
The Essential Guide
to Dreamweaver CS4

with CSS, Ajax, and PHP

David Powers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Essential Guide to Dreamweaver CS4
with CSS, Ajax, and PHP

Copyright © 2009 by David Powers

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1610-0

ISBN-13 (electronic): 978-1-4302-1611-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special

Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits

Lead Editor
Ben Renow-Clarke

Technical Reviewer
Tom Muck

Editorial Board
Clay Andres, Steve Anglin, Mark Beckner,

Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Michelle Lowman, Matthew Moodie,

Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager
Beth Christmas

Copy Editors
Kim Wimpsett, Marilyn Smith

Associate Production Director
Kari Brooks-Copony

Production Editor
Kelly Winquist

Compositor
Molly Sharp

Proofreader
Patrick Vincent

Indexer
Julie Grady

Artist
April Milne

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CONTENTS AT A GLANCE

About the Author . xx

Acknowledgments . xxi

Introduction . xxii

Chapter 1: Dreamweaver’s New Look—More than Skin Deep 1

Chapter 2: Setting Up a Site in Dreamweaver 59

Chapter 3: Creating a Web Page and Adding Content 103

Chapter 4: Using CSS to Add a Touch of Style 155

Chapter 5: Creating a CSS Site Straight Out of the Box 195

Chapter 6: Building Site Navigation with the Spry Menu Bar . . . 233

Chapter 7: Using Spry Dynamic Effects and Components 257

Chapter 8: Going Beyond the Basics with Spry and Ajax 307

Chapter 9: Building Online Forms and Validating Input 371

iii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10: Introducing the Basics of PHP 425

Chapter 11: Using PHP to Process a Form 459

Chapter 12: Reducing Your Workload with PHP Includes 503

Chapter 13: Preserving Design Integrity with Templates
and InContext Editing . 539

Chapter 14: Storing User Records in a Database 583

Chapter 15: Validating Database Input and User Authentication . . . 637

Chapter 16: Working with Custom Forms and Multiple Tables . . . 683

Chapter 17: Handling Checkbox Groups, Searches, and Dates . . . 743

Chapter 18: Using XSLT to Display Live News Feeds and XML . . . 805

Chapter 19: Using Spry Data Sets to Refresh Content 843

Chapter 20: Deploying Your Site on the Internet 889

Appendix: Generating XML with PHP . 905

Index . 917

iv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CONTENTS

About the Author . xx

Acknowledgments . xxi

Introduction . xxii

Chapter 1: Dreamweaver’s New Look—More than Skin Deep 1

Exploring the UI . 3
Inspecting the default workspace . 3
Switching between grayscale and colored icons . 7
Choosing a preset workspace layout . 7

Expanding and collapsing panels vertically . 9
Resizing panels . 9

Using panels in iconic mode . 9
Minimizing iconic panels . 10
Converting iconic panels into a floating toolbar 11
Closing and restoring floating panels . 11
Switching between panels and icons . 12

Temporarily hiding panels . 12
Using Auto-Show . 13
Hiding the Application bar (Mac only) . 13

Moving and regrouping panels . 13
Moving a single panel . 13
Moving a panel to a different group . 14
Changing the order of panels within a group . 14
Moving a group of panels . 14
Stacking and docking panels . 15

Using and configuring the Insert panel . 15
Hiding the labels . 17
Converting the Insert panel to a tabbed toolbar 18
Switching between tabs and menu . 19
Customizing the Favorites category . 19

v

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Property inspector . 20
Selecting HTML and CSS view in the Property inspector 20
Configuring the Property inspector . 22

Using the Results panel group . 23
Managing workspaces . 23

Exploring the Document window . 24
Working with tabbed windows . 25

Viewing the file path . 25
Closing tabs . 25
Displaying documents outside the tabbed interface 25

Getting quick access to related files . 26
Using the Related Files toolbar . 26
Using the Code Navigator to edit style sheets . 27

Exploring the Document toolbar . 29
Switching between Code, Design, and Split views 29
Using Live view to test pages . 31
What happened to Live Data and how does Live view differ? 34
Inspecting dynamically generated code with Live Code 35
Other options on the Document toolbar . 36

Getting the best out of Code view . 37
Using the Coding toolbar . 37
Setting Code view options . 41
Using code hints and auto completion . 42
Introducing improved support for JavaScript code hints 43
Printing code in color . 43

A quick look at other changes in Dreamweaver CS4 . 44
Screen sharing . 44

Setting up a screen-sharing session . 45
Managing CSXS . 49

Other new features . 50
What is no longer there . 51

Changing default settings . 52
Migrating snippets and other personal settings . 53

Locating the Dreamweaver configuration files . 53
Migrating snippets . 54
Transferring workspace layouts . 55
Moving favorites . 55

Troubleshooting mysterious Dreamweaver errors . 55
Chapter review . 56

Chapter 2: Setting Up a Site in Dreamweaver 59

Deciding how to organize your site . 60
Deciding where to test your pages . 61
Choosing the appropriate file name extension . 62
Choosing document- or root-relative links . 64

Understanding the difference . 64
Which should you choose? . 65

CONTENTS

vi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Choosing where to store your files . 66
Finding the testing server root . 66
Creating virtual hosts on Apache . 69
Registering virtual directories on IIS . 76

Creating the site definition . 77
Telling Dreamweaver where to find local files . 78
Telling Dreamweaver how to access your remote server 80

Choosing an access option . 80
Using FTP . 81

Defining the testing server . 83
Selecting options for local testing . 83
Selecting options for remote testing . 85

Setting other site options . 87
Using version control with Subversion . 88

Registering a site with a Subversion repository . 89
Committing new files and changes to the repository 91
Viewing revisions and resolving conflicts . 93
Keeping your working copies up-to-date . 94
Locking files . 94

Managing Dreamweaver sites . 94
Setting options that apply to all sites . 96

Setting new document preferences . 96
Choosing the default document type . 97
Setting options for Preview in Browser . 98

Using a file-comparison utility . 99
Setting up the File Compare feature . 99
Comparing files . 100

Chapter review . 100

Chapter 3: Creating a Web Page and Adding Content 103

Creating a new document . 104
Starting from the Welcome screen . 105
Using the New Document dialog box . 105
Other ways of opening a new document . 107

Inserting text . 108
Inserting text directly . 108
Copying and pasting text . 110
Importing Microsoft Word documents (Windows only) 111

Inserting images . 112
Inserting images stored on your computer . 112

Dragging and dropping images . 113
Selecting an image through the file system . 113
Adding alternate text . 115
Text and image alignment . 116

Inserting remote images . 116
Inserting placeholder images . 117

CONTENTS

vii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Photoshop Smart Objects as images . 119
Inserting a Photoshop Smart Object . 120
Updating a Smart Object . 122

Inserting Flash and Flex movies . 124
Editing Dreamweaver CS3 pages that contain SWF movies 128

Adding structure to your page content . 128
Selecting the HTML view of the Property inspector 130
Creating paragraphs, headings, and preformatted text 131
Adding inline tags . 132

Using the Bold and Italic buttons . 132
Using the Format ➤ Style menu . 132
Using Wrap Tag and Remove Tag . 133

Creating lists . 134
Creating bullet points and numbered lists . 135
Creating a definition list . 136

Creating block quotes . 136
Using tables . 137

Inserting tables . 137
Editing tables . 138
Inserting and deleting rows and columns accurately 140
Selecting table cells, rows, and columns . 141
Importing data tables from Microsoft Excel (Windows only) 142
Importing data from a CSV file . 142

Organizing content into a logical structure . 142
Grouping related content with <div> tags . 143
Inserting a horizontal rule . 146

Creating links . 146
Using text to link to other pages . 146

Using the Select File dialog box . 147
Using the Hyperlink dialog box . 148
Opening a link in a new window . 149
Linking to a specific part of a page . 149

Using images as links . 150
Removing the link border . 150
Creating an image map . 150

Chapter review . 153

Chapter 4: Using CSS to Add a Touch of Style 155

Creating basic style rules . 157
Modifying page properties . 157
Inspecting the rules created by Page Properties . 163
Inserting and styling a <div> . 164

Creating new style rules . 169
Defining a selector . 169
Defining the rule’s properties . 172

Introducing the CSS Styles panel . 177
Opening the CSS Styles panel . 177
Viewing All and Current modes . 177

CONTENTS

viii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Exploring the Properties pane of the CSS Styles panel 179
Displaying CSS properties by category . 179
Displaying CSS properties alphabetically . 179
Displaying only CSS properties that have been set 180
Attaching a new style sheet . 180
Adding, editing, and deleting style rules . 181

Moving style rules . 181
Exporting rules to a new style sheet . 181
Moving rules within a style sheet . 184
Moving rules between external style sheets . 184
Moving inline styles to a style sheet . 186
Creating inline styles for HTML email . 187

Setting your CSS preferences . 188
Creating and editing style rules . 189
Setting the default format of style rules . 190

Checking how styles will look in other media . 191
Using the Style Rendering toolbar . 191
Using Device Central CS4 . 192

Chapter review . 193

Chapter 5: Creating a CSS Site Straight Out of the Box 195

Using a built-in CSS layout . 196
Choosing a layout . 197
Deciding where to locate your style rules . 197

Linking to existing style sheets . 198
Making sure conditional comments are applied 198

Styling a page . 199
Inspecting the cascade in Current mode . 208

Calculating specificity . 209
Finishing the layout . 210
Creating a new page with the same styles . 216

Using Find and Replace . 218
Searching for text . 220
Searching source code . 221
Performing advanced text searches . 222
Performing complex replacements with specific tags 224
Using regular expressions in searches . 225
Saving queries for future use . 228
Using a stored query to remove CSS comments . 229

Chapter review . 229

Chapter 6: Building Site Navigation with the Spry Menu Bar . . . 233

Examining the structure of a Spry menu bar . 235
Looking at the menu bar’s structure . 237
Editing a menu bar . 238
Maintaining accessibility with the Spry menu bar . 239

CONTENTS

ix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Customizing the styles . 240
Changing the menu width . 240
Changing colors . 241
Adding borders . 241
Changing the font . 242

Styling a Spry menu bar . 243
To wrap or not to wrap, that is the question . 243
Customizing the design . 248

Choosing border colors . 252
Removing a menu bar . 253

Chapter review . 254

Chapter 7: Using Spry Dynamic Effects and Components 257

Animating page elements with Spry effects . 259
DOM 101—why clean code matters . 260
Applying a Spry effect . 262
Exploring the available effects . 266

Appear/Fade . 267
Blind . 268
Grow/Shrink . 268
Highlight . 270
Shake . 270
Slide . 271
Squish . 271

Applying multiple events to a trigger element . 271
Removing effects and behaviors cleanly . 272
Restoring a deleted effect or behavior . 273

Conserving space with Spry UI components . 273
Building a tabbed interface . 274

Examining the structure of the tabbed panels widget 275
Editing a tabbed panels widget . 277
Selecting harmonious colors . 281
Converting to vertical tabs . 284
Avoiding design problems with tabbed panels 288

Using the accordion widget . 289
Examining the structure of an accordion . 289
Editing and styling a Spry accordion . 291

Using collapsible panels . 295
Examining the structure of a collapsible panel 296
Editing and styling collapsible panels . 297

Creating tooltips with Spry . 299
Examining the structure of a Spry tooltip . 299
Inserting and styling tooltips . 300

Removing a Spry widget . 304
Chapter review . 305

CONTENTS

x

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8: Going Beyond the Basics with Spry and Ajax 307

Programming terminology 101 . 309
Understanding Spry objects . 310

Initializing a Spry object . 310
Changing accordion defaults . 311

Using an object’s methods . 315
Opening panels from a link on the same page 315

Using the Cluster object to combine effects . 327
Using Spry utilities . 335

Passing information to a Spry widget through a URL 336
Opening a tab or accordion panel from another page 336
Opening a collapsible panel from another page 340

Selecting and manipulating page elements with Spry.$$ 340
Reducing download times with smaller files . 350

Creating unobtrusive JavaScript . 350
Using the JavaScript Extractor to externalize scripts 350

Using other JavaScript libraries . 352
Installing Dreamweaver extensions . 354

Using the Adobe Extension Manager . 355
Migrating extensions from a previous version . 355
Installing an extension . 356
Removing an extension . 357

Using jQuery and YUI web widgets . 358
Inserting a jQuery UI dialog widget . 360
Selecting dates with a YUI calendar . 365

Chapter review . 368

Chapter 9: Building Online Forms and Validating Input 371

Building a simple feedback form . 372
Choosing the right page type . 372

Creating a PHP page . 373
Mixing .php and .html pages in a site . 374

Inserting a form in a page . 374
Inserting a form in Code view . 376

Adding text input elements . 376
Setting properties for text fields and text areas 380
Converting a text field to a text area, and vice versa 382

Styling the basic feedback form . 382
Understanding the difference between GET and POST 384
Passing information through a hidden field . 386

Using multiple-choice form elements . 387
Offering a range of choices with checkboxes . 388
Using radio buttons to offer a single choice . 394
Offering a single choice from a drop-down menu . 397
Creating a multiple-choice scrollable list . 399

CONTENTS

xi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Organizing form elements in logical groups . 402
Inserting a fieldset . 402

Validating user input before submission . 403
Using Spry validation widgets . 404

Inserting a Spry validation widget . 406
Removing a validation widget . 406

Validating a text field with Spry . 406
Building your own custom pattern . 413

Validating a text area with Spry . 414
Validating checkboxes with Spry . 416
Validating a radio button group with Spry . 419
Validating a drop-down menu with Spry . 420
Validating passwords with Spry . 421

Chapter review . 422

Chapter 10: Introducing the Basics of PHP 425

Understanding what PHP is for . 426
Increasing user interactivity with server-side technology 427

Writing PHP scripts . 428
Embedding PHP in a web page . 428
Ending commands with a semicolon . 429
Using variables to represent changing values . 429

Naming variables . 430
Assigning values to variables . 430

Displaying PHP output . 431
Commenting scripts for clarity and debugging . 432
Choosing single or double quotation marks . 432

Using escape sequences in strings . 434
Joining strings together . 436
Adding to an existing string . 436
Using quotes efficiently . 437
Special cases: true, false, and null . 437

Working with numbers . 438
Performing calculations . 438
Combining calculations and assignment . 440

Using arrays to store multiple values . 441
Using names to identify array elements . 442
Inspecting the contents of an array with print_r() 443

Making decisions . 443
The truth according to PHP . 445
Using comparisons to make decisions . 445
Testing more than one condition . 447
Using the switch statement for decision chains 448
Using the conditional (ternary) operator . 449

CONTENTS

xii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using loops for repetitive tasks . 450
Loops using while and do . . . while . 450
The versatile for loop . 451
Looping through arrays with foreach . 452
Breaking out of a loop . 453

Using functions for preset tasks . 454
Understanding PHP error messages . 455

Chapter review . 457

Chapter 11: Using PHP to Process a Form 459

Activating the form . 461
Getting information from the server with PHP superglobals 461
Sending email . 462

Scripting the feedback form . 463
Using Balance Braces . 472
Testing the feedback form . 473
Troubleshooting mail() . 473

Improving the security of the mail-processing script 473
Getting rid of unwanted backslashes . 474
Making sure required fields aren’t blank . 475
Preserving user input when a form is incomplete 480
Saving frequently used code as a snippet . 483
Filtering out potential attacks . 486
Safely including the user’s address in email headers 489
What if you still don’t get an email? . 492
Handling multiple-choice form elements . 493

Redirecting to another page . 498
Blocking submission by spam bots . 499

Using a CAPTCHA . 499
Using a question in plain text . 500
Using a honeypot . 500

Chapter review . 501

Chapter 12: Reducing Your Workload with PHP Includes 503

Including text and code from other files . 504
Introducing the PHP include commands . 504
Telling PHP where to find the external file . 504
Using site-root-relative links with includes . 508

Lightening your workload with includes . 510
Choosing the right file name extension for include files 510
Displaying HTML output . 510
Avoiding problems with include files . 514
Applying styles with design-time style sheets . 518
Adding dynamic code to an include . 519
Using includes to recycle frequently used PHP code 523

CONTENTS

xiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adapting the mail processing script as an include . 525
Analyzing the script . 525
Building the message body with a generic script . 527

Avoiding the “headers already sent” error . 534
Chapter review . 536

Chapter 13: Preserving Design Integrity with Templates
and InContext Editing . 539

Using Dreamweaver templates . 540
Creating a template . 541
Adding editable regions to the master template . 542
Creating child pages from a template . 545
Creating and controlling an optional region . 548

Using advanced options with an optional region 552
Using editable optional regions . 552

Creating a repeating region . 553
Removing or changing template regions . 553
Comparing templates with PHP includes . 556
Locking code outside the <html> tags . 559
Breaking the link between a page and a template . 559

Updating Content with Adobe InContext Editing . 559
How InContext Editing works . 561

Minimum requirements for InContext Editing . 562
Adding InContext Editing markup to a page . 562

Creating an editable region . 562
Controlling what can be edited in an editable region 564
Copying the InContext Editing files to your site 566
Creating a repeating region . 567
Controlling actions within a repeating regions group 568
Removing editable and repeating regions . 568
Enabling the use of CSS classes . 569
Preparing a page for InContext Editing . 570

Editing a page with InContext Editing . 571
Logging into InContext Editing . 572
Updating an editable region . 573
Editing a repeatable region . 577
Saving drafts and publishing . 578

Assessing the pros and cons of InContext Editing . 579
Chapter review . 579

Chapter 14: Storing User Records in a Database 583

Introducing MySQL . 584
Understanding basic MySQL terminology . 585
Using MySQL with a graphic interface . 586
Setting up phpMyAdmin on Windows and Mac . 587
Launching phpMyAdmin . 589

Troubleshooting . 590
Logging out of phpMyAdmin . 591

CONTENTS

xiv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting up a database in MySQL . 591
Creating a local database for testing . 591

Understanding collation . 592
Creating user accounts for MySQL . 593

Changing the MySQL root password in phpMyAdmin 593
Granting user privileges . 594

How a database stores information . 597
How primary keys work . 597
Designing a database table . 598

Choosing the table name . 599
Deciding how many columns to create . 600
Choosing the right column type in MySQL . 600
Deciding whether a field can be empty . 602

Creating a user registration system . 603
Defining the database table . 603
Telling Dreamweaver how to connect to the database 607

Troubleshooting the connection . 609
Inserting user details into the database . 609
Using server behaviors with site-root-relative links 614
Retrieving information from the database . 614

Editing and removing server behaviors . 617
Displaying the results of a recordset . 617
Displaying multiple results with a repeat region . 620
Updating and deleting records . 621

Retrieving a database record using its primary key 624
Using the Record Update Form Wizard . 626
Deleting a record . 629

Displaying different content when a recordset is empty 633
Chapter review . 635

Chapter 15: Validating Database Input and User Authentication . . . 637

Analyzing the code generated by Dreamweaver . 639
Inspecting the server behavior code . 639

Connecting to the database . 639
Preventing SQL injection . 640
Inserting a record into a database . 640
Understanding why a redirect doesn’t work . 642
Updating a database record . 642
Deleting a record . 642
Distinguishing between Form Variable and URL Parameter 643
Retrieving database records with a recordset . 643
Creating a repeat region . 644

Adding server-side validation . 645
Verifying that required fields have been filled in . 646
Verifying and encrypting the password . 648
Dealing with duplicate usernames . 650
Displaying the error messages . 652

CONTENTS

xv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Building custom server behaviors . 654
Creating a Sticky Text Field server behavior . 654
Creating a server behavior for Sticky Text Areas . 656

Completing the user registration form . 657
Preserving user input in text fields . 657
Applying a dynamic value to a radio group . 658

Applying server-side validation to the update form . 661
Merging the validation and update code . 662
Adapting the Sticky Text Field server behavior . 666
Binding the field values to the update form . 668

What sessions are and how they work . 671
Creating PHP sessions . 672
Creating and destroying session variables . 672
Destroying a session . 672
Checking that sessions are enabled . 673

Registering and authenticating users . 673
Creating a login system . 674
Displaying different content depending on access levels 677
Greeting users by name . 678

Creating your own $_SESSION variables from user details 679
Redirecting to a personal page after login . 679

Encrypting and decrypting passwords . 680
Chapter review . 680

Chapter 16: Working with Custom Forms and Multiple Tables . . . 683

Storing related information in separate tables . 684
Deciding on the best structure . 685
Using foreign keys to link records . 685
Avoiding orphaned records . 687
Defining the database tables . 688

Adding an index to a column . 690
Defining the foreign key relationship in InnoDB 690

Populating the tables . 695
Restoring the content of the tables . 695

Selecting records from more than one table . 696
The four essential SQL commands . 700

SELECT . 700
INSERT . 704
UPDATE . 704
DELETE . 704

Managing content with multiple tables . 705
Inserting new quotations . 706

Using a MySQL function and alias to manipulate data 709
Applying the Insert Record server behavior to a custom form 711
Setting values manually in the Columns field . 712

Inserting new authors in the parent table . 714
Using variables in a SQL query . 715

CONTENTS

xvi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Paging through a long list of database results . 720
Returning to the same page in a long list of results 726

Deleting authors from the parent table . 728
Improving the delete form . 732
Performing a cascading delete with InnoDB tables 733

Updating quotations in the child table . 735
Solving the mystery of missing records with a left join 736

Deleting quotations . 739
Chapter review . 740

Chapter 17: Handling Checkbox Groups, Searches, and Dates . . . 743

Storing multiple values in a SET column . 744
Defining a SET column . 745
Inserting data into a SET column . 747
Retrieving data stored in a SET column . 750

Getting the information you want from a database . 754
Understanding how Dreamweaver builds a SQL query 754
Troubleshooting SQL queries . 758
Choosing GET or POST for search forms . 759
Using numerical comparisons . 760
Searching within a numerical range . 763
Searching for text . 766

Making a search case-sensitive . 766
Displaying a message when no results are found 766
Searching multiple columns . 768
Using wildcard characters in a search . 768
Using a FULLTEXT index . 772

Searching for values stored in a SET column . 774
Counting records . 774
Counting records in a SET column . 775
Eliminating duplicates from a recordset . 776
Building complex searches . 776

Enhancing the display of search results . 778
Displaying the number of search results . 778
Creating striped table rows . 779
Displaying line breaks in text . 781

Reusing a recordset . 781
Understanding how a repeat region works . 784

Formatting dates and time . 785
Storing the current date and time in MySQL . 785
Storing other dates in MySQL . 790
Using DATE_FORMAT() to output user-friendly dates 796
Working with dates in PHP . 798

Setting the correct time zone . 799
Creating a Unix timestamp . 799
Formatting dates in PHP . 800

Chapter review . 802

CONTENTS

xvii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 18: Using XSLT to Display Live News Feeds and XML . . . 805

A quick guide to XML and XSLT . 806
What an XML document looks like . 806

Using HTML entities in XML . 808
Using XSLT to display XML . 809

Checking your server’s support for XSLT . 809
Pulling in an RSS news feed . 811

How Dreamweaver handles server-side XSLT . 812
Using XSLT to access the XML source data . 813
Displaying the news feed in a web page . 820
Fixing a bug in the XSL Transformation server behavior 822

Being a bit more adventurous with XSLT . 824
Setting up a local XML source . 825
Understanding how XSLT is structured . 827

Defining new entities . 827
Embedding HTML in XSLT . 827

Accessing nested repeating elements . 828
Creating conditional regions . 830

Testing a single condition . 830
Testing alternative conditions . 831

Sorting elements . 833
Formatting elements . 834
Displaying output selectively . 835

Filtering nodes with XPath . 835
Using XSLT parameters to filter data . 837

Chapter review . 841

Chapter 19: Using Spry Data Sets to Refresh Content 843

Creating a Spry data set from HTML . 845
Generating the HTML source . 846
Using the Spry Data Set wizard . 850

Displaying a data set in a Spry table . 851
Displaying related data in a Spry detail region . 859
Creating a master-detail set in a single operation 862

Displaying a data set as a list . 864
Understanding the Spry data code . 867

What’s the difference between repeat and repeatchildren? 868
Switching data sets dynamically . 870

Filtering a Spry data set . 870
Creating a Spry select list . 872
Using a Spry select list to change page content . 874

Creating a Spry data set from XML . 879
Using the Spry Data Set wizard with an XML document 879

Validating pages that use Spry . 884
Chapter review . 887

CONTENTS

xviii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 20: Deploying Your Site on the Internet 889

Uploading your web pages . 890
Uploading a whole site . 890
Cloaking files not required on the remote server . 891
Synchronizing a site . 893
Selecting recently modified files . 895
Viewing the local and remote sites side by side . 896
Uploading dependent files . 898

Transferring database tables . 899
Configuring the remote MySQL connection . 901

Chapter review . 903

Appendix: Generating XML with PHP

Converting a recordset to generate XML . 906
Using a proxy script to fetch a remote feed . 910
Using a static XML document as a cache . 912

Setting permission for PHP to write files . 912
Using PHP to write to a file . 912

Index . 917

CONTENTS

xix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ABOUT THE AUTHOR

David Powers is an Adobe Community Expert and Adobe Certified
Instructor for Dreamweaver and author of a series of highly successful
books on PHP, including PHP Solutions: Dynamic Web Design Made
Easy (friends of ED, ISBN: 978-1-59059-731-6) and PHP Object-
Oriented Solutions (friends of ED, ISBN: 978-1-4302-1011-5), as well as
the Dreamweaver CS3 edition of this book. As a professional writer, he
has been involved in electronic media for more than 30 years, first
with BBC radio and television and more recently with the Internet. His
clear writing style is valued not only in the English-speaking world;
several of his books have been translated into Spanish and Polish.

What started as a mild interest in computing was transformed almost overnight into a
passion, when David was posted to Japan in 1987 as BBC correspondent in Tokyo. With no
corporate IT department just down the hallway, he was forced to learn how to fix everything
himself. When not tinkering with the innards of his computer, he was reporting for BBC TV
and radio on the rise and collapse of the Japanese bubble economy.

David has also translated several plays from Japanese. To relax, he enjoys nothing better than
visiting his favorite sushi restaurant.

About the Technical Reviewer
Tom Muck is the coauthor of nine Adobe/Macromedia-related books. Tom also writes
extensions for Dreamweaver, available at his site http://www.tom-muck.com. Tom is also the
lead PHP and ColdFusion programmer for Cartweaver, the online shopping cart software
package; is a founding member of Community MX; and has written more than 150 articles on
PHP, ColdFusion, SQL, and related topics. Tom has also been an Adobe Community Expert in
its various incarnations since 1999.

Tom is an extensibility expert focused on the integration of Adobe/Macromedia products
with ColdFusion, PHP, ASP, and other languages, applications, and technologies. Tom was rec-
ognized for this expertise in 2000 when he received Macromedia's Best UltraDev Extension
Award. He has also written numerous articles for magazines, journals, and websites and
speaks at conferences on related subjects.

xx

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ACKNOWLEDGMENTS

Many people contributed to this book in a variety of ways. Some—like the production staff
at Apress/friends of ED—were involved directly. I’d like to pay particular thanks to my editor,
Ben Renow-Clarke, who gave me free rein to shape the book the way I wanted but always
maintained a critical eye from the reader’s perspective. Thanks, too, to Beth Christmas and
Kelly Winquist for keeping the project running smoothly and on time.

I was delighted when Tom Muck, an acknowledged Dreamweaver expert, agreed to act as my
technical reviewer again. He saved me from several embarrassing mistakes (any that remain
are my responsibility alone), and his deep knowledge of Dreamweaver and other web tech-
nologies added valuable perspective throughout the book.

I’m also grateful to Devin Fernandez and Scott Fegette of Adobe, who gave me unparalleled
access to the Dreamweaver development team and endured my rants and complaints with
good humor when I didn’t like some of the changes being made to my favorite web devel-
opment program. Thanks for restoring the colored icons, guys. Well, that and everything
else—this version is a stunner.

Others are probably totally unaware of the role they played in shaping this book, but it was
nonetheless significant. I’m referring to participants in the friends of ED and Adobe online
forums, who asked how to do certain things with Dreamweaver, JavaScript, or PHP. Many of
their ideas have been woven into this new edition.

Finally, thank you for choosing my book.

xxi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

INTRODUCTION

Dreamweaver isn’t a difficult program to use, but it’s difficult to use well. I have been using
Dreamweaver on a daily basis for about nine years, pushing it to the limit and finding out
its good points—and its bad ones, too. The user interface has changed considerably in
Dreamweaver CS4, and the introduction of new features, such as Related Files and Live view,
is likely to have a big impact on the way even long-term Dreamweaver users create web pages.

The idea of this book is to help you get the best out of Dreamweaver CS4, with particular
emphasis on building dynamic web pages using Cascading Style Sheets (CSS), Spry—the
Adobe implementation of Ajax—and other JavaScript frameworks, and the open source
server-side technology PHP. But how can you get the best out of this book?

Who this book is for
I like to credit my readers with intelligence, so this book isn’t “Dreamweaver CS4 for the
Clueless” or “Dreamweaver CS4 for Complete Beginners.” You don’t need to be an expert, but
you do need to have an inquiring mind. It doesn’t teach the basics of web design, nor does it
attempt to list every single feature in Dreamweaver CS4. The emphasis is on building modern,
standards-compliant websites. If you’re at home with the basics of HTML and CSS, then this
book is for you. If you have never built a website before and don’t know the difference
between an <a> tag and your Aunt Jemima, you might find this book a bit of a struggle.

I frequently dive into Code view and expect you to roll up your sleeves and get to grips with
the code. It’s not coding for coding’s sake; the idea is to adapt the code generated by

In this edition, I use HTML to refer equally to Hypertext Markup Language and
Extensible Hypertext Markup Language (XHTML). HTML 4.01 and XHTML 1.0 are essen-
tially the same. The only difference is that XHTML 1.0 applies stricter rules in the way it
is written (see http://www.w3.org/TR/xhtml1/#diffs for the details). All the code
examples adhere to the rules of XHTML 1.0, the default setting in Dreamweaver CS4.

xxii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver to create websites that really work. I explain everything as I go along and steer
clear of impenetrable jargon. As for CSS, you don’t need to be a candidate for inclusion in
the CSS Zen Garden (http://www.csszengarden.com), but you should understand the basic
principles behind creating a style sheet.

What about Ajax and PHP? I don’t assume any prior knowledge in these fields. Ajax comes
in many different guises; this book concentrates mainly on Spry, the Adobe Ajax framework
(code library) that is integrated into Dreamweaver CS4. Most Spry features are accessed
through intuitive dialog boxes. However, Chapter 8 gets inside the code, exploring not only
Spry, but the improved support in Dreamweaver CS4 for other JavaScript libraries, such as
jQuery (http://jquery.com/) and the Yahoo! User Interface (YUI) Library (http://
developer.yahoo.net/yui).

Dreamweaver also takes care of a lot of the PHP coding, but it can’t do everything, so I show
you how to customize the code it generates. Chapter 10 serves as a crash course in PHP, and
Chapter 11 puts that knowledge to immediate use by showing you how to send an email
from an online form—one of the things that Dreamweaver doesn’t automate. This book
doesn’t attempt to teach you how to become a PHP programmer, but by the time you reach
the final chapter, you should have sufficient confidence to look a script in the eye without
flinching.

“Do I need Dreamweaver CS4?”
Most definitely, yes. Although the PHP features remain basically unchanged since Dreamweaver
8.0.2, the changes to the Document window and Property inspector are so substantial that you
would have considerable difficulty using this book with an earlier version of Dreamweaver. If
you’re still using Dreamweaver CS3, get a copy of the CS3 version of this book. If you want to
use PHP in an earlier version of Dreamweaver, I suggest you read my Foundation PHP for
Dreamweaver 8 (friends of ED, ISBN: 978-1-59059-569-5) instead. Inevitably, some things have
changed since those books were published, but all important corrections and updates are listed
on the relevant errata pages at http://friendsofed.com/.

What’s different from the CS3 edition?
I hate it when I buy a book and find myself reading familiar page after familiar page. This
book is a revised edition of The Essential Guide to Dreamweaver CS3 with CSS, Ajax, and PHP
(friends of ED, ISBN: 978-1-59059-859-7), updated to take account of the changes in
Dreamweaver CS4. Most of the examples are inherited from the previous edition, but many
of them have been reworked to take advantage of new features, such as Live view, Related
Files, and the Code Navigator. I have also reorganized the exercises with the PHP server
behaviors in what I hope you will agree is a more logical sequence. Chapter 14 offers a gen-
tler introduction to interaction with a database before tackling the vital subject of server-side
validation in Chapter 15.

INTRODUCTION

xxiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I have also devoted more attention to working with Spry, as well as with other JavaScript
libraries. Chapter 8 explores hand-coding with Spry and introduces web widgets that use
jQuery and the YUI Library.

Every chapter has been completely revised and rewritten, and I have added a chapter on the
basics of inserting content in a web page in Dreamweaver. This is mainly for the benefit of
readers migrating from another web development program, such as Adobe GoLive, which
has now been discontinued. It will also help newcomers to web development. However, as I
mentioned earlier, you should already know the basics of HTML and CSS. Another new chap-
ter deals with the mechanics of deploying a database-driven website on the Internet. You’ll
find details of all the major new features in Dreamweaver CS4 in the following chapters:

Chapter 1 covers the changes to the user interface, Live Code, and screen sharing.

Chapter 2 describes how to integrate your sites with Subversion version control.

Chapter 3 shows you how to work with Photoshop Smart Objects.

In Chapter 4 you’ll begin working with the Related Files toolbar and Live view, and in
Chapter 6 you’re introduced to the Code Navigator—new tools that are used
throughout the book.

Chapter 8 covers the JavaScript Extractor and JavaScript web widgets.

Chapter 13 describes in detail how to prepare pages for use with Adobe’s new online
service, InContext Editing.

Chapter 19 shows you how to use the Spry Data Set wizard to create data sets from
both HTML and XML data sources in a visually intuitive way.

Even though this book is about 200 pages longer than the previous edition, there are so many
new features in Dreamweaver CS4 that I needed to drop some material. With reluctance,
I decided the installation instructions for Apache, PHP, and MySQL in the Dreamweaver CS3
edition had to go. I did this for several reasons. Covering every combination of operating sys-
tem and software was becoming too complicated. Separate instructions are needed for
Windows XP and Vista, as well as for Mac OS X 10.4 and 10.5. With the release of MySQL 5.1,
PHP 5.3, and Mac OS X 10.6 expected during the lifetime of this book, printed instructions
rapidly go out of date. Perhaps most importantly, the all-in-one installation packages—XAMPP
for Windows (http://www.apachefriends.org/en/xampp-windows.html) and MAMP for Mac
OS X (http://www.mamp.info/en/mamp.html)—are reliable and easy to install.

Windows- and Mac-friendly
I have personally tested everything in this book in Windows and Mac OS X. The overwhelm-
ing majority of screenshots were taken on Windows Vista, but I have included separate
screenshots from the Mac version where appropriate. I have also pointed out significant dif-
ferences between the Windows and Mac versions of Dreamweaver, although there aren’t
many of them.

Keyboard shortcuts are given in the order Windows/Mac, and I point out when a particular
shortcut is exclusive to Windows (some Dreamweaver shortcuts conflict with Exposé and

xxiv

INTRODUCTION

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Spotlight in the Mac version). The only place where I haven’t given the Mac equivalent is with
regard to right-clicking. Since the advent of Mighty Mouse, right-clicking is now native to the
Mac, but if you’re an old-fashioned kind of guy or gal and still use a one-button mouse, Ctrl-
click whenever I tell you to right-click (I’m sure you knew that anyway).

Some Mac keyboard shortcuts use the Option (Opt) key. If you’re new to a Mac and can’t
find an Opt key on your keyboard, in some countries it’s labeled Alt. The Command (Cmd)
key has an apple and/or a cloverleaf symbol.

Using the download files
All the necessary files for in this book can be downloaded from http://www.friendsofed.
com/downloads.html. The files are arranged in five top-level folders, as follows:

examples: This contains the .html and .php files for all the examples and exercises,
arranged by chapter. Use the File Compare feature in Dreamweaver (see Chapter 2)
to check your own code against these files. Some exercises provide partially com-
pleted files for you to work with. Where indicated, copy the necessary files from this
folder to the workfiles folder so you always have a backup if things go wrong. The
easiest way to do this is to open the file in the examples folder and use File ➤ Save As
to save the file to its new destination.

extras: This contains a Dreamweaver extension that loads a suite of useful PHP code
fragments into the Snippets panel, as well as a saved query for the Find and Replace
panel, and SQL files to load data for the exercises into your database.

images: This contains all the images used in the exercises and online gallery.

SpryAssets: This contains the finished versions of Spry-related style sheets. With one
exception, it does not contain the external JavaScript files needed to display Spry
effects, widgets, or data sets. Dreamweaver should copy the JavaScript files and
unedited style sheets to this folder automatically when you do the exercises as
described in this book.

workfiles: This is an empty folder, where you should build the pages used in the
exercises.

Copy these folders to the top level of the site that you create for working with this book (see
Chapter 2).

Support for this book
Every effort has been made to ensure accuracy, but mistakes do slip through. If you find what
you think is an error—and it’s not listed on the book’s corrections page at http://
www.friendsofed.com—please submit an error report to http://www.friendsofed.com/
errataSubmission.html. When ED has finished with the thumbscrews and got me to admit
I’m wrong, we’ll post the details for everyone’s benefit on the friends of ED site. I also plan

xxv

INTRODUCTION

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to post details on my own website at http://foundationphp.com/dwcs4/updates.php of
changes to Dreamweaver or other software that affect instructions in the book.

I want you to get the best out of this book and will try to help you if you run into difficulty.
Before calling for assistance, though, start with a little self-help. Throughout the book, I have
added “Troubleshooting” sections based heavily on frequently asked questions, together
with my own experience of things that are likely to go wrong. Make use of the File Compare
feature in Dreamweaver to check your code against the download files. If you’re using a soft-
ware firewall, try turning it off temporarily to see whether the problem goes away.

If none of these approaches solves your problem, scan the chapter subheadings in the
“Contents” section, and try looking up a few related expressions in the index. Also try a quick
search on the Internet: Google and the other large search engines are your friends. My
apologies if all this sounds obvious, but an amazing number of people spend more time wait-
ing for an answer in an online forum than it would take to go through these simple steps.

If you’re still stuck, visit http://www.friendsofed.com/forums/. Use the following guidelines
to help others help you:

Always check the book’s updates and corrections pages. The answer may already be
there.

Search the forum to see whether your question has already been answered.

Give your message a meaningful subject line. It’s likely to get a swifter response and
may help others with a similar problem.

Say which book you’re using, and give a page reference to the point that’s giving you
difficulty.

Give precise details of the problem. “It doesn’t work” gives no clue as to the cause.
“When I do so and so, x happens” is a lot more informative.

If you get an error message, say what it contains.

Be brief and to the point. Don’t ask half a dozen questions at once.

It’s often helpful to know your operating system, and if it’s a question about PHP,
which version of PHP and which web server you’re using.

Don’t post the same question simultaneously in several different forums. If you find
the answer elsewhere, have the courtesy to close the forum thread and post a link to
the answer.

The help I give in the friends of ED and Adobe forums is not limited to problems arising from
my books, but please be realistic in your expectations when asking for help in a free online
forum. Although the Internet never sleeps, the volunteers who answer questions certainly
do. They’re also busy people, who might not always be available. Don’t post hundreds of
lines of code and expect someone else to scour it for mistakes. And if you do get the help
that you need, keep the community spirit alive by answering questions that you know the
answer to.

xxvi

INTRODUCTION

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout.

Important words or concepts are normally highlighted on the first appearance in bold type.

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Pseudo-code and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.

Where I want to draw your attention to something, I’ve highlighted it like this:

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow like
this: ➥.

This is a very, very long section of code that should be written all on ➥

the same line without a break.

Ahem, don’t say I didn’t warn you.

xxvii

INTRODUCTION

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 DREAMWEAVER’S NEW LOOK—
MORE THAN SKIN DEEP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver CS4 has a new look. At first glance, the changes might look superficial: a
slightly different default layout of panels and a charcoal-gray livery. The program now
shares the same user interface (UI) as other Creative Suite programs, making it easier for
designers to create their basic design in Photoshop or Illustrator, and then prepare it for the
Web in Dreamweaver.

Although the changes to the UI are important, it’s the underlying functionality that really
matters, and that’s where Dreamweaver CS4 has changed dramatically. New features, such
as Related Files, Live view, and the Code Navigator, make this the most significant release
of Dreamweaver since Dreamweaver MX in 2002. The changes are aimed at helping
designers and coders alike, and are likely to have a big impact on the workflow of existing
users. Whether you’re a newcomer to Dreamweaver or an old hand, to get the best out of
the program, you need to find your way around the UI and new features.

