph">
 <xsl:attribute name="priority">medium</xsl:attribute>
 <xsl:attribute name="date">2003-09-23</xsl:attribute>
 <xsl:attribute name="doc:style" namespace="http://www.example.com/documents">classic</xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

When transforming attribute.xml with attributes.xsl :

xalan attribute.xml attributes.xsl

http://lib.ommolketab.ir

it produces this result:

<?xml version="1.0" encoding="UTF-8"?>
<paragraph priority="medium" date="2003-09-23" xmlns:doc="http://www.example.com/
documents" doc:style="classic">You can use the attribute element to create attributes
on the result tree.</paragraph>

There is another way to specify multiple attributes besides listing them one after another: you can use an attribute set.

2.4.1 Reusing a Set of Attributes

The top-level attribute-set element in XSLT allows you to label a group of attributes with a name. Then you can reference and reuse that group of attributes by supplying the name in the use-attribute-sets attribute of element .
The attribute element has a required name attribute, and it also has an optional use-attribute-sets attribute (such as element) so that you can chain attribute sets together. The next section, Section 2.4.1.1 , shows you how.

The stylesheet attribute-set.xsl implements this feature:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:attribute-set name="paragraph">
 <xsl:attribute name="priority">medium</xsl:attribute>
 <xsl:attribute name="date">2003-09-23</xsl:attribute>
 <xsl:attribute name="doc:style" namespace="http://www.example.com/documents">classic</xsl:attribute>
</xsl:attribute-set>
<xsl:template match="/">
 <xsl:element name="paragraph" use-attribute-sets="paragraph">
 <xsl:apply-templates/>
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

The attribute-set element is a top-level element in XSLT, meaning that it is only allowed as a child of the stylesheet's document element. Also, the attribute-set element allows only attribute elements as children. This named
group of attributes is linked to the element paragraph by the use-attribute-sets attribute. You can also see that even though an element and an attribute set have the same name (paragraph), it poses no naming conflict within

XSLT.

If you process attribute-set.xsl against attribute.xml with:

xalan attribute.xml attribute-set.xsl

you will get about the same result as processing it against attributes.xsl :

<?xml version="1.0" encoding="UTF-8"?>
<paragraph priority="medium" date="2003-09-23" xmlns:doc="http://www.example.com/document" doc:style="classic">You can use the attribute element to create attributes on the result tree.</paragraph>

2.4.1.1 Chaining attribute sets

As I mentioned earlier, you can also chain attribute sets together. The stylesheet chain.xsl shows you how to do this:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

http://lib.ommolketab.ir

<xsl:attribute-set name="doc" use-attribute-sets="paragraph">
 <xsl:attribute name="doc:style" namespace="http://www.example.com/documents">classic</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="paragraph">
 <xsl:attribute name="priority">medium</xsl:attribute>
 <xsl:attribute name="date">2003-09-23</xsl:attribute>
</xsl:attribute-set>

<xsl:template match="/">
 <xsl:element name="paragraph" use-attribute-sets="doc">
 <xsl:apply-templates/>
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

This stylesheet has two attribute-set elements that are chained together by means of the use-attribute-sets attribute. The element definition links to the attribute set named doc , which in turn links to the attribute set named
paragraph .

When you process these using:

xalan attribute.xml chain.xsl

the only difference you might see in the result is that the attributes may appear in a different order:

<?xml version="1.0" encoding="UTF-8"?>
<paragraph priority="medium" date="2003-09-23" xmlns:doc="http://www.example.com/
documents" doc:style="classic">You can use the element element to create elements on
the result tree.</paragraph>

This is not a problem because attributes are unordered in XML. Although a processor may attempt to keep track of the order of attributes, it is not obligated to do so by the XML 1.0 specification.

Finally, an attribute-set element need not have any content, that is, it does not have to have attribute children. This means that you can do the following (chaining.xsl):

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:attribute-set name="para" use-attribute-sets="paragraph"/>
<xsl:attribute-set name="paragraph">
 <xsl:attribute name="priority">medium</xsl:attribute>
 <xsl:attribute name="date">2003-09-23</xsl:attribute>
 <xsl:attribute name="doc:style" namespace="http://www.example.com/documents">classic</xsl:attribute>
</xsl:attribute-set>

<xsl:template match="/">
 <xsl:element name="paragraph" use-attribute-sets="para">
 <xsl:apply-templates/>
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

The attribute-set element named para does not have any attribute children; however, it links to the attribute-set named paragraph with its use-attribute-sets attribute. This has the effect of, in essence, renaming paragraph

http://lib.ommolketab.ir

to para and producing the same result as chain.xsl . Here's the command:

xalan attribute.xml chaining.xsl

Another thing to keep in mind is that use-attribute-sets is not a required attribute, neither on attribute-set nor on element . So, a stylesheet like unchain.xsl is legal:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:attribute-set name="para">
 <xsl:attribute name="doc:style" namespace="http://www.example.com/documents">classic</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="paragraph">
 <xsl:attribute name="priority">medium</xsl:attribute>
 <xsl:attribute name="date">2003-09-23</xsl:attribute>
</xsl:attribute-set>

<xsl:template match="/">
 <xsl:element name="paragraph" use-attribute-sets="para">
 <xsl:apply-templates/>
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

And when processed against attribute.xml with:

xalan attribute.xml unchain.xsl

it produces a result with only one attribute:

<?xml version="1.0" encoding="UTF-8"?>
<paragraph xmlns:doc="http://www.example.com/documents" doc:style="classic">You can use the attribute element to create attributes on the result tree.</paragraph>

As you may have guessed already, you can use attribute-sets creatively to add attributes to, or omit them from, a result tree.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

2.5 Outputting Comments

Comments allow you to hide advisory text in an XML document. You can also use comments to label
documents, or portions of them, which can be useful for debugging. When an XML processor sees a
comment, it may ignore or discard it, or it can make the text content of comments available for other
kinds of processing. The text in comments is not the same as the text found between element tags,
that is, it is not character data. As such, comments can contain characters that are otherwise
forbidden, like < and &. XML comments are formed like this:

<!-- This element holds the current date & time -->

Comments are markup and can go anywhere in an XML document, except
directly inside the pointy brackets of other kinds of markup. This means, for
example, that you can't place a comment inside of a start tag of an element.

The only legal XML characters that a comment must not contain are the sequence of two hyphen
characters (--), as this pair of characters signals the end of a comment. Other than that, you are

free to use any legal XML character in a comment. (Again, to check on what characters are legal in
XML, and where they are legal, see Sections 2.2 through 2.4 of the XML specification.)

To insert a comment into a result tree, you can use the XSLT instruction element comment, as

demonstrated in the comment.xsl stylesheet:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
 <xsl:comment> comment & msg element </xsl:comment>
 <msg><xsl:apply-templates/></msg>
</xsl:template>

</xsl:stylesheet>

The output method is XML. If it were text, the comment would not show up in the output. Because
comments in XML can contain markup characters, you can include an ampersand in a comment,
among otherwise naughty characters, though it must first be represented by an entity reference
(&) in the stylesheet.

Process this stylesheet against comment.xml with Xalan:

xalan comment.xml comment.xsl

You will get the following results:

<?xml version="1.0" encoding="UTF-8"?>

http://lib.ommolketab.ir

<!-- comment & msg element -->
<msg>You can insert comments in your output.</msg>

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

2.6 Outputting Processing Instructions

It must come as no surprise that you can add processing instructions, or PIs, to the result tree with the processing-instruction element.

This element is formed like this:

<xsl:processing-instruction name="xml-stylesheet">href="new.css"
 type="text/css"</xsl:processing-instruction>

A processing-instruction element requires one attribute, name , which identifies the target name for the PI. The value of this attribute

must be an NCName, and, as such, must not be a QName and cannot contain a colon. In other words, you can't qualify a target name with
a namespace.

The content of the processing-instruction element contains the pair of pseudo-attributes href and type that are necessary to apply the

CSS stylesheet processing.css to the resulting XML document:

paragraph {font-size: 24pt; font-family: serif}
code {font-family: monospace}

These rules will apply to the paragraph and code elements in the result tree. Provided that you view the result tree in a browser, any
paragraph elements will be rendered with a best-fit serif font, in 24-point type, while any code elements will be rendered in a monospace

font. (Courier is an example of a monospace font.) You'll get a chance to see the effects of these style rules later on in this section.

In the example that follows, I'll discuss more than just PIs. I'll also talk about a different kind of content in an XML document, and why you
have to use more than one template to get at it. Consider for a moment the following XML document, processing.xml , which contains mixed
content:

<?xml version="1.0"?>

<message>You can add processing instructions to a document with the <courier>
processing-instruction</courier> element.</message>

2.6.1 Mixed Content

The message element in processing.xml contains mixed content . Mixed content freely mixes character data and element content together.
That's why you see tags for the courier element mixed with text in message . Any elements that appear in mixed content are allowed to

appear in any order, although they, of course, must also be well-formed. In this context, well-formed elements must either have both start
and end tags or must be empty element tags, and the characters used for text and names must follow XML 1.0 rules. (See Section 3.2.2 of
the XML specification for more details about mixed content.)

processing.xsl handles the mixed content in processing.xml :

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
 <xsl:processing-instruction name="xml-stylesheet">href="processing.css" type="text/css"</xsl:processing-instruction>
 <xsl:element name="doc">

http://lib.ommolketab.ir

 <xsl:element name="paragraph"><xsl:apply-templates/></xsl:element>
 </xsl:element>
</xsl:template>

<xsl:template match="courier">
 <xsl:element name="code"><xsl:apply-templates/></xsl:element>
</xsl:template>

</xsl:stylesheet>

2.6.2 Using Multiple Template Rules

For the first time in this book, you are seeing a stylesheet (processing.xsl) that has more than one template rule. (Remember, a template
rule consists of a pattern to match and a constructor telling the processor what to do when the pattern is matched.) The way you design
your templates tells the XSLT processor what to look for in a document, and then what to do if and when it finds what you've asked it to
find.

In the stylesheet processing.xsl , the first template matches the root node in the document using / . When the processor encounters apply-
templates in this template, it matches any children of the root node in the source. When applied to processing.xml , the built-in templates
for elements and text match the message element and its child text content.

The next template rule is invoked whenever it encounters a courier element in the source tree. There is only one courier element in
processing.xml , so it is only invoked once. If there were more courier elements, it would be invoked for each occurrence of courier . This
template also has an apply-templates child, which uses the built-in templates to find the text content of courier (you could try value-of
here with the same outcome). As a result, the processor surrounds the character content of courier with code elements, and returns

control to the template that invoked it.

The original template, seeing nothing else to do, picks up where the other template left off and takes care of its other work. With the
processor holding onto the work that the other template did in a temporary tree, the built-in template for text nodes yanks the character
data out of message and surrounds it with paragraph tags.

Somewhere along the way, it surrounds all the elements with the new root element doc . It creates a new PI, too, based on the instructions
given by the processing-instruction element. Once that work is done, and the XSLT processor sees that there is nothing left to do, it

writes its work out to the result tree, pulls down the shades, locks the door, and calls it quits.

2.6.2.1 What can go in a template rule?

It's obvious that the template element can hold a template rule, but other XSLT elements can hold templates as well. Generally speaking, a

template consists of one or more XSLT elements that can create a result tree. These templates are not template rules per se because they
don't have to match a pattern-they just contain sequence constructors. Literal result elements and literal text, as well as the apply-
templates , attribute , element , comment , processing-instruction , and text elements can all be contained in templates.

The 15 elements that can contain templates (but don't match patterns) are:

http://lib.ommolketab.ir

attribute for-each processing-instruction

comment if template

copy message variable

element otherwise when

fallback param with-param

A lot of elements in this list are probably new to you. It would consume pages to tell you what elements can go where in all possible
templates, so for now please take this discussion of what templates are on faith. The concept of template rules and templates will continue
to unfold throughout the book, all in due time. Meanwhile, Appendix A of Doug Tidwell's XSLT , also published by O'Reilly, provides an
excellent XSLT reference and lists in detail what elements can contain, including those that follow in the template category.

2.6.3 Creating the PI and Putting It to Work

Now you can run the processor and see for yourself what the result actually is:

xalan -o proc.xml processing.xml processing.xsl

Here is what proc.xml looks like:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="processing.css" type="text/css"?>
<doc>
<paragraph>You can add processing instructions to a document with the <code>
processing-instruction</code> element.</paragraph>
</doc>

Xalan placed the XML stylesheet PI in the document prolog (before the document element doc) because of where the processing-
instruction element was placed in the first template. PIs can go anywhere in an XML document except inside other markup, so you can
move the processing-instruction element to the second template if you want, and see where it comes out in the output.

The problem is, if the stylesheet PI does not appear in the prolog, the rendering engine (a browser in this case) won't apply the
processing.css stylesheet. The point is that the order of templates, and the order of the content of templates, matters in regard to the
output of those templates.

Figure 2-3 shows proc.xml displayed in IE.

Figure 2-3. The document proc.xml displayed in IE using processing.css

http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

2.7 One Final Example

Finally, to wrap things up, here is an example stylesheet that shows you, once again, how to perform most of the techniques discussed in this chapter.
The example starts out with the rather short document containing mixed content, final.xml :

<?xml version="1.0"?>

<message>You can add processing instructions to a document with the <courier>processing-instruction</courier> element.</message>

There isn't much to it, but you can augment final.xml with the well-rounded XSLT stylesheet, final.xsl :

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:attribute-set name="atts">
 <xsl:attribute name="noteworthy">true</xsl:attribute>
 <xsl:attribute name="priority">medium</xsl:attribute>
</xsl:attribute-set>

<xsl:template match="/">
 <xsl:processing-instruction name="xml-stylesheet">href="final.css" type="text/css"
</xsl:processing-instruction>
 <xsl:comment> final.xml as processed with final.xsl </xsl:comment>
 <doc>
 <heading>Final Summary</heading>
 <paragraph>Following is a summary of how you can build documents with XSLT:
</paragraph>
 <paragraph>You can add text either literally or with the <code>text</code> element.</paragraph>
 <paragraph>You can use literal result elements in stylesheets.</paragraph>
 <xsl:element name="paragraph">You can use <xsl:element name="code">element
</xsl:element> elements in stylesheets.</xsl:element>
 <xsl:comment> you can add a line break & some spaces with the text element
</xsl:comment>
 <xsl:text>

 </xsl:text>
 <xsl:element name="paragraph"><xsl:attribute name="noteworthy">true</xsl:attribute>
You can add attributes to elements with the <xsl:element name="code">attribute
</xsl:element> element.</xsl:element>
 <xsl:element name="paragraph" use-attribute-sets="atts">You can even add sets of
attributes to elements with the <xsl:element name="code">attribute-set</
xsl:element> top-level element.</xsl:element>
 <paragraph>You can add comments with the <code>comment</code> element.</paragraph>
 <xsl:element name="paragraph"><xsl:text>And last but not least: </xsl:text>
<xsl:apply-templates select="message"/></xsl:element>
 </doc>
</xsl:template>

http://lib.ommolketab.ir

<xsl:template match="courier">
 <xsl:element name="code"><xsl:apply-templates/></xsl:element>
</xsl:template>

</xsl:stylesheet>

Processing final.xml with final.xsl , you can serialize the result tree and place it in a file:

xalan -o finally.xml final.xml final.xsl

The XML document finally.xml turns out like this:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="final.css" type="text/css"?>

<!-- final.xml as processed with final.xsl -->
<doc>
<heading>Final Summary</heading>
<paragraph>Following is a summary of how you can build documents with XSLT:
</paragraph>
<paragraph>You can add text either literally or with the <code>text</code> element.
</paragraph>
<paragraph>You can use literal result elements in stylesheets.</paragraph>
<paragraph>You can use <code>element</code> elements in stylesheets.</paragraph>
<!-- you can add a line break & some spaces with the text element -->

 <paragraph noteworthy="true">You can add attributes to elements with the
<code>attribute</code> element.</paragraph>
<paragraph noteworthy="true" priority="medium">You can even add sets of attributes
to elements with the <code>attribute-set</code> top-level element.</
paragraph>
<paragraph>You can add comments with the <code>comment</code> element.
</paragraph>
<paragraph>And last but not least: You can add processing instructions to a document
 with the <code>processing-instruction</code> element.</paragraph>
</doc>

When finally.xml is displayed in Mozilla, it depends on the CSS stylesheet final.css to figure out how to render heading , paragraph , and code elements:

heading {display: block; font-size: 16pt; font-family: sans-serif; margin: 8pt 15pt}
paragraph {display: block; font-size: 12pt; font-family: serif; margin: 5pt 15pt}
code {display: inline; font-size: 11pt; font-family: monospace}

The display property with value of block gives the heading and paragraph elements a block- or box-like appearance on the browser canvas or
rendering space. The display value of inline for code means that elements should be displayed inline with other text. The sans-serif font family for
heading indicates that you want the browser to select a sans-serif font on a best-match basis, just as with monospace for code elements. The margin

property sets the top and right margins for the element to either 8 and 15 points, or 5 and 15 points, respectively.

With this CSS applied in Mozilla, finally.xml is displayed in Figure 2-4 .

Figure 2-4. The document finally.xml displayed in Mozilla with final.css

http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

2.8 Summary

In this chapter, you have learned the techniques that allow you to build a new result tree document.
You learned about literal result elements and the XSLT instruction elements text, element,
attribute, attribute-set, comment, and processing-instruction. You also learned about

XHTML's relationship to HTML, and came to grips with some of the fundamentals of how template
rules are evaluated and processed (more to come on that topic). You are now ready to explore ways
that you can finely tune a result tree with the output element. You'll find out how in Chapter 3.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 3. Controlling Output
Chapter 3 shows you how to control the XML, HTML, and text output of an XSLT processor using the
XSLT top-level element output. You have seen the output element in previous examples, but I have
only discussed 2 of output's 10 attributes so far. I'll talk about each of output's attributes in this

chapter.

In this chapter, I'll talk about the results you can expect from different output methods in XML,
HTML, text, or custom output. I'll also cover indentation, how to manage XML declarations, document
type declarations, CDATA sections, and media types. For more detail, cross-reference this chapter
with Section 16 of the XSLT specification.

Be aware that not all XSLT processors adhere strictly to the output element.

There are models in which the XSLT processor has no control over the final
serialization of the output because the output values are overridden. You will

see an example of this type of model when you use the Moxie processor,
discussed in Chapter 17.

Multiple Output Elements

You can use multiple instances of the output element in a stylesheet. If there is more
than one occurrence, all the attributes of the output elements are combined when the
stylesheet is processed, as if there were only one instance of output. If any of the
attributes conflict-for example, there were more than one method attribute, each with a

different value-the value that is in the last occurrence of the attribute wins. This holds
true unless other stylesheets are imported into your current stylesheet. XSLT has a
mechanism for importing other stylesheets and then assigning priorities for the imported
stylesheets. Don't worry about that now. I'll discuss what happens when you import
documents in Chapter 13.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

3.1 The Output Method

As you have already seen, the output element has a method attribute. This attribute indicates

explicitly the kind of output you want the XSLT processor to produce, namely, XML, HTML, or plain
text. These three amigos-the attribute values xml, html, and text-should always be lowercase
when used as values for method. (Again, XSLT 2.0 will also support the xhtml output method.)

3.1.1 The Default Output Methods

If you don't assign a value to method, you get a default output method depending on what a

stylesheet produces. The default output method for XSLT is XML unless the document element in the
result is html. In such a case, the default output method is HTML. The tag name html can be in

uppercase, lowercase, or mixed case, but it must not have a namespace URI associated with it (no
xmlns attribute).

3.1.1.1 Default HTML output

To understand how default HTML works, consider the document name.xml found in examples/ch03
(this is where all the examples files mentioned in this chapter are found):

<name>
 <last>Churchill</last>
 <first>Winston</first>
</name>

Then look at default-html.xsl that produces HTML using literal result elements:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="name">
 <html>
 <body>
 <p><xsl:apply-templates select="last"/></p>
 <p><xsl:apply-templates select="first"/></p>
 </body>
 </html>
</xsl:template>

</xsl:stylesheet>

Notice that there is no output element in default-html.xsl to tell the processor explicitly what the

output method is. Apply this stylesheet to name.xml with Xalan:

http://lib.ommolketab.ir

xalan -m name.xml default-html.xsl

and it will produce a default HTML result:

<html>
<head>
</head>
<body>
<p>Churchill</p>
<p>Winston</p>
</body>
</html>

The -m command-line option suppresses the META tag that Xalan would normally produce. The result

does not have an XML declaration because Xalan evaluated the result as HTML, as it should. The
result is also indented (line breaks at start tags, but zero space) because if the output method is
HTML, a default value of yes for indent is assumed as if an output element with indent="yes"

attribute were present.

With Xalan, you can also control the amount of indentation from the command line by using the -i

option with an integer. For example, if you want to indent the output by three spaces, type this
command:

xalan -i 3 -m name.xml default-html.xsl

The indented output will look like this:

<html>
 <body>
 <p>Churchill</p>
 <p>Winston</p>
 </body>
</html>

The child elements body and p are nicely indented by three spaces. This indentation feature of Xalan

is not specified by XSLT itself, but it is nice to have nevertheless. You can read more about the
default HTML output method in Section 16.2 of the XSLT specification.

3.1.1.2 Default XML output

Now, check out default-xml.xsl, which produces a default XML result using literal result elements:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="name">
 <name>
 <family><xsl:apply-templates select="last"/></family>
 <given><xsl:apply-templates select="first"/></given>
 </name>
</xsl:template>

http://lib.ommolketab.ir

</xsl:stylesheet>

Applying default-xml.xsl to name.xml with Xalan:

xalan name.xml default-xml.xsl

will produce the following result:

<?xml version="1.0" encoding="UTF-8"?>
<name><family>Churchill</family><given>Winston</given></name>

The default XML output method for Xalan kicks out an XML declaration with an encoding declaration
for UTF-8 (more about this in Section 3.2.1.2). The elements are output with no indentation added
because the default for indent is no for XML output (as if an output element were present with
indent="no").

You can use the default methods for HTML and XML, but it is always cleaner, and more apparent to
other humans reading your stylesheet, if you specify the method attribute explicitly with a value of
xml or html. (You can read even more about the default XML output method in Section 16.1 of the

XSLT specification.)

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

3.2 Outputting XML

With the XML output method, whether declared explicitly or by default, a compliant XSLT processor
produces well-formed XML as output. As you already know, well-formed XML follows the syntax rules
outlined in the XML specification-rules such as matching start and end tags, matching quotes around
attribute values, proper nesting of elements, and so forth. For example, if you create XML as you did in
Chapter 2 , the processor will make sure that the XML is well-formed. If it is not, the XSLT processor
will report any errors.

The output element helps you to control a number of features relating XML output, including the XML

declaration, document type declarations, and CDATA sections, all of which are discussed in the sections
that follow.

3.2.1 The XML Declaration

As explained in Chapter 1 , the XML declaration is optional. You don't have to use it, except under
certain circumstances, such as when an encoding declaration is imperative. XSLT allows you to have
control over the XML declaration with the output element. With output , you can keep XML

declarations from being written to output, change version information, control the encoding
declaration, and monitor the stand- alone declaration. I'll cover all of these features step-by-step in the
sections that follow.

3.2.1.1 Omitting the XML declaration

Most XSLT processors automatically write an XML declaration at the top of the result. If the XML
declaration is not essential to your output, you can turn this behavior off by giving output 's omit-
xml-declaration attribute a value of yes ; by default, the value is no when the attribute is not
present. The omit-xml-declaration attribute is used in omit.xsl :

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:output omit-xml-declaration="yes"/>
<xsl:template match="name">
 <name>
 <family><xsl:apply-templates select="last"/></family>
 <given><xsl:apply-templates select="first"/></given>
 </name>
</xsl:template>

</xsl:stylesheet>

This stylesheet uses two output elements. You could merge them into one output element if you wish.
The only reason I use two output elements in this example is because it makes a cleaner line break

this way!

When applied to name.xml using:

http://lib.ommolketab.ir

xalan name.xml omit.xsl

the XML declaration is dropped, as you can see in the output:

<name>
<family>Churchill</family>
<given>Winston</given>
</name>

3.2.1.2 The encoding declaration

XML 1.0 supports characters or atomic units of text as described in ISO/IEC 10646-1:1993 Information
technology- Universal Multiple-Octet Coded Character Set (UCS)-Part 1: Architecture and Basic
Multilingual Plane, plus its seven amendments (see http://www.iso.ch). The mission of the UCS
standard is to identify all characters in all writing systems in the world. Since XML 1.0 became a W3C
recommendation, ISO/IEC 10646-1:1993 has advanced to ISO/IEC 10646-1:2000.

Unicode is a parallel standard developed by the Unicode Consortium (see http://www.unicode.org).
XML 1.0 likewise supports Unicode Version 2.0, but Unicode has recently advanced to Version 4.0, so
there are some differences in what XML 1.0 supports and in what the latest version of Unicode
supports.

Both ISO/IEC 10646-1 and Unicode assign the same values and descriptions for each character, but
Unicode defines some semantics for the characters that ISO/IEC 10646-1 does not. In this book, I'll
generally refer to Unicode, although Unicode and ISO/IEC 10646-1 are an inexact synonym.

Good background reading on Unicode and character sets is Mike Brown's XML
tutorial at http://www.skew.org/xml/tutorial . To look up character charts, see
Kosta Kostis' charts at http://www.kostis.net/charsets/ .

Each character in Unicode is represented by a unique, hexadecimal (base 16) number. The first 128
characters in Unicode are the same characters in US-ASCII or Latin-1 (ISO-8859-1), which surely
makes the transition to Unicode easier to follow. The numbers that represent these characters are
called code points .

http://lib.ommolketab.ir

Code Points

You got a very brief introduction to the concept of character encoding in Chapter 2 . An XML
document, whether in a file or in a stream, is really just a series of bytes. A byte is a chunk
of bits (ones and zeroes)-usually eight. When you assign a character encoding to a
document, you express an intent to the processing software to transform the bytes in the
document into a sequence of characters that another processor can recognize.

Character encoding is the mapping of binary values to code points or character positions.
Let me explain what code points are. Back in the 1960s, ANSI created the ASCII or US-
ASCII character-encoding format. US-ASCII represents only 128 characters, numbered 0-
127, with each numbered position representing a code point. In their binary forms, every
US-ASCII character is represented by only 7 bits-a 7-bit byte rather than an 8-bit byte
(octet). Other 7-bit encoding forms were created in other parts of the world at this time as
well, not just in the U.S.

The uppercase letter A in US-ASCII, for example, is represented by the 7 bits 1000001 and
is mapped to the code point 65 (decimal or integer) or 41 in hexadecimal. So the character-
encoding scheme we call US-ASCII maps the code point 65 to the 7-bit binary
representation 1000001. Character sets map integers to graphic character
representations-the US-ASCII character set maps the integer 65 to the character A, for
example.

But 7-bits can only represent 128 distinct values (the highest 7-bit binary number 1111111
equals the decimal equivalent 127). There are thousands of characters in human writing
systems beyond ordinary, provincial 128-character US-ASCII. So if you want more
characters, such as 256 rather than 128, you need to bump up your binary numbers from 7
bits to 8 bits.

3.2.1.2.1 ISO/IEC 8859

ISO-8859-1, commonly called Latin-1, represents 256 Western European characters, numbered 0-255,
using 8-bit bytes or octets. It was originally specified by the European Computer Manufacturers
Association (ECMA) in the 1980s and is currently defined there as ECMA-94 (see http://www.ecma-
international.org). This standard is also endorsed by ISO and is specified in ISO/IEC 8859-1:1998
Information technology-8-bit single-byte graphic character sets-Part 1: Latin alphabet No. 1 (see
http://www.iso.ch). ISO-8859-1 is only the beginning: there are actually 15 character sets in this
family. These character sets helped to unify earlier 7-bit efforts. All 15 of these 8-bit character sets are
specified by ISO and are listed in Table 3-1 .

Table 3-1. ISO 8859 specifications

ISO standard Description Character set name

ISO/IEC 8859-1:1998 Part 1, Latin 1 ISO-8859-1

ISO/IEC 8859-2:1999 Part 2, Latin 2 ISO-8859-2

http://www.iso.ch
http://lib.ommolketab.ir

ISO standard Description Character set name

ISO/IEC 8859-3:1999 Part 3, Latin 3 ISO-8859-3

ISO/IEC 8859-4:1998 Part 4, Latin 4 ISO-8859-4

ISO/IEC 8859-5:1998 Part 5, Cyrillic ISO-8859-5

ISO/IEC 8859-6:1996 Part 6, Arabic ISO-8859-6

ISO 8859-7:1987 Part 7, Greek ISO-8859-7

ISO/IEC 8859-8:1999 Part 8, Hebrew ISO-8859-8

ISO/IEC 8859-9:1999 Part 9, Latin 5 ISO-8859-9

ISO/IEC 8859-10:1998 Part 10, Latin 6 ISO-8859-10

ISO/IEC 8859-11:2001 Part 11, Thai ISO-8859-11

ISO/IEC 8859-13:1998 Part 13, Latin 7 ISO-8859-13

ISO/IEC 8859-14:1998 Part 14, Latin 8 (Celtic) ISO-8859-14

ISO/IEC 8859-15:1999 Part 15, Latin 9 ISO-8859-15

ISO/IEC 8859-16:2001 Part 16, Latin 10 ISO-8859-16

Using octets to represent single characters expands the limit to 256 characters. The ISO 8859
character sets reuse the code points 0-255 for each part. Part 1 assigns the small Latin letter ÿ (y with
dieresis) to code point 255 but the same code point 255 is assigned to the (Cyrillic small letter
dzhe) in Part 5. Unicode avoids code point conflicts by assigning a unique number to each character.
Unicode accomplishes this by not limiting character definitions to a single octet.

3.2.1.2.2 UTF-8 and UTF-16

XML processors are required to support both UTF-8 and UTF-16 character encodings. These encodings
provide different ways of representing Unicode characters in binary form. (UTF stands for UCS
Transformation Format .) UTF-8 is not limited to a fixed-length character encoding but can use
between one and six bytes to represent Unicode characters. Unicode code points in the range of 0-255
are represented with one octet, those in the range of 256-2047 are represented with two octets, those
in the range of 2048-65535 are represented with three octets, and so forth. It uses a special encoding
scheme to get the most out of the least bits, using the first octet of a sequence of more than one octet
to indicate how many octets are in the sequence. (See http://www.ietf.org/rfc/rfc2279.txt .)

UTF-16 uses a minimum of two octets to represent characters and, if the character cannot be
represented with two octets, it uses four octets. It also uses a special encoding scheme (see
http://www.ietf.org/rfc/rfc2279.txt), but if you are using only Latin characters, UTF-16 characters can
take up more space when they don't need to. For example, the letter A would only take one octet in
UTF-8 but would take two in UTF-16. On the other hand, a character in the higher ranges that might
take six octets in UTF-8 would take at most four octets in UTF-16. UTF-8 is a good choice for Latin
alphabets, and UTF-16 is good for other than the simplest Chinese, Japanese, and Korean characters.

3.2.1.2.3 The Byte Order Mark

ISO/IEC 8859-3:1999 Part 3, Latin 3 ISO-8859-3

ISO/IEC 8859-4:1998 Part 4, Latin 4 ISO-8859-4

ISO/IEC 8859-5:1998 Part 5, Cyrillic ISO-8859-5

ISO/IEC 8859-6:1996 Part 6, Arabic ISO-8859-6

ISO 8859-7:1987 Part 7, Greek ISO-8859-7

ISO/IEC 8859-8:1999 Part 8, Hebrew ISO-8859-8

ISO/IEC 8859-9:1999 Part 9, Latin 5 ISO-8859-9

ISO/IEC 8859-10:1998 Part 10, Latin 6 ISO-8859-10

ISO/IEC 8859-11:2001 Part 11, Thai ISO-8859-11

ISO/IEC 8859-13:1998 Part 13, Latin 7 ISO-8859-13

ISO/IEC 8859-14:1998 Part 14, Latin 8 (Celtic) ISO-8859-14

ISO/IEC 8859-15:1999 Part 15, Latin 9 ISO-8859-15

ISO/IEC 8859-16:2001 Part 16, Latin 10 ISO-8859-16

Using octets to represent single characters expands the limit to 256 characters. The ISO 8859
character sets reuse the code points 0-255 for each part. Part 1 assigns the small Latin letter ÿ (y with
dieresis) to code point 255 but the same code point 255 is assigned to the (Cyrillic small letter
dzhe) in Part 5. Unicode avoids code point conflicts by assigning a unique number to each character.
Unicode accomplishes this by not limiting character definitions to a single octet.

3.2.1.2.2 UTF-8 and UTF-16

XML processors are required to support both UTF-8 and UTF-16 character encodings. These encodings
provide different ways of representing Unicode characters in binary form. (UTF stands for UCS
Transformation Format .) UTF-8 is not limited to a fixed-length character encoding but can use
between one and six bytes to represent Unicode characters. Unicode code points in the range of 0-255
are represented with one octet, those in the range of 256-2047 are represented with two octets, those
in the range of 2048-65535 are represented with three octets, and so forth. It uses a special encoding
scheme to get the most out of the least bits, using the first octet of a sequence of more than one octet
to indicate how many octets are in the sequence. (See http://www.ietf.org/rfc/rfc2279.txt .)

UTF-16 uses a minimum of two octets to represent characters and, if the character cannot be
represented with two octets, it uses four octets. It also uses a special encoding scheme (see
http://www.ietf.org/rfc/rfc2279.txt), but if you are using only Latin characters, UTF-16 characters can
take up more space when they don't need to. For example, the letter A would only take one octet in
UTF-8 but would take two in UTF-16. On the other hand, a character in the higher ranges that might
take six octets in UTF-8 would take at most four octets in UTF-16. UTF-8 is a good choice for Latin
alphabets, and UTF-16 is good for other than the simplest Chinese, Japanese, and Korean characters.

3.2.1.2.3 The Byte Order Mark

http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2279.txt
http://lib.ommolketab.ir

A Byte Order Mark, or BOM, is a special space character (Unicode character FEFF) that is used only as
an encoding signature. If an XML document is UTF-16, it must begin with a BOM; if it is UTF-8, it may
begin with a BOM. If the document is not UTF-8 or UTF-16, the character encoding must be declared.
You can also declare UTF-8 or UTF-16 encoding explicitly in an XML declaration. (See Section 4.3.3 of
the XML specification.)

XML processors may support other encodings such as US-ASCII, ISO-8859-1, or Shift_JIS (Japanese).
The Internet Assigned Numbers Authority keeps track of encoding names and publishes them at
http://www.iana.org/assignments/character-sets . You can use your own private encoding name if you
start it with x- , but you would have to write your own code to process it.

3.2.2 Unicode and the Command Shell Window

In a shell or command prompt window, it's difficult, if not impossible, to see the difference between
one kind of character encoding and another. To show you the effect of this, apply the stylesheet
encoding.xsl to name.xml with Xalan:

xalan name.xsl encoding.xsl

Here's encoding.xsl :

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>
<xsl:output encoding="UTF-16"/>

<xsl:template match="name">
 <name>
 <family><xsl:apply-templates select="last"/></family>
 <given><xsl:apply-templates select="first"/></given>
 </name>
</xsl:template>

</xsl:stylesheet>

The result in a Windows command prompt window, which doesn't handle UTF-16 properly, will look
something like this:

 < ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 1 6 " ? >
 < n a m e >
 < f a m i l y > A s a m i < / f a m i l y >
 < g i v e n > T o m o h a r u < / g i v e n >
 < / n a m e >

The dark block at the beginning of the document shows you where the BOM is. Even though the BOM is
a zero-width space, the code page used by the Windows command prompt represents it differently. A
code page is a Microsoft character set, and if your computer is configured for U.S. English, the code
page is likely to be 437. Code page 437, using the Lucida Console font, interprets 8 bits of the
character (FE in hexadecimal, 11111110 in binary, and 254 in decimal) as a black square. That is what
is mapped to the character in the code page (see http://www.kostis.net/charsets/cp437.htm). In
Unicode, the black square is 25A0 in hexadecimal (see Figure 3-1), and it is 9632 in decimal.

http://www.iana.org/assignments/character-sets
http://lib.ommolketab.ir

Changing the Code Page in Windows

Here is how to test what code page your window is using at a Windows command prompt
(such as on Windows XP Professional). Enter the command:

 mode con: cp

You can use the mode command to display the status of your system, among other things. If

you change the code page to 850 (multilingual Latin 1) with this command:

mode con: cp select=850

you then transform name.xml with encoding.xsl . The result in your command prompt
window will look different. To change your code page back to 437, type this command:

mode con: cp select=437

Where did that extra space come from in the output of encoding.xsl ? Because you are using UTF-16
encoding, each character in the output is represented by two octets. Code page 437 interprets the
other 8 bits (FF in hexadecimal, 11111111 in binary, and 255 in decimal) as nonbreaking space.
Unicode numbers the nonbreaking space as A0 in hexadecimal and as 160 in decimal. That's where the
extra space is coming from. This incompatibility between encoding schemes and the display of
characters in a shell window or text editor is the cause of a lot of confusion. It is good to be aware of it.
Character Map and UniPad are tools that can help analyze Unicode characters.

Looking at a File with xxd

If you are running Linux or Cygwin on a Windows box (see http://www.cygwin.com), you
probably have the xxd utility available to you on the command line. This utility can examine
a file and let you see it in hexadecimal or binary form, which may be of use to you with
regard to encoding as you can look at a file character-by-character. For example, if you
execute the following transformation:

xalan -o dump.xml name.xml encoding.xsl

the result of the transformation is saved to the file dump.xml . You can look at dump.xml
with xxd using this command line:

xxd -g 1 dump.xml

By default, each line of output from xxd is numbered in hexadecimal, with the first line
beginning with an octet numbered 0000000 and the last one numbered 000000f (0-15 in

decimal). Following that, each character is printed in hexadecimal, with the normal Latin
characters shown on the far right. If the character can't be represented in ASCII, it is
represented by a dot (.) on the right side.

http://lib.ommolketab.ir

3.2.3 Using Character Map and UniPad

The Windows Character Map utility allows you to select and copy characters in available fonts for use in
other applications, but it also helps you quickly identify the Unicode code point and names for
characters. Notice the lower-left corner in Figure 3-1 , which identifies the Unicode code point in
hexadecimal (U+25A0), plus the character name (Black Square). Figure 3-1 shows what the Character
Map looks like in Windows XP Professional.

Figure 3-1. Character Map utility

Another useful program is Sharmahd Computing's SC UniPad, a Unicode text editor available for free
download from http://www.unipad.org . Among other things, UniPad shows you the Unicode value of a
character based on the position of the cursor in the edit window. Figure 3-2 shows you dump.xml in a
UniPad window. Note the Unicode character information in the status bar. A few things the status bar
tells you is the Unicode code point for the character where the cursor is located (U+003C) and the
character's descriptive name (LESS-THAN SIGN). It indicates the encoding (UTF-16 (L) for little
endian), and tells you that the byte-order mark is present (BOM).

Figure 3-2. dump.xml in UniPad

http://lib.ommolketab.ir

3.2.3.1 Entities and text declarations

A text declaration is similar to an XML declaration, but it does not have to provide version information.
Text declarations are used for separate, external documents called entities . If an external entity is not
in UTF-8 or UTF-16, the external entity must have a text declaration (see Section 4.3.3 of the XML
specification). To understand what an external entity is, look at the document entity.xml :

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet href="entity.css" type="text/css"?>
<!DOCTYPE name [
<!ENTITY first SYSTEM "name.ent">
]>

<name>
 <last>Churchill</last>
 <first>&first;</first>
</name>

This document contains an internal document type definition, or DTD, called an internal subset . It's
internal to the XML document that it qualifies. The entity is declared in the internal subset (note the
keyword ENTITY). You'll learn about DTDs in Section 3.2.4 , later in this chapter. For right now, I'll

focus only on the entity.

The entity is an external, parsed entity. External means that the content of the entity is stored in an
external file. Parsed means that the entity is made of text that may be parsed. The name of this entity
is first . The SYSTEM keyword indicates that the entity is in a named file, and the name of that file is
name.ent . The first element contains a (&first;) that, when processed, will be expanded or replaced

with the contents of the file name.ent :

<?xml encoding="ISO-8859-1"?>Randolph

The external entity name.ent contains a text declaration that has an encoding declaration with the
encoding name ISO-8859-1 . It looks like an XML declaration, but the version information is not

required (nor is it forbidden). If you display entity.xml in IE, at least in Version 6.0 or greater, the
entity will be expanded so that the content of the first element will be Randolph .

http://lib.ommolketab.ir

Figure 3-3 shows what entity.xml looks like in IE when using the stylesheet entity.css :

name {font-size: 18pt}
last {display:inline}

Figure 3-3. The document entity.xml displayed in IE

You'll read more about entities in Section 3.2.3.2 to follow. For more information on text declarations,
see Section 4.3.1 of the XML specification.

3.2.3.2 The standalone declaration

The standalone declaration in an XML declaration indicates explicitly whether an XML document
depends on external markup declarations. An element type declaration, such as <!ELEMENT family
(#PCDATA)> , is an example of a markup declaration. Markup declarations are stored in DTDs. The

following document, standalone.xml , states bluntly that it does not depend on external documents:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<name>
 <last>Churchill</last>
 <first>Winston</first>
</name>

If, however, you apply the stylesheet notalone.xsl :

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>
<xsl:output doctype-system="notalone.dtd"/>
<xsl:output standalone="no"/>

<xsl:template match="name">
 <name>
 <family><xsl:apply-templates select="last"/></family>
 <given><xsl:apply-templates select="first"/></given>
 </name>
</xsl:template>

</xsl:stylesheet>

http://lib.ommolketab.ir

to standalone.xml , using:

xalan -o notalone.xml standalone.xml notalone.xsl

the value of the standalone declaration is changed from yes to no in the output document

notalone.xml , and a document type declaration is also added:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE name SYSTEM "notalone.dtd">
<name>
<family>Churchill</family>
<given>Winston</given>
</name>

The DTD notalone.dtd contains three markup declarations, all for elements:

<!ELEMENT name (family, given)>
<!ELEMENT family (#PCDATA)>
<!ELEMENT given (#PCDATA)>

You'll learn more about the document type declaration later in this chapter in Section 3.2.4 .

It is important for you to know-though you have probably already realized it-that standalone
declarations are not required. They may be useful in some applications because the XML declaration
must be on the first line in a document, and so information about whether the document has
dependencies is available to applications early on.

If a document declares standalone="no ", but actually has dependencies nonetheless, an XML

processor will ignore the declaration. If a document does have dependencies, declaring
standalone="yes " will generate an error. If a document doesn't have a standalone declaration in an

XML declaration, it usually doesn't matter much anyway: an XML processor will find the external
markup declarations nevertheless. Again, for more insight, see Section 3.2.4 .

3.2.3.3 XML version information

Version 1.0 of XML was approved as a W3C recommendation in February 1998. While the 1.0
specification has held its ground for over five years, it is likely that the W3C will deliver XML 1.1 as a
recommendation in 2003. If so, XSLT is ready in at least one respect: you can control XML version
information in an XML declaration with output 's version attribute.

Here is an example of how it works. The stylesheet version.xsl uses the version attribute on the
output element:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="UTF-8"/>
<xsl:output version="1.1"/>

<xsl:template match="name">
 <name>
 <family><xsl:apply-templates select="last"/></family>
 <given><xsl:apply-templates select="first"/></given>
 </name>

http://lib.ommolketab.ir

</xsl:template>

</xsl:stylesheet>

When applied to name.xml like:

xalan name.xml version.xsl

this stylesheet will produce the following result with an altered XML declaration:

<?xml version="1.1" encoding="UTF-8"?>
<name>
<family>Churchill</family>
<given>Winston</given>
</name>

The XML version is changed from 1.0 to 1.1.

Xalan and Saxon both support the version attribute of output .

3.2.4 Controlling Document Type Declarations

A document type declaration associates document type definitions (DTDs) with an XML document. In
essence, it helps an XML validator find where DTDs exist. The DTD can be either internal to an XML
document, external to it, or both. To illustrate, the document name-int.xml has an internal subset:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE name [
<!ELEMENT name (last, first)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
]>

<name>
 <last>Churchill</last>
 <first>Winston</first>
</name>

DTDs, as you already can see, have a different syntax than ordinary XML. DOCTYPE is the keyword for

the document type declaration. Following that keyword is the name of the document element for the
XML document called name . Inside the square brackets ([]) are three element declarations that
begin with the keyword ELEMENT .

According to this internal subset, a name element must be followed by exactly one last element, which
is followed by exactly one first element. Both last and first must contain parsed character data
(#PCDATA). The document contained in internal.xml is valid with regard to its internal subset.

The document external.xml references an external DTD called the external subset . It is in a file called

http://lib.ommolketab.ir

external.dtd ; external.xml is valid with regard to it:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE name SYSTEM "external.dtd">

<name>
 <last>Churchill</last>
 <first>Winston</first>
</name>

The SYSTEM keyword indicates that the following value will be a system identifier or URI. Here is

external.dtd that has the same declarations as internal.dtd , but in a document separate from the
instance:

<!ELEMENT name (last, first)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>

The document both.xml contains an internal subset and also refers to an external subset:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE name SYSTEM "both.dtd" [
<!ELEMENT last (#PCDATA)>
]>
<name>
 <last>Churchill</last>
 <first>Winston</first>
</name>

The document type declaration encloses an internal subset and also points to the external subset
both.dtd with a system identifier:

<!ELEMENT name (last, first)>
<!ELEMENT first (#PCDATA)>

The external subset contains declarations for the name and first elements, and the internal subset
holds a declaration for last only. Both the internal and external subsets are needed to validate the

document.

3.2.4.1 Validation with transformation

You can validate a source document at the same time that you transform it by using the -v (validate)

command-line option. For example, the following command line performs validation on both.xml before
the document is transformed with both.xsl :

xalan -v both.xml both.xsl

The validate option works with Saxon and MSXSL as well. MSXSL is a fast, Windows-native command-
line processor available free from Microsoft (see the appendix for more information on MSXSL).

3.2.4.2 Adding a document type declaration with a system identifier

http://lib.ommolketab.ir

XSLT won't let you add markup declarations such as <!ELEMENT name (last, first)> to an internal

subset through a transformation, but it will let you add document type declarations to a result. The
document name.xml , for example, doesn't have a document type declaration. You can add one with
XSLT by using the doctype-system attribute on output . The following stylesheet, doctype-system.xsl

, shows you how:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="UTF-8"/>
<xsl:output doctype-system="name.dtd"/>

<xsl:template match="name">
 <name>
 <family><xsl:apply-templates select="last"/></family>
 <given><xsl:apply-templates select="first"/></given>
 </name>
</xsl:template>

</xsl:stylesheet>

When name.xml is transformed with this stylesheet:

xalan name.xml doctype-system.xsl

the doctype-system attribute triggers the creation of a document type declaration in the result that
references the system identifier name.dtd :

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE name SYSTEM "name.dtd">
<name>
<family>Churchill</family>
<given>Winston</given>
</name>

3.2.4.3 Adding a document type declaration with a public identifier

Public identifiers are often associated with widely accepted DTDs-the strict DTD associated with
XHTML, for example. In some situations, software can resolve the names of public identifiers with local
copies of a DTD, rather than by using a remote DTD over a network. Finding and using local DTDs can
save processing time, especially when you have many files to validate.

Following is a public identifier for strict XHTML 1.0:

-//W3C//DTD XHTML 1.0 Strict//EN

The leading - indicates that the public identifier is not registered with ISO. The name of the identifier's
owner is preceded by a pair of slashes (//W3C), followed by a pair of slashes and the description of the
DTD (//DTD XHTML 1.0 Strict), followed by a pair of slashes and a language code (//EN).

The stylesheet doctype-public.xsl adds a public identifier for strict XHTML 1.0 to a result:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="UTF-8"/>

http://lib.ommolketab.ir

<xsl:output doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"/>
<xsl:output doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"/>

<xsl:template match="name">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title><xsl:value-of select="name()"/></title>
</head>
<body>
 <p><xsl:apply-templates select="last"/></p>
 <p><xsl:apply-templates select="first"/></p>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

In addition to a public identifier, this stylesheet also specifies a system identifier URI for an XHTML
DTD. The value-of element's select attribute contains an expression that calls the XPath name()

function that returns the name of a node, rather than its content. You'll learn more about XPath
functions such as name() in Chapter 5 .

When applied to name.xml with:

xalan name.xml doctype-public.xsl

doctype-public.xsl produces the following output:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/
DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>name</title>
</head>
<body>
<p>Churchill</p>
<p>Winston</p>
</body>
</html>

3.2.4.4 Validating XHTML

This output is valid, strict XHTML 1.0. Save the output to a file, for example, with the command:

xalan -o name.html name.xml doctype-public.xsl

As XHTML, you can validate name.html just as you would any XML document. One easy way to do this
is with W3C's online validation tool. If you go to the W3C Markup Validation Service page at
http://validator.w3.org, you can upload a local file, such as name.html , using the Browse button (see
Figure 3-4). Then you can click the Validate File button, and the service will attempt to validate the
file. One of the nice things about the W3C service is that it provides diagnostics if there are errors

http://validator.w3.org, you can upload a local file, such as
http://lib.ommolketab.ir

present on the page, making it easier to correct the errors. This online tool also works as an XML and
HTML validator.

Figure 3-4. The W3C Markup Validation Service

3.2.5 Outputting CDATA Sections

CDATA sections in XML allow you to hide characters like < and & from the XSLT processor. The

difference between a CDATA section and an individual entity reference is that you hide a section of
characters rather than just one at a time.

A CDATA section begins with the characters <![CDATA[and ends with]]> . For example, the company

element in this fragment contains a CDATA section:

<company><![CDATA[<pub>O'Reilly & Associates</pub>]]></company>

The & and < characters in the CDATA section are hidden so that they aren't interpreted as markup
(such as the start of an entity or character reference). The cdata-section-elements attribute on
output lets you tell the XSLT processor which elements you want to contain CDATA sections in the

result.

To see how it's done, consider the stylesheet cdata.xsl :

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:output cdata-section-elements="notes"/>

<xsl:template match="name">
 <name>
 <family><xsl:apply-templates select="last"/></family>
 <given><xsl:apply-templates select="first"/></given>

http://lib.ommolketab.ir

 <notes>Author & British prime minister</notes>
 </name>
</xsl:template>

</xsl:stylesheet>

In this example, the cdata-section-elements attribute of output contains the name of an element
(notes) whose content you want to enclose in a CDATA section. If you process name.xml with

cdata.xsl :

xalan name.xml cdata.xsl

you will see the following result:

<?xml version="1.0" encoding="UTF-8"?>
<name>
<family>Churchill</family>
<given>Winston</given>
<notes><![CDATA[Author & British prime minister]]></notes>
</name>

The character data content of notes (from the template in the stylesheet) is surrounded by a CDATA
section in the result, and the entity reference & is changed into & . The cdata-section-elements

attribute can contain a list of whitespace-separated element names. Each element in such a list must
contain character data in the source document, as notes does.

You can also serialize CDATA sections by using literal text. To do this, use literal text such as shown in
literal-cdata.xsl :

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:output cdata-section-elements="notes"/>

<xsl:template match="name">
 <name>
 <family><xsl:apply-templates select="last"/></family>
 <given><xsl:apply-templates select="first"/></given>
 <notes><![CDATA[Author & British prime minister]]></notes>
 </name>
</xsl:template>

</xsl:stylesheet>

When you transform name.xml with this stylesheet using:

xalan name.xml literal-cdata.xsl

you will see the CDATA section passed on literally to the result:

<?xml version="1.0" encoding="UTF-8"?>
<name>
<family>Churchill</family>
<given>Winston</given>

http://lib.ommolketab.ir

<notes><![CDATA[Author & British prime minister]]></notes>
</name>

You can find more about CDATA sections in Section 2.7 of the XML specification.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

3.3 Outputting HTML

You have seen a few examples that produce HTML output. The following HTML example is more complicated
than ones you have seen before. This section covers explicit, presentation-oriented HTML output, discussed
in Section 16.2 of the XSLT specification. The XML document, wg.xml (Example 3-1), contains the names of
the former and current W3C XML Working Group (WG) members at the time of the publication of the first
edition of XML 1.0.

Example 3-1. XML document listing the names of the XML Working Group
members

<?xml version="1.0"?>

<!--
 names of persons acknowledged as current and past members
 of the W3C XML Working Group at the time of the publication
 of the first edition of the XML specification on 1998-02-10
-->

<names>
 <name>
 <last>Angerstein</last>
 <first>Paula</first>
 </name>
 <name>
 <last>Bosak</last>
 <first>Jon</first>
 </name>
 <name>
 <last>Bray</last>
 <first>Tim</first>
 </name>
 <name>
 <last>Clark</last>
 <first>James</first>
 </name>
 <name>
 <last>Connolly</last>
 <first>Dan</first>
 </name>
 <name>
 <last>DeRose</last>
 <first>Steve</first>
 </name>
 <name>
 <last>Hollander</last>

http://lib.ommolketab.ir

 <first>Dave</first>
 </name>
 <name>
 <last>Kimber</last>
 <first>Eliot</first>
 </name>
 <name>
 <last>Magliery</last>
 <first>Tom</first>
 </name>
<name>
 <last>Maler</last>
 <first>Eve</first>
 </name>
 <name>
 <last>Maloney</last>
 <first>Murray</first>
 </name>
<name>
 <last>Murata</last>
 <first>Makoto</first>
 </name>
 <name>
 <last>Nava</last>
 <first>Joel</first>
 </name>
 <name>
 <last>O'Connell</last>
 <first>Conleth</first>
 </name>
 <name>
 <last>Paoli</last>
 <first>Jean</first>
 </name>
 <name>
 <last>Sharpe</last>
 <first>Peter</first>
 </name>
 <name>
 <last>Sperberg-McQueen</last>
 <first>C. M.</first>
 </name>
 <name>
 <last>Tigue</last>
 <first>John</first>
 </name>
</names>

http://lib.ommolketab.ir

The element names last and first fit Western-oriented names, which admittedly is

a problem when you are dealing with international names. In other examples in this
chapter, last is transformed to family and first is transformed to given , which is

more generalized for international names. But because this example is only
concerned with presentation-oriented HTML, changing the element names to more
descriptive names is extraneous.

Along with the names of the individual in alphabetical order, the document contains an informative
comment in the prolog (near the top). You can use the stylesheet wg.xsl , shown in Example 3-2 , to
transform this document into the HTML shown in Example 3-3 .

Example 3-2. A stylesheet to convert the list of members from Example 3-1
into the HTML shown in Example 3-3

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" version="4.01"/>
<xsl:output doctype-system="http://www.w3.org/TR/html4/strict.dtd"/>

<xsl:output doctype-public="-//W3C//DTD HTML 4.01//EN"/>

<xsl:template match="/">
 <html>
 <head>
 <title>Original W3C XML Working Group Members</title>
 <style type="text/css">
 body {font-family: sans-serif}
 h1 {font-size: 20pt}
 lu {font-size: 16pt}
 </style>
 </head>
 <body>
 <h1>Original W3C XML Working Group Members</h1>
 <p>Following are the
 <xsl:value-of select="substring(comment(),2,string-length(comment())-12)"/>
 10 February 1998:</p>
 <xsl:apply-templates/>
 </body>
 </html>
</xsl:template>

<xsl:template match="name">
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="last">
 <xsl:comment> family name </xsl:comment>
 <xsl:apply-templates/><xsl:text>, </xsl:text>
</xsl:template>

http://lib.ommolketab.ir

<xsl:template match="first">
 <xsl:comment> given name </xsl:comment>
 <xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>

The stylesheet sets the output method to html unambiguously, that is, it does not depend on the default
HTML output method. The version attribute indicates the HTML version number. This won't show up in the

output, but it is available should any application want the information (rare). The stylesheet will also
produce a public and system identifier for HTML 4.01.

The first template matches on the root of the document and starts building the outer layers of an HTML
document, including some CSS style rules. Following that, there is an interesting line of gobbledy-gook that
I want to draw your attention to:

<xsl:value-of select="substring(comment(),2,string-length(comment())-12)"/>

This instance of value-of returns a substring or shortened version of the comment in the prolog by using
the substring() function. The first argument of the substring() function is comment() , which looks

like a function, but it isn't-it's something called a node-test (you'll learn about node-tests in Chapter 4).
The expression in the select attribute uses substring() to subtract 14 characters from the comment-2

characters at the beginning of the comment (skips characters 0 and 1, and starts at character 2) and 12 at
the end of the comment.

Processing comments blindly without knowing their exact content will probably result
in a good deal of frustration on your part.

The string-length() function, which appears as the third argument of the function substring() ,

returns the length of the comment (181 characters) and subtracts 12 from 181. This removes the ISO 8601
date from the returned comment and allows the stylesheet to add a differently formatted date (10
February 1998), which is specified as literal text. The returned comment is preceded by the text Following

are the . You will learn more about expressions and functions in Chapter 5 .

The first template, the one that matches the document root (/), calls apply-templates , which in turn
finds the template that reaches each occurrence of the child element name . This name template instantiates
the HTML element li (list item) and then calls apply-templates , which finds template rules for its children
last and first . The templates for last and first add comments to the result, and the template for last

adds a comma. After each template is invoked, it returns control to the template that invoked it. The XSLT
processor munches through the whole document until it can't find any more nodes in the source.

Go ahead and process wg.xml with wg.xsl , saving the result to wg.html :

xalan -o wg.html wg.xml wg.xsl

The resulting file wg.html follows in Example 3-3 .

Example 3-3. The HTML results of processing Example 3-1 using the XSLT

http://lib.ommolketab.ir

stylesheet shown in Example 3-2

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Original W3C XML Working Group Members</title>
<style type="text/css">
 body {font-family: sans-serif}
 h1 {font-size: 20pt}
 lu {font-size: 16pt}
 </style>
</head>
<body>
<h1>Original W3C XML Working Group Members</h1>
<p>Following are the
 names of persons acknowledged as current and past members
 of the W3C XML Working Group at the time of the publication
 of the first edition of the XML specification on
 10 February 1998:</p>

 <!-- family name -->Angerstein,
 <!-- given name -->Paula

 <!-- family name -->Bosak,
 <!-- given name -->Jon

 <!-- family name -->Bray,
 <!-- given name -->Tim

 <!-- family name -->Clark,
 <!-- given name -->James

 <!-- family name -->Connolly,
 <!-- given name -->Dan

 <!-- family name -->DeRose,
 <!-- given name -->Steve

 <!-- family name -->Hollander,
 <!-- given name -->Dave

 <!-- family name -->Kimber,
 <!-- given name -->Eliot

http://lib.ommolketab.ir

 <!-- family name -->Magliery,
 <!-- given name -->Tom

 <!-- family name -->Maler,
 <!-- given name -->Eve

 <!-- family name -->Maloney,
 <!-- given name -->Murray

 <!-- family name -->Murata,
 <!-- given name -->Makoto

 <!-- family name -->Nava,
 <!-- given name -->Joel

 <!-- family name -->O'Connell,
 <!-- given name -->Conleth

 <!-- family name -->Paoli,
 <!-- given name -->Jean

 <!-- family name -->Sharpe,
 <!-- given name -->Peter

 <!-- family name -->Sperberg-McQueen,
 <!-- given name -->C. M.

 <!-- family name -->Tigue,
 <!-- given name -->John

</body>
</html>

Figure 3-5. wg.html in Mozilla

http://lib.ommolketab.ir

Figure 3-5 shows what wg.html looks like in Mozilla.

You can easily validate wg.html using Mozilla's built-in link to the W3C Markup Validation Service. To do so,
follow these steps:

Choose File Edit Page (or CTRL+E) in Mozilla.1.

When the Composer window appears, choose Tools Validate HTML.2.

When the W3C Markup Validation Service window appears, click the Browse button and select wg.html
.

3.

Click the button Validate this file.4.

The successful result should appear as Figure 3-6 .5.

Figure 3-6. W3C Validation Service report on wg.html

http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

3.4 Outputting Text

The text output method lets an XSLT processor know that you intend to output plain text to the

result. You have already seen simple examples that do this previously in the book. This example
shows you how to output programming language text using the text method. If you are not a

programmer, this section may be a little tough to follow. You can skip it if programming makes you
queasy or if you aren't interested in .NET, although the same approach can be used to generate Java,
VisualBasic, COBOL, or the language of your choice.

Now, I'll show you how you can use XSLT to write a program in the C# programming language. The
stylesheet csharp.xsl uses the text output method:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="name">
using System;
using System.Xml;

class Name {

 static void Main() {
 XmlTextWriter w = new XmlTextWriter(Console.Out);
 w.Formatting = Formatting.Indented;
 w.Indentation = 1;
 w.WriteStartDocument();
 w.WriteStartElement("<xsl:value-of select="name()"/>");
 w.WriteAttributeString("title", "Mr.");
 w.WriteElementString("family", "<xsl:value-of select="last"/>");
 w.WriteElementString("given", "<xsl:value-of select="first"/>");
 w.WriteEndElement();
 w.Close();

 }

}
</xsl:template>

</xsl:stylesheet>

This stylesheet uses value-of instruction elements to grab string values from the source tree. The
first occurrence of value-of uses the XPath function name() to grab the name of the element that

the template matches. The template actually matches not just the name of an element node, but a
node-set, that is, the set of nodes including the element name and its children. The value-of

element, however, returns only the string value of the first node of this node-set. The next two
occurrences of value-of capture the text node children of the last and first elements in the source

tree, respectively. (You'll learn more about nodes and node-sets in Chapter 4.)

http://lib.ommolketab.ir

When name.xml is processed with this stylesheet, it outputs a C# program. C# is part of the .NET
Framework and offers many conveniences for a programmer that must handle XML. You can
download .NET for Windows from Microsoft at http://www.microsoft.com/net/. You can also download
Ximian's open source implementation of .NET at http://www.go-mono.com/, which runs on Linux and
Windows, as well as FreeBSD and Mac OS X.

To transform name.xml with csharp.xsl, use this command to save the program to a file:

xalan -o name.cs name.xml csharp.xsl

After the transformation, the program is saved to the file name.cs:

using System;
using System.Xml;

class Name {

 static void Main() {
 XmlTextWriter w = new XmlTextWriter(Console.Out);
 w.Formatting = Formatting.Indented;
 w.Indentation = 1;
 w.WriteStartDocument();
 w.WriteStartElement("name");
 w.WriteAttributeString("title", "Mr.");
 w.WriteElementString("family", "Churchill");
 w.WriteElementString("given", "Winston");
 w.WriteEndElement();
 w.Close();

 }

}

The XmlTextWriter object allows C# programs to write well-formed XML to the console, file, or

stream. The output of this particular program is written to the console (standard output), and the
output will be indented. This is set by the Formatting and Indentation properties. The document
element name is created by the WriteStartElement() method of XmlTextWriter, and it has a
single attribute, title, created with WriteAttributeString(). This element also has two children,
family and given, produced by a pair of WriteElementString() methods.

You can compile and run this program if you have the .NET Framework downloaded and installed.
Compile the program with the Microsoft C# compiler by typing the following at a command prompt:

csc name.cs

Or with the Mono compiler using:

mcs name.cs

It should report no errors-all you should see are some copyright messages. The output of the
compilation is an executable file called name.exe. If you have the Windows implementation, type:

name

http://www.microsoft.com/net/
http://www.go-mono.com/
http://lib.ommolketab.ir

If you have the Mono implementation, type:

mono name.exe

Again, this example works only if you have .NET installed. When you successfully run this program on
Windows, for example, it produces the following well-formed XML output:

<?xml version="1.0" encoding="IBM437"?>
<name title="Mr.">
 <family>Churchill</family>
 <given>Winston</given>
</name>

IBM437 is an IANA-registered character set name for the Windows code page 437. XML processors
are not required to support this character set, but they are permitted to support any character sets
registered at IANA (which IBM437 is), plus any private character sets (they must be prefixed with x-

).

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

3.5 Using a QName Output Method

I have explained the xml, html, and text output methods. You can also use a QName for a value of
the method attribute. But there's a catch: if you use a QName, it must be supported as an extension

by the XSLT processor that you use with it. (This mechanism allows you to invoke a user-written
serializer, such as with a SAX ContentHandler.) This can be useful if you want to produce non-XML
formats as your output.

Johannes Döbler's XSLT processor jd.xslt offers several QName values for the method attribute by
way of extension. One of them is jd:empty.

The value of method must be a QName, not an NCName. Any value other than
xml, html, or text is considered an extension and must be qualified with a

namespace.