In this chapter, you’ll learn about the following:

Using the OWL 2.0 UI

Switching panels to iconic mode

Converting the Insert panel into a tabbed Insert bar

Using the Related Files feature to edit files linked to a web page

Selecting options for Split view

Previewing pages inside the Document window with Live view

Navigating directly to style rules with the Code Navigator

Editing HTML and Cascading Style Sheets (CSS) markup with the revamped
Property inspector

Another important change with Dreamweaver CS4 is that Bridge and Device Central have
become optional components. Bridge is a powerful file organizer (like Windows Explorer
or Mac Finder on steroids). It has many features designed to appeal to designers and pho-
tographers, such as file previews, and keyword and metadata management. Device Central
lets you see what your website will look like on a range of mobile devices. Both Bridge and
Device Central are integrated with other Creative Suite programs, but many Dreamweaver
users were unhappy that they had no choice whether to install them with the previous ver-
sion. Adobe listened to the complaints, and has made many programs bundled with
Dreamweaver CS4 optional. However, one optional program that you should install is
Extension Manager, which is used to install extensions that add extra features and func-
tionality to Dreamweaver. I’ll show you how to use Extension Manager in Chapter 8, but
the main emphasis throughout this book is, of course, on Dreamweaver CS4.

This chapter covers the nuts and bolts of the Dreamweaver interface. It’s written with both
newcomers and old hands in mind. If you’re upgrading from a previous version of
Dreamweaver, a lot of things will be instantly familiar; the UI is a subtle blend of old and
new. However, even when things look the same, they often work slightly differently. For
example, pressing F4 still hides most panels, but moving your mouse to the edge of the
screen brings back anything hidden on that side (read “Temporarily hiding panels,” if you
want to disable that behavior). Because there are so many features in the UI, you might

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

want to skim quickly through this chapter to see what it contains, and come back later
when you need to find out how a particular feature works.

Let’s begin with an overview of the Dreamweaver CS4 interface.

Exploring the UI
The common interface shared by all programs in Adobe Creative Suite 4 is officially known
as OWL 2.0. OWL stands for OS (operating system) Widget Library. OWL not only gives a
common feel and look to CS4 programs, but it also eliminates most differences in the way
each program operates in Windows and Mac OS X. With only a few minor exceptions, the
Mac version of Dreamweaver now looks and works identically to its Windows counterpart.

Inspecting the default workspace

The Dreamweaver CS4 workspace is infinitely configurable, and you can save your own
layouts. Figures 1-1 and 1-2 show what greets you when you first open the program in
Windows and Mac OS X, respectively.

Figure 1-1. The default layout when you first open Dreamweaver CS4 in Windows

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

3

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-2. The Mac version of Dreamweaver CS4 is almost identical to the Windows one.

The only important differences between the two versions are that the Mac version retains
the main Dreamweaver menus in the Mac menu bar, whereas they’re integrated into the new
Application bar in Windows; and the Windows version blocks out the Desktop, while the Mac
version lets the Desktop show through when no document is loaded into the workspace.

The Welcome screen in the center of the workspace shows a list of the ten most recently
opened pages, and provides shortcuts to opening new documents of the most commonly
used file types. Of course, the list of recently opened pages is empty the first time you
open the program.

The first thing most experienced Dreamweaver users do after installing a new version of the
program is to select the Don’t show again checkbox at the bottom left of the Welcome screen.
Even if you’re tempted to do so on this occasion, I suggest you follow the Top Features (videos)
links on the right of the screen. These launch Adobe TV (http://tv.adobe.com/) videos
explaining and demonstrating the main new features in Dreamweaver CS4. As they say, a
picture is worth a thousand words, so the videos should give you a rapid introduction to the
program’s powerful new features. You need to be connected to the Internet to view the

The Mac version of some other programs in Creative Suite 4, such as Flash, emulates
Windows behavior by adding a gray background to the whole program. However, this
feature (known as the application frame) has not been implemented in Dreamweaver.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

videos. If you have already hidden the Welcome screen, you can restore it by selecting Edit
➤ Preferences (Dreamweaver ➤ Preferences on a Mac), selecting the General category, and
putting a check mark alongside Document options: Show Welcome Screen.

To activate all the panels, you need to open a document. If you’re new to Dreamweaver, click
HTML under the Create New heading in the Welcome screen. The default workspace layout
is called Designer. Figure 1-3 labels all the main parts of the workspace, and Table 1-1 pro-
vides brief descriptions of these parts. (Because the UI in both Windows and Mac is almost
identical, all screenshots in this book are taken from the Windows version, except where
important differences exist).

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

5

1

Figure 1-3.
The default Designer
workspace in
Dreamweaver CS4

Table 1-1. The main elements of the Dreamweaver workspace

Feature Description

Application bar On Windows, this contains all the main Dreamweaver menus plus four menus
common to both Windows and Mac, and the Search for Help field. The common
menus control layout of the Document window, Dreamweaver extensions, site
management, and workspace layout. The Application bar can be closed on a Mac,
but it is a permanent fixture in Windows.

Workspace switcher This lets you choose from eight preset workspace layouts. It also has options to
reset the current layout and manage custom layouts. This is hidden on a Mac if
the Application bar is closed.

Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 1-1. Continued

Feature Description

Search for help In addition to the Help menu, you can now search for help directly through the
UI. Enter a search term and press Enter/Return. If you are currently connected
to the Internet, this launches the Adobe Community Help website, which
displays results not only from Adobe’s website, but also from selected blogs and
community tutorial sites. If you’re offline, the results come from Dreamweaver’s
local help files. This is hidden on a Mac if the Application bar is closed.

Document toolbar This controls the display of the current document in the Document window,
showing the page layout, underlying code, or a combination of the two. It also
contains a number of tools for previewing the page, uploading it to the remote
server, and checking the code for mistakes.

Document window This is the main editing area. Each document is opened in a separate tab.

Tag selector This displays where the current selection lies within the page’s document tree
structure. It can be used to select page elements and add attributes, such as an
ID or class, to a tag.

Property inspector This is Dreamweaver’s main control center for working with the underlying code
while viewing the web page in the Document window. It’s a context-sensitive
panel that displays all the main attributes of the current selection ready for
editing. An important change from previous versions of Dreamweaver is the
separation of the Property inspector into two views: HTML and CSS. Access to
these views is controlled by two buttons at the top left of the Property
inspector.

Status bar This shows details of the Document window and current page, such as
magnification, dimensions, size in kilobytes, and encoding.

Panel groups Specialized panels control working with different aspects of web pages, such as
styles, database connections (with a server-side language like PHP), and files in
the current site (site definition is covered in Chapter 2). The most commonly
used panels are displayed as a column on the right side of the screen, but they
can be rearranged, minimized, or closed to suit your workflow, as described in
this chapter.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

6

This looks very familiar to long-term Dreamweaver users. The main difference lies in the
large panel at the top right of the screen. This is the Insert panel, which was a much more
compact toolbar in previous versions. It has been redesigned with labels alongside each
icon to help newcomers to the program find tools easily. The other big change is that all
the icons in the Insert panel are grayscale and display in color only when you mouse over
them. The logic behind this is to reduce color noise—the theory being that colored icons
distract you from the main design in the Document window. If you don’t like either of
these defaults, they can be changed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I’ll deal with the Insert panel (including restoring the tabbed Insert bar from previous ver-
sions) in the “Using and configuring the Insert panel” section later in this chapter, but
switching to colored icons is something you might want to do immediately.

Switching between grayscale and colored icons

The idea of rendering all icons in grayscale makes a lot of sense in graphic design pro-
grams, such as Photoshop and Illustrator, because they have relatively few toolbars, and
muting the icons lets you concentrate on the design with a minimum of distraction.
Dreamweaver, on the other hand, has a lot of icons, many of which are very small. Without
color to act as a visual clue, the grayscale versions can be difficult to distinguish, slowing
down your workflow. However, in recognition of the way different people work, three of
the preset workspace layouts (Classic, Coder, and Coder Plus) display colored icons by
default, and you have the option to toggle colored icons on and off in all layouts. There
are three ways of doing so, as follows:

Select View ➤ Color Icons.

Right-click the Insert panel and select Color Icons from the context menu (a page
needs to be open in the Document window before you can do this).

Click the View options button in the Document toolbar and select Color Icons (see
the section “Exploring the Document toolbar” later in this chapter for a description
of the Document toolbar’s features).

Choosing a preset workspace layout

In addition to the default Designer workspace layout, Dreamweaver CS4
comes with seven other preset layouts. And if you don’t like any of them,
you can design and save your own personal layouts (as explained in the
section “Managing workspaces” later in this chapter). You access the pre-
set layouts and manage customized ones through the Workspace switcher
(on Windows, it’s at the right end of the Application bar; in the Mac ver-
sion, it’s much further to the left). Figure 1-4 shows the available options
on the Workspace switcher.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

7

1

Table 1-2 provides a brief description of the preset layouts, but the best
way to understand them is to experiment by selecting each one in turn.

If you’re an experienced user of Dreamweaver, and just want to
get the UI back to its previous layout, select Classic from the
Workspace switcher. However, the new options can do a lot to
improve your workflow, so they’re well worth exploring.

Figure 1-4. The Workspace switcher
offers a wider choice of layouts than
previous versions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 1-2. Preset workspace layouts in Dreamweaver CS4

Layout Panel groups Description

App Developer The panel groups are displayed fully expanded in a
column on the left. The Document window on the right is
split horizontally to show Code view at the top and Design
view below. The Property inspector is closed. Mainly suited
to developing dynamic websites with a server-side
technology.

App Developer Plus Three extra design-related panels are added in iconic
mode to the right of the Document window (the AP
Elements panel displays details of elements that use
absolute positioning). The Property inspector is displayed
at the bottom of the Document window. Not suitable for
a small monitor.

Classic This is the same layout as Dreamweaver CS3. The Insert
panel is converted to a toolbar at the top of the screen.
The Property inspector is at the bottom of the Document
window, and the panel groups are fully expanded on the
right. Icons are displayed in color. An all-purpose layout
suited to developers involved in both server-side
development and page design.

Coder Files, Assets, Snippets This is a minimalist layout for developers who prefer to
work in raw code. Just one panel group is displayed fully
expanded on the left, with the Document window in Code
view on the right. The Property inspector is closed. Icons
are displayed in color.

Coder Plus This adds three design-related panels in iconic mode to
the right of the Document window. Icons are displayed in
color.

Designer This is the layout shown in Figure 1-3. It provides the basic
tools for designing static websites. A good choice for
beginners.

Designer Compact Same as Designer The layout is the same as Designer, but the panels are
displayed in iconic mode.

Dual Screen This blows the UI apart, displaying nearly every available
panel ready for redistribution on a dual-monitor setup.
The Property inspector is initially attached to the
Document window, but like everything else, it can be
detached. It’s more of a starting point for a custom layout,
rather than something you would use on a regular basis.

Insert, CSS Styles,
AP Elements,
Databases, Bindings,
Server Behaviors,
Assets, Snippets,
Files, Properties,
Code Inspector

Insert, Properties, CSS
Styles, AP Elements,
Files, Assets

Same as Coder plus
Insert, CSS Styles,
AP Elements

Insert, Properties, CSS
Styles, AP Elements,
Tag Inspector,
Databases, Bindings,
Server Behaviors,
Files, Assets, Snippets

Same as App
Developer plus
Insert, CSS Styles,
AP Elements,
Properties

Databases, Bindings,
Server Behaviors,
Files, Assets,
Snippets

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Expanding and collapsing panels vertically
As you can see in Figures 1-1 through 1-3, the Insert and Files panels are open in the default
Designer workspace, but two panels in the middle (CSS Styles and AP Elements) are dis-
played as tabs only. All panels can be expanded vertically to give access to their contents,
and collapsed to tabs to give you more room to see the contents of a different panel.

The way you expand a panel that’s currently displayed only as a tab depends on its posi-
tion. If the tab is foremost in its group, you need to double-click it. Other tabs open with
a single mouse click. To contract a panel to its tab, either double-click the tab or click once
in the dark-gray area to the right of the last tab in the group. Panels that are grouped
together expand and contract as a group. Clicking once in the dark-gray area also expands
a closed group of panels.

Many panels also have keyboard shortcuts to expand and contract panels. Open the
Window menu to see the shortcuts available for your operating system.

Resizing panels
Panels can be resized vertically and horizontally by clicking and dragging the top, bottom,
or side of a panel or panel group. Dreamweaver remembers the new size until you change
it again.

Using panels in iconic mode

Long-term users of Dreamweaver will begin to see
the real differences in the UI by selecting one of the
workspace layouts that use iconic mode, such as
Designer Compact. The panel groups are identical to
the Designer layout, but instead of the panel groups
being fully expanded (as in Figure 1-3), they are col-
lapsed to icons with labels alongside, as shown in
Figure 1-5.

Click the icon or its label, and the panel pops out,
as shown in Figure 1-6. Once a panel is open, you
can resize it by dragging its sides or corners.
Dreamweaver remembers this size until you change
it again. Only one panel can be opened at a time,
and by default, the panel pops back in as soon as
you click anywhere outside it. This means you can switch rapidly between panels by click-
ing the icon or label of the next panel you want to access. It also tidies the workspace by
keeping the panel out of the way as soon as you start working in the Document window.

The AP in AP Elements stands for “absolutely positioned.” The panel displays
details of all page elements that have the CSS property position: absolute.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

9

1

Figure 1-5. Dreamweaver panels can now be collapsed to icons.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-6. In iconic mode, panels pop out alongside their icons.

If this automatic disappearing act doesn’t suit your way of working, you can disable it by
right-clicking any of the panel icons and selecting Auto-Collapse Iconic Panels from the
context menu. A check mark alongside this option indicates that auto-collapse is enabled.
Clicking the option in the context menu toggles the behavior on and off.

Iconic mode is particularly useful on a small monitor, but Windows users might be annoyed
by the large expanse of empty gray space beneath the icons (on a Mac, the Desktop shows
through). There are two things you can do about that in both Windows and Mac:

Minimize the icons to hide their labels.

Float the icons.

Minimizing iconic panels
Once you’re familiar with the panel icons, you can save space by positioning your cursor
over the edge of a column of panels in iconic mode until it changes into a double-headed
arrow. Hold down the left mouse button, and drag toward the opposite edge of the col-
umn until the labels disappear and the icons snap to their minimized shape, as shown in
Figure 1-7.

The minimized icons work exactly the same as before. To help remind you what each icon
represents, Dreamweaver displays a tooltip when you hover your cursor over one.

Although this saves space, you still get the gray column on Windows or the Desktop show-
ing through on a Mac. If you don’t like that, you can turn the panels into a floating vertical
toolbar.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-7. The panels can be reduced to icons to save space.

Converting iconic panels into a floating toolbar
You can detach a column of iconic panels by clicking anywhere in the dark-gray strip at the
top of the column, and then dragging it away from the edge of the screen. (Don’t click the
double-arrow at the top right—that expands all the panels in the column to their default
width.) Once the panels have been detached from the edge of the screen, you can position
them anywhere you want. While dragging them, they turn semitransparent to make it eas-
ier to decide where to locate them. As an independent toolbar, the icons occupy the min-
imum amount of space, and the gray column disappears on Windows. Figure 1-8 shows the
minimized panels floating alongside part of a web page in the Document window.

Closing and restoring floating panels
Dreamweaver adds a close button to the dark-gray strip at the top of floating panels.
Figure 1-9 shows the close buttons added to a floating toolbar of minimized icons on
Windows and Mac. The close button follows the convention of the operating system, so it
remains at the top right or top left when the icons are expanded to panels. Simply click the
close button, and the panels are removed from the workspace.

Figure 1-8.
The minimized panels can be
floated anywhere in the workspace.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

11

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To restore floating panels after closing them, open the Window menu and select the name
of one of the panels in the group that has been closed. This opens the panel, along with all
other panels (or icons) grouped with it. Many panels have keyboard shortcuts that toggle
them open and closed. Using one of these shortcuts also restores a closed floating group.
The keyboard shortcuts are listed on the Window menu.

Switching between panels and icons
A column of panels can be fully expanded or collapsed to icons by clicking the tiny pair of
arrowheads at the top right of the column (see Figure 1-10). Dreamweaver remembers the
width of both the expanded column and icons, so collapsing to icons displays them with
labels or minimized, depending on your previous choice.

Figure 1-10. Click the pair of arrowheads to switch between icons and panels.

Temporarily hiding panels

When you want to clear the on-screen clutter to see your work in its full glory, just press
F4. Most panels will disappear, leaving the Document window dominating the screen. You
still have access to the Document toolbar, Tag selector, and Status bar, as they are integral
parts of the Document window. The Application bar also remains visible at the top of the
screen, as does the Insert panel if you have converted it to the Insert bar (see “Using and
configuring the Insert panel” later in this chapter).

In Windows, the Document window expands to fill the entire workspace. On a Mac, the
Document window doesn’t change size. However, if you drag the resize handle at the bot-
tom right of the Document window, you can get it to fill the whole screen. The panels
return when you press F4 again, and on both Windows and Mac, the Document window
shrinks back to fit inside the workspace. The next time you press F4 on a Mac,
Dreamweaver remembers to fill the screen with the Document window.

Figure 1-9.
The close button is located in
the conventional position for

each operating system.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Auto-Show
Pressing F4 to restore all the panels can get a bit tiresome if you want to spend most of
your time in the Document window, so Dreamweaver CS4 has added a new feature that
automatically shows hidden panels when you move your mouse pointer to the edge of the
screen. If you move your mouse to the right edge of the screen, any panels hidden on that
side automatically pop out. You can then work in the panels, and they automatically slide
back out of view as soon as you move back into the document window. This is the default
behavior.

If you want the panels to remain hidden, right-click any panel and select Auto-Show Hidden
Panels. Like many options in context menus, a check mark alongside the item indicates
that the option is enabled; no check mark indicates it’s disabled. Clicking the option tog-
gles it on and off.

Hiding the Application bar (Mac only)
In the Windows version of Dreamweaver CS4, the Application bar (see Figure 1-3) contains
all the main Dreamweaver menus, so it cannot be turned off.

In the Mac version, the main Dreamweaver menus remain part of the OS X interface, and
the Application bar contains only a small number of shortcut menus to options that can
also be accessed through the main menus. If the Application bar gets in the way on a Mac,
you can hide it by selecting Window ➤ Application Bar. Select the same menu option to
restore it.

Moving and regrouping panels

The preset workspace layouts organize panels in logical groups. For example, the CSS
Styles and AP Elements panels are grouped together because they both deal with style
rules. But these groups are only suggestions; you can reorganize the panels just about any
way you want.

Moving a single panel
To move a single panel, click its tab and drag it away from its current position towards the
Document window. When you release your mouse button, the panel floats independently.
You can move the panel anywhere you like by grabbing the dark-gray bar at the top of the
panel and dragging it to a new position. You can also collapse the panel to iconic mode
(with or without a label), dock it in a different location, group it with one or more other
panels, or close it.

Pressing F4 to hide the panels and using Auto-Show is a very convenient way of work-
ing. It gives you plenty of space to work in your document, but puts the panels quickly
at your disposal. However, it can be difficult to control if you auto-hide the Taskbar on
Windows or the Dock on a Mac. Moving your mouse pointer too far off the screen trig-
gers the Taskbar or Dock, rather than the Dreamweaver panels.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

13

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Moving a panel to a different group
To change a panel grouping, grab the tab of a panel that you want to move and pull it
away from its current position. As you drag it, it becomes semitransparent. Drag it over the
target panel or panel group until a blue border appears around the target, as shown in
Figure 1-11, and release the mouse button. Although Figure 1-11 shows the target as a sin-
gle floating panel, the target can be an existing group; it doesn’t matter whether it’s float-
ing or docked within a column of panels.

Figure 1-11. It’s easy to regroup panels.

Changing the order of panels within a group
If you prefer to display the panels in a different order, just drag one of the tabs to the left
or right. Repeat this process until the tabs are in the order you want.

Moving a group of panels
Moving a group of panels is quite easy, but you need to take care where you click to drag
the group as a single unit. Click anywhere between the last tab on the right and the tab
group menu, as shown in Figure 1-12. With some groups, this leaves very little room in
which to position your cursor. A simple way of getting around this problem is to make the
panel column wider by dragging its open side. This opens up the clickable area. Once you
have reorganized the panels the way you want, drag them back to the desired width.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

14

Figure 1-12.
Selecting the right place

to drag a panel group
can sometimes be tricky.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Stacking and docking panels
In addition to grouping panels together, you can stack them together to form a new column,
or dock them to the edge of the screen or another group of panels. As you drag a panel or
group of panels, watch for a thick blue line to appear. This indicates a dockable target.

Using and configuring the Insert panel

As I mentioned earlier, by default, the Insert panel occupies a large amount of space because of
the labels next to the icons. The Insert panel is also unusual in that it’s really many panels in one.

As its name suggests, the Insert panel’s role is to insert frequently used elements, such as
images, tables, <div> tags, form elements, and Spry widgets, into a web page. They won’t all fit
conveniently into a single panel, so they’re divided into categories, which can be accessed
through a drop-down menu just below the tab, as shown in Figure 1-13. Dreamweaver is
context-sensitive, so the menu sometimes displays more categories than shown in the figure
(for example, the PHP category is accessible in a PHP page). Table 1-3 describes briefly what
each category contains. For the benefit of readers upgrading from Dreamweaver CS3, I have
indicated the main changes.

Figure 1-13.
The Insert panel contains
several categories
accessed through an
internal menu.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

15

1

Table 1-3. The main features of Insert panel categories

Category Description Changes from Dreamweaver CS3

Common Horizontal Rule has been added. Flash
Button and Flash Text have been
removed from the Media submenu.

Layout No change.

Continued

Offers various tools for layout, including table
modification, frames, and Spry widgets, such
as menu bar (see Chapter 6), and tabbed and
collapsible panels (see Chapter 7).

Inserts the most commonly used objects, such
as tables, images, and <div> tags.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 1-3. Continued

Category Description Changes from Dreamweaver CS3

Forms Checkbox Group and three new
Spry validation widgets (Password,
Confirm, and Radio Group) have
been added.

Data Spry XML Data Set and Spry Table
have been removed and combined
in a vastly improved Spry Data Set
feature (see Chapter 19).

Spry Spry Data Set replaces Spry XML
Data Set and Spry Table. New
validation widgets and Spry Tooltip
have been added.

InContext Editing New category.

Text No change.

Favorites Provides a blank category for you to
customize (see “Customizing the Favorites
category” later in this section).

Provides an alternative to the Property
inspector for common formatting options. It’s
also home to definition list and HTML entities.

Offers tools for Adobe’s hosted online service
that permits authorized users to update web
pages through an ordinary browser (see
Chapter 13).

Presents all Spry features gathered in a single
category.

Offers access to most dynamic features,
including Spry data sets (see Chapter 19) and
PHP server behaviors (see Chapter 14 onward).
Also imports data from comma-separated
value (CSV) files into a static web page.

Creates forms and inserts all form elements,
including Spry validation widgets (forms and
Spry validation are covered in Chapter 9).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

16

Many icons on the Insert panel have a small downward facing arrow to the right,
as shown alongside. This indicates that it contains a submenu of related options.
The first time you click one of these icons, Dreamweaver displays the submenu

showing all options (Figure 1-14 shows the options when you click the Images icon).
Dreamweaver remembers your selection and always displays the most recently used
option. If you want to use the same option again, click the icon itself. To select a different
option, click the arrow to the right to reveal the menu again.

For many Dreamweaver users, the Insert panel is one of the heavily used parts of the UI. If
you’re happy working with just the icons, you can hide the labels. You can also convert the
panel into a tabbed toolbar like the Insert bar in previous versions of Dreamweaver.
Regardless of which layout you choose, you can populate the Favorites category with your
own selection of frequently used items.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-14. Many icons on the Insert panel conceal submenus.

Hiding the labels
If you want to save space by hiding the label alongside each icon, select Hide Labels from
the bottom of the Insert panel’s drop-down menu (shown on the right side of Figure 1-13).
If you forget what an icon represents, just hover your mouse pointer over it to display a
tooltip.

Hiding the labels leaves you with a vast expanse of unused panel. To reduce the height of
the panel, click the bottom and drag it upwards, as shown in Figure 1-15.

Figure 1-15. Hiding the labels on the Insert panel saves a lot of screen real estate.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

17

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you do this with the Common category selected, you might notice that Dreamweaver
prevents you from making the bottom of the panel fit snugly underneath the bottom row
of icons. This is because other categories have more icons, so enough space if left to dis-
play the largest category without the need to resize the panel.

Although this saves space, you still need to activate the drop-down menu to switch cate-
gories. Converting the panel to a tabbed toolbar avoids this problem.

Converting the Insert panel to a tabbed toolbar
The easiest way to convert the Insert panel to a toolbar like the Insert bar in previous ver-
sions is to select Classic from the Workspace switcher. This moves the panel from its cur-
rent location to the top of the screen and converts it into a tabbed toolbar. Each tab
represents a category from the panel menu, giving you quick and easy access to all its
tools. If the tabs aren’t displayed, activate the drop-down menu on the left of the Insert
bar and select Show as Tabs.

On Windows, the Insert bar is located beneath the Application bar and stretches the full
width of the screen, as shown in Figure 1-16.

Figure 1-16. The only position for the Insert bar in Windows is directly beneath the Application bar.

Mac users have two options. The default Classic workspace layout in the Mac version of
Dreamweaver attaches the Insert bar to the end of the Application bar, as shown at the top
of Figure 1-17. The Mac version of the Application bar contains only a few items, so con-
verting the Insert panel to a toolbar makes much better use of your screen real estate. As
noted earlier, if you don’t want the Application bar, you can turn it off in the Mac version
by selecting Window ➤ Application Bar. This shifts the Insert bar left to occupy the space
previously taken by the Application bar, as shown at the bottom of Figure 1-17. However,
it doesn’t offer any real benefit, as the full width of the screen is still reserved for the
tabbed Insert bar. Unlike the Windows version, with the Mac, the Insert bar’s background
doesn’t expand to fill the empty space on the right. Contrary to what you might expect,
you cannot dock other panels to the right of the Insert bar. However, if you want to fill this
empty space, you can float other panels over it.

Figure 1-17. In the Mac version, the Insert bar can be displayed with or without the Application bar.

If you have already reorganized your workspace layout and don’t want to use the Classic
preset, you can detach the Insert panel from its current location by dragging its tab toward

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the top of the screen. Release the tab when you see a thick blue line indicating where it
will be docked. On Windows, the only place you can dock the Insert panel and display the
tabbed interface is directly beneath the Application bar. On a Mac, you can dock it to the
right of the Application bar, underneath the Application bar, or if the Application bar is
hidden, at the top of the screen.

The convenience of the tabbed Insert bar is somewhat marred by the fact that it’s not
resizable. Also, you cannot dock anything to the right of it on either Windows or Mac. On
my 1680 × 1050 monitor, the icons in the Insert bar never stretch even halfway across the
screen, so a lot of space is wasted. Apparently, this is because of constraints imposed by
the common UI shared by all programs in Creative Suite 4. In testing Dreamweaver CS4,
I have found the tabbed Insert bar to be the most efficient because I can afford the space
on my large monitor. Unfortunately, if space is a consideration, undocking the tabbed
Insert bar won’t solve your problems. If you undock the Insert bar from the top of the
screen by dragging the double column of dots on its left side, it automatically converts
back into a panel, and the tabs are no longer accessible.

Switching between tabs and menu
If you prefer the drop-down menu to switch between categories, you can use it instead of
the Insert bar’s tabbed interface. Right-click anywhere in the dark-gray strip to the right of
the last tab and select Show as Menu. This saves a few pixels of vertical space. To display
the tabbed interface again, open the drop-down menu on the left of the Insert bar and
select Show as Tabs.

Customizing the Favorites category
If switching among categories becomes too time-consuming, you can populate the
Favorites category with your most frequently used items. This option is available regardless
of how you have configured the Insert panel.

Right-click anywhere in the light-gray area of the Insert panel or Insert bar and select
Customize Favorites from the context
menu. The drop-down menu at the top
left of the Customize Favorite Objects
dialog box (shown in Figure 1-18) lets
you choose from either a master list or
individual categories. In the left panel,
select one item at a time and click the
button with the double chevron to add
it to the Favorite objects panel on the
right. To remove an item, select it in the
right panel and click the trash can but-
ton at the top right. The up and down
arrows next to the trash can can be
used to change the position of the
selected item. The Add separator button
below the list inserts a separator after
the current item.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

19

1

Figure 1-18. Customize the Favorites category of the Insert panel or Insert
bar for quick access to frequently used options.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Customize Favorite Objects dialog box gives access to all categories, including context-
sensitive ones, such as PHP. Dreamweaver stores details of your Favorites category in your
personal configuration folder, so different users on the same computer can have person-
alized selections (as long as they use different user accounts). You can copy your Favorites
category to another computer, as described in the “Migrating snippets and other personal
settings” section later in this chapter.

Using the Property inspector

The Property inspector is the wide panel at the bottom of several preset workspace lay-
outs, including the default Designer (see Figure 1-3). The tab actually reads Properties, so
many people refer to it as the Properties panel, but the official name is Property inspector,
and that’s how I’ll refer to it throughout this book.

The Property inspector is context-sensitive; it displays properties related to the current
selection in the Document window. Figure 1-19 shows the contents of the Property inspec-
tor when an image is selected. As you can see, it gives access to the main attributes of the
 tag, including src, alt, width, height, and class. It also contains a small number of
image editing tools.

Figure 1-19. The Property inspector gives access to the main attributes of the tag when an
image is selected.

Selecting HTML and CSS view in the Property inspector
When the cursor is in an empty part of the Document window or text is selected, the
Property inspector displays a completely different set of options. Figure 1-20 shows what

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

it looks like when the pull quote on the left of the Document window is selected. The
important thing to note is that there are two buttons on the left of the Property inspector:
HTML and CSS. These are new to Dreamweaver CS4, and you need to check carefully
which one is selected, as the options look very similar, but work in very different ways.

Figure 1-20. When editing text, the Property inspector has separate options for HTML and CSS.

With the HTML button selected, you can format text by applying Hypertext Markup
Language (HTML) tags such as paragraphs (<p>) and headings (<h1> through <h6>), bold
(), italic (), and bulleted and numbered lists (and), as well as
applying hyperlinks (<a>). If you’re upgrading from a previous version of Dreamweaver,
selecting the HTML button in the Property inspector gives you most of the options that
you’re used to seeing. However, the options to select the font face, size, and color are
missing. To access them, you need to select the CSS button.

Modern web standards advocate the separation of content and presentation by marking
up the structure of the page with HTML, while leaving all stylistic elements, such as fonts,
colors, and backgrounds, to CSS. In keeping with this approach, Dreamweaver CS4 has
moved the tools for styling text and other elements to a separate view of the Property
inspector. Figure 1-21 shows what the Property inspector looks like when you select the
CSS button with the same pull quote selected as in Figure 1-20. As you can see, it has a
drop-down menu on the left labeled Targeted Rule. This automatically selects what
Dreamweaver judges to be the most appropriate rule to edit, but you can make your own
selection or use it to create a new rule. Using the CSS features of the Property inspector is
covered in Chapter 4.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

21

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-21. Selecting the CSS button in the Property inspector reveals options for creating style
rules for the current element.

Configuring the Property inspector
The Property inspector is not as versatile as the Insert panel when it comes to rearranging
your workspace. You can cut its height in half by clicking the little upward-facing triangle
at the bottom right of the Property inspector (see Figure 1-21). However, this conceals all
the options in the lower half. There aren’t many options for text in the lower half (see
Figures 1-20 and 1-21), but as Figure 1-19 shows, there are many more for an image. To
restore the Property inspector to its full height, click the triangle again (it points down-
ward when the bottom half is concealed).

Unfortunately, the three icons on the right edge of the Property inspector have a nasty habit
of disappearing on monitors smaller than 1280 × 1024 pixels (the minimum specification for
Dreamweaver CS4 is 1024 × 768). The icons are hidden behind any panels to the right of the
Property inspector. This is a known bug that makes collapsing the Property inspector a risky
business and not recommended on small monitors. If you can’t access the expand triangle,
collapse any other panels to iconic mode. If that doesn’t work, detach the Property inspec-
tor from the bottom of the screen by dragging its tab into the Document window. This
should display the Property inspector full width, giving access to the expand triangle.

A better way to gain more room in the Document window is to click the dark-gray bar
alongside the tab of the Property inspector. This collapses the panel containing the
Property inspector to a narrow strip at the bottom of the screen. Click again, and the panel
is restored to its normal size. You can also save space by automatically hiding all panels
when not in use by pressing F4, as described earlier in the chapter.

A big complaint about the Property inspector is that it stretches horizon-
tally to fill the available space at the bottom of the screen, but all the text
fields remain the same size. On a large monitor, this results in a lot of
wasted space. You can detach the Property inspector from the bottom of

the screen and use it as a floating panel. Once floating, it can be collapsed to iconic
mode with or without a label, as shown alongside. When you expand the Property
inspector from iconic mode, it occupies 825 × 130 pixels and cannot be resized.

“Where has my Link field gone?” This was one of the most common cries for help during
the public beta of Dreamweaver CS4. Regular users of Dreamweaver are used to always
seeing the Link field in the same place in the Property inspector and panic when it’s not
there. It’s still where it always used to be, but it’s visible only when the HTML button is
selected. Dreamweaver always remembers your most recent selection, so if you have
been working with CSS, you need to switch back to access the HTML formatting
options, including creating a hyperlink.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Results panel group

By default, the Results panel group remains hidden in all preset workspace layouts. It
opens automatically at the bottom of the screen (below the Property inspector if that’s
already at the bottom) after performing certain operations, such as find and replace, vali-
dation, or link-checking. It also contains the Reference panel (Shift+F1), which has com-
prehensive guides to HTML, CSS, and other web technologies (unfortunately, the PHP
material is rather out-of-date).

To minimize the Results panel group, press F7 or click the dark-gray bar to the right of the
tabs. This leaves the tabs visible at the bottom of the screen. Pressing F7 or clicking the
dark-gray bar toggles it open and closed. To get rid of this panel group completely, right-
click the dark-gray bar and select Close Tab Group. However, it automatically reopens
whenever prompted to do so by Dreamweaver. You cannot get rid of it permanently, nor
should you want to; it contains useful information.

The problem with the Results panel group is that it cannot be resized in its default loca-
tion, often making the contents difficult to read. The best way to use the Results panel
group is to turn it into a floating panel by dragging the dark-gray bar to the right of the
tabs into the Document window. Once it’s floating, you can resize it by dragging either of
the bottom two corners or any side except the top. Another benefit is that pressing F7
closes the panel group completely, rather than minimizing it. Alternatively, you can con-
vert it into an iconic panel.

Managing workspaces

Being able to configure the workspace in such a variety of ways makes Dreamweaver CS4
extremely versatile, but what if you don’t like the changes? Or what if you like the changes,
but don’t always want to work the same way? Adobe has provided for these cases by
including options to reset the current workspace to its original settings and save cus-
tomized ones.

At the bottom of the Workspace switcher (see Figure 1-4 earlier in the chapter) are the
following three options:

Reset ‘Workspace’: This resets the current workspace to its original settings
(Workspace is replaced by the actual name). It works with both the preset layouts
that ship with Dreamweaver and your own customized layouts.

New Workspace: This opens a dialog box that lets you save your own customized
layout. Once you have configured the workspace to your own liking, just select this
option, give the new workspace a name, and click OK. This adds the customized
layout to the Workspace switcher, allowing you to switch to it at any time.

Detaching the Property inspector from its default position can be a frustrating experi-
ence. Even if you drag it some distance, it stubbornly snaps back to the bottom of the
screen. The secret is to collapse other panels that are open, and then drag the Property
inspector to the top half of the screen.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

23

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Manage Workspaces: This displays a list of customized layouts stored in the current
user’s configuration folder with options to rename or delete them. Once you
delete a customized layout, you cannot restore it.

The Workspace switcher is always visible in the Windows version of Dreamweaver CS4. If
you have hidden the Application bar on Mac OS X, you can access the Workspace switcher
options from the Workspace Layout submenu of the Window menu (the same options are
available on Windows).

Dreamweaver stores details of customized workspace layouts as Extensible Markup Language
(XML) files, a platform-neutral format, so you can share layouts with other users even if
you’re using different operating systems. For details, see the “Migrating snippets and other
personal settings” section later in this chapter.

Exploring the Document window
Whether you’re a designer, a coder, or a bit of both, the Document window is where you
do most of your work in Dreamweaver. Like the UI, it has a lot of new features. Some, like
Related Files and Live view, have a major impact on the Dreamweaver workflow. Others,
like Vertical Split view and Split Code view, are simple improvements that both newcom-
ers and old hands are likely to find welcome aids to productivity.

Figure 1-22 shows the main parts of the Document window (in Design view, showing a file
used later in the book). The following sections describe briefly the various options avail-
able in the Document window. How they’re used in the context of building a website is
covered in the rest of the book.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

24

Figure 1-22.
A web page displayed in

Design view.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with tabbed windows

By default, Dreamweaver displays web pages, JavaScript files, style sheets, and all other
web documents in a tabbed interface. Tabs are created from left to right in the same order
as the pages are opened, but you can drag and drop them into any order.

Viewing the file path
The physical file path of the currently selected document is displayed in the dark-gray bar
alongside the tabs. Unfortunately, if you have a large number of tabs open, this conceals
the file path. However, you can always see the file path by hovering your mouse pointer
over the document’s tab, where it is displayed as a tooltip. The Coding toolbar (described
in the “Using the Coding toolbar” section later in this chapter) also displays a list showing
the full path name of all open files.

Closing tabs
To close a document, click the close button on the right side of the tab. This is different
from previous versions of Dreamweaver, and is particularly likely to confuse Windows
users, who will need to get out of the habit of going to the top right of the Document win-
dow to close a document (where you’re likely to hit the restore down button by mistake).
Although this is different from previous versions, it brings Dreamweaver into line with the
way that browsers work, so the change is quite logical. Mac users might also feel a little
discomfort because the close button has moved from the left side of the tab to the right,
so it’s now on the opposite side from the Safari browser.

To close all tabs at once, right-click any tab and select Close All from the context menu.
Alternatively, use File ➤ Close All on the main menu system, or the keyboard shortcut
Ctrl+Shift+W/Shift+Cmd+W.

To close all documents except the selected tab, right-click the tab, and choose Close Other
Files from the context menu. The tab context menu offers other options for opening, sav-
ing, and comparing documents (file comparison depends on setting up a third-party util-
ity; see Chapter 2 for details).

Displaying documents outside the tabbed interface
If you decide you don’t want your documents displayed in the tabbed interface, you can
break them free. The method depends on your operating system.

On Windows, click the restore down button at the top right of the Document window to
display the document in what looks like a normal window. It has minimize, maximize, and
close buttons like any other window, but its movement is restricted to inside the
Document window. If you open a new document, it opens in a similar window. Clicking the
maximize button converts the window back to a Dreamweaver tab.

The Mac version works considerably differently. By default, the first document opens in an
ordinary window. The tabbed interface appears only when you open two or more docu-
ments. If you prefer to open the first document in a tab as well, select Dreamweaver ➤
Preferences (Cmd+U), choose the General category, and enter a check mark in the Always
show tabs checkbox. If you don’t want tabs at all, make sure that both the Open documents

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

25

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

in tabs and Always show tabs checkboxes are deselected. You can also move a document
from its tab into a separate window by right-clicking the tab and selecting Move to New
Window from the context menu.

Getting quick access to related files

Dreamweaver CS4 has two powerful new tools that give you instant access to style sheets,
external JavaScript files, and other documents linked to a web page. The Related Files fea-
ture supports all linked files, whereas the Code Navigator is dedicated to working with
style sheets.

Using the Related Files toolbar
If you work regularly with external style sheets, JavaScript files, or server-side includes, be
prepared for one of the biggest improvements to your workflow. The Related Files feature
automatically detects whether the current document has links to external files and lists
them in the Related Files toolbar just above the Document toolbar (see Figure 1-22).
Dreamweaver loads the code of each file into memory, giving you instant access just by
clicking the file name in the Related Files list. This means that you no longer need to
search in the Files panel to locate a style sheet or JavaScript file for editing; it’s there at the
click of your mouse.

The Related Files toolbar doesn’t list images, SWF files, or other visual assets, so it doesn’t
get cluttered with irrelevant files. Normally, Dreamweaver goes only one level deep, so just
the files that are directly linked to the page are listed. For example, if the main document
uses a server-side include called menu.inc.php, it’s listed, but any files included directly by
menu.inc.php are not listed. Style sheets are the only exception. All style sheets that affect
the main document are listed however deep they are in the site hierarchy. For example, if
styles.css uses @import to link to more_styles.css, both are listed, even though the
main document doesn’t have a direct link to more_styles.css.

If the main document has so many related files that the names won’t all fit in the Related
Files toolbar, a double chevron appears at the end of the list. Click it to reveal a list of the
remaining files. Files are listed in the order they are linked to the main document. You can-
not change the order in the Related Files toolbar. Files added to a page after it has been
opened in the Document window are added automatically to the Related Files toolbar. If a
file fails to appear in the toolbar, press F5. This is a keyboard shortcut for refreshing Design
view, which also has the effect of updating the Related Files toolbar.

When you click a file name in the Related Files toolbar, Dreamweaver opens Split view, dis-
playing the code of the related file in one half of the Document window, while leaving the
main document in Design view in the other half, as shown in Figure 1-23 (see the
“Switching between Code, Design, and Split views” section later in the chapter for details
on how to change the layout). The related file is editable, and you can see the results of
changes immediately by pressing F5 or clicking in the Design view half of the Document
window. There’s no need to save the related file first, so if you don’t like the result, you
can continue editing the file until you achieve the desired result. Dreamweaver puts an
asterisk (*) alongside the name of the file you have edited to indicate that the changes
haven’t been saved. To save the changes, make sure the focus is in Code view and press

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ctrl+S/Cmd+S or select File ➤ Save. To reject the changes, click No when prompted to
save them when you close the main document.

Figure 1-23. The Related Files feature lets you edit style sheets in Code view and see the results
instantly in Design view.

Using the Code Navigator to edit style sheets
If the current page has style rules, either in an external style sheet or in the <head>
of the document, leave your cursor in the Document window for a few seconds
without any other activity, and a little icon like a ship’s wheel (as shown alongside)

pops up. It doesn’t matter whether you’re in Code view or Design view; it keeps on making
an appearance. If you don’t know what it is, it will probably drive you insane after a short
while. Even if you do know what it is, its persistence can be just as maddening.

When upgrading to Dreamweaver CS4, you might find the Related Files feature disori-
enting to begin with, as there’s no longer any need to open style sheets and external
JavaScript files in separate tabs. If you open a related file in a tab of its own,
Dreamweaver keeps both versions in sync with each other, but keeping track of where
you’re working can be confusing. If you find the Related Files feature doesn’t fit into
your workflow, you can disable it by selecting Edit ➤ Preferences (Dreamweaver ➤

Preferences on a Mac), choosing the General category, and deselecting Enable Related
Files. You need to restart Dreamweaver for the change to take effect. The Related Files
feature cannot be turned on and off on the fly.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

27

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The icon has been put there for discoverability (if it doesn’t appear, don’t worry, because
I’m going to recommend that you disable it and use a keyboard and mouse shortcut
instead). The idea is to get you to discover the wonders of the Code Navigator.

Figure 1-24 shows what happened when I placed my cursor inside the pull quote to the
left of the image, waited for the icon to pop up, and then clicked it. The Code Navigator
displayed a list of style rules affecting the pull quote, showing the details of each one in a
pop-up window as I moused over the name of the rule. As if that isn’t impressive enough,
each style rule is a hyperlink. Just click, and Dreamweaver opens the style sheet as a
related file in Split view, with your cursor inside the selected rule ready for editing.

Figure 1-24. The Code Navigator is a powerful tool for inspecting and editing CSS.

If your web page is created from a Dreamweaver template or contains a library item, the
Code Navigator also provides a link to the master template or library file (templates are
covered in Chapter 13; library items are not covered in this book, as PHP includes—covered
in Chapter 12—are more efficient). Similarly, if the page contains an <iframe>, the Code
Navigator provides a link to the source document. When you click one of these links, the
file opens in a new tab, ready for editing.

Once you have discovered the Code Navigator, I recommend that you get rid of the
annoying icon popping up every few seconds. Just put a check mark in the Disable indica-
tor checkbox at the bottom right of the Code Navigator (see Figure 1-24). After disabling
the icon, you can display the Code Navigator by holding down the Alt key (Opt+Cmd on a
Mac) while clicking anywhere in the Document window.

Although you can resize the Code Navigator, you can’t move it to a different position. If
you find that it’s blocking your view of the page, keep in mind that where you click while

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

28

http://lib.ommolketab.ir
http//lib.ommolketab.ir

holding down Alt or Opt+Cmd key doesn’t change the current selection or position of the
cursor in Design view. It simply determines the location of the top-left corner of the Code
Navigator (if there’s insufficient space, it goes for the nearest position).

If you prefer to use a keyboard shortcut to invoke the Code Navigator, it’s Ctrl+Alt+N on
Windows and Opt+Cmd+N on a Mac. The Code Navigator is also accessible through the
View menu, the context menu in any view, and the Coding toolbar (see Figure 1-31, later
in the chapter). There are so many ways to access the Code Navigator, something tells me
Adobe doesn’t want you to miss it!

To dismiss the Code Navigator, just click anywhere else on the screen.

Exploring the Document toolbar

Running across the top of the Document window is the Document toolbar, which is mainly
concerned with controlling how your main work environment looks (see Figure 1-25). The
first three buttons on the left let you switch quickly between Code view, Design view, and
a combination of both called Split view, as shown earlier in Figure 1-23. The next button,
labeled Live View, toggles on and off another major innovation in Dreamweaver CS4, which
renders the page as it will look in a standards-compliant browser without the need to
leave Design view.

Figure 1-25. The Document toolbar mainly controls the look of the Document window

The following sections describe each of these features briefly.

Switching between Code, Design, and Split views
Some web designers, particularly those from a graphic design background, never want to
see the HTML, CSS, or JavaScript code that lies behind Design view. This is a recipe for dis-
aster with Dreamweaver. Although it’s a visual design environment, you can’t treat it like a
word processor or desktop publishing program. You need to have a good understanding
of where you’re inserting elements into a page—something that’s particularly important
when you mix dynamic elements into a page using a server-side technology like PHP or
JavaScript widgets. You don’t need to know every tag and property, but you do need to
have a good understanding of the technologies that lie behind the creation of a standards-
compliant web page. Dreamweaver helps you by making it easy to switch quickly between
the Code view and Design view, as well as displaying both in Split view.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

29

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The labels on the three buttons at the left end of the Document toolbar are fairly self-
explanatory:

Code: This displays the raw code. When the document is a static web page, it gives
access to the code as you might see it in a browser’s source view. If the page uses
a server-side technology, such as PHP, it displays the server-side code before it has
been processed. Pages that contain only code, such as JavaScript files and style
sheets, are always displayed in Code view.

Split: This displays Code view in one half of the screen and Design view in the
other half.

Design: This is Dreamweaver’s visual environment for creating and editing web
pages. It displays a very close approximation of what the page should look like in a
browser.

The default setting for Split view is to split the page horizontally with Code view on top, as
shown earlier in Figure 1-23. You can reverse the layout by displaying Design view at the
top and Code view at the bottom. Even better, you can now split the screen vertically, as
shown in Figure 1-26. This layout works best on a large monitor (the screenshot was taken
in the Classic workspace layout with Dreamweaver maximized on a 1680 × 1050 monitor
and all the panels hidden). The default is to show Design view on the right, but you can
reverse this.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

30

Figure 1-26. On a large monitor, Vertical Split view makes it easy to see the Code and Design views simultaneously.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vertical Split view has long been requested by regular Dreamweaver users. Another of
their requests has also been granted: Split Code view, which enables you to see different
sections of code from the same document. Split Code view can be displayed with the
screen split horizontally or vertically. Each section of screen scrolls independently. You can
cut and paste from one section to the other, but you cannot drag and drop.

Access to all these Split view options is either through the View menu or the Layout control
on the Application bar, as shown in Figure 1-27. Unless you have hidden the Application bar
on the Mac version, using the Layout control is easier because there are fewer options to
choose from. If the Split Vertically and Design View on Left options are grayed out, switch
to Split view by selecting Code and Design. (When the screen is split horizontally, Design
View on Left changes to Design View on Top.)

Figure 1-27. You can use the Layout control on the Application bar to switch to Vertical Split view.

If you have more than one document open, the Split view options are specific to each tab.
To set your preferred Split view layout as a default, close all documents except one. Set
your desired options, and then close the document. Dreamweaver remembers your pref-
erences and applies them to all future documents, but you can switch to a different layout
at any time.

Using Live view to test pages
Yet another major change in Dreamweaver CS4 is the introduction of Live view. This uses
the open source WebKit browser engine (http://webkit.org/) to display the current doc-
ument exactly as it will look in a standards-compliant browser. Dreamweaver uses essen-
tially the same version of WebKit as Safari 3, but with certain modifications to provide
extra functionality within Design view. Dynamic features, such as rollovers, JavaScript
menus, and server-side code, work as you would expect in a browser. Although this is no
substitute for testing the page in all your target browsers, used in combination with the
Related Files feature, it makes editing dynamic features a breeze. Figures 1-28 and 1-29
show Live view in action.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

31

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-28. Using Live view makes it possible to view the effect of changes to style rules for dynamic features.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

32

Live view makes a huge difference when working with Ajax or Spry (Adobe’s implementa-
tion of Ajax). The screenshot in Figure 1-28 shows how you can test the rollover effect
in a Spry menu bar (see Chapter 6) without needing to leave the Document window.
I turned on Live view, activated the menu bar in Design view, invoked the Code Navigator,
and then selected the :hover style rule for menu items. This opened the style sheet as a
related file in Split view, ready for me to edit. After changing the color property, I pressed
F5 to refresh Design view and moused over the menu bar to see the results of the
change. I didn’t like the result, so I clicked No when prompted to save the changes when
closing the document.

Ajax stands for Asynchronous JavaScript and XML (see http://en.wikipedia.org/
wiki/AJAX). Originally, Ajax referred to using JavaScript to communicate with the web
server and redraw parts of the page without the need to reload the whole page. Since
then, its meaning has broadened to encompass just about any technique that uses one
of the popular JavaScript libraries such as Prototype (http://www.prototypejs.org),
script.aculo.us (http://script.aculo.us/), and jQuery (http://jquery.com/). Spry is
Adobe’s JavaScript library that powers the Spry menu bar (Chapter 6), various effects
and widgets (Chapters 7, 8, and 9), and Spry data sets (Chapter 19).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The top screenshot in Figure 1-29 shows what an image gallery built with a Spry data set
looks like in Design view. In Dreamweaver CS3, you needed to load the page into an
external browser every time you wanted to see the finished page. Live view makes that a
thing of the past (the data must come from a static source; Spry data sets that use
dynamically generated data still need to be viewed in a browser). The bottom screenshot
in Figure 1-29 shows the same page with Live view turned on. Not only do you see the
page as it will look in a browser, but also the main image changes when you click one of
the thumbnails.

Live view also works with server-side pages, such as PHP, as long as you have defined a
testing server in the site definition (see Chapter 2). If you’re upgrading from a previous
version of Dreamweaver, this effectively replaces Live Data view (the next section explains
the difference). Even if you don’t have a testing server, Live view still displays the static
HTML parts of the page.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

33

1

Figure 1-29. Working with Ajax and Spry data sets is transformed by Live view.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The down arrow to the right of the Live View button opens a menu controlling the follow-
ing options:

Freeze JavaScript: The menu option is mainly a reminder of the keyboard shortcut
(F6) to freeze dynamic effects controlled by JavaScript. For example, rollovers
depend on the position of your mouse. If you press F6, the rollover remains frozen
even when you move the mouse away to work on a related file.

Disable JavaScript: This option lets you see what the page looks like in a browser
that doesn’t support JavaScript or where JavaScript has been turned off.

Disable Plugins: This disables plugins, such as Flash Player, so you can see the effect
in a browser that doesn’t have the plugin.

Use Testing Server For Document Source: This applies only to pages that use a
server-side technology, such as PHP. A testing server needs to be set up in the site
definition (see Chapter 2) for server-side code to be processed. When you click
the Live View button in a PHP page, Dreamweaver automatically asks if you want to
update the page on the testing server. You must click Yes for the dynamic code to
be processed. If you click No, it asks if you want to use the local source files
instead. Using the local source files results in only the static HTML elements being
displayed.

Use Local Files For Document Links: This does not mean that you can use hyperlinks
in Live view to navigate to other pages in your site. It refers to using local versions
of style sheets and external JavaScript files, rather than using those on the testing
server.

HTTP Request Settings: This opens a dialog box that lets you set POST and GET vari-
ables to be passed to the page when displayed in Live view.

With the exception of HTTP Request Settings, all Live view menu options are toggled on
and off by clicking them. A check mark alongside an option indicates that it has been
turned on.

What happened to Live Data and how does Live view differ?
If you’re upgrading from a previous version of Dreamweaver, you might be confused by
the difference between Live view and Live Data view.

In previous versions, Live Data made it easy to envisage the output of pages using server-
side code, such as PHP and Active Server Pages (ASP), by processing the code through a
testing server and displaying it in Design view. Live view, on the other hand, works for all
web pages, not just ones that use server-side technology; and it uses a real browser engine
to display the content of your page. You still need a testing server to display dynamic out-
put from server-side code, but Live view renders the page far more accurately than Live
Data. For most purposes, Live view replaces Live Data view.

Although Live view is much more accurate, a potential drawback is that you cannot edit
directly in Design view when Live view is turned on. You must either switch off Live view or
edit the source code in the Code view section of Split view. However, there are times when
it can be useful to edit the HTML elements of a page while viewing the output of server-side

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

34

http://lib.ommolketab.ir
http//lib.ommolketab.ir

code. For example, you might want to edit the static header cells of a dynamically gener-
ated table. For this reason, Live Data view has been retained in Dreamweaver CS4. However,
it’s no longer accessible from the Document toolbar. To activate Live Data, use the menu
option View ➤ Live Data or the keyboard shortcut Ctrl+Shift+R/Shift+Cmd+R (the menu
option is visible only when the current document is a dynamic page).

Inspecting dynamically generated code with Live Code
The resurgence of interest in JavaScript stemming from the popularity of Ajax and libraries
such as jQuery and Spry has undoubtedly brought benefits. JavaScript sees a web page in
terms of a hierarchical structure known as the Document Object Model (DOM), which can
be manipulated to produce dynamic effects, including rollovers and sliding panels, and to
rearrange the content of the page. The difficulty, from the developer’s perspective, is that
JavaScript manipulates the DOM behind the scenes inside the browser, so it can be very
difficult to troubleshoot if anything goes wrong. If only you could see the HTML code gen-
erated by the JavaScript . . . Well, now you can, thanks to the Live Code button on the
Document toolbar.

The Live Code feature lets you inspect the HTML generated not only by JavaScript, but also
by server-side languages such as PHP (as long as you have defined a testing server). It relies
on Live view, so the Live Code button remains grayed out on the Document toolbar until
Live view is invoked. When you click the Live Code button, Dreamweaver opens Split view
(if it’s not already open) and displays the generated code in Split view. As a visual reminder
that you’re viewing the generated code rather than the original, the background color of
Split view turns yellow. Figure 1-30 shows part of the script from the Spry image gallery in
Figure 1-29 as seen in Code view normally (top screenshot) and with Live Code turned on
(bottom screenshot). The JavaScript commands highlighted in gray in the top screenshot
are interpreted by the Live Code engine to generate two <option> tags with values drawn
from a Spry data set.

Only static HTML can be edited in Live Data view. Output generated by server-
side code cannot be altered except by editing the underlying code directly in
Code view.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

35

1

Figure 1-30. Live Code lets you see the HTML generated by JavaScript and server-side languages.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Live Code is a useful addition to a developer’s arsenal of debugging tools. However, don’t
confuse it with a real debugger like the FireBug plugin for the Firefox browser
(http://www.joehewitt.com/software/firebug/). It won’t tell you about syntax errors in
your code. But by showing you exactly what is being output by the JavaScript or server-side
code, Live Code provides confirmation (or otherwise) that your script is doing what you
intended. Live Code displays generated content, so you cannot edit Code view when it’s
turned on.

Other options on the Document toolbar
The following list briefly describes the other options on the Document toolbar:

Title: This is where you enter the document title that is displayed in the browser
title bar.

File management: This offers a quick way of uploading and downloading the current
file to and from your remote server. Setting the connection details is covered in
Chapter 2.

Preview in browser: This displays the current page in an external browser or Device
Central. Dreamweaver automatically detects the browsers installed on your com-
puter and lists them in a drop-down menu. Device Central is an emulator that lets
you see what your web page will look like in a mobile device. It’s a separate pro-
gram automatically installed with Dreamweaver, unless you deselect it during the
installation process.

Refresh: This refreshes Design view. It’s used only when you’re working in the
underlying code in Split view. Otherwise, Design view refreshes automatically. You
can also use F5.

If you find the bright-yellow background color of Live Code too much to bear, you need
to dive into the bowels of your computer to change it.

On Windows, you need to modify the Windows Registry. This is not difficult, but it could
affect the operation of your computer if you’re not careful. On Windows Vista, click the
Start button and type regedit in the search field. This should display regedit.exe at the
top of the result list. Click it to open the Registry Editor. On Windows XP, launch the
Registry Editor by clicking Start ➤ Run, typing regedit in the Run dialog box, and click-
ing OK. In the Registry Editor, select this entry in the left pane: HKEY_CURRENT_USER\
Software\Adobe\Dreamweaver CS4\Tag Colors. In the right pane, select Background
Color – Live Code, right-click, and choose Modify from the context menu. Type a new
color in hexadecimal notation (e.g., #FFC for a lighter yellow) into the Value data field
and click OK. Close the Registry Editor and restart Dreamweaver.

On a Mac, open Macintosh HD:Users:<username>:Library:Preferences:Adobe
Dreamweaver 10 Prefs in a text editor such as BBEdit or TextWrangler (both from
http://www.barebones.com). Locate this line: background color – live code=#FF7.
Change the #FF7 to a new color in hexadecimal notation. Then save the file and restart
Dreamweaver.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

36

http://lib.ommolketab.ir
http//lib.ommolketab.ir

View options: This turns rulers and guides on and off in Design view. It also controls
Code view features, such as line numbering and word wrap.

Visual aids: This controls the CSS visual aids described in Chapter 4.

Validate: This option checks your document, selected files, or the entire site against
World Wide Web Consortium (W3C) standards. However, it doesn’t work on PHP
pages, and Dreamweaver’s validator misses some errors, particularly when checking
against a Strict Document Type Definition (DTD). Double-check against the official
W3C Markup Validation Service at http://validator.w3.org.

Check page: This runs checks on the current page for browser compatibility and
accessibility. The results are shown in the Results panel group. It checks only static
code, so it might not always produce meaningful results on pages that generate
output dynamically with Spry or PHP. The browser-compatibility check provides
links to more detailed explanations and suggested solutions on the Adobe website.
You can also access the CSS Advisor website (http://www.adobe.com/go/bccdw)
directly from the Check page menu.

Getting the best out of Code view

Code view is not just for inspecting the underlying code. It’s a great editing environment
with many features, such as code hinting, syntax coloring, and automatic code comple-
tion, designed to make coding a pleasure rather than a chore. In fact, some regular
Dreamweaver users confess to spending 100 percent of their time here. Regardless of
whether you’re a coder or a designer, it’s useful to know your way around Code view.

Two new features that will be of particular interest to readers upgrading from a previous
version of Dreamweaver are code introspection for JavaScript and the ability to print code
in color.

Using the Coding toolbar
The Coding toolbar is displayed on the left side of Code view by default. It’s also available
in the Code Inspector (F10/Opt+F10), which allows you to view the underlying code of a
page in a separate window. The Coding toolbar can’t be undocked, but you can hide it in
Code view by deselecting it from the View ➤ Toolbars menu (or from the context menu of
any toolbar). In the Code Inspector, it’s controlled independently by the View Options
menu at the top of the inspector.

Don’t confuse the Code Inspector with the Code Navigator, which is new to
Dreamweaver CS4 and was described earlier in the chapter. The Code Navigator is ded-
icated to working with CSS, whereas the Code Inspector displays the underlying code of
the current document in a separate panel. It’s normally used only in a dual-monitor
workspace layout, effectively letting you see Code view and Design view full screen on
separate monitors. To launch the Code Inspector, press F10/Opt+F10 or select Window
➤ Code Inspector.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

37

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-31 shows the purpose of each button on the Coding toolbar; the same informa-
tion is displayed as a tooltip whenever you hover your mouse pointer over one of these
buttons. If there’s not enough room to display all the buttons, a double chevron appears
after the last button that can fit into the available space. Click it to display the rest of the
toolbar along the bottom of Code view.

Two buttons have been added since Dreamweaver CS3: Show Code Navigator and Syntax
Error Alerts in Info Bar. Also, the icon of Move or Convert CSS has been changed to match
the CSS Styles panel in iconic mode.

Let’s take a quick look at what each button does:

Open Documents: This displays a list of currently open documents together with the
full pathname of each file. This is very useful if you have several pages open, all
with the same name (such as index.php from different folders or sites). Click the
name of a file, and it comes to the front—no more guessing whether you have the
correct file open.

Show Code Navigator: This displays the Code Navigator, which was described ear-
lier in this chapter. The style rules displayed by the Code Navigator depend on the
current location of the cursor. The ability to identify the appropriate style rules
seems to be less accurate in Code view. When working in Split view, it is advisable
to select elements in the Design view half of the Document window before click-
ing this button.

Collapse Full Tag: This selects the code block in which your cursor is currently
located and collapses everything inside, including the opening and closing tags.
Unfortunately, it cannot be used to select a PHP code block. To collapse everything

Figure 1-31.
The Coding toolbar

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

38

http://lib.ommolketab.ir
http//lib.ommolketab.ir

outside a full tag, hold down the Alt/Opt key while clicking the Collapse Full Tag
button. This is useful for isolating a block of code and hiding the rest of the page.

Collapse Selection: This collapses the currently selected code. To collapse all code out-
side the selection, hold down Alt/Opt while clicking the Collapse Selection button.

Expand All: Click this to expand all collapsed sections.

Select Parent Tag: This selects the parent tag of the current selection or wherever
the insertion point is currently located. For example, if your cursor is inside a para-
graph, it selects the entire paragraph and the enclosing <p> tags. Clicking again
moves up the document hierarchy, always selecting the parent element of the cur-
rent selection.

Balance Braces: This selects all code between matching curly braces, brackets, or
parentheses. This button will help maintain your sanity when working with JavaScript
and PHP code.

Line Numbers: This toggles on and off the display of line numbers in Code view.

Highlight Invalid Code: Dreamweaver highlights incorrectly nested tags in yellow. This
can be distracting in Code view, particularly when working with PHP, where condi-
tional structures might result in code that Dreamweaver incorrectly interprets as
invalid. This button toggles the yellow highlighting on and off in Code view. The
default is off.

Syntax Error Alerts in Info Bar: This pops up a yellow bar at the top of Code view
whenever Dreamweaver discovers what it thinks is a syntax error in JavaScript. As
you can see in Figure 1-32, Dreamweaver treats any incomplete statement as an
error. It doesn’t remove the warning until you type the closing brace of the func-
tion block. If you write your own JavaScript, you’ll find the constant nagging
extremely annoying. Turn off the alerts by clicking this button, and just use it to
check your script when you have finished. Clicking the button toggles it on and off,
and Dreamweaver remembers your last selection.

Apply Comment Tags: This lets you apply different types of comment tags to the
current line or selection. PHP comments are covered in Chapter 10.

Remove Comment Tags: This removes comment tags from the current line or
selection.

Wrap Tag: This provides a quick way to wrap the current selection in an HTML tag.
Dreamweaver lets you select any tag, even if it’s inappropriate in the current con-
text. This is based on the principle that, if you’re working in Code view, you should
know what you’re doing. When mixed with PHP conditional logic, apparently invalid
code is often perfectly OK, so Dreamweaver makes no attempt to intervene.

Figure 1-32.
The JavaScript syntax
checker tends to be
overzealous in what it
regards as errors.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

39

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Recent Snippets: This displays a list of the most recently used items from the
Snippets panel, providing quick access to frequently used code snippets.

Move or Convert CSS: This provides a quick way to move style rules, as described in
Chapter 4.

Indent Code: This moves the opening tag of the current selection to the right. If
nothing is selected, Dreamweaver automatically selects the parent tag and moves
it. The Tab key performs the same function.

Outdent Code: This moves the opening tag to the left. You can also use Shift+Tab.

Format Source Code: This reveals a menu that lets you apply default formatting to
the entire page or the current selection. It also provides quick access to the Code
Format category of the Preferences panel and to the Tag Library Editor. The Tag
Library Editor gives you control over how every single HTML tag is formatted in your
underlying code. It’s mainly of interest to advanced users, but the interface is intu-
itive and easy to use.

In addition to using the Coding toolbar to collapse sections of code, you can use the key-
board shortcuts listed in Table 1-4. When you collapse a section of code, it affects only
what you see in Code view; the contents remain fully expanded in Design view.
Dreamweaver remembers which sections of code are collapsed when a page is saved, so
the same layout is visible in Code view the next time you open a document.

Table 1-4. Keyboard shortcuts for collapsing code

Action Windows shortcut Mac shortcut

Collapse full tag Ctrl+Shift+J Shift+Cmd+J

Collapse outside tag Ctrl+Alt+J Opt+Cmd+J

Collapse selection Ctri+Shift+C Shift+Cmd+C

Collapse outside selection Ctrl+Alt+C Opt+Cmd+C

Expand all Ctrl+Alt+E Opt+Cmd+E

To inspect a collapsed section, highlight it and use the plus button in the left margin (it’s a
triangle in the Mac version) to expand it, or hover your mouse pointer over it and view the
content as a tooltip.

To select sections of code in Code view, use the Select Parent Tag or Balance Braces but-
tons. Alternatively, use your mouse or keyboard in the same way as with any text editor.
Double-clicking selects the current word. Triple-clicking selects the parent tag. (The GoLive
selection shortcuts do not work in Dreamweaver.)

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

40

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting Code view options
Code view has a number of options that you can set by accessing View ➤
Code View Options or from the View Options menu on the Document toolbar
(see Figure 1-25 and the screenshot alongside). You toggle the options on
and off by clicking them. A check mark alongside an option indicates that
it’s active. These options work as follows:

Word Wrap: The way Dreamweaver wraps text in Code view confuses
many people. There are two options: soft and hard wrapping. Soft
wrapping is on by default and works like a word processor. When
code would normally extend beyond the right edge of Code view,

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

41

1

Dreamweaver automatically wraps it to the next line. If you resize the Code view
window, the code reorganizes itself to fit the viewport. No new line characters are
inserted into the code until you hit Enter/Return. If you prefer your code to be in a
single line and don’t mind scrolling horizontally, deselect Word Wrap. Hard wrap-
ping is off by default. When turned on, it automatically inserts a new line character
a preset distance from the left margin. Although this makes code look tidy, it
causes serious problems with JavaScript and is not recommended. It’s controlled by
the Automatic wrapping option in the Code Format category of the Preferences panel
(Edit ➤ Preferences or Dreamweaver ➤ Preferences). If you have turned this option
on, I strongly recommend that you turn it off and rely on soft wrapping instead.

Line Numbers: Dreamweaver displays line numbers in the left margin of Code view.
They are generated automatically and don’t become part of your code. The line
numbers are particularly useful for locating problems with PHP code. You can also
toggle them on and off from the Coding toolbar. Lines that are soft-wrapped have
only one line number, even if they span several lines on the screen.

Hidden Characters: This option reveals characters that aren’t normally visible in
your code. It should normally be turned off, but can be useful for debugging prob-
lems caused by unwanted newline characters in PHP or JavaScript.

Highlight Invalid Code: This menu option does the same as the button on the Coding
toolbar described in the preceding section.

Syntax Coloring: Dreamweaver highlights HTML, PHP, and other code in preset col-
ors according to the role it fulfils, making it easy to identify key sections of code
quickly. Forgetting to close a pair of quotes results in the subsequent code being
displayed in the wrong color, alerting you to the mistake. In normal circumstances,
this option should always be on. You can adjust the colors to your liking by going
to Edit ➤ Preferences (Dreamweaver ➤ Preferences on a Mac) and selecting Code
Coloring. Choose the appropriate Document type, and click Edit Coloring Scheme.

Auto Indent: With this option selected, Dreamweaver automatically indents your
code according to the settings in the Code Format category of the Preferences panel
and the Tag Library Editor.

Syntax Error Alerts in Info Bar: This option does the same as the button on the
Coding toolbar described in the preceding section.

Design View on Left: This option is available only in Vertical Split view; in the default
Split view, it changes to Design View on Top. In both cases, it controls on which side
Design view is displayed in Split view.

Color Icons: This toggles icons between grayscale and color.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using code hints and auto completion

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

42

By default, Dreamweaver displays context-sensitive code hints in Code view.
For example, if you type an opening angle bracket after the <body> tag of an
HTML page, a context menu pops up, displaying all valid HTML tags, as shown
in the screenshot alongside. You can scroll down to find the tag you want and
double-click to insert it, or just continue typing. As soon as you type di, the
context menu highlights <>div. Press Enter/Return, and Dreamweaver com-
pletes the tag name.

When you press the spacebar, another context menu springs up, this time
showing you all the valid attributes for the tag. Again, scroll down to select

the one you want or continue typing. If you type id and press
Enter/Return, Dreamweaver enters id="" and positions the inser-
tion point between the quotes, ready for you to insert the ID
value. Even better, if your page already has a style sheet attached
to it, Dreamweaver populates a list of defined IDs, as shown in
the screenshot alongside. Use your keyboard arrow keys and
Enter/Return to insert your choice. Alternatively, select it with
your mouse pointer and double-click.

These context menus continue to appear until you type the closing angle bracket of the
tag. If you lose the context menu, just press Ctrl+spacebar anywhere between the opening
and closing brackets of a tag.

Dreamweaver is smart enough to keep track of which tags are open. As soon as you type
</ in Code view, it automatically inserts the correct closing tag. For example, let’s say you
have the following code in a page:

<p>This text is bold and italicized

If you type </ three times, Dreamweaver automatically completes the open tags in the cor-
rect order like this:

<p>This text is bold and italicized</p>

For compatibility with older versions, you can get Dreamweaver to insert the matching
closing tag as soon as you type the closing angle bracket of an opening tag. So, if you enter
<p>, Dreamweaver inserts </p> and places the insertion point between the opening and
closing tags. This setting can be useful when working with PHP because Dreamweaver

The only exception to this automatic completion of the closing tag is with <script>.
This is to prevent Dreamweaver from closing the <script> tag incorrectly inside a block
of JavaScript.

The keyboard shortcut for code hints on the Mac version is the same as Windows
(Ctrl+spacebar) to avoid a conflict with Spotlight, which uses Cmd+spacebar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

sometimes gets confused as to which tag should be completed if dynamic code lies in
between. You can also tell Dreamweaver never to complete tags. To change the default
settings, select Edit ➤ Preferences (Dreamweaver ➤ Preferences on a Mac) and choose the
Code Hints category.

Most people find code hints invaluable, but if they annoy you or get in your way, you can
delay their appearance by up to five seconds or turn them off altogether. However,
Dreamweaver is much more responsive if you leave the delay at its default setting of zero.
The Menus option in the Code Hints category of the Preferences panel lets you turn off
code hints for individual categories. For example, you may decide that you want code hints
only for HTML tags and CSS properties. All categories are enabled by default.

Introducing improved support for JavaScript code hints
Previous versions of Dreamweaver have offered only limited support for JavaScript code
hints. Not only were the code hints incomplete, they were also available only in external
JavaScript files. JavaScript code hints are now also available in <script> blocks in web pages.
Moreover, the range of code hints now means serious JavaScript programmers can continue
working inside Dreamweaver CS4 without needing to switch to a different program.

Dreamweaver now has code hints for properties and methods of the following primitive
data types: Object, Array, Boolean, Date, Number, RegExp, and String. It also has support
for the main built-in DOM object. The code hints are triggered as soon as you type a
period after a variable or object.

The most welcome news of all for programmers is that Dreamweaver CS4 is also capable
of code introspection. This means that Dreamweaver scans your own functions, classes,
and JavaScript Object Notation (JSON) objects and provides code hints for them, too. Your
custom definitions can be either in the same document or in an external file (as long as it’s
linked to the document you’re working in). Figure 1-33 shows an example of a code hint
being displayed for a custom function defined in the <head> of a web page.

Figure 1-33. Dreamweaver CS4 now provides code hints for
your own JavaScript functions, classes, and JSON.

Printing code in color
This is something that has been requested for many years: Dreamweaver CS4 finally prints
code in color. To print the code of the current document, select File ➤ Print Code, right-
click in Code view and select Print Code from the context menu, or press Ctrl+P/Cmd+P.

Dreamweaver uses the same colors as in Code view. However, it does not print the back-
ground color, even if you have changed it from the default white; any parts of code that

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

43

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

are white or nearly white are converted to black. To print code in black and white, dese-
lect Syntax Coloring in View ➤ Code View Options or the View Options menu of the
Document toolbar.

Line numbers are included in the printout. To turn them off, deselect Line Numbers in View
➤ Code View Options or the View options menu of the Document toolbar.

A quick look at other changes in
Dreamweaver CS4

The main focus of this chapter has been an in-depth tour of the UI for both newcomers and
old hands. But so much has changed in Dreamweaver CS4, it has also been a guide to what’s
new. So I think it’s worth spending a little time looking at the remaining new features, most
of which are covered in greater depth in later chapters. It’s also important to note that
some features have been removed from Dreamweaver, so I’ll also cover what’s gone.

Screen sharing

It’s often a lot quicker and more effective to show a client or colleague how to do something
than try to explain the procedure in words. Thanks to a new feature called Creative Suites
Extended Services (CSXS), you can do that with Dreamweaver and most other CS4 applica-
tions, even if the other person is on the other side of the world. In fact, you can invite up to
three others to participate in the demonstration. All you need is an Adobe ID, which involves
registering a few basic details on the Adobe website (http://www.adobe.com). If you don’t
already have an ID, you can apply for one the first time you access CSXS.

At the time of Dreamweaver CS4’s initial release, only two services were available: the
Search for help feature (see Figure 1-3 and Table 1-1) and Share My Screen, which pro-
vides instant desktop sharing through an Internet connection. There is currently no charge
for the screen-sharing service, so why not give it a try?

Why is screen sharing free? No doubt because Adobe hopes the experience of using this
type of desktop conferencing will encourage businesses to subscribe to the paid-for ver-
sion, which can host up to 15, 500, or 1,500 participants, depending on the level of sub-
scription (http://www.adobe.com/products/acrobatconnect/).

Using the keyboard shortcut Ctrl+P/Cmd+P prints the underlying code even if you
invoke it while in Design view. It does not print the page layout. To print what the page
looks like, you need to launch the web page in a browser and print it from there.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

44

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting up a screen-sharing session
The following instructions guide you through the basic process of sharing your screen with
up to three other people. The screen-sharing service is hosted through Adobe ConnectNow,
so you need to be connected to the Internet to use it.

1. Inside Dreamweaver CS4, select File ➤ Share My Screen.

2. Dreamweaver communicates with the ConnectNow server, and when it establishes
a connection, you should see the login panel shown in Figure 1-34.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

45

1

Figure 1-34. To share your screen with up to three others, you need to log in to Adobe ConnectNow.

If you don’t have an Adobe ID, click the Create a free Adobe ID link, and follow the
on-screen instructions.

If you already have an Adobe ID, enter your email address and Adobe password in
the appropriate fields.

If you select the checkbox labeled Remember me on this computer, the next time
you access File ➤ Share My Screen, the login panel disappears as soon as
Dreamweaver has connected with the Adobe server.

If this is the first time you are logging in, or if you prefer not to be logged in auto-
matically, click the Sign In button (it’s grayed out in Figure 1-34 because the
required fields haven’t been filled in yet).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Once you have logged in, you will be presented with the exclusive URL that enables
others to view your screen, as shown in Figure 1-35. Adobe ConnectNow automat-
ically assigns the URL based on your name. If you want to change it, click the
Customize Your Meeting URL link. There’s also a link that creates email invitations to
send to the people you want to join the session.

4. When you click the Close button, ConnectNow launches your browser. If this is the
first time you have participated in a session using ConnectNow or the paid-for ver-
sion, Connect, you might be prompted to install a special plugin. This is necessary
for screen sharing to work. It should normally be a very quick process.

5. Once the browser has connected successfully to ConnectNow, it launches the
screen shown in Figure 1-36. This is your online meeting room, which is actually a
desktop application that runs in the Adobe Integrated Runtime (AIR).

Figure 1-36. The ConnectNow meeting room lets you control what others see.

Figure 1-35.
Adobe ConnectNow gives you a

personalized URL for your screen-
sharing sessions.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

46

http://lib.ommolketab.ir
http//lib.ommolketab.ir

At this stage, no one can see your screen. The ConnectNow window has a chat
panel that works just like instant messaging. In the center is a button labeled Share
My Computer Screen. Before clicking this, you should be aware that once you start
sharing, other participants will be able to see everything on your desktop, not just
Dreamweaver. So make sure there’s nothing there that you wouldn’t want your
mother or the taxman to see. You can minimize the ConnectNow window to tidy
things up, if necessary.

6. When your guests access your personal URL, they will be asked to sign in either as
a guest, or using their Adobe ID. Once they sign in, they will be presented with a
screen telling them that the meeting is private, and that a message has been sent to
the host.

As the host, a pop-up window will appear at the bottom of your screen, informing
you that Mickey Mouse, Bill Gates, or whoever you invited would like permission to
join. When you accept, the other person gets to see the same ConnectNow window
as in Figure 1-36. Again, it might be necessary to install a plugin if it’s the first time
the guest has accessed a Connect or ConnectNow session.

7. When you’re ready to share, click Share My Computer Screen. You will be asked to
confirm that you’re ready to start sharing. Click Share (or Cancel, if you’re not
ready). You’ll then be presented with the short message shown in Figure 1-37,
telling you the difference between what you see as host and what others see.

Figure 1-37. The host of the meeting sees a different screen layout from other participants.

8. Click OK to start sharing. As soon as you do so, the ConnectNow window shrinks to
show just a list of attendees and the chat window, exposing the rest of your desk-
top, as shown in Figure 1-38. Everyone else sees your desktop framed in the Screen
Sharing section of the maximized ConnectNow window. The only thing the others
can’t see is your small version of the ConnectNow window. Unless you want to
keep an eye on the chat window, it’s probably a good idea to minimize the
ConnectNow window while sharing your screen.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

47

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-38. Once you start sharing, your whole desktop is exposed.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

48

9. To stop sharing, click the x button at the top right of the host’s ConnectNow
window, as shown in Figure 1-39.

Figure 1-39.
While sharing, the host’s

ConnectNow window
shows attendees, a chat

window, and tools to
control the session.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. To end a meeting, select Meeting ➤ End Meeting in the maximized ConnectNow
window. You cannot end a meeting while still sharing your screen. You will be pre-
sented with a suggested farewell message, which you can edit or simply send as is
to all participants. Once the meeting is over, close the ConnectNow window.

This has been only a brief overview of screen sharing. The best way to find out more is to
try it out for yourself, and launch the Help menu inside the ConnectNow window. As you’ll
discover, the service supports the use of webcams, speech through Voice over Internet
Protocol (VoIP), and telephone conferencing. Although the ConnectNow service is free,
telephone conferencing is charged at long-distance rates.

Managing CSXS
Other hosted services will become available after the release of Dreamweaver CS4. To pre-
pare for them, there is a new Connections panel, shown in Figure 1-40. To open it, select
Window ➤ Extensions ➤ Connections.

Figure 1-40. The Connections panel is intended to provide
access to future hosted services.

The Extensions item on the Window menu is confusingly named. It has nothing to do
with extensions to the program’s functionality that have been a major feature of
Dreamweaver ever since the first version. To install Dreamweaver extensions, launch
Extension Manager 2 directly from the Start menu on Windows or Finder on a Mac.
Alternatively, use Manage Extensions on the Commands or Help menus.

The screen-sharing service lets others take over control of your screen—as long as you
give them permission first. This is both very useful and potentially dangerous. Make sure
you know who the other person is before handing over control of your computer.

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

49

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you log into the Connections panel with your Adobe ID, Dreamweaver will automatically
check the server for updates to CSXS and install them. If you want to disable this default
behavior, click the panel options menu button at the top right of the panel, as shown in
Figure 1-40. The Update preferences menu item lets you choose whether Dreamweaver
automatically checks for updates and installs them. The Offline options menu item lets you
choose to be kept offline. Selecting this option disables the Share My Screen feature
described in the preceding section.

Other new features

In addition to the CSXS features already described, the following features have been
added or significantly changed:

JavaScript extractor: This identifies most or all of the JavaScript in a web page and
moves it to an external file. Its use is described in Chapter 8.

Spry data sets: The interface for creating Spry data sets has been completely
redesigned. It now generates data sets from HTML sources as well as XML. Its use is
covered in Chapter 19.

New Spry widgets: Four new Spry widgets have been added. Three of them han-
dle the validation of form elements (radio button groups, password fields, and
password confirmation fields). These are covered in Chapter 9. The other widget
creates tooltips and disjointed rollovers, and is covered in Chapter 7.

JavaScript widgets galore: You’re no longer restricted to using Spry widgets in
Dreamweaver CS4. Adobe has sought the cooperation of leading developers of
JavaScript widgets, including members of the Yahoo! User Interface (YUI) and
jQuery teams, to create versions of their widgets that can be directly integrated
into Dreamweaver. See Chapter 8 for details.