The jd:empty output method, when used together with the jd.xslt processor, produces a result tree

but doesn't serialize it. This is useful when you are interested only in measuring the performance of
the processor with a given stylesheet. The stylesheet empty.xsl uses output with a method of
jd:empty:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="jd:empty" xmlns:jd="http://www.aztecrider.com/xslt"/>

<xsl:template match="name">
 <name>
 <family><xsl:apply-templates select="last"/></family>
 <given><xsl:apply-templates select="first"/></given>
 </name>
</xsl:template>

</xsl:stylesheet>

The QName jd:empty is associated with the namespace name http://www.aztecrider.com/xslt. You

can process empty.xsl against the document name.xml with jd.xslt to see what happens. (For details
of how to download, install, and run jd.xslt, see the appendix.) To run it, enter the following at a
command or shell prompt using the -verbose switch:

java -jar jdxslt.jar -verbose name.xml empty.xsl

You won't see a result, but the processor will deliver the following information:

jd.xslt processor version 1.4.0

java vm = Sun Microsystems Inc., 1.4.1_01
parser = org.apache.crimson.parser.XMLReaderImpl

http://www.aztecrider.com/xslt
http://lib.ommolketab.ir

modelbuilder factory = jd.xml.xpath.model.build.ModelBuilderFactory
read stylesheet = file:C:/LearningXSLT/examples/ch03/empty.xsl
prepare stylesheet = 180 ms
read xml input = 10 ms (using normal tree model)
transform input = 10 ms
max memory usage = 1.937 MB

With -verbose, the processor reports the transformation performance results.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

3.6 Media Types

The last attribute I'll mention is media-type. This attribute allows you to set the media type for the

result. Media types are also sometimes called MIME types (MIME is short for Multipurpose Internet
Mail Extensions), but since the types apply to more than just email, the term media type is more
encompassing.

Here is one example fragment. A media type of application/xml may be specified in an output

element like this:

<xsl:output output="xml" media-type="application/xml"/>

The value of this attribute, if you use it, will not be reflected explicitly in the result. In fact, the
specification makes no stipulations about whether a processor needs to provide this information to an
application. Nevertheless, an application might possibly make the media type information available to
a server running HTTP, which could then use it in the Content-Type field of an HTTP header. This

was probably the intent of this obscure attribute.

Table 3-2 lists the default media types for the three built-in output methods of XSLT.

Table 3-2. Default media types

Method Default media type

XML text/xml

HTML text/html

Text text/plain

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

3.7 Summary

This chapter covered the results you get from different output methods, including default and
unambiguous XML, HTML, text, or custom output. It also talked about indentation, working with XML
declarations, document type declarations, CDATA sections, and media types. In the next chapter, you
will learn more details about using XPath to look at XML documents as trees of nodes.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 4. Traversing the Tree
In the previous three chapters, you have seen a number of examples that use the XML Path
Language (XPath). This chapter discusses XPath topics, such as the XPath data model, the difference
between patterns and expressions, predicates, the difference between abbreviated and
unabbreviated location paths, axes, and node and name tests. (XPath and XSLT functions will be
discussed in the next chapter.)

Though it is not exactly light reading, you may want to print a copy of the
XPath 1.0 specification. It is a little over 30 pages. You can find it at
http://www.w3.org/TR/xpath.

[Team LiB]

http://www.w3.org/TR/xpath
http://lib.ommolketab.ir

[Team LiB]

4.1 The XPath Data Model

The foundation of XPath is its view of the XML document as a tree with branches called nodes. XPath's data model is
a tree data model. The tree model comes to us from traditional computer science. It is a way of organizing or
imagining the order of data in a hierarchical or structured way. To illustrate the tree model, Figure 4-1 represents
roughly the XML document nodes.xml found in examples/ch04 as a tree of nodes.

Each box in Figure 4-1 represents a node or point in the tree structure of the document. In the XPath data model, a
node represents part of an XML document such as the root or starting point of the document, elements, attributes,
text, and so on. In the traditional tree model, the lines connecting the nodes are called edges . If a node does not
have children, it is called a leaf node . (The terms edge and leaf node are not used in the XPath spec.) If you follow
the edges, you are following a path. The nodes in a tree have family relationships: parent-child, ancestor-descendant,
sibling, and so forth.

Figure 4-1. A tree of nodes

4.1.1 XPath Nodes

An XML document, according to the XPath 1.0 data model, can be conceptually described as having seven possible
node types:

Root (called the document node in XPath 2.0)

Element

Attribute

http://lib.ommolketab.ir

Text

Namespace

Comment

Processing instruction

You have already encountered nodes of all these types earlier in the book. For further illustration, the file nodes.xml
contains at least one occurrence of each of these nodes:

<?xml-stylesheet href="tree-view.xsl" type="text/xsl"?>

<!-- Last invoice of day's batch -->

<amount vendor="314" xml:lang="en"
 xmlns="urn:wyeast-net:invoice">7598.00</amount>

Each node is labeled with its appropriate XPath 1.0 node type in Figure 4-2 , and Table 4-1 describes each of the
XPath node types.

Figure 4-2. The seven XPath 1.0 nodes in nodes.xml

Table 4-1. XPath nodes types

Node type Description

Root
(document)
node

The whole document, starting conceptually at the beginning of the document, before the
document or root element. The root node must have at least (and at most) one element child: the
document element. In the XPath model, a root node may also have processing instruction and
comment children. Other children are ignored.

Element node An element, such as amount , which is also the document element in nodes.xml .

Attribute node An attribute, such as vendor="314 " or xml:lang="en ".

Text node
Text inside of an element, such as 7598.00 inside amount (yes, it looks like a real number, but

XPath just sees it as text here).

Namespace
node

A namespace name, a URI such as the URN urn:wyeast-net:invoice (also includes a prefix, if

applicable).

http://lib.ommolketab.ir

Node type Description

Comment node A comment, such as <!-- Last invoice of day's batch --> .

Processing
instruction
node

A processing instruction, such as <?xml-stylesheet href="tree-view.xsl" type="text/css"?
> .

XPath 2.0, which is not yet an approved recommendation of the W3C, takes a slightly
different approach in regard to nodes and types, at least at this book's level of detail. You will
be introduced to XPath 2.0 in Chapter 16 . For more information, see
http://www.w3.org/TR/xpath20/

4.1.2 A View of the Tree

To get a good idea of the how the XPath 1.0 data model views an XML document as a tree, you can use the ASCII
Tree Viewer (the stylesheet ascii-treeview.xsl) created by Mike Brown and Jeni Tennison. This stylesheet labels all
seven node types using plain text or ASCII output. An edited version of this stylesheet is available in examples/ch04 .

When you process nodes.xml with ascii-treeview.xsl using Xalan, as follows:

xalan nodes.xml ascii-treeview.xsl

you will see each of the nodes labeled in the output:

root
 |_ _ _processing instruction target='xml-stylesheet' instruction=
'href="tree-view.xsl" type="text/xsl"'
 |_ _ _comment ' Last invoice of day's batch '
 |_ _ _element 'amount' in ns 'urn:wyeast-net:invoice' ('amount')
 | _ _ _attribute 'vendor' = '314'
 | _ _ _attribute 'lang' in ns 'http://www.w3.org/XML/1998/namespace' ('xml:lang') = 'en'
 | _ _ _namespace 'xml' = 'http://www.w3.org/XML/1998/namespace'
 | _ _ _namespace 'xmlns' = 'urn:wyeast-net:invoice'
 |_ _ _text '7598.00'

You can download the original, unedited version of ascii-treeview.xsl from
http://skew.org/xml/stylesheets/treeview/ascii/ . I have edited this stylesheet so that it will
find and label namespace nodes and ignore insignificant whitespace.

The stylesheet referenced at the top of nodes.xml is tree-view.xsl . It is the Pretty XML Tree Viewer, also developed
by Mike Brown and Jeni Tennison. It produces HTML output rather than ASCII. You can get tree-view.xsl , along with
its required companion stylesheet tree-view.css , from http://skew.org/xml/stylesheets/treeview/html/ . There
already are edited copies of these stylesheets in examples/ch04 .

If you open and view nodes.xml with IE, you will see the result shown in Figure 4-3 . The seven node types are all
represented, as you can see from the labels.

Comment node A comment, such as <!-- Last invoice of day's batch --> .

Processing
instruction
node

A processing instruction, such as <?xml-stylesheet href="tree-view.xsl" type="text/css"?
> .

XPath 2.0, which is not yet an approved recommendation of the W3C, takes a slightly
different approach in regard to nodes and types, at least at this book's level of detail. You will
be introduced to XPath 2.0 in Chapter 16 . For more information, see
http://www.w3.org/TR/xpath20/

4.1.2 A View of the Tree

To get a good idea of the how the XPath 1.0 data model views an XML document as a tree, you can use the ASCII
Tree Viewer (the stylesheet ascii-treeview.xsl) created by Mike Brown and Jeni Tennison. This stylesheet labels all
seven node types using plain text or ASCII output. An edited version of this stylesheet is available in examples/ch04 .

When you process nodes.xml with ascii-treeview.xsl using Xalan, as follows:

xalan nodes.xml ascii-treeview.xsl

you will see each of the nodes labeled in the output:

root
 |_ _ _processing instruction target='xml-stylesheet' instruction=
'href="tree-view.xsl" type="text/xsl"'
 |_ _ _comment ' Last invoice of day's batch '
 |_ _ _element 'amount' in ns 'urn:wyeast-net:invoice' ('amount')
 | _ _ _attribute 'vendor' = '314'
 | _ _ _attribute 'lang' in ns 'http://www.w3.org/XML/1998/namespace' ('xml:lang') = 'en'
 | _ _ _namespace 'xml' = 'http://www.w3.org/XML/1998/namespace'
 | _ _ _namespace 'xmlns' = 'urn:wyeast-net:invoice'
 |_ _ _text '7598.00'

You can download the original, unedited version of ascii-treeview.xsl from
http://skew.org/xml/stylesheets/treeview/ascii/ . I have edited this stylesheet so that it will
find and label namespace nodes and ignore insignificant whitespace.

The stylesheet referenced at the top of nodes.xml is tree-view.xsl . It is the Pretty XML Tree Viewer, also developed
by Mike Brown and Jeni Tennison. It produces HTML output rather than ASCII. You can get tree-view.xsl , along with
its required companion stylesheet tree-view.css , from http://skew.org/xml/stylesheets/treeview/html/ . There
already are edited copies of these stylesheets in examples/ch04 .

If you open and view nodes.xml with IE, you will see the result shown in Figure 4-3 . The seven node types are all
represented, as you can see from the labels.

http://www.w3.org/TR/xpath20/
http://skew.org/xml/stylesheets/treeview/ascii/
http://www.w3.org/TR/xpath20/
http://skew.org/xml/stylesheets/treeview/ascii/
http://lib.ommolketab.ir

Figure 4-3. nodes.xml shown in IE

As with ascii-treeview.xsl , I have made a few small edits to tree-view.xsl . The edit changes a parameter value to a
nonzero value, switching on the behavior that makes the stylesheet show namespace nodes. I have also
uncommented a line so that insignificant whitespace is stripped using the strip-space element. You will learn more

about parameters in Chapter 7 . You will learn about stripping and preserving insignificant space later in the book.

The xml:lang Attribute

The document nodes.xml uses the xml:lang attribute. This attribute indicates that the content of the

element that specifies it, and any of its associated attribute values, are given in the language defined by
the value of xml:lang . This attribute is a special attribute from the XML namespace,
http://www.w3.org/XML/1998/namespace , and is associated with the xml prefix. This attribute takes a

token value that represents a language according to IETF RFC 1766, Tags for the Identification of
Languages (see http://www.ietf.org/rfc/rfc1766.txt), in conjunction with the ISO/IEC 639 standards
(see http://www.iso.ch). (IETF RFC, by the way, stands for Internet Engineering Task Force Request for
Comments ; see http://www.ietf.org/rfc.html .) Some examples of these tokens are en for English, fr for
French, de for German (Deutsch), and es for Spanish (Español). These can also include tokens with
subtags such as en-US for United States English and en-GB for Great Britain English.

4.1.3 What's a Context?

In order to work properly, XPath and XSLT have to keep track of where processing occurs in the source document
and what node it's working on at any particular moment. XPath and XSLT have developed a vocabulary to describe
such things. The more familiar you are with the terms described in the following paragraphs, the better off you will be
when working with XSLT. You will get more and more exposure to these terms throughout the remainder of this
book.

http://www.w3.org/XML/1998/namespace
http://lib.ommolketab.ir

Most of the terms revolve around something called a context . In XPath, the context node is the node that is currently
selected and being processed. The context node is usually the node addressed by a select attribute, such as with
the apply-templates element. The XSLT spec also refers to a current node , which is almost always the same thing
as the context node. You can retrieve the current node with the current() function, an XSLT function that I'll

discuss in Chapter 5 .

The only time the context node and the current node are not the same thing is when a
predicate is being evaluated. A predicate is a filter for nodes, contained in square brackets,
such as in amount[@xml:lang='en'] . When a node is being evaluated within the square

brackets or predicate, it temporarily becomes the current node. This is the only time that the
context node and the current node are not identical. You'll learn about predicates in Section
4.5 , later in this chapter.

A node-set is a set of unordered nodes that can be of different kinds. A node-set can consist of an unordered group of
element, attribute, and text nodes, for example. The current node list is an XSLT term and refers to an ordered set of
nodes, obtained when, for example, the select attribute of the apply-templates element is processed.

The context position , represented by a nonzero, positive integer, is an XPath term that indicates the node at which
processing is positioned, something like the current position when iterating through an array or vector in a
programming language. The context size represents the number of nodes in the current list, and is also a nonzero,
positive integer. This is like an array size, though numbering starts at 1, not 0.

The term document order refers to the order in which nodes actually appear as they are encountered in a source
document. The current node list can be a subset of the nodes found in document order in a source tree. Document
order can be in forward or reverse, along a given axis such as the child or parent axis (see Section 4.6 , later in the
chapter for a more thorough explanation).

If you don't feel like you've got your arms around all these terms, that's okay: you'll get more exposure to them over
time and they'll eventually sink in. Now that you have a basic understanding of the XPath data model and some of its
essential terminology, I'll start exploring expressions and patterns after a brief discussion of location paths.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

4.2 Location Paths

The basic syntax of XPath is the location path. A location path consists of one or more items that
identify nodes in a tree using the XPath data model and syntax. For example, looking back at
nodes.xml, the following simple location path identifies the sole element node in that document:

amount

This is actually XPath's abbreviated syntax form, which you've seen a lot of already (you'll learn more
about XPath's unabbreviated syntax a little later). This path assumes that the node will be found
along the child axis (discussed in Section 4.6, later in this chapter).

Now, I'll add another location step to the location path:

amount/@vendor

Location steps are separated by a slash (/). This location path has two steps. The first step identifies
the amount element, and the second step identifies the vendor attribute. This path assumes that the

node will be found along the child axis followed by the attribute axis.

Another location path might be:

/amount/@xml:lang

Notice that this location path is preceded by a slash. The slash at the beginning of the location path
indicates the root or document node, so this path tells the processor that the amount element must

be the document element because it is the element child of the root node. The next step locates the
xml:lang attribute that is associated with amount. Now here is another one:

/comment()

This path will locate a comment that is a child of the root or document node. comment() is a node
test. A node test checks whether a node matches a particular kind of node such as comment(),
text(), processing-instruction(), or node() for any node.

Now, I'll go into more detail about location paths by describing XPath expressions.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

4.3 Expressions

An XPath expression allows you to go beyond the basic location of an element or attribute in a
document by name, as you have just seen. Expressions let you:

Specify location paths using names with either an abbreviated syntax, such as name/family, or
unabbreviated syntax, such as child::name/child::family.

Use XPath axes such as parent, as in .. in abbreviated syntax, or parent::name in

unabbreviated.

Perform basic arithmetic such as addition (+), subtraction (-), multiplication (*), division (div),
and modulo (mod)-using parentheses optionally-such as 3 + (5 * 5).

Perform Boolean logic using the operators and, or, =, !=, <=, <, >= and > such as 2 < 3
(because expressions occur in attribute values, you must use < instead of <).

Reference variables defined elsewhere, such as $var = 3 (= in XPath tests for equivalence, and

doesn't perform assignment; Chapter 7 describes variables).

Call functions such as current(), local-name(), or position() (Chapter 5 discusses

functions).

Perform name and node tests such as rng:* (name test) or text() (node test).

When an XPath expression is evaluated, it can return an object of one of four types:

node-set

An unordered collection of zero or more nodes without duplicates.

boolean

A value of either true or false.

number

A floating-point number.

http://lib.ommolketab.ir

string

A string that is a sequence of legal Unicode characters.

By return, I mean that the XSLT processor hands back a node to the processing stream, in this case,
one that has a particular type.

An XSLT processor can also return a type added by the XSLT spec called a result tree fragment. This
is a portion of the result tree that may or may not be well-formed XML and is treated like a string. A
result tree fragment is not an XPath type but was added to the four XPath types by the XSLT spec.

XPath, by the way, isn't locked into XSLT alone. Beyond XSLT, XPath is also
used in other W3C specifications such as the XPointer scheme (see
http://www.w3.org/TR/xptr-xpointer/), in XQuery (see
http://www.w3.org/TR/xquery), and in XForms (see
http://www.w3.org/TR/xforms/). The W3C is also working on integrating XPath
with DOM, the Document Object Model (see http://www.w3.org/TR/DOM-Level-
3-XPath/).

Expressions occur in certain attribute values in XSLT. These features will be explored later in the
chapter, but before moving any further, it's important that you understand what patterns are and
how they work.

[Team LiB]

http://www.w3.org/TR/xptr-xpointer/
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/DOM-Level-
http://lib.ommolketab.ir

[Team LiB]

4.4 What Is a Pattern?

An XSLT pattern is a subset of an XPath expression. It is part of a template rule that allows the
template to test whether a node matches certain criteria. This subset of expressions called a pattern
is defined by XSLT, not by XPath.

A pattern can only evaluate a node-set, meaning a group of zero or more nodes. A node-set type is
the only thing a pattern can evaluate or return. A pattern can match elements and attributes and use
node tests (see Section 4.7, later in this chapter) and predicates (see the next section, Section 4.5).
It can also use the id() function (demonstrated in Chapter 5) and the key() function (described in

Chapter 11), but that's about the sum of it.

There are four places in XSLT where you can identify a pattern, each time as a value of an attribute.
The places that specify a pattern are in the match attribute of template and key elements, and in the
count and from attributes of the number element. You can read more about patterns in Section 5.2

of the XSLT specification.

A pattern is one of two parts of a template rule, which, according to XSLT 2.0, consists of a pattern
described in an attribute value and a sequence constructor, which tells the processor what to
do-what items to produce-when it encounters the pattern and therefore is instantiated (see Section
2.4.1 of the XSLT 2.0 spec available at http://www.w3.org/TR/xslt20/).

[Team LiB]

http://www.w3.org/TR/xslt20/
http://lib.ommolketab.ir

[Team LiB]

4.5 Predicates

A predicate is a filter that can be used with a pattern as well as an expression. It checks to see
whether a node-set matches an expression contained in square brackets. Again harking back to
nodes.xml, here is an example of a pattern with a predicate:

amount[@vendor = '314']

One way to think about predicates is in terms of the word where-in other words, this pattern
matches an amount element where the vendor attribute associated with amount has a value of 314.

(As I mentioned earlier in the chapter, when the predicate is evaluated, the node in the predicate
temporarily becomes the current node.)

The content between the square brackets is actually an expression. This is the only way that a
pattern makes use of an expression. You can, of course, use predicates with expressions, as well as
with patterns. If a predicate matches a given criteria, the predicate returns a Boolean value of true,
or false if otherwise. In other words, if the expression in a predicate matches a node-set in a
pattern, it returns true, and the template that matches the pattern is instantiated; if there is no

match, the template is skipped.

Look at another example of a predicate:

amount[current() = '7598.00']

This one checks to see whether the content of amount is 7598.00 and returns true if it is. This could

also be written as:

amount[. = '7598.00']

Here is yet another example:

amount[position()=1]

This tests to see whether amount is the first node in the set. This could also be written as:

amount[1]

To illustrate these concepts further, Example 4-1 shows the document names.xml. It's a slightly
different version of wg.xml, which you worked with in the last chapter. The last and first elements
have been changed to family and given, respectively. Several attributes and an encoding

declaration have been added.

Example 4-1. An XML list of contributors to XML 1.0

<?xml version="1.0" encoding="ISO-8859-1"?>

<!--
 names of persons acknowledged as current and past members

http://lib.ommolketab.ir

 of the W3C XML Working Group at the time of the publication
 of the first edition of the XML specification on 1998-02-10
-->

<names>
 <name>
 <family>Angerstein</family>
 <given>Paula</given>
 </name>
 <name title="chair">
 <family>Bosak</family>
 <given>Jon</given>
 </name>
 <name title="editor">
 <family>Bray</family>
 <given>Tim</given>
 </name>
 <name title="technical lead">
 <family>Clark</family>
 <given>James</given>
 </name>
 <name>
 <family>Connolly</family>
 <given>Dan</given>
 </name>
 <name>
 <family>DeRose</family>
 <given>Steve</given>
 </name>
 <name>
 <family>Hollander</family>
 <given>Dave</given>
 </name>
 <name>
 <family>Kimber</family>
 <given>Eliot</given>
 </name>
 <name>
 <family>Magliery</family>
 <given>Tom</given>
 </name>
 <name>
 <family>Maler</family>
 <given>Eve</given>
 </name>
 <name>
 <family>Maloney</family>
 <given>Murray</given>
 </name>
 <name>
 <family>Murata</family>
 <given>Makoto</given>

http://lib.ommolketab.ir

 </name>
 <name>
 <family>Nava</family>
 <given>Joel</given>
 </name>
 <name>
 <family>O'Connell</family>
 <given>Conleth</given>
 </name>
 <name title="editor">
 <family>Paoli</family>
 <given>Jean</given>
 </name>
 <name>
 <family>Sharpe</family>
 <given>Peter</given>
 </name>
 <name title="editor">
 <family>Sperberg-McQueen</family>
 <given>C. M.</given>
 </name>
 <name>
 <family>Tigue</family>
 <given>John</given>
 </name>
</names>

Now consider the stylesheet pattern.xsl, shown in Example 4-2.

Example 4-2. A stylesheet extracting the fourth listed member of the XML
team

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="/">
 <xsl:apply-templates select="names"/>
</xsl:template>

<xsl:template match="names">
 <xsl:apply-templates select="name[4]/@title"/>
</xsl:template>

<xsl:template match="name[4]/@title">
 <xsl:text>The XML 1.0 WG's </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text> was </xsl:text>
 <xsl:value-of select="../given"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="../family"/>
 <xsl:text>.</xsl:text>

http://lib.ommolketab.ir

</xsl:template>

</xsl:stylesheet>

Apply this stylesheet to names.xml with Xalan:

xalan names.xml pattern.xsl

and you'll see this one-line result:

The XML 1.0 WG's technical lead was James Clark.

There are other, more efficient ways to write this stylesheet, but this version suffices for the moment.
Each match attribute in each of the three templates contains a pattern:

The pattern in the first template rule, /, matches the root or document node and then applies
the template that matches names.

The pattern in the second template rule matches the document element names, and then applies
the template that matches the title attribute (@title) of the fourth name child (name[4]) of
names.

The third and final pattern matches the title attribute of the fourth name element.

When the final template is instantiated, it uses several value-of elements to take information out of
the source document, and also uses four text elements to put text on the result tree. The period (.)
in the select attribute of the first value-of selects the current node.

4.5.1 Matching Multiple Nodes with a Pattern

You can match a union of multiple nodes by using the union operator (|) in a pattern or expression.

The union operator denotes alternatives, that is, when you see the union operator separating node
names, read the word or. To see what I mean, I'll show you union.xsl, which produces valid, string
HTML 4.01 output. But first, Example 4-3 shows provinces.xml, along with an internal subset DTD,
which contains a list of Canadian provinces.

Example 4-3. An XML list of contributors to XML 1.0

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="union.xsl" type="text/xsl"?>
<!DOCTYPE provinces [
<!ELEMENT provinces (province)+>
<!ELEMENT province (name, abbreviation)>
<!ATTLIST province id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT abbreviation (#PCDATA)>
]>

<provinces>
 <province id="AB">

http://lib.ommolketab.ir

 <name>Alberta</name>
 <abbreviation>AB</abbreviation>
 </province>
 <province id="BC">
 <name>British Columbia</name>
 <abbreviation>BC</abbreviation>
 </province>
 <province id="MB">
 <name>Manitoba</name>
 <abbreviation>MB</abbreviation>
 </province>
 <province id="NB">
 <name>New Brunswick</name>
 <abbreviation>NB</abbreviation>
 </province>
 <province id="NL">
 <name>Newfoundland and Labrador</name>
 <abbreviation>NL</abbreviation>
 </province>
 <province id="NT">
 <name>Northwest Territories</name>
 <abbreviation>NT</abbreviation>
 </province>
 <province id="NS">
 <name>Nova Scotia</name>
 <abbreviation>NS</abbreviation>
 </province>
 <province id="NU">
 <name>Nunavut</name>
 <abbreviation>NU</abbreviation>
 </province>
 <province id="ON">
 <name>Ontario</name>
 <abbreviation>ON</abbreviation>
 </province>
 <province id="PE">
 <name>Prince Edward Island</name>
 <abbreviation>PE</abbreviation>
 </province>
 <province id="QC">
 <name>Quebec</name>
 <abbreviation>QC</abbreviation>
 </province>
 <province id="SK">
 <name>Saskatchewan</name>
 <abbreviation>SK</abbreviation>
 </province>
 <province id="YT">
 <name>Yukon</name>
 <abbreviation>YT</abbreviation>
 </province>
</provinces>

http://lib.ommolketab.ir

This document has an internal subset DTD. The only attribute declared is the required attribute id,

which is of type ID. This attribute type is explained further in Chapter 5.

This document may be transformed into HTML with union.xsl, shown in Example 4-4.

Example 4-4. A stylesheet that applies the same rule to multiple nodes

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:output doctype-system="http://www.w3.org/TR/html4/strict.dtd"/>
<xsl:output doctype-public="-//W3C//DTD HTML 4.01//EN"/>

<xsl:template match="provinces">
 <html>
 <head><title>Provinces of Canada and Abbreviations</title></head>
 <body style="text-align:center">
 <h3 style="text-align:center">Provinces of Canada and Abbreviations</h3>
 <table style="margin-left:auto;margin-right:auto" rules="all" border="4">
 <thead style="background-color:black;color:white">
 <tr>
 <th style="width:230">Province</th>
 <th style="width:230">Abbreviation</th>
 </tr>
 </thead>
 <tbody align="center">
 <xsl:apply-templates select="province"/>
 </tbody>
 </table>
 </body>
 </html>
</xsl:template>

<xsl:template match="province">
 <tr>
 <xsl:apply-templates select="name|abbreviation"/>
 </tr>
</xsl:template>

<xsl:template match="name|abbreviation">
 <td>
 <xsl:apply-templates/>
 </td>
</xsl:template>

</xsl:stylesheet>

After the first template rule matches provinces, it generates the main body of HTML markup, which
includes table-related elements such as table, thead, and tbody, plus CSS rules in style attributes.

The second template rule matches province nodes and then applies templates to the name or
abbreviation children of province. (name | abbreviation) surrounds the output with tr (table

http://lib.ommolketab.ir

row) tags. The final template rule matches on the pattern of name or abbreviation nodes, enclosing
that output with td (table data) tags.

When you process provinces.xml with union.xsl:

xalan provinces.xml union.xsl

you see the following outcome from processing the union of name and abbreviation nodes. Note
how the text content of both name and abbreviation nodes are contained in td elements, which are
children of tr elements. This allows the columns of the table to line up properly. The resulting HTML

document, listed in Example 4-5, is shown in Figure 4-4.

Example 4-5. An HTML table created by the stylesheet in Example 4-4

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/
strict.dtd">
<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Provinces of Canada and Abbreviations</title>
</head>
<body style="text-align:center">
<h3 style="text-align:center">Provinces of Canada and Abbreviations</h3>
<table style="margin-left:auto;margin-right:auto" rules="all" border="4">
<thead style="background-color:black;color:white">
<tr>
<th style="width:230">Province</th><th style="width:230">Abbreviation</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td>Alberta</td><td>AB</td>
</tr>
<tr>
<td>British Columbia</td><td>BC</td>
</tr>
<tr>
<td>Manitoba</td><td>MB</td>
</tr>
<tr>
<td>New Brunswick</td><td>NB</td>
</tr>
<tr>
<td>Newfoundland and Labrador</td><td>NL</td>
</tr>
<tr>
<td>Northwest Territories</td><td>NT</td>
</tr>
<tr>
<td>Nova Scotia</td><td>NS</td>
</tr>
<tr>

http://lib.ommolketab.ir

<td>Nunavut</td><td>NU</td>
</tr>
<tr>
<td>Ontario</td><td>ON</td>
</tr>
<tr>
<td>Prince Edward Island</td><td>PE</td>
</tr>
<tr>
<td>Quebec</td><td>QC</td>
</tr>
<tr>
<td>Saskatchewan</td><td>SK</td>
</tr>
<tr>
<td>Yukon</td><td>YT</td>
</tr>
</tbody>
</table>
</body>
</html>

Figure 4-4. An HTML table in Mozilla

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

4.6 Axes

XPath views nodes along axes. An axis refers to various ways that you can locate nodes along the
edges (branches) of a tree structure, either forward or backward. For example, the parent axis refers
to the parent of a node, and the self axis refers only to a node itself. You can specify a few of the
axes by using the abbreviated syntax, such as the parent (../given), child (given), and self (.)
axes, but you can also specify them using the unabbreviated syntax, as in parent::given,
child::given, and self::node(). One of the reasons you would want to use unabbreviated axes

specifiers is because they allow you to find and access nodes that are not in the current node list.

Axes are oriented along a forward or reverse direction. Only 4 of the 13 axes have a reverse
orientation. For example, the ancestor axis refers to nodes that come before the context node in the
reverse direction, up to and including the root node. The descendant axis, on the other hand, includes
nodes that come after the context node in the forward direction.

XPath defines 13 different axes, which are all listed and described in Table 4-2.

Table 4-2. XPath axes

Axis Direction Description

Ancestor Reverse
Ancestors of the context node, up to and including the root or
document node. This includes the parent node.

Ancestor-or-
self

Reverse
Ancestors of the context node, including the context node itself and
the root node.

Attribute Forward Attributes of the element context node.

Child Forward Children of the context node.

Descendant Forward Descendants of the context node.

Descendant-
or-self

Forward Descendants of the context node, up to and including the root node.

Following Forward
All nodes that follow the context node in the same document, in
document order, excluding descendants, attribute nodes, and
namespace nodes.

Following-
sibling

Forward
All sibling nodes that follow the context node, excluding attribute and
namespace nodes.

Namespace Forward Namespace nodes of the current context.

Parent Forward Parent of the context node.

http://lib.ommolketab.ir

Axis Direction Description

Preceding Reverse
All nodes that precede the context node in the same document, in
document order, excluding descendants, attribute nodes, and
namespace nodes.

Preceding-
sibling

Reverse
All sibling nodes that precede the context node, excluding attribute
and namespace nodes.

Self
Not
applicable

The context node itself.

4.6.1 Unabbreviated Syntax

The axes can be explicitly expressed using XPath's unabbreviated syntax, by connecting an axis name
with a node name or a node test (see Section 4.7, later in this chapter). Table 4-3 compares a few
abbreviated and unabbreviated syntax examples to help you understand the relationship between the
two.

Table 4-3. Abbreviated and unabbreviated syntax examples

Abbreviated Unabbreviated

../given parent::given

given child::given

//given descendant::given

. self::node()

* child::*

text() child::text()

@vendor attribute::vendor

The following stylesheet shows you how axes and the unabbreviated syntax work together. The
stylesheet, shown in Example 4-6, is called unabbreviated.xsl and is similar to pattern.xsl, which you
saw earlier in this chapter.

Example 4-6. A stylesheet using the full axis syntax

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="/">
 <xsl:apply-templates select="child::names"/>
</xsl:template>

<xsl:template match="child::names">

Preceding Reverse
All nodes that precede the context node in the same document, in
document order, excluding descendants, attribute nodes, and
namespace nodes.

Preceding-
sibling

Reverse
All sibling nodes that precede the context node, excluding attribute
and namespace nodes.

Self
Not
applicable

The context node itself.

4.6.1 Unabbreviated Syntax

The axes can be explicitly expressed using XPath's unabbreviated syntax, by connecting an axis name
with a node name or a node test (see Section 4.7, later in this chapter). Table 4-3 compares a few
abbreviated and unabbreviated syntax examples to help you understand the relationship between the
two.

Table 4-3. Abbreviated and unabbreviated syntax examples

Abbreviated Unabbreviated

../given parent::given

given child::given

//given descendant::given

. self::node()

* child::*

text() child::text()

@vendor attribute::vendor

The following stylesheet shows you how axes and the unabbreviated syntax work together. The
stylesheet, shown in Example 4-6, is called unabbreviated.xsl and is similar to pattern.xsl, which you
saw earlier in this chapter.

Example 4-6. A stylesheet using the full axis syntax

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="/">
 <xsl:apply-templates select="child::names"/>
</xsl:template>

<xsl:template match="child::names">

http://lib.ommolketab.ir

 <xsl:apply-templates select="child::name[4]/attribute::title"/>
</xsl:template>

<xsl:template match="child::name[4]/attribute::title">
 <xsl:text>The XML 1.0 WG's </xsl:text>
 <xsl:value-of select="self::node()"/>
 <xsl:text> was </xsl:text>
 <xsl:value-of select="parent::name/child::given"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="parent::name/child::family"/>
 <xsl:text>.</xsl:text>
</xsl:template>

</xsl:stylesheet>

Lines in the stylesheet that use unabbreviated syntax are highlighted in bold. The parent, child, self,
and attribute axes are connected to node names using a connector (::). The parent axis may be
abbreviated as .., so that parent::name/child::given could be ../given.

The self axis is connected to node(). This syntax looks like a function call, but it's really not. It's a
node test that tests to see whether a node matches a particular criterion. The node() test matches

any node and is sometimes called a wildcard (though the word wildcard doesn't appear in the XPath
1.0 spec).

If you apply unabbreviated.xsl to names.xml, using:

xalan names.xml unabbreviated.xsl

you get the following line as a result:

The XML 1.0 WG's technical lead was James Clark.

4.6.2 Reaching Out of Context with Unabbreviated Syntax

As I mentioned earlier, you can use axes to reach for nodes that are not in context. As usual, I'll
illustrate how to do this with an example. When the stylesheet shown in Example 4-7, ancestor.xsl,
processes the last name node in names.xml, it also processes the first name node in the document by

using the ancestor axis.

Example 4-7. A stylesheet using the ancestor axis

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="/">
 <xsl:apply-templates select="child::names"/>
</xsl:template>

<xsl:template match="child::names">
 <xsl:apply-templates select="child::name[18]"/>
</xsl:template>

http://lib.ommolketab.ir

<xsl:template match="child::name[18]">
 <xsl:value-of select="ancestor::names/child::name[1]/child::given"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="ancestor::names/child::name[1]/child::family"/>
 <xsl:text> is first on the list, and </xsl:text>
 <xsl:value-of select="child::given"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="child::family"/>
 <xsl:text> is last.</xsl:text>
</xsl:template>

</xsl:stylesheet>

The node processed by the last template in the stylesheet is the last (child::name[18]) name node
in names.xml. While this template processes the last name node, it also finds an ancestor, the names
node, and then processes the first name child of names called given
(ancestor::names/child::name[1]/child::given) and the first name child of names called
family (ancestor::names/child::name[1]/child::family). Apply it with:

xalan names.xml ancestor.xsl

The result of processing names.xml with this stylesheet is as follows:

Paula Angerstein is first on the list, and John Tigue is last.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

4.7 Name and Node Tests

You can match a variety of nodes with XPath using name and node tests. A name test can match any
element name, any element name with a given prefix, or a QName (a namespace-qualified name,
with or without a prefix). Node tests can match text, comment, processing instruction nodes, or any
node. You can use abbreviated or unabbreviated syntax with name and node tests. Table 4-4
describes each of the tests.

Table 4-4. Name and node tests

Test
Test
type

Description

* Name
Matches any element name (or attribute
name if using the attribute axis).

rng:* Name
Matches any element name with an rng

prefix (or any other prefix you choose).

rng:text Name Matches the QName rng:text.

text() Node Matches text nodes.

comment() Node Matches comment nodes.

processing-instruction() Node Matches processing instruction nodes.

processing-instruction('xml-stylesheet') Node
Matches processing instruction nodes
with the target name xml-stylesheet.

node() Node Matches any node.

node() matches only nodes along the specified axis; if no axis is specified, the
child axis is assumed, and you won't get attributes!

Example 4-8 shows a RELAX NG schema for provinces.xml called provinces.rng.

Example 4-8. A RELAX NG schema for provinces.xml

<?xml version="1.0"?>
<!--Relax NG schema for provinces.xml-->
<rng:element name="provinces" xmlns:rng="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

http://lib.ommolketab.ir

 <rng:oneOrMore>
 <rng:element name="province">
 <rng:attribute name="id">
 <rng:data type="ID"/>
 </rng:attribute>
 <rng:element name="name">
 <rng:text/>
 </rng:element>
 <rng:element name="abbreviation">
 <rng:text/>
 </rng:element>
 </rng:element>
 </rng:oneOrMore>
</rng:element>

RELAX NG is a simple yet elegant schema language for XML (see http://www.relaxng.org). The
document provinces.xml is valid with regard to this schema, which defines the instance document
with a natural, structured hierarchy of definitions. RELAX NG adopts XML Schema datatypes as a
datatype library (note the datatypeLibrary attribute on the first element and the rng:data element
as a child of rng:attribute).

Example 4-9, splat.xsl, is a simple stylesheet that uses name and node tests to analyze the RELAX
NG schema.

Example 4-9. A stylesheet for analyzing the RELAX NG schema

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:rng="http://relaxng.org/ns/structure/1.0">
<xsl:output method="text"/>

<xsl:template match="/">
 <xsl:value-of select="comment()"/>
 <xsl:text>
</xsl:text>
 <xsl:apply-templates select="rng:*"/>
</xsl:template>

<xsl:template match="rng:*">
 <xsl:value-of select="local-name()"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="name(@*)"/>
 <xsl:text> = </xsl:text>
 <xsl:value-of select="@*"/>
 <xsl:text>
</xsl:text>
 <xsl:apply-templates select="rng:*"/>
</xsl:template>

</xsl:stylesheet>

Because the elements in the schema are namespace-qualified and use a prefix (rng:), the stylesheet

must declare the namespace and prefix as well
(xmlns:rng="http://relaxng.org/ns/structure/1.0"). The template that matches the root uses

http://www.relaxng.org
http://lib.ommolketab.ir

a comment() node test to return the text content of a comment in the source. It then applies
templates to any element qualified with the RELAX NG namespace (rng:*).

Don't make the mistake of using a location path like rng:element/attribute
instead of rng:element/rng:attribute. The first location path searches for
rng:element followed by an attribute element in no namespace! The second

location example uses a prefix with the element name. Take care to use
namespace prefixes where needed in location paths.

The next template matches on rng:* and reports the names of these elements using the XPath
local-name() function, which returns the element name without the prefix. The name() function
returns the names of attributes, if any, using name() with @* as an argument; @* is used by itself to
return an attribute value. This template uses apply-templates with rng:* again and thereby reports

on all RELAX NG elements in the source tree.

When applied like this:

xalan provinces.rng splat.xsl

the text output is:

Relax NG schema for provinces.xml
element, name = provinces
oneOrMore, =
element, name = province
attribute, name = id
data, type = ID
element, name = name
text, =
element, name = abbreviation
text, =

The first line of the result is the comment at the top of provinces.rng. The remaining lines report the
RELAX NG element names followed by the names and values of any attributes the element might
have.

For more information on name and node tests, see Section 2.3 of the XPath specification.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

4.8 Doing the Math with Expressions

Expressions allow you to perform simple arithmetic and Boolean logic when processing nodes. Here's
an example of some simple addition and multiplication. The document math.xml contains a group of
operand elements, each containing an integer:

<math>
 <operand>12</operand>
 <operand>23</operand>
 <operand>45</operand>
 <operand>56</operand>
 <operand>75</operand>
</math>

You can use an expression to add and multiply 25 with these operands, as shown in Example 4-10,
the stylesheet math.xsl.

Example 4-10. A stylesheet that does simple math

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="math">
 <xsl:apply-templates select="operand"/>
</xsl:template>

<xsl:template match="operand">
 <xsl:value-of select="."/>
 <xsl:text> + 25 = </xsl:text>
 <xsl:value-of select=". + 25"/>
 <xsl:text>
</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text> * 25 = </xsl:text>
 <xsl:value-of select=". * 25"/>
 <xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

The expression is the value of several select attributes of value-of that add and multiply the
content of each operand element with 25. The value-of element returns a string value, but the
presence of + or * automatically converts the content of operand to a number, if possible. If the
content of operand were a nonnumerical string, however, the number conversion wouldn't take
place. This won't cause an error, but you will get NaN (Not a Number) in response.

When you process math.xsl against math.xml using:

http://lib.ommolketab.ir

xalan math.xml math.xsl

you get this result:

12 + 25 = 37
12 * 25 = 300
23 + 25 = 48
23 * 25 = 575
45 + 25 = 70
45 * 25 = 1125
56 + 25 = 81
56 * 25 = 1400
75 + 25 = 100
75 * 25 = 1875

The stylesheet shown in Example 4-11, boolean.xsl, combines addition and multiplication with some
Boolean logic. It uses expressions in predicates to test whether the content of operand nodes are

both greater-than and less-than a value.

Example 4-11. A stylesheet demonstrating more mathematical capability

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="/">
 <xsl:apply-templates select="math"/>
</xsl:template>

<xsl:template match="math">
 <xsl:apply-templates select="operand[(. < 50) and (. > 30)]"/>
</xsl:template>

<xsl:template match="operand[(. < 50) and (. > 30)]">
 <xsl:value-of select="."/>
 <xsl:text> + 25 = </xsl:text>
 <xsl:value-of select=". + 25"/>
 <xsl:text>
</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text> * 25 = </xsl:text>
 <xsl:value-of select=". * 25"/>
 <xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

In ordinary English, the expression:

(. < 50) and (. > 30)

tests whether the operand is less than 50 and greater than 30. The entity references < and >
are used in the predicates instead of < and > because < is forbidden in attribute values in XML (see

Section 3.1 of the XML specification). To balance this limitation, XML uses entity references for both

http://lib.ommolketab.ir

symbols, even though > is legal in attribute values. The parentheses distinguish the greater-than and
less-than tests, which are compared with the and operator. For a complete list of Boolean and math

operators in XPath, see Table 4-5.

Table 4-5. XPath operators

Operator Type Description

and Boolean Boolean AND

or Boolean Boolean OR

= Boolean Equals

!= Boolean Not equal

< (<) Boolean Less than

<= (<=) Boolean Less than or equal to

> (>) Boolean Greater than

>= (>=) Boolean Greater than or equal to

+ Number Addition

- Number Subtraction

* Number Multiplication

div Number Division

mod Number Modulo (remainder of division)

This concludes your mini math lesson in XPath and XSLT. To learn more about math in XPath, see
Sections 3.4 and 3.5 in the XPath specification.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

4.9 Summary

This chapter discussed the XPath data model with its seven node types. It also explained location
paths, expressions and patterns, predicates, abbreviated and unabbreviated location paths, and axes.
You learned how to do simple arithmetic and name and node tests, as well. For additional light on this
subject, see Chapter 9 of O'Reilly's XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means,
and Chapter 3 from O'Reilly's XSLT by Doug Tidwell.

The next chapter continues the theme by exploring XPath and XSLT functions used in expressions.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 5. XPath and XSLT Functions
XPath defines 27 functions that may be called in expressions, including predicates. XSLT adds 9
functions to the XPath mix. You have already seen a number of these functions at work in previous
examples in this book, such as name(), string-length(), and substring().

Chapter 5 briefly documents all of the XPath 1.0 functions, including arguments. Similarly, Chapter 5
describes the XSLT 1.0 functions. XPath functions are divided into 4 types: Boolean, node-set,
number, and string.

Node tests such as text() and comment() look like functions but they are

not really functions. Node tests simply test whether a given node matches a
node type.

I'll demonstrate a number of functions in this chapter, but other chapters in this book will expose you
to more examples of functions. For additional details on XPath functions, see Section 4 of the XPath
specification. You can read more about XSLT functions in Sections 12 through 15 of the XSLT
specification.

This is an introductory book and it does not provide exhaustive explanations of
all of the XPath functions, though it will give you a chance to use many of them.
John Simpson's XPath and XPointer (O'Reilly) explores XPath (and its derivative
XPointer) in greater detail. Doug Tidwell's XSLT (O'Reilly), provides an excellent
reference that demonstrates all these functions, as does Michael Kay's XSLT
Programmer's Reference (Wrox). Another resource is Mulberry Technologies'
XSLT and XPath Quick Reference at
http://www.mulberrytech.com/quickref/XSLTquickref.pdf.

Table 5-1. XPath functions

XPath function
signature

Type Returns Description

boolean(object) Boolean Boolean Converts the argument to a Boolean.

ceiling(number) Number Number
Returns the smallest integer (closest to negative
infinity) that is not less than the argument.

concat(string, string,
string*)

String String
Returns a concatenation of two or more string
arguments.

http://www.mulberrytech.com/quickref/XSLTquickref.pdf
http://lib.ommolketab.ir

XPath function
signature

Type Returns Description

contains(string,
string)

String Boolean
Returns true if the first argument contains the
string in the second argument.

count(node-set)
Node-
set

Number Returns the number of nodes in a node-set.

false() Boolean Boolean Returns false.

floor(number) Number Number
Returns the largest integer (closest to positive
infinity) that is not less than the argument.

id(object)
Node-
set

Node-
set

Selects elements by unique ID.

lang(string) Boolean Boolean
Returns true if the argument matches the context
node's xml:lang value.

last()
Node-
set

Number
Returns the context size (the node position of the
last node).

local-name(node-set?)
Node-
set

String
Returns the local part of an expanded QName
(without a prefix).

name(node-set?)
Node-
set

String Returns a QName.

namespace-uri(node-
set?)

Node-
set

String Returns a namespace URI.

normalize-
space(string?)

String String Returns a string with its whitespace normalized.

not(boolean) Boolean Boolean Returns true if the argument is false.

number(object?) Number Number Converts an object to a number.

position()
Node-
set

Number Returns the context position (of the current node).

round(number) Number Number
Returns an integer, rounded closest to the value of
the argument.

starts-with(string,
string)

String Boolean
Returns true if the first string starts with the
second; otherwise it returns false.

string(object?) String String Converts an object into a string.

string-length(string?
)

String Number Returns the length of a string.

substring(string,
number, number?)

String String
Returns a substring of the first argument, based on
the starting position in the second argument, and
the optional length in the third.

contains(string,
string)

String Boolean
Returns true if the first argument contains the
string in the second argument.

count(node-set)
Node-
set

Number Returns the number of nodes in a node-set.

false() Boolean Boolean Returns false.

floor(number) Number Number
Returns the largest integer (closest to positive
infinity) that is not less than the argument.

id(object)
Node-
set

Node-
set

Selects elements by unique ID.

lang(string) Boolean Boolean
Returns true if the argument matches the context
node's xml:lang value.

last()
Node-
set

Number
Returns the context size (the node position of the
last node).

local-name(node-set?)
Node-
set

String
Returns the local part of an expanded QName
(without a prefix).

name(node-set?)
Node-
set

String Returns a QName.

namespace-uri(node-
set?)

Node-
set

String Returns a namespace URI.

normalize-
space(string?)

String String Returns a string with its whitespace normalized.

not(boolean) Boolean Boolean Returns true if the argument is false.

number(object?) Number Number Converts an object to a number.

position()
Node-
set

Number Returns the context position (of the current node).

round(number) Number Number
Returns an integer, rounded closest to the value of
the argument.

starts-with(string,
string)

String Boolean
Returns true if the first string starts with the
second; otherwise it returns false.

string(object?) String String Converts an object into a string.

string-length(string?
)

String Number Returns the length of a string.

substring(string,
number, number?)

String String
Returns a substring of the first argument, based on
the starting position in the second argument, and
the optional length in the third.

http://lib.ommolketab.ir

XPath function
signature

Type Returns Description

substring-
after(string, string)

String String
Returns the substring of the first argument that
follows the first occurrence of the second argument
in the first.

substring-
before(string,
string)

String String
Returns the substring of the first argument that
precedes the first occurrence of the second
argument in the first.

sum(node-set) Number Number Returns a sum of nodes.

translate(string,
string, string)

String String
Returns the first argument string with occurrences
of characters in the second replaced by
corresponding characters in the third.

true() Boolean Boolean Returns true.

Table 5-2. XSLT functions

XSLT function signature Returns Description

document(object, node-
set?)

Node-
set

Loads additional documents, allowing a transformation to
have more than one input document.

key(string, object)
Node-
set

Applies the key in the first argument using the second
argument.

format-number(number,
string, string?)

String
Converts a number to a string using the format pattern in
the second argument and the decimal format identified by
the third argument, if present.

current()
Node-
set

Returns the current node.

unparsed-entity-
uri(string)

String Returns a URI for an unparsed entity.

generate-id(node-set?) String Generates a unique ID for an element in the result tree.

system-property(string) Object Returns an XSLT system property.

element-
available(string)

Boolean Returns true if the named element is available.

function-
available(string)

Boolean Returns true if the named function is available.

If you need even more functions, consider exploring the EXSLT extensions
library, explained in Chapter 15.

substring-
after(string, string)

String String
Returns the substring of the first argument that
follows the first occurrence of the second argument
in the first.

substring-
before(string,
string)

String String
Returns the substring of the first argument that
precedes the first occurrence of the second
argument in the first.

sum(node-set) Number Number Returns a sum of nodes.

translate(string,
string, string)

String String
Returns the first argument string with occurrences
of characters in the second replaced by
corresponding characters in the third.

true() Boolean Boolean Returns true.

Table 5-2. XSLT functions

XSLT function signature Returns Description

document(object, node-
set?)

Node-
set

Loads additional documents, allowing a transformation to
have more than one input document.

key(string, object)
Node-
set

Applies the key in the first argument using the second
argument.

format-number(number,
string, string?)

String
Converts a number to a string using the format pattern in
the second argument and the decimal format identified by
the third argument, if present.

current()
Node-
set

Returns the current node.

unparsed-entity-
uri(string)

String Returns a URI for an unparsed entity.

generate-id(node-set?) String Generates a unique ID for an element in the result tree.

system-property(string) Object Returns an XSLT system property.

element-
available(string)

Boolean Returns true if the named element is available.

function-
available(string)

Boolean Returns true if the named function is available.

If you need even more functions, consider exploring the EXSLT extensions
library, explained in Chapter 15.

http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

5.1 Boolean Functions

Boolean functions return true or false and are used in stylesheet logic that tests whether something is
true. In XPath, the Boolean functions are boolean(), false(), lang(), not(), and true(). In
XSLT, the functions that return Booleans are element-available() and function-available().
You'll learn to use element-available() and function-available() in Chapter 15, as well as
how to use the system-property() function that returns an object. The strings functions
contains() and starts-with() also return Booleans.

5.1.1 The lang() Function

The XPath Boolean functions include lang(), which returns true if an xml:lang attribute exists with

a given language token-its only argument. This token must be quoted with single quotes. (By the
way, the value of xml:lang is inherited by child elements, though this isn't shown in the following

example.)

The brief document greet.xml in examples/ch05 contains greetings in four languages-English,
French, Spanish, and German:

<?xml version="1.0"?>

<greet>
 <greeting xml:lang="en">Welcome</greeting>
 <greeting xml:lang="fr">Bienvenue</greeting>
 <greeting xml:lang="es">Bienvenida</greeting>
 <greeting xml:lang="de">Willkommen</greeting>
</greet>

The stylesheet greet.xsl uses the lang() function to select the greeting element that has an
xml:lang attribute with a value of fr:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="greet">
 <xsl:apply-templates select="greeting[lang('fr')]"/>
</xsl:template>

<xsl:template match="greeting[lang('fr')]">
 <xsl:text>French: </xsl:text>
 <xsl:value-of select="."/>
</xsl:template>

</xsl:stylesheet>

When you process greet.xml with greet.xsl using Xalan as shown:

http://lib.ommolketab.ir

xalan greet.xml greet.xsl

you get the following output:

French: Bienvenue

When this stylesheet processes greeting elements in the source tree, it tests whether the element
has an xml:lang attribute with the specified value fr. When the pattern matches such an element,
the lang() function returns true, and the template is instantiated.

Now, I'll move on to XPath node-set functions.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

5.2 Node-Set Functions

The node-set functions return node-sets, strings, or numbers. From XPath, the node-set functions
include count(), id(), last(), local-name(), name(), namespace-uri(), and position().
The count(), last(), and position() functions return numbers, and local-name(), name(),
and namespace-uri() return strings. The following additional functions from XSLT return node-sets:
document(), key(), and current().

You saw the name() and local-name() functions several times in earlier chapters, and you'll see it
in later chapters, too. You'll get a chance to explore the document() function in Chapter 13 and the
key() function in Chapter 11. The current() function is used in an example in Section 5.4, later in

this chapter.

5.2.1 The id() Function

Here's how the id() function works. In valid XML 1.0, an ID is a unique identifier held in an

attribute value. The attribute must be declared in a DTD to be recognized as being of type ID. If this
identifier of type ID is duplicated in the document, the document is invalid. An ID must not start with
a number. IDs can uniquely identify an element, which helps you to find and isolate parts of
documents that may be of interest.

A document you saw in the last chapter, provinces.xml, has id attributes of type ID. The id()

function can help you find a given ID in a document and then return some bit of information. The
stylesheet id.xsl uses id():

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="provinces">
 <xsl:apply-templates select="id('NU')"/>
</xsl:template>

<xsl:template match="id('NU')">
 <xsl:value-of select="name"/>
</xsl:template>

</xsl:stylesheet>

The id() function may be used in patterns as well as expressions. The pattern that matches
id('NU') finds an element node with an attribute of type ID that has a value of NU. The following is a

fragment from provinces.xml:

<province id="NU">
 <name>Nunavut</name>
 <abbreviation>NU</abbreviation>
</province>

http://lib.ommolketab.ir

When applied to provinces.xml, id.xsl finds this instance of the province element and returns the
string value of the text in the name element that is a child of province. This is what the processor will

return:

Nunavut

Now, I'll introduce some number functions.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

5.3 Number Functions

The XPath number functions all return numbers. However, none of the XSLT functions return
numbers. The number functions are ceiling(), floor(), number(), round(), and sum(). The
node-set functions count(), last(), and position() also return numbers, as does the string
function string-length().

5.3.1 The sum() Function

The sum() function takes a single node-set as an argument and returns or adds up a sum of
numbers from that node-set. The document math.xml contains a group of operand elements, each

with numeric content:

<math>
 <operand>12</operand>
 <operand>23</operand>
 <operand>45</operand>
 <operand>56</operand>
 <operand>75</operand>
</math>

You can use the sum() function in sum.xsl to add these numbers and return the sum:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="math">
 <xsl:value-of select="sum(operand)"/>
</xsl:template>

</xsl:stylesheet>

If applied to math.xml, this stylesheet will produce a sum of the numbers in all the operand children
of math:

211

5.3.2 The round() Function

Taking a number as an argument, the round() function returns an integer that is rounded closest to

the value of the function's argument. Consider round.xml:

<math>
 <down>
 <operand>12.12</operand>

http://lib.ommolketab.ir

 <operand>23.22</operand>
 </down>
 <up>
 <operand>12.15</operand>
 <operand>23.73</operand>
 </up>
</math>

Then apply the stylesheet round.xsl:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="math">
 <xsl:apply-templates select="up|down"/>
</xsl:template>

<xsl:template match="up|down">
 <xsl:value-of select="round(sum(operand))"/>
 <xsl:text> </xsl:text>
</xsl:template>

</xsl:stylesheet>

The sum() function returns a number to round(). The stylesheet finds the up or down children of
operand. When it finds them, it outputs the rounded sum of the operands:

35 36

The content of the operand children of down, 12.12, and 23.22 is converted to numbers, summed,
and then rounded down to 35. On the other hand, the content of the operand children of up, 12.15,
and 23.73 is converted to numbers, summed, and then rounded up to 36.

I'll wrap up with string functions.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

5.4 String Functions

The string functions return strings and Booleans. The XPath string functions are concat() , contains() (returns a
Boolean), normalize-space() , starts-with() (also returns a Boolean), string() , string-length() ,
substring() , substring-after() , substring-before() , and translate() . The XSLT functions format-
number() , unparsed-entity-uri() , and generate-id() also return strings. You saw substring() and
string-length() in action in Chapter 3 .

5.4.1 The concat() Function

I'll demonstrate how to use concat() here. The file poem.xml holds a limerick written by XML mensch John Cowan:

<?xml version="1.0" encoding="UTF-8"?>

<poem>
 <line>My corporate data's a mess!</line>
 <line>It's all semi-structured, no less.</line>
 <line>But I'll be carefree</line>
 <line>Using XSLT</line>
 <line>In an XML DBMS.</line>
 <attribution>John Cowan</attribution>
</poem>

You could format the poem in any number of ways, but I'll show you one way to do it with concat() . The
stylesheet limerick.xsl does most of its work with the concat() function:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="poem">
 <xsl:value-of select="concat(line[1], '
',
 line[2], '
',
 ' ',
 line[3], '
',
 ' ',
 line[4], '
',
 line[5], '
',
 '		-',
 attribution)"/>
</xsl:template>

</xsl:stylesheet>

The concat() function takes two or more strings as arguments and concatenates them together. In this stylesheet,
concat() concatenates 14 strings together, collecting 5 of them from line elements. It inserts whitespace
directly-linefeeds, spaces, and tabs-and picks up one last string from the attribution element.

http://lib.ommolketab.ir

The result of processing poem.xml with limerick.xsl produces a nicely formatted limerick:

My corporate data's a mess!
It's all semi-structured, no less.
 But I'll be carefree
 Using XSLT
In an XML DBMS.
 -John Cowan

5.4.2 The normalize-space(), translate(), and substring() Functions

Now let's use normalize-space() , translate() , and substring() together to help perform a conversion of a

Microsoft file path with a Unix one. The document path.xml contains a Microsoft path that includes a filename:

<ms>

C:\LearningXSLT\examples\ch05\path.xml

</ms>

Let's suppose you want to convert this path to Unix and get rid of linefeeds that surround the path. The fix.xsl
stylesheet can do this with a single expression:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>

<xsl:template match="ms">
 <unix>/usr/mike<xsl:value-of select="normalize-space(translate(substring(.,5),'\','/'))"/></unix>
</xsl:template>

</xsl:stylesheet>

The result of processing path.xml with fix.xsl with:

xalan path.xml fix.xsl

produces:

<?xml version="1.0" encoding="UTF-8"?>
<unix>/usr/mike/LearningXSLT/examples/ch05/path.xml</unix>

The innermost XSLT function called is substring(.,5) . This call refers to the string value of the current node, that
is, the child text node of ms , using the single period (.). (The single period is generally a synonym for the current(
) function, which returns the current node.) The second argument is 5 , which indicates what character will begin the

text node of the substring (because it is preceded by two linefeeds, the fifth character immediately follows the colon).
substring() has an optional third argument (not shown in this example), which is a number that determines the

overall length of the substring.

The translate() function takes three arguments. The first is the string to be translated. In the case of this
example, it is the lopped-off string produced by the substring() function. The next argument is the character (it

could be a list of characters) that you want to translate. You can list more than one character to translate, but this
example only uses one, that is, \ . The third argument tells what the second argument \ will translate into, namely, /

http://lib.ommolketab.ir

. If the second and third arguments list more than one character, each character in the second argument list is
translated with the corresponding character in the third argument list.

You have to use caution with translate() , as it is easy to swap characters that you do not

intend to swap. The conversion takes place for every instance of the character in the source
tree, not just the first one.

Finally, the normalize-space() function normalizes space in ms by trimming leading and trailing whitespace.

5.4.3 The generate-id() Function

As discussed earlier in Section 5.2.1 , an ID is a unique identifier in XML. The generate-id() function creates IDs

that are guaranteed to be unique within a document. The stylesheet generate-id.xsl generates a unique ID for each
new welcome element that it creates:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:output doctype-system="welcome.dtd"/>

<xsl:template match="greet">
 <xsl:element name="greeting">
 <xsl:apply-templates select="greeting"/>
 </xsl:element>
</xsl:template>

<xsl:template match="greeting">
 <xsl:element name="welcome">
 <xsl:attribute name="xml:lang"><xsl:value-of select="@xml:lang"/></xsl:attribute>
 <xsl:attribute name="id"><xsl:value-of select="generate-id(.)"/></xsl:attribute>
 <xsl:value-of select="current()"/>
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

The stylesheet also passes on the xml:lang attributes with its values from the source to the result. It also creates a

document type declaration that associates the result document with the DTD called welcome.dtd . It's shown here:

<!ELEMENT greeting (welcome+)>
<!ELEMENT welcome (#PCDATA)>
<!ATTLIST welcome id ID #REQUIRED
 xml:lang CDATA #REQUIRED>

This DTD declares an id attribute of type ID for the generated, unique ID values. Create the result document with

this command:

xalan -i 1 -o welcome.xml greet.xml generate-id.xsl

welcome.xml looks like this:

http://lib.ommolketab.ir

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE greeting SYSTEM "welcome.dtd">
<greeting>
 <welcome xml:lang="en" id="N003EBD80.004836F4">Welcome</welcome>
 <welcome xml:lang="fr" id="N003EBD80.00483720">Bienvenue</welcome>
 <welcome xml:lang="es" id="N003EBD80.0048374C">Bienvenido</welcome>
 <welcome xml:lang="de" id="N003EBD80.00483778">Willkommen</welcome>
</greeting>

welcome.xml is valid with regard to welcome.dtd . The id attributes are of type ID in the DTD, and each of the id

values is unique.

welcome.xsl extracts a German welcome from welcome.xml while showing its ID:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="greeting">
 <xsl:apply-templates select="welcome[lang('de')]"/>
</xsl:template>

<xsl:template match="welcome[lang('de')]">
 <xsl:text>German: </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text> (ID: </xsl:text>
 <xsl:value-of select="@id"/>
 <xsl:text>)</xsl:text>
</xsl:template>

</xsl:stylesheet>

Now validate welcome.xml by using the -v option with Xalan while you transform it with welcome.xsl :

xalan -v welcome.xml welcome.xsl

Here is the result of the transformation:

German: Willkommen (ID: N003EBD80.00483778)

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

5.5 Summary

This concludes your introduction to XPath and XSLT functions. I've hardly introduced you to all the
functions, but by the time you finish reading this book, you'll have encountered many of them in
working examples.

In the next chapter, you'll learn how to use the copy and copy-of instructions.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 6. Copying Nodes
Sometimes when you are building a result tree, you just want to copy nodes out of an XML document
without altering them. You can do this with the copy and copy-of instruction elements. You will learn

about the differences in these two elements and how to use them in this chapter. I'll start with the
copy element.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

6.1 The copy Element

You'll be working with several XML documents relating to the European Union (EU) in the examples
that follow. You can read more about the EU-in at least 12 different languages-at
http://europa.eu.int/. The document eu.xml, Example 6-1, found in the directory examples/ch06,
represents member states, founding member states, and candidate member states from the EU.

Example 6-1. An XML document listing EU member and candidate states

<?xml version="1.0" encoding="UTF-8"?>

<!-- European Union member states and candidate states -->

<eu>
 <member>
 <state>Austria</state>
 <state founding="yes">Belgium</state>
 <state>Denmark</state>
 <state>Finland</state>
 <state founding="yes">France</state>
 <state founding="yes">Germany</state>
 <state>Greece</state>
 <state>Ireland</state>
 <state founding="yes">Italy</state>
 <state founding="yes">Luxembourg</state>
 <state founding="yes">The Netherlands</state>
 <state>Portugal</state>
 <state>Spain</state>
 <state>Sweden</state>
 <state>United Kingdom</state>
 </member>
 <candidate>
 <state>Bulgaria</state>
 <state>Cyprus</state>
 <state>Czech Republic</state>
 <state>Estonia</state>
 <state>Hungary</state>
 <state>Latvia</state>
 <state>Lithuania</state>
 <state>Malta</state>
 <state>Poland</state>
 <state>Romania</state>
 <state>Slovenia</state>
 <state>Slovakia</state>
 <state>Turkey</state>
 </candidate>

http://europa.eu.int/
http://lib.ommolketab.ir

</eu>

There are currently, as of early 2003, 15 member states in the EU, and 13 candidate member states.
If you wanted to duplicate element nodes from this document, you could use the XSLT copy

instruction element, though it has certain limitations.