Subversion integration: Subversion (http://subversion.tigris.org/) is one of
the most popular open source version control systems. Dreamweaver now provides
direct access to a Subversion repository through the Files panel. This feature is
described in the next chapter.

Cloaking of individual files: Cloaking excludes certain files from being uploaded to
your remote server. In previous versions of Dreamweaver, cloaking was restricted
to all files with specified file name extensions and whole directories (folders). You
can now cloak individual files as well. Cloaking is covered in the next chapter.

A related improvement excludes cloaked files from reports on orphaned files (files
that have no incoming links). To run a check for orphaned files, select Site ➤ Check
Links Sitewide. When the Link Checker tab opens in the Results panel group, choose
Orphaned Files from the Show drop-down menu at the top left of the panel.

Photoshop Smart Objects: Photoshop integration has been improved by the addi-
tion of support for Smart Objects (images that are directly linked to the original
Photoshop file). This is covered in Chapter 3. Dreamweaver does not support Smart
Objects imported from other Creative Suite programs, such as Illustrator.

Inserting Flash and Flex movies: The way that Flash and Flex movies are embed-
ded in a web page has changed. Pages created in Dreamweaver CS4 use the new
method, which includes an express installer that updates the version of Flash Player

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

50

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if necessary. Pages created in previous versions of Dreamweaver are not updated,
but can be edited without problems. See Chapter 3 for details.

InContext Editing: This is an Adobe online hosted service that permits authorized
users to edit web pages through a web browser. What can and cannot be changed
is determined by the developer creating editable regions and setting rules through
Dreamweaver CS4. InContext Editing is covered in Chapter 13.

Online help: Most of Dreamweaver’s help files are now hosted online. When you
access Dreamweaver Help from the Help menu (or press F1), Dreamweaver detects
whether you are online and launches the help system in your default browser.
Adobe says it has adopted this system so that the content can be updated more
easily and corrected if necessary. A limited set of help files is included in the pro-
gram for use when you are offline.

The new Search for help field in the Application bar also brings up online help
from relevant community sites. The search is powered by Google, but Adobe mon-
itors the content to make sure only reliable articles are referenced.

Considerable disappointment was voiced by many people at the lack of new features for
PHP and other server-side technologies when the public beta of Dreamweaver CS4 was
released in May 2008. This disappointment is understandable, as the server behaviors have
remained essentially unchanged since Dreamweaver MX came out in 2002. Speaking per-
sonally, my disappointment is more than compensated for by the other changes in
Dreamweaver CS4. As I said at the beginning of this chapter, I consider this to be the most
significant upgrade to the program since Dreamweaver MX. Making significant changes to
the server-side features would have involved either dropping other features or risking
more buggy implementation.

However, it’s not true to say that nothing has changed with regard to support for PHP. The
PHP code hints have been cleaned up by adding many new PHP 5 functions and removing
incorrect and deprecated items. Changes have also been made to some of the server
behavior code to ensure it doesn’t break in PHP 6. The changes might seem small, but
they’re important; they have also been done in a way that remains compatible with pages
developed in earlier versions of Dreamweaver.

What is no longer there

Adobe took the unusual step of announcing more than a year before the release of
Dreamweaver CS4 that certain features would be removed. If you missed that announce-
ment and can’t find some of your favorite features, here’s a list of what has been removed:

Layout mode

Timelines

Flash elements, Flash buttons, and Flash text

Site map

ASP.NET and JavaServer Pages (JSP) server behaviors and recordsets

JavaBeans

Web Services panel

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

51

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The removal of some of these items is likely to upset some people, but the first three have
been removed in the interests of creating more standards-compliant web pages. Layout
mode and timelines generated horrendously complex code that has no place in a modern
website. Also, the Flash elements created by Dreamweaver were rather crudely built and
made websites inaccessible. Their removal doesn’t mean you can’t use Flash elements in
Dreamweaver any longer—just that you need to build them in Flash; Dreamweaver won’t
create them for you.

The decision to remove support for ASP.NET and JSP is more controversial, but it appears
to be due to Adobe’s recognition that it was fighting a losing battle trying to support five
server-side technologies. It will be interesting to see what approach it takes to server-side
support in future versions.

Changing default settings
In addition to the features already described, Dreamweaver has many other preferences
that can be configured to suit your workflow. The default settings are fine for most peo-
ple, but if you want to change the way Dreamweaver looks or works—and it hasn’t already
been covered in this chapter—the first place to look is in the Preferences panel (see
Figure 1-41), which you access from the Edit menu in the Windows version and the
Dreamweaver menu on a Mac. The keyboard shortcut is Ctrl+U/Cmd+U.

Figure 1-41. The Preferences panel controls most other aspects of how Dreamweaver looks and works.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

52

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see from Figure 1-41, the Preferences panel contains 19 categories, the names
of which are mostly self-explanatory. AP Elements controls the look of absolutely posi-
tioned <div> elements, which older versions of Dreamweaver refer to as layers. Although
CSS absolute positioning can be useful, many inexperienced users misunderstood the
interaction between Dreamweaver layers and other page elements, so their use is now
generally discouraged.

I’ll describe the most important categories at the appropriate point in later chapters. Here,
I’ll just touch on other important categories that don’t fit in naturally elsewhere.

Code Coloring: This lets you edit the syntax coloring scheme for different types of
documents and code.

Code Format: One of the most important settings in this category lets you choose
whether to indent code for ease of reading and whether to use spaces or tabs for
indentation. If you find your web pages display with unusual spacing, check that
Line break type is set to LF (Unix). This is the most reliable setting even if you’re
working in Windows or on a Mac.

Fonts: This controls the default size and style of fonts in Design and Code views. By
default, Dreamweaver uses Unicode (utf-8). If you use a different encoding for
your pages, you need to select the appropriate one from the Font settings list.
Dreamweaver calls Latin-1 (iso-8859-1) encoding Western European on Windows
and Western on a Mac.

Migrating snippets and other personal
settings

Moving your collection of snippets, workspace layouts, or favorites simply involves copy-
ing and pasting a file or folder from your Dreamweaver configuration files.

Locating the Dreamweaver configuration files

The Dreamweaver configuration files are hidden on Windows, so you need to enable the
option to view hidden files and folders in order to locate them, as follows.

In Windows Vista, select Start ➤ Computer ➤ Organize ➤ Folder and Search Options
➤ View. In Advanced settings, choose Show hidden files and folders.

In Windows XP, select Start ➤ My Computer ➤ Tools ➤ Folder Options ➤ View. In
Advanced settings, choose Show hidden files and folders.

Once you turn on this option, hidden folders are displayed as dimmed icons to remind you
to treat them with care.

Dreamweaver CS4 creates at least three configuration folders on your computer. Two of
them control how the program works for everyone on the computer. In Windows, they’re
located in Program Files; on a Mac, they’re in Applications. You should not attempt to

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

53

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

touch them unless you know what you’re doing. If you make a mistake, Dreamweaver
could stop working completely.

Each time it starts up, Dreamweaver looks for another configuration folder that stores the
personal settings for the current user. Editing this folder is relatively harmless. Because a
separate folder is created for each user account on the computer, changing your own set-
tings doesn’t affect anyone else and vice versa. Even if you make a complete mess of
things, all that’s necessary is to delete the folder and all its contents. If Dreamweaver can’t
find your personal settings, it creates a new configuration folder loaded with all the
default settings.

The location of the personal configuration folder depends on your operating system and
version of Dreamweaver. For Dreamweaver CS4, it’s as follows:

Windows Vista: C:\Users\<username>\AppData\Roaming\Adobe\Dreamweaver
CS4\<language>\Configuration

Windows XP: C:\Documents and Settings\<username>\Application Data\
Adobe\Dreamweaver CS4\<language>\Configuration

Mac OS X: Macintosh HD:<username>:Library:Application Support:Adobe:
Dreamweaver CS4:<language>:Configuration

In all cases, <username> is the name of your user account on the computer and
<language> indicates the language of your operating system. The language is usually rep-
resented by two pairs of characters separated by an underscore, as in en_US (English),
es_ES (Spanish), or fr_FR (French).

Earlier versions of Dreamweaver located the personal configuration folder in a slightly dif-
ferent location. This is where it can be found in Dreamweaver CS3:

Windows Vista: C:\Users\<username>\AppData\Roaming\Adobe\Dreamweaver
9\Configuration

Windows XP: C:\Documents and Settings\<username>\Application Data\
Adobe\Dreamweaver 9\Configuration

Mac OS X: Macintosh HD:Users:<username>:Library:Application Support:
Adobe:Dreamweaver 9:Configuration

Migrating snippets

Dreamweaver does a very good job of migrating site definitions from an existing version of
Dreamweaver to a new one located on the same computer (migrating them to another
computer is covered in the next chapter), but it leaves behind any snippets that you have
installed. (As the name suggests, snippets are short sections of useful or frequently used
code ready to drop directly into a page.)

To migrate your snippets from one version of Dreamweaver to another, close
Dreamweaver, and open your personal configuration folder in the version that contains

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

54

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the snippets. Inside, you should find a folder named Snippets. Just copy it and all its
contents, and paste it into your personal configuration folder in the new version of
Dreamweaver. When you start the program, your snippets should be ready for use.

Transferring workspace layouts

As mentioned earlier, you can transfer your workspace layouts from one computer to
another. Dreamweaver CS3 workspace layouts are different from CS4, so you shouldn’t try
to mix them.

Your workspace layouts are stored in your personal configuration folder in a folder called,
logically enough, Workspace. The files have the same name that you used to save the lay-
out. Simply copy them to the Workspace folder in the other version, and restart
Dreamweaver. Since the files are written in XML, you can share them among Windows and
Mac users.

Moving favorites

As with workspace layout migration, changes between Dreamweaver CS3 and CS4 mean
you shouldn’t attempt to migrate your Insert bar favorites from one version to another.
However, if you want to move your Favorites category from Dreamweaver CS4 on one
computer to another, copy insertbar.xml from the Objects folder of your personal con-
figuration folder to the same location on the other computer. If the target computer
doesn’t have an Objects folder inside your personal configuration folder, create one.

Troubleshooting mysterious Dreamweaver
errors

The previous section described how to find your personal configuration folder, for the
purpose of migrating personal settings. Another file in this folder happens to be the
source of some unexplained Dreamweaver errors.

To speed up its operation, Dreamweaver creates a file called WinFileCache-********.dat
on Windows and MacFileCache-********.dat on Mac OS X (the ******** represents a
series of numbers and letters). Occasionally, this file gets corrupted, causing Dreamweaver
to act in an unpredictable way. The most common problem is for Dreamweaver to display
alerts about JavaScript errors or about “translators not found.” If this happens, close
Dreamweaver, delete WinFileCache-********.dat or its Mac equivalent from your per-
sonal configuration folder, and restart the program.

Deleting the cache file is normally sufficient. However, sometimes the cause lies with a
third-party extension that you have installed in Dreamweaver. If you have installed any
extensions, the only solution is to disable all of them and reinstall them one by one until
you can identify the culprit (extensions are covered in Chapter 8).

DREAMWEAVER’S NEW LOOK—MORE THAN SKIN DEEP

55

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter review
This has been a marathon tour of the Dreamweaver CS4 UI and new features. Familiarity
with the UI and features of any program is essential to using it successfully. Most of us are
creatures of habit, so readers who have upgraded from a previous version of Dreamweaver
or migrated from a different program might find the new environment difficult to get used
to. Dreamweaver has a very rich feature set, but not everyone needs the same ones, and
very few people are likely to need all of them. Experiment with the different aspects of the
UI and find those that suit you best.

In the next chapter, I’ll cover everything you need to know about setting up a website in
Dreamweaver. If you’re an experienced Dreamweaver user, most of it will be familiar to
you, although there are some new features. If you’re new to Dreamweaver, it’s essential
reading. Without an understanding of the role of site definition, you’ll run into a lot of
avoidable problems.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

56

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 SETTING UP A SITE IN
DREAMWEAVER

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver is not just a tool for creating web pages; it’s for creating websites. You cre-
ate an exact copy of the website on your local computer, tell Dreamweaver how to con-
nect with the remote web server, and upload it. When pages need updating, you download
the latest version from the remote server (unless you work on your own and know the
remote version hasn’t changed), make any amendments, and upload it again. Even if you
don’t yet have a remote server, Dreamweaver expects you to organize your files exactly as
they would be in a real site. This is necessary because Dreamweaver needs to keep track of
the images and other assets, such as style sheets and JavaScript files that make up each
page. If you decide to move files to a different location, Dreamweaver automatically
updates internal links, but it can’t do so unless it knows certain basic details about the site.
So, defining your site within Dreamweaver is an essential first step before you even think
about creating a web page.

In this chapter, you’ll learn about the following:

Choosing the best location for your files

Understanding the difference between document- and root-relative links

Creating virtual hosts on Windows and Mac OS X

Setting up and testing a Dreamweaver site definition

Integrating a site with a Subversion repository

Backing up and migrating your site definitions

This is quite a long chapter, but many parts of it are relevant only to some readers. For
instance, you can skip the entire section on virtual hosts if you decide not to use them.
Also, in many cases, there are separate sets of instructions for Windows and Mac. However,
don’t be in a rush to get through this chapter. Site definition in Dreamweaver is not diffi-
cult, but you need to get it right, particularly when working with a server-side technology
like PHP—the focus of the second half of this book.

Dreamweaver supports three popular server-side technologies: ASP (sometimes referred
to as classic ASP), ColdFusion, and PHP. In this book, I cover only PHP, but setting up a site
for any server-side technology involves the same process. Server-side pages need to be
processed (or parsed) before you can see the dynamically generated output. This affects
how you set up your site in Dreamweaver. So, let’s begin with the considerations for site
organization.

Deciding how to organize your site
Site definition in Dreamweaver involves the following three basic steps:

1. Telling Dreamweaver where to find the version of the site on your local computer.

2. Registering details of the remote server. This is the live version of the site on the
Internet.

3. Registering details of the server that will process server-side code (in the case of
this book, PHP) while testing pages locally.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

60

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you don’t yet have a remote server, you can skip step 2 and register the details later.
Likewise, if you don’t plan to use any server-side code in the site, you can omit step 3. Even
if you don’t have any immediate plans to use PHP, I suggest that you read through the next
few pages so that you don’t make any decisions you might later regret. Planning ahead
saves time later.

Deciding where to test your pages

Building PHP pages involves a lot of testing—much more than you might normally do with
a static website. It’s not only a question of what your pages look like; you also need to
check that the dynamic code is working as expected. Dreamweaver doesn’t care where
your testing server is, as long as it knows where to find it, there’s an available connection,
and, of course, the server is capable of handling PHP pages. This means that you can test
on your local machine, another computer on a local network, or a remote host.

These are the advantages of creating a local test environment:

Security: Dreamweaver installs files on the testing server to communicate with
your database. If you use your remote server for testing, a malicious attacker might
be able to use these files to gain access to your data. As long as your computer is
protected by a firewall, this danger is eliminated by testing locally.

Stability: If an error in your code causes the server to slow down or even crash,
the only person affected is you. Keep your mistakes to yourself; don’t inflict them
on others. You’re likely to make a lot of mistakes until you gain a level of compe-
tence in PHP (don’t let that put you off—it’s an important part of the learning
process).

Ease of organization: You can build the website offline, test it, and upload it
directly to the live site when it’s ready. If you use your remote server for testing,
the test site is visible to everyone on the Internet unless you build it in a separate
testing folder or password protect it. The first option involves changing all internal
links as soon as the site goes live. Password protection also affects you, so neither
option is optimal.

Speed: There’s no waiting. Even with a broadband connection, the response is usu-
ally slower from a remote server.

Convenience: You can continue work even if there is a disruption to your Internet
service.

There are also disadvantages to creating a local test environment:

Setup time: Each piece of software requires a multimegabyte download, which
then must be set up and configured.

Complexity: Some people find configuring the software daunting. However, if set-
ting up a testing environment is beyond your capabilities, you should perhaps
reconsider whether you’re ready to work with a server-side technology. PHP is not
difficult, but it does require clear thought and concentration.

SETTING UP A SITE IN DREAMWEAVER

61

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you don’t already have a PHP testing environment on your local computer, I suggest that
you get XAMPP for Windows (http://www.apachefriends.org/en/xampp-windows.html)
or MAMP for Mac OS X (http://www.mamp.info/en/mamp.html). Both give you a fully
working PHP/MySQL testing environment on your local computer. They’re easy to install,
and should have you up and running in a few minutes. Both XAMPP and MAMP have
online forums, where you should be able to get help if you run into problems.

If you already have Microsoft Internet Information Services (IIS) installed for develop-
ment with ASP or ASP.NET, you can also install PHP to run with IIS. The official IIS website
gives instructions for installing PHP on Vista: http://learn.iis.net/page.aspx/246/
using-fastcgi-to-host-php-applications-on-iis7/. Windows XP uses a different ver-
sion of IIS, but a web search for “install PHP on IIS 6” should provide some helpful guides.
However, don’t use IIS unless you also need ASP or ASP.NET, as some parts of PHP are not
supported on IIS.

Although Chapters 3 through 9 of this book don’t require PHP, I recommend that you set
up a PHP testing environment at this stage rather than wait till later.

Before setting up a site in Dreamweaver, you need to make a number of decisions.
Figure 2-1 summarizes the process, which is described in detail in the following sections.

Choosing the appropriate file name extension

Web servers use the three- or four-letter extension at the end of a web page’s file name to
decide how to display it. Generally speaking, files that end in .html or .htm can contain
only static HTML, JavaScript, and CSS. For PHP server-side code to be processed, you need
to give the file names a .php extension.

You may be wondering what the difference is between .html and .htm. There isn’t any.
The use of .htm dates back to the days when Windows file names were limited to an 8.3
format (a maximum of eight characters followed by a period and a three-character file
name extension). All operating systems now support .html, which is the default file
name extension that Dreamweaver uses for static web pages.

Chapter 9 covers the creation of an online form. The form is built entirely with HTML,
but processing an online form requires server-side scripting. Chapter 11 shows you how
to do this with PHP. However, you can use any other mail-processing script with the
form from Chapter 9.

In previous books, I have given detailed instructions about how to set up a local testing
environment with a web server, PHP, the MySQL database, and a graphical interface to
MySQL called phpMyAdmin. However, new versions of PHP, MySQL, and phpMyAdmin
are expected to be released around the time this book is published, so anything I write
risks being out of date by the time you read it.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

62

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2-1. Deciding where to locate your Dreamweaver site on a local testing server

As with all rules, there are exceptions. It is possible to configure a server to process PHP
even if it’s in an .html or .htm file. However, it’s not recommended, and it makes working
with PHP in Dreamweaver more difficult. You might also come across alternative file name
extensions for PHP, such as .php4 or .php5. Although Dreamweaver recognizes both of
these alternatives, you need to edit the file name extension manually when creating files,
so use .php exclusively unless you have a pressing reason to do otherwise.

It’s perfectly acceptable to mix .html, .htm, and .php files in the same website. However,
when planning a new website, it’s a good idea to use the same file name extension for all
pages. That means that if you plan to use PHP anywhere in your site, all pages should
have a .php file name extension, even if some pages don’t contain any PHP code.
Technically speaking, the web server sends every page that has a .php file name extension
to the PHP engine for processing, so it’s a wasted journey if the page contains only static
HTML. In practice, the difference in the time it takes to serve the page is infinitesimal. The

SETTING UP A SITE IN DREAMWEAVER

63

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

advantage of using a .php file name extension is that you can add server-side code to the
page at any time in the future without changing the URL.

In summary, if the server where your website will be hosted is capable of processing PHP,
use a .php file name extension for every page.

While on the subject of file names, let’s lay down some basic rules for naming files and
folders on a website:

Never use spaces in the names of files or folders. Replace spaces in existing names
with an underscore (_) or hyphen (-). Spaces in file names and folders are likely to
cause broken links on many servers.

Most web servers are case-sensitive. Avoid problems by using all lowercase for
names.

Many web browsers can handle Internationalized Resource Identifiers (IRIs), which
accept file and folder names that use accented characters and different writing sys-
tems, such as Chinese and Japanese (see http://www.w3.org/International/
articles/idn-and-iri/). However, to be safe, you should stick to unaccented let-
ters, numbers, underscores, and hyphens. Do not use symbols, such as ?, #, or /.

Choosing document- or root-relative links

By default, Dreamweaver creates internal links that are relative to the current document,
but it also offers the option to use links relative to the site root. With a static website, it
doesn’t matter which you choose, but with a PHP site, the decision isn’t quite so simple. If
you’re not sure what the difference is, the following explanation should help.

Understanding the difference
Let’s say you have a simple website structure like that shown in Figure 2-2.

Figure 2-2.
A simple website

structure displayed in the
Dreamweaver Files panel

In spite of my recommendation to use a .php file name extension for all pages, all the
examples in Chapters 3 through 8 use .html. I have done this so that readers who don’t
have access to a PHP server can use the files that are available for download.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

64

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If index.php contains a link to journey1.php, Dreamweaver creates code that looks
like this:

Read more

And a link back to index.php inside journey1.php looks like this:

Back to main page

Similarly, if index.php contains the image called fountains.jpg, the tag looks like
this (I have omitted all attributes other than src, because that’s the only one we’re inter-
ested in at the moment):

A reference to the same image in journey1.php, however, looks like this:

The ../ before index.php and the images folder name tells the web server that it needs
to look one level higher in the website hierarchy to find the correct folder. If you change
the structure of the website using the Files panel, Dreamweaver automatically updates all
links, adding or removing the requisite number of ../ to ensure that everything works as
intended.

However, many developers prefer to make the links relative to the site root, rather than
the document. With root-relative links, the two links look like this:

Read more
Back to main page

The tag in both index.php and journey1.php looks like this:

The difference is that the pathname always begins with a leading forward slash, which indi-
cates the top level of the site—in other words, the site root.

Which should you choose?
You might wonder why the document-relative vs. root-relative issue matters. After all,
both achieve the same thing. When building static sites with .html pages, it doesn’t make
any difference which you choose.

However, root-relative links can be extremely useful with PHP. The advantage is that the
link to the image is identical in index.php and journey1.php, even though the pages are
at different levels of the site hierarchy. This means that you can put some of your code,
such as a navigation menu, in an external file and the links will always work. As you’ll see
in Chapter 12, your site navigation menu can be included in multiple pages using a simple
PHP command, and changes to the external file are automatically propagated to all of
them—a great time-saver.

SETTING UP A SITE IN DREAMWEAVER

65

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Because root-relative links are so useful, you may think that they’re the best choice for a
PHP site. Unfortunately, life is not quite so simple. Although links relative to the site root
are essential inside external files, PHP expects you to include the external file using a doc-
ument-relative link. Moreover, if your hosting company runs PHP on a Windows server
using IIS, choosing root-relative links in Dreamweaver generates PHP code that results in
errors galore and a site that doesn’t work.

If you’re new to PHP, all this might sound confusing. Don’t worry about the details for the
moment (if you’re curious, the explanation is in Chapter 12). For development with PHP,
I recommend the following:

In the vast majority of cases, choose the Dreamweaver default: links relative to the
document. When creating external files that will be included in other pages, you
can easily override this and create individual links relative to the site root.

Choose links relative to the site root only if both your testing environment and
remote server run on the Apache web server. If you choose root-relative links, you
need to set up a virtual host for each site in your local testing environment.

Choosing where to store your files

With a static website consisting of .html pages, it doesn’t matter where you locate files on
your local computer. You simply tell Dreamweaver which folder is the site root, and that’s
it. With a PHP site, though, Dreamweaver needs to send the files to the testing server
before it can display the output. This leaves you with the following options:

Store the files with your ordinary documents and set up the testing server in a dif-
ferent location. Unless the testing server is on a different computer, this is a waste
of disk space, as you end up with two copies of every file.

Store the files in a subfolder of the server root of your testing server. This is the
best way to set up a site that uses document-relative links.

Create a virtual host on your testing server and store the files there. You must do
this if you use site-root-relative links. This setup is also suitable for document-
relative links.

If you don’t want to set up a local testing environment, it doesn’t matter where you
store your files locally. However, I cannot emphasize strongly enough that using a
remote server as the testing server is not recommended.

Finding the testing server root
The location of your testing server root depends on your operating system and how you
installed the testing environment.

Apache on Windows

The Apache server root is a folder called htdocs. If you installed Apache 2.2 as a separate
program, the server root is at the following location:

C:\Program Files\Apache Software Foundation\Apache2.2\htdocs

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

66

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I don’t think it’s a good idea to store your web files in among all your program files, so I
suggest that you move the server root to a different location, as follows:

1. Create a new folder called htdocs. The actual location is not important, but I find
it best to put it at the top level of my C drive.

2. You need to edit the Apache configuration file, httpd.conf, which is located at
C:\Program Files\Apache Software Foundation\Apache2.2\conf\httpd.conf.

In Windows XP, you can open the file directly in Notepad or any other text edi-
tor by double-clicking its icon in Windows Explorer.

In Vista, you need to select Run as administrator even if you are logged in to an
administrator account. For Notepad, go to Start ➤ All Programs ➤ Accessories,
right-click Notepad, and select Run as administrator from the context menu.
Enter your administrator password when prompted. Inside Notepad, select File
➤ Open and navigate to httpd.conf. The Open dialog box in Notepad shows
only .txt files, so you need to select All Files (*.*) from the drop-down menu at
the bottom right of the dialog box.

3. Locate the following section in httpd.conf:

4. Change the pathname shown on line 149 of the preceding screenshot to the same
as your new folder. (Use the line numbers simply as a guide; they are not part of
the file and may be different in a later version of Apache). In my case, I change it
to this:

DocumentRoot "C:/htdocs"

5. Scroll down about 30 lines until you find this section:

The instruction shown on line 175 is pretty straightforward: change the pathname
to match the previous change. In my case, I end up with this:

<Directory "C:/htdocs">

6. Save httpd.conf and restart Apache for the changes to take effect.

Make sure that you use forward slashes in the pathname in steps 4 and 5,
instead of using the Windows convention of backward slashes.

SETTING UP A SITE IN DREAMWEAVER

67

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XAMPP on Windows

The server root should be at the following location:

C:\xampp\htdocs

This location is fine; you don’t need to move it.

IIS on Windows

The Default Web Site server root on both Windows Vista and XP is located at this location:

C:\Inetpub\wwwroot

On Windows Vista, you can define as many websites as you like in the Internet Information
Services (IIS) Manager. Right-click Sites in the Connections panel on the left, and select Add
Web Site from the context menu. The server root is the location specified in the Physical
path field of Content Directory.

Apache on Mac OS X

If you are using the version of Apache that comes preinstalled in Mac OS X, you have two
choices of server root. The main one is located here:

Macintosh HD:Library:WebServer:Documents

Every user account on a Mac also has its own dedicated server root, located here:

Macintosh HD:Users:username:Sites

Any site within this folder can be viewed in a browser using the address http://
localhost/~username/ followed by the name of the site’s subfolder, where username is
the name of your home folder. The address for the main server root is simply
http://localhost/, so it is probably the most convenient to use, unless you share the
computer with others and want to keep things separate.

MAMP on Mac OS X

The server root is at the following location:

Macintosh HD:Users:username:Applications:MAMP:htdocs

MAMP installs Apache, PHP, MySQL, and phpMyAdmin as a complete package. This poses a
potential conflict, because Mac OS X comes with a preinstalled version of Apache, and you
can’t normally run both of them simultaneously. To get around this, MAMP uses nonstan-
dard settings to serve web pages and communicate with the MySQL database. Everything in
MAMP is configured to work together smoothly. So, if you’re using MAMP, use the MAMP
version of everything. To avoid problems when you deploy your site on your remote server,
turn off any conflicting programs and change the MAMP settings as follows:

1. Make sure that the preinstalled version of Apache is not running by opening
System Preferences ➤ Internet & Network ➤ Sharing. Select Web Sharing from the list
of Services and make sure there is no check mark in the checkbox alongside. The
panel on the right should display Web Sharing: Off.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

68

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. If you have ever installed MySQL on your computer, stop the MySQL server and
change any system preferences that start it automatically whenever your computer
starts up. MySQL is not preinstalled on Mac OS X, so there’s nothing to worry about
if you have never installed it.

3. Click the Preferences button on the MAMP control panel. In the dialog box that
opens, select Ports, and click the button labeled Set to default Apache and MySQL
ports. The values in Apache Port and MySQL Port should be the same as those
shown in Figure 2-3.

Figure 2-3. The default MAMP settings need to be changed.

4. Click OK. Enter your Mac password when prompted. MAMP should restart both
Apache and MySQL with the standard settings for Apache and MySQL.

Creating virtual hosts on Apache
When it’s first installed, Apache is capable of hosting only one website, which is identified
in a local testing environment by the URL http://localhost/. To get around this restric-
tion, it’s common practice to develop websites in subfolders of the Apache server root.
For example, if you have two sites called site1 and site2 and create separate subfolders
for them in the server root, you access them in your testing environment as http://
localhost/site1/ and http://localhost/site2/. This works perfectly well as long as
you use document-relative links all the time. However, if you want to use links relative to
the site root, you need to create virtual hosts for each site.

Virtual hosting is a technique that web servers use to host more than one website on the
same machine. If you have bought a web-hosting package from a hosting company, it’s
almost certainly on a shared server that uses virtual hosts. Continuing with the previous
example, once you create virtual hosts for site1 and site2 in Apache, you can test them
locally using http://site1/ and http://site2/. This is essential for testing sites that use
links relative to the site root. If you’re serious about web development, you should learn
sooner or later how to set up virtual hosts in your testing environment. Once you have
mastered the technique, it takes only a few minutes to set up each one.

SETTING UP A SITE IN DREAMWEAVER

69

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The rest of this section is entirely optional. If you don’t want to set up virtual hosts, you
can skip it. You can come back and set up virtual hosts at any time.

You can call your virtual hosts whatever you like, as long as you don’t use any spaces or
characters that would be illegal in a domain name. I always use the same name as the
actual website, without the top-level domain. For example, for my own site, http://
foundationphp.com/, I have created a virtual host called foundationphp in my local test-
ing setup. This means that I access it as http://foundationphp/. It’s then a simple matter
of clicking in the browser address bar and adding the .com to see the live site. Whatever
you do, don’t use the top-level domain as the name of a virtual host in your testing setup.
If you do, your computer will always point to the local version of the site and never access
the real one on the Internet.

Apache allows you to create as many virtual hosts as you want. It’s a two-stage process.
First, you tell the operating system the names of the virtual hosts, and then you tell
Apache where the files will be located. There are separate instructions for Windows and
Mac OS X.

Registering virtual hosts on Windows

Although you can locate your virtual hosts anywhere on your hard drive system, it’s a good
idea to keep them in a single top-level folder, as this makes it easier to set the correct per-
missions in Apache. The following instructions assume that all your virtual hosts are kept
in a folder called C:\vhosts and show you how to create a virtual host called dwcs4 within
that folder.

1. Create a folder called C:\vhosts and a subfolder inside it called dwcs4.

2. Open C:\WINDOWS\system32\drivers\etc\hosts in Notepad or a script editor and
look for the following line at the bottom of the file:

127.0.0.1 localhost

127.0.0.1 is the IP address that every computer uses to refer to itself.

3. On a separate line, enter 127.0.0.1, followed by some space and the name of the
virtual host. For instance, to set up a virtual host for this book, enter the following:

127.0.0.1 dwcs4

4. If you want to register any further virtual hosts, add each one on a separate line
and point to the same IP address. Save the hosts file and close it.

To edit the necessary files in Vista, you need to select Run as administrator even if you are
logged in to an administrator account. For Notepad, go to Start ➤ All Programs ➤

Accessories, right-click Notepad, and select Run as administrator from the context menu.
Enter your administrator password when prompted. Inside Notepad, select File ➤ Open
and navigate to the relevant file. The Open dialog box in Notepad shows only .txt files,
so you need to select All Files (*.*) from the drop-down menu at the bottom right of the
dialog box.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

70

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Open the Apache configuration file, httpd.conf. The default location is C:\
Program Files\Apache Software Foundation\Apache2.2\conf\httpd.conf. If you
installed XAMPP, it should be at C:\xampp\apache\conf\httpd.conf.

6. Scroll down to the Supplemental configuration section at the end of httpd.conf,
and locate the following section:

7. Apache uses the hash sign (#) to indicate comments in its configuration files.
Uncomment the command shown on line 463 in the preceding screenshot by
removing the #, like this:

Include conf/extra/httpd-vhosts.conf

This tells Apache to include the virtual host configuration file, which you must
now edit.

8. Save httpd.conf, and close it.

9. Open httpd-vhosts.conf. The default location is C:\Program Files\Apache
Software Foundation\Apache2.2\conf\extra\httpd-vhosts.conf. If you installed
XAMPP, it should be at C:\xampp\apache\conf\extra\httpd-vhosts.conf. The
main part of the file looks like this:

SETTING UP A SITE IN DREAMWEAVER

71

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. Position your cursor in the blank space shown on line 15 in the preceding screen-
shot, and insert the following four lines of code:

<Directory C:/vhosts>
Order Deny,Allow
Allow from all

</Directory>

This sets the correct permissions for the folder that contains the sites you want to
treat as virtual hosts. If you chose a location other than C:\vhosts as the top-level
folder, replace the pathname in the first line. Remember to use forward slashes in
place of backward slashes. Also surround the pathname in quotes if it contains any
spaces.

11. Lines 27–42 in the preceding screenshot are examples of virtual host definitions.
They show all the commands that can be used, but only DocumentRoot and
ServerName are required. When you enable virtual hosting, Apache disables the
main server root, so the first definition needs to reproduce the original server root.
You then add each new virtual host within a pair of <VirtualHost> tags, using the
location of the site’s web files as the value for DocumentRoot and the name of the
virtual host for ServerName. If the path contains any spaces, enclose the whole path
in quotes. If your server root is located, like mine, at C:\htdocs, and you are
adding dwcs4 as a virtual host in C:\vhosts, change the code shown on lines 27–42
so they look like this:

<VirtualHost *:80>
DocumentRoot c:/htdocs
ServerName localhost

</VirtualHost>
<VirtualHost *:80>
DocumentRoot c:/vhosts/dwcs4
ServerName dwcs4

</VirtualHost>

For XAMPP, use C:/xampp/htdocs instead of C:/htdocs.

12. Save httpd-vhosts.conf, and restart Apache.

All sites in the server root will continue to be accessible through http://localhost/
sitename/. Anything in a virtual host will be accessible through a direct address, such as
http://dwcs4/.

Registering virtual hosts on Mac OS X

The following instructions apply only to the preinstalled version of Apache on Mac OS X.
To enable virtual hosts with MAMP, I recommend that you invest in MAMP PRO (http://
www.mamp.info/en/mamp-pro/index.html). It’s not free, but it automates the configura-
tion of virtual hosts and other aspects of your development environment.

You need to edit hidden files. The simplest way to do this is to use a specialized script
editor. I recommend using either BBEdit (http://www.barebones.com) or TextWrangler (a
free, cut-down version of BBEdit available from the same location).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

72

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following instructions assume that all your virtual hosts are kept in the Sites folder in
your Mac home folder, and show how to create a virtual host called dwcs4 within that
folder. Setting up virtual hosts on a Mac changed substantially between OS X 10.4 and
10.5, so there are separate instructions for each version. First, Mac OS X 10.5:

1. Open BBEdit or TextWrangler and select File ➤ Open Hidden. In the Open dialog
box, select All Files from the Enable drop-down menu. Then navigate to Macintosh
HD:private:etc:hosts and click Open.

2. This opens a system file, so you need to unlock it by clicking the icon of a pencil
with a line through it on the left side of the toolbar, as shown in the following
screenshot:

3. You will be told that the document is owned by “root” and asked to confirm that
you want to unlock it. Click Unlock. This removes the line through the pencil and
readies the file for editing.

4. Place your cursor on a new line at the end of the file, and type 127.0.0.1, followed
by a space and the name of the virtual host you want to create. To create a virtual
host for this book called dwcs4, it should look like this:

5. Save the file. Because it’s owned by root, you will be prompted to enter your Mac
password. You now need to tell Apache about the virtual host.

6. Use BBEdit or TextWrangler to open the main Apache configuration file,
httpd.conf. It’s a system file, so you need to open and unlock it in the same way as
the hosts file. It’s located at Macintosh HD:private:etc:apache2:httpd.conf.

SETTING UP A SITE IN DREAMWEAVER

73

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. Scroll down to around line 460 and locate the following lines:

Virtual hosts
#Include /private/etc/apache2/extra/httpd-vhosts.conf

8. Remove the hash sign (#) from the beginning of the second of these two lines so it
looks like this:

Include /private/etc/apache2/extra/httpd-vhosts.conf

This enables the configuration file for virtual hosts, which now needs to be edited.

9. Use BBEdit or TextWrangler to open httpd-vhosts.conf. Again, it’s a system file, so
it needs to be handled the same way as the previous two files. The file is located at
Macintosh HD:private:etc:apache2:extra:httpd-vhosts.conf.

10. The section of the file that you’re interested in is shown in the following screenshot:

Lines 27–42 are examples of virtual host definitions. You need to replace these with
your own definitions. When you enable virtual hosting, Apache disables the main
server root, so the first definition needs to reproduce it.

You don’t need all the options shown in the examples, so replace the code shown
on lines 27–42 of the preceding screenshot with the following:

<VirtualHost *:80>
DocumentRoot "/Library/WebServer/Documents"
ServerName localhost

</VirtualHost>
<VirtualHost *:80>
DocumentRoot "/Users/username/Sites/dwcs4"
ServerName dwcs4

</VirtualHost>

Replace username in the second definition with your own Mac username.

11. Save all the files you have edited, and restart Apache by going to Sharing in System
Preferences ➤ Internet & Network, deselecting Web Sharing, and selecting it again.
You should now be able to access the virtual host with the URL http://dwcs4/.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

74

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Follow these instructions for Mac OS X 10.4:

1. Open NetInfo Manager, which is in the Utilities subfolder of Applications.

2. Click the lock at the bottom left of the dialog box that opens, and enter your
administrator’s password when prompted.

3. Select machines, then localhost, and click the Duplicate icon. When prompted, con-
firm that you want to make a copy.

4. Highlight the copy, and double-click the name in the lower pane, as shown in the
following screenshot.

5. Change localhost copy to whatever you want to call the virtual host. For example, to
create a virtual host for this book, enter dwcs4.

6. Click any of the other entries in the left column of the top pane. The operating sys-
tem will ask you twice if you really want to make the changes. You do. This registers
the name of the virtual host with your computer.

7. Repeat steps 3–6 for any other virtual hosts you want to create. When you have fin-
ished, click the lock icon in the bottom-left corner of the NetInfo Manager, and
close it.

SETTING UP A SITE IN DREAMWEAVER

75

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Open BBEdit or TextWrangler, and select File ➤ Open Hidden. In the Open dialog
box, select All Files from the Enable drop-down menu, and open Macintosh
HD:etc:httpd:httpd.conf.

9. Scroll almost to the bottom of httpd.conf, and locate the following section:

10. Click the pencil icon at the top left of the editor window, and confirm that you
want to unlock the document, entering your administrator password when
prompted. Uncomment the command shown on line 1076 in the screenshot by
removing the hash sign (#). This enables virtual hosting but disables the main server
root, so the first virtual host needs to reproduce the Mac’s server root. The exam-
ple (on lines 1084–1090) is there to show you how to define a virtual host. The only
required commands are DocumentRoot and ServerName. After uncommenting the
NameVirtualHost command, your first definition should look like this:

NameVirtualHost *:80
<VirtualHost *:80>
DocumentRoot /Library/WebServer/Documents
ServerName localhost

</VirtualHost>

11. Add any further definitions for virtual hosts. To create one for this book, use this
(replace username with your own Mac username):

<VirtualHost *:80>
DocumentRoot /Users/username/Sites/dwcs4
ServerName dwcs4

</VirtualHost>

12. Save httpd.conf, and restart Apache. All sites in Macintosh HD:Library:
WebServer:Documents can still be accessed using http://localhost/ and those in
your Sites folder using http://localhost/~username/sitename/, but named vir-
tual hosts can be accessed directly, such as http://dwcs4/. Of course, a site must
exist in the location you defined before you can actually use a virtual host.

Registering virtual directories on IIS
Windows Vista uses IIS 7, which lets you set up separate websites, each with its own server
root, just like Apache virtual hosts. However, the version of IIS that runs in Windows XP
does not support virtual hosts. Instead, you can set up virtual directories, but localhost

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

76

http://lib.ommolketab.ir
http//lib.ommolketab.ir

always remains the basic address of the web server, so you cannot use root-relative links.
The main advantage of using virtual directories is that they avoid the need to locate all
web files in the default IIS server root at C:\Inetput\wwwroot.

To set up a virtual directory in IIS 6 on Windows XP, open the Internet Information Services
panel (Start ➤ Control Panel ➤ Administrative Tools ➤ Internet Information Services), highlight
Default Web Server, right-click, and select New ➤ Virtual Directory. A wizard will walk you
through the process. If you create a virtual directory called dwcs4, the URL becomes
http://localhost/dwcs4/.