First, consider this inadequate stylesheet, copy.xsl:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="eu">
 <xsl:apply-templates select="member"/>
 </xsl:template>

 <xsl:template match="member">
 <xsl:apply-templates select="state[2]"/>
 </xsl:template>

 <xsl:template match="state">
 <xsl:copy/>
 </xsl:template>

</xsl:stylesheet>

The output method is explicitly XML because that's really the only output method that makes any
sense with copy. This stylesheet targets the second state element in eu.xml for copying. This state
element has the word Belgium as content, and also has a founding attribute, indicating that Belgium

is one of the founding members of the EU. If you apply the stylesheet to eu.xml, however, with:

xalan eu.xml copy.xsl

you get this result:

<?xml version="1.0" encoding="UTF-8"?>
<state/>

Where's the attribute value and the element content? Surprise! The copy element doesn't get it for

you. It copies the current node, but only if it is an element and has any namespace nodes associated
with that element. That's it. This is sometimes called a shallow copy. A shallow copy does not copy
any attribute nodes or child nodes, including text nodes. This is a good thing, though, because
sometimes that's exactly what you want. I'll show you why.

Suppose, for example, that you wanted to pull all the elements that represent the six founding states
of the EU out of eu.xml. You could do this with the stylesheet founding.xsl:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="eu">
 <xsl:apply-templates select="member"/>
 </xsl:template>

http://lib.ommolketab.ir

 <xsl:template match="member">
 <eu-members>
 <xsl:apply-templates select="state[@founding]"/>
 </eu-members>
 </xsl:template>

 <xsl:template match="state">
 <xsl:copy>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

This stylesheet finds all the state elements that are children of member, and that also have founding
attributes, and wraps them all in an eu-members document element. The addition of the apply-
templates element as a child of copy means that the template will process all children of the

matched nodes, including text, invoking the built-in templates whenever there is a match. When you
process eu.xml against founding.xsl:

xalan -i 1 eu.xml founding.xsl

you will get the following:

<?xml version="1.0" encoding="UTF-8"?>
<eu-members>
 <state>Belgium</state>
 <state>France</state>
 <state>Germany</state>
 <state>Italy</state>
 <state>Luxembourg</state>
 <state>The Netherlands</state>
</eu-members>

The copy element outputs the state element, and apply-templates picks up the text content of the
state elements through the built-in template for text. Because attributes are not considered children
of elements, apply-templates does not return their values. Attributes have parents, however, which

are always elements.

6.1.1 Adding Attributes with copy

The copy element has one optional attribute, use-attribute-sets. In Chapter 2, you saw this
attribute in action. It allows you to invoke a named set of attributes stored in an attribute-set

element, adding them to an element in the result tree. The following stylesheet, notfounding.xsl,
shown in Example 6-2, shows you how it's done.

Example 6-2. An XSLT stylesheet that adds attributes in the course of a
copy

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

http://lib.ommolketab.ir

<xsl:output method="xml" indent="yes"/>

 <xsl:attribute-set name="new">
 <xsl:attribute name="founding">no</xsl:attribute>
 </xsl:attribute-set>

 <xsl:template match="eu">
 <xsl:apply-templates select="member"/>
 </xsl:template>

 <xsl:template match="member">
 <eu>
 <members>
 <xsl:apply-templates select="state[not(@founding)]"/>
 </members>
 </eu>
 </xsl:template>

 <xsl:template match="state">
 <xsl:copy use-attribute-sets="new">
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

In contrast to founding.xsl, this stylesheet finds state elements that do not have founding
attributes by using the XPath Boolean function not(). When it finds these elements, it uses the
attribute set named new to add a new founding attribute to the resulting element. Apply it with:

xalan -i 1 eu.xml notfounding.xsl

and you'll get this result:

<?xml version="1.0" encoding="UTF-8"?>
<eu>
 <members>
 <state founding="no">Austria</state>
 <state founding="no">Denmark</state>
 <state founding="no">Finland</state>
 <state founding="no">Greece</state>
 <state founding="no">Ireland</state>
 <state founding="no">Portugal</state>
 <state founding="no">Spain</state>
 <state founding="no">Sweden</state>
 <state founding="no">United Kingdom</state>
 </members>
</eu>

As you can see, the XSLT processor grabbed all state elements that did not have a founding
attribute and then added a new founding attribute with a value of no to each of them. The
stylesheet also duplicated the eu and members elements using literal result elements.

http://lib.ommolketab.ir

One other thing: the copy element can contain a template. That's why it can have an apply-
templates child, as shown in the following example, identity.xsl. A copy element can even contain
other copy elements.

6.1.2 The Identity Transform

You can create an identity transform that copies nodes by using the copy element. The stylesheet

identity.xsl matches all nodes and then copies each of them:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="US-ASCII"/>

<xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

The XPath syntax @* matches attributes, or (|) node() matches all other nodes. apply-templates

then triggers the built-in templates for any node it finds.

The document identity.xml contains an example of each of the seven node types in the XPath data
model (root, element, attribute, text, comment, processing instruction, and namespace):

<?xml-stylesheet href="identity.xsl" type="text/xsl"?>

<!-- EU state: Belgium -->

<state member="true" xmlns="urn:wyeast-net:eu">Belgium</state>

Because identity.xml contains an XML stylesheet PI, you can transform it using:

xalan -a identity.xml

The copy looks very much like the original, except Xalan adds an XML declaration:

<?xml version="1.0" encoding="US-ASCII"?>
<?xml-stylesheet href="identity.xsl" type="text/xsl"?>

<!-- EU state: Belgium -->
<state xmlns="urn:wyeast-net:eu" member="true">Belgium</state>

The copy element works fine in some situations, but in other instances, you may prefer to copy an
element's attributes and children automatically, as a matter of course. You can do that with copy-of.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

6.2 The copy-of Element

The copy-of element goes further than its counterpart copy. Where copy by itself only copies
element nodes and their associated namespace nodes, copy-of copies element and namespace

nodes, plus attribute nodes and children. This is called a deep copy.

The stylesheet copy-of.xsl demonstrates the difference between a shallow copy and a deep copy
(note bold):

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>

 <xsl:template match="eu">
 <xsl:apply-templates select="member"/>
 </xsl:template>

 <xsl:template match="member">
 <xsl:apply-templates select="state[2]"/>
 </xsl:template>

 <xsl:template match="state">
 <xsl:copy-of select="."/>
 </xsl:template>

</xsl:stylesheet>

The only difference between copy.xsl and copy-of.xsl is that copy.xsl uses copy with no attributes,
and copy-of.xsl uses copy-of with a select attribute. You will see the real evidence when you

process eu.xml against copy-of.xsl:

xalan eu.xml copy-of.xsl

This produces:

<?xml version="1.0" encoding="UTF-8"?>
<state founding="yes">Belgium</state>

Instead of just copying the element node as with copy, copy-of copies the element node state, its
attribute founding with its value, and its text node child Belgium.

The copy-of element can also copy other kinds of child nodes. The stylesheet candidate.xsl copies all
the state children of candidate in eu.xml with the deep copy method using copy-of, and it grabs
the eu and candidate elements using a shallow copy method with copy:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="eu">

http://lib.ommolketab.ir

 <xsl:copy>
 <xsl:apply-templates select="candidate"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="candidate">
 <xsl:copy>
 <xsl:copy-of select="state"/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

Apply the stylesheet using this line:

xalan -i 1 eu.xml candidate.xsl

and you will get the following output:

<?xml version="1.0" encoding="UTF-8"?>
<eu>
 <candidate>
 <state>Bulgaria</state>
 <state>Cyprus</state>
 <state>Czech Republic</state>
 <state>Estonia</state>
 <state>Hungary</state>
 <state>Latvia</state>
 <state>Lithuania</state>
 <state>Malta</state>
 <state>Poland</state>
 <state>Romania</state>
 <state>Slovakia</state>
 <state>Slovenia</state>
 <state>Turkey</state>
 </candidate>
</eu>

This creates a new document that contains only the names of the 13 European state candidates.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

6.3 Copying Nodes from Two Documents

Using copy-of, you can piece together new documents by copying the nodes you want wholesale. So

far, you have only seen how to copy nodes out of one document as, customarily, an XSLT processor
handles only one input document or source tree. This example will show you how to process more
than one input document with the XSLT function document(). You caught a glimpse of document()
in Chapter 4; Chapter 13 will cover document() in more detail.

In addition to eu.xml, you will also find other.xml in examples/ch06, which contains a list of non-EU
states, shown in Example 6-3.

Example 6-3. An XML document listing non-EU states

<?xml version="1.0" encoding="UTF-8"?>

<!-- Other non-EU, European states -->

<eu>
 <other>
 <state>Albania</state>
 <state>Andorra</state>
 <state>Belarus</state>
 <state>Estonia</state>
 <state>Bosnia-Herzegovina</state>
 <state>Croatia</state>
 <state>Iceland</state>
 <state>Liechtenstein</state>
 <state>Macedonia, Former Yugoslav Republic of</state>
 <state>Moldova</state>
 <state>Monaco</state>
 <state>Norway</state>
 <state>Russia</state>
 <state>San Marino</state>
 <state>Serbia and Montenegro</state>
 <state>Switzerland</state>
 <state>Ukraine</state>
 <state>Vatican City</state>
 </other>
</eu>

Using the document() function, the stylesheet two.xsl takes nodes out of other.xml in addition to

eu.xml:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="eu">

http://lib.ommolketab.ir

 <xsl:copy>
 <xsl:comment>
 <xsl:text>Member states: </xsl:text>
 <xsl:value-of select="count(member/state)"/>
 </xsl:comment>
 <xsl:copy-of select="member"/>
 <xsl:comment>
 <xsl:text>Candidate states: </xsl:text>
 <xsl:value-of select="count(candidate/state)"/>
 </xsl:comment>
 <xsl:copy-of select="candidate"/>
 <xsl:comment>
 <xsl:text>Other states: </xsl:text>
 <xsl:value-of select="count(document('other.xml')/eu/other/state)"/>
 </xsl:comment>
 <xsl:copy-of select="document('other.xml')/eu/other"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

The nodes in the first source tree contained in the file eu.xml are fed to the XSLT processor via the
command line. The document() function picks up the source in other.xml at the stylesheet level.
This stylesheet also uses the count() function to count state elements, arriving at the number of

countries in each category: member, candidate, and other. With this command:

xalan -i 1 eu.xml two.xsl

the processor will produce the following result, shown in Example 6-4.

Example 6-4. An XML document listing European countries and their
relation to the EU

<?xml version="1.0" encoding="UTF-8"?>
<eu>
 <!--Member states: 15-->
 <member>
 <state>Austria</state>
 <state founding="yes">Belgium</state>
 <state>Denmark</state>
 <state>Finland</state>
 <state founding="yes">France</state>
 <state founding="yes">Germany</state>
 <state>Greece</state>
 <state>Ireland</state>
 <state founding="yes">Italy</state>
 <state founding="yes">Luxembourg</state>
 <state founding="yes">The Netherlands</state>
 <state>Portugal</state>
 <state>Spain</state>
 <state>Sweden</state>
 <state>United Kingdom</state>

http://lib.ommolketab.ir

 </member>
 <!--Candidate states: 13-->
 <candidate>
 <state>Bulgaria</state>
 <state>Cyprus</state>
 <state>Czech Republic</state>
 <state>Estonia</state>
 <state>Hungary</state>
 <state>Latvia</state>
 <state>Lithuania</state>
 <state>Malta</state>
 <state>Poland</state>
 <state>Romania</state>
 <state>Slovakia</state>
 <state>Slovenia</state>
 <state>Turkey</state>
 </candidate>
 <!--Other states: 18-->
 <other>
 <state>Albania</state>
 <state>Andorra</state>
 <state>Belarus</state>
 <state>Estonia</state>
 <state>Bosnia-Herzegovina</state>
 <state>Croatia</state>
 <state>Iceland</state>
 <state>Liechtenstein</state>
 <state>Macedonia, Former Yugoslav Republic of</state>
 <state>Moldova</state>
 <state>Monaco</state>
 <state>Norway</state>
 <state>Russia</state>
 <state>San Marino</state>
 <state>Serbia and Montenegro</state>
 <state>Switzerland</state>
 <state>Ukraine</state>
 <state>Vatican City</state>
 </other>
</eu>

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

6.4 Summary

In this chapter, you have learned how to copy nodes using the copy element for shallow copies and
the copy-of element for deep copies. You also learned how to merge nodes from more than one
source tree with the document() function (more on this in Chapter 13). In the next chapter, you'll

learn how to use variables and parameters.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 7. Using Variables and Parameters
XSLT offers several ways to bind a name to a value so that the value can be later referenced by
name any number of times in a stylesheet. The variable element binds a name to an immutable
value once it's been evaluated, while the param element binds a name to a default value, but it's a
value you can change. You can define a default value with param and then pass a new value into the
stylesheet or to a template. The with-param element allows you to apply or call a template from

another template with a new value for one or more parameters, like a method or function call with
arguments.

Variables in XSLT are limited in what they can do. They are not like variables in
programming languages that you can reassign over and over again. Generally,
you will define a variable once and then reference it as often as you want. You
will also generally change the default value of a parameter just when you pass
a value to a stylesheet or template. There are ways around this, but, by and
large, that is how you use them. In this way, XSLT variables are more similar to
constants in a programming language than to variables.

You can use the variable and param elements globally on the top-level as stylesheet-wide values, or

locally within templates. If a variable is global, its scope is the entire stylesheet; if it is local, its scope
is restricted to the template where it is defined or passed in. The with-param element may appear
only as an immediate child of an apply-templates template (for processing child templates) or of a
call-template element (for processing named templates-more on this in Chapter 10). A variable

can be of any type-Boolean, node-set, number, string, or result tree fragment.

In XSLT 2.0, you will also be able to use with-param as a child of the apply-
imports element. You can't do that in XSLT 1.0.

This chapter introduces you to using variables and parameters in stylesheets, both globally and
locally. I'll use the general term variable to refer to the values of variable, param, and with-param

in this chapter and throughout the book.

You can read about variables and parameters in Section 11 of the XSLT specification.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

7.1 Defining Variables and Parameters

Before going any deeper into the subject, there are a few things I'd like to discuss that apply to the
variable, param, and with-param elements. To begin with, all three elements have just two

attributes:

The required name attribute that binds a name to a value of the variable. This is a QName.1.

The optional select attribute that can contain an expression that defines the value of the

variable.

2.

In addition, all three elements also provide two general ways to define a value:

You can define a value using an expression in the select attribute.1.

You can also define a value using something called a result tree fragment with a template in the
content of the element. As discussed in Chapter 4, a result tree fragment is an XSLT 1.0
datatype that defines a fragment of text or markup.

2.

After you define a variable, you can reference its value by preceding the variable name with a dollar
sign, such as in $discount. I'll cover both ways to define a value and discuss the differences.

By the way, you can't use circular definitions when defining a variable. This
means that you can't define a variable by referencing itself.

Empty Values

A variable can contain just an empty string. For example, if you define a parameter with
no apparent value, as in:

<xsl:param name="discount"/>

the value of discount is initially defined as an empty string. You could also write an

empty definition as:

<xsl:param name="discount" select="''"/>

I'm showing you how to do this with param because param may be defined with a default
value that you can later change. If you use variable to define an empty value, you can't

change it because such variables are immutable. You may want to use an empty
variable, but I can't think of a lot of use cases for it. Any empty value makes sense for
use with param and with-param, as you will see in Section 7.4, later in this chapter.

http://lib.ommolketab.ir

7.1.1 Defining Default Values for Parameters

Unlike a value defined with the variable element, a value defined with the param element can have

a default value that you can change. Nevertheless, a parameter is not required to have an explicit,
default value; it can just be empty. Said another way, if a parameter does not have an explicitly
defined value, the processor will give it a value of a zero-length string.

When you define a global parameter on the top level, you can pass in a new value when the
transformation is performed that replaces the default value using a mechanism provided by the XSLT
processor; and when you define a local parameter in a template, you can pass in a new value from
another template by using with-param. You will see examples of how this works in the later sections,

Section 7.3 for global variables, and Section 7.4 for local variables.

7.1.2 Defining Values with Expressions and Templates

As I mentioned earlier, you can define a variable value with an expression in a select attribute or

with a template in element content (as you will soon see section Section 7.1.2.2). However, you
cannot define a value using both an expression and a template at the same time. In other words, you
cannot use the select attribute together with element content to define a single variable, as they

are mutually exclusive.

7.1.2.1 Using the select attribute to define variables

For example, the following declaration defines a value using an expression in a select attribute:

<xsl:variable name="discount" select="0.40 + 0.30"/>

The expression adds the numbers 0.40 and 0.30 and the resulting number value of 0.70 is bound to
the discount variable. An XSLT processor automatically knows that this variable is a number.
Likewise, the following variable would be interpreted containing the number 50:

<xsl:variable name="discount" select="50"/>

You can also bind a string to a variable explicitly using embedded quotation marks:

<xsl:variable name="discount" select="'n/a'"/>

Notice the single quotes inside the double quotes in the value of select. This binds the string value
n/a to discount. You could also write the declaration in this way, with double quotes inside of single

quotes:

<xsl:variable name='discount' select='"n/a"'/>

Either single or double quotes are fine, but you aren't allowed to mix them (that is, name='discount"

is illegal).

http://lib.ommolketab.ir

If you enclose the value of select in just double or single quotes, without any

internal quotes, the value is interpreted as a node-set and not as a string.
Because / is not a legal XML name character, n/a would be interpreted as a
location path-the element n with a child a-probably not what you are after.

Because select contains an expression, you can use arithmetic, functions, even references to other
variables, when defining a value for a variable with select. Here's yet another example showing a

slightly more complex expression that defines a parameter:

<xsl:param name="discount" select="floor($option)+0.05"/>

You can also specify a location path in select, as in:

<xsl:param name="discount" select="catalog/value"/>

This variable would extract the content of the value element for its value. Another possibility is to
use the document() function in select like this:

<xsl:param name="discount" select="document('discount.xml')"/>

With this, the value of discount is picked up from the external document discount.xml:

<value>0.10</value>

Though it is discussed elsewhere in the book, you'll learn more about the document() function in

Chapter 13.

7.1.2.2 Using result tree fragments to define variables

When you define a variable using a template in element content, such content is a result tree
fragment. Because it is defined as a template, a result tree fragment can be a node-set consisting of
markup, which has its own root element. The following declaration uses a result tree fragment to
define a variable:

<xsl:variable name="discount">
<xsl:element name="discount">0.10</xsl:element>
</xsl:variable>

Here element is used to create an element named discount with the content 0.10 for the result

tree.

The result tree fragment type is defined by XSLT, not by XPath. It is called a temporary tree in XSLT
2.0, and it can be manipulated by an XSLT 2.0 processor in more sophisticated ways than a result
tree fragment can be manipulated by an XSLT 1.0 processor. (An XSLT 2.0 temporary tree, however,
cannot be manipulated by an XSLT 1.0 processor.) See the section Section 7.5, later in this chapter
for a working example.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

7.2 Using Variables

Variables in XSLT allow you to associate a name with a value, making it easier to use a given value
more than once. I'll start the series of examples in this chapter with a single, global variable that
contains a numeric value that is available in every template in the stylesheet, if needed. The following
document, price.xml , in examples/ch07 , represents a single catalog entry:

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "price.dtd">

<catalog>
 <item id="SC-0001">
 <maker>Scratchmore</maker>
 <description>Wool sweater</description>
 <size>L</size>
 <price>120.00</price>
 <currency>USD</currency>
 </item>
</catalog>

price.xml happens to be valid with regard to the DTD price.dtd , also in examples/ch07 . The
stylesheet variable.xsl derives a discounted price from price.xml and outputs new content for the
catalog:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:output doctype-system="catalog.dtd"/>
<xsl:variable name="discount" select="0.10"/>

<xsl:template match="catalog">
 <xsl:copy>
 <xsl:apply-templates select="item"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="item">
 <xsl:copy>
 <xsl:attribute name="id"><xsl:value-of select="@id"/></xsl:attribute>
 <xsl:copy-of select="maker|description|size|price"/>
 <discount><xsl:value-of select="$discount"/></discount>
 <discountPrice><xsl:value-of select="price - (price * $discount)"/></discountPrice>
 <xsl:copy-of select="currency"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

http://lib.ommolketab.ir

The stylesheet outputs XML that includes a new document type declaration referencing catalog.dtd
(available in examples/ch07). Because the variable element is at the top level, it declares a global
variable, discount , that is available or visible to all templates in the stylesheet. This variable is
referenced later in the stylesheet with the variable reference $discount . A variable reference is
preceded by a dollar sign ($).

There is no internal conflict, by the way, between the element name discount
and the variable name discount . There is also no name conflict between a

variable defined on the top level and one with the same name defined in a
template. However, there will be a name conflict if two or more variables share
the same name and are defined on the top level (unless they have a different
import precedence; see Chapter 13 for an explanation), or if they share the
same name and are defined locally in a template.

The stylesheet makes copies of the maker , description , size , and price elements
(maker|description|size|price). In Chapter 4 , the | operator was said to imply or . In this
instance, the | operator implies and . In other words, the elements maker and description and size
and price are all copied. (| can generally be read as union .)

The stylesheet creates two new elements in the result tree, discount and discountPrice . The
content of these elements is formed with the aid of the discount variable, which contains a discount
percentage of 10 percent (0.10). The discount and discountPrice elements will contain content
that is computed with the value of the discount variable.

To see the result, transform price.xml with variable.xsl with the following command:

xalan -v -i 1 price.xml variable.xsl

The -v option instructs Xalan to validate the source document price.xml against the DTD it references

in its document type declaration (price.dtd), not the DTD output document references (catalog.dtd).
The -i option indicates that child elements should be indented by one space per child. This command

will give you the following output:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>
 <item id="SC-0001">
 <maker>Scratchmore</maker>
 <description>Wool sweater</description>
 <size>L</size>
 <price>120.00</price>
 <discount>0.1</discount>
 <discountPrice>108</discountPrice>
 <currency>USD</currency>
 </item>
</catalog>

The added discount element reports the discount percentage, and the new discountPrice element

contains the calculated discounted price. You can improve the appearance of numbers in the
discount and discountPrice elements by using the format-number() function in the stylesheet.
(format-number() was mentioned in Chapter 5 and you will learn more about it in Chapter 9 .)

http://lib.ommolketab.ir

variable-alt.xsl uses both the format-number() and document() functions:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:variable name="discount" select="document('discount.xml')"/>
<xsl:template match="catalog">
 <xsl:copy>
 <xsl:apply-templates select="item"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="item">
 <xsl:copy>
 <xsl:attribute name="id"><xsl:value-of select="@id"/></xsl:attribute>
 <xsl:copy-of select="maker|description|size|price"/>
 <discount><xsl:value-of select="$discount"/></discount>
 <discountPrice><xsl:value-of select="format-number(price -
(price*$discount),'###.00')"/></discountPrice>
 <xsl:copy-of select="currency"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

Xalan reports that it does not support the format-number() function, so I'll use the Instant Saxon

processor for this example instead. Instant Saxon 6.5.3, the last version of Instant Saxon, runs on
the Windows platform and is available for download from http://saxon.sourceforge.net . (Or just use
saxon.exe in examples/ch07). After Instant Saxon is installed, apply variable-alt.xsl to price.xml with
this line:

saxon price.xml variable-alt.xsl

You will see a difference from the output of variable.xsl with that of the output of variable-alt.xsl :

<?xml version="1.0" encoding="utf-8"?>
<catalog>
 <item id="SC-0001">
 <maker>Scratchmore</maker>
 <description>Wool sweater</description>
 <size>L</size>
 <price>120.00</price>
 <discount>0.10</discount>
 <discountPrice>108.00</discountPrice>
 <currency>USD</currency>
 </item>
</catalog>

The content of discount was taken from the content of the value element in discount. xml via the
document() function. Because of this, the content in the output is 0.10 rather than 0.1 (it was 0.1
with variable.xsl). Because of format-number() , the content of discountPrice is 108.00 rather
than just 108 . The second argument of format-number() (###.00) specifies that the number is to

be formatted in the output with two places after the decimal point.

http://lib.ommolketab.ir

As you know, you can't change a value defined with variable , so what do you do if you want to
change the value of the discount? You can use the param element.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

7.3 Using Parameters

The following stylesheet, param.xsl, is only a little different than variable.xsl-the top-level element
variable is switched with a param element-but what a difference that small change makes:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:output doctype-system="catalog.dtd"/>
<xsl:param name="discount" select="0.10"/>
<xsl:template match="catalog">
 <xsl:copy>
 <xsl:apply-templates select="item"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="item">
 <xsl:copy>
 <xsl:attribute name="id"><xsl:value-of select="@id"/></xsl:attribute>
 <xsl:copy-of select="maker|description|size|price"/>
 <discount><xsl:value-of select="$discount"/></discount>
 <discountPrice><xsl:value-of select="price - (price * discount)"/></discountPrice>
 <xsl:copy-of select="currency"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

This stylesheet defines a global parameter (it's global because it is defined on the top level of the
stylesheet). This means that the parameter discount is available throughout the stylesheet,
wherever it might be needed. Given this stylesheet, the default value of discount is 0.10, and you
can change the value of discount using a mechanism provided by the XSLT processor on the

command line.

This book focuses mostly on XSLT processors that have command-line
interfaces. For XSLT processors written in Java and based on Sun's Java API for
XML Processing (JAXP), for example, APIs provide programmatic methods for
setting parameter values, namely
javax.xml.transform.setParameter(String name, Object value). You will

get a chance to use JAXP in a programming example in Chapter 17.

7.3.1 Passing in a Parameter with Xalan

The Xalan processor has a -p command-line option. This option allows you to associate a parameter

name with a new value, which is in turn handed to the processor to produce a different result tree. To

http://lib.ommolketab.ir

increase the amount of the discount from 10 percent (0.10) to 20 percent (0.20), enter the following

command line:

xalan -i 1 -p discount '0.20' price.xml param.xsl

This transformation will produce the following result:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>
 <item id="SC-0001">
 <maker>Scratchmore</maker>
 <description>Wool sweater</description>
 <size>L</size>
 <price>120.00</price>
 <discount>0.20</discount>
 <discountPrice>96</discountPrice>
 <currency>USD</currency>
 </item>
</catalog>

Notice the new content of the discount and discountPrice elements. This was a result of passing in
a parameter value. You can use the -p option for as many parameters as you wish to change,

provided that those parameters are defined in the stylesheet you are processing. Other processors,
such as Instant Saxon, use a different syntax to pass in parameter values.

7.3.2 Passing in a Parameter with Instant Saxon

The Instant Saxon processor uses a simpler command-line syntax than Xalan's syntax. To associate a
parameter name with a new value, increasing the discount from 10 percent (0.10) to 30 percent
(0.30), enter this line:

saxon price.xml param.xsl discount="0.3"

The parameter discount is coupled with a new value just by using the equals sign (=). Here is the

output:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE catalog
 SYSTEM "catalog.dtd">
<catalog>
 <item id="SC-0001">
 <maker>Scratchmore</maker>
 <description>Wool sweater</description>
 <size>L</size>
 <price>120.00</price>
 <discount>0.3</discount>
 <discountPrice>84</discountPrice>
 <currency>USD</currency>
 </item>

http://lib.ommolketab.ir

</catalog>

Other XSLT processors, such as James Clark's XT and Microsoft's MSXSL, also use this simple syntax
for associating a parameter with a new value.

So far, you have seen a global variable and parameter. Next you'll see how to define and use a local
one.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

7.4 Invoking Templates with Parameters

The with-param.xsl stylesheet shown in Example 7-1 doesn't define a global parameter on the top
level, but it does define a local variable within a template.

Example 7-1. A stylesheet using a locally scoped variable

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:output doctype-system="catalog.dtd"/>

<xsl:template match="catalog">
 <xsl:copy>
 <xsl:apply-templates select="item">
 <xsl:with-param name="discount" select="'0.50'"/>
 </xsl:apply-templates>
 </xsl:copy>
</xsl:template>

<xsl:template match="item">
 <xsl:param name="discount"/>
 <xsl:copy>
 <xsl:attribute name="id"><xsl:value-of select="@id"/></xsl:attribute>
 <xsl:copy-of select="maker|description|size|price"/>
 <discount><xsl:value-of select="$discount"/></discount>
 <discountPrice><xsl:value-of select="price - (price * $discount)"/></discountPrice>
 <xsl:copy-of select="currency"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

The first child element of the template that matches item is the param element, which just happens to
be empty by default. When you use local parameters defined with param , the param element must

appear as the first child element in a template. This was probably so that their values are taken into
account before the template is processed. You can also define local variables in a template with the
variable element, but these can appear anywhere in a template. They don't have to be first in line.

The template that matches catalog applies templates to item elements, but as it does so, it adds a
child to apply-templates called with-param . This element passes a new value for the local
discount parameter to the template that matches item . To see how it works, enter the following line

at a prompt:

xalan -i 1 price.xml with-param.xsl

The processor yields the following deeply discounted results:

http://lib.ommolketab.ir

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>
 <item id="SC-0001">
 <maker>Scratchmore</maker>
 <description>Wool sweater</description>
 <size>L</size>
 <price>120.00</price>
 <discount>0.50</discount>
 <discountPrice>60</discountPrice>
 <currency>USD</currency>
 </item>
</catalog>

You can use the with-param element in two places, either as a child of apply-templates or as a child
of call-template . You will see how you can use with-param with call-template in Chapter 10 .

In XSLT 1.0, parameters are not passed through by built-in templates. XSLT
2.0, however, does pass through parameters via built-in templates.

In the final examples in this chapter, I'll show you how to create a variable value with a result tree
fragment, and then how to use that fragment later in the stylesheet.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

7.5 Using Result Tree Fragments

As you saw earlier, a variable value, created with a template as element content, creates a result
tree fragment. The stylesheet in Example 7-2, fragment.xsl, constructs a variable value for discount
using a template with a variable element, and then later accesses that value with copy-of.

Example 7-2. Copying a variable

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:output doctype-system="catalog.dtd"/>
<xsl:variable name="discount">
<discount>0.40</discount>
<discountPrice><xsl:value-of select="format-number(catalog/item/price *
0.60, '###.00')"/></discountPrice>
</xsl:variable>
<xsl:template match="catalog">
 <xsl:copy>
 <xsl:apply-templates select="item"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="item">
 <xsl:copy>
 <xsl:copy-of select="@id"/>
 <xsl:copy-of select="maker|description|size|price"/>
 <xsl:copy-of select="$discount"/>
 <xsl:copy-of select="currency"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

Notice the value-of contained in discountPrice in variable. The first argument of format-
number() uses a location path to address the content of the price element in the source tree. The

context node for evaluating a global variable is the root node of the original source document; that's
why the location path uses catalog/item/price instead of /catalog/item/price, an absolute

location path.

Later, in the template for item, copy-of elements copy the id attribute from the source item and
the nodes contained in discount's result tree fragment.

To test it out, enter this command line:

saxon price.xml fragment.xsl

You will get this outcome:

http://lib.ommolketab.ir

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE catalog
 SYSTEM "catalog.dtd">
<catalog>
 <item id="SC-0001">
 <maker>Scratchmore</maker>
 <description>Wool sweater</description>
 <size>L</size>
 <price>120.00</price>
 <discount>0.40</discount>
 <discountPrice>72.00</discountPrice>
 <currency>USD</currency>
 </item>
</catalog>

A result tree fragment does not have to be well-formed XML. For example, you could also just use a
bit of text in a result tree fragment, as shown in the variable definition for discount in Example 7-

3, frag.xsl.

Example 7-3. Using text as a result tree fragment

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:output doctype-system="catalog.dtd"/>
<xsl:variable name="discount">0.70</xsl:variable>
<xsl:variable name="discountPrice" select="format-number(catalog/item/price -
(catalog/item/price) * $discount, '###.00')"/>

<xsl:template match="catalog">
 <xsl:copy>
 <xsl:apply-templates select="item"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="item">
 <xsl:copy>
 <xsl:copy-of select="@id"/>
 <xsl:copy-of select="maker|description|size|price"/>
 <discount><xsl:value-of select="$discount"/></discount>
 <discountPrice><xsl:value-of select="$discountPrice"/></discountPrice>
 <xsl:copy-of select="currency"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

The variable discount contains only the text 0.70. (It's not best to define a simple value like 0.70 as
a tree fragment, as it is somewhat more costly processing-wise to do so.) When the discountPrice
variable is defined, it contains a reference to discount as part of its definition. The two variables are
referenced later in the stylesheet by instances of value-of.

http://lib.ommolketab.ir

You can reference a global variable before you define it, but you must define a
local variable before you reference it.

Watch what happens with this command:

xalan -i 1 price.xml frag.xsl

Here is the result:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>
 <item id="SC-0001">
 <maker>Scratchmore</maker>
 <description>Wool sweater</description>
 <size>L</size>
 <price>120.00</price>
 <discount>0.70</discount>
 <discountPrice>36.00</discountPrice>
 <currency>USD</currency>
 </item>
</catalog>

Before concluding, I should mention a few more things about result tree fragments. Only XSLT 1.0
allows you to copy result tree fragments or use them as strings. However, the node-set()

extension function offered by many XSLT 1.0 processors allows you to use a result tree fragment as a
tree of temporary nodes. node-set() is not actually part of XSLT 1.0, but it is a useful extension
added by many XSLT processors. You will learn how to use two versions of node-set() in Chapter

15. XSLT 2.0 uses temporary trees rather than result tree fragments, which are stricter. Unlike its
1.0 predecessor, XSLT 2.0 is a tree of XML nodes and cannot contain mere fragments of text.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

7.6 Summary

In this chapter, you have learned how to define variables and parameters using variable and param.

You have also learned how to pass parameters into a stylesheet using XSLT processor mechanisms
and to pass them within a stylesheet using with-param. Result tree fragments now should be a little

less mysterious. You will have other encounters with variables and parameters in the chapters that
follow.

In the next chapter, you'll learn how to sort nodes with the XSLT sort instruction.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 8. Sorting Things Out
Sometimes nodes don't come to you in a convenient order. XSLT's sort instruction element allows
you to sort nodes in alphabetical or numerical order. You can also use sort to sort nodes in

ascending (a, b, c) or descending (z, y, x) order.

This chapter walks you through a brief exploration of sort. You can also read about sorting in Section

10 of the XSLT specification. I'll start, as usual, with a simple example.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

8.1 Simple Ascending Sort

If you look at Example 8-1, the document europe.xml in examples/ch08, you'll notice that the
European states are not listed in alphabetical order.

Example 8-1. Unalphabetized European countries

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="pretty.xsl" type="text/xsl"?>

<europe>
 <state>Belgium</state>
 <state>Germany</state>
 <state>Finland</state>
 <state>Greece</state>
 <state>Ireland</state>
 <state>Luxembourg</state>
 <state>Portugal</state>
 <state>Spain</state>
 <state>Andorra</state>
 <state>Belarus</state>
 <state>Monaco</state>
 <state>Sweden</state>
 <state>United Kingdom</state>
 <state>Austria</state>
 <state>Malta</state>
 <state>Vatican City</state>
 <state>Bulgaria</state>
 <state>Bosnia-Herzegovina</state>
 <state>Cyprus</state>
 <state>France</state>
 <state>Estonia</state>
 <state>Italy</state>
 <state>Hungary</state>
 <state>Latvia</state>
 <state>Ukraine</state>
 <state>Lithuania</state>
 <state>Moldova</state>
 <state>Denmark</state>
 <state>Poland</state>
 <state>Romania</state>
 <state>Slovenia</state>
 <state>The Netherlands</state>
 <state>Turkey</state>
 <state>Albania</state>
 <state>Serbia and Montenegro</state>

http://lib.ommolketab.ir

 <state>Croatia</state>
 <state>Slovakia</state>
 <state>Iceland</state>
 <state>Czech Republic</state>
 <state>Liechtenstein</state>
 <state>Macedonia, Former Yugoslav Republic of</state>
 <state>Norway</state>
 <state>Russia</state>
 <state>San Marino</state>
 <state>Switzerland</state>
</europe>

You can sort the names of the European states in ascending order (that is, in English as a, b, c, and
so on) by using the sort element with no attributes, as a child of apply-templates.

The sort element is used in the stylesheet shown in Example 8-2, sort.xsl.

Example 8-2. Creating a sorted list of countries as text

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="europe">
 <xsl:text>Alphabetical List of European States</xsl:text>
 <xsl:text>
Total Number of States: </xsl:text>
 <xsl:value-of select="count(state)"/>
 <xsl:text>

</xsl:text>
 <xsl:apply-templates select="state">
 <xsl:sort/>
 </xsl:apply-templates>
 </xsl:template>

 <xsl:template match="state">
 <xsl:text> - </xsl:text>
 <xsl:apply-templates/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

This stylesheet produces plain text output (it uses the text method of output), as shown in Example
8-3. A few text instruction elements are sprinkled here and there to label the output or add a line
feed (using the
 character reference). The count() function is also used to count the number
of state elements in the source tree, and the return value of this function is displayed using value-
of.

The sort element appears as a child of apply-templates. It may only appear as a child of either
apply-templates or for-each.

http://lib.ommolketab.ir

The XSLT instruction element for-each is like a template within a template

that selects a node-set and then instantiates its template for each node in the
set. You will see this element demonstrated in several places in this book.

In this stylesheet, when state elements are selected with apply-templates, the processor will also

apply a sort.

To see what happens, apply the sort.xsl stylesheet to europe.xml using this command:

xalan europe.xsl sort.xsl

The plain text, alphabetized result tree shown in Example 8-3 will be output to your screen.

Example 8-3. A sorted text list produced by sort.xsl

Alphabetical List of European States
Total Number of States: 45

 - Albania
 - Andorra
 - Austria
 - Belarus
 - Belgium
 - Bosnia-Herzegovina
 - Bulgaria
 - Croatia
 - Cyprus
 - Czech Republic
 - Denmark
 - Estonia
 - Finland
 - France
 - Germany
 - Greece
 - Hungary
 - Iceland
 - Ireland
 - Italy
 - Latvia
 - Liechtenstein
 - Lithuania
 - Luxembourg
 - Macedonia, Former Yugoslav Republic of
 - Malta
 - Moldova
 - Monaco
 - Norway
 - Poland
 - Portugal

http://lib.ommolketab.ir

 - Romania
 - Russia
 - San Marino
 - Serbia and Montenegro
 - Slovakia
 - Slovenia
 - Spain
 - Sweden
 - Switzerland
 - The Netherlands
 - Turkey
 - Ukraine
 - United Kingdom
 - Vatican City

If you would like pretty output worthy of a browser, you could also create an HTML wrapper with the
stylesheet shown in Example 8-4, pretty.xsl.

Example 8-4. A stylesheet for producing a sorted list of states presented
in HTML

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="europe">
 <html>
 <head><title>European States</title></head>
 <style type="text/css">body {font-family: sans-serif}</style>
 <body>
 <h3>Alphabetical List of European States</h3>
 <p>Total Number of States:<xsl:text> </xsl:text>
 <xsl:value-of select="count(state)"/></p>

 <xsl:apply-templates select="state">
 <xsl:sort/>
 </xsl:apply-templates>

 </body>
 </html>
 </xsl:template>

 <xsl:template match="state">
 <xsl:apply-templates/>
 </xsl:template>

</xsl:stylesheet>

This stylesheet produces indented HTML output by default (without explicitly stating so in an output
element), because the first element in the result tree is html and there is no output element to

define the method.

Process the stylesheet with Xalan:

http://lib.ommolketab.ir

xalan -i 1 europe.xml pretty.xsl

Once again, the -i option followed by 1 tells the processor to indent the output by one space. You

will see output like Example 8-5.

Example 8-5. The HTML results of using pretty.xsl

<html>
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>European States</title>
 </head>
 <style type="text/css">body {font-family: sans-serif}</style>
 <body>
 <h3>Alphabetical List of European States</h3>
 <p>
 Total Number of States: 45</p>

 Albania
 Andorra
 Austria
 Belarus
 Belgium
 Bosnia-Herzegovina
 Bulgaria
 Croatia
 Cyprus
 Czech Republic
 Denmark
 Estonia
 Finland
 France
 Germany
 Greece
 Hungary
 Iceland
 Ireland
 Italy
 Latvia
 Liechtenstein
 Lithuania
 Luxembourg
 Macedonia, Former Yugoslav Republic of
 Malta
 Moldova
 Monaco
 Norway
 Poland
 Portugal
 Romania
 Russia

http://lib.ommolketab.ir

 San Marino
 Serbia and Montenegro
 Slovakia
 Slovenia
 Spain
 Sweden
 Switzerland
 The Netherlands
 Turkey
 Ukraine
 United Kingdom
 Vatican City

 </body>
</html>

If you simply open europe.xml with a browser such as Netscape 7.1, the browser will apply the
stylesheet pretty.xsl referenced in the XML stylesheet PI, and the result will appear in the browser as
shown in Figure 8-1.

Figure 8-1. European states sorted alphabetically in Netscape 7.1

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

8.2 Reversing the Sort

The sort element uses ascending order by default, as if the order attribute were present with a
value of ascending, like so:

<xsl:sort order="ascending"/>

This order follows the normal a, b, c order of the English alphabet. You can also sort in descending
order, that is, using English, in the order z, y, x. To do this, you have to add an order attribute to
sort, as does the stylesheet descending.xsl, shown in Example 8-6.

Example 8-6. A stylesheet for sorting country names backward

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="europe">
 <xsl:apply-templates select="state">
 <xsl:sort order="descending"/>
 </xsl:apply-templates>
 <xsl:text>Number of European States: </xsl:text>
 <xsl:value-of select="count(state)"/>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template match="state">
 <xsl:text> - </xsl:text>
 <xsl:apply-templates/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Now apply it with:

xalan europe.xml descending.xsl

to get the output shown in Example 8-7.

Example 8-7. A reverse-sorted list of countries produced using
descending.xsl

 - Vatican City
 - United Kingdom
 - Ukraine
 - Turkey

http://lib.ommolketab.ir

 - The Netherlands
 - Switzerland
 - Sweden
 - Spain
 - Slovenia
 - Slovakia
 - Serbia and Montenegro
 - San Marino
 - Russia
 - Romania
 - Portugal
 - Poland
 - Norway
 - Monaco
 - Moldova
 - Malta
 - Macedonia, Former Yugoslav Republic of
 - Luxembourg
 - Lithuania
 - Liechtenstein
 - Latvia
 - Italy
 - Ireland
 - Iceland
 - Hungary
 - Greece
 - Germany
 - France
 - Finland
 - Estonia
 - Denmark
 - Czech Republic
 - Cyprus
 - Croatia
 - Bulgaria
 - Bosnia-Herzegovina
 - Belgium
 - Belarus
 - Austria
 - Andorra
 - Albania
Number of European States: 45

The output is in reverse, or descending, order in English.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

8.3 By the Numbers

So far, you have sorted nodes alphabetically. You can also sort nodes numerically by specifying the
sort element's data-type attribute with a value of number. By default, sort works as if data-type
were present and had a value of text, which indicates that you want to sort text alphabetically.

To see how it works, have a look at Example 8-8, the document member.xml.

Example 8-8. An XML list of EU member states

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="year.xsl" type="text/xsl"?>

<!-- European Union member states -->

<member>
 <state joined="1995">Austria</state>
 <state joined="1950">Belgium</state>
 <state joined="1973">Denmark</state>
 <state joined="1995">Finland</state>
 <state joined="1950">France</state>
 <state joined="1950">Germany</state>
 <state joined="1981">Greece</state>
 <state joined="1973">Ireland</state>
 <state joined="1950">Italy</state>
 <state joined="1950">Luxembourg</state>
 <state joined="1950">The Netherlands</state>
 <state joined="1986">Portugal</state>
 <state joined="1986">Spain</state>
 <state joined="1995">Sweden</state>
 <state joined="1973">United Kingdom</state>
</member>

Example 8-8 holds state elements, each containing the name of a European Union (EU) member
state, in alphabetical order. Each of the 15 state elements also has a joined attribute with a

number value, indicating the year the country joined the EU.

If you want to sort by year rather than name, you could use the stylesheet shown in Example 8-9,
numeric.xsl.

Example 8-9. A stylesheet for sorting countries by year of EU
membership

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

http://lib.ommolketab.ir

 <xsl:template match="member">
 <xsl:text>Number of EU Member States: </xsl:text>
 <xsl:value-of select="count(state)"/>
 <xsl:text>
</xsl:text>
 <xsl:apply-templates select="state/@joined">
 <xsl:sort data-type="number"/>
 </xsl:apply-templates>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template match="state/@joined">
 <xsl:text> - </xsl:text>
 <xsl:apply-templates select=".."/>
 <xsl:text> (</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>)
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The sort element in Example 8-9 has a data-type attribute with a value of number and sorts by the
year in the attribute joined. The template that matches state/@joined may seem a little obscure,
but it gets exactly what it's after, namely, the name of the European state (obtained with ..),

followed by a year (obtained with .), placing the year in parentheses.

To see what happens, apply the stylesheet with:

xalan member.xml numeric.xsl

and you will get the output shown in Example 8-10.

Example 8-10. The sorted list of countries produced by running
numeric.xsl

Number of EU Member States: 15
 - Belgium (1950)
 - France (1950)
 - Germany (1950)
 - Italy (1950)
 - Luxembourg (1950)
 - The Netherlands (1950)
 - Denmark (1973)
 - Ireland (1973)
 - United Kingdom (1973)
 - Greece (1981)
 - Portugal (1986)
 - Spain (1986)
 - Austria (1995)
 - Finland (1995)
 - Sweden (1995)

You can see from the output that the state nodes were sorted according to the year in the joined

http://lib.ommolketab.ir

attribute, not alphabetically according to the name of the European state. Because the states are
already in alphabetical order in the source tree, they also come out in alphabetical order in the result
tree, after being sorted by year.

If you want to list the most recent year first, you can do so by adding the order attribute, as seen in

Example 8-11, the stylesheet recent.xsl.

Example 8-11. A stylesheet for reverse-sorting countries by year of EU
membership

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="member">
 <xsl:text>Number of EU Member States: </xsl:text>
 <xsl:value-of select="count(state)"/>
 <xsl:text>
</xsl:text>
 <xsl:apply-templates select="state/@joined">
 <xsl:sort data-type="number" order="descending"/>
 </xsl:apply-templates>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template match="state/@joined">
 <xsl:text> - </xsl:text>
 <xsl:apply-templates select=".."/>
 <xsl:text> (</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>)
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

In recent.xsl, the order attribute is added to sort and has a value of descending. Now apply it with

this command:

xalan member.xml recent.xsl

and your results will look like Example 8-12.

Example 8-12. The reverse-sorted list of countries produced by running
recent.xsl

Number of EU Member States: 15
 - Austria (1995)
 - Finland (1995)
 - Sweden (1995)
 - Portugal (1986)
 - Spain (1986)
 - Greece (1981)
 - Denmark (1973)

http://lib.ommolketab.ir

 - Ireland (1973)
 - United Kingdom (1973)
 - Belgium (1950)
 - France (1950)
 - Germany (1950)
 - Italy (1950)
 - Luxembourg (1950)
 - The Netherlands (1950)

If you open member.xml with a browser, the stylesheet year.xsl (shown in Example 8-13) will be
applied.

Example 8-13. A stylesheet for sorting countries by year into an XHTML
representation

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:output doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"/>
<xsl:output doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"/>

 <xsl:template match="member">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head><title>EU Member States</title>
 <style type="text/css">
 h3 {font-size: 16pt}
 body {font-size: 13pt}</style>
 </head>
 <body>
 <h3>EU Member States</h3>
 <p>There are <xsl:text> </xsl:text>
 <xsl:value-of select="count(state)"/>
 member states, listed starting from the most recent year:</p>

 <xsl:apply-templates select="state">
 <xsl:sort select="@joined" data-type="number" order="descending"/>
 </xsl:apply-templates>

 </body>
 </html>
 </xsl:template>

 <xsl:template match="state">
 <xsl:element name="li" namespace="http://www.w3.org/1999/xhtml">
 <xsl:apply-templates/>
 <xsl:text> (</xsl:text>
 <xsl:value-of select="@joined"/>
 <xsl:text>)</xsl:text>
 </xsl:element>
 </xsl:template>

</xsl:stylesheet>

http://lib.ommolketab.ir

The stylesheet presents the same results as recent.xsl but in strict XHTML 1.0, as shown in Mozilla
Firebird in Figure 8-2.

Figure 8-2. The document member.xml transformed in Mozilla Firebird

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

8.4 Multiple Sorts

You can sort nodes more than once, if needed, and you can also sort child nodes a different way than
you sort their parent nodes. The select attribute of sort can help you do the job, as will be

demonstrated in this section. Example 8-14, the document shopping.xml, represents a short,
disorderly shopping list.

Example 8-14. An XML shopping list

<list>
 <freezer>
 <item>peas</item>
 <item>green beans</item>
 <item>pot pie</item>
 <item>ice cream</item>
 </freezer>
 <bakery>
 <item>rolls</item>
 <item>jelly doughnuts</item>
 <item>bread</item>
 </bakery>
 <produce>
 <item>bananas</item>
 <item>kumquats</item>
 <item>apples</item>
 </produce>
</list>

To help get things in better shape, Example 8-15, the stylesheet shopping.xsl, uses sort twice to

sort different node-sets.

Example 8-15. A stylesheet for sorting the grocery list on two levels

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="list">
 <xsl:apply-templates select="*">
 <xsl:sort select="name()"/>
 </xsl:apply-templates>
 </xsl:template>

 <xsl:template match="*">
 <xsl:text>Section: </xsl:text>
 <xsl:value-of select="name()"/>
 <xsl:text>
</xsl:text>

http://lib.ommolketab.ir

 <xsl:apply-templates select="item">
 <xsl:sort/>
 </xsl:apply-templates>
 </xsl:template>

 <xsl:template match="item">
 <xsl:text> * </xsl:text>
 <xsl:apply-templates/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Example 8-15 outputs plain text. The first template in this stylesheet matches list and then sorts on
the names (using name()) of the element children (using *) of list. This is the first sort. The
second template matches only on the element children of list, again using *. After inserting some
text (such as Section:) and the name of the element (again with name()), the template sorts the
text node content of item children. This is the second sort.

Finally, the last template matches item elements, prefixing text nodes with an asterisk (a bullet) in

the result tree, and throwing in a line break after the text.

To see the results, type the command:

xalan shopping.xml shopping.xsl

and you will see Example 8-16.

Example 8-16. The sorted list of groceries produced by running
shopping.xsl

Section: bakery
 * bread
 * jelly doughnuts
 * rolls
Section: freezer
 * green beans
 * ice cream
 * peas
 * pot pie
Section: produce
 * apples
 * bananas
 * kumquats

Originally, in the source document, the child elements of list were ordered freezer, bakery, and
produce. Now they are alphabetically correct, that is, bakery, freezer, and produce. The children of
each of these elements-all item elements-are correctly ordered as well.

Using copy and copy-of, the stylesheet in Example 8-17 (list.xsl) generates an XML result.

Example 8-17. A stylesheet for produce XML alphabetized by its content

http://lib.ommolketab.ir

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="list">
 <xsl:copy>
 <xsl:apply-templates select="*">
 <xsl:sort select="name()"/>
 </xsl:apply-templates>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:apply-templates select="item">
 <xsl:sort/>
 </xsl:apply-templates>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="item">
 <xsl:copy-of select="."/>
 </xsl:template>

</xsl:stylesheet>

As a result of the following command:

xalan -i 1 shopping.xml list.xsl

you'll get nicely alphabetized nodes, as shown in Example 8-18.

Example 8-18. The sorted list of groceries produced by running list.xsl

<?xml version="1.0" encoding="UTF-8"?>
<list>
 <bakery>
 <item>bread</item>
 <item>jelly doughnuts</item>
 <item>rolls</item>
 </bakery>
 <freezer>
 <item>green beans</item>
 <item>ice cream</item>
 <item>peas</item>
 <item>pot pie</item>
 </freezer>
 <produce>
 <item>apples</item>
 <item>bananas</item>
 <item>kumquats</item>
 </produce>

http://lib.ommolketab.ir

</list>

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

8.5 The lang and case-order Attributes

One attribute of sort that I haven't discussed is lang. This optional attribute lets you specify a
language token, such as jp or ru, so that sorting rules will be determined by the alphabet of a
language such as Japanese or Russian (Cyrillic). If the lang attribute is absent, an XSLT processor is

supposed to determine the language system environment. This attribute does not yet appear to be
supported by all processors, but the structure for that support is in place and over time, as demand
arises for XSLT in more languages, support for lang will broaden.

Another missing attribute is the optional case-order. This attribute is supposed to allow you to sort
by uppercase first using an attribute value of upper-first, or to sort by lowercase first with lower-
first. The XSLT specification, however, allows for this to be language dependent, and so there are

varying interpretations of how this is supposed to work. In some languages, a word may have a
different meaning based on capitalization rather than spelling. In such cases, case-order will be

useful.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

8.6 Summary

You've learned how to sort alphabetically, in ascending and descending order, and by numbers. With
this foundation, you may already have an appetite for advanced information on sorting, which you
can find in Chapter 4 of Michael Kay's XSLT Programmer's Reference (Wrox) or in Chapter 6 of Doug
Tidwell's XSLT (O'Reilly). In the next chapter, you'll learn how to add formatted numbers to the result
tree.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 9. Numbering Lists
If you would like to add numbered lists to a result tree, you can use the XSLT instruction element
number. The number element allows you to do simple number formatting, generate alphabetical lists,

use Roman numerals, insert individual formatted numbers, and number lists at various levels.
(Before actually using number, however, you'll first learn how to do numbering with the position()

function.)

You can also format numbers with the XSLT function format-number(), used optionally with the
decimal-format instruction element. You can read more about the number element in Section 7.7 of
the XSLT specification, and more about format-number() and decimal-format in Section 12.3 of

the same spec.

Numbering with the number element can be complex and sometimes confusing with the possible

combinations of all nine of its optional attributes. I won't touch on all possible numbering schemes in
XSLT in this chapter, as I don't think it would be reasonable to do so, even in an advanced book. Rest
assured, though, that by the time you finish reading this chapter, you'll understand most of what you
need to know to order numbered lists with XSLT.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

9.1 Numbered Lists

As usual, to illustrate a concept, I'll begin with a simple example. In the directory examples/ch09,
you'll find the document canada.xml, which contains a list of all the Canadian provinces, in
alphabetical order, as shown in Example 9-1.

Example 9-1. An XML list of Canadian provinces and territories

<?xml version="1.0" encoding="UTF-8"?>

<provinces>
 <name>Alberta</name>
 <name>British Columbia</name>
 <name>Manitoba</name>
 <name>New Brunswick</name>
 <name>Newfoundland and Labrador</name>
 <name>Northwest Territories</name>
 <name>Nova Scotia</name>
 <name>Nunavut</name>
 <name>Ontario</name>
 <name>Prince Edward Island</name>
 <name>Quebec</name>
 <name>Saskatchewan</name>
 <name>Yukon</name>
</provinces>

You can generate numbers manually from the XPath function position() to number a list from

canada.xml. Example 9-2, position.xsl, shows you one way to do this.

Example 9-2. A stylesheet using node position for numbering

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="provinces">
 <xsl:apply-templates select="name"/>
 </xsl:template>

 <xsl:template match="name">
 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

http://lib.ommolketab.ir

In the first value-of element in the template rule that matches name, the position() function

returns an integer reflecting the current position in the current node list. The current node list at this
point consists of all the name nodes in the source tree. After giving you the position, the template
inserts some text, then the text node child of the current name, then a linefeed. When you apply the

stylesheet like this:

xalan canada.xml position.xsl

you will get the output shown in Example 9-3.

Example 9-3. A list of numbered provinces, produced by running
position.xsl

1. Alberta
2. British Columbia
3. Manitoba
4. New Brunswick
5. Newfoundland and Labrador
6. Northwest Territories
7. Nova Scotia
8. Nunavut
9. Ontario
10. Prince Edward Island
11. Quebec
12. Saskatchewan
13. Yukon

One pitfall of using position() is that if you use apply-templates without a select attribute, the
whitespace text nodes are numbered as well. position() is actually counting nodes-that is, it is

counting the nodes in processing order, regardless of where they are in the tree. Don't be surprised if
you get strange numbers in output as a result of position() quietly counting whitespace nodes!

If you are producing HTML or XHTML output, remember that you can also
generate numbered lists using the ol and li elements.

9.1.1 The number Element

You can get by just using position(), but XSLT's number instruction element is far more powerful.

Example 9-4, the stylesheet number.xsl, is similar to Example 8-2, sort.xsl in examples/ch08, but
with at least one obvious difference-the presence of the number instruction element.

Example 9-4. An XSLT stylesheet using the number element

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="provinces">

http://lib.ommolketab.ir

 <xsl:apply-templates select="name"/>
 </xsl:template>

 <xsl:template match="name">
 <xsl:number format=" 1. "/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The template that matches name inserts a formatted number into the result tree using number,
followed by the string value of each text node child of name that it finds. This is followed by a line
break (
). Without using position(), the number is derived from the position of the node in
the source tree, not the current node list. When number is instantiated, it numbers all the name

elements in the source document.

The inserted number is formatted according to the contents of the optional format attribute. The
format attribute does the job that the first text element in position.xsl did. All of the attributes of
number are optional, by the way, but if you don't use format, you might find that your numbers don't

look very good.

The content of format is a string that describes how you want the number formatted in output. In
the case of number.xsl, format contains first a space followed by the digit 1, followed by a period (.),
and ending with another space. The digit 1 will be replaced by an incremented number when the

transformation takes place.

To see how this looks, transform canada.xml with number.xsl with:

xalan canada.xml number.xsl

and you will get the results shown in Example 9-5.

Example 9-5. The results of using the number.xsl stylesheet

 1. Alberta
 2. British Columbia
 3. Manitoba
 4. New Brunswick
 5. Newfoundland and Labrador
 6. Northwest Territories
 7. Nova Scotia
 8. Nunavut
 9. Ontario
 10. Prince Edward Island
 11. Quebec
 12. Saskatchewan
 13. Yukon

9.1.2 The count Attribute

http://lib.ommolketab.ir

Without the count attribute, by default, only the nodes of the same name and type as the current
node are counted. If the count attribute is present, however, the nodes that match the pattern in
count are counted. For example, when applied to canada.xml, the stylesheet count.xsl, in Example

9-6, produces the same result as number.xsl, though the nodes you want to count are made explicit
in the count attribute.

Example 9-6. Making the count explicit

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="provinces">
 <xsl:apply-templates select="name"/>
 </xsl:template>

 <xsl:template match="name">
 <xsl:number count="name" format=" 1. "/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

9.1.3 More on Formatting

The output from number.xsl and count.xsl looks very similar to what you get with position.xsl, but
you can line things up a bit better by adding a tab to the format attribute, as shown in Example 9-7,

the stylesheet tab.xsl.

Example 9-7. Modifying number formatting

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="provinces">
 <xsl:apply-templates select="name"/>
 </xsl:template>

 <xsl:template match="name">
 <xsl:number format=" 01.	"/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The value of the format attribute in tab.xsl is a little different than what you saw earlier. Instead of
following the period with a space, there is a decimal character reference () for a horizontal tab.
(You could also write this as a hexadecimal reference, that is, 	.) As you'll see, the tab will help

line up the output.

http://lib.ommolketab.ir

The digit 1 has also been replaced by 01. This indicates that you want to use at least two places for

your numbers instead of one. To see what I mean, transform canada.xml with tab.xsl with this
command:

xalan canada.xml tab.xsl

Example 9-8 shows the result.

Example 9-8. The results of explicit formatting using tab.xsl

 01. Alberta
 02. British Columbia
 03. Manitoba
 04. New Brunswick
 05. Newfoundland and Labrador
 06. Northwest Territories
 07. Nova Scotia
 08. Nunavut
 09. Ontario
 10. Prince Edward Island
 11. Quebec
 12. Saskatchewan
 13. Yukon

Because tab.xsl formats the number with two places, you will get a leading zero for the numbers 1-9.
Notice also that, because of the addition of the tab, all the text lines up nicely.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

9.2 Alphabetical Lists

Instead of decimal numbers, you can also use alphabetical characters in lists generated by the
number element. To get this to work, just change the digit in the format attribute value to a single

letter-a for lowercase and A for uppercase. For example, alpha.xsl, shown in Example 9-9, uses a
lowercase a.

Example 9-9. A stylesheet for alphabetical formatting

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="provinces">
 <xsl:apply-templates select="name"/>
 </xsl:template>

 <xsl:template match="name">
 <xsl:number format=" a. "/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Preceding and following the lowercase letter a are spaces defined by decimal character references
(). You also could have used literal characters (just plain spaces) or hexadecimal character
references (the hex reference for a space is). I use character references here in format

because I think it's easier to see where the whitespaces are rather than the literal spaces, but you're
free to choose which way you want to do it-it's a matter of personal style.

When you transform canada.xml against alpha.xsl with:

xalan canada.xml alpha.xsl

you get Example 9-10.

Example 9-10. The results of using the number element with alphabetical
formatting

 a. Alberta
 b. British Columbia
 c. Manitoba
 d. New Brunswick
 e. Newfoundland and Labrador
 f. Northwest Territories
 g. Nova Scotia

http://lib.ommolketab.ir

 h. Nunavut
 i. Ontario
 j. Prince Edward Island
 k. Quebec
 l. Saskatchewan
 m. Yukon

9.2.1 Using Uppercase

If you prefer uppercase characters in your list, use an uppercase A in format instead of a lowercase

a, as shown in upper-alpha.xsl, which is not shown here but is in examples/ch09. When you
transform canada.xml with upper-alpha.xsl, you will see this generate a list ordered with uppercase
letters rather than lowercase.

9.2.2 Longer Alphabetical Lists

What happens when an alphabetical list is longer than the English alphabet, that is, longer than 26
items? XSLT generates repeat characters, that is, lowercase, a, b, c...x, y, z is followed by aa, ab, ac,
then followed by ba, bb, bc, then ca, cb, cc, and so on.

In Example 9-11, the document us.xml alphabetically lists all 50 states of the United States of
America.

Example 9-11. A list of all the United States in XML

<?xml version="1.0"?>

<us>
 <state>Alabama</state>
 <state>Alaska</state>
 <state>Arizona</state>
 <state>Arkansas</state>
 <state>California</state>
 <state>Colorado</state>
 <state>Connecticut</state>
 <state>Delaware</state>
 <state>Florida</state>
 <state>Georgia</state>
 <state>Hawaii</state>
 <state>Idaho</state>
 <state>Illinois</state>
 <state>Indiana</state>
 <state>Iowa</state>
 <state>Kansas</state>
 <state>Kentucky</state>
 <state>Louisiana</state>
 <state>Maine</state>
 <state>Maryland</state>
 <state>Massachusetts</state>

http://lib.ommolketab.ir

 <state>Minnesota</state>
 <state>Michigan</state>
 <state>Mississippi</state>
 <state>Missouri</state>
 <state>Montana</state>
 <state>Nebraska</state>
 <state>Nevada</state>
 <state>New Hampshire</state>
 <state>New Jersey</state>
 <state>New Mexico</state>
 <state>New York</state>
 <state>North Carolina</state>
 <state>North Dakota</state>
 <state>Oklahoma</state>
 <state>Oregon</state>
 <state>Ohio</state>
 <state>Pennsylvania</state>
 <state>Rhode Island</state>
 <state>South Carolina</state>
 <state>South Dakota</state>
 <state>Tennessee</state>
 <state>Texas</state>
 <state>Utah</state>
 <state>Vermont</state>
 <state>Virginia</state>
 <state>Washington</state>
 <state>West Virginia</state>
 <state>Wisconsin</state>
 <state>Wyoming</state>
</us>

The stylesheet us.xsl uses number to list the states in us.xml using lowercase letters:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="us">
 <xsl:apply-templates select="state"/>
 </xsl:template>

 <xsl:template match="state">
 <xsl:number format=" a.	"/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The format attribute in this stylesheet uses two longer hexadecimal character references, one for
space () and another for tab (). The number 32 in decimal is equivalent to 20 in

hexadecimal; the numbers 0 through 9 are represented identically in decimal and hexadecimal. You
can drop the leading zeros if you want, and write the references as and 	.

http://lib.ommolketab.ir

Apply the stylesheet us.xsl to the document us.xml with:

xalan us.xml us.xsl

and you will see the following results in Example 9-12.

Example 9-12. An alphabetically ordered list of all the U.S. states

 a. Alabama
 b. Alaska
 c. Arizona
 d. Arkansas
 e. California
 f. Colorado
 g. Connecticut
 h. Delaware
 i. Florida
 j. Georgia
 k. Hawaii
 l. Idaho
 m. Illinois
 n. Indiana
 o. Iowa
 p. Kansas
 q. Kentucky
 r. Louisiana
 s. Maine
 t. Maryland
 u. Massachusetts
 v. Minnesota
 w. Michigan
 x. Mississippi
 y. Missouri
 z. Montana
 aa. Nebraska
 ab. Nevada
 ac. New Hampshire
 ad. New Jersey
 ae. New Mexico
 af. New York
 ag. North Carolina
 ah. North Dakota
 ai. Oklahoma
 aj. Oregon
 ak. Ohio
 al. Pennsylvania
 am. Rhode Island
 an. South Carolina
 ao. South Dakota
 ap. Tennessee
 aq. Texas

http://lib.ommolketab.ir

 ar. Utah
 as. Vermont
 at. Virginia
 au. Washington
 av. West Virginia
 aw. Wisconsin
 ax. Wyoming

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

9.3 Roman Numerals

XSLT also supports numbering with Roman numerals in either upper- or lowercase-with I, II, III, IV,
or i, ii, iii, iv, and so forth. To get Roman numerals in your output, just supply an upper- or lowercase
letter I or i in the format attribute.

The roman.xsl stylesheet, shown in Example 9-13, formats its output with lowercase Roman
numerals.

Example 9-13. A stylesheet for numbering with Roman numerals

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="us">
 <xsl:apply-templates select="state"/>
 </xsl:template>

 <xsl:template match="state">
 <xsl:number format="i	"/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

In this example, the lowercase letter i isn't preceded by any character, and it is followed by a single
tab (). Apply this stylesheet to us.xml with:

xalan us.xml roman.xsl

and you get the results shown in Example 9-14.

Example 9-14. U.S. states listed with Roman numerals

i Alabama
ii Alaska
iii Arizona
iv Arkansas
v California
vi Colorado
vii Connecticut
viii Delaware
ix Florida
x Georgia
xi Hawaii

http://lib.ommolketab.ir

xii Idaho
xiii Illinois
xiv Indiana
xv Iowa
xvi Kansas
xvii Kentucky
xviii Louisiana
xix Maine
xx Maryland
xxi Massachusetts
xxii Minnesota
xxiii Michigan
xxiv Mississippi
xxv Missouri
xxvi Montana
xxvii Nebraska
xxviii Nevada
xxix New Hampshire
xxx New Jersey
xxxi New Mexico
xxxii New York
xxxiii North Carolina
xxxiv North Dakota
xxxv Oklahoma
xxxvi Oregon
xxxvii Ohio
xxxviii Pennsylvania
xxxix Rhode Island
xl South Carolina
xli South Dakota
xlii Tennessee
xliii Texas
xliv Utah
xlv Vermont
xlvi Virginia
xlvii Washington
xlviii West Virginia
xlix Wisconsin
l Wyoming

9.3.1 Uppercase Roman Numerals

For uppercase Roman numerals, do the same thing as you do with alphabetical lists. The stylesheet
upper-roman.xsl replaces the lowercase i with an uppercase I, followed by a decimal character
reference for a tab (). (This stylesheet is not shown here but is in examples/ch09.) If you

transform us.xml with upper-roman.xsl, it will give you uppercase Roman numerals rather than
lowercase.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

9.4 Inserting an Individual Formatted Value

The value attribute of the number elements can be an individual value that you can format and then

insert into the output. As a single value, it will also be a fixed value that isn't based on the position of
the current node in the source document.

However, the value attribute can contain an expression whose result is a number that is not fixed. If,
for example, the expression in value consists only of the position() function, numbering will be

sequential and not fixed. See the stylesheet value.xsl in examples/ch09 for an example of this (not
shown here). You can apply this stylesheet to canada.xml if you want to try it. This stylesheet also
sorts the content of canada.xml in reverse, or descending, order.

If you want to insert the single number 1,000,000 into a result tree, you could do so with the value
attribute on number. Given the little document thanks.xml:

<thank>Thanks a </thanks>

you could insert a single number into it with thanks.xsl, as shown in Example 9-15.

Example 9-15. Inserting a single formatted number

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="thanks">
 <xsl:value-of select="."/>
 <xsl:number value="1000000" grouping-size="3" grouping-separator=","/>
 <xsl:text>!</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The value attribute holds the desired number, 1000000. The grouping-size attribute indicates that
you want to group the number at the thousands place. The grouping-separator attribute specifies a

separator character (a comma [,]) that will occur at the thousands place. In order to work, the two
grouping attributes must be used together.

Process thanks.xml with thanks.xsl for this result:

Thanks a 1,000,000!

Without the two grouping attributes used on number in thanks.xsl, the commas wouldn't appear in

this output.

If you live in a locale that uses a period or dot (.) instead of a comma (,) as a group separator, you
will prefer to use the stylesheet in Example 9-16, dot.xsl.

http://lib.ommolketab.ir

Example 9-16. Formatting the number with a dot separator

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

 <xsl:template match="thanks">
 <xsl:value-of select="."/>
 <xsl:number value="1000000" grouping-size="3" grouping-separator="."/>
 <xsl:text>!</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The only difference between thanks.xsl and dot.xsl is the value of the grouping-separator attribute.

When used against thanks.xml, this stylesheet generates:

Thanks a 1.000.000!

The grouping attributes grouping-size and grouping-separator also work with numbers generated
in the ordinary way by the number element, not just with a number supplied by the value attribute,

as shown in dot.xsl. For example, if you have a document that has several thousand nodes that you
want to count, the following instance of the number element with no value attribute would place a

comma at the thousands place:

<xsl:number format="
" grouping-size="3" grouping-separator=","/>

If you want to see this in action, generate the numbers 1 through 2,000 by applying generator.xsl to
generator.xml, which contains 2,000 num nodes (not shown here but available in examples/ch09).

These files-a trivial pair-exist among the examples only to demonstrate how the grouping
attributes work with ordinary numbering. As you might have guessed, listing 2,000 nodes is
impractical to print in a book!

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

9.5 Numbering Levels

An XSLT processor analyzes a source tree before any processing takes place. This makes it reasonably
easy for the processor to determine how many nodes lie along a given axis, and makes it possible to
produce different numbering levels when transforming a document. You can control this with number 's
level attribute.

The level attribute lets you set the level at which numbering takes place with one of three values:
single , multiple , and any . So far, you have only seen numbering single level, which is the default.
Here is a brief explanation of the three numbering levels, assuming that you don't use the from attribute
and that the count attribute matches the current node:

By default, the value of level is single , meaning that numbering takes place only with regard to
sibling nodes on one level. More precisely, nodes on the single (one) level are counted along the
preceding-sibling axis, and include all the preceding sibling nodes that match count or the current

node.

If the value of level is multiple , this means that all nodes on the ancestor-or-self axis, that
match count or the current node, are counted.

If the level attribute has a value of any , all nodes on the preceding or ancestor axes before the
current node, that match count or the current node, are counted as they appear in document

order.

That's the technical explanation. The different numbering levels will be clearer to you after you get a
chance to go through a couple of examples.

9.5.1 Counting on Multiple Levels

To start out, take a look at Example 9-17 , outline.xml , which lists some information about money in
the United States.

Example 9-17. An XML document about U.S. currency

<?xml version="1.0"?>

<outline>
 <section title="US coin denominations">
 <item>cent</item>
 <item>nickel</item>
 <item>dime</item>
 <item>quarter</item>
 <item>half dollar</item>
 <item>dollar</item>
 </section>

http://lib.ommolketab.ir

 <section title="Persons on US coins">
 <item>Abraham Lincoln (cent)</item>
 <item>Thomas Jefferson (nickel)</item>
 <item>Franklin Roosevelt (dime)</item>
 <item>George Washington (quarter)</item>
 <item>John Kennedy (half dollar)</item>
 <item>Sacagawea (dollar)</item>
 </section>
 <section title="US currency in bills">
 <item>$1 dollar bill</item>
 <item>$2 dollar bill</item>
 <item>$5 dollar bill</item>
 <item>$10 dollar bill</item>
 <item>$20 dollar bill</item>
 <item>$50 dollar bill</item>
 <item>$100 dollar bill</item>
 </section>
 <section title="Persons on US bills">
 <item>George Washington ($1)</item>
 <item>Thomas Jefferson ($2)</item>
 <item>Abraham Lincoln ($5)</item>
 <item>Alexander Hamilton $10</item>
 <item>Andrew Jackson ($20)</item>
 <item>Ulysses Grant ($50)</item>
 <item>Benjamin Franklin ($100)</item>
 </section>
</outline>

There are two levels to count in outline.xml , namely, section and item nodes. The following
stylesheet, outline.xsl , counts on both levels because it uses multiple as the value of the level
attribute on number .

This stylesheet also introduces the for-each instruction element. As stated earlier, the for-each

element works like a template within a template, and it is instantiated each time the node in the
required select attribute is matched.

Example 9-18 shows outline.xsl .

Example 9-18. Using for-each for numbering

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="outline">
 <xsl:for-each select="section|//item">
 <xsl:number level="multiple" count="section | item" format="i. a. "/>
 <xsl:value-of select="@title | text()"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:text>
 see http://www.usmint.gov and http://www.bep.treas.gov
</xsl:text>
</xsl:template>

http://lib.ommolketab.ir

</xsl:stylesheet>

The select attribute of for-each can contain an expression. In outline.xsl , the select attribute
instructs the processor to iterate through the section elements and (signified by |) all item elements
in outline.xml . The two slashes (//) preceding item in the select attribute refer to all item elements
that are descendants of the root node-in other words, all item elements in the entire source document.

The number element specifies a multilevel count for section and item elements by using the value of
multiple for level , meaning that all ancestors will be counted. number also formats the numbers with

lowercase Roman numerals on one level and with lowercase letters on another. After the appropriate
number is inserted, a value-of grabs title attributes and text nodes. When for-each is done iterating

through the nodes, the template adds a couple of URLs on to the end of the result to show where the
information came from.

The result of applying outline.xsl to outline.xml with:

xalan outline.xml outline.xsl

is shown in Example 9-19 .

Example 9-19. The results of using the stylesheet on multiple levels

i. US coin denominations
i. a. cent
i. b. nickel
i. c. dime
i. d. quarter
i. e. half dollar
i. f. dollar
ii. Persons on US coins
ii. a. Abraham Lincoln (cent)
ii. b. Thomas Jefferson (nickel)
ii. c. Franklin Roosevelt (dime)
ii. d. George Washington (quarter)
ii. e. John Kennedy (half dollar)
ii. f. Sacagawea (dollar)
iii. US currency in bills
iii. a. $1 dollar bill
iii. b. $2 dollar bill
iii. c. $5 dollar bill
iii. d. $10 dollar bill
iii. e. $20 dollar bill
iii. f. $50 dollar bill
iii. g. $100 dollar bill
iv. Persons on US bills
iv. a. George Washington ($1)
iv. b. Thomas Jefferson ($2)
iv. c. Abraham Lincoln ($5)
iv. d. Alexander Hamilton $10
iv. e. Andrew Jackson ($20)
iv. f. Ulysses Grant ($50)
iv. g. Benjamin Franklin ($100)

http://lib.ommolketab.ir

see http://www.usmint.gov and http://www.bep.treas.gov

As a result of using level="multiple ", the section nodes are counted at one level with Roman
numerals, and the item nodes are counted at another level, alphabetically.

Now I'll clean up the Roman numerals that repeat in the previous example. I want to see the Roman
numerals only on the section nodes, and the alphabetical numbering only on the item nodes. The way

to make this happen is to number each node-set differently, in separate templates that don't use
level="multiple ", which is what is done in Example 9-20 , better.xsl .

Example 9-20. A cleaner method for numbering on multiple levels manually

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="outline">
 <xsl:apply-templates select="section"/>
 <xsl:text>
</xsl:text>
 <xsl:text>see http://www.usmint.gov and http://www.bep.treas.gov</xsl:text>
 <xsl:text>
</xsl:text>
</xsl:template>

<xsl:template match="section">
 <xsl:number format="I. "/>
 <xsl:value-of select="@title"/>
 <xsl:text>
</xsl:text>
 <xsl:apply-templates select="item"/>
</xsl:template>

<xsl:template match="item">
 <xsl:number format=" a. "/>
 <xsl:value-of select="text()"/>
 <xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

The template that matches the outline node applies templates to section nodes, and the template
that matches section nodes applies templates to item nodes, in that order. The template that matches
section nodes numbers the section nodes on the single level (the default) using one format, and the
template that matches item nodes numbers item nodes also on the single level using a different format.

I think the result is more attractive than the previous, multilevel example. When applied to outline.xml ,
using:

xalan outline.xml better.xsl

better.xsl creates the output shown in Example 9-21 .

Example 9-21. A cleaner result

http://lib.ommolketab.ir

I. US coin denominations
 a. cent
 b. nickel
 c. dime
 d. quarter
 e. half dollar
 f. dollar
II. Persons on US coins
 a. Abraham Lincoln (cent)
 b. Thomas Jefferson (nickel)
 c. Franklin Roosevelt (dime)
 d. George Washington (quarter)
 e. John Kennedy (half dollar)
 f. Sacagawea (dollar)
III. US currency in bills
 a. $1 dollar bill
 b. $2 dollar bill
 c. $5 dollar bill
 d. $10 dollar bill
 e. $20 dollar bill
 f. $50 dollar bill
 g. $100 dollar bill
IV. Persons on US bills
 a. George Washington ($1)
 b. Thomas Jefferson ($2)
 c. Abraham Lincoln ($5)
 d. Alexander Hamilton $10
 e. Andrew Jackson ($20)
 f. Ulysses Grant ($50)
 g. Benjamin Franklin ($100)

see http://www.usmint.gov and http://www.bep.treas.gov

That looks better. If you increased the depth of the outline by adding child elements to item elements,

you could add another template to better.xsl that numbers the new level of nodes and is invoked from
the template that processes nodes just above this new level.

9.5.2 More Depth

Now, let's look at a document that has a little more depth, where you can see a varied hierarchy in the
elements. Example 9-22 , the document data.xml , contains some contact information for several
standards organizations headquartered in the United States.

Example 9-22. Information about standards organizations

<?xml version="1.0" encoding="US-ASCII"?>
<data locale="us">
 <record>
 <name>
 <full>Internet Assigned Numbers Authority</full>
 <brief>IANA</brief>

http://lib.ommolketab.ir

 </name>
 <address>
 <street>4676 Admiralty Way, Suite 330</street>
 <city>Marina del Rey</city>
 <state>CA</state>
 <code>90292</code>
 <nation>USA</nation>
 </address>
 <tel>
 <phone>+1 310 823 9358</phone>
 <fax>+1 310 823 8649</fax>
 <email>iana@iana.org</email>
 </tel>
 </record>
 <record>
 <name>
 <full>Internet Society</full>
 <brief>ISOC</brief>
 </name>
 <address>
 <street>1775 Wiehle Ave., Suite 102</street>
 <city>Reston</city>
 <state>VA</state>
 <code>20190</code>
 <nation>USA</nation>
 </address>
 <tel>
 <phone>+1 703 326 9880</phone>
 <fax>+1 703 326 9881</fax>
 <email>info@ison.org</email>
 </tel>
 </record>
 <record>
 <name>
 <full>Organization for the Advancement of Structured Information Standards</full>
 <brief>OASIS</brief>
 </name>
 <address>
 <street>630 Boston Rd.</street>
 <city>Billerica</city>
 <state>MA</state>
 <code>01821</code>
 <nation>USA</nation>
 </address>
 <tel>
 <phone>+1 978 667 5115</phone>
 <fax>+1 978 667 5114</fax>
 <email>info@oasis-open.org</email>
 </tel>
 </record>
</data>

http://lib.ommolketab.ir

The stylesheet shown in Example 9-23 , data.xsl , counts all elements on the multiple level from the
data element.

Example 9-23. A stylesheet numbering with the from element

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:strip-space elements="*"/>

<xsl:template match="/">
 <xsl:apply-templates select="data//*"/>
</xsl:template>

<xsl:template match="data//*">
 <xsl:number level="multiple" count="*" from="data" format="1.1.1 "/>
 <xsl:value-of select="name()"/>
 <xsl:text>: </xsl:text>
 <xsl:text>	</xsl:text>
 <xsl:value-of select="text()"/>
 <xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

I'll discuss the from attribute in a moment. data.xsl prints each element's name with its immediate text

node children, with each name preceded by a formatted section number and interspersed with a colon
and whitespace. The result of processing data.xml with data.xsl with:

xalan data.xml data.xsl

is shown in Example 9-24 .

Example 9-24. Results with section numbering

1 record:
1.1 name:
1.1.1 full: Internet Assigned Numbers Authority
1.1.2 brief: IANA
1.2 address:
1.2.1 street: 4676 Admiralty Way, Suite 330
1.2.2 city: Marina del Rey
1.2.3 state: CA
1.2.4 code: 90292
1.2.5 nation: USA
1.3 tel:
1.3.1 phone: +1 310 823 9358
1.3.2 fax: +1 310 823 8649
1.3.3 email: iana@iana.org
2 record:
2.1 name:
2.1.1 full: Internet Society

http://lib.ommolketab.ir

2.1.2 brief: ISOC
2.2 address:
2.2.1 street: 1775 Wiehle Ave., Suite 102
2.2.2 city: Reston
2.2.3 state: VA
2.2.4 code: 20190
2.2.5 nation: USA
2.3 tel:
2.3.1 phone: +1 703 326 9880
2.3.2 fax: +1 703 326 9881
2.3.3 email: info@ison.org
3 record:
3.1 name:
3.1.1 full: Organization for the Advancement of Structured Information Standards
3.1.2 brief: OASIS
3.2 address:
3.2.1 street: 630 Boston Rd.
3.2.2 city: Billerica
3.2.3 state: MA
3.2.4 code: 01821
3.2.5 nation: USA
3.3 tel:
3.3.1 phone: +1 978 667 5115
3.3.2 fax: +1 978 667 5114
3.3.3 email: info@oasis-open.org

The numbering in Example 9-24 shows the structure of the elements and the hierarchical relationship of
these elements to each other. It also shows how markup can be structured into numbered sections that
technical or legal documents sometimes require.

9.5.3 Counting on Any Level

I'll now show you the difference between counting with multiple levels compared to counting on any
level. The stylesheet any.xsl is a little different than outline.xsl : the value of level is any instead of
multiple , and the value of format is also changed (i . a . becomes 1 .). When you process outline.xml

with any.xsl :

xalan outline.xml any.xsl

you get the result shown in Example 9-25 .

Example 9-25. Results of numbering using the any level

1. US coin denominations
2. cent
3. nickel
4. dime
5. quarter
6. half dollar
7. dollar
8. Persons on US coins

http://lib.ommolketab.ir

9. Abraham Lincoln (cent)
10. Thomas Jefferson (nickel)
11. Franklin Roosevelt (dime)
12. George Washington (quarter)
13. John Kennedy (half dollar)
14. Sacagawea (dollar)
15. US currency in bills
16. $1 dollar bill
17. $2 dollar bill
18. $5 dollar bill
19. $10 dollar bill
20. $20 dollar bill
21. $50 dollar bill
22. $100 dollar bill
23. Persons on US bills
24. George Washington ($1)
25. Thomas Jefferson ($2)
26. Abraham Lincoln ($5)
27. Alexander Hamilton $10
28. Andrew Jackson ($20)
29. Ulysses Grant ($50)
30. Benjamin Franklin ($100)

see http://www.usmint.gov and http://www.bep.treas.gov

Using the any level produces a sequential numbering of all nodes-no matter what level they are on.

This could be useful, for example, when numbering diagrams in a document.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

9.6 The from Attribute

The from attribute was shown earlier in data.xsl . This attribute tells the XSLT processor the node where
you want the counting to start from . Example 9-26 , the stylesheet from.xsl , uses the from attribute.

Example 9-26. A stylesheet using from

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="outline">
 <xsl:for-each select="section|//item">
 <xsl:number from="section" level="multiple" count="section | item" format=" a "/>
 <xsl:value-of select="@title | text()"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:text>
 see http://www.usmint.gov and http://www.bep.treas.gov
</xsl:text>
</xsl:template>

</xsl:stylesheet>

When you count using from="section ", the processor counts the nodes after the section nodes in the
source tree, that is, all the item nodes. The result of this is that item nodes are counted, but the
section nodes are not, as Example 9-27 shows.

Example 9-27. A stylesheet for counting from section elements

US coin denominations
 a cent
 b nickel
 c dime
 d quarter
 e half dollar
 f dollar
Persons on US coins
 a Abraham Lincoln (cent)
 b Thomas Jefferson (nickel)
 c Franklin Roosevelt (dime)
 d George Washington (quarter)
 e John Kennedy (half dollar)
 f Sacagawea (dollar)
US currency in bills
 a $1 dollar bill
 b $2 dollar bill
 c $5 dollar bill
 d $10 dollar bill

http://lib.ommolketab.ir

 e $20 dollar bill
 f $50 dollar bill
 g $100 dollar bill
Persons on US bills
 a George Washington ($1)
 b Thomas Jefferson ($2)
 c Abraham Lincoln ($5)
 d Alexander Hamilton $10
 e Andrew Jackson ($20)
 f Ulysses Grant ($50)
 g Benjamin Franklin ($100)

 see http://www.usmint.gov and http://www.bep.treas.gov

Notice that no number precedes the section text (U.S. coin denominations and so forth). Now that
you've seen several examples of multilevel numbering, I hope you can find at least one of them that
meets your needs.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

9.7 The lang and letter-value Attributes

I'll mention a pair of attributes from number that I haven't yet discussed, but without concrete

examples. These attributes have to do with the different way numbering is handled in different
human languages. Speakers of English and other European languages are accustomed to numbering
with so-called Arabic numerals, that is, with the ten digits 0-9. Some languages, such as Hebrew and
Greek, use letters from their alphabets as numbers.

The lang attribute, like xml:lang, takes a language token as a value, such as en, fr, de, or es. This

language token is supposed to signal to the XSLT processor what language is in use with regard to
numbering. Another attribute, letter-value, takes the values alphabetic or traditional. These

values are there to help distinguish between language-specific numbering systems that assign
numerical values to alphabetical sequences or assign numerical values to letters in a traditional way.
Unless you are familiar with a given language, such as Hebrew or Greek, some of these numbering
schemes can be elusive.

The specification is somewhat loose in regard to this aspect of numbering,
probably because the variations and ambiguities of numbering could make
implementing number an overwhelming task. If you need to use traditional

numbering, check the documentation provided with your XSLT processor of
choice to find out how the processor handles these cases.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

9.8 More Help with Formatted Numbers

The format attribute of the number element isn't the only place to turn for help with formatting
numbers in XSLT. You can also use the format-number() function coupled optionally with the
decimal-format element. The top-level decimal-format element has 10 attributes that define

number characteristics, such as the decimal separator and percent sign used when formatting a
number. Table 9-1 lists these 10 attributes with their default values.

The default values of decimal-format are assumed if the element is not
present; if decimal-format is present, the default values are assumed if a

given attribute is not used.

Table 9-1. Decimal format attributes

Attribute Default Description Example

decimal-separator . Symbol that acts as a decimal point 100.00

digit #
Symbol that represents any digit in number
patterns

,###.00

grouping-
separator

, Symbol that separates groups of digits 1,000.00

infinity Infinity Symbol that represents infinity
∞ (

)

minus-sign - Symbol that represents a minus sign − (-)

name Name for a decimal format us

NaN NaN Symbol for Not a Number ?

pattern-separator ; Symbol for separating pattern definitions
,###.00;

(-,###.00)

percent % Symbol for percent sign percent

per-mille Symbol for per mille sign permille

The number characteristics defined by decimal-format are used with the format-number()
function. The decimal-format element has no effect unless used with the format-number()

function.

Example 9-28, the document format.xml, provides a list of eight positive integers that will be

http://lib.ommolketab.ir

formatted in this example.

Example 9-28. Integers for formatting

<?xml version="1.0"?>
<?xml-stylesheet href="format.xsl" type="text/xsl"?>

<format>
 <number>100</number>
 <number>1000</number>
 <number>10000</number>
 <number>100000</number>
 <number>1000000</number>
 <number>10000000</number>
 <number>100000000</number>
 <number>1000000000</number>
</format>

The XML stylesheet PI references the format.xsl stylesheet shown in Example 9-29.

Example 9-29. A stylesheet with named formats for numbers

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:decimal-format name="de" decimal-separator=","
 grouping-separator="."/>
<xsl:decimal-format name="fr" decimal-separator=","
 grouping-separator=" "/>
<xsl:decimal-format name="ru" decimal-separator=","
 grouping-separator=" "/>
<xsl:decimal-format name="uk" decimal-separator="."
 grouping-separator=","/>
<xsl:decimal-format name="us" decimal-separator="."
 grouping-separator=","/>

<xsl:template match="convert">
 <html>
 <head>
 <title>Number Formatter</title>
 <style type="text/css">
 table {margin-left:auto;margin-right:auto}
 td {text-align:right;padding: 5px 5px 5px 5px}
 h3 {text-align:center}
 </style>
 </head>
 <body>
 <h3>Number Formatter</h3>
 <table rules="all">
 <thead>
 <tr>
 <th>Deutschland</th>

http://lib.ommolketab.ir

 <th>France</th>
 <th>Россия</th> <!- Russia ->
 <th>United Kingdom</th>
 <th>United States</th>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates select="number"/>
 </tbody>
 </table>
 </body>
 </html>
</xsl:template>

<xsl:template match="number">
 <tr>
 <td><xsl:value-of select="format-number(.,'.###,00€','de')"/></td>
 <td><xsl:value-of select="format-number(.,' ###,00€','fr')"/></td>
 <td><xsl:value-of select="format-number(.,' ###,00p.','ru')"/></td>
 <td><xsl:value-of select="format-number(.,'£,###.00','uk')"/></td>
 <td><xsl:value-of select="format-number(.,'$,###.00','us')"/></td>
 </tr>
</xsl:template>

</xsl:stylesheet>

Each of the five instances of the decimal-format element at the top of the stylesheet define a

number format, each with its own name. These formats define currency patterns for Germany

(Deutschland), France, (Russia), the United Kingdom, and the United States. The
currency patterns identify the decimal and grouping separators that are formally used when
describing currency in those countries.

The stylesheet creates some HTML and CSS for the result tree. The headings (th) include the name

Russia spelled in Cyrillic using character references. As the table rows are formed with
the second template, each number element in format.xml is processed with each of the five named
number formats by calling the format-number() function. I'll pick apart the first function call so you

can better understand what's going on with all five:

format-number(.,'.###,00€','de')

The format-number() function can take three arguments (as this call does), but only two

arguments are required. The first argument in this call is a period (.). This is a synonym for the
current node (current() and self::node() also work here). The current node is a node from the
node list containing all the number nodes in the source tree.

The second argument is a number pattern for formatting the number, as follows:

The period (.) represents a grouping separator.

The three hashes, or pound signs (###), each represent digits. (You could change this to some
other symbol with the digit attribute in decimal-format; the default is #.)

http://lib.ommolketab.ir

The comma (,) after the ### represents a decimal point or separator.

The character reference (€) is for the Euro currency symbol .

This pattern can produce a formatted number such as 1.000,00 .

The third and final argument for format-number() references a named number format (as in de)
that is defined by a decimal-format element.

The result of formatting format.xml with format.xsl is shown in Figure 9-1 in Mozilla Firebird. One
reason I did this example in HTML is so that I could show the Cyrillic characters and currency
symbols. They don't show well in a command prompt window!

Figure 9-1. Displaying format.xml in Mozilla Firebird

I researched the currency formats using IBM's open source International Components for Unicode
(ICU) project. ICU provides libraries of services that use the latest versions of Unicode, including
international number formats (see http://oss.software.ibm.com/icu/). For information on these
currency patterns discussed here, check out the ICU LocaleExplorer at
http://oss.software.ibm.com/cgi-bin/icu/lx/en/utf-8/.

Though it is well-researched, ICU might not always reflect the common street
practice of native speakers or users of a given language.

[Team LiB]

http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/cgi-bin/icu/lx/en/utf-8/
http://lib.ommolketab.ir

[Team LiB]

9.9 Summary

In this chapter, you learned how to create numbered lists for a result tree. You learned how to format
numbers, create alphabetical and Roman numeral lists, insert single, formatted numbers into the
result, and number lists at different levels. You also learned how to format numbers with the format-
number() function coupled with the decimal-format element.

You can put numbering behind you for now-it's time to learn more about templates.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 10. Templates
You've learned a lot about template rules-how to create them, how to write patterns that trigger
them, and how to generate results from them. You should be familiar with the following concepts
about templates:

Template rules attempt to match patterns in a source document. A pattern is a subset of an
expression, which is mostly used to match child elements and attributes using the child and
attribute axes. (You can also use predicates, plus the id() and key() functions. You learned
about predicates in Chapter 4 and about id() in Chapter 5, and you will learn about key() in

the next chapter.)

When a pattern is matched in a source document, the content of the template (called a
sequence constructor in XSLT 2.0) is instantiated or written out to the result tree.

When apply-templates is used in a template element, it processes the children of the

matched pattern, searching for other template rules that match those children.

If the select attribute is used on apply-templates, it processes the children of the matched

pattern that are specifically named in the attribute, searching for template rules that match
those nodes so named. The select attribute can contain an expression.

Built-in templates do behind-the-scenes work in processing nodes that may not be explicitly
identified in templates rules, such as text nodes.

This chapter discusses additional issues related to templates, namely, what template priority is, how
to create and call named templates, how to use parameters with templates using with-param, what
modes are and how to use them (the mode attribute), and finally some additional details on built-in

templates.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

10.1 Template Priority

What happens if you have more than one template rule that matches the exact same pattern, or more than
one template rule with different patterns that happen to match the exact same nodes? Which template, if
any, gets instantiated? Multiple templates matching the same node present a problem. When this happens,
an XSLT processor has the option to stop processing and recover from the error, or recover from the error
after issuing a warning. The way a processor recovers from conflicting templates is to instantiate only the
last template in a stylesheet that matches the pattern. I'll show you what I mean.

Example 10-1 , the document ri.xml in examples/ch10 , lists the five counties in the state of Rhode Island in
the U.S.

Example 10-1. An XML document listing Rhode Island counties

<?xml version="1.0" encoding="US-ASCII"?>

<state name="Rhode Island">
 <county>Bristol</county>
 <county>Kent</county>
 <county>Newport</county>
 <county>Providence</county>
 <county>Washington</county>
</state>

The stylesheet last.xsl , shown in Example 10-2 , has two templates that match the pattern for the state

element node, each producing a different result.

Example 10-2. A stylesheet that matches a state twice

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <county state="{state/@name}">
 <xsl:apply-templates select="state"/>
 </county>
 </xsl:template>

 <xsl:template match="state">
 <xsl:apply-templates select="county"/>
 </xsl:template>

 <xsl:template match="state">
 <xsl:apply-templates select="county[starts-with(.,'K')]"/>
 </xsl:template>
 <xsl:template match="county">

http://lib.ommolketab.ir

 <name><xsl:apply-templates/></name>
 </xsl:template>

</xsl:stylesheet>

In order of appearance, the first template that matches state elements selects all the county children of
state . The second template that matches state selects only the county child whose text content starts
with the letter K (using the starts-with() function). Both templates invoke the last template, which
matches county elements. Process ri.xml with last.xsl like this:

xalan -i 1 ri.xml last.xsl

Because an XSLT processor uses the last template when a match conflict arises, the stylesheet last.xsl
produces this output:

<?xml version="1.0" encoding="UTF-8"?>
<county state="Rhode Island">
 <name>Kent</name>
</county>

Only the state node containing Kent is instantiated because that is what the last template matching state

instructed the processor to do.

Notice that the encoding for the document is UTF-8 even though the source document
has an encoding of US-ASCII . To change the encoding US-ASCII in the output, you'd
have to add an encoding attribute with a value of US-ASCII to the output element.

Now in contrast, if you apply last.xsl to ri.xml with Instant Saxon, as follows:

saxon ri.xml last.xsl

you will see the following error report:

Recoverable error
Ambiguous rule match for /state[1]
Matches both "state" on line 14 of file:/C:/LearningXSLT/examples/ch08/last.xsl
and "state" on line 10 of file:/C:/LearningXSLT/examples/ch08/last.xsl
<?xml version="1.0" encoding="utf-8"?>
<county state="Rhode Island">
 <name>Kent</name>
</county>

An XSLT processor is not required to report multiple templates matching one template rule, but processors
may report such an error and may recover from the error. Either way, the processor must either stop or
recover from the error by applying the last template that matches the rule. (See the last paragraph in
Section 5.5 of the XSLT specification.)

10.1.1 The priority Attribute

Now compare last.xsl with priority.xsl , which is a very similar stylesheet shown in Example 10-3 .

http://lib.ommolketab.ir

Example 10-3. A stylesheet using priorities

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <county state="{state/@name}">
 <xsl:apply-templates select="state"/>
 </county>
 </xsl:template>

 <xsl:template match="state" priority="2">
 <xsl:apply-templates select="county"/>
 </xsl:template>

 <xsl:template match="state" priority="1">
 <xsl:apply-templates select="county[starts-with(.,'K')]"/>
 </xsl:template>
 <xsl:template match="county">
 <name><xsl:apply-templates/></name>
 </xsl:template>

</xsl:stylesheet>

The only difference between last.xsl and priority.xsl is that the two templates matching state elements each
have priority attributes. The priority attribute can explicitly set which of two or more conflicting
templates gets used first. The higher the value of the priority attribute, the higher the priority of the
template; in other words, a template with a priority of 2 trumps a template with a priority of 1 .

When applied to ri.xml , priority.xsl produces the following output:

<?xml version="1.0" encoding="UTF-8"?>
<county state="Rhode Island">
 <name>Bristol</name>
 <name>Kent</name>
 <name>Newport</name>
 <name>Providence</name>
 <name>Washington</name>
</county>

The template with a priority of 2 is invoked (the first template of the two that matches state), but the
template with the priority of 1 is not. Trivially, using the priority attribute can allow you to switch

templates on and off, which can be useful for testing.

More formally, however, the priority attribute's reason for being is to help distinguish the patterns that

match the same node but use different patterns. Example 10-4 , same.xsl , shows you an example of this.

Example 10-4. A stylesheet that matches the same node with different
patterns

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

http://lib.ommolketab.ir

<xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <county state="{state/@name}">
 <xsl:apply-templates select="state"/>
 </county>
 </xsl:template>

 <xsl:template match="state">
 <xsl:apply-templates select="county"/>
 </xsl:template>

 <xsl:template match="county[starts-with(.,'K')]">
 <first-match><xsl:apply-templates/></first-match>
 </xsl:template>

 <xsl:template match="county[2]">
 <last-match><xsl:apply-templates/></last-match>
 </xsl:template>

 <xsl:template match="county">
 <name><xsl:apply-templates/></name>
 </xsl:template>

</xsl:stylesheet>

The template rule matching county[starts-with(.,'K')] and the one matching county[2] both match
the same node count , but each uses a different pattern (in that each uses a different predicate) to identify

the node. This results in a recoverable error.

As with last.xsl , when ri.xml is processed with same.xsl :

xalan -i 1 ri.xml same.xsl

Xalan recovers from the error silently by using the last matching rule:

<?xml version="1.0" encoding="UTF-8"?>
<county state="Rhode Island">
 <name>Bristol</name>
 <last-match>Kent</last-match>
 <name>Newport</name>
 <name>Providence</name>
 <name>Washington</name>
</county>

When ri.xml is processed with Instant Saxon, using:

saxon ri.xml same.xsl

it issues a warning about the error before recovering and using the last template rule:

Recoverable error
Ambiguous rule match for /state[1]/county[2]

http://lib.ommolketab.ir

Matches both "county[2]" on line 18 of file:/C:/LearningXSLT/examples/ch10/same.xsl
and "county[starts-with(.,'K')]" on line 14 of file:/C:/LearningXSLT/examples/ch10/same.xsl
<?xml version="1.0" encoding="utf-8"?>
<county state="Rhode Island">
 <name>Bristol</name>
 <last-match>Kent</last-match>
 <name>Newport</name>
 <name>Providence</name>
 <name>Washington</name>
</county>

prior.xsl , as shown in Example 10-5 , changes the priority of these conflicting rules by using the priority

attribute.

Example 10-5. Avoiding a conflict with the priority attribute

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <county state="{state/@name}">
 <xsl:apply-templates select="state"/>
 </county>
 </xsl:template>

 <xsl:template match="state">
 <xsl:apply-templates select="county"/>
 </xsl:template>

 <xsl:template match="county[starts-with(.,'K')]" priority="2">
 <first-match><xsl:apply-templates/></first-match>
 </xsl:template>

 <xsl:template match="county[2]" priority="1">
 <last-match><xsl:apply-templates/></last-match>
 </xsl:template>

 <xsl:template match="county">
 <name><xsl:apply-templates/></name>
 </xsl:template>

</xsl:stylesheet>

Process it with:

saxon ri.xml prior.xsl

and the error is avoided:

<?xml version="1.0" encoding="utf-8"?>
<county state="Rhode Island">
 <name>Bristol</name>

http://lib.ommolketab.ir

 <first-match>Kent</first-match>
 <name>Newport</name>
 <name>Providence</name>
 <name>Washington</name>
</county>

The template matching county[starts-with(.,'K')] is instantiated because it has a priority of 2 while
the one matching county[2] is not because it has a lower priority value (1).

Another feature that affects template priority is import precedence . Using the top-level XSLT element
import , you can import other stylesheets into a given stylesheet. Import precedence is determined by the

order in which stylesheets are imported, which has an influence over template priority. This topic is explored
in Chapter 13 .

The XSLT specification spells out the default priorities-what template has priority over
another by default with no priority attribute-in Section 5.5. In general, the more
specific the pattern, the higher its priority. For example, county[1] has a higher
default priority than county because it is more specific.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

10.2 Calling a Named Template

It's possible to have templates in a stylesheet that don't overtly match any node pattern: you can
invoke such templates by name. You assign a template a name by giving it a name attribute. In fact,
if a template element does not use a match attribute, it must have a name attribute instead (though
it is also permissible for a template to have both match and name attributes).

The call-template instruction element has one required attribute, also called name. The value of the
name attribute on a call-template element must match the value of a name attribute on a template

element. It's an error to have more than one template with the same name.

When you want to instantiate a named template, ring it up with a call-template element. The

advantage of calling named templates is that you can instantiate them on demand rather than only
when a given pattern is encountered in a source tree. Also, the context does not change when you
call a template by name. Calling a template is similar to calling a function or method in a
programming language such as C or Java, but without a return value.

Example 10-6 is a stylesheet that uses the call-template element named call.xsl.

Example 10-6. A stylesheet using call-template

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="state">
Counties of <xsl:value-of select="@name"/>:
 <xsl:call-template name="nl"/>
 <xsl:apply-templates select="county"/>
</xsl:template>

<xsl:template match="county">
 <xsl:text> - </xsl:text>
 <xsl:value-of select="."/>
 <xsl:call-template name="nl"/>
</xsl:template>

<xsl:template name="nl">
 <xsl:text>
</xsl:text>
</xsl:template>
</xsl:stylesheet>

In call.xsl, the template named nl (short for newline) contains a text element that holds a decimal
character reference for a single linefeed character (
). The other two templates in the stylesheet

call the nl template to insert on demand a single linefeed into the result tree. When applied to ri.xml
with:

xalan ri.xml call.xsl

http://lib.ommolketab.ir

this stylesheet produces:

Counties of Rhode Island:

 - Bristol
 - Kent
 - Newport
 - Providence
 - Washington

10.2.1 Using the name and match Attributes Together

A template element can have both a name and a match attribute at the same time. This does not

happen often, but you might want to do this because you could instantiate a template upon finding a
pattern, or you could call the template when desired. I'll give you an example of how this works.

Look at the following similar XML documents in Examples 10-7 and 10-8. These documents show the
estimated populations of the respective states, by county, as of July 1, 2001. (This information was
garnered from the United States Census Bureau web site, http://www.census.gov.) The first is
Example 10-7, delaware.xml.

Example 10-7. Delaware information in XML

<?xml version="1.0"?>

<state name="Delaware">
 <description>July 1, 2001 population estimates<description>
 <from>U.S. Census Bureau</from>
 <url>http://www.census.gov</url>
 <county name="Kent">
 <population>129066</population>
 </county>
 <county name="New Castle">
 <population>505829</population>
 </county>
 <county name="Sussex">
 <population>161270</population>
 </county>
</state>

The second document is rhodeisland.xml, shown in Example 10-8.

Example 10-8. Rhode Island information in XML

<?xml version="1.0"?>

<state name="Rhode Island">
 <description>July 1, 2001 population estimates<description>
 <from>U.S. Census Bureau</from>
 <url>http://www.census.gov</url>

http://www.census.gov
http://lib.ommolketab.ir

 <county name="Bristol">
 <population>51173</population>
 </county>
 <county name="Kent">
 <population>169224</population>
 </county>
 <county name="Newport">
 <population>85218</population>
 </county>
 <county name="Providence">
 <population>627314</population>
 </county>
 <county name="Washington">
 <population>125991</population>
 </county>
</state>

The stylesheet in Example 10-9, both.xsl, employs a template that uses both the match and name

attributes.

Example 10-9. A stylesheet that uses both match and name attributes on
template

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="state">
 <xsl:call-template name="nl"/>
 <xsl:text>Counties of </xsl:text>
 <xsl:value-of select="@name"/>
 <xsl:call-template name="nl"/>
 <xsl:text>Description: </xsl:text>
 <xsl:value-of select="description"/>
 <xsl:call-template name="nl"/>
 <xsl:text>Source: </xsl:text>
 <xsl:value-of select="from"/>
 <xsl:call-template name="nl"/>
 <xsl:text>URL: </xsl:text>
 <xsl:value-of select="url"/>
 <xsl:call-template name="nl"/>
 <xsl:apply-templates select="county"/>
 <xsl:text>Estimated state population: </xsl:text>
 <xsl:value-of select="sum(county/population)"/>
 <xsl:call-template name="nl"/>
</xsl:template>

<xsl:template match="county">
 <xsl:text> - </xsl:text>
 <xsl:value-of select="@name"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="population"/>

http://lib.ommolketab.ir

 <xsl:apply-templates select="population"/>
</xsl:template>

<xsl:template match="population" name="nl">
 <xsl:text>
</xsl:text>
</xsl:template>
</xsl:stylesheet>

This stylesheet creates a simple text report when used to process documents such as delaware.xml
and rhodeisland.xml. As part of the report, it also sums the content of population nodes using the
XPath function sum().

Like call.xsl, this stylesheet also has a template named nl. The difference is that the template also
matches on population nodes. This means that the template is invoked both when a population
element is processed (see apply-templates in the template that matches county) and directly by
call-template.

The following example processes delaware.xml and rhodeisland.xml with both.xsl using xsltproc, an
XSLT processor written in C and based on the C libraries libxslt and libxml2. It runs in a Unix
environment such as Linux or-as I use it-as part of Cygwin on Windows. This processor is available
for download from http://xmlsoft.org or as part of the Cygwin distribution available at
http://www.cygwin.com.

I'm showing you xsltproc because it allows you to process one or more XML documents against a
stylesheet at one time. Here is the command line:

xsltproc both.xsl delaware.xml rhodeisland.xml

The stylesheet comes first, followed by a list of XML documents that you want to process. The
outcome of this command is:

Counties of Delaware
Description: July 1, 2001 population estimates
Source: U.S. Census Bureau
URL: http://www.census.gov
 - Kent: 129066
 - New Castle: 505829
 - Sussex: 161270
Estimated state population: 796165

Counties of Rhode Island
Description: July 1, 2001 population estimates
Source: U.S. Census Bureau
URL: http://www.census.gov
 - Bristol: 51173
 - Kent: 169224
 - Newport: 85218
 - Providence: 627314
 - Washington: 125991
Estimated state population: 1058920

Looking back at the stylesheet, notice where the nl template is invoked directly with multiple
instances of call-template. After the stylesheet processes the name and population data of each

http://xmlsoft.org
http://www.cygwin.com
http://lib.ommolketab.ir

county by invoking the template that matches county nodes, it then applies templates for
population nodes, inserting a linefeed after each node.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

10.3 Using Templates with Parameters

For the purposes of XSLT, a parameter is a name that can be bound to a value and then later
referenced by name. You learned about this in Chapter 7. You can use the with-param element as a
child element of either apply-templates or call-template to pass a parameter into a template. For

example, a template could be invoked several times, each time with a different parameter value, thus
changing what happens when the template is invoked. Watch what happens when a stylesheet calls a
template with four different parameter values.

Example 10-10, yukon.xml, lists cities in Canada's Yukon Territory.

Example 10-10. A list of cities in the Yukon

<?xml version="1.0" encoding="UTF-8"?>

<province name="Yukon Territory">
 <city>Beaver Creek</city>
 <city>Carcross</city>
 <city>Carmacks</city>
 <city>Dawson</city>
 <city>Faro</city>
 <city>Haines Junction</city>
 <city>Mayo</city>
 <city>Ross River</city>
 <city>Teslin</city>
 <city>Watson Lake</city>
 <city>Whitehorse</city>
</province>

The stylesheet in Example 10-11, yukon.xsl, processes yukon.xml with each instance of call-
template passing a different value for the parameter nl.

Example 10-11. Processing cities with call-template

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="province">
 <xsl:text>Yukon Territory Cities</xsl:text>
 <xsl:call-template name="nl">
 <xsl:with-param name="nl" select="'

'"/>
 </xsl:call-template>
 <xsl:apply-templates select="city"/>
</xsl:template>

<xsl:template match="city">

http://lib.ommolketab.ir

 <xsl:text> -> </xsl:text>
 <xsl:value-of select="."/>
 <xsl:call-template name="nl">
 <xsl:with-param name="nl" select="'
'"/>
 </xsl:call-template>
</xsl:template>

<xsl:template match="city[.='Dawson']">
 <xsl:text> -> </xsl:text>
 <xsl:value-of select="."/>
 <xsl:call-template name="nl">
 <xsl:with-param name="nl" select="' (second largest city in the Yukon)
'"/>
 </xsl:call-template>
</xsl:template>

<xsl:template match="city[.='Whitehorse']">
 <xsl:text> -> </xsl:text>
 <xsl:value-of select="."/>
 <xsl:call-template name="nl">
 <xsl:with-param name="nl" select="' (largest city in the Yukon)
'"/>
 </xsl:call-template>
</xsl:template>

<xsl:template name="nl">
 <xsl:param name="nl"/>
 <xsl:value-of select="$nl"/>
</xsl:template>

</xsl:stylesheet>

When you apply yukon.xsl to yukon.xml with:

xalan yukon.xml yukon.xsl

you produce this result:

Yukon Territory Cities

 -> Beaver Creek
 -> Carcross
 -> Carmacks
 -> Dawson (second largest city in the Yukon)
 -> Faro
 -> Haines Junction
 -> Mayo
 -> Ross River
 -> Teslin
 -> Watson Lake
 -> Whitehorse (largest city in the Yukon)

When the first template is invoked, it inserts the heading text Yukon Territory Cities and then

calls the template named nl with the parameter nl containing a value of two linefeed character

http://lib.ommolketab.ir

references. (In XSLT, there are no name conflicts between the names of templates and the names of
parameters or variables.)

As each instance of city is encountered in the source, the stylesheet invokes the template that
matches city, each time with the parameter nl containing only one linefeed. However, when the
stylesheet finds city nodes that contain the text nodes Dawson or Whitehorse, it calls the template

with distinct parameter values for nl-a line of text followed by a linefeed.

You could produce the same results as yukon.xsl without using with-param; however, yukon.xsl
illustrates how to use with-param. You can read more about with-param in Section 11.6 of the XSLT

specification.

You can also use with-param as a child of apply-templates, as demonstrated
in the stylesheet with-param.xsl, explained in Chapter 7. Nevertheless, with-
param is more commonly used with call-template.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

10.4 Modes

You already know what happens when more than one template matches an identical pattern-a
conflict arises that may be overcome by template priority. There is also another workaround for
template pattern conflicts: modes. Modes are useful when a stylesheet needs to visit a given node
many times with varying results, such as when producing a table of contents or a list of authorities,
to name a few examples.

The mode attribute is an optional attribute for both the template and apply-templates elements. If
you modify these elements each with a matching mode attribute and value, you can match identical

patterns with templates, without generating an error. Following is an example of how it works.

Example 10-12, the document hawaii.xml, lists each of the counties in the state of Hawaii in the U.S.,
along with the largest city in each county.

Example 10-12. Hawaii counties and their largest cities

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="mode.xsl" type="text/xsl"?>

<us>
 <state name="Hawaii">
 <county name="Hawaii">
 <city class="largest">Hilo</city>
 </county>
 <county name="Honolulu">
 <city class="largest">Honolulu</city>
 </county>
 <county name="Kauai">
 <city class="largest">Kapaa</city>
 </county>
 <county name="Maui">
 <city class="largest">Kahului</city>
 </county>
 </state>
</us>

Using an XML stylesheet PI, the document references the stylesheet mode.xsl, shown in Example 10-
13, which produces HTML output.

Example 10-13. A stylesheet for processing counties in different modes

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>

<xsl:template match="us/state">

http://lib.ommolketab.ir

 <html>
 <head>
 <title>State: <xsl:value-of select="@name"/></title>
 <style type="text/css">
 h1, h2 {font-family: sans-serif;color: blue}
 ul {font-size: 16pt}
 </style>
 </head>
 <body>
 <h1>State: <xsl:value-of select="@name"/></h1>
 <h2>All Counties</h2>
 <xsl:apply-templates select="county" mode="county"/>
 <h2>Largest Cities (by County)</h2>
 <xsl:apply-templates select="county" mode="city"/>
 </body>
 </html>
</xsl:template>

<xsl:template match="county" mode="county">
 <xsl:value-of select="@name"/>
</xsl:template>

<xsl:template match="county" mode="city">

 <xsl:value-of select="city"/> (<xsl:value-of select="@name"/>)

</xsl:template>

</xsl:stylesheet>

There are two templates in this stylesheet that match county elements. Because each of the two is

invoked in a different mode, no conflict occurs. In the first template in the stylesheet, there are two
instances of the apply-templates element, each matching the county pattern and each with a mode
attribute that has a unique value (one has a value of county, the other city). There are no name
conflicts in XSLT between the values of match and mode attributes.

Later in the stylesheet, there are two templates that also have mode attributes, matching the values
used earlier (county and city). In order to work, the value of mode on a template element must
match the value of mode in one or more instances of apply-templates.

The outcome of applying mode.xsl to hawaii.xml in Mozilla is shown in Figure 10-1.

Figure 10-1. Displaying hawaii.xml in Mozilla

http://lib.ommolketab.ir

There are several paragraphs about modes in Section 5.7 of the XSLT specification.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

10.5 Built-in Template Rules

XSLT processors have a feature known as built-in template rules. The built-in template rules were
discussed in various places earlier in the book. Because of the built-in templates, an XSLT processor
will process nodes in a source document, even though there are no explicit, matching template rules
present in the stylesheet used to process the source document.

To illustrate how built-in templates work, here is a ridiculously simple example. The source document
mammals.xml, shown in Example 10-14, lists a few mammals that are native to North America.

Example 10-14. A list of some native North American mammals

<?xml version="1.0"?>

<mammals locale="North America">
 <mammal>American Bison</mammal>
 <mammal>American black bear</mammal>
 <mammal>Bighorn sheep</mammal>
 <mammal>Bobcat</mammal>
 <mammal>Common gray fox</mammal>
 <mammal>Cougar</mammal>
 <mammal>Coyote</mammal>
 <mammal>Gray wolf</mammal>
 <mammal>Mule deer</mammal>
 <mammal>Pronghorn</mammal>
 <mammal>White-tailed deer</mammal>
</mammals>

The rather boring stylesheet blank.xsl has only one line and no template rules:

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform"/>

When you process mammals.xml with this stylesheet:

xalan mammals.xml blank.xsl

Xalan finds no explicit templates for the element nodes in mammals.xml, so the built-in template
rules kick in, producing the following result:

<?xml version="1.0" encoding="UTF-8"?>

 American Bison
 American black bear
 Bighorn sheep
 Bobcat
 Common gray fox
 Cougar

http://lib.ommolketab.ir

 Coyote
 Gray wolf
 Mule deer
 Pronghorn
 White-tailed deer

The built-in rules processed the root node, the element nodes, and all the text nodes that it found in
mammals.xml. If you use an explicit template for just one of the nodes, that node will be processed
with that template, but all the other nodes will be processed with the built-in templates.

The stylesheet built-in.xsl has only one template, and that template matches only one element node,
the sixth mammal child of mammals, in mammals.xml:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="mammals/mammal[6]">
 Found <xsl:value-of select="."/>!
</xsl:template>

</xsl:stylesheet>

Process mammals.xml with built-in.xsl with:

xalan mammals.xml built-in.xsl

and you will get this output:

 American Bison
 American black bear
 Bighorn sheep
 Bobcat
 Common gray fox

 Found Cougar!

 Coyote
 Gray wolf
 Mule deer
 Pronghorn
 White-tailed deer

When the processor encounters the node pattern matched in the template, it instantiates the
template (including whitespace), but it also applies the built-in rules. You can, in effect, shut off the
built-in rules by matching the unwanted nodes with an empty template matching mammal, as does

shutoff.xsl, shown in Example 10-15.

Example 10-15. A stylesheet that shuts off a rule

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

http://lib.ommolketab.ir

<xsl:template match="mammals">
 <xsl:apply-templates select="mammal"/>
</xsl:template>

<xsl:template match="mammal"/>
<xsl:template match="mammal[6]">
 Found <xsl:value-of select="."/>!
</xsl:template>

</xsl:stylesheet>

When applied to mammals.xml:

xalan mammals.xml built-in.xsl

the result is just:

Found Cougar!

The difference is that when the processor encounters the first template, it searches for all templates
that match mammal. Although both templates in the stylesheet match mammal, they are distinct
because only one has a predicate that matches the sixth mammal node and instantiates some literal
text. The other template instructs the processor to do nothing with all mammal nodes. (This does not
cause an error because the more specific template that matches mammal[6] has priority over the
template that matches only mammal.)

Notice the difference in the final stylesheet in this section, cougar.xsl, shown in Example 10-16.

Example 10-16. A stylesheet that only reports the cougar

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="mammals">
<north.american>
 <mammal>
 <cat><xsl:apply-templates select="mammal[6]"/></cat>
 </mammal>
</north.american>
</xsl:template>

</xsl:stylesheet>

This single template processes the children of mammals, but it selects only the sixth mammal element,

in document order, and discards the others. When processed with mammals.xml, like this:

xalan -i 1 mammals.xml cougar.xsl

you get the following result:

<?xml version="1.0" encoding="UTF-8"?>
<north.american>
 <mammal>

http://lib.ommolketab.ir

 <cat>Cougar</cat>
 </mammal>
</north.american>

I have mostly shown examples of the built-in rules working with element nodes, text nodes, and the
root node. Table 10-1 summarizes what all the behaviors of the built-in template rules are when they
encounter each of the seven nodes.

Table 10-1. Built-in template rule behavior

Node Behavior

Root Processes all children

Element
Processes all children, including the text nodes; the built-in rule for text
copies text through

Attribute Copies text through

Text Copies text through

Comment Nothing

Processing-
instruction

Nothing

Namespace Nothing

Section 5.8 of the XSLT specification discusses built-in template rules in greater detail. (Information
on North American mammals was taken from the web site of the Smithsonian Institution's National
Museum of Natural History at http://web6.si.edu/np_mammals/index.htm.)

[Team LiB]

http://web6.si.edu/np_mammals/index.htm
http://lib.ommolketab.ir

[Team LiB]

10.6 Summary

You've discovered several new ways to use templates in this chapter. You learned about template
priority, how to call named templates with call-template, and how to call or apply templates with

parameters. You also learned how to use modes, and became more aware of built-in templates and
what they do in absence of working templates.

In the next chapter, you will learn what a key is, how to define keys with the key element, and then
how to process those keys with the key() function.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 11. Using Keys
A key provides a means of identifying some of the data that is associated with it. A key might identify
a record in a database, for example, or an element in a collection, as in Java. XSLT also uses keys.

XSLT's support for keys is provided through the key element and the key() function in tandem. The
key element declares the key, and the key() function invokes it. The examples that follow in this

chapter will show you how to declare and apply keys in several ways, including grouping.

These examples are simple by design, but they don't clearly demonstrate the main benefit of keys,
which is better performance. One way you could see a performance hike would be to call a key
repeatedly on a document with many nodes. The reason for improved performance is that an XSLT
processor creates an internal index for nodes that makes finding those nodes much faster.

By the way, you can read about keys in Section 12.2 of the XSLT specification.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

11.1 A Simple Key

Following is part of the valid XML document un.xml (found in examples/ch11), which stores
information about the 190 member states of the United Nations (UN). Example 11-1 is just a
fragment of the document as, at over 700 lines, it's too long to list in its entirety.

Example 11-1. Information about countries that belong to the UN

<?xml version="1.0" encoding="ISO-8859-1"?>

<un>
 <state cc="af">
 <name>Afghanistan</name>
 <admitted>19 Nov. 1946</admitted>
 </state>
 <state cc="al">
 <name>Albania</name>
 <admitted>14 Dec. 1955</admitted>
 </state>
 <state cc="dz">
 <name>Algeria</name>
 <admitted>8 Oct. 1962</admitted>
 </state>
 <state cc="ad">
 <name>Andorra</name>
 <admitted>28 July 1993</admitted>
 </state>
 <state cc="ao">
 <name>Angola</name>
 <admitted>1 Dec. 1976</admitted>
 </state>
 <state cc="ag">
 <name>Antigua and Barbuda</name>
 <admitted>11 Nov. 1981</admitted>
 </state>
 <state cc="ar">
 <name>Argentina</name>
 <admitted>24 Oct. 1945</admitted>
 </state>
 <state cc="am">
 <name>Armenia</name>
 <admitted>2 Mar. 1992</admitted>
 </state>
 <state cc="au">
 <name>Australia</name>
 <admitted>1 Nov. 1945</admitted>

http://lib.ommolketab.ir

 </state>

This document holds three pieces of information for each member state:

The member state's country code, stored as the value of the cc attribute on the state element.1.

The name of the member state, stored in the name element.2.

The date that the member state was admitted to the UN, stored in the admitted element.3.

The following stylesheet, un.xsl, declares a key on the top level and then uses it in the template to
pick up information about Australia (au) from un.xml (note bold):

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:key name="UN" match="state" use="@cc"/>

<xsl:template match="/">
 <xsl:value-of select="key('UN', 'au')/name"/>
</xsl:template>

</xsl:stylesheet>

The following two sections explain the interrelationship between the key element and the key()

function.

11.1.1 The key Element

The key element is a top-level element, meaning that it must be a child of the stylesheet element
and is not allowed inside templates. It has three required attributes. The first is the name attribute,
which provides the name by which a key() function may refer to the declared key. The name of the
key in un.xsl is UN.

The second attribute, match, contains a pattern that the key matches, just as the match attribute on
the template element matches a pattern. The pattern that the key declaration matches in un.xsl is
the location path state.

The third and final attribute, use, contains an expression that is applied to every node that matches
the pattern in match. The value of use in this declaration is @cc, which corresponds to the cc
attribute on state elements.

This key declaration won't do you any good unless you use a key() function in the stylesheet to find
and exploit the key. You can call the key() function in an expression, such as in the select
attribute of value-of.

11.1.2 The key() Function

In order to do its work, the key() function depends on a top-level key declaration. This function

returns a node-set. Its signature indicates that it has two required arguments:

http://lib.ommolketab.ir

key(string, object)

The first argument to key() is a string enclosed in single quotes that matches the name of a
declared key. In the un.xsl stylesheet, the name is UN, also in single quotes. The second argument is

an object that will be converted to a string and applied to the key. This value must match the node
defined in the expression contained in the use attribute of the key element. So, in un.xsl, the
argument au in single quotes matches the state element in un.xml that has a cc attribute with a
value of au.

Following the function call to key() is the location path /name. This path refers to a child node of the
node returned as a result of calling key(). As with the document() function, you can add location
paths after the key() function call.

To see how it works, apply the stylesheet to the document:

xalan un.xml un.xsl

and you will get this result:

Australia

The expression in the select attribute of value-of calls the key() function using the key
declaration named UN. The single quotes (') around the function arguments are necessary. During the
transformation, the expression found a state node in un.xml that had a cc attribute whose value
was au. Then value-of returned the text node in the name child of the matching node, that is, the
text Australia.

The interesting thing about keys in XSLT is that they don't rely on context to do their work. Keys
establish their own context, based on the value of the match attribute in the key element. (Keys also

select only nodes that exist in the same document as the context node.) This makes keys appropriate
for use in situations where you don't want to rely on a current context to do processing. This
characteristic, likewise, makes keys suitable for cross-referencing nodes in entirely different contexts,
as you will see in Section 11.4, later in this chapter.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

11.2 More Than One Key

You can, of course, declare and invoke more than one key in a stylesheet. keys.xsl makes use of two
keys, each using a different expression to find a value:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:key name="State" match="state" use="name"/>
<xsl:key name="UN" match="state" use="@cc"/>

<xsl:template match="/">
 <xsl:value-of select="key('State', 'Germany')/name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="key('UN', 'de')/admitted"/>
</xsl:template>

</xsl:stylesheet>

The declared key named State helps find a node that matches the text nodes in state elements,
such as Germany; the key named UN finds a node that matches the value of cc attributes, such as de.

Apply the stylesheet keys.xsl to un.xml with:

xalan un.xml keys.xsl

and you get this output:

Germany 18 Sep. 1973

It may seem odd that the call to key() in the first value-of is followed by the path /name because
the key itself matches a name element. If you leave off the path /name, the pattern in the match

attribute of the key declaration will be matched, and all children of the matched node will be
processed, not just the name node. Adding the location step /name at the end of the key() function

call refines what gets returned by the expression.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

11.3 Using a Parameter with Keys

Instead of using stationary keys as in the previous two stylesheets, what if you want to vary a key?
You can use parameters to do this. Once again, a parameter is a value bound to a name that you can
also pass into a template or stylesheet to change the outcome of a transformation. (Parameters were
discussed in Chapter 7.) The kp.xsl stylesheet uses a parameter named kp to change the result of a
call to key():

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:key name="UN" match="state" use="@cc"/>
<xsl:param name="kp">af</xsl:param>

<xsl:template match="/">
 <xsl:text>The member state </xsl:text>
 <xsl:value-of select="key('UN', $kp)/name"/>
 <xsl:text> was admitted to the UN on </xsl:text>
 <xsl:value-of select="key('UN', $kp)/admitted"/>
 <xsl:text>.</xsl:text>
</xsl:template>

</xsl:stylesheet>

The key named UN is the same as the key with the same name in both un.xsl and keys.xsl.
Immediately following that key declaration is the top-level element, param. This element binds a
name to a value for later reference in the stylesheet. The default value of the parameter kp is af, the

country code for Afghanistan, which is the first member state in un.xml.

Later on in the stylesheet, in the two key() calls, the parameter kp is referenced with $kp. Each
time the stylesheet calls key(), the reference to kp is replaced by the value af. Now you'll get a

chance to apply this stylesheet in a couple of different ways to see how this parameter makes a
difference.

First, apply the stylesheet to un.xml the way you normally would:

xalan un.xml kp.xsl

and you will get the following result:

The member state Afghanistan was admitted to the UN on 19 Nov. 1946.

11.3.1 Passing in a Parameter to the Stylesheet

Now, in the following command, you can pass in a new parameter value for kp into the stylesheet

and produce a different outcome to the transformation:

xalan -p kp 'es' un.xml kp.xsl

http://lib.ommolketab.ir

The single quotes are important. With this command line, the processor passes the value es for the
kp parameter into kp.xsl. The default value of kp is af, which is replaced with the value es during the

transformation, giving you this somewhat different result:

The member state Spain was admitted to the UN on 14 Dec. 1955.

Select other country codes of your choice from the cc attributes in un.xml, and pass them into the

stylesheet to see what happens. Instant Saxon uses a little simpler syntax on the command line for
passing in parameters. Note the end of this command line:

saxon un.xml kp.xsl kp=ls

Or:

saxon un.xml kp.xsl kp="ls"

Instant Saxon associates the parameter/value pair with an equals sign (=). This command gives you

results like this:

The member state Lesotho was admitted to the UN on 17 Oct. 1966.

Because the parameter kp is used by both keys, its value is a sort of cross-reference that establishes

a relationship between the value of an attribute and the content of an element. In the next example,
you'll see how this can be expanded to touch more than one XML document at a time.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

11.4 Cross-Referencing with Keys

In the final example of this chapter, you'll cross-reference identical content in two separate
documents. To do this, you'll use a parameter and the document() function. The following two XML

documents share some identical content. The first, states.xml, lists the names of eight western states
in the continental United States:

<?xml version="1.0" encoding="US-ASCII"?>

<usstates>
 <western>
 <usstate>Arizona</usstate>
 <usstate>California</usstate>
 <usstate>Idaho</usstate>
 <usstate>Montana</usstate>
 <usstate>Nevada</usstate>
 <usstate>Oregon</usstate>
 <usstate>Washington</usstate>
 <usstate>Utah</usstate>
 </western>
</usstates>

The second document, capitals.xml, lists the capitals of these states:

<?xml version="1.0" encoding="US-ASCII"?>

<capitals>
 <capital usstate="Arizona">Phoenix</capital>
 <capital usstate="California">Sacramento</capital>
 <capital usstate="Idaho">Boise</capital>
 <capital usstate="Montana">Helena</capital>
 <capital usstate="Nevada">Carson City</capital>
 <capital usstate="Oregon">Salem</capital>
 <capital usstate="Washington">Olympia</capital>
 <capital usstate="Utah">Salt Lake City</capital>
</capitals>

The value of the usstate attributes in this document is the same as the content of the usstate

elements in states.xml. The stylesheet cross.xsl takes advantage of this relationship by bringing this
information together in a result tree:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:key name="Capital" match="capitals/capital" use="@usstate"/>
<xsl:key name="State" match="usstates/western/usstate" use="."/>
<xsl:param name="cr">Arizona</xsl:param>

http://lib.ommolketab.ir

<xsl:template match="/">
 <xsl:apply-templates select="document('capitals.xml')/capitals"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="key('State', $cr)"/>
</xsl:template>

<xsl:template match="capitals">
 <xsl:value-of select="key('Capital', $cr)"/>
</xsl:template>

</xsl:stylesheet>

The stylesheet declares two keys, Capital and State, and a parameter, cr. The first template
matches the document root (/) of the main document it intended to process, states.xml. It also
applies templates to the capitals node in capitals.xml using the document() function.