Creating the site definition
By this stage, you should have decided where you are going to store your local files. The
setup process in Dreamweaver is basically the same whether you test your PHP files locally
or on your remote server.

There are several ways to open the Site Definition dialog box.
If the Dreamweaver Welcome screen is open, you can
choose Dreamweaver Site from the bottom of the Create
New column. However, it’s probably more convenient to
choose New Site from the Site menu or from the Site icon on

the Application bar (see alongside). Another convenient way is to select Manage Sites from
the bottom of the site list at the top left of the Files panel.

Dreamweaver has been designed with both beginners and more advanced users in mind,
so you may see either the basic dialog box shown on the left of Figure 2-4 or the advanced
one on the right.

SETTING UP A SITE IN DREAMWEAVER

77

2

Figure 2-4. The Site Definition dialog box has two interfaces: Basic (left) and Advanced (right).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Basic dialog box sets up only the bare essentials, so it’s better to use the Advanced
one. If you see the screen on the left of Figure 2-4, click the Advanced tab at the top left
(it’s in the center of the Mac version).

If you select Manage Sites from the Files panel, you will be presented with the dialog box
shown in Figure 2-5. This lists the sites that you have already defined in Dreamweaver. The
buttons on the right let you perform a variety of management functions, as described in
the “Managing Dreamweaver sites” section later in the chapter. To create a new site, click
the New button at the top right and select Site from the menu that appears.

Telling Dreamweaver where to find local files

The first stage of site definition involves defining the basic details of the site. Open the Site
Definition dialog box, and make sure the Advanced tab is selected. If necessary, select Local
Info from the Category column on the left. You should see the same screen as shown on
the right side of Figure 2-4.

Let’s take a look at what each option means, with particular reference to defining a PHP
site for use with this book.

Site name: This identifies the site within Dreamweaver. The name appears in the
drop-down menu at the top of the Files panel and in the Manage Sites dialog box
(Figure 2-5), so it needs to be reasonably short. It’s used only within Dreamweaver,
so spaces are OK. I used Dreamweaver CS4.

Local root folder: This is the top-level folder of the site. Everything should be stored
in this folder in exactly the same hierarchy as you want to appear on the live web-
site. For a static site using .html pages only or when using a remote server to test
PHP, this folder can be anywhere on your computer. When testing a PHP site
locally, this folder should be inside your server root (see the “Finding the testing
server root” section earlier in this chapter), a virtual host, or a virtual directory (IIS
only). Click the folder icon to the right of the Local root folder field and navigate to

Figure 2-5.
The Manage Sites dialog box lets you

create a new site or edit an existing one.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

78

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the appropriate location on your hard disk. If the folder doesn’t exist, navigate to
the parent folder, and then click Create New Folder in the Choose local root folder
dialog box.

Default images folder: This field is optional, but is very useful if you plan to use
images that are on other parts of your file system or even in other Dreamweaver
sites. Whenever you insert an image in a web page, Dreamweaver automatically
copies it to this folder and creates the correct link in the tag’s src attribute.
To set this option, click the folder icon to the right of the Default images folder field,
navigate to the local root folder that you selected for the previous option, and
select the images folder. If the folder doesn’t exist, click the Create New Folder but-
ton to create it.

Links relative to: This option lets you select the default style of links used in the site
(see the “Choosing document- or root-relative links” section earlier in the chapter).
Unless your testing server and remote server both run on Apache, I strongly advise
you to accept the default Document.

HTTP address: This field should contain the URL of the final site on the Internet. If
you are using the site only for local testing, you can leave this field empty. If you
have selected root-relative links, Dreamweaver will display the following warning:

You can safely ignore this warning for local testing, and click OK. However, it is
important to get the URL correct for remote testing or a site that you plan to
deploy on the Internet.

Case-sensitive links: The vast majority of PHP websites are hosted on Linux servers,
which treat products.php and Products.php as completely different file names. If
you select this option, Dreamweaver checks that internal links match the case of

With large sites, it’s sometimes convenient to create a site
definition in Dreamweaver for just part of the site. If the
local root folder is already in another defined site,
Dreamweaver warns you that some functions, such as site
synchronization, won’t work. However, it won’t prevent you
from creating the subsite.

SETTING UP A SITE IN DREAMWEAVER

79

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

file names when you run Site ➤ Check Links Sitewide. I recommend selecting this
option to maintain the internal integrity of your site.

Cache: As the Site Definition dialog box explains, this speeds up various aspects of
site management in Dreamweaver. Very large sites (with several hundred pages)
tend to slow down dramatically if the site cache is enabled. However, with a PHP
site, you should draw content from a database into a dynamically generated page,
rather than create a new page every time. I suggest that you leave this option
selected, and disable it only if you run into performance problems.

The Local Info category is the only one you need to complete in order to get to work with
static pages (in other words, ones that don’t use a server-side technology) on your local
computer. If you’re not ready to upload files to your live website or work with PHP, just
click OK in the Site Definition dialog box, and then click Done to close the Manage Sites dia-
log box. Otherwise, continue with the next sections.

Telling Dreamweaver how to access your remote server

When you first open the Remote Info category in the Site Definition dialog box, you’re pre-
sented with a single drop-down menu labeled Access. It has six options, as shown in the
following screenshot (the final option—Microsoft Visual SourceSafe—is not available in the
Mac version).

Choosing an access option
First, let’s take a look at the Access options:

None: Choose this if you don’t plan to deploy the site on the Internet, or if you
don’t want to set up your remote server immediately. If you choose this option,
you can skip ahead to the “Defining the testing server” section.

FTP: This is the most common choice. It sets up Dreamweaver’s built-in File
Transfer Protocol (FTP) program to communicate with your remote server.

Local/Network: This allows you to deploy your live website to another folder on
your local computer or network. This is normally done only by organizations that
run their own live web servers.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

80

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WebDAV: This uses the Web-based Distributed Authoring and Versioning (WebDAV)
protocol to communicate with the remote server. It requires a remote server that
supports the WebDAV protocol.

RDS: This uses Remote Development Services (RDS), which is supported only by
ColdFusion servers. You cannot use it with a PHP site unless the server also sup-
ports ColdFusion.

Microsoft Visual SourceSafe: This requires access to a Microsoft Visual SourceSafe
database. It is not appropriate for the Dreamweaver PHP MySQL server model.

Since FTP is the most common method of connecting to a remote server, that’s the only
one I’ll describe. Click the Help button at the bottom of the Remote Info category of the
Site Definition dialog box for detailed descriptions of the options for the other methods.

Using FTP
When you select the FTP option from the Access drop-down menu, the Remote Info cate-
gory of the Site Definition dialog box presents you with the options shown in Figure 2-6.
Most of them are straightforward, but I’ll describe each one briefly.

Figure 2-6. The FTP options for the Remote Info category of the Site Definition dialog box

SETTING UP A SITE IN DREAMWEAVER

81

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FTP host: Enter your remote server’s FTP address in this field. You should normally
get this from your hosting company. It usually takes either of the following forms:
ftp.example.com or www.example.com.

Host directory: This is the pathname of the top level of your website. The important
thing to realize is that the directory (folder) that you enter in this field should con-
tain only those files that will be accessible to the public through your site’s URL.
Often it will be named htdocs, public_html, or www. If in doubt, ask your hosting
company or server administrator.

Login: This is the username given to you by your hosting company or server admin-
istrator.

Password: Enter your remote server password in this field. Dreamweaver displays
your password as a series of dots. It also automatically saves your password, so des-
elect the Save checkbox if you want to be prompted for the password each time
you connect to the remote server. Click the Test button to make sure that
Dreamweaver can connect successfully. If the test fails, make sure Caps Lock isn’t
turned on, as passwords are normally case-sensitive. Other reasons for failure
include being behind a firewall, so check the remaining options before trying again.
Many antivirus programs include a software firewall, as does Windows Vista, so you
should also check whether it’s preventing Dreamweaver from accessing the
Internet.

Use passive FTP: Try this option if a software firewall prevents you from connecting
to the remote server. For more details, see http://www.adobe.com/go/15220.

Use IPv6 transfer mode: This option is designed to prepare Dreamweaver for the
future. Select this option only if you have been told that your remote FTP server
uses Internet Protocol version 6 (IPv6).

Use firewall: You can normally ignore this option unless you are behind a corporate
firewall. The Firewall Settings button opens the Site Preferences dialog box. Enter the
firewall host and firewall port (if it’s different from 21) in the appropriate fields,
and click OK to return to the Site Definition dialog box. If you are using a software
firewall, such as Norton Internet Security or ZoneAlarm, you need to set permission
for Dreamweaver to access the Internet in the software firewall’s configuration set-
tings rather than here.

Use Secure FTP (SFTP): Secure FTP (SFTP) gives you a more secure connection, but
it is not supported by all servers. Selecting this option automatically disables these
other options: Use passive FTP, Use IPv6 transfer mode, Use firewall, Firewall Settings,
and Server Compatibility.

Server Compatibility: Click this button if you are still having problems connecting
through FTP. The two options in the dialog box that opens are self-explanatory.

Maintain synchronization information: This is selected by default and enables you to
synchronize your remote and local files through the Files panel. However, it’s not
very reliable, particularly if you live in a part of the world that observes daylight
saving time.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

82

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Automatically upload files to server on save: Do not select this option. You should
always test files locally before uploading them to your remote server. Otherwise, all
your mistakes will go public. It overwrites your original files, so you can no longer
use them as backup.

Enable file check in and check out: Select this option only if you are working in a
team and want to use Dreamweaver’s Check In/Check Out system. For more infor-
mation, launch Dreamweaver Help (press F1) and select Check In/Check Out from
the Index, or go to http://www.adobe.com/go/15447. All team members must have
this option enabled and must always use Dreamweaver to edit files. Failure to do so
results in chaos. This option should be used with extreme caution.

After you have completed the Remote Info category, select Testing Server from the Category
list on the left of the Site Definition dialog box.

Defining the testing server

When you first open the Testing Server category of the Site Definition dialog box, it looks
similar to the Remote Info category in its initial state, but with two drop-down menus
instead of one, as shown in the following screenshot.

This is probably the most important dialog box when building dynamic sites in
Dreamweaver. It’s quite easy to fill in, but if you get the details wrong, Dreamweaver can-
not communicate with any of your databases.

Activate the Server model drop-down menu, and select PHP MySQL. What you choose for
Access depends on whether you want to test your PHP pages locally or by using your
remote server. The options are different, so I’ll cover them separately.

Selecting options for local testing
The Access drop-down menu determines how you communicate with the testing server. If
you have a local test environment on your computer or another computer on a local area
network (LAN), choose Local/Network. This reveals two options that Dreamweaver
attempts to fill in automatically. Figure 2-7 shows what happened when I had defined the
local root folder in the Local Info category as a virtual host on Windows.

SETTING UP A SITE IN DREAMWEAVER

83

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2-7. Dreamweaver attempts to fill in the testing server details automatically.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

84

Dreamweaver usually gets the value for Testing server folder correct, but invariably gets URL
prefix wrong. Getting both correct is crucial, so let’s take a look at what they represent.

Testing server folder and URL prefix must both point to the same location. The value you
enter in Testing server folder is the physical path to your site root (where you keep the
home page). The URL prefix is the address you would enter in a browser address bar to get
to the same page (minus the page name).

The value for Testing server folder should normally be the same folder that you selected as
the Local root folder in the Local Info category. The only exception is if you want to use a
testing server elsewhere on your local network. In this case, click the folder icon to the
right of the field to browse to the correct location.

The value for URL prefix depends on how you have set up your testing environment. If your
testing server folder is in the server root or a virtual directory, it will be http://
localhost/sitename/. If you are using a virtual host, it will simply be http://sitename/.
If the testing server is on another computer on a local network, replace localhost with
the correct IP address.

It’s critical that URL prefix is set correctly, as it controls all dynamic aspects of
Dreamweaver. Because so many people seem to get this wrong, Table 2-1 shows the values
for Testing server folder and URL prefix for the various scenarios described earlier.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 2-1. Testing server folder and URL prefix values for various scenarios

Scenario Testing server folder URL prefix

http://localhost/dwcs4/

C:\vhosts\dwcs4\ http://dwcs4/

Can be anywhere http://localhost/dwcs4/

http://localhost/dwcs4/

http://localhost/~username/
dwcs4/

http://dwcs4/

http://localhost/dwcs4/

http://localhost:8888/dwcs4/Macintosh HD:Users:username:
Applications:MAMP:htdocs:dwcs4:

Using MAMP on a Mac with the
MAMP default ports

Macintosh HD:Users:username:
Applications:MAMP:htdocs:dwcs4:

Using MAMP on a Mac with the
default Apache and MySQL ports

Macintosh HD:Users:username:
Sites:dwcs4

Site in a virtual host called dwcs4
on a Mac

Macintosh HD:Users:
username:Sites:dwcs4

Site in a subfolder of your Sites
folder of the same machine on
a Mac

Macintosh HD:Library:
WebServer:Documents:dwcs4

Site in a subfolder of the main
server root of the same machine
on a Mac

Site in an IIS virtual directory on
Windows

Site in a virtual host called dwcs4
on Windows

C:\htdocs\dwcs4\ or
C:\xampp\htdocs\dwcs4\

Site in a subfolder of the Apache
server root of the same machine
on Windows

SETTING UP A SITE IN DREAMWEAVER

85

2

Selecting options for remote testing
I strongly advise against using a remote server for testing PHP pages. In addition to the
advantages of a local testing server mentioned at the beginning of this chapter, you should
also take into consideration the fact that using a remote server for testing overwrites exist-
ing files. You can get around this problem by using temporary files for previewing (see the
“Setting options for Preview in Browser” section at the end of this chapter), but you can’t
use temporary files to test links or work with a database. Of course, you may still decide to
use your remote server as the Dreamweaver testing server, and this section describes the
necessary settings.

The Access drop-down menu in the Testing Server category offers fewer options than the
Remote Info category, because RDS and Microsoft SourceSafe are not appropriate for
working with the Dreamweaver PHP MySQL server model. The most common choice is FTP.
Dreamweaver is intelligent enough to copy across the main details from the Remote Info
category, and it presents you with the dialog box shown in Figure 2-8. Although most
details should be correct, the URL prefix is almost certain to need editing.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2-8. When you select a remote server for testing, Dreamweaver copies details from the Remote Info
category, but you normally need to change at least the URL prefix.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

86

As you can see from Figure 2-8, Dreamweaver incorrectly combines the values in the FTP
host and Host directory fields. This won’t work, and the URL prefix value must be changed.

It’s vital that the URL prefix and Host directory fields point to the same place. However, this
does not mean that the values should be the same. The distinction is as follows:

Host directory: This is the pathname that the FTP program uses for the top level of
your site.

URL prefix: This is the address that anyone surfing the Internet uses to reach the top
level of your site. In other words, it’s normally http:// followed by the domain
name and a trailing slash.

So, if /home/dwcs4/html_public/index.php is your home page, and users access it by typ-
ing http://www.example.com/index.php in their browser address bar, the correct value
for URL prefix should look like this:

http://www.example.com/

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting other site options

The basic site definition is now complete. To save the site definition, click OK in the Site
Definition dialog box, and then click Done to close the Manage Sites dialog box. However,
there are seven more categories in the Site Definition dialog box. Most of the time, you can
leave these at their default values.

Version control: Dreamweaver CS4 now offers integration with Subversion
(http://subversion.tigris.org/), one of the most popular open source version
control systems. See the next section for details on using this option for your site.

Cloaking: Some developers like to keep source files, such as .fla files for Flash
movies or .psd files for Photoshop, in the same folder as their site. To prevent
them from being uploaded to your remote server when uploading or synchronizing
a complete site, you can use Dreamweaver’s cloaking feature. The Cloaking cate-
gory of the Site Definition dialog box lets you automatically cloak all files with spe-
cific file name extensions. There are just two options. The first one, Enable cloaking,
is selected by default. To cloak specific types of files automatically, select the Cloak
files ending with checkbox and enter the file name extensions as a space-delimited
list. In new sites created in Dreamweaver CS4, the field is prepopulated with .fla
.psd (in sites migrated from older versions of Dreamweaver, it's prepopulated with
.png .fla).

Design Notes: Design notes serve a number of different purposes. One is to store
notes about individual files. This is mainly of use in a team environment, where dif-
ferent members can add notes regarding the status of the file (draft, first revision,
things remaining to be done, and so on). Dreamweaver also creates design notes
automatically to store information about related files, file synchronization, and
locally created variables. For instance, if you create an image in Fireworks and
import it into Dreamweaver, the location of the original .png file is stored in a
design note, enabling you to open it directly from the Document window if you
want to edit the original image. By default, Dreamweaver enables design notes and
creates them in a hidden folder called _notes inside most folders within your site.
If you don’t want design notes, you can turn them off in the Design Notes category
of the Site Definition dialog box. If you’re working in a team environment, there’s an
option to upload design notes to the remote server.

File View Columns: This lets you customize the look of the Files panel.

To cloak individual files or folders, select them in the Files panel, right-click, and
select Cloaking ➤ Cloak from the context menu. The ability to cloak individual
files is new to Dreamweaver CS4.

In Figure 2-8, notice that even though the Use Secure FTP (SFTP) checkbox is selected,
the three checkboxes above and the Server Compatibility button are not grayed out, as
in the Remote Info category. This is a known bug in Dreamweaver. Make sure you don’t
accidentally select them if you’re using SFTP. The settings should be the same as in the
Remote Info category.

SETTING UP A SITE IN DREAMWEAVER

87

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contribute: This allows you to use rollback and event logging when developing the site
to be updated with Contribute (http://www.adobe.com/products/contribute/).

Templates: This is for backward compatibility with older versions of Dreamweaver
templates. It should be left at its default setting (enabled).

Spry: Adobe’s Ajax framework, Spry, relies on code libraries that need to be
uploaded to your remote server. By default, Dreamweaver inserts these files in a
folder called SpryAssets at the top level of your site root. For most people, this is
ideal. However, if you want to locate the code libraries elsewhere, specify the folder
name in the Spry category of the Site Definition dialog box. This allows Dreamweaver
to update or remove the files when you make changes to elements that use Spry.

Using version control with Subversion
Some form of version control is standard in team environments, but it’s something that
individual developers either don’t know about or tend to treat like regular backups of
hard disks—you know you ought to do it, but never quite get around to it. If you have ever
made changes to a file and wished you could roll back to the original, you need version
control. In one respect, version control acts as a database, storing project files at different
stages of development. Instead of overwriting the original file each time, it stores a snap-
shot of each stage. It also allows different people to work simultaneously on separate ver-
sions of the same document, review each other’s changes, and merge them.

Although this is a typical team development scenario, it can also be useful for individual
developers. Say you normally work on a desktop computer, but occasionally use a laptop
when you’re on the move. By storing your files in a repository, you can always have access
to the most current version, regardless of which computer you’re using. You can also keep
different versions of projects. And if you commit files to the repository on a regular basis,
you can experiment with a file and roll back to a previous version if you don’t like the
changes. Once you get into the habit of using version control, you’ll wonder how you ever
did without it.

As mentioned in the previous section, Dreamweaver CS4 lets you integrate with
Subversion. Note that Dreamweaver is not a full Subversion client. It offers a limited range
of version control functions. Nevertheless, these functions are extremely useful for keep-
ing track of changes in a site’s files, whether you’re working on your own or in a team.

Subversion is preinstalled on Mac OS X 10.5, and Windows users can install a very user-
friendly tool called TortoiseSVN (http://tortoisesvn.tigris.org/), which makes it easy
to set up a Subversion repository. If you don’t want to go to the trouble of configuring
everything yourself, there are hosted Subversion repositories (some of them free); for
example, see http://beanstalkapp.com/ and http://cvsdude.com/product.pl. You can
also download a free book called Version Control with Subversion from http://
svnbook.red-bean.com/.

At the time of this writing, Dreamweaver CS4 supports only Subversion 1.4. For details,
see the Adobe TechNote at http://www.adobe.com/go/kb406661.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

88

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Registering a site with a Subversion repository

Once you have set up a Subversion repository, adding a Dreamweaver website to it is easy.
The following instructions describe the process (refer to Figure 2-9 to see the settings in
the dialog box):

1. In the Advanced tab of the Site Definition dialog box, select Version Control from the
Category list on the left.

2. In the Access field, select Subversion from the drop-down menu (there are only
two options: None and Subversion).

3. In the Protocol field, select the method of connection to the repository from the
drop-down menu. There are four options: HTTP, HTTPS, SVN, and SVN+SSH. The
choice depends on how the repository has been set up.

4. Enter the domain name where the repository resides in the Server address field. If
it’s on the same computer, enter localhost. Do not prefix this with http://.

5. In the Repository path field, enter the path to the project in which you want to store
the site. The project doesn’t need to exist in the repository. As you can see in
Figure 2-9, I have put a forward slash at the beginning of the path. This is optional;
Dreamweaver accepts the path with or without a leading slash.

Figure 2-9. As long as Dreamweaver can access the server, you can add a new project
to the repository.

SETTING UP A SITE IN DREAMWEAVER

89

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. If the Subversion repository uses a nonstandard port, select the Non default radio
button and enter the port number in the field alongside. Otherwise, leave Server
port set to Default. This uses the standard Subversion port (3690).

7. Enter the repository username and password in the appropriate fields. If the repos-
itory doesn’t have user accounts, leave both fields blank.

8. Click Test to make sure Dreamweaver can access the repository. If Dreamweaver
connects successfully and the project already exists, you should see an alert with
the following message: Server and project are accessible! If the project hasn’t yet
been created, you should see the message shown in Figure 2-9.

9. Click OK to dismiss the alert.

10. If you need to make changes to any other categories of the Site Definition dialog
box, do so, and then click OK to save the changes, and then click Done to dismiss
the Manage Sites dialog box.

11. If you entered the name of a new project in step 5, you should see the following
alert:

If you click Yes, Dreamweaver should connect to the repository, create the new
project, and install the necessary Subversion files in your site.

If the folder where you defined the site already contains files and folders, Dreamweaver
adds a plus (+) icon to the left of each name in the Files panel, as shown in Figure 2-10.

Figure 2-10.
Items that haven’t yet been added
to the repository are marked with

a plus icon in the Files panel.

Subversion treats your site as the working version and keeps track of
your files by creating .svn folders in every folder of the site. These fold-
ers are normally hidden in the Dreamweaver Files panel, but you can
see them in Windows Explorer or Finder on a Mac. Do not delete them
unless you no longer want to keep track of the project in Subversion.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

90

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you’re creating a new site in an empty folder, the same icon will be added to each new
file or folder that you create. This indicates that it hasn’t yet been added to the repository.
The next section describes how to commit new files and changes to the repository.

If the site already exists in the Subversion repository, select the Site folder at the top of the
Files panel, right-click, and select Version Control ➤ Get Latest Versions from the context
menu. Dreamweaver connects to the repository and downloads the most up-to-date ver-
sion of each file as your working copy.

Committing new files and changes to the repository

New files and folders that haven’t yet been added to the repository are marked with a plus
icon in the Files panel. Files in your working copy that have been edited since they were
retrieved from the repository are indicated by a check mark alongside the file name, as
shown in Figure 2-11. The following instructions explain how to commit new files and
changes to the repository.

Figure 2-11. The Files panel marks files that have been edited since being checked
out of the repository.

1. When you’re ready to add new or edited files to the repository, select them in the
Files panel. You can select multiple files with Shift-click or Ctrl/Cmd-click. A quick
way to select the entire site is to click the Site folder at the top of the panel, as
shown in Figure 2-10. With the files selected, click the Check In icon at the top of the
Files panel, as shown in Figure 2-11. The icon is an up arrow with a gold padlock.

2. The CheckIn dialog box opens, as shown in Figure 2-12. This displays a list of files
that will be added to the repository. You can exclude any files by selecting them in
the top pane and clicking the red circle with the horizontal slash. This changes the

Don’t confuse the Check In icon with the Put File(s) icon two icons further left.
Both look very similar. The up arrow without a padlock is used for uploading
files to your remote server.

SETTING UP A SITE IN DREAMWEAVER

91

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Action to Ignore. If you change your mind, you can restore the item to the list by
clicking the up arrow alongside. Before committing the files to the Subversion
repository, you should enter a brief description of the changes in the Commit
Message field. This makes it easier to identify stored versions later.

Figure 2-12. When committing files to the repository, it’s a good idea to add a message
summarizing the changes.

3. Click Commit to upload the files to the Subversion repository. If there are no
problems, the icons alongside the file and folder names in the Files panel disap-
pear, indicating that all local files have been committed to the repository. If any
changes in a working copy conflict with the latest copy stored in the repository,
Dreamweaver displays the following alert:

You need to resolve any conflicts, as described in the next section, before you can
commit the edited file to the repository.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

92

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Viewing revisions and resolving conflicts

Subversion doesn’t simply upload your new version of a file to the repository. It compares
it with the latest version held in the repository and merges the changes. This is vital when
more than one person is working on the same file. If two people check out a file and edit
it, you don’t want any changes made by one of them to be overwritten by the other. If
there’s no conflict, both sets of edits are merged into the latest version. However, if both
people make incompatible changes (for example, one changes the color in a style rule to
red and the other changes it to green), you need to view the revisions and resolve the con-
flict manually.

To view the revisions made to a file, select it in the Files panel, right-click, and select
Version Control ➤ Show Revisions from the context menu. This brings up the Revision
History panel, as shown in Figure 2-13.

Figure 2-13. The Revision History panel lets you inspect different versions of the file in the
repository.

The Revision History panel lists all versions of the selected file in reverse order, with the
most recent at the top. When you select a file in the list, the buttons at the bottom of the
panel perform the following actions:

Compare to Local: This launches a third-party file-comparison utility to compare the
selected version in the repository with your local working copy. See the “Using a
file-comparison utility” section later in this chapter.

Compare: This uses a third-party comparison utility to compare different versions in
the repository. It is grayed out when only one version is selected in the panel.

View: This opens the selected revision in the Document window. Dreamweaver
gives the file a name based on its original file name and revision number. For exam-
ple, revision 41 of form.css is opened as form_rev41.css.

Promote to Current: This is how you roll back to an older version: by promoting the
selected version to the most recent.

SETTING UP A SITE IN DREAMWEAVER

93

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If Dreamweaver fails to commit your changes to the repository because of a conflict, you
need to use this panel to get a copy of the latest version and resolve the conflict manually
before committing the file back to the repository.

Keeping your working copies up-to-date

When using more than one computer or working in a team environment, you
must always check out the latest version from the repository before making any
changes to a file. You can do this by selecting the file in the Files panel and click-

ing the Check Out File(s) icon (see alongside) or by right-clicking and selecting Version
Control ➤ Get Latest Versions from the context menu.

If a new file has been created by another member of the team, you can retrieve it from the
repository by selecting Repository view from the drop-down menu at the top right of the
Files panel. Highlight the file(s) that you want and click the Check Out File(s) icon or use the
context menu. Switch the Files panel drop-down menu back to Local view when you have
finished.

Locking files

You can lock files in the repository to prevent others from editing them. Select the file(s)
in the Files panel, right-click, and select Version Control ➤ Lock from the context menu. To
unlock a file, select Unlock from the context menu.

Subversion also uses working copy locks (see “The three meanings of ‘lock’” in Version
Control with Subversion at http://svnbook.red-bean.com/ for an explanation). If you get
error messages about working copy locks, select the file in the Files panel, right-click, and
select Version Control ➤ Clean Up from the context menu.

Managing Dreamweaver sites
To change any settings in your site definition, select Manage Sites from the Site menu to
open the Manage Sites dialog box (see Figure 2-14). Select the name of the site that you
want to change and click Edit. This reopens the Site Definition dialog box, ready for you to
update the settings. If you’re feeling really impatient, though, the quickest way of opening
the Site Definition dialog box is to double-click the site’s name in the drop-down menu at
the top left of the Files panel.

Color provides a useful visual clue as to what is displayed in the Files panel. When
in Local view, folder icons are displayed in green. They’re displayed in yellow when in
Remote view or Repository view, and in red when you select Testing server from the drop-
down menu.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

94

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The other buttons on the right side of the Manage Sites dialog box are fairly self-
explanatory. However, the following is a quick guide to each one:

New: This offers two options: Site and FTP & RDS Server. The first opens the Site
Definition dialog box. The second option is rarely used, but lets you create a direct
FTP connection to a remote site (RDS is for ColdFusion only). You might want to
use this to upload a single file without defining a local site in Dreamweaver.

Duplicate: This creates an exact copy of the site definition for whichever site is high-
lighted in the left panel. You might find this useful if a new site shares common set-
tings with an existing one. It’s important to understand that creating a new site
definition doesn’t make a mirror version of the common files and folders. Editing or
deleting a shared file in one site affects both sites, as there is only one set of files.

Remove: This removes only the site definition from Dreamweaver. The actual files
and folders remain untouched.

Export: This exports your site definition as an XML file (Dreamweaver gives it an
.ste file name extension). You can export multiple site definitions by using Shift-
click or Ctrl/Cmd-click to select several sites in the left panel. If any of the site def-
initions contain login details for a remote server, Dreamweaver asks if you want to
back up your settings with details of your username and password. If you select
Share settings with other users, the login details are omitted. The export option you
choose applies to all sites being exported at the same time. Dreamweaver then asks
where to save the file. Just browse to the folder where you want to store the .ste
files and accept the default value for File name. Definitions for all selected sites are
exported in a single operation.

Import: This imports site definitions from .ste files. If the .ste files are in the same
folder, you can import multiple sites simultaneously. If a site of the same name
already exists, Dreamweaver creates a duplicate site definition with a number after
the name, rather than overwriting the existing definition.

Dreamweaver occasionally loses all your site definitions. It doesn’t happen very often,
but once is enough. Use the Export button to create a backup each time you add a new
site or amend a site’s definition. It could save you a lot of agony.

Figure 2-14.
The Manage Sites dialog box helps you
organize the sites on your computer.

SETTING UP A SITE IN DREAMWEAVER

95

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting options that apply to all sites
The options set in the Site Definition dialog box are specific to each individual site. Any
edits that you make to the settings apply immediately to that site, but not to any other.
Before concluding this chapter, let’s take a look at Dreamweaver preferences that affect
all sites. All are accessed through the Preferences panel, which is on the Edit menu in
Windows and the Dreamweaver menu on a Mac. Alternatively, use the keyboard shortcut,
Ctrl+U/Cmd+U.

Setting new document preferences

The New Document category of the Preferences panel, shown in Figure 2-15, sets global
preferences for all web pages created in Dreamweaver.

Figure 2-15. The New Document category of the Preferences panel

Let’s take a look at what each of the options means:

Default document: This lets you to choose the type of document that will be created
when you use the keyboard shortcut for a new document (Ctrl+N/Cmd+N). For
this to work, you must deselect the option at the bottom labeled Show New
Document dialog box on Control+N/Cmd+N. Otherwise, the dialog box shown in
Figure 3-2 will appear.

Default extension: This affects only HTML files. Change the value only if you want to
use .htm to maintain unity with the naming convention of older sites.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

96

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Default Document Type (DTD): This sets the default DOCTYPE declaration for all new
web pages. You cannot set one value for, say, .html and another for .php pages. See
the next section for more information about choosing a default document type.

Default encoding: This lets you choose the character set to be used in all web pages.
The Dreamweaver default is Unicode (UTF-8). In the Mac version, this is listed as
Unicode 5.0 UTF-8. The checkbox below this option tells Dreamweaver to use the
same character set to display existing pages that don’t specify a particular encod-
ing. It doesn’t insert any extra coding in such pages.

Unicode Normalization Form: This is required only when using UTF-8 for encoding. It
should normally be set to C (Canonical Decomposition, followed by Canonical
Composition), and the Include Unicode Signature (BOM) checkbox should be dese-
lected. If you use any other encoding, set Unicode Normalization Form to None.

Choosing the default document type

Many people misunderstand the purpose of the DTD (the DOCTYPE declaration before the
opening <html> tag). It simply tells the browser how you have coded your page and is
intended to speed up the correct rendering of your design. It’s not a badge of honor or
magic spell that somehow renders your web pages future-proof, although omitting the
DOCTYPE altogether or using the wrong one switches most browsers into quirks mode,
which could result in your page not looking the way you expect. The default setting is
XHTML 1.0 Transitional, and this is the appropriate choice for most people when creating a
new web page as long as you understand the stricter rules imposed by Extensible Hypertext
Markup Language (XHTML).

The full range of options is as follows:

None: Don’t use this. All pages should have a DOCTYPE declaration.

HTML 4.01 Transitional: Choose this if you don’t want to use XHTML.

HTML 4.01 Strict: This excludes deprecated elements (those destined for eventual
elimination). Use this only if you have a good knowledge of HTML and have made
a conscious decision not to use XHTML.

XHTML 1.0 Transitional: This offers the same flexibility as HTML 4.01 Transitional by
permitting the use of deprecated elements but applies the stricter rules of XML.

XHTML 1.0 Strict: This excludes all deprecated elements. Use this only if you are
competent with XHTML.

XHTML 1.1: This DTD should not be used on pages delivered using the text/html
MIME type, the current standard for web servers.

XHTML Mobile 1.0: This is a subset of XHTML Basic for mobile devices. You can find
the full specification at http://www.openmobilealliance.org/tech/affiliates/
wap/wap-277-xhtmlmp-20011029-a.pdf.

Visit http://www.w3.org/TR/xhtml1/#diffs to learn about the differences between
HTML and XHTML.

SETTING UP A SITE IN DREAMWEAVER

97

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you choose an HTML document type, Dreamweaver automatically creates code accord-
ing to the HTML specification. Similarly, if you choose XHTML, your code automatically fol-
lows the stricter rules, using lowercase for tag names and event handlers and inserting a
closing slash in empty tags such as . You need to be careful when copying and past-
ing code from other sources. If you’re not sure about the quality of the code, run
Commands ➤ Clean Up XHTML, which should correct most, if not all, problems.

If you select a Strict DTD, it’s important to realize that Dreamweaver does not prevent you
from using deprecated elements or attributes. Dreamweaver expects you to understand
the difference yourself.

Setting options for Preview in Browser

Live view, which was described in the previous chapter, is very useful for getting a quick
view of what your page is likely to look like in a standards-compliant browser, but it’s no
substitute for viewing it in your main target browsers. Pressing F12/Opt+F12 or using the
menu option File ➤ Preview in Browser automatically launches your default browser and
displays the page currently open in the Document window.

Dreamweaver normally detects your default browser the first time that you use this
option, but you can also designate other browsers in the Preview in Browser category of the
Preferences panel. If Dreamweaver has detected other browsers on your system, they are
listed in the Browsers field. You can designate one of them as your secondary browser,
which can be launched using Ctrl+F12/Cmd+F12 as a shortcut.

Add other browsers by clicking the plus (+) button. Type the browser’s name in the Name
field, click the Browse button to locate its executable file, and then click OK to register it.
The Edit button lets you change the details of the selected browser. Click the minus (–)
button to remove the selected browser from the list. Although default keyboard shortcuts
exist for only two browsers, you can launch the current page in one of the other browsers
by using File ➤ Preview in Browser or clicking the Preview/Debug in browser icon on the
Document toolbar, as shown in the following screenshot.

The Preferences panel offers the option of previewing pages using a temporary file. By
default, this option is disabled. Opinions differ on whether to enable it. The advantage of
using a temporary file for previewing is that you don’t need to save the file beforehand,
so you can test various things without needing to overwrite the existing file. On the other
hand, you cannot test server behaviors that insert, update, or delete database records
with a temporary file. So, in a local testing environment, my preference is to leave the
option disabled. However, if you have defined your remote server as the testing server,

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

98

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the opposite advice is true. You should enable preview with a temporary file for the fol-
lowing reasons:

Even if you haven’t entered any details in the Remote Info category of the Site
Definition dialog box, Dreamweaver uploads the file to the remote server and per-
manently overwrites the existing file on the remote server.

Dependent files, such as images, style sheets, and external JavaScript files, must also
be uploaded to the remote server unless you preview using a temporary file.

Using a file-comparison utility
Dreamweaver lets you specify a third-party application to compare files. It can be used
with files in your local site, on the remote server, or in a Subversion repository.

Setting up the File Compare feature

If you already have a file-comparison utility installed on your computer, all that’s necessary
is to register the program inside the Dreamweaver Preferences panel. If you don’t yet have
one, here are some suggestions:

For Windows, consider WinMerge (http://winmerge.sourceforge.net/) or
Beyond Compare (http://www.scootersoftware.com). WinMerge is free. Beyond
Compare is moderately priced, but you can try it free for 30 days.

For Mac OS X, you might use TextWrangler or BBEdit (both from http://
www.barebones.com). TextWrangler is not just a file-comparison utility; it’s an excel-
lent script editor, and it’s free. BBEdit is expensive if you only need it for file com-
parison, but it is widely recognized as the Rolls Royce of Mac script editors.

Once you have installed a file-comparison utility, select File Compare in the Preferences
panel, click the Browse button, and navigate to the executable file for the program.
Windows users should have little difficulty recognizing the correct file to select; it will nor-
mally be in a subfolder of Program Files.

On a Mac, the location is somewhere you may never even have known existed:

TextWrangler: Macintosh HD:usr:bin:twdiff

BBEdit: Macintosh HD:usr:bin:bbdiff (this is the BBEdit file-comparison utility—
make sure you choose bbdiff and not bbedit, which is listed just below it)

Even though the usr:bin directory is normally hidden on a Mac, the Dreamweaver Select
External Editor dialog box will display it by default. All you need to do is select the correct
file name and click Open. If you can’t find twdiff or bbdiff, open Preferences from the
TextWrangler or BBEdit menu, select Tools, and click the Install Command Line Tools button.

SETTING UP A SITE IN DREAMWEAVER

99

2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Comparing files

To compare two files in the same site, highlight both in the Files panel, right-click, and
select Compare Local Files.

If you select just one file in the Files panel and right-click, the context menu will display
either Compare with Remote or Compare with Local, depending on the location of the
selected file. For this type of comparison, Dreamweaver will select only a file of the same
name and in the same location on the other computer. So you can compare the local or
remote equivalent of myfile.php in myfolder in the same Dreamweaver site but not
myotherfile.php or the same file in a different folder or different site.

Beyond Compare produces a false negative when comparing the remote and local versions
of a file. This is easily remedied by opening the main Beyond Compare window and select-
ing Tools ➤ Options ➤ Startup. Set Show dialog with quick comparison results to Rules-based
quick compare.

Chapter review
This chapter has covered a lot of ground. If you’re an experienced developer, you’ll prob-
ably need to implement most of the features. If you’re just setting out and learning how to
use Dreamweaver, the most important sections were “Deciding where to test your pages”
and “Creating the site definition.”

As long as you have defined your site correctly in Dreamweaver, you should be on solid
ground. But if you run into problems later with internal links not pointing to the right
location or updating correctly, the answer almost certainly lies in this chapter. You can
change the settings for a site any time by opening the Site Definition dialog box as
described in the “Managing Dreamweaver sites” section. Site definition is the key to suc-
cess in Dreamweaver. Leave the more advanced options, such as Subversion integration,
until after you have gained more experience.

In the next chapter, you’ll get down to creating web pages with the main focus on creating
modern, standards-compliant layouts using CSS.

You cannot use the merge or copy feature of your file-comparison program to make
changes to a remote file, because Dreamweaver works with a temporary copy of the
remote file rather than the original. Local files can be changed, because you always
work with the original.

On Windows, you can merge local and remote versions of a file by launching Beyond
Compare outside Dreamweaver. Select New from the Beyond Compare Session menu,
and choose Synchronize with FTP site. Alternatively, make a copy of the local file in the
Files panel and give it a different name. You can then download the remote file and
compare both of them locally.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

100

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3 CREATING A WEB PAGE AND
ADDING CONTENT

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you create a new web page in Dreamweaver, it presents you with a blank canvas.
Although it shares a common interface with graphical design programs in the Adobe
Creative Suite, it doesn’t work like a desktop publishing program. If you attempt to drag
and drop elements onto the page and move them round without understanding what’s
happening to the underlying code, you’ll end up banging your head against the keyboard
with frustration. To create a web page, you need to know the basics of inserting and
organizing elements on the Dreamweaver page.

In this chapter, you’ll learn about the following:

Inserting text, images, and Flash and Flex movies

Using Photoshop Smart Objects as images

Adding structure to text with headings, paragraphs, and lists

Creating tables to display data

Importing and exporting table data

Inserting <div> tags to organize content in a logical structure

Creating links with text and images

Creating an image map

This chapter is aimed mainly at newcomers to Dreamweaver. It concentrates on the
mechanics of adding content in the Document window. If you’re upgrading from a previ-
ous version of Dreamweaver, most of this material should be familiar. However, you will
want to learn about the important changes to the way Flash and Flex movies are inserted,
as well as the redesign of the Property inspector to separate HTML structural elements
from the creation of CSS style rules.