When templates are applied to the capitals node, the template that matches capitals is invoked,
and the key() function is called for the key named Capital. The template returns the string value
using the key Capital key. Control is then returned to the invoking template after this is

accomplished.

After all this takes place, a comma and space are inserted into the result tree by a text element
from the first template, and the key() function is called again for the key named State. Using
Arizona as the default value of cr, the stylesheet, when applied to states.xml, gives you the

following answer:

Phoenix, Arizona

Try it with other states, such as Oregon, like this:

xalan -p cr 'Oregon' states.xml cross.xsl

The result you will get is:

Salem, Oregon

Or, you can get the same output using Instant Saxon this way:

saxon states.xml cross.xsl cr="Oregon"

This example demonstrates how keys, combined with other functionality, can be a powerful tool in
searching for, and establishing, a relationship between that content, as well as matching, verifying,
and extracting content from one or more documents.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

11.5 Grouping with Keys

An interesting problem that you can solve with keys comes under the rubric of grouping . Grouping in XSLT refers to the
process of grouping nodes logically with related nodes in the output. The problem that grouping solves is that nodes may not
be grouped to your liking in the source document. For an example, look at group.xml :

<?xml version="1.0" encoding="US-ASCII"?>
<?xml-stylesheet href="group.xsl" type="text/xsl"?>

<uscities>
 <western>
 <uscity state="Nevada">Las Vegas</uscity>
 <uscity state="Arizona">Phoenix</uscity>
 <uscity state="California">San Francisco</uscity>
 <uscity state="Nevada">Silver City</uscity>
 <uscity state="Washington">Seattle</uscity>
 <uscity state="Montana">Missoula</uscity>
 <uscity state="Washington">Spokane</uscity>
 <uscity state="California">Los Angeles</uscity>
 <uscity state="Utah">Salt Lake City</uscity>
 <uscity state="California">Sacramento</uscity>
 <uscity state="Idaho">Boise</uscity>
 <uscity state="Montana">Butte</uscity>
 <uscity state="Washington">Tacoma</uscity>
 <uscity state="Montana">Helena</uscity>
 <uscity state="Oregon">Portland</uscity>
 <uscity state="Nevada">Reno</uscity>
 <uscity state="Oregon">Salem</uscity>
 <uscity state="Oregon">Eugene</uscity>
 <uscity state="Utah">Provo</uscity>
 <uscity state="Idaho">Twin Falls</uscity>
 <uscity state="Utah">Ogden</uscity>
 <uscity state="Arizona">Flagstaff</uscity>
 <uscity state="Idaho">Idaho Falls</uscity>
 <uscity state="Arizona">Tucson</uscity>
 </western>
</uscities>

The uscity nodes in group.xml list western U.S. cities at random, not in an organized way as you might prefer. One feature
that can help is that each uscity node has a state attribute. The XSLT grouping technique I'll show you can organize the

output according to state, also listing each appropriate city with the given state. This grouping technique is popularly known
as the Muenchian method, after Steve Muench (http://www.oreillynet.com/pub/au/609), the really smart guy who
discovered the method.

The Muenchian method of grouping employs keys together with the generate-id() function (you learned about generate-
id() back in Chapter 5). There are other grouping methods in XSLT, such as one that uses the preceding-sibling axis, but

I've chosen to show you only the Muenchian method here for two reasons: it is the most efficient or fastest method of

http://lib.ommolketab.ir

grouping; and it is the most similar to the new grouping method using the XSLT 2.0 element for-each-group , which you

will see in Chapter 16 .

You can find discussions of other grouping methods in Michael Kay's XSLT Programmer's Reference
(Wrox) or Doug Tidwell's XSLT (O'Reilly), but both authors also recommend the Muenchian method
as being the most efficient.

The stylesheet group.xsl assembles its output according to the Muenchian method, which I will explain in a moment:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:key name="list" match="uscity" use="@state"/>

<xsl:template match="/">
<html>
<head>
<title>Western State Cities</title></head>
<style type="text/css">
h2 {font-family:verdana,helvetica,sans-serif;font-size:13pt}
li {font-family:verdana,helvetica,sans-serif;font-size:11pt}
</style>
<body>
<xsl:for-each select="/uscities/western/uscity[generate-id(.)=generate-id(key('list', @state))]/@state">
<xsl:sort/>
<h2><xsl:value-of select="."/></h2>

 <xsl:for-each select="key('list', .)">
 <xsl:sort/>
 <xsl:value-of select="."/>
 </xsl:for-each>

</xsl:for-each>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

The secret to understanding the Muenchian method lies in its use of keys and the generate-id() function. Near the
beginning of group.xsl , the key named list is defined. This key is used to efficiently find state attributes on uscity
elements. The generate-id() function is used with the key() function in for-each to process the first node in a set. In this
example, it finds the first node whose state attribute identifies a given state and outputs the name of the state found in the

attribute.

Following that, another for-each processes each other node in the document matching the previous for-each , also using
key() . The value-of under this for-each outputs the name of the given city. The sort element under the for-each

elements sorts the nodes in alphabetical order.

It's a little complicated, but it works well. Test it with the command:

http://lib.ommolketab.ir

xalan -m -i 1 group.xml group.xsl

and you will get nicely grouped HTML output that looks like this:

<html>
 <head>
 <title>Western State Cities</title>
 </head>
 <style type="text/css">
h2 {font-family:verdana,helvetica,sans-serif;font-size:13pt}
li {font-family:verdana,helvetica,sans-serif;font-size:11pt}
</style>
 <body>
 <h2>Arizona</h2>

 Flagstaff
 Phoenix
 Tucson

 <h2>California</h2>

 Los Angeles
 Sacramento
 San Francisco

 <h2>Idaho</h2>

 Boise
 Idaho Falls
 Twin Falls

 <h2>Montana</h2>

 Butte
 Helena
 Missoula

 <h2>Nevada</h2>

 Las Vegas
 Reno
 Silver City

 <h2>Oregon</h2>

 Eugene
 Portland
 Salem

 <h2>Utah</h2>

 Ogden

http://lib.ommolketab.ir

 Provo
 Salt Lake City

 <h2>Washington</h2>

 Seattle
 Spokane
 Tacoma

 </body>
</html>

In the output, under each alphabetically listed state, comes an alphabetical list of cities. That's what grouping can do for you.
Because it has an XML stylesheet PI, you can also open group.xml in a browser to see the output. Figure 11-1 shows
group.xml transformed by group.xsl in the Mozilla Firebird browser that appears with the Mozillazine (MZ) theme .

Figure 11-1. group.xml in Mozilla Firebird

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

11.6 Summary

You learned how to declare and invoke keys in this chapter using the key element and key()

function in tandem. You also learned how to use multiple keys, how to use parameters with those
keys, and how to use multiple keys with multiple documents for a cross-reference effect. Finally, you
saw how to group with keys using the Muenchian method. Although you have been introduced to the
usage of keys, these simple examples do not fully demonstrate the value of keys-the benefits of
performance gains that keys offer when processing large documents with many nodes.

In the following chapter, you'll learn how to process XML documents conditionally with XSLT using the
if and choose elements.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 12. Conditional Processing
If you are familiar with programming or scripting languages, you have no doubt seen statements that
allow a program to make decisions based on Boolean logic. Such statements execute when a given
condition proves to be true or false.

Here's a brief illustration. If you started computing before the mouse and the graphical user interface
were around, like me, you might recognize the following statement written in FORTRAN 77:

IF(POPULATION .GT. 10000000) THEN
 PRINT *, NAME
END IF

In plain English, this statements says: if the value of the variable POPULATION is greater than
10,000,000, print the value associated with the NAME variable.

You could expand this statement to optionally perform a step if the first statement is false:

IF(POPULATION .GT. 10000000) THEN
 PRINT *, NAME
ELSE IF(POPULATION .LT. 10000000) THEN
 PRINT *, MSG
 PRINT *, NAME
END IF

In this statement, if the POPULATION is not greater than 10,000,000, and is less than 10,000,000,
the program will print the value in the MSG variable as well as the value in NAME.

In Java, you can write an if statement like this:

if (population > 10000000)
 System.out.println(name)

Or, to handle the situation when the first statement is not true, you could write:

if (population > 10000000) {
 System.out.println(name);
} else if (population < 10000000) {
 System.out.println(msg);
 System.out.println(name);
}

XSLT likewise offers several elements that allow you to perform Boolean logic inside stylesheets using
the if and choose instruction elements. An if element works similarly to an if statement in Java,
and a choose element, with its children when and otherwise, works like an if-else statement. I'll
start out by exploring ways to use the if element. For more information on if and choose, see

Section 9 of the XSLT specification.

http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

12.1 The if Element

The XML document you'll process in this chapter is Example 12-1, africa.xml, found in
examples/ch12. It's over 300 lines long, so only part of it is shown here.

Example 12-1. An excerpt of a document listing countries in Africa

<?xml version="1.0" encoding="ISO-8859-1"?>

<africa>
 <source>
 <title>CIA Factbook</title>
 <url>http://www.cia.gov/cia/publications/factbook/</url>
 <populations estimate="true" year="2002"/>
 </source>
 <nation>
 <name>Algeria</name>
 <capital>Algiers</capital>
 <population>32277942</population>
 <cc>dz</cc>
 </nation>
 <nation>
 <name>Angola</name>
 <capital>Luanda</capital>
 <population>10593171</population>
 <cc>ao</cc>
 </nation>
 <nation>
 <name>Benin</name>
 <capital>Porto-Novo</capital>
 <population>6787625</population>
 <cc>bj</cc>
 </nation>
 <nation>
 <name>Bostwana</name>
 <capital>Gaborone</capital>
 <population>1591232</population>
 <cc>bw</cc>
 </nation>
 <nation>
 <name>Burkina Faso</name>
 <capital>Ouagadougou</capital>
 <population>12603185</population>
 <cc>bf</cc>
 </nation>
 <nation>

http://lib.ommolketab.ir

After some source information about the online CIA World Factbook where you can find this
information, each of the 53 nations on the African continent is listed, along with the nation's capital
city, population (an estimate as of midyear 2002), and two-letter country code. (You can find the
factbook at http://www.cia.gov/cia/publications/factbook/.)

The simple stylesheet if.xsl, shown in Example 12-2, uses the if element to process africa.xml.

Example 12-2. A stylesheet that checks to see if countries have
populations over 10,000,000

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="africa">
 <xsl:apply-templates select="nation"/>
</xsl:template>

<xsl:template match="nation">
 <xsl:text> * </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:if test="population > 10000000">
 <xsl:text> (over 10M)</xsl:text>
 </xsl:if>
 <xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

The first template in if.xsl matches the document element africa, and then applies templates to any
nation element that is a child of africa. The template that matches nation elements writes the

name of the nation to the result tree, preceded by a literal asterisk, which acts as a bullet in the plain
text output.

Then comes the if element. The if element has one required attribute, test, which must contain an
expression that produces a Boolean result (true or false). The content of an if element is a template.
If test returns true, the template is instantiated; if false, the template is not instantiated. (You don't

actually see the words true or false returned. Booleans are handled internally by the processor.)

In this instance, the test attribute contains an expression testing whether the population child of
nation has content (converted implicitly to a number) that is greater than 10,000,000. If the
number is greater than 10,000,000, the template inside the if element is instantiated-that is, the
text (over 10M) is written to the result; if it is less than 10,000,000, the template is not instantiated.

Let's see what happens. Process africa.xml with this command:

xalan africa.xml if.xsl

to produce the following results (only the first 10 lines of the output are shown):

 * Algeria (> 10M)
 * Angola (> 10M)
 * Benin

http://www.cia.gov/cia/publications/factbook/
http://lib.ommolketab.ir

 * Bostwana
 * Burkina Faso (> 10M)
 * Burundi
 * Cameroon (> 10M)
 * Cape Verde
 * Central African Republic
 * Chad

The African nations shown here that have populations greater than 10,000,000-Algeria, Angola,
Burkina Faso, and Cameroon-are annotated with (> 10m).

Compare those results with that of less.xsl, shown in Example 12-3.

Example 12-3. Testing to see if a population is less than 10,000,000

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="africa">
 <xsl:apply-templates select="nation"/>
</xsl:template>

<xsl:template match="nation">
 <xsl:text> * </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:if test="population <= 10000000">
 <xsl:text> (<= to 10M)</xsl:text>
 </xsl:if>
 <xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

Because it is in an attribute value, the less-than symbol (<) is represented by < in the value of the
test attribute. (The need for predefined entities was explained in Chapter 2.) When you process

africa.xml with less.xsl using:

xalan africa.xml less.xsl

you get the opposite effect, that is, results showing those nations whose populations are less than
10,000,000 are annotated (first 10 shown):

 * Algeria
 * Angola
 * Benin (<= to 10M)
 * Bostwana (<= to 10M)
 * Burkina Faso
 * Burundi (<= to 10M)
 * Cameroon
 * Cape Verde (<= to 10M)
 * Central African Republic (<= to 10M)
 * Chad (<= to 10M)

http://lib.ommolketab.ir

if.xsl and less.xsl are simple examples of the if element. You can just as easily perform similar
conditional operations using predicates, without the if element. Example 12-4, withoutif.xsl, shows
you one way you could process on the same conditions without using if.

Example 12-4. Testing using predicates instead of explicit if statements

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="africa">
 <xsl:apply-templates select="nation"/>
</xsl:template>

<xsl:template match="nation[population <= 10000000]">
 <xsl:text> * </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> (<= 10M)</xsl:text>
 <xsl:text>
</xsl:text>
</xsl:template>

<xsl:template match="nation[population > 10000000]">
 <xsl:text> * </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> (> 10M)</xsl:text>
 <xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

In this stylesheet, the conditional testing for population numbers is done by predicates (see the bold
lines). Applied to africa.xml with:

xalan africa.xml withoutif.xsl

this stylesheet will give you the following output (first 10 lines):

 * Algeria (> 10M)
 * Angola (> 10M)
 * Benin (<= 10M)
 * Bostwana (<= 10M)
 * Burkina Faso (> 10M)
 * Burundi (<= 10M)
 * Cameroon (> 10M)
 * Cape Verde (<= 10M)
 * Central African Republic (<= 10M)
 * Chad (<= 10M)

In Example 12-5, I'll show you how to use several if elements together in a useful way. The

stylesheet is comma.xsl.

Example 12-5. A stylesheet using multiple if statements

http://lib.ommolketab.ir

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="africa">
 <xsl:text>The nations of Africa are </xsl:text>
 <xsl:apply-templates select="nation"/>
</xsl:template>

<xsl:template match="nation">
 <xsl:value-of select="name"/>
 <xsl:if test="position() != last()">, </xsl:if>
 <xsl:if test="position() mod 5 = 0">
 <xsl:text>
</xsl:text>
 </xsl:if>
 <xsl:if test="position() = (last() - 1)">and </xsl:if>
 <xsl:if test="position() = last()">.</xsl:if>
</xsl:template>

</xsl:stylesheet>

This stylesheet writes out the entire list of African nations, separating nearly all of them by commas
and spaces. The first template writes some text at the beginning of the result tree. Then after
printing the name of each African nation with value-of, comma.xsl considers the position of nation
nodes with four instances of the if element. Each instance of if uses the position() function to
test the condition of the current nation node:

The first one tests to see whether the context node is the last of the nation nodes; if it is not
the last, the template in if writes a comma to the result tree.

The second uses the modulo operator mod to test whether the remainder of its operation is zero.
If the remainder is zero, it means that five nation nodes have been written to the result tree

and so, upon finding that condition, the processor adds a linefeed to the result tree.

The third writes the word and to the result tree if the node is the next-to-last nation node.

The fourth writes a period (.) if the node is the last nation node in the list.

To see the outcome, type the following on a command line:

xalan africa.xsl comma.xsl

Here is the result. Note the placement of commas, line breaks, the word and, and the period (.):

The nations of Africa are Algeria, Angola, Benin, Bostwana, Burkina Faso,
Burundi, Cameroon, Cape Verde, Central African Republic, Chad,
Comoros, Congo, Congo, Democratic Republic of, Cote d'Ivoire, Djibouti,
Eqypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon,
Gambia, Ghana, Guinea, Guinea-Bissau, Kenya,
Lesotho, Liberia, Libya, Madagascar, Malawi,
Mali, Mauritania, Maurutius, Morocco, Mozambique,
Namibia, Niger, Nigeria, Rwanda, Sao Tome and Principe,
Senegal, Seychelles, Sierra Leone, Somalia, South Africa,

http://lib.ommolketab.ir

Sudan, Swaziland, Tanzania, Togo, Tunisia,
Uganda, Zambia, and Zimbabwe.

This concludes your brief tour of the if instruction. You're ready to move on to using the choose

element, which processes multiple conditions at one time, and to dealing with exceptions to those
conditions.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

12.2 The choose and when Elements

The difference between if and choose is that choose allows you to test one or more conditions in a
single structure while if allows you to test only one condition at a time. A choose element has no
attributes, but it must have one or more when children. Similar to if , the when element has a single
required test attribute that returns a Boolean.

The combination of choose with a single when child works the same way that a lone if element

works. Example 12-6 demonstrates this, in the stylesheet choose.xsl .

Example 12-6. Using choose rather than if

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="africa">
 <xsl:apply-templates select="nation"/>
</xsl:template>

<xsl:template match="nation">
 <xsl:choose>
 <xsl:when test="population > 10000000">
 <xsl:value-of select="name"/>
 <xsl:text>
</xsl:text>
 </xsl:when>
 </xsl:choose>
</xsl:template>

</xsl:stylesheet>

Apply this to africa.xml :

xalan africa.xml choose.xsl

and you will get a plain list of African nations with populations exceeding 10,000,000:

Algeria
Angola
Burkina Faso
Cameroon
Congo, Democratic Republic of
Cote d'Ivoire
Eqypt
Ethiopia
Ghana
Kenya
Madagascar

http://lib.ommolketab.ir

Malawi
Mali
Morocco
Mozambique
Niger
Nigeria
Senegal
South Africa
Sudan
Tanzania
Uganda
Zimbabwe

The stylesheet when.xsl adds another when element to the template in choose.xsl so that the

stylesheet can test another condition: which nations have less than 10,000,000 inhabitants. Example
12-7 shows this stylesheet.

Example 12-7. Using two when elements

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="africa">
 <xsl:apply-templates select="nation"/>
</xsl:template>

<xsl:template match="nation">
 <xsl:choose>
 <xsl:when test="population > 10000000">
 <xsl:text>
</xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> </xsl:text>
 </xsl:when>
 <xsl:when test="population <= 10000000">
 <xsl:text>[Skip] </xsl:text>
 </xsl:when>
 </xsl:choose>
</xsl:template>

</xsl:stylesheet>

When this stylesheet encounters population nodes whose content is greater than 10,000,000, the
name of the nation is written to the result tree; when it encounters population nodes whose content
is less than or equal to 10,000,000, only a bit of text is written ([Skip]).

Test this stylesheet with africa.xml using:

xalan africa.xml when.xsl

to get the following output:

Algeria

http://lib.ommolketab.ir

Angola [Skip] [Skip]
Burkina Faso [Skip]
Cameroon [Skip] [Skip] [Skip] [Skip] [Skip]
Congo, Democratic Republic of
Cote d'Ivoire [Skip]
Eqypt [Skip] [Skip]
Ethiopia [Skip] [Skip]
Ghana [Skip] [Skip]
Kenya [Skip] [Skip] [Skip]
Madagascar
Malawi
Mali [Skip] [Skip]
Morocco
Mozambique [Skip]
Niger
Nigeria [Skip] [Skip]
Senegal [Skip] [Skip] [Skip]
South Africa
Sudan [Skip]
Tanzania [Skip] [Skip]
Uganda [Skip]
Zimbabwe

The test attribute in the when elements checks whether certain nodes match certain criteria; if they
do, the template in the when element is instantiated. The occurrences of [Skip] help you to see

where nodes were skipped.

12.2.1 The otherwise Element

When programming, it's possible that none of the conditions you test are true, so the language has to
handle that case. In FORTRAN 77, for example, a final ELSE statement provides an escape hatch

when nothing else works:

 IF(POPULATION .GT. 10000000) THEN
 PRINT *, NAME
 ELSE IF(POPULATION .LT. 10000000) THEN
 PRINT *, MSG
 PRINT *, NAME
 ELSE
 GO TO 100
 END IF
100 STOP
 END

In this statement, if neither of the conditions are met (are true), execution jumps to the line labeled
100 in the program where execution stops, and the program ends.

In Java, you could write a similar statement as follows:

if (population > 10000000) {
 System.out.println(name);
} else if (population < 10000000) {

http://lib.ommolketab.ir

 System.out.println(msg);
 System.out.println(name);
} else {
 System.exit(1);
}

If both Booleans fail, the last statement executes and exits out of the program. The otherwise
element in XSLT takes on the role of the escape hatch, just as the ELSE or else statements take on

the role in FORTRAN or Java. The otherwise.xsl stylesheet, shown in Example 12-8 , demonstrates
how this is done.

Example 12-8. Using otherwise to terminate stylesheet execution

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="africa">
 <xsl:apply-templates select="nation"/>
</xsl:template>

<xsl:template match="nation">
 <xsl:choose>
 <xsl:when test="population = 10000000">
 <xsl:value-of select="name"/>
 <xsl:text> = 10M</xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:when>
 <xsl:when test="population = 1000000">
 <xsl:value-of select="name"/>
 <xsl:text> = 1M</xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:message terminate="yes">Not found!</xsl:message>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

</xsl:stylesheet>

The test attributes on when elements check whether a population element has content that equals
10,000,000 or 1,000,000. None of the population elements in africa.xml will satisfy these tests, so
the control in the choose structure drops down to the otherwise element.

At that point, the processor encounters a message element. A message element outputs a message to

the screen (standard output), not to the result tree, and so it is a good way to create status or error
messages. (The destination of such messages is left undefined in the XSLT spec, but generally XSLT
processors send them to the screen.)

http://lib.ommolketab.ir

Commonly, stylesheet developers use message elements inside fallback
elements. Chapter 15 discusses how to use message and fallback elements

together.

12.2.2 Processing More Than One Kind of Document

Imagine that you want to efficiently process several kinds of XML documents, each containing similar
content, but each using a different vocabulary. The document africa2.xml is structured just like
africa.xml , but uses verbose element names. Example 12-9 shows part of africa2.xml .

Example 12-9. A version of the African countries document using verbose
markup

<?xml version="1.0" encoding="ISO-8859-1"?>

<continent.africa>
 <continent.africa.country>
 <continent.africa.country.name>Algeria</continent.africa.country.name>
 <continent.africa.country.capital>Algiers</continent.africa.country.capital>
 <continent.africa.country.population>32277942</continent.africa.country.population>
 <continent.africa.country.code>dz</continent.africa.country.code>
 </continent.africa.country>
 <continent.africa.country>
 <continent.africa.country.name>Angola</continent.africa.country.name>
 <continent.africa.country.capital>Luanda</continent.africa.country.capital>
 <continent.africa.country.population>10593171</continent.africa.country.population>
 <continent.africa.country.code>ao</continent.africa.country.code>
 </continent.africa.country>
 <continent.africa.country>
 <continent.africa.country.name>Benin</continent.africa.country.name>
 <continent.africa.country.capital>Porto-Novo</continent.africa.country.capital>
 <continent.africa.country.population>6787625</continent.africa.country.population>
 <continent.africa.country.code>bj</continent.africa.country.code>
 </continent.africa.country>
 <continent.africa.country>
 <continent.africa.country.name>Bostwana</continent.africa.country.name>
 <continent.africa.country.capital>Gaborone</continent.africa.country.capital>
 <continent.africa.country.population>1591232</continent.africa.country.population>
 <continent.africa.country.code>bw</continent.africa.country.code>
 </continent.africa.country>
 <continent.africa.country>
 <continent.africa.country.name>Burkina Faso</continent.africa.country.name>
 <continent.africa.country.capital>Ouagadougou</continent.africa.country.capital>
 <continent.africa.country.population>12603185</continent.africa.country.population>
 <continent.africa.country.code>bf</continent.africa.country.code>
 </continent.africa.country>

The document has a structure that is similar to africa.xml but uses long, structured element names.

http://lib.ommolketab.ir

Using choose , when , and otherwise elements, Example 12-10 , the stylesheet dual.xsl , can process

similar elements in both africa.xml and africa2.xml , plus handle nonconforming documents that it
encounters.

Example 12-10. A stylesheet that tests for multiple element names
explicitly

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text" encoding="ISO-8859-1"/>

<xsl:template match="africa | continent.africa">
 <xsl:apply-templates select="nation[10] | continent.africa.country[10]"/>
</xsl:template>

<xsl:template match="nation | continent.africa.country">
 <xsl:choose>
 <xsl:when test="name = 'Chad'">
 <xsl:apply-templates select="name"/>
 </xsl:when>
 <xsl:when test="continent.africa.country.name = 'Chad'">
 <xsl:apply-templates select="continent.africa.country.name"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:message terminate="yes">Not found!</xsl:message>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

<xsl:template match="name | continent.africa.country.name">
 <xsl:value-of select="name()"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

The templates in dual.xsl can match parallel elements in either africa.xml or africa2.xml . The first
template, for example, matches either an africa or a continent.africa element, the document
elements of africa.xml and africa2.xml , respectively. The second template, which matches nation or
continent.africa.country elements, uses choose and when to find the tenth matching child name
or continent.africa.country.name node. If it finds one or the other of those nodes, it processes

them with a third template, which inserts the node name and content into the result tree. If neither
node is found, the stylesheet handles the problem with a message element inside an otherwise
element. The message element also terminates processing.

I'll process this example with xsltproc. (You saw this processor once before in Chapter 10 .) When I
enter the following command line:

xsltproc dual.xsl africa.xml africa2.xml truncated.xml

it gives this result:

http://lib.ommolketab.ir

name: Chad
continent.africa.country.name: Chad
Not found!

Because it accepts a stylesheet first, then the XML documents after that, you can process more than
one XML document at a time with xsltproc. You can see from the output that each document yields a
different result. The document truncated.xml has only 10 nation elements, but none with a name
child that matches Chad , so it generates the Not found! message.

This stylesheet should help you write other stylesheets that process more than one kind of document
but produce similar results. This is just one way to get that job done. For illustration, Example 12-11
is a stylesheet that produces the same results, but it is written more tightly. It's called dual2.xsl .

Example 12-11. Refining Example 12-10

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text" encoding="ISO-8859-1"/>

<xsl:template match="africa | continent.africa">
 <xsl:apply-templates select="nation[10] | continent.africa.country[10]"/>
</xsl:template>

<xsl:template match="nation | continent.africa.country">
 <xsl:choose>
 <xsl:when test="(name|continent.africa.country.name) = 'Chad'">
 <xsl:apply-templates select="name|continent.africa.country.name"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:message terminate="yes">Not found!</xsl:message>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

<xsl:template match="name | continent.africa.country.name">
 <xsl:value-of select="name()"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

The difference between dual.xsl and dual2.xsl is that dual.xsl has two when elements, whereas
dual2.xsl has only one. The test attribute of the single when element in dual2.xsl returns true for
either name or (|) continent.africa.country.name elements, depending on the source tree. So
one when element, when used with | , does the job of two. Try it with this command:

xsltproc dual2.xsl africa.xml africa2.xml truncated.xml

and you will get the same result as you did with dual.xsl .

http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

12.3 Summary

This chapter showed you how to use if, choose, when, and otherwise elements (as well as
predicates) for conditional processing. It also introduced the message element, which will be

discussed further in Chapter 15. In the next chapter, you'll learn how to work with multiple
stylesheets and source trees.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 13. Working with Multiple
Documents
This chapter explains how to use the include, import, and apply-imports elements, which work
with stylesheets, and how to use the document() function, which works with source documents.

These elements provide features that help you work with multiple stylesheets and source documents
as modules so that they can be integrated or reused.

With the include element, you can integrate one or more external stylesheets within another

stylesheet, as if they were all just one stylesheet. If you import external stylesheets into a stylesheet
with the import element, certain rules go into effect, namely that templates are invoked based on

the order in which they appear. This feature is called import precedence. You can override these
precedence rules, however, by using the apply-imports element.

You can read about include and import in Sections 2.6.1 and 2.6.2 of XSLT specification; apply-
imports is discussed in Section 5.6 of that specification.

You can also work with more than one source document by using the document() function. This

means that you can transform nodes from more than one source document at a time. Earlier
examples in this book have used document(), but this chapter covers it in greater detail. The
document() function is fully documented in Section 12.1 of the XSLT spec.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

13.1 Including Stylesheets

XSLT allows you to use and manage stylesheets in a modular way with the include element. This

means that you aren't limited to storing all your template rules in a single stylesheet, but that you
can spread them around in as many stylesheets as you want. Included stylesheets must be complete
stylesheets, however, not just template rules. You can also include third-party stylesheets, such as
those from EXSLT (http://www.exslt.org), which provide extended functionality to XSLT, such as
dates, times, math, regular expressions, and much more. (You'll learn more about EXSLT in Chapter
15.)

The XML document in Example 13-1, top.xml (in examples/ch13), lists the three states in the U.S.
whose populations were estimated to have grown the most between July 1, 2001 and July 2, 2002,
according to the U.S. Census Bureau (see http://eire.census.gov/popest/data/states/tables/ST-
EST2002-02.php).

Example 13-1. Fast-growing states in the U.S.

<?xml version="1.0"?>

<PopulationChange segment="Top 3">
 <State>
 <Name>California</Name>
 <Population>35116033</Population>
 <Rank>1</Rank>
 <Increase>515570</Increase>
 <PercentChange>1.5</PercentChange>
 </State>
 <State>
 <Name>Texas</Name>
 <Population>21779893</Population>
 <Rank>2</Rank>
 <Increase>408910</Increase>
 <PercentChange>1.9</PercentChange>
 </State>
 <State>
 <Name>New York</Name>
 <Population>19157532</Population>
 <Rank>3</Rank>
 <Increase>73182</Increase>
 <PercentChange>0.4</PercentChange>
 </State>
</PopulationChange>

The include.xsl stylesheet, shown in Example 13-2, processes top.xml with its own templates and
with some whitespace-generating templates added by means of an include element (note the bold

lines).

http://www.exslt.org
http://eire.census.gov/popest/data/states/tables/ST-
http://lib.ommolketab.ir

Example 13-2. A stylesheet that includes another stylesheet

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:include href="wspace.xsl"/>
<xsl:template match="PopulationChange">
 <xsl:text>Population Change: July 1, 2001 to July 1, 2002</xsl:text>
 <xsl:call-template name="n1"/>
 <xsl:text>Source: US Census Bureau</xsl:text>
 <xsl:call-template name="n2"/>
 <xsl:apply-templates select="State"/>
</xsl:template>

<xsl:template match="State">
 <xsl:text>State:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Name"/>
 <xsl:call-template name="n1"/>
 <xsl:text>Rank:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Rank"/>
 <xsl:call-template name="n2"/>
</xsl:template>

</xsl:stylesheet>

The include element is a top-level element with only one required attribute, href, which references
a stylesheet that you want to include- wspace.xsl, in this case. The value of href is a URI, which can

be an absolute reference (as in http://www.example.com/wspace.xsl or
file:///C:/learningxslt/examples/ch13/wspace.xsl) or a relative reference (as in wspace.xsl).

The reference to wspace.xsl in the value of href is a relative reference. This means that the XSLT

processor will depend on the location of the including stylesheet include.xsl to determine the relative
location of wspace.xsl. In other words, the processor establishes a base URI in relation to the location
of the main stylesheet, and then uses that base URI (the main document's location in a filesystem or
on the Web) to resolve any relative references that may be used.

All the templates that are called in include.xsl (those named sp1, n1, and n2) are stored in

wspace.xsl, which is shown in Example 13-3.

Example 13-3. A stylesheet containing whitespace templates for use
elsewhere

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template name="sp1">
 <xsl:text> </xsl:text>
</xsl:template>

<xsl:template name="sp2">
 <xsl:text> </xsl:text>

http://www.example.com/wspace.xsl
http://lib.ommolketab.ir

 <xsl:text> </xsl:text>
</xsl:template>

<xsl:template name="sp3">
 <xsl:text> </xsl:text>
 <xsl:text> </xsl:text>
 <xsl:text> </xsl:text>
</xsl:template>

<xsl:template name="n1">
 <xsl:text>
</xsl:text>
</xsl:template>

<xsl:template name="n2">
 <xsl:text>
</xsl:text>
 <xsl:text>
</xsl:text>
</xsl:template>

<xsl:template name="n3">
 <xsl:text>
</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

This stylesheet contains only named templates that emit various amounts of whitespace. None of the
templates, however, are invoked by matching patterns within wspace.xsl, so it does nothing on its
own-it needs some help. Admittedly, wspace.xsl is trivial, but it is also useful and amenable to reuse
in a variety of other stylesheets.

Apply include.xsl to top.xml:

xalan top.xml include.xsl

and you will get this output:

Population Change: July 1, 2001 to July 1, 2002
Source: US Census Bureau

State: California
Rank: 1

State: Texas
Rank: 2

State: New York
Rank: 3

You can have multiple include elements in a stylesheet, but it's an error for a stylesheet to include

itself. (If you'd like, try this yourself and see what happens!) You can include a stylesheet multiple
times with no effect other than having duplicate top-level elements.

http://lib.ommolketab.ir

Conflicts between such duplicates are resolved using the same conflict resolution rules that exist for
any single stylesheet where, for example, the last conflicting template match wins (this is an error,
but processors are allowed to recover from this error, with or without issuing a warning message).
Having more than one template with the same name in its name attribute, however, is an error from

which a processor cannot recover.

You can also chain stylesheets together. I'll show you how by chaining these three stylesheets
together: chain.xsl (Example 13-4), state.xsl (Example 13-5), and wspace.xsl (Example 13-3).

This use of the term chain here refers to including a series of stylesheets
together. Another more common sense of the term chaining has to do with
processing multiple stylesheets in succession, as in a pipeline. Only the former
sense is implied in this context.

Here's the first of the bunch, chain.xsl.

Example 13-4. A stylesheet containing an include statement, the start of
the chain

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:include href="state.xsl"/>

<xsl:template match="PopulationChange">
 <xsl:text>Population Change: July 1, 2001 to July 1, 2002</xsl:text>
 <xsl:call-template name="n1"/>
 <xsl:text>Source: US Census Bureau</xsl:text>
 <xsl:call-template name="n2"/>
 <xsl:apply-templates select="State"/>
</xsl:template>

</xsl:stylesheet>

It's similar to include.xsl, but it doesn't have a template to match State elements. It needs such a

template in order to work. That template is in state.xsl, which chain.xsl includes, shown in Example
13-5.

Example 13-5. The stylesheet meant for inclusion to process the state
information

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:include href="wspace.xsl"/>
<xsl:template match="State">
 <xsl:text>State:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Name"/>
 <xsl:call-template name="n1"/>
 <xsl:text>Rank:</xsl:text>
 <xsl:call-template name="sp1"/>

http://lib.ommolketab.ir

 <xsl:value-of select="Rank"/>
 <xsl:call-template name="n2"/>
</xsl:template>

</xsl:stylesheet>

The stylesheet state.xsl also includes wspace.xsl. This describes what I mean by chaining: chain.xsl
includes state.xsl, which includes wspace.xsl. This makes all the templates available as if they were in
one stylesheet instead of three.

As described in the XSLT specification, what happens when you include a stylesheet is that everything
in the included stylesheet is taken into the XSLT processor's stylesheet representation (whatever it
may use to create such a representation-a hash table or whatever), except the stylesheet

element. The processor doesn't make a fuss about where a template or some other top-level element
came from.

For all intents and purposes, while still honoring template priority (see Chapter 10), all included
stylesheets are lumped together into the same pot with the stylesheet that includes them. Therefore,
if you process top.xml with chain.xsl, you will get the same result as when you processed top.xml
with include.xsl. Importing a stylesheet instead of including it has a different effect, as you will see in
the next section.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

13.2 Importing Stylesheets

Like include, the import element is also a top-level element with one required attribute, href.

Importing is similar to inclusion except that template rules from imported stylesheets have a lower
precedence than template rules in the stylesheet that is doing the importing. Imported stylesheets
allow you, when required, to override one template rule with another.

You can see import at work in the stylesheet import.xsl (Example 13-6), where imported.xsl is

imported.

Example 13-6. A stylesheet using an import element

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:import href="imported.xsl"/>
<xsl:output method="text"/>

<xsl:template match="PopulationChange">
 <xsl:text>Population Change: July 1, 2001 to July 1, 2002</xsl:text>
 <xsl:call-template name="n1"/>
 <xsl:text>Source: US Census Bureau</xsl:text>
 <xsl:call-template name="n2"/>
 <xsl:apply-templates select="State"/>
</xsl:template>

<xsl:template match="State">
 <xsl:text>Rank:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Rank"/>
 <xsl:call-template name="n1"/>
 <xsl:text>State:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Name"/>
 <xsl:call-template name="n2"/>
</xsl:template>

</xsl:stylesheet>

Notice that the import element is the first child of stylesheet. This is a special requirement-that is,
one or more import elements must immediately follow the stylesheet element.

The stylesheet, imported.xsl, is shown in Example 13-7.

Example 13-7. The imported stylesheet, which itself imports another
stylesheet

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

http://lib.ommolketab.ir

<xsl:import href="wspace.xsl"/>
<xsl:template match="State">
 <xsl:text>State:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Name"/>
 <xsl:call-template name="n1"/>
 <xsl:text>Rank:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Rank"/>
 <xsl:call-template name="n2"/>
</xsl:template>

</xsl:stylesheet>

In turn, this stylesheet imports wspace.xsl, which you saw earlier in Example 13-3. When applied to
top.xml:

xalan top.xml import.xsl

you get the following result:

Population Change: July 1, 2001 to July 1, 2002
Source: US Census Bureau

Rank: 1
State: California

Rank: 2
State: Texas

Rank: 3
State: New York

The outcome is identical to what you would expect from stylesheets included with include elements.
The main difference, however, between include and import is that import establishes something

called import precedence. Import precedence simply means that template rules in an importing
stylesheet have precedence over any rules from a stylesheet that it imports, and that the order in
which stylesheets are imported affects their import precedence in succession.

13.2.1 Import Tree

When you include a stylesheet using include, the top-level elements-all but stylesheet

elements-are merged in with the top-level elements of the stylesheet that included it. When you
import a stylesheet with import, that stylesheet is represented internally in something called an

import tree. An import tree stores stylesheets in the order in which they were imported and includes
the stylesheet element from each. If you import more than one stylesheet, each imported

stylesheet is added to the import tree.

Just as a stylesheet can't include itself, a stylesheet can't import itself, either. You can import a
stylesheet more than once, however, in which case any conflicts are worked out using the normal
rules of template priority-the last of two or more conflicting templates wins.

http://lib.ommolketab.ir

The following stylesheets, Examples 13-8 through 13-10, will show you import precedence in action.
The precedence.xsl stylesheet (Example 13-8) imports two stylesheets, first.xsl (Example 13-9) and
second.xsl (Example 13-10).

Example 13-8. A stylesheet importing two other stylesheets

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:import href="second.xsl"/>
<xsl:import href="first.xsl"/>
<xsl:output method="text"/>

<xsl:template match="PopulationChange">
 <xsl:text>Population Change: July 1, 2001 to July 1, 2002</xsl:text>
 <xsl:call-template name="n1"/>
 <xsl:text>Source: US Census Bureau</xsl:text>
 <xsl:call-template name="n2"/>
 <xsl:apply-templates select="State"/>
</xsl:template>

</xsl:stylesheet>

This stylesheet also attempts to apply a template that matches the State element; however, no such

template exists in precedence.xsl. One such template, however, does exist in the imported stylesheet
first.xsl.

Example 13-9. A stylesheet containing a template for processing the
State element

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:import href="wspace.xsl"/>

<xsl:template match="State">
 <xsl:text>Rank:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Rank"/>
 <xsl:call-template name="n1"/>
 <xsl:text>State:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Name"/>
 <xsl:call-template name="n2"/>
</xsl:template>

</xsl:stylesheet>

Another template exists in second.xsl, also imported into precedence.xsl (the differences between
first.xsl and second.xsl are emphasized in bold).

Example 13-10. Another stylesheet containing a template for processing
the State element

http://lib.ommolketab.ir

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:import href="wspace.xsl"/>

<xsl:template match="State">
 <xsl:text>State:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Name"/>
 <xsl:call-template name="n1"/>
 <xsl:text>Rank:</xsl:text>
 <xsl:call-template name="sp1"/>
 <xsl:value-of select="Rank"/>
 <xsl:call-template name="n2"/>
</xsl:template>

</xsl:stylesheet>

In first.xsl, rank is displayed first, followed by the state; in second.xsl, the state is displayed first,
followed by rank. Because first.xsl is the last stylesheet that is imported, its template, which matches
State, is invoked first, rather than the template in second.xsl. The rank comes before state in the

output. When applied to top.xml with:

xalan top.xml precedence.xsl

the processor yields the following output:

Population Change: July 1, 2001 to July 1, 2002
Source: US Census Bureau

Rank: 1
State: California

Rank: 2
State: Texas

Rank: 3
State: New York

If you were to change the order in which the stylesheets were imported, that is, to this order:

<xsl:import href="first.xsl"/>
<xsl:import href="second.xsl"/>

The import precedence would favor second.xsl and a transformation against that stylesheet would
give you the states first, then the ranks:

Population Change: July 1, 2001 to July 1, 2002
Source: US Census Bureau

State: California
Rank: 1

State: Texas
Rank: 2

http://lib.ommolketab.ir

State: New York
Rank: 3

Now, I'll show you how to manipulate import precedence with apply-imports.

13.2.2 Applying Imports

The apply-imports instruction element has no attributes and is always empty, that is, it has no
children. (In XSLT 2.0, however, apply-imports can have one or more with-param children.) It

applies templates from imported stylesheets that normally would not be used (it's somewhat like
calling a method with super in Java). Example 13-11, the stylesheet apply-imports.xsl-which
produces XML output-imports add.xsl and uses the apply-imports element.

Example 13-11. A stylesheet using apply-imports

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:import href="add.xsl"/>
<xsl:output method="xml" indent="yes"/>

<xsl:template match="PopulationChange">
 <xsl:element name="topStates">
 <xsl:apply-templates select="State"/>
 </xsl:element>
</xsl:template>

<xsl:template match="State">
 <xsl:element name="stateData">
 <xsl:element name="stateRank">
 <xsl:value-of select="Rank"/>
 </xsl:element>
 <xsl:element name="stateName">
 <xsl:value-of select="Name"/>
 </xsl:element>
 <xsl:apply-imports/>
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

The add.xsl stylesheet, Example 13-12, also has a template that matches State elements.

Example 13-12. A stylesheet that will be applied through apply-imports

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="State">
 <xsl:element name="dataAdvice">
 <xsl:text>July 2002 estimated population was </xsl:text>

http://lib.ommolketab.ir

 <xsl:value-of select="Population"/>
 <xsl:text>.</xsl:text>
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

Usually the template in add.xsl would be disregarded because the template matching State in apply-
imports.xsl has precedence over the one in add.xsl. The inclusion of apply-imports, however, tells
the XSLT processor to invoke the template matching State in add.xsl, in addition to the one in apply-

imports.xsl. Processing top.xml with apply-imports.xsl with this command:

xalan -i 1 top.xml apply-imports.xsl

produces the following output:

<?xml version="1.0" encoding="UTF-8"?>
<topStates>
 <stateData>
 <stateRank>1</stateRank>
 <stateName>California</stateName>
 <dataAdvice>July 2002 estimated population was 35116033.</dataAdvice>
 </stateData>
 <stateData>
 <stateRank>2</stateRank>
 <stateName>Texas</stateName>
 <dataAdvice>July 2002 estimated population was 21779893.</dataAdvice>
 </stateData>
 <stateData>
 <stateRank>3</stateRank>
 <stateName>New York</stateName>
 <dataAdvice>July 2002 estimated population was 19157532.</dataAdvice>
 </stateData>
</topStates>

So apply-imports provides a way to apply more than one template to the same node, perhaps one

for a general purpose and another for a special purpose. Now, we'll leave processing multiple
stylesheets behind and move on to processing multiple XML documents with the document()

function.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

13.3 Using the document() Function

You have already been introduced to how the document() function works in examples from Chapters 5 and 9.

This section will reintroduce some of the concepts discussed earlier, plus a few more. The following examples will
focus on the text of the Book of Jonah, excerpted from the King James version of the Bible.

I'll start this discussion by showing you a stub of a document, bible.xml :

<?xml version="1.0" encoding="UTF-8"?>

<volume>
 <book/>
</volume>

There is not much to it. You can get bible.xml to do something interesting with Example 13-13 , the stylesheet
jonah.xsl .

Example 13-13. A stylesheet that copies in a separate document

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="volume">
 <xsl:copy>
 <xsl:attribute name="name">Old Testament</xsl:attribute>
 <xsl:apply-templates select="book"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="book">
 <xsl:copy>
 <xsl:attribute name="name">Jonah</xsl:attribute>
 <xsl:copy-of select="document('jonah1.xml')"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

Applying this stylesheet to bible.xml will produce the first chapter of Jonah in XML markup. It makes shallow
copies of the volume and book nodes in bible.xml , adding name attributes to each. Then, using copy-of , it

makes a deep copy of all the nodes in the document jonah1.xml , which contains the text of the first chapter of
the Book of Jonah from the Old Testament, surrounded by XML elements. copy-of finds the nodes in jonah1.xml
with the document() function.

The document() function must have at least one argument, but it can have two. The first argument must be an
object, the second must be a node-set. The second argument of document() is rarely used. The first argument

is usually a literal string that is the URI of the source document you are including, either as a relative filename or

http://lib.ommolketab.ir

as a URI, or it is a node in the source document that contains a link to the required document.

In jonah.xsl , document() uses only one argument, the string jonah1.xml . The XSLT processor knows where

to find the document jonah1.xml because it uses the location of the stylesheet as a base URI (the argument is a
string). In other words, because it knows internally where the stylesheet is located on the filesystem, it looks for
jonah1.xml relative to the location of the stylesheet, that is, in the same directory as the stylesheet. You could
also use an absolute URI path for the file, as in
document('file:///C:/learningxslt/examples/ch13/jonah1.xml') .

Here are a few lines of jonah1.xml :

<chapter number="1">
<verse number="1">Now the word of the LORD came unto Jonah the son of Amittai, saying,</verse>
<verse number="2">Arise, go to Nineveh, that great city, and cry against it;
for their wickedness is come up before me.</verse>

Apply jonah.xsl to bible.xml using this command:

xalan bible.xml jonah.xsl

You will get output that looks similar to the following (this is a clipped version of the output):

<?xml version="1.0" encoding="UTF-8"?>
<volume name="Old Testament">
<book name="Jonah">
<chapter number="1">
<verse number="1">Now the word of the LORD came unto Jonah the son of Amittai,
saying,</verse>
<verse number="2">Arise, go to Nineveh, that great city, and cry against it; for
their wickedness is come up before me.</verse>

The chapter and verse nodes are all pulled into the result tree using document() .

Now look at the document jonahMap.xml :

<?xml version="1.0" encoding="UTF-8"?>

<volume name="Old Testament">
 <book name="Jonah">
 <chapter location="jonah1.xml"/>
 <chapter location="jonah2.xml"/>
 <chapter location="jonah3.xml"/>
 <chapter location="jonah4.xml"/>
 </book>
</volume>

The location attributes in jonahMap.xml contain the relative path names to the four files containing the four
chapters of the Book of Jonah, respectively. The document() function can use the location attributes in the

current context to find these files, as shown in Example 13-14 , jonahMap.xsl .

Example 13-14. Applying the document() function to data from a source
document

http://lib.ommolketab.ir

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="volume">
 <xsl:copy>
 <xsl:attribute name="name"><xsl:value-of select="@name"/></xsl:attribute>
 <xsl:apply-templates select="book"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="book">
 <xsl:copy>
 <xsl:attribute name="name"><xsl:value-of select="@name"/></xsl:attribute>
 <xsl:apply-templates select="chapter"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="chapter">
 <xsl:copy-of select="document(@location)"/>
</xsl:template>

</xsl:stylesheet>

In this instance of document() , the object in the argument is an XPath location path for the location
attributes on the chapter elements in the source tree. Also in this instance, the relative URI is interpreted as
being relative to the base URI of chapter elements in the source document, not relative to the stylesheet.

When you apply jonahMap.xsl to jonahMap.xml with:

xalan jonahMap.xml jonahMap.xsl

all the chapters of Jonah will appear in the result. (The stylesheet, by the way, also takes the values of the name
attributes from volume and book and places these values in the result.)

In the next example, Example 13-15 , the document() function is used in conjunction with nodes found in the

accessed document (as shown earlier in the book). The jonahVerse.xsl stylesheet prints verses from any of the
files jonah1.xml , jonah2.xml , jonah3.xml , or jonah4.xml .

Example 13-15. Extracting information using document() function and
parameters

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:include href="wspace.xsl"/>
<xsl:output method="text"/>
<xsl:strip-space elements="*"/>
<xsl:param name="chap" select="1"/>
<xsl:param name="ver" select="1"/>

<xsl:template match="volume/book">
 <xsl:choose>
 <xsl:when test="$chap = 1 and $ver < 18">
 <xsl:call-template name="cite"/>

http://lib.ommolketab.ir

 <xsl:value-of select="document('jonah1.xml')/chapter/verse[@number=$ver]"/>
 </xsl:when>
 <xsl:when test="$chap = 2 and $ver < 11">
 <xsl:call-template name="cite"/>
 <xsl:value-of select="document('jonah2.xml')/chapter/verse[@number=$ver]"/>
 </xsl:when>
 <xsl:when test="$chap = 3 and $ver < 11">
 <xsl:call-template name="cite"/>
 <xsl:value-of select="document('jonah3.xml')/chapter/verse[@number=$ver]"/>
 </xsl:when>
 <xsl:when test="$chap = 4 and $ver < 12">
 <xsl:call-template name="cite"/>
 <xsl:value-of select="document('jonah4.xml')/chapter/verse[@number=$ver]"/>
 </xsl:when>
 <xsl:otherwise>Not found!</xsl:otherwise>
 </xsl:choose>
</xsl:template>

<xsl:template name="cite">
 <xsl:text>The Book of Jonah</xsl:text>
 <xsl:call-template name="n1"/>
 <xsl:text>Chapter </xsl:text>
 <xsl:value-of select="$chap"/>
 <xsl:text>, verse </xsl:text>
 <xsl:value-of select="$ver"/>
 <xsl:text>: </xsl:text>
 <xsl:call-template name="n2"/>
</xsl:template>

</xsl:stylesheet>

The stylesheet includes wspace.xsl so it can call templates from it (the ones named n1 and n2). The parameters
chap and ver default to 1, that is, to Chapter 1, verse 1 of Jonah. The test attribute on the when elements

checks to see what chapter you want to refer to and then uses that number to bring up a given file. It also
makes sure that you don't request a verse that is out of range for a given chapter. If any of these tests return
false, the otherwise element returns Not found! and the processor exits without doing anything else. If a verse
is found, the cite template writes the citation and the verse to the result tree.

Try it. Enter the following command passing in values for the chap and ver parameters:

xalan -p chap '2' -p ver '8' bible.xml jonahVerse.xsl

which will return:

The Book of Jonah
Chapter 2, verse 8:

They that observe lying vanities forsake their own mercy.

http://lib.ommolketab.ir

There are several other ways besides those shown to use document() with two

arguments, but frankly, they are difficult to explain and are neither common nor very
useful.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

13.4 Summary

This chapter explained how you include and import stylesheets, and it discussed the difference
between the two operations. You also saw how to use the apply-imports element. The following
three ways to use document() are also the three most common ways to use the function:

document(`file.xml')

With one argument that is a string object representing a file.

document(@location)

With one argument that is a node-set containing a URI for a document.

document(`file.xml')/node

With one argument that is a string object representing a file, followed by a node-set from the
file.

In the next chapter, you'll learn more details of how to use alternative stylesheets.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 14. Alternative Stylesheets
Up to this point, the XSLT stylesheets you've seen have had the stylesheet element as their

document element and have been separate documents from the source documents. This chapter will
show you several alternatives to this model.

The first alternative is called a literal result element stylesheet. (I'll sometimes call it a literal
stylesheet in this book, just to be brief.) This simplified stylesheet (as XSLT 2.0 calls it), in essence,
has a literal result element as its document element rather than stylesheet. You can read more

about this kind of stylesheet in Section 2.3 of the XSLT specification.

The second alternative is called an embedded stylesheet, which embeds an XSLT stylesheet in the
same document that it transforms. It's a sort of self-contained source and stylesheet combined. This
requires the use of the id attribute on the stylesheet element. See Section 2.7 of the XSLT

specification for more information on embedded stylesheets.

In addition, this chapter will discuss the namespace-alias element. This element allows you to swap

a namespace aliased in a stylesheet with a different one in the result. You'll also see how to exclude
unneeded namespaces with the exclude-result-prefixes attribute.

The opening example shows you how to use a literal stylesheet.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

14.1 A Literal Result Element Stylesheet

Tired of the same old stylesheet? You can try a literal result element stylesheet. The original design
idea behind a literal stylesheet was to provide a simple subset of XSLT for non-programmers who
want to write fill-in-the-blank HTML pages.

First, we need something to transform. The document scand.xml found in examples/ch14 will do fine:

<?xml version="1.0" encoding="UTF-8"?>

<europe>
 <scandinavia>
 <state>Finland</state>
 <state>Sweden</state>
 <state>Iceland</state>
 <state>Norway</state>
 <state>Denmark</state>
 </scandinavia>
</europe>

This document is just a short list of the five Scandinavian countries in northern Europe. The following
simplified XML literal stylesheet, literal.xsl, transforms scand.xml:

<?xml version="1.0" encoding="UTF-8"?>

<scandinavia xsl:version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:for-each select="europe/scandinavia/state">
 <country><xsl:value-of select="."/></country>
 </xsl:for-each>
</scandinavia>

There is no stylesheet element (I already mentioned that it would be absent in a literal stylesheet).
You can't even find a template element. The reason why there are no template elements found in a

literal stylesheet is because a literal stylesheet cannot contain any top-level XSLT elements. This
means that elements such as template, import, include, and output aren't allowed in literal

stylesheets.

A literal stylesheet, in fact, works like a single, implicit template element that matches the root node
(/). Only instructions elements like for-each, value-of, and copy-of will work inside this implicit
template. This stylesheet uses for-each to march through all the state nodes in the source tree.

An important trick to making a literal stylesheet work is to use the xsl:version attribute on the
document element together with the namespace declaration for XSLT using xmlns:xsl. With the
xsl:version attribute and the XSLT namespace declaration in place, an XSLT processor will know

how to interpret instruction elements from the XSLT namespace that it may find later in the
document.

http://lib.ommolketab.ir

To see how it works, transform scand.xml with the literal stylesheet using the following command
line:

xalan -i 1 scand.xml literal.xsl

This transformation will give you this result:

<?xml version="1.0" encoding="UTF-8"?>
<scandinavia>
 <country>Finland</country>
 <country>Sweden</country>
 <country>Iceland</country>
 <country>Norway</country>
 <country>Denmark</country>
</scandinavia>

14.1.1 Pull and Push Stylesheets

Because they are limited by having only one template, literal stylesheets are reserved for pull
transformations. A pull stylesheet might have one template rule that grabs input from the source tree
with value-of or for-each in the order that is declared in the stylesheet, regardless of input order,

but it will have few, if any, other template rules. A push stylesheet, on the other hand, uses lots of
template rules and apply-templates so that the order of input, rather than the stylesheet,

determines the order of the output.

It's hard to get apply-templates to work in a literal stylesheet. You can't use the select or mode

attributes to select another template, because you have only one template (the implicit one that
matches /). If you use apply-templates without an attribute, the literal stylesheet will process all

the children of the root node, which may not be what you want. As a general rule, then, I suggest
avoiding apply-templates in literal stylesheets.

Now on to an XHTML literal stylesheet that you can easily see in a browser.

14.1.2 A Literal XHTML Stylesheet

The literal stylesheet xhtmlit.xsl has the html element as its document element:

<?xml version="1.0" encoding="UTF-8"?>

<html xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">
<body>
<h3>Scandanavian Countries</h3>

 <xsl:for-each select="europe/scandinavia/state">
 <xsl:value-of select="."/>
 </xsl:for-each>

</body>
</html>

http://lib.ommolketab.ir

This stylesheet uses xsl:version and declares the XSLT namespace in its document element. It also

declares the XHTML namespace as the default namespace (with no prefix). After some common
XHTML elements, the stylesheet uses for-each to print list items from the state nodes in the

source.

xhtmlit.xsl will not display directly in a browser; you have to transform it into
regular HTML before it will display properly.

Process scand.xml with this stylesheet using the following:

xalan -i 1 -o scand.html scand.xml xhtmlit.xsl

This saves the file scand.html in the local directory. It looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <h3>Scandanavian Countries</h3>

 Finland
 Sweden
 Iceland
 Norway
 Denmark

 </body>
</html>

Figure 14-1 shows you how scand.html looks in the Netscape browser.

Figure 14-1. scand.html in the Netscape browser

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

14.2 An Embedded Stylesheet

Using a few tweaks and techniques, you can also embed a stylesheet in a document so that it's all stored in
one package. An embedded stylesheet is a good idea when it's suitable to store both source and stylesheet
in one convenient location. It's a convenience for situations when you write a stylesheet that will always be
used with the same XML document, and it is distinct from stylesheets that might process a family of XML
documents.

The stylesheet scandinavia.xml , shown in Example 14-1 , uses this method to produce default HTML
output.

Example 14-1. An XML document with an embedded stylesheet

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="#scand" type="text/xsl"?>
<!DOCTYPE europe [
 <!ATTLIST xsl:stylesheet id ID #IMPLIED>
]>

<europe>
 <scandinavia>
 <state>Finland</state>
 <state>Sweden</state>
 <state>Iceland</state>
 <state>Norway</state>
 <state>Denmark</state>
 </scandinavia>

<!-- embedded stylesheet -->

<xsl:stylesheet id="scand" version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="europe">
 <xsl:apply-templates select="scandinavia"/>
</xsl:template>

<xsl:template match="scandinavia">
 <html>
 <head><title>Scandanavian European States</title></head>
 <style type="text/css">
 h3,h4 {color: gray}
 body {font-family: sans-serif}
 span {color: red}
 </style>
 <body>
 <h3>Alphabetical List of Scandanavian European States</h3>

http://lib.ommolketab.ir

 <h4>Total Number of States:<xsl:text> </xsl:text>
 <xsl:value-of select="count(state)"/></h4>

 <xsl:apply-templates select="state">
 <xsl:sort/>
 </xsl:apply-templates>

 </body>
 </html>
</xsl:template>

<xsl:template match="state">
 <xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>

</europe>

What's a stylesheet doing inside a source document? This works because of the id attribute on the
stylesheet element. The scandinavia.xml document has an XML stylesheet PI at the top. It's href
pseudoattribute contains a relative fragment identifier, #scand , and the fragment identifier refers to the
value of the id attribute on stylesheet . That's the trick that makes the transformation happen.

Note also that the id attribute is declared in the internal subset DTD. This is required by most processors in

order for an embedded stylesheet to work. (Xalan and the XSLT processor in Mozilla work without it, for
example, but others, such as Saxon, do not.)

One other thing to note is that the complete stylesheet lives inside the document element of the source
document (europe). The stylesheet can be at the top, bottom or middle of the source tree. The exact

location within the document element doesn't matter, as long as the stylesheet resides within the document
element.

Try it using the -a option with Xalan (this option works with Saxon, too). The -a option instructs the XSLT

processor to find the stylesheet using the XML stylesheet PI:

xalan -i 1 -a scandinavia.xml

Here's the result you'll see:

<html>
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Scandanavian European States</title>
 </head>
 <style type="text/css">
 h3,h4 {color: gray}
 body {font-family: sans-serif}
 span {color: red}
 </style>
 <body>
 <h3>Alphabetical List of Scandanavian European States</h3>
 <h4>Total Number of States: 5

http://lib.ommolketab.ir

 </h4>

 Denmark
 Finland
 Iceland
 Norway
 Sweden

 </body>
</html>

Because scandinavia.xml has an XML stylesheet PI, you can load the file directly with a browser that
supports client-side XSLT such as Mozilla, Mozilla Firebird, and Netscape. The transformation will occur
automatically, as it does in Netscape, shown in Figure 14-2 .

Figure 14-2. scandinavia.xml in Netscape

Loading an XML document with an embedded stylesheet does not work in IE 6.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

14.3 Aliasing a Namespace

Another area of interest is namespace aliasing. This is a feature that allows you to use one
namespace in the stylesheet and then swap it with another in the result tree. This is done with the
namespace-alias element.

namespace-alias makes the most sense if you are designing stylesheets

whose purpose is to generate other stylesheets. You can achieve the same
effect, however, by using element in place of literal result elements, as in
<xsl:element name="xsl:stylesheet">.

The namespace-alias element may appear on the top level of a stylesheet. It has two attributes:
stylesheet-prefix, which contains a prefix associated with a namespace in the stylesheet, and
result-prefix, which holds a prefix also declared in the stylesheet but to be output in the result

tree. If you want to refer to a default namespace declaration instead of a prefix, you can use
#default as a value for either of these attributes. All this will make more sense with a practical

example.

The stylesheet alias.xsl uses the namespace-alias element:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="urn:wyeast-net:scandinavia"
 xmlns:sc="http://www.wyeast.net/scand">
<xsl:output method="xml" indent="yes" encoding="ISO-8859-1"/>
<xsl:namespace-alias stylesheet-prefix="sc" result-prefix="#default"/>

<xsl:template match="europe">
 <xsl:apply-templates select="scandinavia"/>
</xsl:template>

<xsl:template match="scandinavia">
 <sc:scandinavia>
 <xsl:apply-templates select="state">
 <xsl:sort/>
 </xsl:apply-templates>
 </sc:scandinavia>
</xsl:template>

<xsl:template match="state">
 <sc:country><xsl:value-of select="."/></sc:country>
</xsl:template>

</xsl:stylesheet>

The stylesheet produces XML. The literal result elements in the templates are prefixed with sc, which

http://lib.ommolketab.ir

is associated with the namespace URI http://www.wyeast.net/scand. A default namespace is also
declared using the URN urn:wyeast-net:scandanavia, but it isn't used in the stylesheet-it's

intended for use in the result.

To demonstrate how this process works, apply alias.xml to scand.xml with MSXSL:

msxsl scand.xml alias.xsl

Here is the output from this transformation:

<?xml version="1.0" encoding="ISO-8859-1"?>
<scandinavia xmlns="urn:wyeast-net:scandinavia">
<country>Denmark</country>
<country>Finland</country>
<country>Iceland</country>
<country>Norway</country>
<country>Sweden</country>
</scandinavia>

With MSXSL, the sc prefix is dropped in the resulting elements. The default namespace urn:wyeast-
net:scandinavia is used instead of the namespace associated with the sc prefix, that is,
http://www.wyeast.net/scand. This is what I expected a processor to do, having read the spec on

the issue (Section 7.1.1). Now, if you perform the same transformation with Xalan:

xalan scand.xml alias.xsl

you get a different result:

<sc:scandinavia xmlns="urn:wyeast-net:scandinavia"
 xmlns:sc="urn:wyeast-net:scandinavia">
<sc:country>Denmark</sc:country>
<sc:country>Finland</sc:country>
<sc:country>Iceland</sc:country>
<sc:country>Norway</sc:country>
<sc:country>Sweden</sc:country>
</sc:scandinavia>

With Xalan, the prefix is retained in the output. The main difference is that the default namespace in
the stylesheet is now associated with the prefix sc. Frankly, the MSXSL interpretation seems more

logical to me, but the functionality displayed by Xalan and other processors like Saxon appear to be
the norm.

XSLT never specifies exactly what the prefix for elements and attributes in the
result should be; it specifies only the namespace URI. A processor can use any
prefix it likes. In most cases, XSLT processors choose the obvious prefix. But
with namespace-alias, processors tend to choose a prefix that is convenient,

hence giving varied results.

The most common reason to use namespace-alias is probably to create XSLT elements in the result

tree. Without aliasing, any XSLT element will be interpreted as just that, an XSLT element.
Sometimes, you just want to create XSLT elements in the result tree, and namespace aliasing will let

http://www.wyeast.net/scand
http://www.wyeast.net/scand
http://lib.ommolketab.ir

you do it.

You can see how this works in Example 14-2, which shows the stylesheet xslt.xsl.

Example 14-2. A stylesheet using namespace aliasing

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="urn:wyeast-net:scandanavia"
 xmlns:sc="http://www.wyeast.net/scand"
 xmlns:t="http://www.wyeast.net/temp">
<xsl:output method="xml" indent="yes" encoding="ISO-8859-1"/>
<xsl:namespace-alias stylesheet-prefix="t" result-prefix="xsl"/>

<xsl:template match="europe">
 <t:stylesheet version="1.0">
 <t:output method="xml" indent="yes" encoding="ISO-8859-1"/>
 <t:namespace-alias stylesheet-prefix="sc" result-prefix="#default"/>
 <xsl:text>

</xsl:text>
 <t:template match="{name()}">
 <t:apply-templates select="scandinavia"/>
 </t:template>
 <xsl:text>
</xsl:text>

 <xsl:apply-templates select="scandinavia"/>

 <xsl:apply-templates select="scandinavia/state[1]"/>

 <xsl:text>
</xsl:text>

 </t:stylesheet>

</xsl:template>

<xsl:template match="scandinavia">
<xsl:text>
</xsl:text>
 <t:template match="{name()}">
 <sc:scandinavia>
 <t:apply-templates select="state">
 <t:sort/>
 </t:apply-templates>
 </sc:scandinavia>
 </t:template>
<xsl:text>
</xsl:text>
</xsl:template>

<xsl:template match="state">
<xsl:text>
</xsl:text>
 <t:template match="{name()}">
 <sc:country>
 <t:value-of select="."/>
 </sc:country>

http://lib.ommolketab.ir

 </t:template>
<xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

Now apply it to scand.xml with MSXSL:

msxsl -o newalias.xsl scand.xml xslt.xsl

When you look at newalias.xsl, you will see the following output, which is nearly identical to alias.xsl:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns="urn:wyeast-net:scandanavia" xmlns:sc="
http://www.wyeast.net/scand" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="ISO-8859-1" />
<xsl:namespace-alias stylesheet-prefix="sc" result-prefix="#default" />

<xsl:template match="europe">
<xsl:apply-templates select="scandinavia" />
</xsl:template>

<xsl:template match="scandinavia">
<sc:scandinavia>
<xsl:apply-templates select="state">
<xsl:sort />
</xsl:apply-templates>
</sc:scandinavia>
</xsl:template>

<xsl:template match="state">
<sc:country>
<xsl:value-of select="." />
</sc:country>
</xsl:template>

</xsl:stylesheet>

The stylesheet effectively scanned the document and created a new stylesheet based on what it
found. To complete the circle, now transform scand.xml with newalias.xsl:

msxsl scand.xml newalias.xsl

You'll get the same result you got with alias.xsl:

<?xml version="1.0" encoding="ISO-8859-1"?>
<scandinavia xmlns="urn:wyeast-net:scandanavia">
<country>Denmark</country>
<country>Finland</country>
<country>Iceland</country>
<country>Norway</country>
<country>Sweden</country>
</scandinavia>

http://www.wyeast.net/scand" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
http://lib.ommolketab.ir

Namespace aliasing, as you can see, is useful when you want to create new stylesheets from your old
stylesheets.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

14.4 Excluding Namespaces

Sometimes you will find that the result document contains namespace declarations that you don't
want. You can use XSLT's exclude-result-prefixes attribute on the stylesheet element or
xsl:exclude-result-prefixes on literal result elements to exclude such declarations from the

result.

This attribute contains a whitespace-separated list of one or more namespace prefixes that you want
to exclude from the result tree, provided that the namespace is not actually used. In other words,
you can use this attribute to keep superfluous namespaces defined in the stylesheet from reaching
the result tree. Any namespace node found in the stylesheet gets copied to the result.

The exclude-result-prefixes attribute affects only namespaces copied by

literal result elements.

The stylesheet exclude.xsl shows you how to use this attribute:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sc="http://www.wyeast.net/scand"
 xmlns:scand="http://www.wyeast.net/scandinavia"
 xmlns:nr="http://www.wyeast.net/scandinavia"
 exclude-result-prefixes="scand nr">
<xsl:output method="xml" indent="yes" encoding="ISO-8859-1"/>

<xsl:template match="europe">
 <xsl:apply-templates select="scandinavia"/>
</xsl:template>

<xsl:template match="scandinavia">
 <sc:scandinavia>
 <xsl:apply-templates select="state">
 <xsl:sort/>
 </xsl:apply-templates>
 </sc:scandinavia>
</xsl:template>

<xsl:template match="state">
 <sc:country><xsl:value-of select="."/></sc:country>
</xsl:template>

</xsl:stylesheet>

On the stylesheet element, two namespaces are declared,
xmlns:scand="http://www.wyeast.net/scandinavia" and

http://lib.ommolketab.ir

xmlns:nr="http://www.wyeast.net/scandinavia". They are desired in the stylesheet but are

unnecessary in the result document. These namespaces are not written to the result tree because of
the presence of the exclude-result-prefixes on stylesheet with scand and nr in its value.

See this attribute in action by performing the transformation:

xalan scand.xml exclude.xsl

which gives this result:

<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:scandinavia xmlns:sc="http://www.wyeast.net/scand">
<sc:country>Denmark</sc:country>
<sc:country>Finland</sc:country>
<sc:country>Iceland</sc:country>
<sc:country>Norway</sc:country>
<sc:country>Sweden</sc:country>
</sc:scandinavia>

You get only the needed namespace. Without the exclude-result-prefixes attribute, all the
namespaces nodes on the stylesheet element would be included in the result tree.

You can also use xsl:exclude-result-prefixes (when properly prefixed) on literal result elements.

Example 14-3 shows an example, the stylesheet excludeonlit.xsl.

Example 14-3. An XSLT stylesheet that excludes some prefixes

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sc="http://www.wyeast.net/scand">
<xsl:output method="xml" indent="yes" encoding="ISO-8859-1"/>

<xsl:template match="europe">
 <xsl:apply-templates select="scandinavia"/>
</xsl:template>

<xsl:template match="scandinavia">
 <sc:scandinavia
 xmlns:scand="http://www.wyeast.net/scandinavia"
 xmlns:nr="http://www.wyeast.net/scandinavia"
 xsl:exclude-result-prefixes="scand nr">

 <xsl:apply-templates select="state">
 <xsl:sort/>
 </xsl:apply-templates>
 </sc:scandinavia>
</xsl:template>

<xsl:template match="state">
 <sc:country><xsl:value-of select="."/></sc:country>
</xsl:template>

</xsl:stylesheet>

http://lib.ommolketab.ir

When used with scand.xml, you will get the same result with excludeonlit.xsl that you did with
exclude.lit.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

14.5 Summary

There is more than one way to write a stylesheet. In addition to the traditional way, you can also
create a stylesheet using literal result elements, though you get only one implicit template in such a
case. Embedded stylesheets let you include a stylesheet within a source document. The namespace-
alias element helps you hoodwink an XSLT processor, letting you, among other things, create XSLT

elements in templates for inclusion on the result tree. You can also keep unnecessary namespace
nodes out of a result tree with exclude-result-prefixes.

Now, on to an entirely different subject. Conveniently, XSLT lets itself be extended, allowing you to
add your features or use someone else's enhancements. The next chapter covers XSLT extensions.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 15. Extensions
Extensibility defines the ways in which a language can be extended. XSLT is extensible, meaning that
if you are a programmer, you can add your own functionality to a processor in the form of extension
elements, attributes, and functions. The developers of XSLT realized that they couldn't please
everyone with their first shot (who can?), so they made it possible for developers to both add
features to their XSLT processors independently, and to share those features with others.

If you aren't going to write your own extensions, you still have a lot of extensions available to you
through other processors. Most processors offer their own internal extensions, such as Xalan and
Saxon. The EXSLT group also provides a number of extensions that can be supported directly by a
processor or by pure XSLT 1.0 processors (see http://www.exslt.org). EXSLT organizes its extensions
into modules, such as math and string modules. You can submit extension implementations and
proposals to EXSLT; Xalan and Saxon also provide means to add your own external extensions and
then integrate them in with the existing processor.

The EXSLT effort attempts to standardize and unify all XSLT 1.0 extensions. Saxon, for example, now
implements many, but not all, EXSLT extension functions. It is good practice to use EXSLT extensions
when available, if your processor supports them. It may be easier, however, to simply use a
proprietary extension offered by your processor. XSLT 2.0 and XPath 2.0, discussed in the next
chapter, offer many more functions than their predecessors, and will likely be the most successful at
unifying previous extensions to XSLT 1.0 and XPath 1.0.

In this chapter, I'll provide a sample of available extensions and, to get you started, show you how to
use some of them. This will include how to use the extension-element-prefixes attribute on the
stylesheet element. I'll also show you how to test for extension availability and provide for fallback
behavior using the fallback and message elements. In the first part of the chapter, I'll list extension

functionality offered by three sources: Xalan, Saxon, and EXSLT.

[Team LiB]

http://www.exslt.org
http://lib.ommolketab.ir

[Team LiB]

15.1 Xalan, Saxon, and EXSLT Extensions

It would be overwhelming to list all available extensions from just these three sources. Thus, I have
chosen to show a sampling of what's available from Xalan, Saxon, and EXSLT. Most processors offer
their own documented extensions, but I will deal only with a handful of those offered by Saxon and
EXSLT. Xalan offers only a few extension functions, so I'll show all those. The following tables list a
number of extensions available from these sources.

Xalan C++ currently supports six internal extension functions, but it also has support for several
EXSLT modules: common, math, set, and string (see http://xml.apache.org/xalan-
c/extensionslib.html). Table 15-1 shows the extension functions that Xalan C++ offers directly.

Xalan Java provides a different set of extensions than Xalan C++, including a
set of SQL extensions. See http://xml.apache.org/xalan-j/extensionslib.html for
more information.

Table 15-1. Sample of Xalan C++ extension functions

Extension Description

xalan:difference(node-set1, node-
set2)

Returns a node-set from nodes that exist in one node-
set but not in another.

xalan:distinct(node-set)
Returns a node-set that contains nodes with distinct
string values.

xalan:evaluate(xpath-expression)
Evaluates an XPath expression supplied at runtime as a
string.

xalan:hasSameNodes(node-set1, node-
set2)

Returns true if the two node-sets contain exactly the
same set of nodes.

xalan:intersection(node-set1, node-
set2)

Returns a node-set from nodes that exist in two different
node-sets.

xalan:nodeset(result-tree-
fragment)

Returns a node-set from a result tree fragment defined
in a variable.

The current release of Saxon at the time of this writing (7.7 or later) provides partial support for
XSLT 2.0 plus a large number of extension attributes, elements, and functions (see
http://saxon.sourceforge.net/ for more information). Other versions of Saxon, such as Instant Saxon
6.5.3, support only XSLT 1.0. As for EXSLT, Saxon supports the common, math, sets, dates/times,
and functions modules. Some of Saxon's direct extensions are listed in Table 15-2.

http://xml.apache.org/xalan-
http://xml.apache.org/xalan-j/extensionslib.html
http://saxon.sourceforge.net/
http://lib.ommolketab.ir

Table 15-2. Sample of Saxon extensions

Extension Type Description

saxon:assignable
Attribute (variable

element only)
Indicates whether a variable may have
a new value assigned.

saxon:indent-spaces
Attribute (output or
saxon:output element

only)

Sets the number of indentation spaces
used on the result tree.

saxon:assign Element
Assigns a new value to an assignable
variable.

saxon:output Element
Outputs an additional result tree,
saving it as a file.

saxon:while Element
Iterates through a loop while a
condition is true.

saxon:distinct(node-set-1,
stored-expression?)

Function

Returns a node-set of nodes not
duplicated in the optional stored-
expression (current node list if not
present).

saxon:evaluate(string) Function Evaluates an XPath expression.

saxon:has-same-nodes(node-
set-1, node-set-2)

Function
Returns true if the two node-sets
contain exactly the same set of nodes.

saxon:line-number() Function
Returns the line number of the current
node in the source tree.

EXSLT currently proffers 74 extensions, most of them functions. Many of the functions offer a pure
XSLT 1.0 solution using the call-template element that is using with-param children. Table 15-3

lists a single sample from each of the eight modules.

Table 15-3. Sample of EXSLT extensions

Extension Module Type Description

date:date()
Date and
time

Function Returns the current date.

dyn:evaluate(string) Dynamic Function Evaluates an XPath expression.

exsl:node-set(object) Common Function
Returns a node-set from a result tree
fragment defined in a variable.

func:function Functions Element Declares an extension function.

math:lowest(node-set) Math Function Returns the lowest value from a node-set.

http://lib.ommolketab.ir

Extension Module Type Description

regexp:test(string,
string, string?)

Regular
expressions

Function

Returns true if the string in the first
argument matches the regular expression in
the second argument (the third argument is
an optional flag).

set:difference(node-
set, node-set)

Sets Function
Returns a node-set from nodes that exist in
one node-set but not in another.

str:tokenize(string,
string?)

Strings Function
Breaks a string into tokens (the second
argument is an optional delimiter).

Although these tables list only a sample of what's available, you may have noticed that there are
some extensions that are implemented by more than one processor-the distinct() extension

function, for example, is supported by both Xalan and Saxon. In XSLT 2.0, this extension function
has evolved into the fn:distinct-values() function. You can learn more about these functions in

the W3C specification for XPath 2.0 (and XQuery 1.0) functions and operators at
http://www.w3.org/TR/xpath-functions/. You will also get an introduction to XSLT 2.0 and XPath 2.0
in Chapter 16.

[Team LiB]

regexp:test(string,
string, string?)

Regular
expressions

Function

Returns true if the string in the first
argument matches the regular expression in
the second argument (the third argument is
an optional flag).

set:difference(node-
set, node-set)

Sets Function
Returns a node-set from nodes that exist in
one node-set but not in another.

str:tokenize(string,
string?)

Strings Function
Breaks a string into tokens (the second
argument is an optional delimiter).

Although these tables list only a sample of what's available, you may have noticed that there are
some extensions that are implemented by more than one processor-the distinct() extension

function, for example, is supported by both Xalan and Saxon. In XSLT 2.0, this extension function
has evolved into the fn:distinct-values() function. You can learn more about these functions in

the W3C specification for XPath 2.0 (and XQuery 1.0) functions and operators at
http://www.w3.org/TR/xpath-functions/. You will also get an introduction to XSLT 2.0 and XPath 2.0
in Chapter 16.

[Team LiB]

http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/
http://lib.ommolketab.ir

[Team LiB]

15.2 Using a Saxon Extension Attribute

Remember how Xalan's -i option lets you set the exact number of spaces to indent child elements in

the result tree? Saxon offers the same ability, but through an extension attribute, which goes in the
stylesheet, rather than as a command-line option. As I walk you through this first extension example,
I'll point out the basic requirements for getting a vendor extension to work.

Example 15-1, the sloppily indented document keywords.xml, in examples/ch15, contains a
nonalphabetical list of keywords from Version 2.3 of the Python programming language.

Example 15-1. Python keywords in XML

<?xml version="1.0"?>

<python version="2.3">
 <keyword>while</keyword>
<keyword>continue</keyword>
 <keyword>def</keyword>
 <keyword>elif</keyword>
 <keyword>except</keyword>
 <keyword>from</keyword>
 <keyword>del</keyword>
 <keyword>break</keyword>
 <keyword>print</keyword>
 <keyword>exec</keyword>
 <keyword>raise</keyword>
 <keyword>finally</keyword>
 <keyword>global</keyword>
 <keyword>if</keyword>
 <keyword>and</keyword>
 <keyword>is</keyword>
 <keyword>else</keyword>
 <keyword>import</keyword>
<keyword>in</keyword>
 <keyword>lambda</keyword>
 <keyword>not</keyword>
 <keyword>for</keyword>
 <keyword>class</keyword>
 <keyword>pass</keyword>
 <keyword>return</keyword>
 <keyword>try</keyword>
 <keyword>yield</keyword>
 <keyword>or</keyword>
 <keyword>assert</keyword>
</python>

Example 15-2, the stylesheet indent.xsl, aims to clean this document to make it more presentable.

http://lib.ommolketab.ir

To do part of the job, it uses Saxon's extension attribute saxon:indent-spaces that was mentioned

in Table 15-2.

Example 15-2. A stylesheet using a Saxon extension function

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:saxon="http://icl.com/saxon" extension-element-prefixes="saxon">
<xsl:output method="xml" saxon:indent-spaces="2" indent="yes"/>
<xsl:strip-space elements="*"/>

<xsl:template match="python">
<xsl:copy>
 <xsl:attribute name="version"><xsl:value-of select="@version"/></xsl:attribute>
 <xsl:apply-templates>
 <xsl:sort/>
 </xsl:apply-templates>
</xsl:copy>
</xsl:template>

<xsl:template match="keyword">
 <xsl:copy-of select="."/>
</xsl:template>

</xsl:stylesheet>

There are two things you need to know before you can get saxon:indent-spaces to work:

You must declare the Saxon namespace with a prefix.1.

You must register the namespace as an extension namespace.2.

You are already familiar with the first step. The namespace name or URI http://icl.com/saxon is
associated with the prefix saxon. You can use whatever prefix you want, but saxon is commonly used

probably because it appears in the Saxon documentation. The namespace URI is important, too. This
U R I -http://icl.com/saxon-works with Instant Saxon Version 6.5.3. (Later versions of Saxon use
http://saxon .sf.net/, but it won't work with Instant Saxon.)

Instant Saxon 6.5.3 is an XSLT 1.0 processor. Saxon 7.7 or greater is a partial
implementation of XSLT 2.0. Many of Saxon extensions from earlier, 6.X
versions have not been carried forward because these extensions have been
incorporated into other functionality in XSLT 2.0.

The second step is new to you, or at least I haven't mentioned it yet: you must notify the processor
of those namespaces that are used for extension elements (not attributes or functions) by supplying
one or more whitespace-separated prefixes in the value of the extension-element-prefixes

attribute. Once you have taken care of these two steps, you can start using extensions in your
stylesheet and have confidence that they will be recognized as such.

The saxon:indent-spaces attribute appears on the output element. This attribute accepts an

http://icl.com/saxon
http://icl.com/saxon
http://saxon .sf.net/
http://lib.ommolketab.ir

integer value, which represents the number of space characters that will be used to indent child
elements in a result tree. In order to work correctly, the indent attribute must also be specified on
output with a value of yes.

When you process keywords.xml with this stylesheet:

saxon keywords.xml indent.xsl

the output, shown in Example 15-3, is nicely indented by two spaces, thanks to Saxon's extension
attribute.

Example 15-3. Formatted results produced by the saxon:indent-spaces
attribute

<?xml version="1.0" encoding="utf-8"?>
<python version="2.3">
 <keyword>and</keyword>
 <keyword>assert</keyword>
 <keyword>break</keyword>
 <keyword>class</keyword>
 <keyword>continue</keyword>
 <keyword>def</keyword>
 <keyword>del</keyword>
 <keyword>elif</keyword>
 <keyword>else</keyword>
 <keyword>except</keyword>
 <keyword>exec</keyword>
 <keyword>finally</keyword>
 <keyword>for</keyword>
 <keyword>from</keyword>
 <keyword>global</keyword>
 <keyword>if</keyword>
 <keyword>import</keyword>
 <keyword>in</keyword>
 <keyword>is</keyword>
 <keyword>lambda</keyword>
 <keyword>not</keyword>
 <keyword>or</keyword>
 <keyword>pass</keyword>
 <keyword>print</keyword>
 <keyword>raise</keyword>
 <keyword>return</keyword>
 <keyword>try</keyword>
 <keyword>while</keyword>
 <keyword>yield</keyword>
</python>

The keyword elements are also sorted alphabetically, so the result is certainly more attractive than

the source.

http://lib.ommolketab.ir

The Full Java Version of Saxon

Instant Saxon won't work if you are working on a Unix platform or on a Windows platform
that doesn't have the Java Virtual Machine (JVM) installed. (Windows XP, for example,
does not install a JVM by default.) You can use the full Java version on the command line
instead. Assuming that the JAR file for Saxon Version 6.5.3 is available in the current
directory (saxon.jar), and that a Java Runtime Environment (JRE 1.2 or later) is installed

on your system, you can perform the transformation on keywords.xml using this line:

java -jar saxon.jar keywords.xml indent.xsl

This should give you the same result you saw earlier. If the terms Java, JAR file, and
runtime environment make you queasy, don't worry: just go to the appendix where you
will find all the information you need to download and install Saxon and get Sun's Java
interpreter as well. You'll learn about how to use other processors there, too.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

15.3 Result Tree Fragment to Node-Set

As you learned in Chapter 7, a variable can hold a special XSLT type called a result tree fragment.
Such a fragment can hold XML nodes, but it isn't natively treated as a node-set. Nonetheless, with
Xalan's node-set() function or Saxon's nodeset(), you can cast a result tree fragment as a node-
set and manipulate it as such. The following example will apply node-set() from Xalan (note,

however, that many processors now provide the EXSLT version of this function for portability).

Consider the document escapes.xml, which lists most of the string escapes offered by Python Version
2.3:

<?xml version="1.0"?>

<python version="2.3">
 <escape purpose="bell">\a</escape>
 <escape purpose="backspace">\b</escape>
 <escape purpose="formfeed">\f</escape>
 <escape purpose="newline">\n</escape>
 <escape purpose="carriage return">\r</escape>
 <escape purpose="horizontal tab">\t</escape>
 <escape purpose="vertical tab">\v</escape>
</python>

There are a few escapes missing from this list. The stylesheet node-set.xsl supplies the missing nodes
in a result tree fragment, as shown in Example 15-4.

Example 15-4. Using the Xalan nodeset function to convert result tree
fragments into node-sets

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xalan="http://xml.apache.org/xalan" exclude-result-prefixes="xalan">
<xsl:output method="xml" indent="yes"/>
<xsl:variable name="frag">
<python>
 <description>Python 2.3 String Escapes</description>
 <escape purpose="ignore EOL">\</escape>
 <escape purpose="backslash">\\</escape>
 <escape purpose="octal value">\ddd</escape>
 <escape purpose="hexadecimal">\xXX</escape>
 <escape purpose="other">\other</escape>
 <escape purpose="single quote">\'</escape>
 <escape purpose="double quote">\"</escape>
</python>
</xsl:variable>

<xsl:template match="python">
 <xsl:copy>

http://lib.ommolketab.ir

 <xsl:copy-of select="xalan:nodeset($frag)/python/*"/>
 <xsl:apply-templates select="escape"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="escape">
 <xsl:copy-of select="."/>
</xsl:template>

</xsl:stylesheet>

The Xalan namespace and prefix are set up for use on the stylesheet element. Following that is a
variable definition that contains a result tree fragment. It contains the Python string escapes

missing from escapes.xml.

In the template matching python, the python element is copied into the result tree from the source
tree, then copy-of uses xalan:node-set() in an expression to copy the result tree fragment with
the node-set. Yes, copy-of could copy a result tree fragment into the result tree, but xalan:node-
set() allows you to manipulate the fragment as a node-set. That's why it's possible to follow the
function call with the XPath location steps /python/*, which grabs all the escape children in the

fragment.

Although the function is called xalan:node-set(), and the type of object the

function returns is a node-set, the node-set that a result tree fragment contains
is always a single root node, no matter what processor or extension you use. In
this example, the python element is a child of this root node in the fragment.
To demonstrate this, try doing count(xalan:node-set($frag))-the result

will be 1, regardless of the contents of the fragment.

The second template copies all the escape nodes in the source tree into the result tree, joining them
with nodes cast from frag. The following command:

xalan -i 2 escapes.xml node-set.xsl

gives you this combined output:

<?xml version="1.0" encoding="UTF-8"?>
<python>
 <description>Python 2.3 String Escapes</description>
 <escape purpose="ignore EOL">\</escape>
 <escape purpose="backslash">\\</escape>
 <escape purpose="octal value">\ddd</escape>
 <escape purpose="hexadecimal">\xXX</escape>
 <escape purpose="other">\other</escape>
 <escape purpose="single quote">\'</escape>
 <escape purpose="double quote">\"</escape>
 <escape purpose="bell">\a</escape>
 <escape purpose="backspace">\b</escape>
 <escape purpose="formfeed">\f</escape>
 <escape purpose="newline">\n</escape>
 <escape purpose="carriage return">\r</escape>

http://lib.ommolketab.ir

 <escape purpose="horizontal tab">\t</escape>
 <escape purpose="vertical tab">\v</escape>
</python>

That's an example of a Xalan function; now, I'll demonstrate an EXSLT function.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

15.4 Using EXSLT

You'll get to use several EXSLT extensions in the following example. Here is a simple order for oats from a feed store
represented in XML (order.xml), shown in Example 15-5 .

Example 15-5. An order for oats, in XML

<?xml version="1.0"?>

<order id="TDI-983857">
 <store>Prineville</store>
 <product>feed-grade whole oats</product>
 <package>sack</package>
 <weight std="lbs.">50</weight>
 <quantity>23</quantity>
 <price cur="USD">
 <high>5.99</high>
 <regular>4.99</regular>
 <discount>3.99</discount>
 </price>
 <ship>the back of Tom's pickup</ship>
</order>

The EXSLT extensions in Example 15-6 , the stylesheet order.xsl , augment the order with date and time.

Example 15-6. A stylesheet that does mathematical computations using the EXSLT
math functions

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:date="http://exslt.org/dates-and-times" xmlns:math="http://exslt.org/math">
<xsl:output method="xml" indent="yes" encoding="ISO-8859-1"/>
<xsl:strip-space elements="*"/>

<xsl:template match="order">
 <xsl:copy>
 <xsl:attribute name="id"><xsl:value-of select="@id"/></xsl:attribute>
 <date><xsl:value-of select="date:date()"/></date>
 <time><xsl:value-of select="date:time()"/></time>
 <xsl:copy-of select="product|package|weight|quantity"/>
 <price cur="{price/@cur}"><xsl:value-of select="math:lowest(price/*)"/></price>
 <total><xsl:value-of select="format-number(math:lowest(price/*)*quantity,'#,###.00')"/></total>
 <xsl:copy-of select="ship"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

http://lib.ommolketab.ir

Using the date:date() and date:time() functions from the dates and times module, and the math:lowest()

function from the math module, order.xsl transforms and improves upon the information in the original order.xml .
The date:date() and date:time() functions provide the system date and time to the result tree respectively.
The math:lowest() function takes a node-set as an argument. The function then selects the node having the
lowest value, in this case 3.99 .

Instant Saxon supports these EXSLT functions, so you can get results by issuing the following command:

saxon order.xml order.xsl

This will produce the following results:

<?xml version="1.0" encoding="ISO-8859-1"?>
<order id="TDI-983857">
 <date>2003-05-09</date>
 <time>09:00:39-07:00</time>
 <product>feed-grade whole oats</product>
 <package>sack</package>
 <weight std="lbs.">50</weight>
 <quantity>23</quantity>
 <price cur="USD">3.99</price>
 <total>91.77</total>
 <ship>the back of Tom's pickup</ship>
</order>

15.4.1 EXSLT's exsl:node-set Function

Like Saxon, EXSLT also has a function for converting result tree fragments into node-sets. It's called exsl:node-
set() . The enode-set.xsl stylesheet shown in Example 15-7 is very similar to node-set.xsl .

Example 15-7. A stylesheet using the EXSLT node-set() function

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:exsl="http://exslt.org/common" extension-element-prefixes="exsl">
<xsl:output method="xml" indent="yes"/>
<xsl:variable name="frag">
<python>
 <description>Python 2.3 String Escapes</description>
 <escape purpose="ignore EOL">\</escape>
 <escape purpose="backslash">\\</escape>
 <escape purpose="octal value">\ddd</escape>
 <escape purpose="hexadecimal">\xXX</escape>
 <escape purpose="other">\other</escape>
 <escape purpose="single quote">\'</escape>
 <escape purpose="double quote">\"</escape>
</python>
</xsl:variable>

<xsl:template match="python">
 <xsl:copy>

http://lib.ommolketab.ir

 <xsl:copy-of select="exsl:node-set($frag)/python/*"/>
 <xsl:apply-templates select="escape"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="escape">
 <xsl:copy-of select="."/>
</xsl:template>

</xsl:stylesheet>

The only differences are the namespace and prefix. If you apply this against escapes.xml with Saxon, you will get
the same result you got when using node-set.xsl . Saxon supports many but not all EXSLT extensions; however,
Saxon's documentation states that it prefers that users work with EXSLT's extensions over Saxon's (see
http://saxon.sourceforge.net/saxon6.5.2/extensions.html or
http://saxon.sourceforge.net/saxon7.5/extensions.html).

Many EXSLT extensions are also implemented as pure XSLT 1.0, meaning that they use imported templates in
tandem with call-template to implement the functionality (nevertheless, some extensions like node-set()
cannot be implemented in XSLT 1.0 alone). The call-template element acts as a function call. These pure

implementations, however, are several years old, and I could not get a number of them to work as advertised, try
as I may. Therefore, I won't be exploring them here.

[Team LiB]

http://saxon.sourceforge.net/saxon6.5.2/extensions.html
http://saxon.sourceforge.net/saxon7.5/extensions.html
http://lib.ommolketab.ir

[Team LiB]

15.5 Fallback Behavior

What happens if you use a stylesheet that has a Saxon extension element with another processor?
It's hard to predict what might happen, except that it's likely you'll get an error stating that the
extension element can't be found. You can prepare for this by specifying fallback behavior for
extension elements in your stylesheet using the fallback and message elements together.

fallback works only with extension elements. You can test for the availability
of extension elements with the XSLT function element-available(). To test
for extension functions, use function-available(). These functions are

demonstrated in Section 15.6, later in this chapter.

The output.xsl stylesheet shown in Example 15-8 uses the XSLT elements fallback and message to

deal with the possibility of a processor other than Saxon encountering it.

Example 15-8. A stylesheet using fallbacks

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:saxon="http://icl.com/saxon" extension-element-prefixes="saxon">
<xsl:output method="text" encoding="ISO-8859-1"/>
<xsl:strip-space elements="*"/>

<xsl:template match="python">
 <!-- to result tree as text -->
 <xsl:text>Python 2.3 Keywords

</xsl:text>
 <xsl:apply-templates select="keyword" mode="text">
 <xsl:sort/>
 </xsl:apply-templates>
 <!-- save as HTML, too -->
 <saxon:output href="keywords.html" method="html" indent="yes"
 saxon:indent-spaces="1">
 <xsl:fallback>
 <xsl:message terminate="yes">ERROR: saxon:output not available!</xsl:message>
 </xsl:fallback>
 <html>
 <body>
 <h3>Python 2.3 Keywords</h3>

 <xsl:apply-templates select="keyword" mode="html">
 <xsl:sort/>
 </xsl:apply-templates>

 </body>
 </html>
 </saxon:output>

http://lib.ommolketab.ir

</xsl:template>

<xsl:template match="keyword" mode="html">
 <xsl:value-of select="."/>
</xsl:template>

<xsl:template match="keyword" mode="text">
 <xsl:value-of select="."/>
 <xsl:choose>
 <xsl:when test="not((position() mod 5)=0) and not(position()=last())">
 <xsl:text>	</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>
</xsl:text>
 </xsl:otherwise>
 </xsl:choose>

</xsl:template>
</xsl:stylesheet>

Using the saxon:output element, this stylesheet produces two result trees: a normal result tree as
text and an additional HTML result tree saved as a file in the current directory. The saxon:output
element has many of the same attributes as XSLT's output element, such as method, indent,
encoding, and so forth. Two important differences are:

saxon:output has a required attribute, href, whose value names the filename for the
additional result tree. XSLT's output has no such attribute.

1.

saxon:output can contain a template, as you can see in output.xsl. XSLT's output is an empty

element.

2.

In the initial template, the one that matches python, some title text is created for the result tree,
then templates are applied for keyword elements in the text mode. In addition, the keyword
elements are sorted. The template whose mode is text prints a keyword, followed by a tab ()
or a linefeed (
), depending on the position of the word in the source tree.

After that, the same template (the one matching python) uses saxon:output to write an HTML
version of the result tree to the file keywords.html. It uses the saxon:indent-spaces attribute, and,
yes, it is not allowed on saxon:output without a namespace prefix. It also employs ordinary HTML
tags, sorts the keyword elements, and applies the mode html template to print list items (li).

This functionality is provided in XSLT 2.0 in a rather different form using the
new result-document instruction element. You'll learn about XSLT 2.0 and
result-document in the next chapter.

The text result tree is printed on standard output, and the HTML result is written to a file. Perform
the transformation by using:

saxon keywords.xml output.xsl

http://lib.ommolketab.ir

or using:

java -jar saxon.jar keywords.xml output.xsl

Here is the text output you will get:

Python 2.3 Keywords

and assert break class continue
def del elif else except
exec finally for from global
if import in is lambda
not or pass print raise
return try while yield

This is the HTML that is saved to keywords.html:

<html>
 <body>
 <h3>Python 2.3 Keywords</h3>

 and
 assert
 break
 class
 continue
 def
 del
 elif
 else
 except
 exec
 finally
 for
 from
 global
 if
 import
 in
 is
 lambda
 not
 or
 pass
 print
 raise
 return
 try
 while
 yield

 </body>

http://lib.ommolketab.ir

</html>

15.5.1 Invoking the Fallback Behavior

Immediately following saxon:output in output.xsl is the fallback element, followed by an
instance of message. (This isn't the first time in this book that you've seen fallback and message
working together.) A fallback element provides a fail-safe mechanism that will let you know when a
processor can't accept an extension element. You must use fallback right after an extension

element in order for it to work; it contains a template.

A message element can be used in any template, not just in fallback. It generally prints a message

to standard output, but not, however, to the result tree (this behavior-where the message
appears-is undefined in the XSLT spec, however). It has a single required attribute, terminate,
which lets you specify whether, once encountered, processing should stop. The value of terminate
must be yes or no.

You've run this stylesheet successfully with Saxon. Now you'll see what happens when you try it with
another processor. Why not try MSXSL for a switch?

msxsl keywords.xml output.xsl

This command works only on Windows, by the way. MSXSL will give you this error report:

Python 2.3 Keywords

and assert break class continue
def del elif else except
exec finally for from global
if import in is lambda
not or pass print raise
return try while yield

Error occurred while executing stylesheet 'output.xsl'.

Code: 0x80004005
ERROR: saxon:output not available!

MSXSL performed the regular transformation, but when it encountered saxon:output, it hiccupped.
If saxon:output were first in the top template, the MSXSL processor would just blurt out its error

messages, including your custom message, then terminate.

The error message that output.xsl produces, however, isn't all that different from the behavior you
would get if you didn't include fallback. An interesting case would be to write an empty fallback

element, which would silently ignore the error; then you just wouldn't get the second output file! You
can try it by transforming keywords.xml with nofall.xsl in examples/ch15 (not shown here).

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

15.6 Checking for Extension Availability

XSLT provides two functions that allow you to check for the availability of extension elements or
functions. Both the element-available() and function-available() functions take a single

argument, a string identifying the element or function by QName. Example 15-9, check.xsl, uses
both these functions in a simple way.

Example 15-9. A stylesheet testing for the availability of extensions

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:saxon="http://icl.com/saxon"
xmlns:msxsl="urn:schemas-microsoft-com:xslt"
xmlns:date="http://exslt.org/dates-and-times"
xmlns:math="http://exslt.org/math"
xmlns:xalan="http://xml.apache.org/xalan">
<xsl:output method="text" encoding="UTF-8"/>
<xsl:param name="avail"/>

<xsl:template match="/">
<xsl:choose>
 <xsl:when test="element-available($avail)">
 Element <xsl:value-of select="$avail"/> is available with this processor.
 </xsl:when>
 <xsl:when test="function-available($avail)">
 Function <xsl:value-of select="$avail"/> is available with this processor.
 </xsl:when>
 <xsl:otherwise>
 The element or function you requested is not available with this processor.
 </xsl:otherwise>
</xsl:choose>

</xsl:template>

</xsl:stylesheet>

check.xsl tests to see whether a particular extension element or function is available with a given
processor. There isn't much to this stylesheet by itself, but it could easily be included with another
stylesheet using the include mechanism.

Here's a simple test (use any XML document on the command line you like; it doesn't really matter):

saxon keywords.xml check.xsl avail=date:date

This command line tests to see if the Instant Saxon processor (saxon) can support the EXSLT
function date:date(). The result should be:

Function date:date is available with this processor.

http://lib.ommolketab.ir

Now try a Saxon extension function:

saxon keywords.xml check.xsl avail=saxon:assign

The answer is as follows:

Element saxon:assign is available with this processor.

Finally, try an MSXSL function:

saxon keywords.xml check.xsl avail=msxsl:node-set

The news you'll get back won't be unexpected:

The element or function you requested is not available with this processor.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

15.7 Summary

This chapter has highlighted a sample of extensions offered by Xalan, Saxon, and EXSLT. You learned
how to use several extensions (including an extension attribute and extension element) and several
extension functions. You also learned how to use the fallback element, along with informative

messages, which responds as directed if a processor does not support a given extension element.
You can also test for extension functions and elements using the function-available() and
element-available() functions from XSLT.

This chapter did not explore how to write your own extensions, but that's because it is beyond the
scope for an introductory text and is somewhat different for every processor. Chapter 8 in Doug
Tidwell's XSLT (O'Reilly) provides some guidance on writing extensions if you are interested in
learning how to do this.

The next chapter presents a brief introduction to XSLT 2.0 and XPath 2.0.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 16. XSLT 2.0 and XPath 2.0
Although XSLT 2.0 and XPath 2.0 are still working drafts at the time of this writing, they are nearing
completion, and there are some partial implementations available for these specs, such as Saxon 7.7
(check http://saxon.sourceforge.net for the latest version). This chapter attempts to summarize
some of the more interesting features in these specifications, and demonstrates a few of them, too.
But it won't be an exhaustive review of XSLT 2.0 or XPath 2.0, partly because these specs are still
changing, and partly because an exhaustive review would take up a whole book by itself.

The material in this chapter is based on the May 2003 working drafts of XSLT
2.0 and XPath 2.0, so it is possible that things will change in those drafts by the
time you read this.

First of all, I'll highlight some of the changes that have been made since XSLT 1.0 and XPath 1.0, and
I'll also mention a few of the features that have been added. Then I'll show you how you can put
some of this new stuff to work today.

Rather than just two specifications, as is the case with XSLT 1.0 and XPath 1.0, the next versions of
these specs are broken into five documents. Three new documents have been broken out for those
features of XSLT and XPath that also support the XML Query Language (see
http://www.w3.org/TR/xquery/).

XSL Transformations (XSLT) Version 2.0 (see http://www.w3.org/TR/xslt20/)

This evolution of the XSLT 1.0 specification is about twice as long as its predecessor. Although
it's lengthy, I think this spec is clearer than 1.0, and it even sports a glossary.

XML Path Language (XPath) 2.0 (see http://www.w3.org/TR/xpath20/)

XPath has also evolved; the data model and functions are now documented in separate
specifications.

XQuery 1.0 and XPath 2.0 Data Model (see http://www.w3.org/TR/xpath-datamodel/)

XPath has an upgraded data model that applies to XQuery as well. The terminology used to
describe the data model has been changed and refined, so although the data model for XSLT
2.0 is technically very similar to XPath 1.0, it is now described in more formal language.

http://saxon.sourceforge.net
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-datamodel/
http://lib.ommolketab.ir

XQuery 1.0 and XPath 2.0 Functions and Operators (see http://www.w3.org/TR/xpath-functions/)

Many functions that also support XQuery have been added to XPath. The function library has
tripled in size, from under 30 functions in 1.0 to over 100 in 2.0 (counting functions in all
signatures).

XSLT 2.0 and XQuery 1.0 Serialization (see http://www.w3.org/TR/xslt-xquery-serialization/)

This description of how result trees are serialized, which was previously an integral part of the
XSLT spec, has been pulled out into a separate document so that it can be used in non-XSLT
environments such as XQuery.

[Team LiB]

http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xslt-xquery-serialization/
http://lib.ommolketab.ir

[Team LiB]

16.1 New XSLT 2.0 Features

Listed below are some of the new features added to the XSLT 2.0 specification:

Terminology changes

XSLT makes a number of refinements to terminology, and a glossary is now available at the
end of the specification. For example, the term result tree fragment has been replaced by the
term temporary tree. A temporary tree is natively a sequence of nodes, obviating the need for
an extension function for node-sets to cast a result tree fragment to a node-set. Another
example: a template is now known as a sequence constructor. A sequence can contain nodes
or atomic values.

XHTML output

In addition to xml, html, and text, XSLT 2.0 adds the xhtml output method (see Section 20 of

XSLT 2.0 and Section 5 of the serialization specification).

Multiple result trees

One of the most welcome new features in XSLT 2.0 is the ability to produce multiple result
trees, rather than just one. This is accomplished through the result-document element. This
element is similar to the saxon:output element you saw in the last chapter, though it has

somewhat different attributes. You will see an example of this in Section 16.3, later in this
chapter. Also see Section 19.1 of XSLT 2.0.

Regular expressions

A regular expression describes text with a pattern made up of characters that have special
meaning within the expression. The analyze-string element, together with matching-
substring and non-matching-substring child elements, allows you to analyze a string using
a regular expression. The XPath 2.0 functions matches(), replace(), and tokenize() also

make use of regular expressions. See "Using Regular Expressions" later in this chapter for an
example. See also Section 15 of XSLT 2.0.

Validation support for XML Schema

A schema-aware XSLT processor supports validation using W3C XML Schema. This support is

http://lib.ommolketab.ir

not required, however. There is also a conformance level for a basic XSLT processor that does
not support validation. See Section 21 of XSLT 2.0. XML Schema support, in fact, goes well
beyond just validation (in the sense of rejecting invalid documents). Once a source document
has been processed by a schema, you can use information about the types of different nodes.
For example, you could write a template rule that processes any attribute of type date.

Date format

Just as numbers could be formatted with the format-number() function and the decimal-
format element in XSLT 1.0, a date may be formatted with the format-date() function used
with the date-format element. See Section 16.5 of XSLT 2.0.

Character maps

A new character map declaration using the character-map element enables a stylesheet to
support sets of characters for output. Similarly, the output-character element maps a single
character to a string for output. This functionality is an improvement over the disable-
output-escaping attribute functionality in XSLT 1.0. See Section 20.1 of XSLT 2.0.

Grouping

Using the new for-each-group element, XSLT 2.0 now offers a built-in grouping feature,

rather than depending on common yet nonstandard approaches used in XSLT 1.0. See
"Grouping in XSLT 2.0" in this chapter as well as Section 14 of XSLT 2.0.

Parameters in new places

You can pass a parameter to the template rule having the highest import precedence using
with-param as a child of the apply-imports element. You can also pass parameters using the
next-match element, which matches other template rules beside the current one (that also

happens to have the highest priority). See Section 6.7 of XSLT 2.0.

New elements

Besides those already mentioned, XSLT 2.0 adds a half dozen other elements:

function element

Defines a stylesheet function. Stylesheet functions are similar to named templates, except that
rather than invoking them using a call-template instruction, you can invoke them using a

function call anywhere in an XPath expression. This makes them more versatile than
templates-for example, you can write a function to compute a sort key.

http://lib.ommolketab.ir

import-schema element

Imports an XML Schema for validation by a schema-aware XSLT processor.

namespace element

Creates a namespace node. This is useful (in rare cases) when you need to decide at runtime
which namespaces to include in the result tree.

next-match element

Overrides a template rule with another rule of lower priority or precedence; works with the
current or imported stylesheets.

sequence element

Constructs a sequence of nodes or atomic values.

sort-key element

Declares a named sort key; holds one or more sort elements.

New attributes on existing elements

A number of new attributes appear on elements that have existed since XSLT 1.0 and are listed
here:

as attribute

Added to key, param, template, and variable, this attribute specifies the required type for

the result.

collation attribute

Identifies a named collation for ordering strings; this attribute has now been added to the key
and sort elements.

http://lib.ommolketab.ir

copy-namespaces attribute

Available on the copy and copy-of elements with a value of yes or no. The default is yes.

disable-output-escaping attribute

Now appears on attribute; it appeared only on text and value-of in XSLT 1.0.

type attribute

Appears on attribute, copy, copy-of, and element in order to associate with the item type

from a schema.

undeclare-namespaces attribute

Appears on output to specify whether to undeclare namespaces in the output. This feature

anticipates support for XML Namespaces 1.1, which allows namespaces to be undeclared.

validation attribute

Appears on attribute, copy, copy-of, and element, with one of four possible values: lax,
preserve, strict, or strip. This is closely associated with the type attribute.

New attributes on output

A number of new attributes also have been added to the output element:

escape-uri-attributes attribute

Specifies whether a processor escapes URIs in HTML and XHTML; value must be yes or no.

include-content-type attribute

Specifies whether to add a meta element in HTML and XHTML output; value must be either yes
or no.

name attribute

An output declaration may now be labeled with a name attribute. This is used in conjunction

http://lib.ommolketab.ir

with result-document which allows multiple result trees; these can either all use the same

output format or use a variety of different output formats.

normalize-unicode attribute

Indicates whether, yes or no, the Unicode output should use Normalization Form C (see

http://www.unicode.org/unicode/reports/tr15/).

use-character-maps attribute

Identifies a named character map defined by the character-map element.

That's just a few of the new features in XSLT 2.0; next, I'll discuss some of the new ones found in
XPath 2.0.

[Team LiB]

http://www.unicode.org/unicode/reports/tr15/
http://lib.ommolketab.ir

[Team LiB]

16.2 New XPath 2.0 Features

Following are just a handful of some of the new features added to the XPath 2.0 specification:

Improved terminology

XPath has tightened up its terminology, and a glossary will be available at the end of the
specification in later drafts. For example, the result of an expression is now considered a
sequence of zero or more items, and an item is either a node or an atomic value, such as an
integer, as defined by XML Schema datatypes (see http://www.w3.org/TR/xmlschema-2/). This
is much more than a terminology change. You can now have sequences of integers or strings
(there are many more datatypes) as well as sequences of nodes.

New functions

XPath 2.0 has over 100 functions, compared with 27 in XPath 1.0 (I'm counting functions with
the same name but different signatures or argument lists as one function). They are too
numerous to list in this book, but you can peruse them in the new functions and operators
specification (see http://www.w3.org/TR/xpath-functions/).

Strongly typed

XPath 2.0 has grown into a strongly typed language. It recognizes datatypes from XML Schema
and also its own datatypes, such as xdt:anyAtomicType. See Section 2.4 of XPath 2.0.

New kind tests

New kind tests are now offered that test kinds of nodes, such as document-node(), element(
), and attribute(); for example, document-node() matches the document node (root
node in XSLT 1.0). You can also test with empty() and item(). The occurrence indicators ?
(zero or one), * (zero or more), and + (one or more) are also in the mix; for example, item(
)* matches zero or more atomic values or nodes. See 2.4 in XPath 2.0.

Sequences and ranges

Sequence expressions allow you to specify a sequence of items that can be atomic values or
nodes; for example, (100, 101, 102) will return a sequence of the atomic values 100, 101,
and 102, in that order. Range expressions let you represent a range of items; for example,

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath-functions/
http://lib.ommolketab.ir

(100 to 110) is a range from 100 to 110. See Section 3.3 of XPath 2.0. You can also combine
sequences of nodes with the union, intersect, and except operators. See Section 3.3.2 of

XPath 2.0.

Comparison

XPath 2.0 adds new comparison operators, such as eq, ne, lt, le, gt, and ge, but you can still
use =, !=, < as <, <= as <=, >, and >=. The node comparison operators is and isnot
have also been added as well. Also new are << and >>, which test the order of nodes. The new

operators are stricter about the type conversions they allow, and they should be faster and
safer as a result. Strong typing means your errors are more likely to be reported at compile
time rather than simply give you the wrong output. See Section 3.5 of XPath 2.0.

For and conditional expressions

For expressions make it possible to process a range of values in one step. For example,
sum(for $i in //item return $i/price * $i/quantity) computes the sum of the value of
price times quantity over all items. See Section 3.7 in XPath 2.0. Also, you can now use a
construct such as if (value[1] gt value[2]) then value[1] else value[2] in expressions.

See Section 3.8 in XPath 2.0.

Quantified expressions

XPath 2.0 has new keywords such as some, every, and satisfies, which allow you to test for
partial or complete compliance with a given item; for example, if (every $i in //item
satisfies $i < 1000) then.... See Section 3.9 of XPath 2.0.

Working with types

You can now test whether an item is an instance of a type; you can cast as a type (change
the type) and check whether an item is castable (its type can change); for example, if ($x
castable as xs:date) tests whether the string in $x is a valid date; you can also treat as a

type (meaning temporarily treat a type as another type).

This is by no means a complete review of all the changes and additions to XSLT 2.0 or XPath 2.0-it's
just a quick discussion of a good number of them. These are working drafts; it is possible that they
will change somewhat before they become recommendations. Fortunately, you can start playing with
some of the new features today by using Saxon 7.7 (or later), which is an experimental
implementation of XSLT 2.0 and XPath 2.0. The remaining sections of this chapter will try out some
of these features, the first of which is result-document element.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

16.3 Multiple Result Trees

In the last chapter, you used the saxon:output extension element to create more than one result tree from a single stylesheet.
XSLT 2.0 has integrated this functionality into the mainstream of the specification with the result-document element. The

following example shows you how to use this element to produce three result trees from one source tree.

Example 16-1 , the document functions.xml in examples/ch16 , describes the new context-related functions from XPath 2.0.

Example 16-1. A document describing XPath 2.0 functions

<?xml version="1.0"?>

<functions type="context">
 <function>
 <name>fn:context-item()</name>
 <description>Returns the context item.</description>
 </function>
 <function>
 <name>fn:position()</name>
 <description>Returns the position of the context item within the sequence of items
currently being processed.</description>
 </function>
 <function>
 <name>fn:last()</name>
 <description>Returns the number of items in the sequence of items currently being processed.</description>
 </function>
 <function>
 <name>fn:current-dateTime()</name>
 <description>Returns the current xs:dateTime.</description>
 </function>
 <function>
 <name>fn:current-date()</name>
 <description>Returns the current xs:date.</description>
 </function>
 <function>
 <name>fn:current-time()</name>
 <description>Returns the current xs:time.</description>
 </function>
 <function>
 <name>fn:default-collation()</name>
 <description>Returns the value of the default collation property from the static context.</description>
 </function>
 <function>
 <name>fn:implicit-timezone()</name>
 <description>Returns the value of the implicit timezone property from the evaluation context.</description>
 </function>

http://lib.ommolketab.ir

</functions>

The descriptions of the functions are from the specification. The fn:position() and fn:last() functions are the same as the
position() and last() functions from XPath 1.0. The fn:context-item() function is similar to the current() function

available from XSLT 1.0 and XSLT 2.0. Usually, a context item is the same as the current item, except when a predicate is
involved.

You don't need to worry about the namespace prefix fn : for functions, because you won't need to use it

in XSLT. It's there because XPath can be used from other environments besides XSLT, and some may use
different function libraries, so it's useful to use namespaces to distinguish the functions as being from
different libraries.

Example 16-2 , the context.xsl stylesheet, produces four result trees based on functions.xml . The default result tree is text, and
the three others are for XML, HTML, and XHTML output, respectively.

Example 16-2. An XSLT 2.0 stylesheet that produces four kinds of output

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:output name="xml" method="xml" indent="yes"/>
<xsl:output name="html" method="html" indent="yes"/>
<xsl:output name="xhtml" method="html" indent="yes"/>
<xsl:param name="dir">file:///C:/LearningXSLT/examples/ch16</xsl:param>

<xsl:template match="functions">
 <xsl:text>XPath 2.0 Context Functions
</xsl:text>
 <xsl:text>Date: </xsl:text>
 <xsl:value-of select="current-date()"/>
 <xsl:text>
</xsl:text>
 <xsl:apply-templates select="function" mode="text"/>
 <xsl:result-document format="xml" href="{$dir}/context.xml">
 <xsl:message terminate="no">Printing text result tree...</xsl:message>
 <list>
 <description>XPath 2.0 Context Functions</description>
 <date><xsl:value-of select="current-date()"/></date>
 <xsl:message terminate="no">Printing XML result tree in functions.xml...</xsl:message>
 <xsl:apply-templates select="function" mode="xml"/>
 </list>
 </xsl:result-document>
 <xsl:result-document format="html" href="{$dir}/context.html">
 <xsl:message terminate="no">Printing HTML result tree in functions.html...</xsl:message>
 <html>
 <body>
 <h2>XPath 2.0 Context Functions</h2>
 <h3>Date: <xsl:value-of select="current-date()"/></h3>

 <xsl:apply-templates select="function" mode="html"/>

 </body>
 </html>

http://lib.ommolketab.ir

 </xsl:result-document>
 <xsl:result-document format="xhtml" href="{$dir}/context-x.html">
 <xsl:message terminate="no">Printing XHTML result tree in functions-x.html...</xsl:message>
 <html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <h2>XPath 2.0 Context Functions</h2>
 <h3>Date: <xsl:value-of select="current-date()"/></h3>

 <xsl:apply-templates select="function" mode="xhtml"/>

 </body>
 </html>
 </xsl:result-document>
</xsl:template>

<xsl:template match="function" mode="text">
 <xsl:text> - </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text>
</xsl:text>
</xsl:template>

<xsl:template match="function" mode="xml">
 <function><xsl:value-of select="name"/></function>
</xsl:template>

<xsl:template match="function" mode="html">
 <xsl:value-of select="name"/>
</xsl:template>

<xsl:template match="function" mode="xhtml">
 <li xmlns="http://www.w3.org/1999/xhtml"><xsl:value-of select="name"/>
</xsl:template>

</xsl:stylesheet>

The version attribute on stylesheet shows the 2.0 version number. There are four output elements, three of which are named.
This allows a result-document element to reference an output element by name, hence to use the information in it. A global
parameter named dir holds the name of the directory where three of the result trees are written as files. This information is
referenced by the attribute value template {$dir} in the href attributes on the result-document elements. You could pass in a
new value for the dir parameter if you want to change the destination of the output.

The template matching functions creates a text result tree, plus three other result trees inside result-document elements. Each
result tree issues its own message using the message element. Each result tree also applies templates to a template matching
function , though each in a different mode (text , xml , html , and xhtml). The different modes for each result help create an
appropriate tree for each of the given formats. The new current-date() function is called in each result tree, too.

To get this to work, you need to use a full Java version of Saxon, preferably Version 7.7 or later, available from
http://saxon.sourceforge.net or in the examples/ch16 directory as saxon7-7.zip (the JAR file saxon7.jar has already been
extracted from saxon7-7.zip). For specific instructions on how to download, install, and use Saxon with the Java interpreter, see

the appendix.

Once everything is installed and working, you can type this command:

http://saxon.sourceforge.net
http://lib.ommolketab.ir

java -jar saxon7.jar functions.xml context.xsl

and you will get the following text result tree, plus messages about the other three:

Printing text result tree...
Printing XML result tree in context.xml...
Printing HTML result tree in context.html...
Printing XHTML result tree in context-x.html...
XPath 2.0 Context Functions
Date: 2003-08-26
 - fn:context-item()
 - fn:position()
 - fn:last()
 - fn:current-dateTime()
 - fn:current-date()
 - fn:current-time()
 - fn:default-collation()
 - fn:implicit-timezone()

The files that the three result-document elements produced contain the other result trees. The first one is context.xml :

<?xml version="1.0" encoding="UTF-8"?>
<list>
 <description>XPath 2.0 Context Functions</description>
 <date>2003-10-03</date>
 <function>fn:context-item()</function>
 <function>fn:position()</function>
 <function>fn:last()</function>
 <function>fn:current-dateTime()</function>
 <function>fn:current-date()</function>
 <function>fn:current-time()</function>
 <function>fn:default-collation()</function>
 <function>fn:implicit-timezone()</function>
</list>

The second is context.html , an HTML document that uses an unordered (bulleted) list:

<html>
 <body>
 <h2>XPath 2.0 Context Functions</h2>
 <h3>Date: 2003-10-03</h3>

 fn:context-item()
 fn:position()
 fn:last()
 fn:current-dateTime()
 fn:current-date()
 fn:current-time()
 fn:default-collation()
 fn:implicit-timezone()

 </body>
</html>

http://lib.ommolketab.ir

And the third is context-x.html , an XHTML document that uses an ordered (numbered) list:

<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <h2>XPath 2.0 Context Functions</h2>
 <h3>Date: 2003-10-03</h3>

 fn:context-item()
 fn:position()
 fn:last()
 fn:current-dateTime()
 fn:current-date()
 fn:current-time()
 fn:default-collation()
 fn:implicit-timezone()

 </body>
</html>

As you can see, result-document provides a great convenience creating more than one result tree from just one stylesheet. Next

is an example that uses regular expressions.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

16.4 Using Regular Expressions

Regular expressions allow you to define specific patterns for searching strings of text. XML Schema
supports regular expressions, and XSLT 2.0 relies on XML Schema-style regular expressions. Table
16-1 shows a sampling of symbols used in regular expressions that XSLT 2.0 supports. The table
represents only a few of the possibilities.

Table 16-1. Sample of regular expression symbols

Regular Expression Description

. Matches any character except a newline or carriage return.

* Matches any character.

? Matches any single character.

\s
Matches any whitespace character, including a space, tab, newline, or
carriage return.

\S or [^\s]
or[^#x20\t\n\r]

Matches any character except a whitespace character.

\d or [0-9] Matches any digit.

\d{3} Matches any three digits.

\D or [^\d] or[^0-9] Matches any character except a digit.

^ Matches the beginning of a line.

$ Matches the end of a line.

\Ll{5} Matches any five lowercase letters.

\Lu{6} Matches any six uppercase letters.

\P{1} Matches any single punctuation character.

In regular expressions, you can mix these symbols with actual characters to form a search string. For
example, using these symbols, you could match:

A U.S.-style 9-digit ZIP code, such as 10048-1000 with \d{5}-\d{4}

A U.S.-style 10-digit phone number, such as (800)555-1234 with (\d{3})\d{3}-\d{4}

The word The at the beginning of a line, followed by a whitespace character, followed by any
character, with the expression ̂ The\s*

http://lib.ommolketab.ir

XPath 2.0 adds three new functions for use with regular expressions: matches(), replace(), and
tokenize(). For more information on these new functions, see Section 7.5 of the functions and

operators specification for XPath 2.0 and XQuery 1.0 at http://www.w3.org/TR/xpath-functions/.
XSLT 2.0 offers the new analyze-string element. See Section 15 of the XSLT 2.0 spec at
http://www.w3.org/TR/xslt20/ for more information on that. I'll show you examples of the matches(
) and replace() functions, and the analyze-string element.

The tokenize() function is not demonstrated in this chapter. It breaks a

string into tokens. The tokens are separated by a regular expression such as by
one or more spaces (\s+).

16.4.1 The matches() Function

The function matches() is new in XPath 2.0. This function returns an xs:boolean value that

indicates whether the value in the first argument matches the regular expression in the value of the
second argument. The stylesheet match.xsl, in Example 16-3, uses the matches() function to test

whether a string matches a regular expression.

Example 16-3. A stylesheet matching on a regular expression

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="functions">
 <xsl:element name="list">
 <xsl:element name="description">XPath 2.0 Context Functions</xsl:element>
 <xsl:element name="date">
 <xsl:value-of select="current-date()"/>
 </xsl:element>
 <xsl:apply-templates select="function"/>
 </xsl:element>
</xsl:template>

<xsl:template match="function">
 <xsl:copy>
 <xsl:if test="matches(name,'^fn:')">
 <xsl:value-of select="substring(name, 4)"/>
 </xsl:if>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

The first template rule uses a new XPath 2.0 function, current-date(), to insert the current date
into a date element in the result tree, then it applies templates for function elements. In the second
template rule, the first argument of matches() is name-a child node of function. The content of
name is the string that this function attempts to match. The second argument is a regular expression.
^fn: looks for the letters fn: at the beginning of the line (̂). If matches() finds ^fn: and returns

http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xslt20/
http://lib.ommolketab.ir

true, the value-of element in the template of if writes a substring from the content of name
beginning from the fourth character, thus eliminating fn:.

Transform functions.xml with match.xsl with:

java -jar saxon7.jar functions.xml match.xsl

and you will see this result:

<?xml version="1.0" encoding="UTF-8"?>
<list>
 <description>XPath 2.0 Context Functions</description>
 <date>2003-10-03</date>
 <function>context-item()</function>
 <function>position()</function>
 <function>last()</function>
 <function>current-dateTime()</function>
 <function>current-date()</function>
 <function>current-time()</function>
 <function>default-collation()</function>
 <function>implicit-timezone()</function>
</list>

16.4.2 The replace() Function

The new replace() function in XPath 2.0 returns the value of the first argument with every

substring matched by the regular expression in the second argument, replaced by the string in the
third argument. Example 16-4, the stylesheet replace.xsl, will show you how it works.

Example 16-4. A stylesheet replacing regular expressions

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="functions">
 <xsl:element name="list">
 <xsl:element name="description">XPath 2.0 Context Functions</xsl:element>
 <xsl:element name="date">
 <xsl:value-of select="current-date()"/>
 </xsl:element>
 <xsl:apply-templates select="function"/>
 </xsl:element>
</xsl:template>

<xsl:template match="function">
 <xsl:copy>
 <xsl:value-of select="replace(name, '^fn:', '')"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

http://lib.ommolketab.ir

The first argument of replace() is the name element, meaning the content of the name element.

The second argument is the regular expression you are looking for, and the third argument is the
string you want to replace the second argument with. If you process functions.xml with:

java -jar saxon7.jar functions.xml replace.xsl

it will produce the same output as match.xsl.

16.4.3 The analyze-string Element

Finally, the instruction element analyze-string is also new in XSLT 2.0. This element allows you to
select a string using the select attribute, and then search that string with a regular expression
defined in a regex attribute. Two children can then follow analyze-string: matching-substring to
define what happens when analyze-string finds a matching substring, and can follow non-
matching-substring to define what happens when analyze-string finds a non-matching substring.
You can use either matching-substring or non-matching-substring or both. (Also, analyze-
string accepts fallback as a child.)

The regex.xsl stylesheet, Example 16-5, uses analyze-string to handle some text in a node.

Example 16-5. A stylesheet performing more complex regular
expressions processing

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="functions">
 <xsl:element name="list">
 <xsl:element name="description">XPath 2.0 Context Functions</xsl:element>
 <xsl:element name="date">
 <xsl:value-of select="current-date()"/>
 </xsl:element>
 <xsl:apply-templates select="function"/>
 </xsl:element>
</xsl:template>

<xsl:template match="function">
 <xsl:copy>
 <xsl:analyze-string select="name" regex="^fn:">
 <xsl:matching-substring></xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:value-of select="."/>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

The second template searches the content of function elements in the source tree. When analyze-

http://lib.ommolketab.ir

string finds the string fn: at the beginning of a line, it replaces the matching substring with nothing
in the result tree and outputs the matching substring as is using value-of.

Execute the transformation with this command:

java -jar saxon7.jar functions.xml regex.xsl

and you will get the following result:

<?xml version="1.0" encoding="UTF-8"?>
<list>
 <description>XPath 2.0 Context Functions</description>
 <date>2003-08-26</date>
 <function>context-item()</function>
 <function>position()</function>
 <function>last()</function>
 <function>current-dateTime()</function>
 <function>current-date()</function>
 <function>current-time()</function>
 <function>default-collation()</function>
 <function>implicit-timezone()</function>
</list>

This same effect can be achieved by using replace() or even matches(), as
you saw earlier. The main reason for using analyze-string is when the
replacement text contains elements-for example, you could use analyze-
string to replace a line break by a br tag.

These examples give you a taste of what is possible using regular expressions. For more information
on the regular expressions used by XML Schema, and XSLT 2.0 by association, see
http://www.w3.org/TR/xmlschema-0.html#regexAppendix and http://www.w3.org/TR/xmlschema-
2.html#regexs.

[Team LiB]

http://www.w3.org/TR/xmlschema-0.html#regexAppendix
http://www.w3.org/TR/xmlschema-
http://lib.ommolketab.ir

[Team LiB]

16.5 Grouping in XSLT 2.0

Grouping in XSLT is the process by which you can group nodes based on a given criterion. In XSLT
1.0, the process is a little complicated and requires somewhat elaborate expressions, often employing
the preceding-sibling axes to check whether a node belongs to a group. You could also group nodes
with a key using the Muenchian method, which was demonstrated in Chapter 11. You can also read
about how to do XSLT 1.0 grouping in Chapter 6 of Doug Tidwell's XSLT (O'Reilly) or in Chapter 9 of
Michael Kay's XSLT Programmer's Reference, Second Edition (Wrox). I prefer grouping in XSLT 2.0
because it is much simpler and easier to explain, the ease of which probably grew out of my
experience with grouping in Version 1.0

Grouping in XSLT 1.0 usually brings the for-each instruction element into service. XSLT 2.0 has a
new instruction element called for-each-group that makes grouping a relative snap. I'll show you

how in the following example.