This chapter doesn’t contain any formal exercises, but you can use the files in the
examples/ch03 and images folders (available for download) to practice the techniques
described. Most of the techniques covered in this chapter will form the basis of hands-on
exercises in the next chapters, which show you how to style your raw content with CSS.

Creating a new document
Dreamweaver can create a wide variety of document types, and you have several ways to
start your new document.

As explained in Chapter 1, Dreamweaver CS4’s UI is highly configurable.
For consistency, all screenshots in this and the remaining chapters have
been taken using the preset Classic Workspace layout and the tabbed
interface of the Insert bar. To avoid repetition, references to a particular
tab on the Insert bar apply to the menu category of the same name on the
Insert panel.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

104

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Starting from the Welcome screen

The easiest way to create a new document is to select the type of page you want from the
Create New list in the center of the Dreamweaver Welcome screen (see Figure 3-1). This
list includes the most frequently used types of documents.

If you choose one of the first four types (HTML, ColdFusion, PHP, or ASP VBScript),
Dreamweaver uses the default DOCTYPE declaration set in the Preferences panel (see
Chapter 2). If you haven’t changed it, the Dreamweaver default is to use XHTML 1.0
Transitional.

Figure 3-1. The Dreamweaver Welcome screen offers a quick shortcut to create the most frequently
used documents.

The disadvantage of using the Welcome screen is that it disappears as soon as you open a
document. Unless you never have more than one document open at a time, you need an
alternative way of creating a new document.

Using the New Document dialog box

The document-creation method that offers the most choices is through the New Document
dialog box (see Figure 3-2). Select File ➤ New to open this dialog box.

CREATING A WEB PAGE AND ADDING CONTENT

105

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 3-2. The New Document dialog box offers a huge range of options.

The options available depend on your selection in the left column, which offers the fol-
lowing categories:

Blank Page: This lets you choose from 17 different types of web-related documents.
The ones you will use most frequently in this book are HTML and PHP—at the top
and bottom of the Page Type list, respectively. If you select <none> in the Layout
column, Dreamweaver creates a page with no content other than the basic HTML
skeleton used by every web page. The choices offered by the Layout column are
discussed in Chapter 5.

Blank Template: This lets you create a Dreamweaver template from scratch.
Templates are covered in Chapter 13.

Page from Template: This lists all the sites you have defined in Dreamweaver, along
with templates associated with each one. Use this option to create a child page
from an existing template.

Page from Sample: This contains a selection of sample style sheets that can be used
as a starting point for creating your own. It also offers a range of framesets. Frames,
although very popular in the late 1990s, are now widely frowned upon because

Although Dreamweaver CS4 no longer supports ASP.NET and JSP server behav-
iors, you can still use the program to create ASP.NET and JSP pages. Selecting
one of these page types inserts processing instructions that tell the web server
how to treat the page, and gives the page the appropriate file name extension.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

106

http://lib.ommolketab.ir
http//lib.ommolketab.ir

they cause usability problems (see http://apptools.com/rants/framesevil.php).
The use of frames is not covered in this book.

Other: This creates other web-related documents, including plain text files.

In addition to the range of page types, the New Document dialog box lets you select a
different DOCTYPE from the default and attach one or more external style sheets to the
new page.

Other ways of opening a new document

You can create a new document in three other ways:

Click the New icon on the Standard toolbar. In spite of its name, the Standard tool-
bar is not displayed by default. To display it, select View ➤ Toolbars ➤ Standard. The
Standard toolbar contains icons for common file operations, such as open, save,
cut, copy, and paste.

Press Ctrl+N/Cmd+N. Depending on how you have set up the New Document cate-
gory in Preferences (see Chapter 2), this either opens the New Document dialog box
or creates a blank page of the current site’s default page type.

Right-click in the Files panel and select New File from the context menu. This cre-
ates a blank page of the current site’s default page type. The file name is automat-
ically placed in editable mode, ready for you to change it.

When you use either of the last two methods, the default page type is determined by
whether you have defined a testing server for the site. If the testing server uses PHP
MySQL as its server model, the default page type is created with a .php file name exten-
sion. If no testing server has been defined, the page is created with an .html extension.

The first time you open a new document in Dreamweaver, it’s displayed in Split
view. Thereafter Dreamweaver remembers your latest setting. If the current docu-
ment is in Code view, a new document or an existing one will also open in Code
view. If the current document is in Design view, that’s how the next document will
open. When you close Dreamweaver, the state of the last document to be closed
determines how the first document will open when you next launch the program.
Some documents, such as style sheets and JavaScript files, can be opened only in
Code view, so this also affects how the next document is displayed.

Previous versions of Dreamweaver included a range of common layouts in the
Page from Sample category. These have been removed from Dreamweaver CS4
because they used table layout with deprecated HTML styling. Whether you like
it or not, Dreamweaver CS4 is pushing you more and more to adopt CSS in place
of old-school habits.

CREATING A WEB PAGE AND ADDING CONTENT

107

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inserting text
When you create a new web page, such as one with an .html or a .php file name exten-
sion, Dreamweaver automatically inserts all the necessary HTML tags for a basic page. In
Design view, you’re presented with what looks like a completely blank page, but if you
look in Code view or Split view, you’ll see the basic skeleton tags with the insertion point
(or cursor) between the opening and closing <body> tags, as shown in Figure 3-3.

Figure 3-3. In the underlying code, the insertion point is automatically placed between the <body> tags.

Inserting text directly

If you start typing in Design view, your text will appear, just as it would in a word proces-
sor. The same text will also appear in Code view, as shown in Figure 3-4. There is usually a
slight delay between typing in Design view and the appearance of the text in Code view.
The length of the delay depends on your computer specifications and any other programs
running at the same time.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

108

Figure 3-4. Anything entered in Design view is replicated in Code view.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Notice that the text in the Code view half of the page in Figure 3-4 is inserted directly
between the <body> tags. As soon as you press Enter/Return, Dreamweaver automatically
wraps the existing text in <p> tags and creates a new pair of <p> tags with a nonbreaking
space () in between, as shown on lines 9 and 10 in Figure 3-5.

CREATING A WEB PAGE AND ADDING CONTENT

109

3

Figure 3-5. Dreamweaver automatically formats text as paragraphs when you press Enter/Return.

Figure 3-6. Paragraphs are automatically spaced apart in Design view, just as they would be in a browser.

As soon as you start typing in the new paragraph, Dreamweaver removes the nonbreak-
ing space () from the underlying code and replaces it with the new text. Text is
automatically aligned left and wraps when it reaches the edge of the Document window.
In this and many other respects, entering text is like working with a word processor.
However, you need to press Enter/Return only once between paragraphs. As you can see
in Figure 3-6, a space roughly equivalent to one line is left between each block of text.
Pressing Enter/Return twice results in an empty paragraph (<p> </p>) being
inserted in the underlying code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Copying and pasting text

If you’re building a website for a client, you’re likely to get the text in the form of a word-
processed document. To paste text from other applications, place your cursor in Design
view and select Edit ➤ Paste, press Ctrl+V/Cmd+V, or right-click and select Paste from the
context menu. (You can practice this with the Stroll.doc and Stroll.docx files in the
examples/ch03 folder of the accompanying download files.) Dreamweaver does a pretty
good job preserving most, if not all, of the formatting. It also offers you a choice of how
much formatting to keep, if any.

Dreamweaver uses the paste options set in the Preferences panel. To set the default paste
behavior, open the Preferences panel from the Edit menu (Dreamweaver menu on a Mac)
or press Ctrl+U/Cmd+U, and select the Copy/Paste category. This presents you with the
dialog box shown in Figure 3-7.

Figure 3-7.
You can set the default

paste options in the
Preferences panel.

Newcomers frequently ask how to prevent Dreamweaver from inserting a space between
lines. This usually indicates a fundamental misunderstanding of how HTML works. HTML
tags such as <p> (paragraph) and <h1> (level 1 heading) are intended to represent the
structure of the document not primarily in the sense of how it looks on the screen, but
according to its meaning. Control over how a page looks is the role of CSS, not HTML.

If you want to eliminate or reduce the space between lines, you should begin by consid-
ering the meaning of the text. Do you want paragraphs, or should you be creating a
list? If it’s the latter, use the appropriate HTML element, such as (unordered list) or
 (ordered list). The bullets can easily be removed from an unordered list with CSS. If
you simply want to break a line within a text element, press Shift+Return/Enter to insert
a line break (
). If you do want paragraphs, but don’t like the default space
between them, the correct way to deal with it is to create a CSS style rule to adjust the
margins of all paragraphs. You’ll start working with CSS in the next chapter.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

110

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following options are available:

Text only: This means exactly what it says. You get the plain text and nothing else. All
formatting and line breaks are stripped out.

Text with structure: This preserves headings, paragraphs, lists, tables, and other struc-
tural formatting.

Text with structure plus basic formatting: This also preserves bold and italic text.

Text with structure plus full formatting: This converts fonts, colors, and other styles
into CSS. The result in Design view is very impressive, but the CSS is a nightmare.
Do not use this option. It’s much better to choose Text with structure plus basic
formatting and create your own CSS.

Retain line breaks: This checkbox cannot be selected independently. It merely indi-
cates whether line breaks will be preserved by the selected option (all do, except
Text only).

Clean up Word paragraph spacing: This removes the extra line between paragraphs
in text pasted from Microsoft Word.

If you want to choose a different option without changing the default settings, choose Edit
➤ Paste Special, press Ctrl+Shift+V/Shift+Cmd+V, or right-click and choose Paste Special
from the context menu. This brings up a dialog box with the same options as shown in
Figure 3-7. Choose the options you want, and then click OK. The new options apply only to
the current paste operation.

Importing Microsoft Word documents (Windows only)

Microsoft Word has become a de facto standard for word-processed documents, so
Dreamweaver has the option to import entire Word documents directly into the
Document window. It works in a very similar way to copying and pasting.

To import a Word document, select File ➤ Import ➤ Word Document. In the dialog box
that opens, navigate to the document you want to import. Dreamweaver CS4 supports
both older Word files that use the .doc file name extension and the newer .docx standard
created by Word 2007 and Word 2008 for Mac. As shown in Figure 3-8, the Formatting
drop-down menu at the bottom of the dialog box offers the same choices as are available
for pasting. (The Stroll.doc and Stroll.docx files are available with the downloadable
files, in the examples/ch03 folder.)

When pasting from Microsoft Word, Dreamweaver expects a blank line between para-
graphs. If new paragraphs begin on the next line, Dreamweaver treats the text as a sin-
gle paragraph and inserts a
 tag between each one. To format paragraphs
correctly on a large amount of text, it’s usually quicker to use Find and Replace in Word
to replace single paragraph marks (^p) with two (^p^p).

CREATING A WEB PAGE AND ADDING CONTENT

111

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 3-8. The Import Word Document dialog box offers the same formatting
choices as are available when pasting.

Importing a Word document like this produces exactly the same result as copying and past-
ing, but it has the advantage that you don’t need to open the Word document to bring its
contents into a web page. The disadvantage is that it’s an all-or-nothing option: you get the
whole document. If you know what the document contains—and you want it in its
entirety—this is a useful alternative to copying and pasting. It’s also important to remember
that the results are only as good as the original formatting of the document. Sometimes it’s
better to select Text only and format the content yourself inside Dreamweaver.

Inserting images
Images are inserted into HTML with the tag, which takes attributes describing the
source of the image file, its height and width, and alternate text for nonvisual browsers.
When you insert an image in either Design view or Code view, Dreamweaver takes care of
generating the necessary code. All you need to do is decide where the image should go.

Inserting images stored on your computer

There are several ways of inserting an image. Perhaps the simplest way, assuming the
image is already stored within your site, is to drag the image from either the Files or Assets
panel. You can also drag and drop images into the Document window (but not into the
Files panel) from Adobe Bridge, Windows Explorer, or Finder on a Mac.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

112

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dragging and dropping images
Dreamweaver inserts the image wherever you drop it. The Files panel is fine if you know
the file name of the image you want, but if you want to see a thumbnail preview, open the
Assets panel (it’s grouped with the Files panel in all preset workspace layouts or can be
opened from the Window menu).

As Figure 3-9 shows, the Assets panel sorts site assets into nine categories accessed by
clicking one of the icons in the left margin. In addition to showing a thumbnail preview of
an image, the panel displays its dimensions and size. If you decide to change the image
before inserting it, click the Edit button at the bottom right of the panel to launch your
default graphic design program.

If you have a lot of images or other assets, you can add them to your favorites by clicking
the Add to Favorites button at the bottom right of the panel or by right-clicking and select-
ing Add to Favorites from the context menu. Toggle between your favorites and the full set
by clicking the radio buttons at the top of the Assets panel.

As well as dragging and dropping an image from the Assets panel, you can click the Insert
button at the bottom left of the panel to insert the image wherever your cursor is located
in the Document window.

Selecting an image through the file system
The other way to insert images is through the Select Image Source dialog box (see Figure
3-10). To open this dialog box, select Insert ➤ Image, click the Image icon on the Common
tab of the Insert bar, or press Ctrl+Alt+I/Opt+Cmd+I. The Select Image Source dialog box
also displays a thumbnail preview of the image (on Windows, there’s a checkbox at the
bottom of the dialog box that lets you turn this off), as well as its dimensions and file size.

Figure 3-9. The Assets panel
gives a quick preview of assets
such as images and colors.

CREATING A WEB PAGE AND ADDING CONTENT

113

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 3-10. The Select Image Source dialog box also lets you see a preview of the image
before inserting it.

If you’re using the default setting of document-relative links (see Chapter 2), Dreamweaver
displays the following alert when you try to insert an image in a page that hasn’t yet been
saved.

This is simply a gentle reminder that Dreamweaver is a site-based program. It needs to
know where the page is located in your site before it can insert the correct value in the
 tag’s src attribute. When you click OK, Dreamweaver still inserts the image in the
page, but creates a tag that looks like this:

<img src="file:///C|/vhosts/dwcs4/images/graffiti.jpg" width="300" ➥

height="216" />

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

114

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As soon as you save the page in a defined site, Dreamweaver changes the src attribute to
a valid relative link, like this:

Provided that you always create web pages within a defined site, you can safely ignore this
alert. The alert is displayed only for links relative to the current document; it doesn’t apply
to site-root-relative links.

Adding alternate text
Before Dreamweaver inserts the image into the page, it displays the Image Tag Accessibility
Attributes dialog box, as shown in Figure 3-11. This prompts you to add alternate text to
describe the image. This text is inserted into the tag’s alt attribute for the benefit
of visually impaired people using assistive technology to surf the Web, as well as those who
prefer to turn off images or use text browsers.

Figure 3-11. Dreamweaver automatically prompts you to insert alternate
text for images.

According to the W3C specifications, the alt attribute is required (not optional). However,
alternate text should be used only for images that convey meaning. Don’t use it for purely
decorative images or transparent images designed to space apart page elements (spacers).
Imagine the frustration of a blind person visiting your page with a screen reader listening to
an endless recitation of “spacer gif”! To comply with the W3C specifications without driving
others mad, activate the drop-down menu for Alternate text and select <empty>. This inserts
an empty alt attribute (alt="") in the tag.

A common question in the Dreamweaver forum (http://www.adobe.com/support/
forums/) is “Why don’t my images display when I upload the page to my website? They
look fine in Design view.” In the vast majority of cases, it’s because the src attribute
begins with file:///. In other words, it’s still pointing to the location of the image on
the designer’s local computer. This usually happens because the designer has failed to
define a site in Dreamweaver, and then uploaded the pages independently. Site defini-
tion is the key to maintaining your sanity with Dreamweaver.

CREATING A WEB PAGE AND ADDING CONTENT

115

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Long description field is for the URL to a more detailed description of the image. This
is optional, and it is normally used only for complex images, such as bar charts or graphs.

After filling in the Alternate text field (and the Long description field, if necessary), click OK
to insert the image. If you click Cancel, the image is still inserted, but the alternate text and
long description are ignored.

A link at the bottom of the Image Tag Accessibility Attributes dialog box takes you to the
Accessibility category of the Preferences panel, where you can turn off this and other
accessibility prompts. I don’t recommend doing so, as most industrialized countries now
impose a legal obligation on website designers to make their sites accessible to people
with disabilities.

Text and image alignment
When you insert an image on a page that already contains text, the text does not auto-
matically flow around the image. Instead, the text is aligned with the bottom of the image,
as shown in Figure 3-12. This should come as no surprise if you’re familiar with HTML. In
the past, it was common practice to use the align, hspace, and vspace attributes in the
 tag to solve this problem. Dreamweaver CS4 still lets you insert these attributes, but
CSS offers a much more versatile solution, as you’ll see in Chapter 4.

Figure 3-12. Text does not flow automatically around images.

Inserting remote images

As well as using images stored in your own site, the src attribute of the tag accepts
the URL of an image on another website. To insert a remote image, select the Image button

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

116

http://lib.ommolketab.ir
http//lib.ommolketab.ir

on the Insert bar, use Insert ➤ Image, or press Ctrl+Alt+I/Opt/Cmd+I. In the Select Image
Source dialog box, delete any content in the URL field and replace it with the URL of the
remote file, as shown in the following screenshot (use the full URL beginning with http://).

When you click OK, Dreamweaver presents you with the Image Tag Accessibility Attributes
dialog box, and then inserts the tag for the remote image. By default, if you are con-
nected to the Internet, Dreamweaver accesses the remote image, inserts the correct
height and width dimensions in the tag, and displays the image in Design view.
Obviously, this doesn’t happen if Dreamweaver can’t access the remote file for any reason.
In that case, it creates the tag without the height and width attributes, and displays
a broken-image icon in Design view.

On a slow connection or a page that uses a large number of remote files, this can slow
Dreamweaver to a crawl. If you experience performance problems, turn off Display External
Files on the View menu. Like many options on Dreamweaver menus, a check mark along-
side the menu item indicates that the option is enabled. Clicking the menu item toggles
the option on and off.

Inserting placeholder images

Sometimes, you don’t have the images available when laying out a page. In this case, use a
placeholder. Using an image placeholder has the advantage that you can specify its size
and other attributes in a single operation. It also prevents Dreamweaver from displaying a
broken-image icon, as happens if you use the name of a nonexistent image, Position your
cursor in the Document window where you want the image to be inserted and select
Image Placeholder from the Common tab of the Insert bar, as shown in Figure 3-13 (click
the down arrow to the right of the Image icon to open the submenu). Alternatively, select
Insert ➤ Image Objects ➤ Image Placeholder.

Including remote images in a web page is a practice known as inline linking or
hotlinking (see http://en.wikipedia.org/wiki/Inline_linking). You should do it
only with the permission of the site whose image you’re using. Linking to an image with-
out permission could land you in legal hot water over breach of copyright. It could also
leave you with egg on your face. When the owner of a site discovers images are being
linked to without permission, it’s quite common to replace them with one that reads
“This image was stolen from . . .”

CREATING A WEB PAGE AND ADDING CONTENT

117

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This presents you with a dialog box with the following fields:

Name: This is simply a name to identify the placeholder. If you enter a name here,
it’s used as both the name and id attributes of the tag, so the name must
begin with a letter and it cannot contain any spaces or special characters. If you
leave this field blank, Dreamweaver inserts name="", but no id attribute.

Width: The width of the placeholder in pixels. The default is 32.

Height: The height of the placeholder in pixels. The default is 32.

Color: This inserts an inline CSS style attribute for background-color. Its main pur-
pose is to make the placeholder stand out or blend in with the rest of your page.
You can use either the color picker in the dialog box or enter a hexadecimal num-
ber in the text field. If you don’t choose a color, Dreamweaver doesn’t insert a
style attribute, but displays the placeholder as light gray in Design view.

Alternate text: This is for the alt attribute. If you leave this blank, Dreamweaver
inserts alt="" in the tag.

When you click OK, a solid block of color is placed in Design view, displaying the name and
dimensions of the placeholder, as shown in Figure 3-14.

Figure 3-13.
Using an image placeholder is

convenient when you don’t
have access to the original.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

118

Figure 3-14.
The Property inspector for
an image placeholder has

options to create a new image
or link to an existing one.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you’re ready to replace the placeholder with a real image, click the placeholder in
Design view to reveal its details in the Property inspector (see Figure 3-14). You can then
either create a new image or replace the placeholder with an existing one, as follows:

Create a new image: Click the Create button in the center of the Property inspec-
tor. This launches Adobe Fireworks (assuming you have it installed) with the can-
vas automatically sized to the same dimensions as the placeholder. Click the Done
button at the top left of the Fireworks workspace when you have finished, and fol-
low the instructions to save the image. This is a Fireworks-only operation. It won’t
launch Photoshop, even if Photoshop is your primary image editor. However,
Photoshop users get their day in the sun with Smart Objects, which are covered in
the next section.

Replace the placeholder with an existing image: Type the path to the image in
the Src field of the Property inspector. Alternatively, click the folder icon to the
right of the Src field, and navigate to the image in the file system. You can also use
the Point to File tool just to the left of the folder icon. As shown in Figure 3-15, you
drag the icon shaped like a crosshair sight to the name of the image file in the
Files panel. Release the mouse button when the correct file is highlighted, and
Dreamweaver inserts the correct path to the image in the Src field of the Property
inspector.

Figure 3-15. The Point to File tool offers a quick way of linking to a file in the Files panel.

Whichever method you choose to select the image, Dreamweaver replaces the place-
holder with the new image and automatically updates the height and width attributes to
the correct values.

Using Photoshop Smart Objects as images

A Smart Object is a web image, such as a .jpg or .gif file, that retains a link to the orig-
inal source file from which it was created. This makes it easy to edit and reoptimize the
web image. When working with a Smart Object, changes are made only to the web image,
leaving the original untouched. However, if you do make any changes to the original
Photoshop file, the Smart Object link simplifies updating the web image.

The inline style attribute for background-color is not removed from the tag
when you replace the placeholder. In most circumstances, this makes no difference, but
it could affect style rules embedded in the head of the document or an external style
sheet. To avoid any problems, delete the value in the Color field of the Property inspec-
tor before setting the Src field. This leaves an empty style attribute in the tag. It’s
redundant, but won’t do any harm.

CREATING A WEB PAGE AND ADDING CONTENT

119

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The concept of Smart Objects will be very familiar to designers migrating from Adobe
GoLive, which has now been discontinued. However, Smart Objects have been integrated
into Dreamweaver in a slightly different way from their treatment in GoLive. Moreover,
you can use Smart Objects only in conjunction with Photoshop. They do not work with any
other Creative Suite program or with PDF files.

Inserting a Photoshop Smart Object
There’s no need to open Photoshop to insert a Smart Object. You don’t even need
Photoshop installed. All that’s needed is the original image stored as a Photoshop .psd file.
Dreamweaver CS4 has all the necessary functionality to generate a .gif, .jpg, or .png file
from the Photoshop original. As Figure 3-16 shows, you can even make some adjustments
to the image that’s generated. However, don’t be fooled into thinking you get a free cut-
down version of Photoshop with Dreamweaver. You can’t edit the .psd file; that requires a
full version of Photoshop.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

120

Figure 3-16. The Image Preview dialog box lets you optimize and preview the web image before inserting it into
the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You insert a Smart Object in the same way as an ordinary image: by opening the Select
Image Source dialog box (click the Image icon on the Common tab of the Insert bar, select
Insert ➤ Image, or press Ctrl+Alt+I/Opt+Cmd+I). Navigate to the Photoshop .psd file that
you want to use as the original. If you want to practice using Smart Objects, use the
stroll_header.psd file in the examples/ch03 folder of the accompanying download files.

It can be anywhere on your file system; it doesn’t need to be in your site. However, the
location of the Photoshop original needs to remain constant for the Smart Object link to
work. You can also drag and drop a Photoshop .psd file from the Files panel if it’s stored
within your site.

When you have selected the Photoshop file, click OK (or Choose on a Mac). This opens the
Image Preview dialog box (see Figure 3-16). This is where you optimize the web image
before inserting it in the page. The dialog box has a large number of options, all of which
are described in detail if you click the Help button at the bottom left.

The preview window on the right side of the dialog box displays a flattened version of the
whole Photoshop file. Depending on the size of the original, you need to use the Pointer
and/or Zoom tools to view the entire image. The Zoom tool and magnification drop-down
menu alongside it work only in fixed steps. You can’t drag the Zoom tool around a specific
area to display it.

What looks like the Crop tool in Photoshop and other image editors determines the area
that will be exported from the .psd file. Like all settings in the Image Preview dialog box, it
affects only the web image. No changes are made to the Photoshop original.

The Optimize to size wizard is a rather crude device that sets a target size for the web image
in kilobytes. Figure 3-17 shows the result of selecting a target size of 10KB. What I actually
got was a 2.6KB image with heavy banding, or posterization (unacceptably abrupt
changes of color), and a severe loss of definition.

Figure 3-17. Using the Optimize to size wizard can
produce very unsatisfactory results.

You get much better results by using one of the options in the Saved settings drop-down
menu, or by selecting your own values for Format, Quality, and Smoothing. You can com-
pare different settings by selecting one, two, or four preview windows.

Once you have made your decision, click OK. Dreamweaver presents you with a dialog box
in which you specify the name of the web image and where you want to save it. After sav-
ing the image, Dreamweaver prompts you to set alternate text for the image, and finally
inserts it into the page.

CREATING A WEB PAGE AND ADDING CONTENT

121

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Updating a Smart Object
As an image file, a Photoshop Smart Object is no different from any other .jpg, .gif, or
.png file. What makes it special is the link that Dreamweaver preserves with the original
.psd file. This link is indicated in Design view by a Smart Object icon in the top-left corner
of the image, as shown in Figure 3-18.

Figure 3-18. The status of a Smart Object is indicated by the icon in the top-left corner of the
image.

Resizing a Smart Object

If you resize the image in Design view, the icon is superimposed with an exclama-
tion mark inside a yellow triangle, as shown alongside. If you hover your mouse
pointer over the icon, a tooltip explains that the dimensions of the image are dif-

ferent from the HTML width and height attributes. Right-click the image and select
Update From Original from the context menu. Alternatively, select the image, and choose
Modify ➤ Image ➤ Optimize.

Dreamweaver re-creates the web image from the Photoshop original, resampling it to get
the same optimization settings as before. This all takes place in the background, and when
the process is complete, the Smart Object icon reverts to the synchronized state shown in
Figure 3-18.

Reverting to the Smart Object’s original size

If you decide you don’t like the new size, right-click the Smart Object in Design view, and
select Reset Size To Original from the context menu. This resets the size, but does not resam-
ple the image. Right-click again, and select Update From Original from the context menu.

If you are upgrading from Dreamweaver CS3, this process is very similar to copying the
whole or part of a Photoshop file and pasting it into Dreamweaver. Copying and past-
ing still works in Dreamweaver CS4, and opens the same Image Preview dialog box.
However, copying and pasting from Photoshop does not create a Smart Object. To cre-
ate a Smart Object, you must import the .psd file through the Select Image Source dia-
log box or drag and drop it from the Files panel.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

122

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The context menu also has a Reset Size option. This reverts the image to the previous size.
In other words, it acts like an undo command. The same options are available through the
Modify ➤ Image submenu.

Changing the optimization settings of a Smart Object

You can change the quality and other optimization settings of a Smart Object image at any
time by right-clicking and selecting Optimize from the context menu. This reopens the
Image Preview dialog box shown in Figure 3-16. Any changes to the image are applied
immediately. Even if you change the export area, you don’t get the opportunity to assign it
a different name. As always, the changes are made only to the web image, not to the
Photoshop original.

Alternative ways to reopen the Image Preview dialog box are through the Modify ➤ Image
➤ Optimize menu option, or by clicking the Edit Image Settings button in the Property
inspector, as shown in the following screenshot.

CREATING A WEB PAGE AND ADDING CONTENT

123

3

Editing the original image

If you decide to make changes to the Photoshop original (for example, to capitalize the
initial letter of along in the example I have been using), select the Smart Object in
Dreamweaver and click the Edit button in the Property inspector as shown in the preced-
ing screenshot. Alternatively, select Modify ➤ Image ➤ Edit With ➤ Photoshop. Of course,
you can also just open the .psd file directly in Photoshop.

After you have made the changes, save the .psd file. The Smart Object icon in
Dreamweaver changes to indicate that the Smart Object is out of sync with the
original. The changed icon is shown in the screenshot alongside, but the differ-

ence might be difficult to make out in the black-and-white image. Like the regular Smart
Object icon, it consists of two arrows in a circle, but instead of both arrows being green,
the bottom one is deep red.

If you don’t have Photoshop installed, Dreamweaver displays a message saying it can’t
find a valid editor. When you click OK to dismiss the message, you’re taken to the File
Types/Editors category of the Preferences panel, where you can select another graphics
editor to handle .psd files. However, editing a .psd file in another program could result
in losing Photoshop-specific data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Changing the Photoshop original does not automatically update Smart Objects in
Dreamweaver. This gives you ultimate control over whether to update the web image. To
bring the web image into sync with the Photoshop original, right-click and choose Update
From Original or use the main menu option: Modify ➤ Image ➤ Update From Original.

Updating Smart Objects from the Assets panel

If you use a Smart Object in more than one page in a site, you can update all instances
simultaneously by selecting the image in the Assets panel and updating it there. The menu
options are the same as described in the previous sections.

Inserting Flash and Flex movies

Inserting a Flash or Flex movie into a web page is very similar to inserting an image.
However, the underlying code is very different. There are also important differences from
the way previous versions of Dreamweaver handled these files.

The first change is relatively minor. The Media submenus of the Insert menu and Common
tab of the Insert bar no longer refer to Flash, but to SWF. This is because movies made
in Flash (http://www.adobe.com/products/flash/) and Flex (http://www.adobe.com/
products/flex/) both use the SWF format and run in the Flash Player browser plugin.

The other changes reflect developments on the Web. In 2006, a dispute over patents
between Microsoft and a company called Eolas resulted in changes to Internet Explorer
that forced users to click embedded objects, including Flash movies, to activate them.
Dreamweaver CS3 got around this problem by using a JavaScript file to load Flash. Since
Microsoft and Eolas have settled their dispute, this is no longer necessary. However,
instead of reverting to the old method of embedding SWF files, Dreamweaver CS4 adopts
a new approach for the following reasons:

It avoids using the <embed> tag, which is not part of the HTML standard.

It prompts users to upgrade their version of Flash Player if it’s too old to support
features used by the SWF file. This is particularly important for movies created in
Flex, which require a minimum of Flash Player 9.

To insert a SWF, position your cursor in the Document window where you want the movie
to be, and select SWF from the Media submenu of the Insert menu or the Common tab of

Historically, SWF stands for both Shockwave Flash and Small Web Format. It’s normally
pronounced “swiff.”

Smart Objects rely on Design Notes that Dreamweaver creates in the folder where you
save the web image. Design Notes are stored in a subfolder called _notes, which is nor-
mally hidden in the Files panel, but which can be seen in Windows Explorer or Finder on
a Mac. If you delete the _notes folder or its contents, the Smart Object link with the
Photoshop original is destroyed.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

124

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the Insert bar. For keyboard shortcut enthusiasts, the secret code is Ctrl+Alt+F/
Opt+Cmd+F. Navigate to the SWF file in the Select File dialog box and click OK. (The
images folder of the download files contains a Flash movie called fireworks.swf, which
you can use for practice.) This presents you with the Object Tag Accessibility Attributes dia-
log box, where you can enter a title, access key, and tab index for the movie. All items are
optional, but it’s a good idea to give the movie at least a title attribute. As with images,
clicking Cancel doesn’t stop the movie from being inserted into the page; all it does is
ignore the accessibility attributes.

By default, Dreamweaver displays a placeholder for the SWF, as shown in Figure 3-19. To
see what the movie looks like in the context of the page, select the placeholder in Design
view and click the Play button at the bottom right of the Property inspector. This con-
sumes processor power, so click the button again (its label now reads Stop) to return to
the placeholder when you no longer need to view the movie.

Figure 3-19. Dreamweaver displays a placeholder for a SWF, but you can view it by clicking the Play
button in the Property inspector.

As you can see in Figure 3-19, the Property inspector has a lot of options for controlling
the settings of Flash and Flex movies. At the top left, it displays the file type and size.

CREATING A WEB PAGE AND ADDING CONTENT

125

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Immediately below is an unlabeled field that displays the id attribute of the <object> tag.
Dreamweaver automatically assigns FlashID as the value for the first SWF object.
Subsequent SWF movies inserted in the same page are numbered FlashID2, FlashID3,
and so on. The field is editable, so you can enter your own choice of id instead. Most of
the other options are self-explanatory, but I’ll describe each one briefly.

W and H: The movie’s width and height in pixels. These are filled in automatically
when you insert the SWF object.

File: The pathname of the SWF. The Point to File tool and folder icons work the same
way as for images.

Src: This field is for you to enter the location of the FLA file from which a Flash
movie was created.

Bg: This inserts a parameter in the <object> tag to set the background color for
the SWF.

Edit: This opens the movie’s FLA file for editing. To use this option, you must first
enter the location of the file in the Src field.

Class: This lets you apply a CSS class to the <object> tag. This is covered in the next
chapter.

Loop: This is selected by default. Deselect it if you don’t want the movie to run as a
continuous loop.

Autoplay: This is selected by default. Deselect it if you don’t want the movie to run
automatically when the page is first loaded.

V space and H space: These insert the deprecated vspace and hspace attributes
into the <object> tag to add vertical and horizontal space around the movie. CSS
offers a more versatile solution, as you’ll see in Chapter 4.

Quality: This controls the look of the movie during playback. Choose from the fol-
lowing settings:

High: This is the default setting. It gives the best quality, but requires a lot of
processor power.

Low: Select this option if speed is more important than quality.

Auto Low: This prioritizes speed, but improves quality when possible.

Auto High: This gives equal priority to both speed and appearance, but sacrifices
quality if more speed is required.

Scale: This determines how the movie fits into the dimensions set in width and
height.

Align: This inserts the deprecated align attribute in the <object> tag. Use CSS
instead, as explained in the next chapter.

Wmode: This determines how the SWF movie interacts with drop-down menus and
other elements controlled by JavaScript. Choose from the following options:

Opaque: This is the default. It allows drop-down menus to display correctly over
the movie. It gives the movie an opaque background so that elements with a
lower z-index are hidden behind. (z-index is a CSS property that controls the
stacking order of positioned elements.)

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

126

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Transparent: If the SWF movie has transparent elements, this allows elements
with a lower z-index to show through behind it.

Window: This removes the wmode parameter from the <object> tag. Select this
option if the movie is not affected by dynamic elements, such as drop-down
menus. It is more efficient and user-friendly to screen readers for the visually
impaired.

Parameters: This opens a dialog box to set extra parameters expected by the movie.

Dreamweaver places a bright blue tab with an open-eye icon at the top left of the SWF
placeholder. Click the icon to display the alternate content that will appear when a user
accesses the page with a browser using an old version of Flash Player, as shown in
Figure 3-20. You can edit or delete this content however you like.

Figure 3-20. Dreamweaver inserts a customizable message to be displayed when an old version of
Flash Player is detected.

Notice that the image linking to the Flash Player download page is surrounded by a blue
border because it is used as a link. Older versions of Dreamweaver eliminated the border
by inserting border="0" in the tag, but this is deprecated, and you are now
expected to create a CSS rule to eliminate it yourself. I’ll describe how to do this in the
“Using images as links” section later in the chapter.

To close the alternate content and restore the SWF placeholder in Design view, click the
eye icon again. If you can’t see the blue tab and icon, move your mouse pointer inside the
area containing the alternate content. As soon as the mouse pointer passes over the dot-
ted line surrounding the alternate content in Design view, it triggers the reappearance of
the tab and a blue border around the alternate content. If the tab and blue border fail to
reappear, make sure there’s a check mark alongside Invisible Elements in the View ➤ Visual
Aids submenu.

The first time you save a page containing a SWF, you should see an alert telling you that
expressInstall.swf and swfobject_modified.js have been copied to the Scripts
folder in your site. Dreamweaver creates the Scripts folder if it doesn’t already exist.
These files are shared by all pages that include SWF files, so this happens only once in
each site.

CREATING A WEB PAGE AND ADDING CONTENT

127

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To delete a SWF movie from a page, select the blue tab at the top left of the placeholder
and press Delete. This removes all the associated code cleanly from the page.

If your page generates JavaScript errors after removing a SWF, open Code view and see if
you can locate a block of JavaScript like this at the bottom of the page:

<script type="text/javascript">
<!--
swfobject.registerObject("FlashID");
//-->
</script>

If you changed the id attribute of the SWF, FlashID will be replaced by the value you
used. Remove the entire <script> block, and the errors should be eliminated.

Editing Dreamweaver CS3 pages that contain
SWF movies

Dreamweaver CS3 created completely different code for Flash or Flex movies. Dream-
weaver CS4 cannot convert the old script to the new markup. If you don’t need to make
any changes to the Flash movie’s settings, you can leave the code as it is. However, to make
any changes to the settings of a movie embedded using the old method, you must delete
the movie from the page and insert it again. Failure to do so results in the code being only
partially updated.

To remove a Flash movie embedded in a previous version of Dreamweaver, select the
movie placeholder in Design view and press Delete. Dreamweaver should remove the code
cleanly, ready for you to reinsert the movie. You should also remove the following line of
code from the <head> of the page, as it’s no longer needed:

<script src="../../Scripts/AC_RunActiveContent.js" type="text/ ➥

javascript"></script>

Adding structure to your page content
In the past, adding structure to a web page meant creating a grid using tables and fitting
the content into table cells. Tables have the advantage of being easy to visualize. They’re
flexible, too, because table rows and columns stretch and contract to accommodate
the content placed inside them. However, these advantages are heavily outweighed by the
problems created by table-based design.

When uploading your site to the remote server, don’t forget to upload
expressInstall.swf and swfobject_modified.js. SWF movies won’t be
displayed correctly without them.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

128

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using tables, anything but the simplest of designs normally involves nesting tables inside
one another, making the page impossible for disabled people to navigate with assistive
technology. Equally important, from the design point of view, complex table structures are
very fragile. Adding a new element to the page can bring the structure tumbling down like
a house of cards. Previous versions of Dreamweaver attempted to solve this problem with
Layout mode, which let you lay out your page in Design view rather like a desktop pub-
lisher. Although Layout mode usually produced visually pleasing results, the underlying
HTML code it generated was a horrendous tangle that was impossible to edit and a serious
barrier to accessibility.

Another layout tool that attracted a lot of excitement was what Dreamweaver called lay-
ers. The term layer was dropped in Dreamweaver CS3 and replaced by AP Div. AP stands
for absolutely positioned, and is a much more accurate description because AP Divs use
CSS absolute positioning. The instant appeal of absolute positioning is that it makes web
design feel like desktop publishing. You can place elements on a page exactly where you
want them to be. Your page looks wonderful in Dreamweaver Design view. It might even
look good in a browser. But it all starts to fall apart if the browser window or text is
resized. A common question is “Why does my AP Div (layer) move when the window is
resized?” The answer is “It doesn’t.” What you see is an optical illusion. The absolutely
positioned element stays exactly where you put it in relation to its parent element (usually
the browser window). All other elements of the web page move with the flow of the doc-
ument. Although AP Divs have a useful role to play in website design, I strongly recom-
mend that you avoid them until you have a solid understanding of CSS and the rules of
positioning.

So what’s left if tables and AP Divs are to be avoided? Thanks to CSS, the possibilities are
endless. In Chapter 5, I’ll show you how to adapt one of Dreamweaver’s built-in CSS
layouts. The layouts are a good starting point for a new page, but to be able to use them
successfully, it’s important to understand the basics of page structure. If your page is struc-
tured logically, it’s easier to maintain and style with CSS.

As you saw earlier in the chapter, Dreamweaver automatically encloses text typed into
Design view with <p> (paragraph) tags when you press Enter/Return. You can also import
text from Microsoft Word or paste text from other applications, and Dreamweaver will
attempt to preserve the structure and formatting.

Text is normally structured using one or more of the following elements:

Paragraphs (<p>)

Headings (<h1> through <h6>)

Preformatted text (<pre>)

If you are upgrading from a previous version of Dreamweaver and can’t find Layout
mode, stop looking. It has been permanently removed from Dreamweaver CS4. Rather
than attempt to edit pages originally created with Layout mode, you should redesign
them from scratch.

CREATING A WEB PAGE AND ADDING CONTENT

129

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inline tags (for example, , , <code>, etc.)

Lists (, , or <dl>)

Block quotes (<blockquote>)

Tables (<table>)

There are five basic ways of adding these structural elements:

Through the HTML view of the Property inspector

Through the Text tab of the Insert bar (tables use the Common and Layout tabs)

Through the Format menu (tables use the Insert and Modify menus)

By using keyboard shortcuts (not available for all elements)

By typing the code directly into Code view

Typing the code directly needs no explanation. Refer to Chapter 1 for details of code hints
and auto-completion. You can also look up keyboard shortcuts on the relevant menus. The
following sections concentrate on using the Property inspector, the Insert bar, and menus.
Let’s begin by looking at changes to the Property inspector that might confuse newcomers
and experienced users alike.