Glance at group2.xml, in Example 16-6, which lumps the XPath 2.0's context-related functions into
two piles by labeling them with a type attribute.

Example 16-6. A list of XPath 2.0 context-related functions

<?xml version="1.0"?>

<list>
 <description>XPath 2.0 Context Functions</description>
 <date>2003-10-03</date>
 <function type="new">context-item()</function>
 <function type="new">current-date()</function>
 <function type="new">current-dateTime()</function>
 <function type="new">current-time()</function>
 <function type="new">default-collation()</function>
 <function type="new">implicit-timezone()</function>
 <function type="legacy">last()</function>
 <function type="legacy">position()</function>
</list>

The eight functions in this list are either legacy or new functions. The group2.xsl stylesheet, in
Example 16-7, groups the functions in group2.xml according to the content of the type attribute.

Example 16-7. A stylesheet grouping elements using XSLT 2.0

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="list">
<xsl:copy>
 <xsl:for-each-group select="function" group-by="@type">

http://lib.ommolketab.ir

 <functions type="{@type}">
 <xsl:value-of select="current-group()" separator=", "/>
 </functions>
 </xsl:for-each-group>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

The for-each-group function selects the node-set to group with the select attribute-all function
children of list, that is. The group-by attribute determines the key for grouping, which, in this case,
is the content of the type attribute in the source. The functions literal result element uses an
attribute value template to reflect the value of the type attribute.

The value-of element's select attribute uses the current-group() function-also a new kid on
the block in XSLT 2.0-to keep track of which group is which. The separator attribute is also a new

addition to XSLT 2.0. It tells the XSLT 2.0 processor to write a comma followed by a space after each
found node is sent to the result tree.

In XSLT 1.0, value-of outputs only the first node of a returned node-set in

string form; in XSLT 2.0, all nodes can be returned, so you have to plan
accordingly.

You might guess correctly that for-each-group has several other attributes, which it does, namely,
group-adjacent, group-starting-with, group-ending-with, and collation. I'm not going to
cover them here, but you can read more about for-each-group and its attributes in Section 14 of

the XSLT 2.0 specification.

Use this command to transform group.xml:

java -jar saxon7.jar group2.xml group2.xsl

The result is two lists of functions, grouped and comma-separated, in functions elements:

<?xml version="1.0" encoding="UTF-8"?>
<list>
 <functions type="new">context-item(), current-date(), current-dateTime(),
current-time(), default-collation(), implicit-timezone()</functions>
 <functions type="legacy">last(), position()</functions>
</list>

This example should give you a feel of how to group nodes in XSLT 2.0. In the example that follows,
you will learn how to use the new top-level function element.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

16.6 Extension Functions

You learned about external extension functions in the last chapter. You can now add extension
functions on the stylesheet level in XSLT 2.0 using the function element. These are called stylesheet

functions, but they work like any extension function in an expression. The difference is that they are
completely portable between one XSLT 2.0 processor and another.

Example 16-8, function.xsl, uses function to declare a stylesheet function.

Example 16-8. Creating extension functions in XSLT 2.0

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema-datatypes"
xmlns:wy="http://www.wyeast.net/functions">
<xsl:output method="text"/>
<xsl:function name="wy:kilometers">
 <xsl:param name="miles" as="xs:decimal"/>
 <xsl:sequence select="$miles * 1.609347"/>
</xsl:function>

<xsl:template match="/">
 <xsl:apply-templates select="trip"/>
</xsl:template>

<xsl:template match="trip">
 <xsl:apply-templates select="distance"/>
</xsl:template>

<xsl:template match="distance">
 <xsl:text>The distance from </xsl:text>
 <xsl:value-of select="location"/>
 <xsl:text> to </xsl:text>
 <xsl:value-of select="destination"/>
 <xsl:text> is </xsl:text>
 <xsl:value-of select="round(wy:kilometers(miles))"/>
 <xsl:text> kilometers.
</xsl:text>
</xsl:template>

</xsl:stylesheet>

When I tested this, it appeared that stylesheet functions must have at least one argument, but this
may not be the case, given that 2.0 is still in the early stages. Stylesheet functions must also be
identified with a QName that uses a prefix (this is to ensure that user-defined functions don't clash
with system-defined functions). The namespace URI and prefix associated with the QName in this
example is http://www.wyeast.net/functions and wy:, respectively. It's declared on the
stylesheet element.

http://www.wyeast.net/functions
http://lib.ommolketab.ir

The function element must be on the top level and declares the stylesheet function named
wy:kilometers(). The function performs a simple conversion of miles to kilometers by accepting a
single parameter, miles. Parameters for stylesheet functions are defined with param elements but
cannot have default values. The new as attribute on param declares the value of miles as an
xs:decimal value, according to the boundaries set by XML Schema datatypes (the namespace is

declared on the document element).

The new XSLT 2.0 sequence element adds a sequence of nodes or atomic values to the result tree. In
this case, it returns a product (a single atomic value) and works much like value-of. In other

situations, you can add existing nodes to a sequence with this element, not just new ones. The factor
for converting miles to kilometers (1.609347) comes from the National Institute of Standards and

Technology (NIST), and is based on the U.S. survey foot (see
http://physics.nist.gov/Pubs/SP811/appenB8.html).

The wy:kilometers() function is called later in the stylesheet in a value-of element. It takes a
miles node as an argument, and its return value is rounded up or down with the round() function.

The result is output as text, embedded in a sentence formed from the nodes in the source tree.

Soon, you'll apply this stylesheet to trip.xml, shown in Example 16-9, which holds the road mileage
between several U.S. cities.

Example 16-9. Mileage between selected U.S. cities

<?xml version="1.0"?>

<trip>
 <distance>
 <location>Tucson</location>
 <destination>Flagstaff</destination>
 <miles>253</miles>
 </distance>
 <distance>
 <location>Portland</location>
 <destination>Medford</destination>
 <miles>272</miles>
 </distance>
 <distance>
 <location>Denver</location>
 <destination>Colorado Springs</destination>
 <miles>67</miles>
 </distance>
</trip>

Perform the transformation with:

java -jar saxon7.jar trip.xml function.xsl

You will see this outcome on your screen:

The distance from Tucson to Flagstaff is 407 kilometers.
The distance from Portland to Medford is 438 kilometers.
The distance from Denver to Colorado Springs is 108 kilometers.

http://physics.nist.gov/Pubs/SP811/appenB8.html
http://lib.ommolketab.ir

The wy:kilometers() stylesheet function may be reused as often as you need it in this stylesheet.

A stylesheet function can also be included or imported from another stylesheet.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

16.7 Summary

XSLT 2.0 and XPath 2.0 offer an almost overwhelming number of new features. Some have
complained about the new versions of XSLT and XPath on this count. Personally, I like most of the
new offerings and, fortunately, no one is forced to adopt all the new functionality. Nevertheless, the
terminology will definitely require devotees to plow deeply into the new specifications in order to get
a grip on it.

This chapter lightly introduced you to many highlights from these new technologies. It also walked
you through how to output multiple result documents, define and use regular expressions, use
grouping, and create stylesheet functions.

The next chapter shows programmers how to use APIs to write your own interface to an XSLT
processor.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 17. Writing an XSLT
ProcessorInterface
You've had a chance to use a number of XSLT processors in this book, such as Xalan C++ and
Instant Saxon. Now you'll get the opportunity to write your own Java or C# XSLT processor with a
simple command-line interface. Actually, you won't be writing an XSLT processor from scratch, but
rather an interface to a processor that is available through Application Programming Interfaces
(APIs).

This chapter assumes that you are already an experienced programmer in either or both of these
languages. The nice thing about writing your own processor at the API level is that you have control
over the interface and how things work. Of course, such a task requires much more effort on your
part, but if a high level of control matters enough to you, the effort will be worthwhile.

The first part of the chapter walks through the creation of a Java XSLT processor using Sun's Java
API for XML Processing (JAXP). The second part guides you in creating a processor with C# using
Microsoft's .NET Framework 1.1 SDK. You don't need an interactive development environment (IDE)
to work with these examples-they require only a text editor and the javac or csc compilers. I'll

show you where to get those compilers if you don't already have them.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

17.1 Running an XSLT Processor from Java

Java Version 1.4 standard or enterprise edition comes standard with JAXP. JAXP includes the APIs you'll need to create an XSLT
processor. You must use Version 1.4 or a later Java Runtime Environment (JRE) to run this example as it is described (more on this
later). You can download the latest Java JRE or Software Development Kit (SDK) from http://java.sun.com .

To write a processor with JAXP, you need two extension packages: javax.xml.transform and javax.xml.transform.stream . There

are other packages available to help you do more things in XSLT, but we'll focus on these packages for the sake of simplicity. You can
consult the API documentation for these packages at http://java.sun.com/j2se/1.4/docs/api/index.html .

17.1.1 The Moxie Source Code

In examples/ch17 , you will find the source code for the Moxie XSLT processor, Moxie.java . This program has only 68 lines because the
heavy lifting is done by classes from Java extension packages.

Example 17-1 lists the source code.

Example 17-1. The Moxie code for running an XSLT processor

/*
 * Moxie JAXP XSLT processor
 */

import java.io.File;
import java.io.FileOutputStream;
import javax.xml.transform.OutputKeys;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

public class Moxie {

 public static void main(String[] args) throws Exception {

 /* Output file flag */
 boolean file = false;

 /* Default system property for Xalan processor */
 System.setProperty("javax.xml.transform.TransformerFactory",
 "org.apache.xalan.processor.TransformerFactoryImpl");

 /* Usage strings */
 String info = "Moxie JAXP XSLT processor";
 String usage = "\nUsage: java -jar moxie.jar";
 String parms = " source stylesheet [result]";

http://lib.ommolketab.ir

 /* Test arguments */
 if (args.length = = 0) {
 System.out.println(info + usage + parms);
 System.exit(1);
 } else if (args.length = = 3) {
 file = true;
 } else if (args.length > 3) {
 System.out.println("Too many arguments; exit.");
 System.exit(1);
 }

 /* XML source document and stylesheet */
 File source = new File(args[0]);
 File stylesheet = new File(args[1]);

 /* Set up source and result streams */
 StreamSource src = new StreamSource(source);
 StreamSource style = new StreamSource(stylesheet);
 StreamResult out;
 if (file) {
 FileOutputStream outFile = new FileOutputStream(args[2]);
 out = new StreamResult(outFile);
 } else {
 out = new StreamResult(System.out);
 }

 /* Create transformer */
 TransformerFactory factory = TransformerFactory.newInstance();
 Transformer xf = factory.newTransformer(style);

 /* Set output encoding property */
 xf.setOutputProperty(OutputKeys.ENCODING, "US-ASCII"); // encoding
 xf.setOutputProperty(OutputKeys.INDENT, "yes"); // indent

 /* Perform the transformation */
 xf.transform(src, out);

 }

}

To an experienced Java programmer, this code should readily make sense, but just to make sure the code is comprehensible, I've
provided the following discussions that dissect each part of the program.

17.1.2 Looking at the Moxie Code

Moxie imports seven classes at the beginning of the program:

import java.io.File;
import java.io.FileOutputStream;

http://lib.ommolketab.ir

import javax.xml.transform.OutputKeys;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

The first two classes are from the java.io package. The three classes that follow are from the javax.xml.transform extension
package, and the two after that are from javax.xml.transform.stream .

The File class handles the input files (the source XML document and the stylesheet), and FileOutputStream helps write an output file
from the result tree of the transformation. TransformerFactory assists in creating a new instance of Transformer class, which actually
performs the transformations. OutputKeys lets you submit values to the transformer that normally come from attributes on the output
element, such as the method or encoding attributes. The remaining classes, StreamResult and StreamSource , are holders for streams

representing the result and source trees, respectively.

Next in the program, the class Moxie is defined as well as the main() method that makes everything happen. The first thing that's
done is to create a boolean called file that acts as a flag to tell the processor whether output will be sent to a file:

/* Output file flag */
 boolean file = false;

This flag is set to true if a third argument appears on the command line (explained shortly).

The next thing that you see in the program is a call to the setProperty() method from the System class:

/* Default system property for the Xalan processor */
System.setProperty("javax.xml.transform.TransformerFactory", "org.apache.xalan.processor.TransformerFactoryImpl");

This method is not required, but I've included it to illustrate a point. The Xalan processor from Apache is the default XSLT engine
underneath JAXP's hood. This system property sets the transformation engine to Xalan for JAXP explicitly, but it is already done
automatically, so it is unnecessary. It is there so that if you want to change the system property, you can easily do so. The system
property for Xalan is org.apache.xalan.processor.TransformerFactoryImpl . You can change the property to Saxon Version 7 or
above with the property net.sf.saxon.TransformerFactoryImpl , or you can change it to jd.xslt with
jd.xml.xslt.trax.TransformerFactoryImpl . If you change the system property to Saxon 7, you have to add saxon7.jar to the

classpath; if you change it to jd.xslt, you need to add jdxslt.jar .

The arguments to main() are evaluated with an if statement. The three possible command-line arguments all represent files:

The first argument (args[0]) represents the XML source document that you want to transform.1.

The second argument (args[1]) is the XSLT stylesheet for performing the transformation.2.

The third argument (args[2]) is optional and, if used, represents the name of the file where the result tree will be stored. If
absent, the result tree will appear on System.out (standard output or the screen). The file variable is of type boolean and
indicates whether this third argument is present; if so, file is set to true (false by default) and a file will be written for the result

tree.

3.

These arguments are interpreted as files with the help of two File class constructors. Constructors for two StreamSource objects and
two StreamResult objects are then called:

StreamSource src = new StreamSource(source);
StreamSource style = new StreamSource(stylesheet);
StreamResult out;

http://lib.ommolketab.ir

if (file) {
 FileOutputStream outFile = new FileOutputStream(args[2]);
 out = new StreamResult(outFile);
} else {
 out = new StreamResult(System.out);
}

This tells the program to interpret the input files as streams for the benefit of the transformer. (You could also represent these files as
DOM documents by using the DOMSource class from javax.xml.transform.dom , or as SAX events with SAXSource class from
javax.xml.transform.sax .) An if-else statement provides a little logic using the Boolean file that either sends the result stream to

the screen or to a file.

After that, a factory is used to call a constructor and then create a new transformer:

TransformerFactory factory = TransformerFactory.newInstance();
Transformer xf = factory.newTransformer(style);

Notice that the new transformer takes the stylesheet as an argument (style).

Next, the output encoding for the result tree is set to US-ASCII , and indention is set to yes by calling the setOutputProperty()

method twice:

xf.setOutputProperty(OutputKeys.ENCODING, "US-ASCII"); // encoding
xf.setOutputProperty(OutputKeys.INDENT, "yes"); // indent

The setOutputProperty() method comes from the Transformer class. The OutputKeys class, discussed earlier, provides fields, such
as ENCODING and INDENT , that correlate with the attributes of the XSLT output element (like encoding and indent). These method
calls have the same effect as using the output element in a stylesheet like this:

<xsl:output encoding="US-ASCII" indent="yes"/>

Calling setOutputProperty() with ENCODING and a value of US-ASCII , and calling INDENT with yes , replaces the values of the
encoding and indent attributes on the stylesheet's output element.

Finally, the program performs the actual transformation using the transform() method of the Transformer class:

xf.transform(src, out);

The first argument, src , is the source stream derived from the input file, and the second argument is the result tree. The stylesheet has
already been associated with the instance of Transformer earlier in the code.

17.1.3 Running Moxie

To run Moxie, you need to have at least a JRE installed for Version 1.4 or later. A JRE is a Java Runtime Environment, a Java Virtual
Machine (JVM) with core classes. If you want to change the code in Moxie.java and then recompile it, you need a Java 2 1.4 SDK to get
the javac compiler, but to only run it, you just need a JRE.

To find out what version your JRE is, type the following line at a command-line prompt:

java -version

When I type this on my system, I get the following response:

http://lib.ommolketab.ir

java version "1.4.1_01"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_01-b01)
Java HotSpot(TM) Client VM (build 1.4.1_01-b01, mixed mode)

If you get back something like this, it means you're in good shape. Now, while in examples/ch17 , type this line:

java -jar moxie.jar

or this line:

java Moxie

You will get some usage information in response:

Moxie JAXP XSLT processor
Usage: java -jar moxie.jar source stylesheet [result]

If you've gotten this far without errors, you are ready to perform a transformation. The document test.xml contains a list of methods
from the Transformer class, and test.xsl transforms it:

java -jar moxie.jar test.xml test.xsl

The result should look like this:

<?xml version="1.0" encoding="US-ASCII"?>
<methods>
<method>clearParameters()</method>
<method>getErrorListener()</method>
<method>getOutputProperties()</method>
<method>getOutputProperty(String name)</method>
<method>getParameter(String name)</method>
<method>getURIResolver()</method>
<method>setErrorListener(ErrorListener listener)</method>
<method>setOutputProperties(Properties oformat)</method>
<method>setOutputProperty(String name, String value)</method>
<method>setParameter(String name, Object value)</method>
<method>setURIResolver(URIResolver resolver)</method>
<method>transform(Source xmlSource, Result outputTarget)</method>
</methods>

By default, the transformer uses UTF-8 for output encoding, but setOutputProperty() overrides the default with US-ASCII, as you
can see in the XML declaration of the result tree. The setOutputProperty() method also turns on indentation-without it, all elements

in the result would run together.

If you'd like, you can also send the result tree to a file rather than to the screen. To accomplish this, you must submit a filename as the
third argument on the command line, as you see here:

java -jar moxie.jar test.xml test.xsl moxie.xml

When you enter this line, Moxie writes the result tree to a file in the current directory using the FileOutputStream class.

You will also find a pair of files in examples/ch17 that will help you: moxie.bat is a Windows batch file and moxie.sh is a Unix shell script.
You can use either of them to reduce typing. For example, to perform the previous transformation at a Unix shell prompt, just type:

http://lib.ommolketab.ir

moxie.sh test.xml test.xsl moxie.xml

Or, at a Windows command prompt, type:

moxie test.xml test.xsl moxie.xml

You can alter the source file Moxie.java to your heart's content. For more information on JAXP, check the Javadocs for the following
packages: javax.xml.parsers , javax.xml.transform , javax.xml.transform.dom , javax.xml.transform.sax , and
javax.xml.transform.stream .

17.1.4 Compiling Moxie

If you alter Moxie.java , you will have to recompile it in order to get the new version to run. With Java Version 1.4 SDK installed, the
Java compiler javac should be available to you if the compiler is in your path variable. Find out whether javac is there by typing the

following on a command line:

javac

If the compiler is available, you will see usage information on the screen:

Usage: javac <options> <source files>
where possible options include:
 -g Generate all debugging info
 -g:none Generate no debugging info
 -g:{lines,vars,source} Generate only some debugging info
 -O Optimize; may hinder debugging or enlarge class file
 -nowarn Generate no warnings
 -verbose Output messages about what the compiler is doing
 -deprecation Output source locations where deprecated APIs are used
 -classpath <path> Specify where to find user class files
 -sourcepath <path> Specify where to find input source files
 -bootclasspath <path> Override location of bootstrap class files
 -extdirs <dirs> Override location of installed extensions
 -d <directory> Specify where to place generated class files
 -encoding <encoding> Specify character encoding used by source files
 -source <release> Provide source compatibility with specified release
 -target <release> Generate class files for specific VM version
 -help Print a synopsis of standard options

To compile Moxie, enter:

javac Moxie.java

If the program compiles without errors, the compilation produces the class file Moxie.class . This class file contains the byte codes that
the JRE interprets to run the program on your particular platform. You can then run the program by using this line:

java Moxie test.xml test.xsl

You can also recreate your JAR file with the jar tool using this command:

jar cfm moxie.jar META-INF/MANIFEST.MF Moxie.class

This line uses the jar tool to create (c) a new file (f) moxie.jar with a manifest file (m) called META-INF/MANIFEST.MF and with the

http://lib.ommolketab.ir

class file Moxie.class . The manifest file conveys information to the Java interpreter when, for example, the interpreter is run with the -
jar option. One such bit of information is what class holds the main() method. This information is passed on with the following field

and value pair from the manifest file:

Main-Class: Moxie

You need this field and value in order for this command to work:

java -jar moxie.jar

Actually, there is an easier way to perform all these steps at once by using the Ant build tool.

17.1.5 Using Ant

Ant is a Java-based build tool sponsored by Apache (see http://ant.apache.org). Ant is easy to use and a time saver. If you are not
familiar with Ant but would like to give it a try, go to http://ant.apache.org/resources.html for a list of FAQs, articles, presentations, and
books that will help you get up to speed. A build file called build.xml is in examples/ch17 and is available to you for building Moxie with
Ant.

The file build.xml also depends on the ant.properties file (which is also in examples/ch17) to provide the location of the base directory
where the builds take place. The base directory on Windows is assumed to be base.dir=c:/learningxslt/examples/ch17/ ; change

the base directory to the correct location.

Assuming that you have downloaded Ant (I'm using Version 1.5.3), installed it, and placed it in your path, you should be able to type the
following on a command line:

ant -version

You will get this information on your screen:

Apache Ant version 1.5.3 compiled on April 9 2003

If you type the word ant alone on a command line on Windows, while the current directory is examples/ch17 , Ant automatically picks

up the build file build.xml and performs the build, reporting the following to the screen:

Buildfile: build.xml

init:
 [delete] Deleting: C:\learningxslt\examples\ch16\moxie.jar

compile:
 [javac] Compiling 1 source file

jar:
 [jar] Building jar: C:\LearningXSLT\examples\ch16\moxie.jar

java:
 [java] Moxie JAXP XSLT processor
 [java] Usage: java -jar moxie.jar source stylesheet [result]
 [java] Java Result: 1

zip:

http://lib.ommolketab.ir

 [zip] Building zip: C:\LearningXSLT\examples\ch16\moxie.zip

finish:
 [copy] Copying 1 file to C:\LearningXSLT\examples\ch16\Backup

BUILD SUCCESSFUL
Total time: 7 seconds

In just one step, the build process defined by build.xml performs the following tasks:

Deletes the old moxie.jar file.1.

Compiles Moxie.java , if it has changed since the last build.2.

Builds a new JAR file for Moxie (moxie.jar).3.

Runs the Moxie program without arguments.4.

Creates a zip file that stores all of Moxie's resources in one spot (moxie.zip).5.

Copies moxie.zip to the directory examples/ch17/Backup .6.

Ant is growing in popularity and is being integrated into IDEs like jEdit, VisualAge, and even WebSphere (for links, see
http://ant.apache.org/manual/ide.html). Ant also has tasks that do XSLT processing. Check it out at
http://ant.apache.org/manual/CoreTasks/style.html . If you work much with Java, learning Ant will be well worth your time.

17.1.6 Other Java Resources

Eric Burke's Java and XSLT (O'Reilly) is a good place to turn for help with using XSLT with JAXP. Brett McLaughlin's Java & XML, Second
Edition (O'Reilly) provides solid help with using Java APIs such as JAXP, SAX, DOM, JDOM, with XML. I also recommend that you get
acquainted with Elliotte Rusty Harold's Java API XML Object Model or XOM, available for download from http://www.xom.nu . XOM is
simple, easy to learn, and has taken many lessons from earlier APIs. XOM also has a package (nu.xom.xslt) for connecting to XSLT

processors that support JAXP.

I'll now turn my attention to writing a simple XSLT processor with C#.

[Team LiB]

http://ant.apache.org/manual/ide.html
http://ant.apache.org/manual/CoreTasks/style.html
http://lib.ommolketab.ir

[Team LiB]

17.2 Writing an XSLT Processor with C#

C# is Microsoft's evolution of C++ and Java. It's similar to Java, so I've found it easy to learn. C#
takes some interesting forks from Java, such as its use of properties, delegates, and so forth.
However, exploring the virtues and foibles of C# is not my mission here. I'm just going to show you
how to create an XSLT processor in C#-really only a simple command-line interface to .NET's
underlying XSLT engine. It's easy to do after you have the right pieces.

C# comes as part of Microsoft's .NET Framework 1.1 SDK. You can download the Framework by
following the .NET download link on http://www.microsoft.com/net. It's well over 100 megabytes, so
it takes some time to download, especially if you don't have a fast Internet connection. This example
uses Version 1.1 of the .NET Framework SDK. You need Windows 2000 or Windows XP for the
Framework to even install, so either one is required for this exercise. .NET applications will run on
other Windows operating systems, but that requires extra steps that I won't go into here.

The Mono Project includes an open source version of C# that was declared code
complete about mid-2003. The Mono version of C# runs on Windows, Linux,
FreeBSD, and Mac OS X. I have not tested the C# code in this chapter with
Mono, but it's likely to work.

17.2.1 The Pax Code

In examples/ch17/Pax.cs, you will also find the C# source code for the Pax XSLT processor, shown in
Example 17-2.

Example 17-2. The Pax code for running an XSLT processor

/*
 * Pax C# XSLT Processor
 */

using System;
using System.IO;
using System.Text;
using System.Xml;
using System.Xml.XPath;
using System.Xml.Xsl;

public class Pax
{

 public static void Main(String[] args)
 {

http://www.microsoft.com/net
http://lib.ommolketab.ir

 // Output file flag
 bool file = false;

 // Usage strings
 string info = "Pax C# XSLT processor";
 string usage = "\nUsage: Pax source stylesheet [result]";

 // Test arguments
 if (args.Length = = 0) {
 Console.WriteLine(info + usage);
 Environment.Exit(1);
 } else if (args.Length = = 3) {
 // Third argument = output to file
 file = true;
 } else if (args.Length > 3) {
 Console.WriteLine("Too many arguments; exit.");
 Environment.Exit(1);
 }

 // Create the XslTransform
 XslTransform xslt = new XslTransform();

 // Load the XML document, create XPathNavigator for transform
 XPathDocument doc = new XPathDocument(args[0]);
 XPathNavigator nav = doc.CreateNavigator();

 // Load a stylesheet
 xslt.Load(args[1]);

 // Create the XmlTextWriter
 XmlTextWriter writer;
 if (file) {
 // Output to file with ASCII encoding
 writer = new XmlTextWriter(args[2], Encoding.ASCII);
 } else {
 // Output to console
 writer = new XmlTextWriter(Console.Out);
 }

 // Write XML declaration
 writer.WriteStartDocument();

 // Set indentation to 1
 writer.Formatting = Formatting.Indented;
 writer.Indentation = 1;

 // Transform file
 xslt.Transform(nav, null, writer, null);

 // Close XmlTextWriter
 writer.Close();

http://lib.ommolketab.ir

 }

}

Right away, you should notice that the code for Pax.cs and Moxie.java are very similar. A C#
programmer should be able to figure out this code in a few glances, but again, if you're not familiar
with C#, you can read the following section, which walks through the program nearly line by line.

17.2.2 Looking at the Pax Code

C# uses similar comment characters to Java. Instead of packages, C# uses namespaces, declaring
them at the very beginning of the program with the reserved word using:

using System;
using System.IO;
using System.Text;
using System.Xml;
using System.Xml.XPath;
using System.Xml.Xsl;

You can't import individual classes in C# as you can in Java: you have to use the namespace name,
such as System.Xml.Xsl, which exposes the entire object to the program.

Following this, the Pax class is defined and the Main() method is invoked. The command-line
arguments to Main() are, as in Moxie.java, evaluated with an if statement. The three possible

arguments represent files:

The first argument (args[0]) represents an XML source document that you want to transform.1.

The next argument (args[1]) represents the XSLT stylesheet for the transformation.2.

The optional third argument (args[2]) represents the name of the file where the result tree will
be stored, if it is used. If it is absent, the result tree will appear on Console.Out (C#'s name for
standard output or the screen). The file variable (of type bool) indicates whether the third
argument is present. file is set to false by default, but if the third argument is on the
command line, file is set to true, and the program will know that a file should be written for

the result tree.

3.

The XslTransform class comes from the System.Xml.Xsl namespace. This line instantiates a
transformer named xslt:

XslTransform xslt = new XslTransform();

The classes that follow are in the System.Xml.Xpath namespace:

XPathDocument doc = new XPathDocument(args[0]);
XPathNavigator nav = doc.CreateNavigator();

An XPathDocument provides a cache for performing the transformation, and the CreateNavigator(
) method from XPathDocument creates an XPathNavigator for navigating the cached document.

http://lib.ommolketab.ir

The Load() method from XslTransform loads the stylesheet from the second argument (args[1])

to the program:

xslt.Load(args[1]);

In C#, the XmlTextWriter class from the System.Xml namespace creates a writer for XML output:

XmlTextWriter writer;
if (file) {
 // Output to file with ASCII encoding
 writer = new XmlTextWriter(args[2], Encoding.ASCII);
} else {
 // Output to console
 writer = new XmlTextWriter(Console.Out);
}

If a third argument is present on the command line, file is set to true, and the output from the
program will be written to a file encoded as US-ASCII. Encoding is a property from System.Text.
Some other possible values for this property are UTF8 for UTF-8 output, Unicode for UTF-16 output,
and BigEndianUnicode for UTF-16BE. If file is false, the output will be written to the console

using IBM437 output, based on the codepage for a Windows command prompt.

The following line tells the writer to use an XML declaration in the output:

writer.WriteStartDocument();

Without this line, no XML declaration is written. These lines of code set the indentation of the output
to a single space per child element:

 writer.Formatting = Formatting.Indented;
 writer.Indentation = 1;

Formatting and Indentation are properties from the XmlTextWriter class. The next line performs

the actual transformation:

xslt.Transform(nav, null, writer);

The XslTranform instance xslt loaded the stylesheet earlier with its Load() method. The first
argument to Transform() provides the name of an instance of an XpathNavigator object, and the
third argument is the name of an instance of an XmlTextWriter object. The second argument, which
is null, can use an XsltArgumentList to provide a list of parameters or extension objects to the
transform. The final statement in the program closes the XmlTextWriter object writer,

automatically closing any element or attributes that might still be open:

writer.Close();

17.2.3 Running Pax

A compiled version of Pax is in examples/ch17 (Pax.exe). To run Pax, type the following line at a
Windows 2000/XP command prompt:

pax

http://lib.ommolketab.ir

If all is well, the program will return some usage information to you:

Pax C# XSLT processor
Usage: Pax source stylesheet [result]

To transform test.xml with test.xsl, type:

pax test.xml test.xsl

With this command, you will get the following results:

<?xml version="1.0" encoding="IBM437"?>
<methods>
 <method>clearParameters()</method>
 <method>getErrorListener()</method>
 <method>getOutputProperties()</method>
 <method>getOutputProperty(String name)</method>
 <method>getParameter(String name)</method>
 <method>getURIResolver()</method>
 <method>setErrorListener(ErrorListener listener)</method>
 <method>setOutputProperties(Properties oformat)</method>
 <method>setOutputProperty(String name, String value)</method>
 <method>setParameter(String name, Object value)</method>
 <method>setURIResolver(URIResolver resolver)</method>
 <method>transform(Source xmlSource, Result outputTarget)</method>
</methods>

The output encoding is set to IBM437 for screen output. You can also save the output to a file using:

pax test.xml test.xsl pax.xml

The output encoding in pax.xml is US-ASCII as set by the Encoding.ASCII property. If you want to

alter this program, you'll also need to know how to recompile it.

17.2.4 Compiling Pax

With the .NET Framework Version 1.1 downloaded and installed on your system, you should be able
to access the C# complier csc. If you type csc at a command prompt with no options, you should

see this:

Microsoft (R) Visual C# .NET Compiler version 7.10.2292.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

fatal error CS2008: No inputs specified

To view the many options available with csc, enter:

csc /help

To compile Pax, type this command:

http://lib.ommolketab.ir

csc Pax.cs

Upon success, the compiler will produce a new version of Pax.exe. For more information on C#, study
the vast documentation provided with the Version 1.1 Framework download. You can access the
documentation by clicking on the Documentation link under Microsoft .NET Framework SDK v1.1
under Programs or All Programs on the Start menu.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

17.3 Summary

If you are a programmer, this chapter has given you a leg up for creating your own interface to an
XSLT processor in either Java or C#. I hope that the code and explanations were simple enough that
you got the basic concepts down, and perhaps you were inspired to try some coding yourself. It
certainly isn't that difficult to get started if you have a programming background. There is only one
more chapter to go, and it's a short one.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Chapter 18. Parting Words
It's time for us to part company. If you have read the whole book, I trust you are fairly competent
using XSLT and XPath by now. You should be proud of yourself for sticking with it to the end.

Whatever the case, this book is only an introduction to XSLT and XPath. You can now branch out and
discover or rediscover some additional resources that are available for these technologies. Some of
these I have mentioned before, but it will be nice to present all these resources in one place for your
convenience. Here's the list:

XSL Transformations (XSLT) Version 1.0

This is the original XSLT recommendation from the W3C. You'll find it at
http://www.w3.org/TR/xslt. It first appeared in November 1999, and it is under 100 pages
long.

XML Path Language (XPath) Version 1.0

This concise little XPath recommendation is at http://www.w3.org/TR/xpath. It was introduced
on the same day as the XSLT spec.

XSL Transformations (XSLT) 2.0

Here is XSLT 2.0 in working draft form, available at http://www.w3.org/TR/xslt20. It is over
twice as long as the original XSLT 1.0 spec, but it offers plenty of new features.

XML Path Language (XPath) 2.0

The latest working draft of the 2.0 specification is available at http://www.w3.org/TR/xpath20.
Like the XSLT 2.0 draft, it is considerably longer than its predecessor, and packed with all kinds
of new features, not all of which are certain to make it into the final recommendation.

Michael Kay's XSLT Programmer's Reference, Second Edition (Wrox)

At over 900 pages, Michael Kay's standard volume on XSLT weighs in heavily, but there is no
fluff or waste. I have the first two editions of this book, and I count on them as a second-tier
resource next to the XSLT specification itself. In fact, Michael's book helps clarify and expand

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt20
http://www.w3.org/TR/xpath20
http://lib.ommolketab.ir

on the spec. If you are serious about XSLT, I suggest that you invest in this book.

Doug Tidwell's XSLT (O'Reilly)

Doug Tidwell has a brisk and fun writing style that makes quick work of XSLT. I especially like
the element and function reference appendixes at the end of the book. If you look up a
particular element or function in the appendixes, you will find a complete stylesheet that
demonstrates how to use that particular element or function.

Sal Mangano's XSLT Cookbook (O'Reilly)

Sal's popular book appeared at the end of 2002. The book crisply addresses just over 100
problems that can be addressed with XSLT recipes. If you do anything serious with XSLT, you'll
be glad to have Sal's book on your shelf.

XSL-List

This active mail list maintained by Mulberry Technologies, Inc. is the place to go with your
questions about XSLT. To subscribe, go to http://www.mulberrytech.com/xsl/xsl-
list/index.html. The list archive, complete with search capability, is available at
http://www.biglist.com/lists/xsl-list/archives/. Incidentally, Mulberry Tech also offers quick
reference cards in PDF form for both XSLT and XPath at
http://www.mulberrytech.com/quickref/index.html.

Robin Cover's Coverpages for XSLT

Robin Cover provides broad and accurate coverage of a number of XML-related topics,
including XSLT. Hosted by OASIS, the Coverpages are updated regularly and are considered by
some as the resource of last resort when looking for technical information related to XML. See
http://xml.coverpages.org/xsl.html.

Dave Pawson's XSLT FAQ

Dave Pawson's FAQ for XSLT is at http://www.dpawson.co.uk/. Dave has nicely organized the
FAQ into categories. I find it easy to use, and it certainly has helped me pry a few rusty bolts
off my stylesheets, so to speak.

Jeni Tennison's site

Jeni Tennison is a top XSLT consultant and author whose web site
(http://www.jenitennison.com) offers plenty of helpful information, including advice on how to
perform grouping in XSLT 1.0.

http://www.mulberrytech.com/xsl/xsl-
http://www.biglist.com/lists/xsl-list/archives/
http://www.mulberrytech.com/quickref/index.html
http://xml.coverpages.org/xsl.html
http://www.dpawson.co.uk/
http://www.jenitennison.com
http://lib.ommolketab.ir

Be sure to check the appendix, which follows this chapter, for references to XSLT processor
resources. One last tool I'll mention is a simple Java package I've written called Ox.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

18.1 The Ox Documentation Tool

Although this book provides a glossary, it doesn't provide alphabetical references for XSLT and XPath,
partly because the other books I recommend, such as those written by Doug Tidwell and Michael Kay,
have already provided excellent reference material. Short of that, you can still easily get the
reference information you need about XSLT and XPath by using the glossary in this book and the Ox
documentation tool that is provided with this book's resources.

Ox is a small, extensible, open source command-line Java tool that quickly and easily provides brief,
syntax-based documentation on a given topic. You can find the tool in the examples/Ox directory of
the example archive that you downloaded with this book. Ox accepts one or more terms on a
command line and then returns brief documentation on each term. At this time, Ox supports only
XSLT 1.0 and XPath 1.0.

Give it a try. While in the directory examples/Ox, type the following command where the term is the
name of an XSLT element. Ox is case sensitive, and all XSLT element names must be given in
lowercase, as shown here:

java -jar ox.jar xsl:apply-templates

Ox will return the following information to you on standard output:

xsl:apply-templates XSLT instruction element
 Applies templates, processing a node-set (the matching
 node and its children, if any).

Attributes:
 select = An expression [optional]
 mode = The mode [optional]

Content:
 template
 <xsl:sort/> [optional]
 <xsl:with-param/> [optional]

Example:
 <xsl:template match="/">
 <xsl:apply-templates/>
 </xsl:template>

See Also: xsl:sort, xsl:value-of

You can also submit multiple terms to Ox, as shown in the following line:

java -jar ox.jar xsl:template xsl:apply-templates

This whitespace-separated list on the command line produces documentation on both terms:

http://lib.ommolketab.ir

xsl:template XSLT top-level element
 Container for an XSLT template.

Example:
 match = pattern [optional if name attribute present]
 mode = QName for mode [optional]
 name = QName for template [optional if match attribute present]
 priority = number for template's priority, the higher the number,
 the higher the priority [optional]

Content:
 template
 xsl:param [zero or more]

Examples:
 <xsl:template match="/">
 <xsl:apply-templates/>
 </xsl:template>

See Also: xsl:apply-templates

xsl:apply-templates XSLT instruction element
 Applies templates, processing a node-set (the matching
 node and its children, if any).

Attributes:
 select = An expression [optional]
 mode = The mode [optional]

Content:
 template
 <xsl:sort/> [optional]
 <xsl:with-param/> [optional]

Example:
 <xsl:template match="/">
 <xsl:apply-templates/>
 </xsl:template>

See Also: xsl:sort, xsl:value-of

You can also submit one or more prefixed terms to Ox by using the -xsl switch:

java -jar ox.jar -xsl template apply-templates

This line will return the same output at the previous, prefixed example.

In addition to element names, you can also submit definitional terms to Ox, like XSLT:

java -jar ox.jar XSLT

http://lib.ommolketab.ir

Ox will return with:

XSLT
 Extensible Stylesheet Language Transformations

Phrased terms that contain spaces must be enclosed in quotes, as shown in the following line:

java -jar ox.jar "literal result element"

With this term, Ox will give you:

XSLT literal result element
 A non-XSLT element, defined literally in a template, that creates
 an element in the result tree.

If you submit a term that Ox doesn't know, such as an XSLT 2.0 element name:

java -jar ox.jar xsl:result-document

Ox barks back, but also gives you a venue where to issue a complaint:

Term "xsl:result-document" not found.

If enough people show interest in Ox, it will grow and expand to meet the demand. Ox uses Java
properties files to store its documentation. The Ox package includes a template (template.ox) that
you can use to create your own documentation package or simply add terms on your own. All you
have to do is add your properties file to the Ox JAR file (ox.jar), and you will have access to the
terms from the command line.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

18.2 Signing Off

Once again, the appendix provides information on where to download XSLT processors, and how to
install and run them. There also is a glossary at the end of the book where you can look up XML,
XSLT, and XPath terms. All the terms in the glossary are also available in the Ox tool, though the
terms in Ox may be updated more regularly than those in the book.

As with any new technology, once you get past the jargon and barriers of entry, XSLT can be fun to
learn and use. If you are doing anything with XML, it's likely that you will have a reason to use XSLT,
too. I hope this book has helped make the learning process go quickly for you. Now that you know
what you're doing, go ask your boss for a promotion.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Appendix A. XSLT Processors
Throughout this book, I have used or mentioned a variety of XSLT processors. This appendix provides
some detail in one location on how to download, install, and use seven processors. It also supplies
some basic information on working the Java programming environment, which is essential to using
several of the processors discussed in this book (Saxon and jd.xslt). In addition to those processors
actually used in this book, I also list several others that may be of interest to readers.

Appendix A lists and describes a dozen readily available XSLT processors. This is by no means a
complete list of what's available, but it provides you with a wide variety of choices from among the
most commonly used processors. If the XSLT processor's name is italicized, that means that it is
demonstrated in this appendix. All of the processors support only version 1.0 of XSLT and XPath,
unless otherwise noted. A much longer list of processors exists at
http://xml.coverpages.org/xslSoftware.html.

Table A-1. XSLT processors

XSLT
processor

URL Notes

Cocoon http://cocoon.apache.org/
Apache's XML publishing environment with
central XSLT support.

Cooktop http://www.xmlcooktop.com
Victor Pavlov's free XML editor that includes
support for XSLT transformations.

Instant
Saxon

http://saxon.sourceforge.net
Michael Kay's Windows-executable XSLT
processor.

jd.xslt http://www.aztecrider.com/xslt/
Written and maintained by Johannes Döbler.
Supports the now withdrawn XSLT 1.1 draft.

MSXSL http://msdn.microsoft.com/downloads
Microsoft's command-line XSLT processor,
based on MSXML 4.0.

Saxon http://saxon.sourceforge.net
Michael Kay's full Java version of Saxon that
offers partial support for XSLT 2.0 and XPath
2.0.

Stylus
Studio

http://www.sonicsoftware.com
An XML development environment with an
XSLT editor and debugger.

Xalan http://xml.apache.org
Apache's open source processor available in
C++ and Java versions.

http://xml.coverpages.org/xslSoftware.html
http://cocoon.apache.org/
http://www.xmlcooktop.com
http://saxon.sourceforge.net
http://www.aztecrider.com/xslt/
http://msdn.microsoft.com/downloads
http://saxon.sourceforge.net
http://www.sonicsoftware.com
http://xml.apache.org
http://lib.ommolketab.ir

XSLT
processor

URL Notes

xmlspy http://www.xmlspy.com

Altova's popular and well-featured XML
development environment, which includes,
among may other things, a built-in XSLT
processor and debugger.

xRay2 http://architag.com/xray/
An XML editing environment that supports
XSLT.

xsltproc http://xmlsoft.org/XSLT/
Daniel Veillard's XSLT processor based on his
libxml/libxslt libraries.

XT http://www.blnz.com/xt/index.html
Originally written by James Clark, XT is now
maintained by Bill Lindsey.

[Team LiB]

xmlspy http://www.xmlspy.com

Altova's popular and well-featured XML
development environment, which includes,
among may other things, a built-in XSLT
processor and debugger.

xRay2 http://architag.com/xray/
An XML editing environment that supports
XSLT.

xsltproc http://xmlsoft.org/XSLT/
Daniel Veillard's XSLT processor based on his
libxml/libxslt libraries.

XT http://www.blnz.com/xt/index.html
Originally written by James Clark, XT is now
maintained by Bill Lindsey.

[Team LiB]

http://www.xmlspy.com
http://architag.com/xray/
http://xmlsoft.org/XSLT/
http://www.blnz.com/xt/index.html
http://www.xmlspy.com
http://architag.com/xray/
http://xmlsoft.org/XSLT/
http://www.blnz.com/xt/index.html
http://lib.ommolketab.ir

[Team LiB]

A.1 Installing and Running XSLT Processors

The following sections provide detailed information about how to download, install, and run five
popular XSLT processors with command-line interfaces: Instant Saxon, Saxon, MSXSL, Xalan C++,
and jd.xslt.

You also learn how to transform XML documents using the graphical tools xmlspy and xRay2. Both
xmlspy and xRay2 are XML editors with XSLT capabilities and run only on Windows.

A.1.1 Installing and Running Java

As a first step, you need to get the latest version of the Java Runtime Environment (JRE) or SDK
(which includes a JRE) on your machine. To do so, go to http://java.sun.com/downloads. A JRE
provides a Java virtual machine (JVM), a Java interpreter (java), and other necessities, but not tools
like the Java compiler javac or a JAR (Java Archive) tool such as jar. To get the JRE from the Sun

Java site, search for JavaVM, click it, and then click the download button that appears. This will
automatically download and install the latest JRE. If you already have the latest JRE installed, this will
be detected and you will be alerted about it.

You can test to find out whether a JRE is working on your machine by typing this command at a
command or shell prompt:

java -version

If you get something back like the following, you are in good shape:

java version "1.4.1_01"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_01-b01)
Java HotSpot(TM) Client VM (build 1.4.1_01-b01, mixed mode)

To get a Java SDK, search for the download of your choice on the Sun Java site, such as J2SE 1.4.1,
and then select Allplatforms in the text pull-down box. Click the Go button. Under the SDK columns,
click the Download link for the appropriate platform, such as Linuxself-extracting file. Fill out the
information form if you wish, or just click the download link again. Accept the license by clicking the
Accept button. Finally, click the download link, and save the archive to the directory of your choice.
After downloading the archive file, follow the installation instructions provided by Sun. (These
instructions may vary over time.)

A.1.1.1 Setting the path variable

After the installation is complete, you must place the Java bin directory in your path environment
variable. You can add the location to the path using one of the following methods.

http://java.sun.com/downloads
http://lib.ommolketab.ir

A.1.1.1.1 The path environment variable on Windows

Supposing the bin directory is located at C:\Java\j2sdk1.4.1_01\bin, on Windows, you could
temporarily set the path environment variable at a command prompt with this line:

path %path%;c:\Java\j2sdk1.4.1_01\bin

This command adds the path C:\Java\j2sdk1.4.1_01\bin, which contains the executable file
javac.exe, to your current path variable, represented by the substitution variable %path%.

Another method for amending your path variable is adding this command line to your autoexec.bat
file so that the new path is set each time you boot your computer.

On Windows 2000 or XP Professional, you can also set the path variable by choosing Start
Control Panel System Advanced Environment Variables, and then adding the path to
your user or system variables in the Environment Variables dialog box.

A.1.1.1.2 The path environment variable on Unix

Supposing that the bin directory is located at /usr/mike/j2sdk1.4.1_01/bin on a Unix system, you
could temporarily set the path environment variable at a bash shell prompt with this line:

path="/usr/mike/j2sdk1.4.1_01/bin:$PATH"

This command adds the path /usr/mike/java/j2sdk1.4.1_01/bin, which contains the executable file
javac.exe, to your current path variable, represented by the substitution variable $PATH.

You could also add this command line to your /etc/profile or ~/.profile file, so that the new path is set
each time you boot your computer.

A.1.1.2 Running the Java compiler

With the bin directory in the path variable, you are ready to put its content to use. Type the following
at a command prompt or shell:

javac

If the path is working right, it will return advice that looks somewhat like this:

Usage: javac <options> <source files>
where possible options include:
 -g Generate all debugging info
 -g:none Generate no debugging info
 -g:{lines,vars,source} Generate only some debugging info
 -O Optimize; may hinder debugging or enlarge class file
 -nowarn Generate no warnings
 -verbose Output messages about what the compiler is doing
 -deprecation Output source locations where deprecated APIs are used
 -classpath <path> Specify where to find user class files
 -sourcepath <path> Specify where to find input source files

http://lib.ommolketab.ir

 -bootclasspath <path> Override location of bootstrap class files
 -extdirs <dirs> Override location of installed extensions
 -d <directory> Specify where to place generated class files
 -encoding <encoding> Specify character encoding used by source files
 -source <release> Provide source compatibility with specified release
 -target <release> Generate class files for specific VM version
 -help Print a synopsis of standard options

A.1.2 Using the Classpath

When dealing with Java, you also have to deal with the classpath. The classpath is the path that
enables a Java interpreter to see the classes that it is trying to execute. When running Java from the
command line, Java classes can be included using the -cp or -classpath command-line options.

For example, you could place the jar file saxon7.jar in the classpath with something like this:

java -cp c:\lib\saxon7.jar net.sf.saxon.Transform test.xml test.xsl

You can also place a JAR file in the classpath using this command on Windows:

set CLASSPATH=".;c:\lib\saxon7.jar;%CLASSPATH%"

The dot (.) refers to the current directory (the Java interpreter needs to be told explicitly to look in
the current directory for classes). %CLASSPATH% adds the current classpath to the new value of
CLASSPATH.

Or type something like this command on Unix:

classpath="/usr/lib/saxon7.jar:$CLASSPATH"

Another convenient way to handle the classpath is to place a copy of the desired JAR file in the jre/lib
directory where your JRE is installed. For example, if your JRE is installed under C:\j2sdk1.4.1_01,

it will have the subdirectory jre/lib, which holds various resources.

A.1.2.1 The jar method

If you use the -jar option, however, you can just use a regular path or the path environment

variable to find a JAR file. For example, if the JAR file were in the current directory, you could simply
type:

java -jar saxon7.jar

Or, if it were in C:\Temp, you could use:

java -jar c:\lib\saxon7.jar

This assumes that the manifest file in the JAR has a Main-Class field that tells the Java interpreter
where the class holding the main() method is. For more information on running JAR-package

software, see http://java.sun.com/docs/books/tutorial/jar/basics/run.html.

If you would like more help understanding how the Java classpath works and how Java finds classes

http://java.sun.com/docs/books/tutorial/jar/basics/run.html
http://lib.ommolketab.ir

to run, see http://java.sun.com/j2se/1.4.1/docs/tooldocs/findingclasses.html. For help setting the
classpath for Windows, see http://java.sun.com/j2se/1.4.1/docs/tooldocs/windows/classpath.html;
for help setting the classpath for Solaris or a similar Unix system, see
http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/classpath.html.

A.1.3 Installing and Running Instant Saxon

Saxon is a free, open source XSLT processor created and maintained by Michael Kay and hosted at
http://saxon.sourceforge.net. Instant Saxon is a Windows 32 executable version of Saxon, that is, in
essence, a parcel of Java classes packaged together in an .exe file. The last release of Instant Saxon
at this writing was Version 6.5.3 (August 2003).

Michael Kay's Saxon, including Instant Saxon, was the first compliant XSLT 1.0 processor and was
released 17 days after the XSLT and XPath recommendations were published in late 1999. Michael
Kay is the current editor of the XSLT 2.0 specification, and he's one of the editors of XPath 2.0. Both
programs are under development at the W3C. (Blessedly, he was also a technical editor for this
book.)

You can find the archive for Instant Saxon 6.5.3 in examples/ch07, or you can
use the directions for downloading the archive that follow.

A.1.3.1 Downloading Instant Saxon

Follow these steps (they may vary over time):

Using a web browser, go to http://saxon.sourceforge.net.1.

Search for InstantSaxon 6.5.3 and, after finding it, click on Download just below.2.

Select a mirror download server, then save the zip file instant-saxon6_5_3.zip to the directory
of your choice.

3.

When the download is complete, unzip the instant-saxon6_5_3.zip. Two files are extracted,
namely, instant.html and saxon.exe.

4.

The installation is complete.5.

You can use saxon.exe by copying it to your current directory, copying it to another location
that is already in the path (such as C:\Windows or C:\WINNT), or adding its location to the path
environment variable (see Section A.1.1.1 earlier in this appendix).

6.

A.1.3.2 Running Instant Saxon

Display usage information for Instant Saxon by entering the following at a Windows command
prompt:

http://java.sun.com/j2se/1.4.1/docs/tooldocs/findingclasses.html
http://java.sun.com/j2se/1.4.1/docs/tooldocs/windows/classpath.html
http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/classpath.html
http://saxon.sourceforge.net
http://saxon.sourceforge.net
http://lib.ommolketab.ir

saxon

Without any parameters, you should see this usage synopsis:

No source file name
SAXON 6.5.3 from Michael Kay
Usage: saxon [options] source-doc style-doc {param=value}...
Options:
 -a Use xml-stylesheet PI, not style-doc argument
 -ds Use standard tree data structure
 -dt Use tinytree data structure (default)
 -o filename Send output to named file or directory
 -m classname Use specified Emitter class for xsl:message output
 -r classname Use specified URIResolver class
 -t Display version and timing information
 -T Set standard TraceListener
 -TL classname Set a specific TraceListener
 -u Names are URLs not filenames
 -w0 Recover silently from recoverable errors
 -w1 Report recoverable errors and continue (default)
 -w2 Treat recoverable errors as fatal
 -x classname Use specified SAX parser for source file
 -y classname Use specified SAX parser for stylesheet
 -? Display this message

Normally, Instant Saxon expects at least two parameters: the name of the source document followed
by the name of the stylesheet. Supply the names of the document and stylesheet discussed earlier on
the command line, like this:

saxon test.xml test.xsl

Any file named test, regardless of the file suffix, is fictitious and used only as an example in this
appendix.

To direct Instant Saxon's output to a file, use the -o option:

saxon -o test.out test.xml test.xsl

To use an XML document that contains an XML stylesheet PI, use the -a option, followed by the

filename:

saxon -a test.xml

The XML stylesheet PI contains a reference to a stylesheet and will look something like:

<?xml-stylesheet href="test.xsl" type="text/xsl"?>

For version and timing information, try the -t option:

saxon -t test.xml test.xsl

If the source document has an associated DTD, you can validate it at runtime with the -v option:

http://lib.ommolketab.ir

saxon -v test.xml test.xsl

A DTD will be associated with the XML document by a document type declaration, which will look
something like:

<!DOCTYPE test SYSTEM "test.dtd">

A.1.4 Installing and Running Saxon (Full Java Version)

Saxon is a free, open source XSLT processor that, like Instant Saxon, was created by Michael Kay
and hosted at http://saxon.sourceforge.net. The recommended version of Saxon for XSLT 1.0 is
Version 6.5.3. The latest version at the time of this writing is 7.7, which partially supports the
working drafts for XSLT 2.0 and XPath 2.0. By the time you read this, Saxon may have gone beyond
Version 7.7.

You can find the archive for Saxon 7.7 in examples/ch16, or you can get the
latest version by using the directions for downloading the archive that follow.

A.1.4.1 Downloading Saxon

To download Saxon, follow these steps (which may vary over time):

Using a web browser, go to http://saxon.sourceforge.net.1.

Search for Saxon7.7 or later and, after finding it, click on Download just below.2.

Select a mirror download server, then save the zip file saxon7-7.zip to the directory of your
choice.

3.

When the download is complete, unzip the saxon7-7.zip. Many files will be extracted, including
saxon7.jar.

4.

The installation is complete.5.

You can use the full Java version of Saxon on any platform that supports Java, including Windows or
a Unix environment such as Linux, Solaris, or Mac OS X. This requires that you have at least a JRE or
JVM installed for Version 1.4 or higher. If you don't have Java on your system, you can download an
SDK or JRE from http://sun.java.com. You will find installation instructions earlier in this appendix in
, Section A.1.1.

A.1.4.2 Running Saxon

You can download Saxon from http://saxon.sourceforge.net, or copy the file saxon7.jar from
C:\LearningXSLT\examples\ch16 (Version 7.7 of saxon7.jar exists in examples/ch16, but you may
want a more recent version, if one is available). Placing the JAR file in your working directory
obviates the need to deal with the classpath (see Section A.1.2, earlier in this appendix).

http://saxon.sourceforge.net
http://saxon.sourceforge.net
http://sun.java.com
http://saxon.sourceforge.net
http://lib.ommolketab.ir

This file contains the Java class files that will enable you to transform documents using Saxon.
Assuming that saxon7.jar is in your current directory, you can enter the line:

java -jar saxon7.jar

This should yield the following output if you used no arguments:

No source file name
SAXON 7.7 from Michael Kay
Usage: java net.sf.saxon.Transform [options] source-doc style-doc {param=value}...
Options:
 -a Use xml-stylesheet PI, not style-doc argument
 -ds Use standard tree data structure
 -dt Use tinytree data structure (default)
 -im modename Start transformation in specified mode
 -o filename Send output to named file or directory
 -m classname Use specified Emitter class for xsl:message output
 -r classname Use specified URIResolver class
 -t Display version and timing information
 -T Set standard TraceListener
 -TJ Trace calls to external Java functions
 -TL classname Set a specific TraceListener
 -u Names are URLs not filenames
 -v Validate source document
 -w0 Recover silently from recoverable errors
 -w1 Report recoverable errors and continue (default)
 -w2 Treat recoverable errors as fatal
 -x classname Use specified SAX parser for source file
 -y classname Use specified SAX parser for stylesheet
 -? Display this message
 param=value Set stylesheet parameter
 !option=value Set serialization option

You can use saxon7.jar with the same arguments as you did with Instant Saxon. For example, to
transform test.xml with test.xsl, type the following:

java -jar saxon7.jar test.xml test.xsl

To send output to a file, use the -o option:

java -jar saxon7.jar -o test.out test.xml test.xsl

If a document contains an XML stylesheet PI, you can use the -a option:

java -jar saxon7.jar -a test.xml

The XML stylesheet PI contains a reference to a stylesheet and will look something like:

<?xml-stylesheet href="test.xsl" type="text/xsl"?>

For version and timing information, use the -t option:

java -jar saxon7.jar -t test.xml test.xsl

http://lib.ommolketab.ir

If the source document has an associated DTD, you can validate it at runtime with the -v option:

java -jar saxon7.jar -v test.xml test.xsl

A DTD will be associated with the XML document by a document type declaration, which will look
something like this:

<!DOCTYPE test SYSTEM "test.dtd">

A.1.4.3 Using a Windows batch file with Saxon

You can use a batch file on Windows to run Saxon's full Java version. You can copy the following lines
and place them in a batch file named sp.bat:

@echo off
java -jar "C:\LearningXSLT\examples\ch16\saxon7.jar" %1 %2 %3 %4 %5 %6 %7 %8 %9

This assumes that you have set up the directory C:\LearningXSLT\examples\ch16 (among other
directories) for the example files. You can change the location of saxon7.jar in the batch file to match
your own directory structure. If you are working on Windows 2000 Professional or XP Professional,
you can delete the replaceable parameters %1 thorough %9 and use %* in their place. You could
then run Saxon by typing:

sp test.xml test.xsl

A.1.4.4 Using a Unix shell script with Saxon

If you're on a Unix system, you could copy the following into a file named sp.sh:

#! /bin/sh
java -jar ~/learningxslt/examples/saxon/saxon.jar $*

This script assumes that you have set up a directory called learningxslt in your home directory
(something like /usr/mike, which is represented by ~/). You can change the location of saxon7.jar in
the batch file to match your own set up. You could then run Saxon by typing:

sp.sh test.xml test.xsl

A.1.5 Installing and Running MSXSL

MSXSL is Microsoft's free command-line XSLT processor, available at
http://msdn.microsoft.com/downloads/. MSXSL is a Windows 32 executable that requires MSXML 4.0
(msxml4.dll). This processor is incredibly small (25 KB) and is one of the fastest around, probably
because it is compiled natively on Windows and uses the XSLT library included in MSXML. You can
also download the source code.

By default, MSXSL uses UTF-16 output. You have to use the encoding attribute on an output

element in a stylesheet to override this, which you probably will want to do because UTF-16 doesn't
always produce very attractive output in a command window.

http://msdn.microsoft.com/downloads/
http://lib.ommolketab.ir

A.1.5.1 Downloading MSXSL

Follow these steps (they may vary over time):

Using a browser, go to http://msdn.microsoft.com/downloads/.1.

Under Searchfor Developer Downloads, search for MSXSL.2.

Click on the link provided to MSXSL.3.

The DLL msxml4.dll must also be installed for MSXSL to run. If it isn't installed, follow the link
provided to the MSDN Online XML Developer Center, then download and install it according to
the instructions provided.

4.

Find the link for msxsl.exe and click it.5.

Save msxsl.exe to a directory of your choice.6.

The installation is complete.7.

You can use msxsl.exe by copying it to your current directory, copying it to another location
that is already in the path (such as C:\Windows or C:\WINNT), or adding its location to the path
environment variable (see Section A.1.1.1 earlier in this appendix).

8.

A.1.5.2 Running MSXSL

To see the display usage information for MSXSL, enter the following at a Windows command prompt:

msxsl -?

With the -? option, you will see this usage information:

Microsoft (R) XSLT Processor Version 4.0

Usage: MSXSL source stylesheet [options] [param=value...] [xmlns:prefix=uri...]

Options:
 -? Show this message
 -o filename Write output to named file
 -m startMode Start the transform in this mode
 -xw Strip non-significant whitespace from source and stylesheet
 -xe Do not resolve external definitions during parse phase
 -v Validate documents during parse phase
 -t Show load and transformation timings
 -pi Get stylesheet URL from xml-stylesheet PI in source document
 -u version Use a specific version of MSXML: '2.6', '3.0', '4.0'
 - Dash used as source argument loads XML from stdin
 - Dash used as stylesheet argument loads XSL from stdin

MSXSL takes at least two arguments: the name of the XML source document followed by the name of

http://msdn.microsoft.com/downloads/
http://lib.ommolketab.ir

the stylesheet. On the command line, type:

msxsl test.xml test.xsl

To direct output to a file, use the -o option:

msxsl -o test.out test.xml test.xsl

To transform an XML document that contains an XML stylesheet PI, use the -pi option, followed by

an appropriate filename:

msxsl -pi test.xml

The XML stylesheet PI contains a reference to a stylesheet and will look something like:

<?xml-stylesheet href="test.xsl" type="text/xsl"?>

For timings, try the -t option:

msxsl -t test.xml test.xsl

If the source document has a DTD, you can validate it with the -v option:

msxsl -v test.xml test.xsl

A DTD will be associated with the XML document by a document type declaration, which will look
something like:

<!DOCTYPE test SYSTEM "test.dtd">

A.1.6 Installing and Running Xalan C++

Xalan C++ is an open source XSLT processor hosted by Apache. To run, Xalan C++ also requires the
C++ version of Apache's XML parser Xerces. Both Xerces C++ and Xalan C++ are available for
download from the Apache site (http://xml.apache.org).

A.1.6.1 Downloading and installing Xalan C++

Follow these steps (which may vary over time) to install Xalan C++:

Using a web browser, go to http://xml.apache.org/dist/xerces-c/stable/.1.

Select the latest distribution archive for your platform, such as the recent versions xerces-
c2_2_0-win32.zip or xerces-c2_2_0-linux8.0gcc32.tar.gz.

2.

Save the archive to the directory of your choice.3.

After the download is complete, extract the files from the archive using either the unzip or tar
utility.

4.

The directory xerces-c2_2_0 is extracted to the current directory or another directory of your5.

6.

http://xml.apache.org
http://xml.apache.org/dist/xerces-c/stable/
http://lib.ommolketab.ir

4.

choice. All files from Xerces are stored under this directory.
5.

The installation of Xerces C++ is complete. Now you must also install Xalan C++.6.

Using a browser, go to http://xml.apache.org/dist/xalan-c/stable/.7.

Select the latest distribution archive for your platform, such as Xalan-C_1_5-win32.zip or Xalan-
C_1_5-linux7.2Proton.tar.gz.

8.

Save the archive to the directory of your choice.9.

After the download is complete, extract the files from the archive using either the unzip or tar
utility.

10.

The directory xml-xalan is extracted to the current directory or another directory of your choice.
All files from Xalan C++ are stored under this directory.

11.

The installation of Xalan C++ is complete.12.

To use xalan.exe, you need to add its location to the path, as well as to the location of the Xerces bin
directory. If you are working on Windows, follow the instructions in Section A.1.6.2. If you are
working on a Unix platform, see Section A.1.6.3.

A.1.6.2 Setting the path variable for Xalan on Windows

If, for example, you installed (actually unzipped) the Xalan C++ archive in the root directory on
Windows (C:\), the location for xalan.exe would be something like C:\xml-
xalan\c\Build\Win32\VC6\Release. So in order to add this to the path, you could enter the following
line:

path %path%;"C:\xml-xalan\c\Build\Win32\VC6\Release"

This command appends the path C:\xml-xalan\c\Build\Win32\VC6\Release, which contains the
executable file xalan.exe, to your current path variable, represented by the substitution variable
%path%. If you want, you could add this command line to your autoexec.bat file, so that the new
path is set each time you boot your computer.

The C++ version of Xerces must also be in the path. If you unzipped Xerces in the root directory, the
location for the Xerces dynamic-link libraries would be at C:\xerces-c2_2_0-win32\bin. Add this
location to your path as you did with Xalan.