Selecting the HTML view of the Property inspector

The Property inspector has two buttons labeled HTML and CSS on the left side. The top
screenshot in Figure 3-21 shows the HTML view, and the bottom screenshot shows the
CSS view. They look very similar, but their functions are completely different.

Figure 3-21. The HTML and CSS views of the Property inspector are easily confused.

The HTML view is primarily concerned with HTML markup, although the Class drop-down
menu and Page Properties button give some access to CSS. The CSS view is exclusively
devoted to CSS. The Bold and Italic buttons that are common to both views work in very
different ways. If you click the Bold button in the HTML view, Dreamweaver inserts
 tags in the underlying code. Clicking the same button in the CSS view launches

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

130

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the New Style Rule dialog box or opens an existing style rule for editing, depending on the
value displayed in the Targeted Rule drop-down menu.

Here, we’ll concentrate on using the HTML view to add structural elements.

Creating paragraphs, headings, and preformatted text

The Format drop-down menu at the top left of the HTML view of the Property inspector
(see Figure 3-21) adds structure to text by wrapping it in paragraph (<p>), heading (<h1>
through <h6>), or preformatted text (<pre>) tags. It also removes those tags when you
select None as the option.

To understand how the Format drop-down menu works, it’s a good idea to open Split view
and watch where tags are inserted or removed. It’s important to understand that the struc-
ture is not applied to selected text, but to the entire block where your cursor is currently
located. If your cursor is located inside a paragraph and you select Heading 2 from the
Format drop-down menu, the <p> tags are replaced by <h2> tags. If you select None, the
nearest pair of <p>, <h1> through <h6>, or <pre> tags is removed. No other tags are affected.

The Text tab of the Insert bar (see Figure 3-22) and the Paragraph Format submenu of the
Format menu work basically the same way. The Paragraph button on the Text tab of the
Insert bar is the fifth icon from the left. Note that the Insert bar offers only the first three
levels of headings (<h1> through <h3>), and has no option for removing tags once they
have been inserted (after all, it is the Insert bar).

Figure 3-22. The Text tab of the Insert bar adds structure to text elements.

When choosing headings, you should consider the meaning of the heading within the
structure of the page. Normally, pages should have only one main heading (<h1>).
Subsequent headings should be the next level down (<h2>). Less important subheads
after an <h2> should use <h3>. Don’t worry about the size of the heading when you first
structure the page. The size, color, and alignment can be fixed with CSS. Search engines
give more weight to well-structured documents, so don’t fall into the old-school habit
of using <h6> just because you want small text. You should rarely need more than <h1>,
<h2>, and <h3>.

The first time you launch Dreamweaver CS4, the HTML view of the Property inspector is
displayed by default. Thereafter, Dreamweaver always remembers your most recent
selection, so it’s important to be aware which view is displayed. The current selection is
indicated by its label on the left of the Property inspector being inset. Another visual
clue is that the CSS view does not have a Link field.

CREATING A WEB PAGE AND ADDING CONTENT

131

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding inline tags

Strictly speaking, making text bold or italic doesn’t alter the structure of the text, but I’m
covering it here because the HTML view of the Property inspector has buttons that insert
 and tags. They’re the first two of the group of icons immediately to the
right of the Class drop-down menu, as shown in the following screenshot.

Using the Bold and Italic buttons
The Bold and Italic buttons in the HTML view of the Property inspector work the same way
as in a word processor. If you click one of the buttons, nothing happens in Code view, but
as soon as you start typing, Dreamweaver inserts or tags. Click the button
again. The insertion point doesn’t move in Code view, but as soon as you start typing again,
it jumps outside the closing tag and reverts to normal text. You can also highlight a selec-
tion of text and wrap it in or tags.

The Bold and Italic buttons appear inset when inside bold or italic text. Selecting all or part
of the formatted text and clicking the button again removes the formatting from the
selection. Using these buttons is very versatile and intuitive.

The equivalent buttons on the Text tab of the Insert bar are much less versatile. They insert
 and tags, but cannot be used to remove bold or italic formatting.

Using the Format ➤ Style menu
The Style submenu of the Format menu offers a much wider range of inline tags, many of
which are designed to add structure to your document. As you can see in Figure 3-23, in

Immediately to the right of the Bold and Italic icons on the Insert bar are two others
labeled S and em, which also boldface and italicize text, respectively. The Dreamweaver
default is to use and tags in place of the presentational tags and
<i>. If you change the default in the General category of the Dreamweaver Preferences
panel, the Bold and Italic buttons insert and <i> tags.

Current best practice advocates the use of and because it’s more mean-
ingful to assistive technology for the visually impaired. However, this is a controversial
subject. Sometimes, you want to make text bold or italic simply to distinguish text from
its surrounding context. In such cases, it might be more meaningful to create a style
rule that sets the font-weight property to bold or font-style to italic. In other cases,
you can use special HTML tags, such as <cite> for book and magazine titles. Most
browsers render the <cite> tag as italic text.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

132

http://lib.ommolketab.ir
http//lib.ommolketab.ir

addition to Bold and Italic, this submenu offers less frequently used, but important tags
such as Code (<code>), Keyboard (<kbd>), and Citation (<cite>).

Figure 3-23. The Style submenu of the Format menu inserts both structural and presentational tags.

The Style submenu works in the same way as the Bold and Italic buttons in the HTML view
of the Property inspector. You can select an option, start typing, and select the option
again to insert the closing tag. Alternatively, you select an option to wrap highlighted text
in the inline tags, or remove the tags from a selection. The same submenu is accessible
from the context menu when you right-click in Design view.

Using Wrap Tag and Remove Tag
Yet another way to add inline tags is to highlight a section of text, right-click, and select
Wrap Tag from the context menu. This opens a mini window with the cursor inside an
empty tag and a pop-up menu of inline tags, as shown in the following screenshot.

CREATING A WEB PAGE AND ADDING CONTENT

133

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can either start typing or scroll down to find the tag you want to wrap around the
selected text. As you type, the pop-up menu automatically scrolls to the closest matching
tag. Once you reach the tag you want, double-click the name in the pop-up menu or press
Enter/Return to insert the name inside the empty tag. If you want to add any attributes
inside the tag, press the spacebar, and a list of appropriate attributes appears. Once you
have finished, press Enter/Return again to close the Wrap tag mini window and insert the
tag in the underlying code.

If you select a tag that would create invalid HTML code in the current context,
Dreamweaver displays an alert and discards any changes.

To remove a tag, insert your cursor anywhere inside a block of text in Design view and
right-click to bring up the context menu. The Remove Tag option on the context menu
identifies the closest pair of tags surrounding the position of your cursor. Select the
option, and the tags are removed cleanly from the underlying code. For example, take
the following text as it appears in Code view:

<p>Lorem ipsum <code>dolor</code> sit amet.</p>

If you place your cursor anywhere inside dolor in Design view, the context menu displays
Remove Tag <code>, and removes the <code> tags from the underlying code if you select
it. However, if your cursor is anywhere else in that sentence, the context menu displays
Remove Tag <p>, and removes the <p> tags if you select the option.

Creating lists

HTML creates three types of lists:

Unordered list: By default, browsers display each item as a bullet point. The list is
surrounded by tags, and each item is wrapped in tags. You can change
the bullet style or remove it completely with CSS.

The Remove Tag option is available only in Design view and the Tag selector. In Design
view, it always selects the closest pair of tags surrounding the current position of the
cursor. When used in the Tag selector, it removes the selected tag, but leaves its content
intact. It’s a very useful tool if you understand the underlying structure of the HTML
code in your page.

If you are upgrading from a previous version of Dreamweaver, Wrap Tag is the new
name context menus use for the Quick Tag Editor when you make a partial selection in
the Document window. If you select a complete tag in the Tag selector at the bottom of
the Document window, the context menu still refers to the Quick Tag Editor. Both work
exactly the same way. The reason for the different names is because Wrap Tag adds a
new tag around the current selection, while the Quick Tag Editor edits an existing tag;
for example, by adding a new attribute.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

134

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ordered list: By default, browsers prefix each item with a number, starting from 1.
The list is surrounded by tags and each item is wrapped in tags. The style
and starting point of the numbering can be controlled by CSS.

Definition list: This type of list is designed for a glossary, list of terms, or collection
of name/value pairs. The list is surrounded by <dl> tags; each term to be defined is
wrapped in <dt> tags; and the definitions are wrapped in <dd> tags. Most browsers
display the definitions indented one line below the preceding term. As always, this
can be changed by CSS.

Creating bullet points and numbered lists
The icons to the right of the Class drop-down menu in the HTML view of the Property
inspector create unordered and ordered lists—in other words, bullet points and num-
bered lists—as shown in the following screenshot.

The Unordered List and Ordered List buttons in the HTML view of the Property inspector
work just like the corresponding buttons in a word processor. Click the appropriate but-
ton, start typing, and your text appears as a bulleted or numbered list with a new item
added each time you press Enter/Return. When you have finished the list, press
Enter/Return, and click the list button again to exit the list. Alternatively, you can select
several paragraphs and convert them to a bulleted or numbered list by clicking the appro-
priate button.

To nest a list inside another, press Enter/Return to create the first item of the nested list,
and then click the Indent Text button (see the preceding screenshot). You can nest num-
bered lists inside bulleted lists and vice versa. Just click the Unordered List or Ordered List
button inside the first item of the nested list. To return to the main list, press Enter/Return
after the last item in the nested list, and click the Outdent Text button.

Creating unordered and ordered lists with the Text tag of the Insert bar or the List submenu
of the Format menu and Design view context menu works in the same way. The only dif-
ference is that you cannot use the Insert bar to nest lists.

List items in tags can contain paragraphs and other HTML block ele-
ments. Unfortunately, if you press Enter/Return inside a list, Dreamweaver
automatically assumes that you want to create the next item, even if
you are inside a paragraph. This is a known bug. The only way around it is
to fix the code manually in Code view.

CREATING A WEB PAGE AND ADDING CONTENT

135

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a definition list
To create a definition list, you need to use the Text tab of the Insert bar or one of the menu
options. Click the Definition List button on the Text tab of the Insert bar—it’s the sixth from
the right and labeled dl (see Figure 3-22 earlier in the chapter). When you start typing,
Dreamweaver wraps the text in the first <dt> tag. Press Enter/Return, and Dreamweaver
creates a <dd> tag in the underlying code and indents the next block of text. Each time you
press Enter/Return, Dreamweaver alternates between <dt> and <dd> tags, creating a list
that looks like the following screenshot in Split view (it’s in definition_list.html in the
exercises/ch03 folder of the download files):

To end a definition list, press Enter/Return after the last item. Then click the Outdent Text
button in the HTML view of the Property inspector. Alternatively, select Format ➤ Outdent,
or right-click in Design view and select List ➤ Outdent from the context menu.

Creating block quotes

The HTML specification (http://www.w3.org/TR/html401/struct/text.html#h-9.2.2)
describes the <blockquote> tag as being “for long quotations (block-level content).”
However, to distinguish long quotations from regular text, browsers have always indented
text inside <blockquote> tags. As a consequence, this has become one of the most abused
HTML elements, with <blockquote> tags sometimes nested several times within one
another simply to shift content from the left margin. In the days before CSS, this was
understandable. Now it’s both lazy and inefficient (adjusting margins with CSS is covered
in the next two chapters).

The Text tab of the Insert bar also has buttons for , <dt>, and <dd> tags. Do not use
these in Design view, as they simply insert tags in the underlying code. They do not con-
vert a <dt> element, for example, to a <dd> one. To do that, you need to use the Remove
Tag option from the Design view context menu, as described earlier. Then select the text
you want to wrap in <dd> tags and click the button in the Insert bar. These three buttons
are designed primarily for use in Code view.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

136

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The reason for this mini history lesson is the confusing way Dreamweaver has imple-
mented the creation of block quotes. Everything is based on the now outdated assumption
that the <blockquote> tag should be used to indent text. When not used in connection
with a list, the Indent Text button in the HTML view of the Property inspector inserts a pair
of <blockquote> tags in the underlying code. If your cursor is inside text wrapped in
<blockquote> tags, the Outdent Text button removes the <blockquote> tags. The same
applies to the Indent and Outdent options on the Format menu.

Now here’s where it gets really confusing. The sixth icon from the left on the Text
tab of the Insert bar (shown alongside) displays a tooltip labeled Block Quote.
However, if your cursor in the underlying code is inside any sort of list, instead of

inserting <blockquote> tags, it creates a nested list.

The moral of this tale is to avoid using <blockquote> unless the structure of your text jus-
tifies it, and check in Code view or Split view that the intended code has been inserted.
This mess really needs to be cleaned up in the next version of Dreamweaver.

Using tables

How tables should be used in web pages is the subject of endless acrimonious debate,
often of a quasi religious nature. This is what the HTML specification (http://www.w3.org/
TR/html401/struct/tables.html) says (in part): “The HTML table model allows authors to
arrange data—text, preformatted text, images, links, forms, form fields, other tables,
etc.—into rows and columns of cells. . . . Tables should not be used purely as a means to
layout document content as this may present problems when rendering to non-visual
media. Additionally, when used with graphics, these tables may force users to scroll hori-
zontally to view a table designed on a system with a larger display. To minimize these prob-
lems, authors should use style sheets to control layout rather than tables.”

These days, it’s considered best practice to use tables
purely to present data that needs to be laid out in rows
and columns. There are other circumstances where the
grid pattern created by a table is useful—for example, the
display of thumbnail images. Regardless of what you use
tables for, they’re easy to insert and edit in Dreamweaver.

Inserting tables
To insert a table in a page, position your cursor
where you want the table to begin and click
the Table icon (shown alongside) in either the

Common or Layout tab of the Insert bar. Alternatively,
select Insert ➤ Table or press Ctrl+Alt+T/Opt+Cmd+T.
This opens the Table dialog box, as shown in Figure 3-24.

CREATING A WEB PAGE AND ADDING CONTENT

137

3

Figure 3-24. The Table dialog box lets you specify the
basic dimensions of a table.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The dialog box offers the following options:

Rows and Columns: Enter the number of rows and columns you want in the table.
You can add more columns or rows or remove them later.

Table width: You can set the width either in pixels or as a percentage. If you don’t
want to specify a width, delete the value in this field and leave it blank.

Border thickness: This sets the border attribute in the opening <table> tag and
applies the same border thickness to both the table and all table cells. CSS gives
you greater control over table and cell borders. Leave this field blank to remove all
borders or if you want to use CSS.

Cell padding: This sets the cellpadding attribute in the opening <table> tag and
applies the same amount of internal padding around all sides of every cell. For
finer control, leave this field blank and use CSS instead.

Cell spacing: This sets the cellspacing attribute in the opening <table> tag and
applies the same amount of spacing on all sides between table cells.

Header: This controls the use of table header <th> cells and the scope attribute to
indicate whether the header applies to a table row or column. Visual browsers nor-
mally display text in <th> cells bold and centered. The scope attribute makes it eas-
ier for visually impaired people to navigate the table with a screen reader. Choose
one of the four options: None, Left, Top, or Both.

Caption: If you want to give the table a caption, enter the text in this field. By
default, the caption is displayed above the table, but you can use CSS to move it to
the bottom.

Summary: This is for the benefit of screen readers for the visually impaired. Any
text entered here is read by the screen reader, but does not appear on the screen.

When you click OK, Dreamweaver creates the table skeleton and inserts a nonbreaking
space () in each cell in the underlying code. This prevents empty cells from looking
odd in a browser. As soon as you insert content into the cell, Dreamweaver normally
deletes the . However, if you find text misaligned in a table cell, it’s a good idea to
check the underlying code and remove the manually, if necessary.

If you left Table width blank in the Table dialog box and find it difficult to position your cur-
sor inside table cells, select the Expanded button on the left of the Layout tab of the Insert
bar. Alternatively, select View ➤ Table Mode ➤ Expanded Tables Mode or press Alt+F6/
Opt+F6. This expands the table cells in Design view to make them easier to edit; it doesn’t
affect the underlying code or how the table will be rendered in a browser. Once you have
inserted content into the table, click the exit link at the top of the Document window or
select the Standard button on the Layout tab of the Insert bar to collapse the table to its
normal shape and size.

Editing tables
Once you have inserted a table, you can change its basic properties by selecting the table
in Design view and using the Property inspector. To select the table, click one of its edges
in Design view. If you find this difficult, the surefire way of selecting a table is to click
inside any cell, and then select <table> from the Tag selector at the bottom of the

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

138

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Document window. Figure 3-25 shows the options available in the Property inspector
when a table has been selected.

Figure 3-25. You can change the basic structure of a table in the Property inspector.

Most of the options are the same as in the Table dialog box. The blank field on the left of
the Property inspector is where you can enter an id attribute for the table. If style rules
have been created, a list of unused IDs can be accessed as a drop-down menu in this field
(IDs must be unique, so IDs that have been assigned to other elements are not listed).

If you increase the number of rows or columns in the Property inspector, they are added
to the bottom and right of the table, respectively. If you reduce the number, they are
removed from the bottom and right, and any content in them is deleted.

The Align drop-down menu at the top right inserts the deprecated align attribute in the
opening <table> tag to align the table left, right, or center of its parent element. Best
practice is to leave this at Default (left aligned) and use CSS to position the table.

The four icons at the bottom left of the Property inspector remove the height and width
attributes from all table cells and convert widths between pixels and percentages. You can
identify their roles from the tooltips displayed when you hover your mouse pointer over
each one.

The Property inspector changes when you put your cursor inside a table cell or select just
part of a table. As Figure 3-26 shows, the top half of the Property inspector displays the
CSS or HTML view, depending on which button is selected on the left, and the bottom
half contains options related to table cells.

Figure 3-26. The Property inspector for table cells has both HTML and CSS views.

The Fireworks icon and Src field grayed out at the bottom center in Figure 3-25 are
ghosts from the past. Several deprecated table attributes have been removed from the
Property inspector since the last version. This icon and field somehow got left behind,
but both are disabled and serve no purpose.

CREATING A WEB PAGE AND ADDING CONTENT

139

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The top half applies to content inside the cell; the bottom half applies to the selected
cell(s). Most of the options in the bottom half insert deprecated attributes (horizontal and
vertical alignment, width, height, no text wrap, and background color). These values
should normally be set through CSS, rather than using the Property inspector.

The useful options in the Property inspector for table cells are the Header checkbox, which
toggles the selected cell(s) between using <th> and <td> tags, and the two icons at the
bottom left, which merge and split cells. In Figure 3-26, the icon that merges cells using
rowspan and colspan attributes is grayed out because it is active only when more than one
cell is selected in Design view. Conversely, the split icon is active only when a single cell is
selected. When you click it, the Split Cell dialog box appears, asking whether you want to
split the cell into columns or rows and how many to create.

Inserting and deleting rows and columns accurately
Using the Rows and Cols fields of the Property inspector to increase or decrease the num-
ber of rows and columns is a very crude measure, as you get no choice where the rows or
columns are added or deleted.

A quick way to add a single row or column is to use the Layout tab of the Insert bar. As
shown in Figure 3-27, the Layout tab has four buttons to insert a row or column on a spe-
cific side of the current insertion point.

Figure 3-27. The Layout tab of the Insert bar has options for inserting rows and columns.

Position your cursor inside a table cell and select the appropriate button. And that’s it—
you’re done.

If you prefer working with menu options, you can also insert a single row or column using
the Table submenu of the Modify menu and Design view context menu. Insert Row adds a
new row below the current one. Insert Column adds a new column to the left of the cur-
rent one.

Menu options for merging and splitting cells also exist on the Table submenus of the
Modify menu and the Design view context menu. They are labeled Decrease and Increase
Column/Row Span. However, they merge or split only one row or column at a time and
are quite difficult to master. It’s much simpler to select the target cells in Design view and
use the Property inspector. Table-based layout relies heavily on merging and splitting
cells, which can lead to a complex and unstable structure. When tables are used for dis-
playing data, the need for merging and splitting cells is greatly reduced.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

140

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To add more than one row or column in a single operation, select Modify ➤ Table ➤ Insert
Rows or Columns (the same option is available on the Table submenu of the Design view
context menu). This opens the Insert Rows or Columns dialog box, which lets you specify
whether to insert rows or columns, how many, and on which side in relation to the
current cell.

Selecting table cells, rows, and columns
The ability to select cells, rows, and columns is important for several reasons. You may
need to select these areas when you’re applying styles, editing tables, and applying PHP
server behaviors, such as Repeat Region.

To select a single cell, position your cursor inside the cell and select <td> (or <th> if it’s a
header cell) from the Tag selector at the bottom of the Document window. Dreamweaver
displays a thick border around the cell to indicate that it’s selected.

To select one or more cells at the same time, hold down the Ctrl/Cmd key and click inside
each cell. Cells selected this way can be in any part of the table; they do not need to be
contiguous (you might want to do this to apply the same class to individual cells). To
select a block of contiguous cells, you can also hold down the mouse button and drag
across the cells.

To select a single row, the quickest and most accurate way to do it is to position your cur-
sor inside a cell in the target row, and then select <tr> from the Tag selector at the bottom
of the Document window. An alternative way to select a row is to position your mouse
pointer over the left of the target row until it changes to an arrow, as shown in the left
screenshot of Figure 3-28. Click once to select the whole row. To select more than one
row, hold down the Ctrl/Cmd key while selecting each subsequent row.

Figure 3-28. The mouse pointer changes to an arrow indicating that
you can select the complete row or column.

You select columns the same way, by positioning your mouse pointer at the top of the tar-
get column until it changes into an arrow, as shown in the right screenshot of Figure 3-28.
Use the Ctrl/Cmd key to select more than one column.

Selecting rows accurately is very important when applying the Repeat Region server
behavior. A common mistake is to drag to select all the cells in the row. This selects only
the cells (the <td> or <th> tags) and not the row (the surrounding <tr> tags), produc-
ing unexpected results. Even if you spend most of your time in Design view, you should
always be aware of what’s happening in the underlying HTML code. Otherwise, your
pages are likely to be difficult to maintain.

CREATING A WEB PAGE AND ADDING CONTENT

141

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing data tables from Microsoft Excel (Windows only)
In the Windows version of Dreamweaver, you can import data tables directly from
Microsoft Excel spreadsheets by selecting File ➤ Import ➤ Excel Document. Dreamweaver
CS4 handles both .xlsx and .xls formats (you can experiment with weather.xslx and
weather.xsl in the examples/ch03 folder of the download files). The options in the
Import Excel Document dialog box are the same as for importing a Microsoft Word docu-
ment (see Figure 3-8 earlier in the chapter). However, Dreamweaver doesn’t preserve any
formatting other than the table structure (if you select Text only, you just get the raw data).

The problem with importing data directly using this method is that Dreamweaver is inca-
pable of handling multiple worksheets. You get only the data from the worksheet that was
selected when the Excel document was last closed. Also, Dreamweaver has a habit of
adding a large number of empty rows at the bottom of the table. You get much better
results by copying and pasting from a spreadsheet. You get exactly the data you want, and
Dreamweaver preserves the table structure.

Importing data from a CSV file
A common way of exporting data from spreadsheets and databases is as comma-separated
values in a .csv file. The examples/ch03 folder of the download files contains celsius.csv
and fahrenheit.csv, which contain average weather data for London and the southeast of
England, formatted like this:

Month,Max Temp °C,Min Temp °C,Sun (hours),Days of Rainfall >= 1mm
Jan,7.2,1.5,54.6,12.8
Feb,7.5,1.2,73.0,9.7
Mar,10.1,2.8,111.0,11.0

You can import this sort of data and create a table from it by clicking the Import
Tabular Data icon (shown alongside) on the Data tab of the Insert bar (it’s the first
icon on the left). Alternatively, select File ➤ Import ➤ Tabular Data or Insert ➤ Table

Objects ➤ Import Tabular Data. This opens a dialog box that asks you to select the data file
and delimiter (the character used to separate each item of data). It also has basic format-
ting options for the table that will be built from the data.

Organizing content into a logical structure

The reason tables became the standard way of laying out web pages is because they cre-
ate a grid that helps you organize your page in a logical structure. The following illustra-
tion shows a very simple, yet typical, layout for a web page. In terms of a table, it consists

You can also export data from an HTML table to a CSV file. Insert your cursor in any
table cell, and select File ➤ Export ➤ Table. Dreamweaver prompts you to select the
character you want to use as a delimiter and the type of line breaks (Windows, Mac, or
Unix). Click Export and then choose a name for the CSV file and where to save it. This
can be very useful for transferring data from a web page to a database.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

142

http://lib.ommolketab.ir
http//lib.ommolketab.ir

of four rows and two columns. The cells in the first two rows and the final row are merged
so they spread across the full width of the page.

The problem with table-based layout is that designers frequently want another grid within
each section, and that’s when things start to become really complicated. You either need
to nest tables within individual cells or build one large table with a complex pattern of
merged rows and columns. Before long, it becomes a rat’s nest of tags that only the origi-
nal designer has any hope of understanding. Often, it defeats even the person who built it
in the first place.

In spite of the problems, tables were the only option for a long time. CSS first made an
appearance in 1996, but browser support was very poor. Although browser support is still
not perfect, CSS is now considered the standard way to construct and style pages. Instead
of using table cells as a grid, your page content needs to be organized into logical blocks.
The main tool for this is the <div> tag.

Grouping related content with <div> tags
A lot of misunderstanding surrounds <div> tags as a result of what earlier versions of
Dreamweaver called layers. A layer was an absolutely positioned <div>. So, while it’s true
that every layer was a <div>, the converse is not true: a <div> is not a layer.

So what is a <div>? The HTML specification (http://www.w3.org/TR/html401/struct/
global.html#edef-DIV) says that a <div> is “a generic mechanism for adding structure to
documents” that defines content to be block-level, but imposes “no other presentational
idioms.” Translating that into language that’s more friendly to ordinary human beings, a
<div> is a simple tool for grouping elements of a page that you want to keep together.
Moreover, it doesn’t have any default styles.

HTML treats every element on a page as being one of the following types:

Block-level: By default, a block-level element is always displayed on a new line,
and occupies the full width of available horizontal space. Examples of block-level
elements are headings, paragraphs, and tables. Unless you use CSS to change the
default behavior, two block-level elements cannot appear side by side.

CREATING A WEB PAGE AND ADDING CONTENT

143

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inline: As long as there is enough room, an inline element appears alongside what-
ever precedes it. Examples of inline elements are and tags. Images
are also treated as inline elements.

Many block-level elements have default styles. For example, most browsers display <h1>
elements in a bold font and twice the size of ordinary text. They also add a deep bottom
margin to separate the heading from the following content.

A <div>, on the other hand, has no styles whatsoever. It’s a blank canvas for you to style
however you like. In combination with the id attribute, it’s also a powerful way of apply-
ing consistent styles to everything within the same <div>. Once you have organized your
content into a logical structure using <div> tags and other block-level elements, you can
use CSS to style them visually, adding background images and colors, and altering their
position and relationship with other elements by adjusting margins and padding. CSS
styling offers a much more powerful tool set than tables, but of course, learning how to
master that tool set is something that comes only through experience.

Inexperienced web designers or those just making the transition to CSS layout tend to use
<div> tags to excess, wrapping a <div> around everything that would have been in a table cell
before (a phenomenon known as divitis). This isn’t necessary if the element is self-contained.
For example, a paragraph on its own doesn’t need to be wrapped in a <div> because it’s
already a block-level element and can be styled independently. However, a group of para-
graphs does need to be wrapped in a <div> for them to be treated as a single unit.

The HTML specification also defines the tag as “a generic mechanism for adding
structure to documents.” The difference between and <div> confuses a lot of peo-
ple, but it’s very simple. Browsers automatically put a line break before and after a <div>.
A is an inline device typically used to add style to several words in the middle of a
paragraph. No line breaks are inserted around a , nor should a contain
block-level elements. You can put a inside a paragraph or heading, but not the
other way round. You can put anything inside a <div>.

To insert a <div> tag, select the Insert Div Tag button on the Common tab of the Insert bar,
as shown in the following screenshot. Alternatively, use the Insert Div Tag button on the
Layout tab of the Insert bar, or select Insert ➤ Layout Objects ➤ Div Tag.

The main focus of this book is on using the tools in Dreamweaver CS4. It’s not a com-
plete guide to web design and CSS. To learn more about CSS best practice, read
Beginning CSS Web Development: From Novice to Professional by Simon Collison
(Apress, ISBN: 978-1-59059-689-0) or CSS Mastery: Advanced Web Standards Solutions
by Andy Budd et al. (friends of ED, ISBN: 978-1-59059-614-2). Also, any book by Eric
Meyer will give you a solid grounding in CSS.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

144

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This opens the Insert Div Tag dialog box, as shown in Figure 3-29. In spite of its simple
looks, this dialog box is quite versatile and can be used to wrap the current selection in a
<div> or to insert a new <div> with considerable precision. And because the <div> tag
plays such an important role in CSS, you can define associated style rules directly from the
dialog box.

Figure 3-29. The Insert Div Tag dialog box makes it easy to group page
elements and apply style rules.

You’ll get a better idea of how to use this dialog box in exercises throughout this book, but
here are brief descriptions of the options it offers:

Insert: This drop-down menu is context-sensitive. If content is selected in the
Document window, it displays Wrap around selection, as shown in Figure 3-29. If
nothing is selected, the default value is At insertion point. Both of these options are
self-explanatory.

Selecting one of the other options in the Insert menu activates the drop-down
menu alongside (it’s grayed out in Figure 3-29). Both menus work in conjunction
and insert a <div> with placeholder text as follows:

Before tag: This option is available only when elements on the page have id
attributes. It inserts the <div> immediately before the element selected in the
right drop-down menu.

After start of tag: This inserts the <div> immediately after the opening tag of the
element selected in the right drop-down menu. In addition to elements with id
attributes, the right menu lists the <body> tag.

Before end of tag: This inserts the <div> immediately before the closing tag of
the element selected in the right drop-down menu. In addition to elements with
id attributes, the right menu lists the <body> tag.

After tag: This option is available only when elements on the page have id attrib-
utes. It inserts the <div> immediately after the closing tag of the element
selected in the right drop-down menu.

Class: Enter the name of the CSS class you want to apply to the <div>. Existing
classes are listed as a drop-down menu.

ID: Enter the name of the id attribute you want to assign to the <div>. Existing IDs
defined in style sheets associated with the page are listed as a drop-down menu.

CREATING A WEB PAGE AND ADDING CONTENT

145

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Since an ID can be used only once on a page, the list displays only those IDs that
have not yet been assigned to another element.

New CSS Rule: This lets you define a new style rule that will be applied to the <div>.

Inserting a horizontal rule
A simple HTML device for adding structure to your web page is the horizontal rule
(<hr />). This is a block-level element that acts as a separator by drawing a line
across the width of its parent element. In a revamp of the Insert bar in

Dreamweaver CS3, it was accidentally left out. Fans of the horizontal rule will be pleased
to know that it has been given a reprieve. It’s the fourth button from the left in the
Common tab of the Insert bar (see alongside). Alternatively, select Insert ➤ HTML ➤

Horizontal Rule. You can also insert a horizontal rule by selecting Insert HTML from the
Design view context menu. Type hr and press Enter/Return.

Creating links
I’ll never forget my first experience of the Internet. It was in the very early days using a
300 bit/second modem. There were no images; just text. Although it was fantastic to be
reading something I had just downloaded from a computer on the other side of the world,
what really amazed me was clicking a link and being transported to a completely different
article on a different computer in another part of the world. Forget the eye candy for a
moment. What made the Internet the success it is today is the ability to dig down to the
information you’re after by following hyperlinks. And it’s all done with the humble <a> tag.

Links can take you to other pages in the same site, jump to specific locations in a page, or
transfer you to a different site. You can also use links to send email. In addition to text links,
you can use images, or parts of them, as links. The following sections describe each in turn.

Using text to link to other pages

Creating a text link is very easy. Just select the text that you want to use as the link, and use
one of the following methods:

Select the HTML view in the Property inspector. In the Link field, type the address
of the page you want to link to.

If the page is in the current site, select the HTML view in the Property inspector and
use the Point to File tool to choose the target page in the Files panel (the Point to File
tool was described in the “Inserting placeholder images” section earlier in this
chapter; see Figure 3-15).

If the page is in the current site, hold down the Shift key and drag from the
selected text to the target page in the Files panel.

If the page is in the current site, select the HTML view in the Property inspector and
click the folder icon to the right of the Link field. Navigate to the target file in the
Select File dialog box (see Figure 3-30).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

146

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Click the Hyperlink button in the Common tab of the Insert bar (shown
alongside). This opens the Hyperlink dialog box (see Figure 3-31).

Select Hyperlink from the Insert menu. This opens the Hyperlink dialog box
(see Figure 3-31).

Right-click and select Make Link from the context menu. This option is available
only in Design view; it opens the Select File dialog box (see Figure 3-30).

With seven different ways of creating a link, you might wonder which to use. Although most
methods do exactly the same thing, there are some differences that might influence your
choice. When linking to an external web page, you need to type the URL manually in the
Link field of the Property inspector or Hyperlink dialog box. The Select File dialog box has a
URL field that you could use instead, but if you don’t want to use the Property inspector,
the Hyperlink dialog box has options that are more appropriate to an external link.

Using the Select File dialog box
The Select File dialog box has two options that tend to make it the best choice for creating
internal links. The dialog box always remembers the last folder you navigated to. Although
this is useful, it sometimes means a tortuous route to find the file you want this time.
That’s when the Site Root button is a huge time-saver. It’s at the top of the dialog box in
Windows (see Figure 3-30) and at the bottom right in the Mac version. Click it, and
Dreamweaver takes you directly to the root of the current site.

When creating a link to a page on an external website, don’t forget to add http:// or
https:// at the beginning of the URL. If you omit this, browsers attempt to link to a
page on your own site.

CREATING A WEB PAGE AND ADDING CONTENT

147

3

Figure 3-30.
The Select File dialog
box lets you override
the default type of
internal link.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The other great advantage of the Select File dialog box is the Relative to drop-down menu
just below the URL field. This defaults to the choice you made in your site definition
regarding links relative to the current document or to the site root (see Chapter 2). The
drop-down menu lets you override the default choice manually. This is particularly useful
when working with PHP sites. PHP commands that include other files into the current web
page or script expect links relative to the current document, but links inside include files
need to be relative to the site root.

If you decide to change the default setting for your site, there’s a link that takes you
directly to the relevant section of the site definition. Changing the setting in the site defi-
nition does not affect existing links; the new default applies only to links created after the
change.

Using the Hyperlink dialog box
The Hyperlink dialog box (shown in Figure 3-31) is useful if you want to set more options
for the link. It also takes a slightly different approach from other methods of creating a
link, in that you don’t need to select text beforehand. You can use the Text field in any of
the following ways:

If you haven’t selected any text, whatever you type directly into the Text field is
inserted into the page and used as the link.

If you selected text before launching the Hyperlink dialog box, you can edit it in the
Text field. The revised text is used as the link.

If you leave the Text field blank, Dreamweaver uses the value entered in the Link
field as the hyperlink. This is useful if you just want to display the URL of an exter-
nal site, as it saves you the effort of typing it twice.

The page you want to link to goes in the Link field. Clicking the folder icon to the right of
the field launches the Select File dialog box and returns you to the Hyperlink dialog box
once you have made your selection. The Target field lets you specify if the link should be
opened in a new window, as described in the next section. The Title, Access key, and Tab
index fields add accessibility attributes to the link.

Figure 3-31.
The Hyperlink

dialog box lets you
set extra options.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

148

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Opening a link in a new window
Normally, clicking a hyperlink opens the new page in the same browser window.
Sometimes, though, it’s desirable to open a new window. To do so, set the Target drop-
down menu alongside the Link field in the Property inspector to _blank, as shown in the
following screenshot (the same option is available in the Hyperlink dialog box).

There are three other options in the drop-down menu (_parent, _self, and _top). These are
used only with framesets, which are considered bad practice and not covered in this book.

Some web designers use this technique on every external link in the mistaken belief that
opening the other website in a new window will prevent the user from leaving the current
site. Usually what happens is that the visitor’s screen gets filled with so many new windows
or browser tabs that the likelihood of returning is greatly reduced. It also annoys many
users so intensely they refuse to visit your site again anyway. Use this technique only when
it serves a useful purpose, such as opening a set of instructions to help the user fill in an
application form, or when the link leads to a large PDF file. In the latter case, tell visitors
how big the file is and that it will open in a new window. Alternatively, add a note along-
side the link suggesting that visitors right-click and save the file rather than opening it in a
browser.

Linking to a specific part of a page
When you have a page with a lot of content, it’s useful to be able to link directly to a spe-
cific part of a page, either from within the same page or from elsewhere. Originally, the
only way to do this was to create what’s known as a named anchor. This is an <a> tag with
a name attribute instead of an href one. Dreamweaver CS4 still allows you to insert named
anchors (using the icon shaped like a ship’s anchor on the Common tab of the Insert bar or
Insert ➤ Named Anchor). However, this is an old-fashioned technique that adds unneces-
sary code to your page. Instead, use IDs.

Simply insert your cursor in the element that you want to link to (usually a heading or a
paragraph), select the HTML view of the Property inspector, and enter a unique identifier
in the ID field (it mustn’t begin with a number or contain any spaces or special characters).

To link to that element from the same page, create a link, and enter the hash symbol (#)
followed by the ID. To link from another page, add the hash symbol and ID to the end of
the file name. For example, you might want to link to a section called “What We Do” that
begins with an <h2> heading. If you enter services in the ID field, the underlying code will
look like this:

<h2 id="services">What We Do</h2>

CREATING A WEB PAGE AND ADDING CONTENT

149

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To link to that section from within the same page, enter #services in the Link field. To link
from another page, add #services to the end of the file name in the Link field like this:
aboutus.html#services.

IDs are often used for CSS, so they serve a dual purpose. Remember, though, that the same
ID cannot be used more than once on a page. IDs identify, so they must be unique.

Using images as links

Links don’t always need to be text. You can use an image as a link, too. Just select the
image in Design view, and add the link in exactly the same way as you would add a text
link. However, don’t use any of the options that open the Hyperlink dialog box, because it
automatically creates a text link if the Text field is left blank. Consequently, you end up
with both an image and a text link.

Removing the link border
Using an image as a link wraps the tag in a pair of <a> tags. By default, browsers add
a blue line under text links and a blue border around images used as links. Older versions
of Dreamweaver got rid of this blue border by adding border="0" to the tag.
However, it no longer does so, because the border attribute for images is deprecated. To
get rid of the border, you can type 0 manually into the Border field of the Property inspec-
tor for each image used as a link. You can, but it’s a huge waste of effort. The far more
efficient way is to add the following style rule to your CSS:

a img {border:none;}

This tiny snippet of code removes the blue border from every single image used as a link
in your site (of course, a style sheet containing this rule needs to be linked to each page.
Creating style rules and attaching a style sheet are covered in the next chapter.

Creating an image map
Not only can you turn an entire image into a link, you can also add multiple links to an
image by creating invisible hotspots over different parts of the image and adding a link
to each one. Figure 3-32 shows the search page of an online guide to Japanese gardens in
the U.K. and Ireland that I created several years ago (http://japan-interface.co.uk/
gardens/search.php). The map of the British Isles is a single image, but each region has a
hotspot that links to details of gardens in that area. Using an image like this is known as an
image map, not because this particular example uses a geographical map, but because the
details of the hotspots are wrapped in the HTML <map> tag and associated with the image
by the usemap attribute.

The underlying code for the South West region highlighted in Figure 3-32 looks like this:

<area shape="poly" coords="85,261,107,256,118,261,120,252,129,248, ➥

143,251,146,239,149,230,134,228,109,241" href="results.php? ➥

searchCrit=SWest" alt="South West" title="South West" />

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

150

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 3-32.
Invisible hotspots
allow you to add
multiple links to
different parts of
an image.

CREATING A WEB PAGE AND ADDING CONTENT

151

3

The code looks pretty horrendous, but Dreamweaver takes care of it all, making the cre-
ation of hotspots a breeze. This is what you do:

1. Insert the image you want to use as an image map in the normal way, and leave it
selected in Design view.

2. Enter a name for the map in the Map field at the bottom right of the Property
inspector (see Figure 3-33). The name must not begin with a number or contain
any spaces or special characters. If you forget to enter a name, Dreamweaver auto-
matically uses Map, Map2, Map3, and so on.

3. Depending on the shape of the hotspot you want to draw, select one of the
hotspot tools in the Property inspector (see Figure 3-33). To create a rectangular or
circular hotspot, click and drag across the area of the image that you want to use
as a link. The area of the hotspot is displayed as an aqua-colored mesh on top of
the image. Dreamweaver displays an alert reminding you to create alternative text
for the hotspot.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 3-33. All the tools for creating an image map are in the Property inspector and Status bar.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

152

To create an irregularly shaped hotspot, choose the Polygon hotspot tool, and click
once at the edge of the shape you want to turn into a link. Dismiss the alert
reminding you to create alternative text, and click at another point around the
edge of the shape. Continue clicking around the edge of the shape. As soon as you
have three points, the hotspot area is displayed as an aqua-colored mesh on top of
the image.