On Windows 2000 or XP Professional, you can also set the path variable by choosing Start
Control Panel System Advanced Environment Variables, and then adding the path to
your user or system variables in the Environment Variables dialog box. With xalan.exe in the path
variable, you are ready to put it to use.

A.1.6.3 Setting the path variable for Xalan on a Unix platform

If you installed or unzipped the Xalan C++ in your home directory on a Unix platform (such as in
/usr/mike), the location for xalan.exe would be something like /usr/mike/xml-

http://xml.apache.org/dist/xalan-c/stable/
http://lib.ommolketab.ir

xalan/c/Build/Win32/VC6/Release. To add this location to the path, enter the following line:

path="/usr/mike/xml-xalan/c/Build/Win32/VC6/Release:$PATH"

This command adds /usr/mike/xml-xalan/c/Build/Win32/VC6/Release, which contains the executable
file xalan.exe, to your current path variable. (The path variable is represented by $PATH.) If you

want, you could add this command line to your /etc/profile or ~/.profile file, so that the new path is
set each time you boot your computer.

Xerces must also be in the path in order for Xalan to work. If you unzipped Xerces in your home
directory on Unix, the location for the Xerces dynamic-link libraries would be at something like
/usr/mike/xerces-c2_2_0-win32/bin. Add this location to your path as you did Xalan, and you'll be
ready to run.

A.1.6.4 Running Xalan C++

With Xalan C++ and Xerces C++ installed and the proper directories in the path, you can begin using
Xalan. To start, just type the name of the program on a command line:

xalan

If Xalan works, you will see the following usage information on the screen:

Xalan version 1.5.0
Xerces version 2.2.0
Usage: Xalan [options] source stylesheet
Options:
 -a Use xml-stylesheet PI, not the 'stylesheet' argument
 -e encoding Force the specified encoding for the output.
 -i integer Indent the specified amount.
 -m Omit the META tag in HTML output.
 -o filename Write output to the specified file.
 -p name expression Sets a stylesheet parameter.
 -u Disable escaping of URLs in HTML output.
 -v Validates source documents.
 -? Display this message.
 - A dash as the 'source' argument reads from stdin.
 - A dash as the 'stylesheet' argument reads from stdin.
 ('-' cannot be used for both arguments.)

Xalan takes at least two parameters: the name of the source document followed by the name of the
stylesheet, like this:

xalan test.xml test.xsl

To direct Xalan's output to a file, use the -o option:

xalan -o test.out test.xml test.xsl

Use an XML document that contains an XML stylesheet PI, and then use the -a option, followed by

the filename:

http://lib.ommolketab.ir

xalan -a test.xml

The XML stylesheet PI contains a reference to a stylesheet and will look something like:

<?xml-stylesheet href="test.xsl" type="text/xsl"?>

To set the number of spaces used for the indentation of output, use the -i option, followed by an
integer (2 means the output will be indented by two spaces for each element level of the XML

document):

xalan -i 2 test.xml test.xsl

If the source document has an associated DTD, you can validate it at runtime with the -v option:

xalan -v test.xml test.xsl

A DTD will be associated with the XML document by a document type declaration, which will look
something like:

<!DOCTYPE test SYSTEM "test.dtd">

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

A.2 Using jd.xslt

The jd.xslt XSLT processor was written by Johannes Döbler of Munich, Germany. This processor
supports XSLT Version 1.1 (see http://www.w3.org/TR/xslt11). XSLT 1.1 was withdrawn by the W3C
in favor of XSLT 2.0, which is now under development. Nevertheless, Version 1.1 offers several
interesting features, including the script element, not available under XSLT Version 1.0. The script
element allows you to define extensions within a stylesheet, something like the function element in

XSLT 2.0. You can read more about the jd.xslt processor at http://www.aztecrider.com/xslt/.

A.2.1 Downloading and installing jd.xslt

Follow these steps (which may vary over time) to download and install jd.xslt:

Using a browser, go to http://aztecrider.com/xslt/download.html.1.

Click on http://aztecrider.com/xslt/jdxslt.zip.2.

Save the file jdxslt.zip to the directory of your choice.3.

When the download is complete, extract the file from the archive using an unzip utility.4.

The installation is complete.5.

A.2.1.1 Running jd.xslt

One option is to copy the JAR file jdxslt.jar from the lib directory of the archive to one of the chapter
directories under C:\LearningXSLT\examples directory. Placing the JAR in a working directory
obviates the need to deal with the Java classpath (see Section A.1.2, earlier in this appendix).

Test to see if jd.xslt works by typing the following line at a command prompt:

java -jar jdxslt.jar

This should give you:

jd.xslt processor version 1.5.2

Usage: java jd.xml.xslt.Stylesheet [options] xml [xsl...]

xml the uri of an input xml document, "-" for STDIN
xsl... zero or more uris of stylesheets - if their number is
 = 0: use the associated stylesheets of the xml document
 = 1: transform the input with that stylesheet
 > 1: chain the transformations

http://www.w3.org/TR/xslt11
http://www.aztecrider.com/xslt/
http://aztecrider.com/xslt/download.html
http://aztecrider.com/xslt/jdxslt.zip
http://lib.ommolketab.ir

 the uri "urn:jdxslt:identity" denotes the identity
 transformation
options:
-entityresolver <cls> set a sax EntityResolver
-errorstack show the java call stack in case of an error
-media <media> filter associated stylesheets by their media attribute
-msglistener <class> set a message listener
-out <file> write the output to the file (default is System.out)
-out:<prop> <value> set the value of a xsl:output property
-param <name> <expr> set the value of a toplevel parameter (expr is a context-
 free XPath expression). Multiple parameters are allowed
-parser <class> set a sax parser
-parserxml <class> set a sax parser for input xml documents
-parserxsl <class> set a sax parser for the stylesheet
-proxy <url> set a proxy host
-repeat <number> repeat the transformation n times
-security <class> set a XsltSecurityManager
-title <title> filter associated stylesheets by their title attribute
-trace create trace output
-uriresolver <class> set a UriResolver
-validate validate xml documents
-verbose turn on verbose mode to display transformation info
-w0 recover silently from recoverable errors
-w1 report recoverable errors and continue (default)
-w2 treat recoverable errors as fatal
java -jar saxon7.jar test.xml test.xsl

To transform a file, use the following:

java -jar jdxslt.jar test.xml test.xsl

To transform a source file with more than one stylesheet, use the following line:

java -jar jdxslt.jar test.xml test1.xsl test2.xsl test3.xsl

To send output to a file, use the -out option:

java -jar jdxslt.jar -out test.out test.xml test.xsl

Set an output property (based on the attributes of the output element) using the -out: option:

java -jar jdxslt.jar -out:indent yes test.xml

For verbose output, use the -verbose option:

java -jar jdxlst.jar -verbose test.xml test.xsl

If the source document has an associated DTD, you can validate it at runtime with the -validate

option:

java -jar jdxslt.jar -validate test.xml test.xsl

A DTD will be associated with the XML document by a document type declaration, which will look

http://lib.ommolketab.ir

something like:

<!DOCTYPE test SYSTEM "test.dtd">

A.2.2 Using xmlspy

Altova's xmlspy is available for download from http://www.xmlspy.com. You can get a free trial
before purchasing a license. (This is the only XSLT processor I am demonstrating that isn't free.) I
should note, however, that xmlspy runs only on the Windows platform.

Assuming that you have successfully installed xmlspy, follow these steps.

Launch the xmlspy application.1.

Choose Window All on/off. This closes the Project, Info, and Entry Helper windows.2.

Open the file message.xml with File Open from the working directory
C:\LearningXslt\examples\ch01 (or something similar, depending on how you've set things up).

3.

Choose View Text view.4.

Open the file message.xsl with File Open in the same location as message.xml.5.

Choose View Text view again. At this point, xmlspy should appear as it does in Figure A-1.6.

Click on the message.xml window to give it the focus.7.

Choose XSL XSL Transformation or press F10. A dialog box appears.8.

Click the Window button, select the file message.xsl, and click OK. The dialog box should appear
as shown in Figure A-2.

9.

Click OK once more and another HTML window appears showing you the result of the
transformation, as in Figure A-3.

10.

Figure A-1. xmlspy with files loaded

http://www.xmlspy.com
http://lib.ommolketab.ir

Figure A-2. xmlspy dialog box

Figure A-3. Result of transforming message.xml with message.xsl

A.2.3 Using xRay2

Architag's xRay2 is a free, graphical XML editor with XSLT processing capability. It is available for

http://lib.ommolketab.ir

download from http://www.architag.com/xray. xRay2, like xmlspy, runs only on the Windows
platform.

Assuming that you have successfully downloaded and installed xRay2 according to the easy
instructions provided by Architag, follow these steps to process a source document with a stylesheet.

Launch the xRay2 application.1.

Open the file message.xml with File Open from the working directory
C:\LearningXSLT\examples\ch01\ (or something similar).

2.

Open the file message.xsl with File Open in the same location.3.

Choose File New XSLT Transform.4.

In the XML Document pull-down menu, select message.xml (see the result in Figure A-4).5.

In the XSLT Program pull-down menu, select message.xsl (see what it should look like in Figure
A-5).

6.

If it is not already checked, check Auto-update.7.

The result of the transformation should appear in the transform window (see Figure A-6).8.

Figure A-4. message.xml in xRay2

Figure A-5. message.xsl in xRay2

http://www.architag.com/xray
http://lib.ommolketab.ir

Figure A-6. Result of transforming message.xml with message.xsl in
xRay2

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

Glossary
Abbreviated syntax

See "Location path."

Absolute location path

See "Location path."

Ancestor

See "Parent-child relationship."

Ancestor axis

See "Axes."

Ancestor-of-self axis

See "Axis."

Ant

Ant is a Java-based build tool sponsored by Apache (see http://ant.apache.org). Ant is a
timesaver and easy to use. See http://ant.apache.org/resources.html for a list of FAQs,
articles, presentations, and books on Ant. Ant was used in this book to build the JAXP-based
processor discussed in Chapter 17.

Attribute

A name/value pair that modifies an element. In the attribute specification <name
type="first">, type is the attribute and first (in double quotes) is the value of the

attribute. Attributes can appear on start-tags or on empty element tags. Each attribute can
only appear once on a tag (no duplicates), and the order of attributes is not preserved in XML
processing. An attribute value must be surrounded by matching single or double quotes. See

http://ant.apache.org
http://ant.apache.org/resources.html
http://lib.ommolketab.ir

"Node."

Attribute axis

See "Axes."

Attribute-list declaration

In a DTD, a declaration for a valid attribute comes in the form <!ATTLIST date type CDATA
#IMPLIED>, where date is the element name for which the attribute is declared, type is the
name of the attribute, CDATA is the type of the attribute (a string), and #IMPLIED means that
the attribute is optional; it may also be #REQUIRED or #FIXED (a fixed attribute must always

have its default value). In XML 1.0, there are several types available for valid attributes such
as CDATA, ID, IDREF, IDREFS, and so forth. Attribute-list declarations can also contain
enumerations, and default values, in the form <!ATTLIST date day
(Monday|Wednesday|Friday) "Monday">, where Monday, Wednesday, and Friday, separated
by a | (union operator implying or) and enclosed in parentheses, make up the enumeration
and Monday (in quotes) is the default value. See "ID."

Attribute node

See "Node."

Attribute set

A named set of attributes, defined in XSLT with the top-level attribute-set element. An
attribute set may be reused by referencing its name in a use-attribute- sets attribute value
on attribute-set, element, or copy instruction elements.

Attribute value template

In XSLT, an expression that is surrounded by braces and contained in an attribute value. For
example, the following literal result element has an attribute value that contains an attribute
value template: <days number="{3 + $week}">. days is the element name, number is the
attribute name, and the attribute value template, in braces, is evaluated to 3 plus the value of
the week variable. (See "Variable.") Attribute value templates may be found in the attribute
value of literal result elements and in XSLT elements that allow them, such as in the name
attribute of the element or attribute instruction elements.

Axes

http://lib.ommolketab.ir

Nodes in an XML document fall within one or more of 13 distinct axes defined by the XPath
data model. The axes are ancestor, ancestor-or-self, attribute, child, descendant, descendant-
or-self, following, following-sibling, namespace, parent, preceding, preceding-sibling, and self.
Axes can be forward or reverse: the ancestor, ancestor-or-self, preceding, and preceding-
sibling axes are reverse axes; all other axes are forward axes. Axis identifiers are said to be in
unabbreviated syntax when used with a name, name test, or node test, and separated by the
connector ::. Some location path examples that use the unabbreviated syntax: child::date,
child::days/attribute::number, self::node().

Base URI

The base URI is the internal, base location of a node, based on the location of the source
document or stylesheet. (This can also be set explicitly with xml:base, where supported.)

Relative URIs are relative to this base location that is set according to the rules in Section 3.2
of the XSLT specification at http://www.w3.org/TR/xslt/.

Boolean

An XPath datatype whose value can be either true (1) or false (0). Some expressions return

Boolean values, testing whether a condition is true or false, such as an expression contained in
the test attribute of the if or when XSLT instruction elements.

Built-in template rules

In XSLT, built-in template rules match nodes without an explicit rule. Each of the seven node
types has a built-in rule that will be instantiated in the absence of an explicit template rule in a
stylesheet. Commonly, an apply-templates element will trigger the built-in template rule for

text nodes.

C#

See ".NET Framework."

CDATA section

Provides a way to hide character data from an XML processor so that the processor will ignore
its contents as markup. For example, entering <![CDATA[O'Reilly & Associates]]> would
display the ampersand (&). Without a CDATA section, the & could not properly be displayed. In
XSLT, the cdata-section-elements attribute on the output element specifies a list of the

names of elements whose text node children should be output using CDATA sections.

http://www.w3.org/TR/xslt/
http://lib.ommolketab.ir

Character reference

See "Entity."

Child axis

See "Axes."

Child element

See "Parent-child relationship."

Client-side XSLT

Support for XSLT transformations that is embedded in the browser (the client). Late versions of
IE, Mozilla, Mozilla Firebird, and Netscape all support client-side XSLT.

Comments

Comments provide a way for documenting what is in an XML or DTD document or for hiding
text or markup from the XML processor. Anything contained in a comment is ignored by the
XML processor. Comments begin with <! and end with > and cannot contain except at the end
of the comment. You can create comments in a result tree by using the comment instruction

element in a stylesheet. The comment node is one of seven node types in the XPath data
model.

Context node

According to XPath, the node being currently processed. Compare with "Current node."

Context position

The position of the context node within the current node list. See "Current node list."

Context size

The number of nodes in the current node list. See "Current node list."

http://lib.ommolketab.ir

Current node

The current node is the same as the context node, except when a predicate is being evaluated.
This is the only time the context node (defined by XPath) and the current node (defined by
XSLT) are different. When a predicate is evaluated, the node in the predicate momentarily
becomes the current node. See "Context node" and "Current node list."

Current node list

A list of nodes, each one of which will in turn be the current node a processing progresses. See
"Current node."

Current template rule

The template rule currently being processed. See "Template rule."

Default namespace

See "Namespaces."

Descendant axis

See "Axes."

Descendant element

See "Parent-child relationship."

Descendant-or-self axis

See "Axes."

Document element

The first element in an XML document, the parent of all other elements within a given
document. The html element, for example, is the document element of an XHTML document.

The document element is also called the root element.

http://lib.ommolketab.ir

Document entity

An entity representing the XML document where an XML processor logically begins processing.

Document node

In XPath 2.0, the root node is called the document node.

Document order

The order in which nodes appear in the source document that is being processed by an XSLT
processor.

Document type declaration

A document type declaration in an XML document declares either a document type definition
(DTD) internally (called the internal subset) or declares the name or location of an external
document definition (the external subset). An example of an external subset declaration is:
<!DOCTYPE date SYSTEM "date.dtd">. An example of an internal subset declaration is:
<!DOCTYPE date [<!ELEMENT date (#PCDATA)>]>. Internal and external declarations may also

be combined.

Document type definition

A document type definition, or DTD, is a document that contains the definitions or markup
declarations for XML elements, attributes, and so on. If an XML document has a DTD
associated with it, an XML processor can validate the XML document against the DTD. In other
words, the XML processor may be directed to check that an XML document follows the rules
outlined in an associated DTD, in addition to checking for compliance with the normal rules of
XML well- formedness. See "Attribute-list declaration," "Element-type declaration," and
"Markup declaration."

DTD

See See "Document type definition."

Element

The most common structure in an XML document. An element may be empty, contain a string
(parsed character data) or other elements, or have mixed content (elements and strings mixed
together). For example, <date>2003-12-31</date> is an example of an element (date) with

http://lib.ommolketab.ir

parsed character data as content (2003-12-31). See "Node."

Element node

A node representing an element and its contents. See "Node."

Element-type declaration

An element-type declaration refers to the markup declaration for an element that appears in a
DTD for valid XM. For example, in <!ELEMENT date (#PCDATA)>, an element date is declared
to have parsed character data content. In <!ELEMENT date (month,day,year)>, the element
date is declared to have one month child element, one day, and one year. An element can also

have mixed content. See "Mixed content."

Embedded stylesheet

A stylesheet that is embedded in the document element of an XML document and referenced
by a fragment identifier in the href attribute of an XML stylesheet processing instruction. The
fragment identifier references an attribute of type ID on the stylesheet element of the

embedded stylesheet. Compare with "Literal result element stylesheet."

Empty element

An element that has no content is empty; that is, it does not have text or other content such
as other elements between a start-tag and an end-tag. An example of an empty element in
XHTML is
. In XML, an empty elements tag looks like <date today="2003-10-03"/>
where date is an element and today is an attribute, but there is no element content in date.

Encoding

Refers to the character set in use in an XML document, such as UTF-8 or ISO-8859-1. In XSLT,
you can control encoding with the encoding attribute on the output element. See "Encoding

declaration."

Encoding declaration

Appears in an XML declaration to declare the encoding for an XML document, in the form
encoding="UTF-8". See "XML declaration."

http://lib.ommolketab.ir

Entity

An XML storage unit. Often, an entity structure that provides replacement text wherever a
reference is given in an XML document. Character and general entity references begin with an
ampersand (&) and end with a semicolon (;). For example, the reference to the predefined
XML entity < stands for the less-than (<) sign, and wherever < appears in an XML
document, it will be replaced by < when the XML document is displayed in a browser or
processed in some other way. Several general entities are built into or predefined in XML: <
(less-than [<]), > (greater-than [>]), & (ampersand [&]), ' (apostrophe [']), and
" (quote ["]). Character references provide replacement text for single characters.

General entities can replace characters or strings. Parameter entities, delimited by a percent
sign (%)-not an ampersand-and a semicolon, provide a way to reuse declaration and other

text in DTDs.

Entities can be internal and external. This means that an entity could be internally defined
within the XML document's DTD, or it could be defined externally in a separate file, even in a
file out on the Web somewhere. Entities can also be parsed or unparsed. An unparsed entity is
ignored by the XML processor and is some resource other than XML text, such as a JPEG
graphic file, or even an HTML file. All other entities are considered parsed, that is, the XML
processor processes them normally. See "Document entity."

Entity reference

See "Entity."

Escape characters

You can escape characters in XML with character entities and CDATA sections. See "Entity" and
"CDATA section."

Expression

Defined by XPath, expressions contain node names (location paths), arithmetic, functions, and
so forth, and can resolve to a node-set, number, string, Boolean, or, as defined in XSLT, a
result tree fragment. Expressions appear only in attribute values, such as the select attribute
of apply-templates or value-of. A pattern is a subset of an expression. See "Location path"

and "Pattern."

EXSLT

See "Extension."

Extensible Hypertext Markup Language

http://lib.ommolketab.ir

XHTML is a vocabulary defined by the W3C that brings together XML and HTML. XHTML is
defined by an XML DTD rather than an SGML DTD. XHTML must be well-formed XML, and must
use all lowercase tag names. XHTML 1.0 became a W3C recommendation in early 2000; since
then, other XHTML specs have appeared, and XHTML has been modularized. See
http://www.w3.org/MarkUp/.

Extensible Markup Language (XML)

XML is a language that allows you to create your own markup language. It has an inherent,
logical structure that you can use to label document content and data. This, in turn, makes
XML an ideal language for storing interoperable data. In addition, XML is open, nonproprietary,
platform independent, and license free. See http://www.w3.org/TR/REC-xml.html.

Extensible Stylesheet Language (XSL)

Provides a way to apply formatting to XML documents using stylesheets. It is similar to CSS but
is actually written in XML, and applies specifically to XML documents, whereas CSS can apply to
either HTML or XML. XSL is more extensive than CSS, and is commonly referred to as XSL-FO
(FO stands for formatting objects). See http://www.w3.org/TR/xsl/.

Extensible Stylesheet Language Transformations (XSLT)

Allows you to transform XML documents into new XML, XHTML, HTML, or text documents. An
XSLT stylesheet uses templates to match patterns in a source document and then outputs a
result tree that may be serialized. XSLT relies on XPath syntax to match patterns. XSLT also
allows you to add new markup to a result, such as new elements, attributes, comments, and so
forth, by using instruction elements. See http://www.w3.org/TR/xslt/.

Extension

You can extend XSLT by adding extension elements and functions (which requires
programming and processor support). You can also use the extensions already provided by
existing XSLT processors such as Xalan and Saxon. One common extension function in XSLT
1.0 is the node-set() function, which can coerce a result tree fragment into a set of nodes.

EXSLT is a group that is attempting to standardize XSLT extensions for portability and
consistency (http://www.exslt.org).

External entity

See "Entity."

http://www.w3.org/MarkUp/
http://www.w3.org/TR/REC-xml.html
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xslt/
http://www.exslt.org
http://lib.ommolketab.ir

Fallback

In XSLT, processing may fall back in case an extension element or function is not supported by
a given processor. For extension elements, this is performed using the fallback element,
often in combination with a message element. You can also use the element-available()
function to test for the availability of extension elements, or the function-available()

function to test for extension functions. See "Extension."

Fragment identifier

A fragment identifier is preceded by a # in a URI, as in
http://www.example.com/index.html#top. In HTML, #top refers to named anchor () in the document index.html. An embedded stylesheet uses a fragment identifier.

See "Embedded stylesheet" and "URI."

Following axis

See "Axes."

Following-sibling axis

See "Axes."

Function

Used in XPath expressions, functions perform specialized operations and appear only in XSLT
attribute values that can contain expressions (such as select or value-of). Both XPath and
XSLT define functions. Examples of functions are substring() (XPath) and document()

(XSLT).

General parsed entity

See "Entity."

Global variable

A variable or parameter that is defined on the top level of a stylesheet and so is visible to (in
scope for) the entire stylesheet. See "Local variable" and "Variable."

ID

http://www.example.com/index.html#top
http://lib.ommolketab.ir

An attribute type in XML 1.0. The value of an attribute of type ID is an identifier that is unique
within an XML document and must not be duplicated. This associates an ID with an element.
You can reference an ID from an attribute of type IDREF or multiple IDs from an attribute of
type IDREFS (a whitespace-separated list of IDs). IDs must not start with a number in order to
be valid XML.

Import

The ability to import stylesheets into another stylesheet, thus imposing rules of import
precedence. Imported stylesheets are retained in an import tree. An import element (or more
than one) must be the first child of the stylesheet element. See "Import precedence."

Import precedence

Imported template rules and top-level declarations have a lower precedence than those rules
and declarations that exist in an importing stylesheet. In other words, rules and declarations in
the importing stylesheet have higher precedence than those in an imported stylesheet. Import
precedence is established by the order in which stylesheets are imported, and, therefore, how
they are stored in the import tree. See "Import."

Include

You can include external stylesheets in a stylesheet using the include element. Template rules

and declarations from the included stylesheet are mixed in with those of the including
stylesheet as if they were one stylesheet. Compare with "Import."

Instance

An instance is an XML document that matches a particular DTD or schema, making it an
instance of that schema. It is, also, any occurrence of a given structure.

Instantiation

The process of writing out the content of a template (sequence constructor in XSLT 2.0) based
on a successful match of the template rule.

Instruction element

In XSLT, an element that is contained in a template, and not the top level. For example,
element, attribute, copy, copy-of, and value-of are examples of instruction elements.
Some elements, such as variable, may be used as instruction elements and as top-level

http://lib.ommolketab.ir

elements.

Internal entity

See "Entity."

JAXP

Sun's Java API for XML Processing (JAXP) provides many resources for the programmer who
wants to process XML or to write an XSLT processor (or more accurately an interface to one).
The extension packages javax.xml.transform and javax.xml.transform.stream help get

the job done. See http://java.sun.com/j2se/1.4docs/api/index.html.

Key

XSLT offers keys (a method of associating data with a name) that improve performance and
efficiency. You declare a key at the top level of a stylesheet with a key element, and later you
can employ the declared key with the key() function.

Literal result element

Literal elements, attributes, text, and other items in a template that, when instantiated,
produce new elements, attributes, text and so forth in a result tree. Literal result elements are
subject to the rules of XML well-formedness.

Literal result element stylesheet

A simplified stylesheet whose document element is html or an XML element that contains a

single template. Compare with "Embedded Stylesheet."

Local variable

A variable or parameter that is defined locally within a template rule and is visible to (in scope
for) that rule alone. See "Global variable" and "Variable."

Location path

In XPath, a location path is an expression that identifies a node or nodes. It may consist of one
or more steps. A step in a location path is separated by slashes. An absolute location path
always begins with a slash and evaluates to or begins at the root node. A relative location path

http://java.sun.com/j2se/1.4docs/api/index.html
http://lib.ommolketab.ir

evaluates to or begins with the context node. An example of an abbreviated location path with
two steps is date/month, which locates a date element relative to the context node, followed
by a month element. In unabbreviated syntax, you use the axis specifiers with connectors like
child::date/child::month, which gives you the same result as the unabbreviated syntax.

Following are a few more comparisons of abbreviated and unabbreviated syntax, each pair
having the same meaning: @type and attribute::type, child::* and *, @* and
attribute::*, and self::node(), and parent::date and /date.

Location step

See "Location path."

Markup

Includes element tags plus attributes, processing instructions, XML declarations, stylesheet
declarations, document type declarations, and entity references. For example, <date>,
</date>, <?xml-stylesheet href="date.xsl" type="text/xsl"?>, and > are all

considered markup.

Markup declaration

Declarations in a DTD, such as <!ELEMENT date (#PCDATA)> and <!ATTLIST date type CDATA
#IMPLIED>, are markup declarations. See "Attribute-list declaration" and "Element-type

declaration."

Mixed content

Mixed content in an XML element consists of a mixture of text and child elements. In a DTD, it
is declared <!ELEMENT date (#PCDATA | month | day | year)*>. See "Element-type

declaration."

Modes

Normally, you can't match nodes with more than one template rule in a stylesheet. Modes
allow you to apply more than one rule to a pattern by using the mode attribute on both the
template and apply-template elements simultaneously with identical values. Each identical
mode attribute value identifies a distinct mode. Modes are useful for visiting the same pattern

repeatedly, each time with a different effect.

Name characters

http://lib.ommolketab.ir

Name characters are those ISO/IEC 10646-1 or Unicode characters that are legal for use in
XML names. These characters must match the production NameChar in section 2.3 of the XML
specification. The legal name characters are too numerous to list here, but some common
examples include the Latin characters A-Z, a-z, hyphen (-), colon (:), period or full-stop (.),
and underscore (_).

Named templates

A template element may have a name attribute on it. You can then use call-template to

invoke the named template. Calling a named template does not change the context; you can
call the named template as often as you like. Named templates may also be invoked by
matching a pattern because a template element may have both a name and match attribute.

Namespace axis

See "Axes."

Namespaces

An approach to qualifying elements and attributes so that they are unique from all other
element and attribute names. You identify a namespace by associating an element with a URI
(with either a URL or a URN) and optionally a prefix. A default namespace declaration
associates a namespace with an element and its children without a prefix. The XML namespace
specification became a W3C recommendation in 1999. It is available at
http://www.w3.org/tr/REC-xml-names/. Namespace URI identify only the namespace; they do
not point to the location of a schema or other resource that describes or defines the
namespace. See "Node," "NCName," and "Qualified name (QName)."

NaN

Stands for "Not a number." Used by the XSLT top-level element decimal-format.

NCName

An NCName is an XML name that does not contain a colon. The element <date> is an example

of an element that uses an NCName. It is sometimes called a noncolonized name. An NCName
also does not have a namespace prefix associated with it. See "Qualified name (QName)."

.NET Framework

Microsoft's .NET Framework provides a programming and web development environment that

http://www.w3.org/tr/REC-xml-names/
http://lib.ommolketab.ir

includes programming languages such as VB.NET, ASP.NET, and C#. C# has strong support of
XML and XSLT, and a variety of APIs provide the programmer easy access to these resources.
You can write an XSLT processor (or actually an interface to one) in just a few lines of code
using C#'s System.Xml, System.Xml.XPath, and System.Xml.Xsl namespaces. See

http://www.microsoft.com/net.

Node

According to the XSLT 1.0 data model, a node is one of seven distinctive parts of an XML
document, namely, the root node, element nodes, attribute nodes, text nodes, comment
nodes, processing instruction nodes, and namespace nodes. Node comes from the Latin nodus,
which is a knot in a rope.

Node-set

A set of unordered nodes of possible different types that may be empty. See "Node."

Node test

An XPath method that tests for given nodes. For example, the node tests that are listed here,
comment(), node(), processing-instruction(), and text(), test for nodes of a given
type (any given type in the case of node()).

Output

The serialization of XSLT output is controlled by the top-level output element. This element has
a number of attributes that can control the output method (xml, html, or text), encoding, XML

declaration, indentation, CDATA sections, document type declaration, and so forth. You can
have more than one output element in a stylesheet.

Output escaping

The text and value-of elements have an optional attribute: disable-output- escaping. It
can have a value of yes or no (default). By default, < will be output escaped, that is, as
<. If you disable output escaping with a value of yes, you will get < instead. The output
method should be xml or html for this to work. See "Output."

Ox

Ox is a compact command-line documentation tool written in Java that provides quick
reference material for XSLT 1.0 and XPath 1.0. It is discussed in Chapter 18.

http://www.microsoft.com/net.
http://lib.ommolketab.ir

Parameter

In XSLT, you can bind a name with a default value using the param element. This parameter

can be declared on the top or global level (scope is the whole stylesheet) or on the local level
(scope is the template where the local parameter is declared). You can pass parameters into a
stylesheet using a mechanism provided by an XSLT processor or into a template using the
with-param element. See "Variable."

Parent-child relationship

XML elements have a relationship to each other, which forms the structure of an XML
document. These relationships are parent, child, ancestor, descendant, and sibling. A child
element is contained in the content of its parent element. The document element, for example,
is the ancestor of all other elements in a document. A descendant is a child element and can be
removed by more than one generation (or level of structure). If a parent element has more
than one direct child, these children are called siblings.

Path expression

A path expression selects a node-set from a source document and may consist of location
steps. See "Location path."

Pattern

A pattern is a subset of an XPath expression. It can contain location paths for nodes that are
along the child or attribute axes only, but it can also contain predicates, id(), and key()
functions. The match attribute of template, for example, can contain a pattern for matching

nodes as part of a template rule. See "Location path."

Preceding axis

See "Axes."

Preceding-sibling axis

See "Axes."

Predicate

http://lib.ommolketab.ir

A filter containing an expression enclosed in square brackets. A predicate can be associated
with nodes where either patterns or expressions may appear. A predicate returns a Boolean.
For example, date[.='2003-12-31'] returns true if a date element contains the string 2003-
12-31.

Processing instruction

A special instruction issued to an application processing XML. A processing instruction, or PI, is
always enclosed by an angle bracket-question mark (<?) and ended by a question mark-angle
bracket (?>) combination. A target name, such as xml-stylesheet, must immediately follow
the <? with no intervening space. An XML stylesheet PI contains pseudoattributes such as href
and type, which help associate an XML document with a stylesheet; for example, <?xml-
stylesheet href= "test.xsl" type="text/xsl"?>. See "Node."

Prolog

Structures that appear before the document element. A prolog can include an XML declaration,
a document type declaration, and processing instructions, comments, and whitespace. See
"XML declaration," "Documnt type declaration," and "Processing instruction."

Qualified name (QName)

A qualified name or QName is an XML name that is qualified with a namespace. It may use a
namespace prefix and a colon in its name. The element xsl:element is an example of an

element that uses a QName with a prefix. See "Namespaces" and "NCName."

RELAX NG

Appearing in late 2001, RELAX NG is a simple yet elegant schema language created under the
auspices of OASIS. It is easier to learn than XML Schema and has a sound theoretical basis (it
is based on ideas from tree automata). You can learn more about RELAX NG at
http://www.relaxng.org/. Compare with "XML Schema."

Relative location path

See "Location path."

Repetition operator

A repetition operator in an XML 1.0 DTD or a regular expression indicates the frequency with
which an element or expression may be repeated in an instance. These operators are: a

http://www.relaxng.org/
http://lib.ommolketab.ir

comma (,) for exactly one (DTDs); an asterisk (*) for zero or more; a plus sign (+) for one or
more; and a question mark (?) for zero or one.

Result tree

The result of an XSLT transformation upon an XML source document is called a result tree. A
result tree may be, and usually is, serialized to the screen or to a file.

Result tree fragment

A result tree fragment is defined in the element content of the variable element. This

fragment may contain fragments of text or even well-formed XML. In XSLT 1.0, it can be
manipulated as a node-set using a node-set() extension function. In XSLT 2.0, a result tree

fragment is called a temporary tree and intrinsically is a node-set.

Root element

See "Document element."

Root node

Refers to a way of addressing an entire document in the XPath data model. See "Node."

Sibling element

See "Parent-child relationship."

SGML

Standard Generalized Markup Language is a complex ISO/IEC standard from which XML was
derived. XML is a simplified, restricted subset of SGML. HTML uses an SGML DTD.

Source tree

The original XML document from which a new document or result tree is derived. See
"Extensible Stylesheet Language Transformations (XSLT)."

Standalone declaration

http://lib.ommolketab.ir

See "XML declaration."

Template

See "Template rule."

Template priority

See "Template rule."

Template rule

Consists of a matching pattern and template or sequence constructor (XSLT 2.0 term). When a
template rule matches a pattern, its sequence constructor-the body of the template
instructions-is instantiated, or written out. Some XSLT elements can contain templates but not
template rules. For example, the element instruction can contain a template but does not
match a pattern. Template rules have a built-in priority scheme that can be explicitly controlled
using the priority attribute on template.

Temporary tree

See "Result tree fragment."

Text declaration

A text declaration occurs in an external parsed entity and allows you to declare the encoding
for the entity. It is similar to the XML declaration but it does not require version information. An
example of a text declaration is <?xml encoding= "UTF-8"?>.

Text node

See "Node."

Top-level elements

In XSLT, a top-level element is a child of the stylesheet element and usually provides
declarations that are global for the entire stylesheet. attribute-set, variable, and template

are a few top-level elements.

http://lib.ommolketab.ir

Tree

An XML document has a tree structure. Starting from the document element (imagine it as the
trunk of a tree), its branches grow out in the form of elements and other nodes. An XSLT
processor analyzes and organizes its input and output into a tree structure. See "Source tree,"
"Result tree," and "Parent-child relationship."

Unabbreviated syntax

See "Location path."

Unicode

An international standard of character definitions that, in concert with ISO/IEC 10646-1,
attempts to codify all the writing systems of all languages in the world. See
http://www.unicode.org.

Unparsed entity

See "Entity."

URI

An acronym for Uniform Resource Identifier, a naming scheme for identifying resources on the
Internet. The term URI encompasses the subset terms Uniform Resource Locator (URL) and
Uniform Resource Name (URN). A URL is a representation of a resource that indicates where
the resource is located on a network. A URN is a name that must remain globally unique and
must persist. For example, urn:wyeast-net:date is a valid URN. For complete details on URIs,

see http://www.ietf.org/rfc/rfc2396.txt.

URL

See "URL."

URN

See "URL."

http://www.unicode.org
http://www.ietf.org/rfc/rfc2396.txt
http://lib.ommolketab.ir

Valid XML

XML is considered valid when it has an associated document type definition (DTD) or other
schema. With a DTD in tow, an XML processor can validate elements, attributes, and so forth
against the DTD or schema, insuring that the XML document is going by the rules. Compare
"Well-formed XML." See "Document type declaration" and "Document type definition."

Variable

A name bound to a value. Generally refers to variables declared by the variable and param

elements. You refer to a variable with a variable reference that consists of the variable name
preceded by a $-for example, $date. A value defined with variable cannot change, but the
value of a variable defined with param is a default value that can change. Variables can be

empty. See "Parameter."

Version information

See "XML Declaration."

Vocabulary

An XML vocabulary is a collection of XML elements and attributes. For example, one such
vocabulary is MathML, an XML-based markup language that allows you to render mathematical
symbols and equations. See http://www.w3.org/Math

W3C

See "World Wide Web Consortium (W3C)."

Well-formed XML

Follows the general rules of XML but is not necessarily valid according to a document type
definition (DTD) or some other schema. Some of those general rules include always opening an
XML element with a start-tag and closing it with an end-tag, placing attributes in matching
quotation marks, making sure that tags use uppercase and lowercase identically, and so forth.

World Wide Web Consortium (W3C)

Established in 1994, the World Wide Web Consortium (http://www.w3.org) is an international
body headed by the inventor of the World Wide Web, Tim Berners-Lee. W3C forms committees
of interested parties-companies and individuals-that jointly develop specifications and

http://www.w3.org/Math
http://www.w3.org
http://lib.ommolketab.ir

recommendations for the web engineering community at large. While not without controversy
or detractors, the recommendations of W3C are highly regarded by industry; however,
although the W3C produces recommendations, it does not claim to be a national and
international standards organizations.

XML

See "Extensible Markup Language (XML)."

XML declaration

When included, the XML declaration is the first line of an XML document, and is part of the
prolog (see "Prolog"). An example of an XML declaration is as follows: <?xml version="1.0"
encoding="UTF-8" standalone="yes"?>. The version information indicates the XML

specification version number; the encoding declaration indicates the type, such as UTF-8; a
standalone declaration indicates the presence of references to external definition documents,
such as a DTD (see "Document type definition") or other external entity.

XML namespace

See "Namespaces."

XML processor

Every application that looks at XML documents must have an accompanying program called the
XML processor. This processor picks apart the XML document to make sure its contents are
well-formed, and when a DTD is present, it may also check for validity. If the XML document is
not well-formed, the XML processor must generate a fatal error and stop processing the
document, though it can continue to look for other fatal errors in the document and report
them. If a processor finds a validity error in a valid XML document, it must report that error,
but it need not stop processing.

XML Path Language (XPath)

A W3C recommendation that provides a grammar for addressing parts of an XML document.
For example, the location path child::* selects all the children of an element. XPath was

designed for use with XSLT and XPointer, which addresses the inner structure of an XML
document. The XPath 1.0 recommendation is available at http://www.w3.org/TR/xpath.

XML Schema

http://www.w3.org/TR/xpath
http://lib.ommolketab.ir

An XML vocabulary for defining XML documents. It is more powerful than the DTD because of
its richer datatypes and more straightforward XML syntax, among other things. The XML
Schema specs are: http://www.w3.org/TR/xmlschema-0/ http://www.w3.org/TR/xmlschema-
1/ http://www.w3.org/TR/xmlschema-2/ .

XML stylesheet processing instruction

See "Processing instruction."

XPath

See "XML Path Language (XPath)."

XSL

See See "Extensible Stylesheet Language. (XSL)"

XSLT

See "Exensible Stylesheet Language Transformations (XSLT)."

XSLT processor

A processor that transforms XML documents according to the rules outlined in the XSLT
specification. Xalan C++ and Instant Saxon are examples of command- line XSLT processors.
xmlspy and xRay2 are graphical XML editors with XSLT processing capability. See the appendix.

XHTML

See "Extensible Hypertext Markup Language."

[Team LiB]

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-
http://www.w3.org/TR/xmlschema-2/
http://lib.ommolketab.ir

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Learning XSLT is a Marabou stork (Leptoptilos crumeniferus). Among the
largest flying birds in the world, the Marabou stork's flight capability is facilitated by hollow toe bones,
which are an important adaptation for flight, considering its large size. The adult male's wingspan is
approximately 9.5 feet (2.9 meters). He can stand up to 5 feet tall (1.5 meters) and weigh 20
pounds (9 kilograms). The size and wingspan of females are generally smaller.

Native to the marshes and savannahs of Africa, Marabou storks can also be found near landfills,
abattoirs, and fishing villages. Marabous have adapted well to human growth and activity, which has
benefited the thriving species. Because they ingest bacterial waste, Marabou storks help humans by
reducing the spread of disease, and thus, they are important predators. Their powerful beaks break
through the rough hides of rotting mammal carcasses, which speeds up the decomposition process
and enables weaker scavengers to feast on the dead fleash. Marabous are attracted to grass fires,
where they hunt the small animals fleeing from the blaze. They will eat almost any kind of animal,
dead or alive, from caterpillars to flamingos to elephants. These hefty protein diets are necessary for
adult Marabous; they require over 25 ounces (700 grams) of food a day.

Marabous are large carnivores, notoriously ugly, not only because of their unsavory habits, including
squirting excrement onto their own legs, but also because of their featherless, scabby, pink heads
and necks speckled with dark pigmentation spots. Interestingly, Marabous evolved bald heads to
avoid getting their feathers soiled by the bloody carnage of successful scavenging expeditions. In
breeding season, the bare neck turns a pale blue-green, and the spots on the head and neck become
encrusted with dried blood. Although the birds are generally considered unsightly, their soft, white tail
feathers, called marabou, were once fashionable as trim for hats and gowns.

Marabou storks are colonial breeders, and they will return to the same community nesting site year
after year. The male Marabou stork arrives at the nesting site first, in order to establish his territory.
As he treats all newcomers with hostility, the courting female responds with submission, waiting to be
accepted as his mate. Like lobsters, penguins, and most bird species, Marabou storks mate for life.
Females usually lay 2 to 3 eggs during a breeding season that both parents will help incubate for 29
to 31 days. Marabous nest in the dry season when low water levels make it easier to catch prey, such
as frogs and small fish, to feed their young. The relatively long pre-fledgling period lasts 95 to 115
days. Marabous reach sexual maturity at approximately four years of age. In zoos, and possibly in
the wild, Marabou storks can live up to 25 years.

Marlowe Shaeffer was the production editor and copyeditor for Learning XSLT. Mary Brady was the
proofreader. Emily Quill and Claire Cloutier provided quality control. John Bickelhaupt wrote the
index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra

http://lib.ommolketab.ir

that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon was
written by Marlowe Shaeffer.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

& (ampersand)

" and &apos entities

< and > (angle brackets) 2nd

 entity references for

' (apostrophe)

@* (at-asterisk)

$ (dollar sign)

// (double forward slashes)

< (entity reference)

> (entity reference)

= (equals sign)

/ (forward slash) 2nd 3rd

-- (hyphens, doubled)

 vs.  (line-end vs.carriage return characters)

<? and ?> (PI start and end tags)

" (quotes, double) 2nd [See also quotes]3rd

' (quotes, single) 2nd [See also quotes]3rd

| (union operator) 2nd

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

add.xsl

africa.xml

africa2.xml

alias.xsl

alphabetical lists

alternative stylesheets

amount element

ampersand (&)

analyze-string element (XSLT 2.0) 2nd

ancestor.xsl

angle brackets (< and >) 2nd

Ant and Moxie processor building

any.xsl

Apache, XML parser

apostrophe (')

apply-imports element 2nd

apply-imports.xsl

apply-templates element 2nd

 sort element as child of

Architag xRay2 2nd

as attribute (XSLT 2.0)

ascending sorts

ASCII

ascii-treeview.xsl

attribute nodes

attribute value templates

attribute-set element

attributes

 quotes, including in values

 reusing

axes

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

base URI

better.xsl

bible.xml

binary coding, viewing files in

blank.xsl

BOM (Byte Order Mark)

 Windows and

Boolean functions

Boolean logic

Boolean.xsl

browsers

 cllient-side XSLT processing

 handling of whitespace in text

 XSLT support

built-in templates 2nd

 built-in template rules

 behavior at each node

built-in.xsl

Byte Order Mark (BOM)

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

C#

 processor interface programming

 .NET framework, downloading

 Pax

call-template element

call.xsl

canada.xml

case-order attribute (sort element)

CDATA sections

cdata.xsl

chain.xsl

character encoding

 Unicode

character map

character references

child elements

child nodes

choose element

choose.xsl

client-side XSLT processing

code pages 2nd

code points 2nd

collation attribute (XSLT 2.0)

comma.xsl

comment nodes

comments

concat() function 2nd

conditional processing

 of multiple kinds of documents

context nodes

context position

context size

context.xsl

contexts

control.xsl

copy element

 attributes, adding

 identity transforms

 shallow copies

 templates and

copy-namespaces attribute (XSLT 2.0)

copy-of element

copy-of.xsl

copy.xsl

cougar.xsl

count attribute (number element)

count() function

http://lib.ommolketab.ir

count.xsl

Cover, Robin

Cowan, John

csharp.xsl

current nodes

current-group() function (XSLT 2.0)

Cygwin

 xxd utility

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

data-type attribute (sort element)

data.xml

data.xsl

date\:date() and date\:time() functions, EXSLT

decimal-format element

 attributes

deep copies

 shallow copies, compared to

default-html.xsl

default-xml.xsl

delaware.xml

descending sorts

disable-output-escaping attribute

disable-output-escaping attribute (XSLT 2.0)

DOCTYPE keyword

doctype-public.xsl

document element

document order

document type declarations

 public identifiers

 validation with transformation

document type definitions (DTDs) 2nd

document() function 2nd 3rd 4th

 arguments

documents

 examples, download web site

 multiple documents, working with

 processing more than one kind

dollar sign ($)

dot.xsl

doubled hyphens (--)

DTDs (document type definitions) 2nd

dual2.xsl

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ECMA-94

edges

element element

 namespace attribute

ELEMENT keyword

element nodes

element tags

 attributes

elements

 child elements

 literal result elements

 template-containing elements

 top-level elements

embedded stylesheets

 compatible browsers

 location in document

empty element tags

encoding declarations 2nd

entities

entity references for < and >

entity.xml

equals sign(=)

escape-uri-attributes attribute (output element, XSLT 2.0)

escape.xml 2nd

escape.xsl

escapes.xml

escaping of special characters

eu.xml

europe.xml

exclude-result-prefixes attribute

exclude.xsl

excludeonlit.xsl

expressions

expressions (in XPath) 2nd

EXSLT group

Extensible Markup Language [See XML]

Extensible Stylesheet Language (XSL)

Extensible Stylesheet Language Transformations [See XSLT]2nd [See XSLT]

extensions

 EXSLT extensions 2nd

 exsl\:node-set function

 extension elements, testing for availability

 fallback behavior

 invoking

 Saxon extension attributes

 Saxon extension functions

 Xalan C++ extension functions

http://lib.ommolketab.ir

 XSLT 2.0 developments

external entities

external subsets

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

fallback behavior for extension elements

 invoking

fallback element

files, viewing in hexadecimal or binary

final.xml and final.xsl

first.xsl

fn\:position(), fn\:last() and fn\:context-item() functions (XSLT 2.0)

for-each-group function (XSLT 2.0)

format attribute (number element) 2nd

format-number() function 2nd

forward slash (/) 2nd 3rd

fragment.xsl

FreeBSD, .NET implementation

from attribute (number element)

function element (XSLT 2.0) 2nd

function.xsl

functions

 Boolean functions

 node-set functions

 node-tests, compared to

 number functions

 string functions

functions.xml

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

generate-id() function

generate-id.xsl

greet.xml

greet.xsl

group.xml 2nd

group.xsl

grouping with keys

grouping, XSLT 2.0 developments

grouping-separator attribute (number element)

grouping-size attribute (number element)

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

hexadecimal coding, viewing files in

href attribute

 import element

 include element 2nd

 result-document element

 saxon\:output element

href pseudoattribute 2nd 3rd

HTML

 literal result elements

 outputting

HTTP (Hypertext Transfer Protocol)

 META tag and

hyphens, doubled (--)

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

IBM437 character set

id() function

id.xsl

identity transforms

identity.xml

if element

 position() function, use of

 test attribute

 use of several at once

if.xsl

import element 2nd

import precedence 2nd

 manipulating

import trees

import-schema element (XSLT 2.0)

import.xsl

imported.xsl

include element

 href attribute

include-content-type attribute (output element, XSLT 2.0)

include.xsl

included stylesheets

 self inclusion, problems with

indent.xsl

Instant Saxon 2nd

 downloading

 passing in parameters

 requirements for use with Unix and Windows

 running

instantiation

instruction element 2nd

internal subsets 2nd

ISO-8859

ISO/IEC 10646-1

ISO/IEC 8859

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Java

 classpath

 downloading

 installing and running

 Java Runtime Environment (JRE)

 path variable, setting in Windows and Unix

 processor interface programming

 additional resources

 Ant

 javac

 JAXP (Java API for XML Processing)

 JRE version verification

 Moxie

 Moxie source code

 running the compiler

 SDK

jd.xslt

jonah.xsl

JRE (Java Runtime Environment)

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Kay, Michael

keys

 cross-referencing with

 grouping with

 key elements

 key() function

 parameters, using with

keys.xsl

keywords.xml

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

lang attribute

 number element

 sort element

lang() function

last.xsl

Latin-1 2nd

leaf nodes

left angle-brackets (<)

less.xsl

letter-value attribute (number element)

level attribute (number element)

 three numbering levels

lf.xsl

limerick.xsl

line-end vs. carriage return characters (
 vs. )

Linux

 Mono Project and

 .NET implementation

 Saxon, Java version support

 Xalan C++ support

 XSLT support in browsers

 xsltproc

 xxd utility 2nd

list.xsl

lists

 alphabetical lists

 numbered lists

 roman numeral order

literal result element stylesheets

 in XHTML

literal result elements

 for HTML

 for XHTML

literal-cdata.xsl

literal.xml

literal.xsl

location paths

location steps

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Mac OS X, .NET implementation

Macintosh, XSLT support in browsers

mailing list, XSLT

mammals.xml

Mangano, Sal

markup

match attribute, template element

match.xsl

matches() function (XPath 2.0)

math.xml

math.xsl

math\:lowest() function (EXSLT)

media-type attribute, output element

member.xml

message element

META tag

method attribute, output element

Microsoft

 C# [See C#]

 code pages

 file path, conversion to Unix

 Internet Explorer, XSLT compatible versions

 MSXSL 2nd

 .NET [See .NET]

MIME (Multipurpose Internet Mail Extensions) types

mixed content

Mono Project

Moxie XSLT processor

 Ant, building with

 compiling

 imported classes

 JRE version verification

 source code

Mozilla browser, compatible versions

msg-pi.xml document

msg.xml document

msg.xsl stylesheet

MSXSL

 downloading

 running

Muench, Steve

Muenchian method

multiple result trees (XSLT 2.0) 2nd

multiple sorts

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

name attribute (output element, XSLT 2.0)

name attribute (template element)

name tests

name() function

name.xml

namespace aliasing

namespace declarations 2nd

namespace element (XSLT 2.0)

namespace nodes

namespace prefixes 2nd

namespace-alias element

 attributes

namespaces, excluding

NCNames

.NET 2nd

 C# XSLT processor, creating

 Pax, compiling

 required Windows versions

Netscape Navigator, XSLT compatible versions

newalias.xsl

next-match element (XSLT 2.0)

node-set functions

node-set.xsl

node-sets

node-tests 2nd 3rd

 functions, compared to

nodes 2nd

 children

 copying from two documents

nodes.xml

 xml\:lang attribute, usage of

noescape.xsl

non-colonized names

normalize-space() function

normalize-unicode attribute (output element, XSLT 2.0)

notalone.xsl

notsotedious.xsl

number element

 count attribute

 format attribute 2nd

 from attribute

 lang and letter-value attributes

 level attribute

 three numbering levels

 multiple level counting

 counting on any level

 for section and item element

http://lib.ommolketab.ir

 more depth

 value attribute

number functions

number.xsl

numbered lists [See also number element] 2nd

 counting on multiple levels

numerical sorts

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

omit.xsl

order attribute (sort element)

order.xml

otherwise element

outline.xml

outline.xsl

output

 of comments

 controlling [See output element]

 of processing instructions

 of text

output element 2nd

 cdata-section-element attributes

 doctype-system attributes

 encoding declarations

 HTML output and

 media type attributes

 method attribute

 default HTML output

 default vs. explicit method specification

 default XML output

 new attributes, XSLT 2.0

 QName output method

 text declarations

 text output and

 version attribute, XML

 XHTML, validating

 XML declaration

 XML output

 XSLT processors, adherence to

output.xsl

Ox documentation tool 2nd

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

param element 2nd 3rd

param.xsl

parameters

 Instant Saxon, passing in using

 keys, using with

 stylesheets, passing in to

 templates, using with

 Xalan, passing in using

parsed character data

parsed entities

pattern.xsl

patterns

 matching multiple nodes using

Pawson, Dave

Pax

 compiling

 running

 source code

 C# namespaces

PIs (processing instructions)

 creating and using

 processing instruction nodes

poem.xml

position() function

position.xsl

precedence.xsl

predefined entity references

predicates

pretty.xsl

price.dtd

price.xml

priority attribute (template element)

priority.xsl

processing instruction nodes

processing instructions [See PIs]

provinces.xml

pseudoattributes

public identifiers

pull stylesheets

push stylesheets

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

QNames 2nd

qualified names

quotes 2nd

 including in attribute values

 key () function and

 select attribute, usage in

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

recent.xsl

regex.xsl

regular expressions (XSLT 2.0)

relative references

RELAX NG

replace() function (XPath 2.0) 2nd

replace.xsl

result tree fragments 2nd

 casting as a node-set

result trees

result-document element (XSLT 2.0) 2nd

result-prefix attribute (namespace-alias element)

reusing attributes

RFC 1766 (Tags for the Identification of Languages)

rhodeisland.xml

ri.xml

right angle brackets (>)

roman numeral lists

root elements

root nodes 2nd

round() function

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Saxon

 differences between versions

 downloading

 extension attributes, using

 extension functions

 indentation depth

 nodeset()

 running

 start tags

 Unix and Windows requirements for Instant Saxon

 Unix shell scripts, using with

 Windows batch files, using with

saxon\:indent-spaces attribute

saxon\:indent-spaces extension attribute

saxon\:output element

SC Unipad

scand.html

scand.xml

scandinavia.xml

second.xsl

select attribute (for-each element)

select attribute (sort element)

sequence constructors

sequence constructors (XSLT 2.0)

sequence element (XSLT 2.0) 2nd

setProperty() method

SGML and XML

shallow copies

 deep copies, compared to

shopping.xsl

shutoff.xsl

single quotes (' ')

sort element

 apply-templates, as child of

 ascending sorts

 case-order attribute

 data-type attribute

 descending sorts

 lang attribute

 multiple sorts

 numerical sorts

 order attribute

 select attribute

sort-key element (XSLT 2.0)

sort.xsl

source document validation

source trees

http://lib.ommolketab.ir

splat.xsl

standalone declarations

standalone.xml

state.xsl

string functions

string-length() function

stylesheet element

stylesheet-prefix attribute (namespace-alias element)

stylesheets

 chaining together

 embedded stylesheets

 compatible browsers

 examples web sit

 excluding namespaces

 literal result element stylesheets

 multiple stylesheets, working with

 namespace aliasing

 pull stylesheets

 push stylesheets

substring() function 2nd

sum() function

SYSTEM keyword

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

tab.xsl

tags

 empty element tags

 META tag

 reserved characters

 XHTML syntax

 XML

Tags for the Identification of Languages (RFC 1766)

tedious.xsl 2nd

template element

 instantiation

 match vs. name attributes

 name and match attributes

 name attribute

 priority attribute

template pattern conflicts

 modes, solving with

 template priority, solving with

template rules 2nd

 patterns

template-containing element

templates 2nd 3rd

 built-in template rules

 built-in templates

 import precedence

 invocation by name 2nd

 order of, impact on output

 parameters using with

 template priority

temporary trees (XSLT 2.0)

Tennison, Jeni

test attribute (if element)

test attribute (when element)

text declarations

text element

 disable-output-escaping attribute

text method

text nodes 2nd

text output

 and whitespace

text.xml

thanks.xsl

Tidwell, Doug

tokenize() function (XPath 2.0)

top-level elements

top.xml

transform element

http://lib.ommolketab.ir

translate() function

tree-view.xsl

trip.xml

txt.xsl

type attribute (XSLT 2.0)

type pseudoattribute 2nd

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

UCS (Universal Multiple-Octet Coded Character Set)

UCS Transformation Format (UTF)

undeclare-namespaces attribute (XSLT 2.0)

Unicode 2nd

union operator (|) 2nd

UniPad

Universal Multiple-Octet Coded Character Set (UCS)

URIs (Uniform Resource Identifiers)

US-ASCII

USC (Universal Multi-Octet Character Set)

use-attribute-sets attribute (copy element)

use-character-maps attribute (output element, XSLT 2.0)

UTF-8 and UTF-16

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

validation attribute (XSLT 2.0)

value attribute (number element)

variable element 2nd

variable names and element names

variable-alt.xsl

variables (XSLT)

vendor attribute

version attribute, stylesheets

version.xsl

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

W3C Markup Validation Service

welcome.dtd

welcome.xml

welcome.xsl

well-formed XML

wg.xml

wg.xsl

when element

 test attribute

when.xsl

whitespace and text output

whitespace.xsl

Windows

 batch files and Saxon

 BOM and

 code pages, changing

 Instant Saxon compatibility 2nd

 Java classpath, setting

 Java path enviroment variable, setting

 .NET [See .NET]

 Xalan C++ support

 Xalan, setting the path variable for

 XSLT support in browsers

 XSLT support, Internet Explorer

Windows Character Map utility

with-param element 2nd

with-param.xsl

withoutif.xsl

wspace.xsl

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Xalan

 -v and -i options

 C++ extension functions

 indentation depth

 indentation features

 META tag and head element

 passing in parameters

 start tags

Xalan C++ 2nd

 C++ extension functions

 downloading and installing

 path variable, setting

 running

xalan\:node-set() function

Xerces

Xerces C++

XHTML

 literal result elements

 tags, syntax of

 validating

xhtmlit.xsl

Ximian open source .NET implementation

xls\:exclude-result-prefixes attribute

XML (Extensible Markup Language)

 attributes and pseudoattributes

 declarations

 document comments

 documents

 element tags and attributes

 predefined entity references

 SGML and

 stylesheet processing instructions

 tags

 Unicode and

 versioning information via output element

XML declaration, output element

XML Path Language [See XPath]

xml\:lang attribute

 lang() function

xmlns attributes

xmlspy

XmlTextWriter object

XPath (XML Path Language) 2nd

 @* (at-asterisk)

 additional resources

 axes

 data model

http://lib.ommolketab.ir

 expressions 2nd

 forward slash (/)

 functions

 Boolean functions

 node-set functions

 number functions

 position()

 string functions

 location paths

 name and node-tests

 node type examples

 nodes

 operators

 unabbreviated syntax

 V. 2.0 developments 2nd

 for and conditional expressions

 matches() function

 new comparison operators

 new functions

 new kind tests

 new terminology

 replace() function

 sequences and ranges

 strong typing

 viewing of trees

xRay2 2nd

XSL (Extensible Stylesheet Language)

XSL-FO

XSLT (Extensible Stylesheet Language Transformations) 2nd

 additional resources

 browsers, support in

 C# programming

 client-side processing

 extensions [See extensions]

 functions

 node-set functions

 string functions

 mailing list

 parameters

 patterns

 processing multiple kinds of documents

 stylesheets [See stylesheets]

 V. 2.0 developments

 analyze-string element

 character maps

 date format

 extension functions

 grouping

 multiple result trees

 new attributes on old elements

 new elements

 new terminology

http://lib.ommolketab.ir

 parameters in new places

 regular expressions

 xhtml output method

 XML Schema, validation support for

 variables

XSLT graphical user interfaces

XSLT namespace

XSLT processors 2nd

 available processors

 built-in template rules

 writing a C# interface

 installing and running

 Instant Saxon

 Java

 jd.xslt

 MSXSL

 Saxon (full Java version)

 Xalan C++

 xmlspy

 xRay2

 writing a Java interface

 output element, adherence to

 Xalan

 xRay2

xslt.xsl

xsltproc

xxd utility 2nd

[Team LiB]

http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

year.xsl

[Team LiB]

http://lib.ommolketab.ir

	Main Page
	Table of content
	Copyright
	Preface
	Who Should Read This Book?
	About the Examples
	XSLT and XPath Reference
	How This Book Is Organized
	Conventions Used in This Book
	Using Examples
	Comments and Questions
	Acknowledgments

	Chapter 1. Transforming Documents with XSLT
	1.1 How XSLT Works
	1.2 Using Client-Side XSLT in a Browser
	1.3 Using apply-templates
	1.4 Summary

	Chapter 2. Building New Documents with XSLT
	2.1 Outputting Text
	2.2 Literal Result Elements
	2.3 Using the Element Called element
	2.4 Adding Attributes
	2.5 Outputting Comments
	2.6 Outputting Processing Instructions
	2.7 One Final Example
	2.8 Summary

	Chapter 3. Controlling Output
	3.1 The Output Method
	3.2 Outputting XML
	3.3 Outputting HTML
	3.4 Outputting Text
	3.5 Using a QName Output Method
	3.6 Media Types
	3.7 Summary

	Chapter 4. Traversing the Tree
	4.1 The XPath Data Model
	4.2 Location Paths
	4.3 Expressions
	4.4 What Is a Pattern?
	4.5 Predicates
	4.6 Axes
	4.7 Name and Node Tests
	4.8 Doing the Math with Expressions
	4.9 Summary

	Chapter 5. XPath and XSLT Functions
	5.1 Boolean Functions
	5.2 Node-Set Functions
	5.3 Number Functions
	5.4 String Functions
	5.5 Summary

	Chapter 6. Copying Nodes
	6.1 The copy Element
	6.2 The copy-of Element
	6.3 Copying Nodes from Two Documents
	6.4 Summary

	Chapter 7. Using Variables and Parameters
	7.1 Defining Variables and Parameters
	7.2 Using Variables
	7.3 Using Parameters
	7.4 Invoking Templates with Parameters
	7.5 Using Result Tree Fragments
	7.6 Summary

	Chapter 8. Sorting Things Out
	8.1 Simple Ascending Sort
	8.2 Reversing the Sort
	8.3 By the Numbers
	8.4 Multiple Sorts
	8.5 The lang and case-order Attributes
	8.6 Summary

	Chapter 9. Numbering Lists
	9.1 Numbered Lists
	9.2 Alphabetical Lists
	9.3 Roman Numerals
	9.4 Inserting an Individual Formatted Value
	9.5 Numbering Levels
	9.6 The from Attribute
	9.7 The lang and letter-value Attributes
	9.8 More Help with Formatted Numbers
	9.9 Summary

	Chapter 10. Templates
	10.1 Template Priority
	10.2 Calling a Named Template
	10.3 Using Templates with Parameters
	10.4 Modes
	10.5 Built-in Template Rules
	10.6 Summary

	Chapter 11. Using Keys
	11.1 A Simple Key
	11.2 More Than One Key
	11.3 Using a Parameter with Keys
	11.4 Cross-Referencing with Keys
	11.5 Grouping with Keys
	11.6 Summary

	Chapter 12. Conditional Processing
	12.1 The if Element
	12.2 The choose and when Elements
	12.3 Summary

	Chapter 13. Working with Multiple Documents
	13.1 Including Stylesheets
	13.2 Importing Stylesheets
	13.3 Using the document() Function
	13.4 Summary

	Chapter 14. Alternative Stylesheets
	14.1 A Literal Result Element Stylesheet
	14.2 An Embedded Stylesheet
	14.3 Aliasing a Namespace
	14.4 Excluding Namespaces
	14.5 Summary

	Chapter 15. Extensions
	15.1 Xalan, Saxon, and EXSLT Extensions
	15.2 Using a Saxon Extension Attribute
	15.3 Result Tree Fragment to Node-Set
	15.4 Using EXSLT
	15.5 Fallback Behavior
	15.6 Checking for Extension Availability
	15.7 Summary

	Chapter 16. XSLT 2.0 and XPath 2.0
	16.1 New XSLT 2.0 Features
	16.2 New XPath 2.0 Features
	16.3 Multiple Result Trees
	16.4 Using Regular Expressions
	16.5 Grouping in XSLT 2.0
	16.6 Extension Functions
	16.7 Summary

	Chapter 17. Writing an XSLT ProcessorInterface
	17.1 Running an XSLT Processor from Java
	17.2 Writing an XSLT Processor with C#
	17.3 Summary

	Chapter 18. Parting Words
	18.1 The Ox Documentation Tool
	18.2 Signing Off

	Appendix A. XSLT Processors
	A.1 Installing and Running XSLT Processors
	A.2 Using jd.xslt

	Glossary
	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X
	Index Y