4. If you need to adjust the shape, size, or position of the hotspot, select the Pointer
hotspot tool in the Property inspector. To move the hotspot, click in the center of
the mesh and drag it to the new position. To alter the shape or size, click one of the
square handles around the edge of the hotspot and drag.

5. As soon as you create a hotspot, the Property inspector changes to display options
related to it. Enter the details of the link in the Link field and set Target, if required.
Also enter some alternative text in the Alt field.

6. If you want the hotspot to display a tooltip in all browsers, as illustrated in
Figure 3-32, open the Tag Inspector panel, select the Attributes button, and enter
the tooltip text in the title field.

To edit a hotspot, select it in Design view and make any adjustments. To delete a hotspot,
select it in Design view and press Delete. All the related code is automatically removed.

You can practice creating image maps with the map in Figure 3-32, which
is provided as uk_map.gif in the images folder of the download files.
Creating irregular-shaped hotspots on a small image can be tricky. To get a
better view, select the Zoom tool in the Status bar (see Figure 3-33) and
drag it across the area of the image that you want to work with. After
changing the magnification, be sure to click the Select tool button in the
Status bar. To restore the magnification to normal, select 100% from the
drop-down menu alongside the Zoom tool. A version of the image map is in
image_map.html in examples/ch03.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter review
This chapter has covered all the main techniques for getting content into a web page and
creating links in Dreamweaver, but the results in both Design view and a browser look
rough and unpolished. That’s the role of CSS, which we’ll begin to explore in the next
chapter. However, successful design with CSS depends on building a solid underlying struc-
ture with HTML. The quality of your HTML code is also vital to working with Spry and other
JavaScript libraries, as well as to the successful integration of PHP server-side code. Even if
you’re principally a graphic designer, it’s important to understand the code Dreamweaver
is generating on your behalf. Remember that Dreamweaver is a tool. If you use it correctly,
it will create clean, valid code. If you try to treat it like a drag-and-drop desktop publisher,
you’re likely to end up with a mess.

CREATING A WEB PAGE AND ADDING CONTENT

153

3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 USING CSS TO ADD A
TOUCH OF STYLE

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The previous chapter showed you how to get content into a web page, but quite frankly,
the results look abysmal. Content may be king, but without a touch of style, it’s unlikely to
be able to compete for attention with the millions of other web pages out there.

Judging by the runaway success of books such as CSS Mastery by Andy Budd with Simon
Collison and Cameron Moll (friends of ED, ISBN: 978-1-59059-614-2), web designers
have finally got the message that using CSS is the way to design a website. Getting the
message is the easy part, but many designers rapidly find their initial enthusiasm takes a
severe dent when they run into the reality of creating a CSS-driven site. Creating a style
rule is simple enough, and most CSS properties have intuitive names. The difficulty lies
in the infinite number of ways in which style rules can be combined. And that’s what
makes it so powerful and worthwhile. You need only visit the CSS Zen Garden at
http://www.csszengarden.com to see why—the underlying HTML of every page is iden-
tical; what makes each one so different is the CSS.

Whether you’re capable of designing a masterpiece worthy of the CSS Zen Garden or just
a beginner, the embedded WebKit browser engine in Dreamweaver CS4’s Live view should
make life easier by showing you the impact of your style rules inside the Document win-
dow. Another welcome change is the way Dreamweaver no longer generates meaningless
class names, such as style1, style2, style45, and so on. Not only has the Property inspec-
tor been split into HTML and CSS views, but also the New Style Rule dialog box has been
redesigned to help you create CSS selectors with meaningful names.

This chapter puts into practice the theory from the previous chapter, and shows you how
to give basic styles to your unadorned content. It also looks at the main CSS management
tools in Dreamweaver CS4. In particular, it examines the CSS Styles panel. This extremely
powerful tool takes a little getting used to, but once you know how it works, it speeds up
the design process immensely.

In this chapter, you’ll learn about the following:

Using page properties to create basic style rules

Centering page content with a wrapper <div>

Exploring the CSS Styles panel in All mode

Exporting style rules to an external style sheet

Attaching an external style sheet to a page

Using drag and drop to move style rules

Converting inline styles to style rules

Setting Dreamweaver preferences for CSS

Checking how your styles will look in other media

This chapter is much more hands-on than the other chapters so far, so get ready to roll
up your sleeves and dive into the program. All the necessary files can be found in the
examples/ch04 and images folders of the download files.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

156

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating basic style rules
Dreamweaver is designed to suit many different workflows. Experienced designers will
often have a core set of style rules that is applied to every site, so they just need to link the
core style sheet to their pages, and they’re ready to go. Alternatively, they just open a new
CSS document and start creating style rules from scratch.

If you’re new to CSS, the Page Properties dialog box offers a simple interface to create basic
styles that are automatically applied to the entire page. It’s not capable of anything sophis-
ticated, but it does provide a gentle starting point. In addition to setting basic CSS style
rules, the Page Properties dialog box lets you change settings such as the HTML DOCTYPE and
encoding for the current page. So let’s take a quick look at the features it offers.

Modifying page properties

The quickest way to open the Page Properties dialog box is to click the Page Properties
button in the Property inspector whenever your cursor is inside text or an empty page.
Alternatively, select Modify ➤ Page Properties or press Ctrl+J/Cmd+J. As you can see in
Figure 4-1, six categories are listed in the column on the left side of the dialog box.

Figure 4-1. The Page Properties dialog box can be used to control the basic look of a page.

As mentioned in the previous chapter, the main focus of this book is on using
the tools in Dreamweaver CS4. To learn about CSS, refer to one of the books
I recommended earlier.

USING CSS TO ADD A TOUCH OF STYLE

157

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The focus of this chapter is CSS, so we’ll focus on the three categories labeled CSS. But
first let’s take a quick look at the other three categories that are not related to CSS.

Appearance (HTML): This sets the look of the page background, link styles, and mar-
gins using deprecated HTML attributes. It lets you alter the values on legacy pages,
but should not be used for new pages, unless there is a specific reason for using
HTML attributes instead of CSS (for example, creating an email newsletter).

Title/Encoding: This lets you change the page title, DOCTYPE, and encoding. Since the
page title is easily accessible through the Document toolbar, the only reason you
would ever want to use this option is to change the DOCTYPE or page encoding.

Tracing Image: Some designers like to use an image as a guide for laying out a page.
This option lets you add such an image to the page and control its transparency. It’s
important to realize that the image does not become part of the page. It’s purely a
layout guide and has nothing to do with CSS. If you want the image to appear in the
page, use the CSS background or background-image property. I’ll show you how to
add background images to page elements in the next chapter.

The best way to describe the CSS categories in the Page Properties dialog box is through a
hands-on exercise.

This exercise shows you how to import text from a Microsoft Word document (as
described in the previous chapter) and create a basic set of style rules for a page. As this
chapter progresses, you’ll build on this exercise to add images and other elements to the
page, and eventually export the style rules to an external style sheet so they can be applied
to other pages.

1. Create a new HTML file and save it as stroll.html in the workfiles/ch04 folder. If
you use File ➤ New to create the file, select Blank Page on the left side of the New
Document dialog box, HTML as the Page Type, and <none> as the Layout. If anything
is listed in the Attach CSS file field at the bottom right of the dialog box, select each
item and click the trash can icon to remove the style sheets listed there (the use of
the Attach CSS file field is described in the next chapter).

2. If you have a large monitor, you might find it useful to switch to Split view to keep
an eye on the code Dreamweaver creates. If you find Split view uncomfortable to
work in, select Design view. Whichever you choose, click inside the Design view sec-
tion of the Document window to ensure that it has focus.

Using page properties to create basic styles for a page

For all the exercises, I suggest that you create a folder called workfiles at the top level
of the site you are using with this book. Create a separate folder for each chapter inside
the workfiles folder, naming them ch04, ch05, and so on. If you encounter any prob-
lems, use the File Compare feature described in Chapter 2 to check your own files
against those in the equivalent subfolder of the examples folder in the download files.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

158

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. In Windows, select File ➤ Import ➤ Word Document, and navigate to examples/ch04
in the Import Word Document dialog box. Select either stroll.doc or stroll.docx
(they both contain the same content), set Formatting to Text, structure, basic format-
ting (bold, italic), and make sure that the Clean up Word paragraph spacing checkbox
is selected. Click Open to import the Word document.

If you’re using the Mac version, use Finder to navigate to examples/ch04, and open
either stroll.doc or stroll.docx. Select all the text and press Cmd+C to copy it
to your clipboard. Return to Dreamweaver, click in Design view to give it focus, and
paste the contents of the clipboard into stroll.html. If you have set Text with
structure plus basic formatting (bold, italic) for Copy/Paste in the Dreamweaver
Preferences panel (see Figure 3-7 in the previous chapter), just press Cmd+V (or
select Edit ➤ Paste) to paste the content with its basic structure and formatting.
Otherwise, press Shift+Cmd+V (or select Edit ➤ Paste Special) to bring up the Paste
Special dialog box, and select Text with structure plus basic formatting (bold, italic) and
Clean up Word paragraph spacing before clicking OK.

Your Document window should now look like Figure 4-2. The page has basic for-
matting, but lacks real style.

USING CSS TO ADD A TOUCH OF STYLE

159

4

Figure 4-2. Dreamweaver preserves the basic formatting of a document imported from Microsoft Word.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. All web pages should have a title, so delete Untitled Document from the Title field in
the Document toolbar at the top of the Document window, and replace it with a
title of your choice. I used Creating basic styles.

5. Click the Page Properties button in the Property inspector as shown in the follow-
ing screenshot. It doesn’t matter whether you’re in the HTML or CSS view of the
Property inspector. If you can’t see the button, click the expander triangle at the
bottom right of the Property inspector.

Alternatively, select Modify ➤ Page Properties (Ctrl+J/Cmd+J).

6. This opens the Appearance (CSS) category of the Page Properties dialog box, as
shown in Figure 4-1. This sets the basic font, text color, and background for the
page. It’s a good idea to set a default font for the page, which you can override in
special cases, such as for headings or pull quotes. You also should set default col-
ors for the text and page background. However, you shouldn’t set the font size
here, even if you think the default size is too big. It’s usually much better to control
font size for different page elements.

Use the following settings:

Page font: Trebuchet MS, Arial, Helvetica, sans-serif

Size: leave blank

Text color: #000 (if you click the color well, and select black from the color
swatches, Dreamweaver inserts the hexadecimal color for you automatically)

Background color: #FFF (white)

Leave the other fields blank.

7. Select the Links (CSS) category from the column on the left. The Links (CSS) cate-
gory lets you set the font and colors for hyperlinks. The color options are the
equivalent of the following CSS pseudo-classes:

Dreamweaver CS4 uses shorthand hexadecimal numbers for colors wherever
possible. HTML and CSS normally specify colors using six-digit hexadecimal
notation, with each pair of digits representing the red, green, and blue elements
of the color. However, when both digits of each pair are identical, you can use
just one. So, #FFFFFF can be shortened to #FFF. To use the shorthand, all three
color elements must consist of an identical pair. So #006633 (dark green) can be
shortened to #063, but #006634 has no shorthand equivalent.

If your page looks completely different, check it against stroll_01.html
in examples/ch04. Also, if you can’t open the Word document, copy
stroll_01.html to workfiles/ch04, and rename the file stroll.html.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

160

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Link color: a:link

Visited links: a:visited

Rollover links: a:hover

Active links: a:active

The Underline style option lets you choose whether your links are always under-
lined, never underlined, show an underline on hover, or hide the underline on
hover. If you decide not to underline links, it’s a good idea to choose a distinctive
color and select the Bold icon alongside Link font.

Use the settings shown in the following screenshot:

8. Select the Headings (CSS) category from the column on the left. This lets you
choose a different font for headings (the same choice applies to all six levels). You
can also set the size and color separately for each level. Using percentage sizes or
ems gives visitors more freedom to adjust your page to their visual needs and pref-
erences, so these choices are better from the accessibility point of view, but you
can use pixels if you prefer.

I used the following settings:

9. When you have finished, click OK to close the Page Properties dialog box. Your
styles are immediately applied to the page in Design view. What’s more, they’re
applied automatically.

An em is a typographical measure based on the width of the letter m. In CSS, it
means the height of the specified font. So, 1em is the default height, and .8em
is 80 percent of the default height.

USING CSS TO ADD A TOUCH OF STYLE

161

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. Position your cursor anywhere inside the first paragraph, and select Heading 3 from
the Format menu in the HTML view of the Property inspector. The paragraph is trans-
formed into a large, brown Verdana. Select Paragraph again from the Format menu,
and it switches back to normal black Trebuchet MS or Arial. This is because the
Format menu changes the surrounding tags from <p> to <h3> and back again.
Everything is controlled by the CSS type selectors that Dreamweaver has embedded
into the <head> of the page. Type selectors change the default style of HTML tags.

11. Select some text in one of the paragraphs, and type # in the Link field of the HTML
view of the Property inspector to create a dummy link. The text is automatically
styled as a link. If you have been used to the old-school way of selecting everything
and applying colors and fonts, this should be an exciting revelation that convinces
you of the power of CSS.

12. Click the Live View button in the Document toolbar. You won’t notice much differ-
ence, if any at all. Now mouse over the dummy link you created in the previous
step. The color should change, and a line appears under the text, indicating that it’s
a clickable link.

13. Press F12/Opt+F12 to view the page in your primary browser. It should look similar
to Figure 4-3. It’s a little more stylish than before, but the text spreads across the
full page. It also needs livening up with some images.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

162
Figure 4-3. The style rules created by the Page Properties dialog box make only a small improvement.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14. Save stroll.html. You’ll continue improving it throughout the chapter. If you want
to compare your code with the download files, check it against stroll_02.php in
examples/ch04.

Unfortunately, the Page Properties dialog box creates only the most basic rules. To improve
the look of the page, you need to add some structure with a <div> tag and create other
style rules with the CSS view of the Property inspector.

Before doing that, however, let’s take a look at where the Page Properties dialog box has
created the CSS for the page.

Inspecting the rules created by Page Properties

If you switch to Code view or Split view and scroll to the top of the underlying code, you’ll
see that the Page Properties dialog box has created a <style> block in the <head> of the
document, as shown in Figure 4-4. All the style rule definitions use type selectors. In other
words, they redefine the look of HTML tags. Consequently, they apply to any new element
that uses one of those tags.

Figure 4-4. The Page Properties dialog box embeds the style rules in the head
of the page.

USING CSS TO ADD A TOUCH OF STYLE

163

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This is extremely useful, but putting the rules in the <head> of the page like this means
that the styles apply only to the current page. The real value of CSS comes from using an
external style sheet that can be attached to every page in the site, instantly changing its
look. As you’ll see later in the chapter, Dreamweaver makes it very easy to export style
rules into an external style sheet. Before that, let’s continue exploring the tools for
creating CSS.

Inserting and styling a <div>

Text that spreads across the browser window is difficult to read. You could constrain the
width by adding the width property to the rules for paragraphs and headings. However, a
more common technique is to wrap the entire content in a <div> and apply a width to the
<div>. This has the advantage of letting you center the page within the browser. You can
also apply other styles, such as a background and border, to the <div>.

In this exercise, you’ll wrap the content of the page from the previous exercise in a
wrapper <div>, and create a style rule to constrain its width and center it. You’ll also
use Dreamweaver’s visual aids to examine the CSS box model. (If you’re not familiar
with the CSS box model, there’s a comprehensive and well-written explanation at
http://www.brainjar.com/css/positioning/default.asp.)

Continue working with stroll.html from the previous exercise. Alternatively, use
stroll_02.html from exercises/ch04 as your starting point.

1. Click <body> in the Tag selector at the bottom left of the Document window, as
shown in the following screenshot, to select the entire content of the page.

2. Click the Insert Div Tag button in the Common or Layout tab of the Insert bar (or
choose Insert ➤ Layout Objects ➤ Div Tag). In the dialog box that opens, Insert

Creating a wrapper <div>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

164

http://lib.ommolketab.ir
http//lib.ommolketab.ir

should automatically have been set to Wrap around selection. Type wrapper into the
ID field, and click the New CSS Rule button at the bottom of the dialog box as
shown in the following screenshot.

3. This opens the New CSS Rule dialog box shown in Figure 4-5. This is where you
define the type of CSS selector you want, its name, and where the rule will be
defined. I’ll explain this dialog box in the next section. For the moment, just check
that the settings are the same as in Figure 4-5. Then click OK.

Figure 4-5. The New CSS Rule dialog box is where you define the type of selector
you want to use.

USING CSS TO ADD A TOUCH OF STYLE

165

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. The CSS Rule definition dialog box now opens. As shown in Figure 4-6, this is
another multiple category dialog box. As with the New CSS Rule dialog box, I’ll go
over how it works in the next section. For the moment, select the Box category in
the list on the left side of the dialog box.

Figure 4-6. The CSS Rule definition dialog box supports CSS 1 properties.

5. The Box category sets properties relating to the CSS box model. Set the Width field
to 720 px. No prizes for guessing that sets the width of the wrapper <div>.

Once a block-level element has a declared width, you can center it by setting its left
and right margins to auto. In the Margin section on the right side of the dialog box,
deselect the checkbox labeled Same for all. This lets you set different values for the
margin on each side. Click the down arrow to the side of the field labeled Right,
and select auto from the drop-down menu, as shown in the following screenshot.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

166

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Do the same with the field labeled Left. So the values you have changed in the Box
category should be as follows:

Width: 720 px

Margin Same for all: unchecked

Margin Right: auto

Margin Left: auto

Leave the other fields blank.

7. Click OK to close the CSS Rule Definition dialog box. This returns you to the Insert
Div Tag dialog box. Click OK to close it.

8. Switch to Design view, if necessary. You should see the page content surrounded by
a dotted line and centered in the Document window. If you have a small monitor,
press F4 to hide the panels and see the effect more clearly. If you can’t see a dot-
ted line around the content, open the Visual Aids menu on the Document toolbar
(or select View ➤ Visual Aids), and check that you have the default settings as
shown in the following screenshot.

Each setting is toggled on and off by clicking it. A checkmark indicates that the
option is turned on. All visual aids should be turned on except CSS Layout
Backgrounds and Frame Borders.

The dotted line surrounding the content is purely a visual aid; it won’t appear in the
page when displayed in a browser. It indicates the extent and position of the wrap-
per <div> you have just created. As the screenshot of the Visual Aids menu shows,
you can hide all visual aids through the menu or by pressing Ctrl+Shift+I/
Shift+Cmd+I. Try it, and then restore the visual aids.

9. Move your cursor until it touches the dotted line surrounding the wrapper <div>.
When the line turns solid red, click once. This triggers the CSS Layout Box Model
visual aid, surrounding the wrapper <div> in a thick blue line, and displaying its
margins as a crosshatched pattern, as shown in Figure 4-7.

USING CSS TO ADD A TOUCH OF STYLE

167

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 4-7. Dreamweaver’s visual aids let you inspect CSS style rules.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

168

As you move your cursor around, different tooltips should appear, displaying details
of the CSS rule applied to that area. In Figure 4-7, my cursor was just to the right of
the wrapper <div>. The tooltip shows that the margin is set to auto; the figure in
parentheses is the calculated value (125px). It also shows that the border and
padding of the <div> are set to 0px. Again, these are calculated values, as indicated
by the parentheses. Neither value was set explicitly in the style rule you just created.

When you move your cursor inside the <div>, you should see a more detailed
tooltip with details of its style properties. Most values are blank because they
haven’t been set. Sometimes the tooltips seem to have a shy gene, so you might
need to move your cursor around a bit to trigger their appearance.

Notice that the Tag selector at the bottom left of the Document window shows the
ID you gave the <div> like this: <div#wrapper>. The tag is inset in the Tag selector,
indicating that this is the current selection. If you find it difficult to trigger the
visual aids by clicking the edge of a <div>, use the Tag selector instead.

10. To dismiss the visual aids, click anywhere inside the Document window.

11. Save stroll.html and press F12/Opt+F12 to preview it in your main browser. The
content should now be constrained to 720 pixels in width and centered in the
browser window. If you need to check your code, compare it with stroll_03.html
in examples/ch04.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise introduced you to the New CSS Rule and CSS Rule definition dialog boxes.
These are important parts of the Dreamweaver tool set for creating style rules. The next
section describes their roles in greater detail.

Creating new style rules
Creating a style rule involves two steps: first define the selector, and then add
property/value pairs to the style block. The selector determines which parts of the page
the rule applies to.

The main types of CSS selectors are as follows:

Type: A type selector uses the name of the HTML tag that you want to style. For
instance, using h1 as the selector for a style rule applies the rule to all <h1> tags.
Dreamweaver calls this a tag selector.

Class: A class can be applied to many different elements in a page. The selector
name always begins with a period, for example, .warning.

ID: An ID selector applies the rule to an element identified by its id attribute. If the
element, such as a list, has child elements, the rule also applies to the children. The
name of an ID selector always begins with the hash sign (#), as in #wrapper.

Pseudo-classes and pseudo-elements: These selectors style elements according
to their positions or roles in a document, such as a link when the mouse passes
over it or the first line of a paragraph. They consist of a type selector followed by a
colon and the name of the pseudo-class or pseudo-element, for example, a:hover
or p:first-line.

Descendant: A descendant selector combines two or more of the previous types to
target elements more precisely. For instance, you may want to apply a different style
to links inside a <div> with the id attribute footer. Descendant selectors are sepa-
rated by a space between the individual parts of the selector, like this: #footer a.

Group: When you want to apply the same set of rules to several selectors, you can
group them together as a comma-separated list, as in h1,h2,h3,h4,h5,h6.

Dreamweaver refers to the last three types as compound selectors.

Defining a selector

You define the selector in the New CSS Rule dialog box (see Figures 4-5 and 4-8). There
are several ways to open this dialog box:

Select Format ➤ CSS Styles ➤ New from the main menus.

Click the New CSS Rule button in the Insert Div Tag dialog box (this is the method
you used in the previous exercise).

Click the New CSS Rule icon (shown alongside) at the bottom right of the
CSS Styles panel.

Right-click inside the CSS Styles panel and select New from the context menu.

USING CSS TO ADD A TOUCH OF STYLE

169

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Select the CSS view of the Property inspector, set the Targeted Rule drop-down
menu to <New CSS Rule>, and click the Edit Rule button directly below, as shown
in the following screenshot.

Previous versions of Dreamweaver automatically assigned meaningless class names, such
as style1, style2, and so on, when you used the Property inspector to style text.
Dreamweaver CS4 no longer does that. The New CSS Rule dialog box has been redesigned
in Dreamweaver CS4 to make it easier to choose the appropriate selector. Depending on
where your cursor is when you launch the dialog box, Dreamweaver tries to make a help-
ful suggestion. When I took the screenshot in Figure 4-8, the cursor was inside a paragraph
nested in the wrapper <div>. Consequently, Dreamweaver suggested creating a Compound
selector called #wrapper p. This is a much more useful selector, as it will be applied auto-
matically to every paragraph inside the wrapper <div>.

Figure 4-8. When creating a new style rule, you must specify its type, selector
name, and location.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

170

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s take a look at the various options in the New CSS Rule dialog box.

Selector Type: This determines the type of CSS selector. You can choose from four
options:

Class (can apply to any HTML element): This creates a CSS class.

ID (applies to only one HTML element): This creates an ID selector.

Tag (redefines an HTML element): This creates a CSS type selector.

Compound (based on your selection): This is used for pseudo-classes, pseudo-
elements, and descendant and group selectors.

As you can see, the options are labeled in a helpful way to assist newcomers to CSS
by reminding them of the purpose of each type of selector.

Selector Name: This is where you enter the name for the CSS selector. When creat-
ing a class or an ID selector, it doesn’t matter whether you prefix the name with a
period (for a class) or a hash sign (for an ID selector); Dreamweaver automatically
adds the correct symbol if necessary. When creating a tag (or type) selector, the
field turns into a drop-down menu listing all valid HTML tags. You can either type
in the tag name (without any angle brackets) or select it from the menu.

The text area below the Selector Name field describes which elements will be
affected by the new style rule.

Less Specific: Dreamweaver automatically suggests a selector based on your cur-
rent insert position. If a descendant selector, such as #wrapper p, is suggested,
clicking this button creates a less specific selector by removing the leftmost ele-
ment. In the example shown in Figure 4-8, this removes #wrapper, leaving just p. In
a more deeply nested descendant selector, you can continue clicking to remove
one element at a time. The effect of the changes is described in the text area above
the button.

More Specific: This is grayed out by default, but is made active as soon as you edit
the suggested descendant selector by clicking the Less Specific button as just
described. It reverses the edits by restoring one element at a time. So, after remov-
ing #wrapper by clicking Less Specific, you can restore it by clicking the More
Specific button.

Rule Definition: This option lets you choose where to put the new rule. The drop-
down menu lists all style sheets currently attached to the page and contains an
option to create a new external file. If you choose (This document only), the style
rule is embedded within <style> tags in the <head> of the document.

When you click OK in the New CSS Rule dialog box, Dreamweaver opens the CSS Rule def-
inition dialog box, unless you decide to create the rule in a new style sheet. In that case,
you’re first asked to specify the name of the new file and where it is to be located.
Attaching style sheets is covered later in this chapter, in the “Attaching a new style sheet”
section.

USING CSS TO ADD A TOUCH OF STYLE

171

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Defining the rule’s properties

As you discovered in the preceding exercise, the CSS Rule definition dialog box (see
Figure 4-6) is a multiple-category panel. Table 4-1 describes what each category contains.
Most are obvious; others less so.

Table 4-1. Properties that can be set in the CSS Rule definition dialog box

Category Properties covered

Type All font-related properties, plus color, line-height, and
text-decoration

Background All background properties, including background-color and
background-image

Block word-spacing, letter-spacing, vertical-align, text-align,
text-indent, white-space, and display

Box width, height, float, clear, padding, and margin

Border All border properties

List list-style-type, list-style-image, and list-style-position

Positioning CSS positioning, including visibility, z-index, overflow, and clip

Extensions page-break-before, page-break-after, cursor, and nonstandard
filters

The CSS Rule definition dialog box is intended to make life easier for beginners, but the need
to hunt around in the different categories can be very frustrating and time-consuming. It
also lists only CSS1 properties, so you may end up looking for something that’s not there.

Fortunately, Dreamweaver CS4 now lets you create the new style rule without setting any
properties. Of course, a rule with no properties won’t have any effect on the way your
page looks, but you can add new properties to the empty style block through the CSS
Styles panel or by editing the style sheet directly in Code view.

Before exploring the CSS Styles panel, let’s add some extra style rules to the stroll.html
example from earlier exercises.

CSS is constantly evolving. The current version is CSS2.1, which adds a small number of
new properties, such as cursor and outline, to the core properties defined in CSS1.
Work is in progress on CSS3, and although it won’t be completed for many years,
Firefox, Safari, and Opera already support some of its features.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

172

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise continues to improve the look of stroll.html by adjusting the line height,
text size, and margins of paragraphs. This demonstrates the use of the Targeted Rule field
in the CSS view of the Property inspector. You’ll also add images and wrap text around
them with simple CSS style rules.

Continue working with stroll.html from the preceding exercise. Alternatively, if you want
to jump in at this stage, use stroll_03.html from examples/ch04.

1. With stroll.html open in Design view, position your cursor inside one of the para-
graphs, and then click the CSS button on the left side of the Property inspector to
select the CSS view. The Property inspector should look like the following screenshot.

Adding paragraph margins and images

USING CSS TO ADD A TOUCH OF STYLE

173

4

The Targeted Rule field indicates which rules will be affected by any changes you
make in the CSS view of the Property inspector. It also controls which rule is edited
when you click the Edit Rule button. Make sure that the Targeted Rule field is set to
#wrapper.

When you created the #wrapper style rule in the previous exercise, the only proper-
ties you set controlled the width and the left and right margins. However, the
Property inspector shows the font family, color, and size. This is because the wrap-
per <div> inherits the rules set in the Page Properties dialog box in the first exercise.

2. Change the Size setting to 85, and then press Enter/Return to apply the new value.
This reduces the size of not only the text in the paragraphs, but also of the headings
(if you get giant text instead, make sure that the drop-down menu alongside the Size
field is set to %). The headings are affected because the Targeted Rule is #wrapper.

3. Switch to Code view and scroll up to find the <style> block. The #wrapper rule
looks like this:

#wrapper {
width: 720px;
margin-right: auto;
margin-left: auto;
font-size: 85%;

}

Changing the Size value in the Property inspector with #wrapper selected as
Targeted Rule has added the font-size property to the style rule. CSS inheritance
will apply this rule to everything in the wrapper <div>, causing potential difficulties,
so delete the line highlighted in bold.

4. Switch back to Design view, and position your cursor inside one of the paragraphs
again. The values in the CSS view of the Property inspector should look like the
screenshot in step 1 again.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Click the down arrow to the right of the Targeted Rule field, and select <New CSS
Rule> from the menu as shown in the following screenshot.

6. Click the Edit Rule button to open the New CSS Rule dialog box. Dreamweaver
automatically suggests a Compound (descendant) selector called #wrapper p (see
Figure 4-8, shown earlier).

7. Click OK to open the CSS Rule definition dialog box. In the Type category, set Size to
85, and select % from the drop-down menu alongside.

Also set Line height to 1.4, and select multiple from the drop-down menu alongside.
This adds vertical space between the lines of the paragraph to make the text easier
to read. You can use pixels or percent to set the line-height property, but I find
that choosing multiple gives the most reliable results.

8. Select the Box category from the column on the left side of the CSS Rule definition
dialog box. This category lets you define such properties as width, padding, and
margin. Both Padding and Margin have a checkbox labeled Same for all, which is
selected by default. This applies to all sides whatever value you enter in the Top
field. Let’s put a wide margin on both sides of each paragraph, but not on the top
and bottom. Deselect the checkbox for Margin, and enter the following values:

Top: 0 px

Right: 20 px

Bottom: 8 px

Left: 40 px

By setting the top margin to 0 and the bottom one to 8 pixels, you’ll get good spac-
ing between paragraphs. Setting the left margin to 40 pixels indents the text nicely
in comparison with the headings.

9. Click Apply to view the effect of the new style rule for paragraphs. If you need to
get a better view of the Document window, move the CSS Rule definition dialog box
to one side. If you want to make any changes to the settings, do so, and then click
OK to close the CSS Rule definition dialog box.

10. Let’s liven the page up with a couple of images. Insert living_statues.jpg any-
where inside the first paragraph and graffiti.jpg inside the paragraph following
the Artists at Work heading. Both images are in the images folder of the download
files. (Refer to Chapter 3 if you need a refresher on how to insert images.)

11. To wrap text around images, you need to float the image either left or right and
add a margin on the opposite side to leave some breathing space between them.
You’ll now create two classes that can be applied to any image.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

174

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If an image is selected in Design view, the CSS view of the Property inspector is not
visible. Deselect the image and repeat step 5 to select <New CSS Rule> in the
Targeted Rule field, and then click Edit Rule to open the CSS Rule definition dialog
box. Alternatively, use any of the other methods listed in the “Defining a selector”
section earlier in the chapter.

12. In the New CSS Rule dialog box, select Class (can apply to any HTML element) in the
Selector Type drop-down menu. This clears any suggested value from the Selector
Name field. Type floatleft in the empty field. Make sure that Rule Definition is set to
(This document only), and then click OK.

13. In the CSS Rule definition dialog box, select the Box category, and set Float to left.
Deselect the Same for all checkbox for Margin, and set Right to 10 px. Leave all other
settings blank. This aligns any element that uses the floatleft class to the left of
its parent element and puts a 10-pixel margin on the right side. This is much more
flexible than using the HTML hspace attribute, which puts the same amount of
space on both sides. The advantage of CSS is that you can put a different margin on
each side. Click OK to save the new class rule.

14. Select one of the images in Design view, and open the Class drop-down menu on
the right side of the Property inspector. This lists all classes defined in your styles.
Select floatleft, as shown in Figure 4-9.

When typing the name of a class in the New CSS Rule dialog box, you can omit
the leading period. This is a change from previous versions of Dreamweaver.

USING CSS TO ADD A TOUCH OF STYLE

175

4

Figure 4-9. To apply a class to the current element, select the class from the Class field in
the Property inspector.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The image should now be flush with the left margin of the paragraph. The text
flows naturally around the image, with a comfortable 10-pixel margin.

15. Repeat steps 11–14 to create another class called floatright. For this class, set the
value of Float to right, and create the margin on the left. Apply the new class to the
other image.

16. Save stroll.html and press F12/Opt+F12 to view it in your main browser. It should
now look like Figure 4-10. It’s still relatively plain, but it looks a lot more stylish
than the original version. If you want to check your version, compare it with
stroll_04.html in exercises/ch04.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

176

Figure 4-10. With the help of basic style rules, the page is beginning to look much better.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you found hopping around in the CSS Rule definition dialog box tedious and repetitive,
you’ll be pleased to know that Dreamweaver CS4 makes it easy to work directly with style
rules through the CSS Styles panel and the Code Navigator. The Code Navigator, which is
new to Dreamweaver CS4, was described in Chapter 1. The next section introduces you to
the powerful CSS Styles panel.

Introducing the CSS Styles panel
To get the most out of the CSS Styles panel, you need a solid understanding of CSS.
Although that statement is likely to provoke sighs of despair—or even anger—from read-
ers expecting Dreamweaver to do everything for them, it’s true of any tool or piece of
software. The greater your understanding of the tools you’re working with, the easier the
job becomes. Also, with a little persistence, using the CSS Styles panel should help begin-
ners improve their skills, because it shows you exactly which rules affect a particular part
of the page. And even if the theory behind CSS taxes your brain, you can quickly check
how your page will look in a standards-compliant browser by switching on Live view.

Over the next few pages, I’ll explain the key features of the CSS Styles panel in preparation
for using it to style one of Dreamweaver’s preinstalled CSS layouts in the next chapter.

Opening the CSS Styles panel

To open the CSS Styles panel, double-click the CSS Styles tab at
the top right of the screen in the Classic workspace, or click the
CSS Styles icon (shown alongside) if you’re using iconic mode.
Alternatively, select Window ➤ CSS Styles. On Windows, there’s
also the keyboard shortcut Shift+F11. (Mac keyboard shortcut
enthusiasts are out of luck, because the same combination runs
Exposé in slow motion on OS X.)

Viewing All and Current modes

The CSS Styles panel has two modes, All and Current, which are toggled by clicking the but-
ton at the top of the panel. Figure 4-11 shows both modes with an explanation of the
icons at the bottom of the panel and in the middle pane of Current mode. Current mode
(on the right of Figure 4-11) is more powerful, but it’s also more complex, so beginners
should try to get used to working in All mode first.

A good way of regarding All mode is as a window into all CSS rules available to the page,
regardless of whether they are embedded in the <head> of the document or in multiple
external style sheets. The top pane (labeled All Rules) displays the hierarchy of style rules as
a tree menu. If the rules are embedded in the <head> of the document, the root of the tree
(at the top) is displayed as a <style> tag, as in Figure 4-11. If they’re in an external style
sheet, the file name appears at the root. The tree menus are collapsible to make it easier to
work when multiple style sheets are attached to the page. The only style rules that you can-
not inspect or edit in All mode are inline styles, although you can see them in Current mode.

USING CSS TO ADD A TOUCH OF STYLE

177

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 4-11. The CSS Styles panel crams a lot of tools and information into a small space.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

178

The Properties pane at the bottom of the CSS Styles panel is common to both modes. It
displays details of the currently selected style rule and lets you edit or delete properties
and add new ones.

Use All mode when you need to do any of the following:

View the overall structure of the styles attached to a page.

Change the order of rules.

Inspect or edit the contents of a style rule identified by its selector.

Add a new style rule (you can do this in both modes).

Attach a style sheet to the current page (this is one of several places you can do this).

Don’t confuse the Properties pane of the CSS Styles panel with the Property inspector,
which is normally docked at the bottom of the Document window. If you’re not familiar
with Dreamweaver, the names are easy to mix up, because the title bar of the Property
inspector says Properties. When working with CSS, any reference to the Properties pane
means the pane at the bottom of the CSS Styles panel as shown in Figure 4-11.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I’ll describe the features of Current mode in the next chapter. For the moment, let’s take
a look at the seven icons at the bottom of the CSS Styles panel, as they apply to both
modes.

Exploring the Properties pane of the CSS Styles panel

The default setting of the Properties pane is to display only those CSS properties that have
been set in a particular style rule, as shown in Figure 4-11. However, the two leftmost icons
let you display properties grouped by category or alphabetically.

Displaying CSS properties by category
If you select the leftmost icon (see alongside) at the bottom of the CSS Styles
panel, the Properties pane lists all available CSS properties grouped together in
easily identifiable categories, as shown in Figure 4-12. If you’re new to CSS and find it dif-
ficult to remember the names of the various properties, I recommend that you use this
display until you gain sufficient confidence to use the less cluttered default view.

Click the plus (+) and minus (–) symbols (triangles in the Mac version) to expand or close
each category, and click in the right column alongside the property name to edit it. If a
fixed range of options is available, a drop-down menu appears. Similarly, a folder icon or
color picker appears if the property requires a pathname or color. To remove a property,
highlight it and click the trash can icon at the far right. Unlike the default display, the
property remains listed, but the value is deleted.

Displaying CSS properties alphabetically
Clicking the middle icon (shown alongside) at the bottom left of the CSS Styles
panel lists virtually all available CSS properties in alphabetical order, as shown in
Figure 4-13. Properties that have already been set move to the top of the list. To set
a new one, you need to scroll down to find it, making this view the least user-friendly.

Figure 4-12.
Displaying all available CSS
properties organized by
category makes life easier
for beginners.

USING CSS TO ADD A TOUCH OF STYLE

179

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This alphabetical list omits a small number of poorly supported CSS properties, such as
counter-increment and counter-reset, but as you can see from Figure 4-13, nonstan-
dard properties beginning with -moz are also listed. These are supported mainly by Firefox
and Mozilla, but are expected to become part of CSS3. Dreamweaver also lists some
Microsoft-only properties, such as layout-grid, and properties that were dropped from
the CSS2.1 specification, such as font-stretch. This wide choice is useful if you are a CSS
expert, but could lead you astray if you’re a novice. Use the alphabetical display with care.

Displaying only CSS properties that have been set
To restore the Properties pane to its default display of only those properties that
have been set (see Figure 4-11), click the third icon from the left at the bottom of
the CSS Styles panel (shown alongside).

Attaching a new style sheet
The chain icon (shown alongside) at the bottom right of the CSS Styles panel
opens the Attach External Style Sheet dialog box (see Figure 4-14). This lets you
attach the file using either <link> or @import and set the media type.

The File/URL field lists recently used style sheets in a drop-down menu. Click the Browse
button to navigate to a new style sheet. If you type the file name of a nonexistent style
sheet in the File/URL field, Dreamweaver displays a warning, and asks if you want to create
the link/import statement anyway. If you click Yes, you can create the necessary style sheet
afterward, and it becomes immediately available inside your page.

Normally, you can leave the Media field empty. If you do so, browsers apply your styles to
all media. However, if you want to create separate style sheets for different purposes,
such as mobile devices and print, select a media type from the drop-down menu in the
Media field, or enter a comma-separated list of any of the following media types: all,
aural, braille, handheld, print, projection, screen, tty, and tv. Use screen for visual
browsers, or all to apply your styles to all types of media.

Figure 4-13.
You can also display all available

CSS properties in alphabetical order.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

180

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 4-14. You can attach an external style sheet using <link> or
@import.

If you choose a media type other than screen or all, use the Style Rendering toolbar,
which is described later in this chapter, to see the effect of your styles in Design view.

Adding, editing, and deleting style rules
The final three icons at the bottom right of the CSS Styles panel let you add new rules,
edit existing rules, and delete existing rules and properties. Most editing and deletion is
done directly in the CSS Styles panel, and I’ll show you how to do that in the next chapter.

Moving style rules
All the rules you have created in the exercises so far are in the <head> of the document, so
they apply only to the current page. The real value of CSS lies in the ability to apply the
same styles to an entire website by storing the rules in one or more external style sheets.
That way, any change to the external style sheet is propagated throughout the site. It also
reduces page size because the browser caches the style sheet the first time it loads.
Moving style rules is a breeze, because Dreamweaver automates the process for you.

Exporting rules to a new style sheet

If you have CSS style rules defined in a document, you can easily move them into an exter-
nal style sheet. The best way to show you how this works is with a hands-on exercise.

There are several other ways of attaching external style sheets. As you’ll see in the next
chapter, you can attach style sheets in the New Document dialog box when first creat-
ing a page. There is also an option to attach a new style sheet at the bottom of the
Class drop-down menu in the HTML view of the Property inspector and in the New CSS
Style dialog box (see Figure 4-8).

USING CSS TO ADD A TOUCH OF STYLE

181

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise shows you how to move the style rules from the <head> of the page that
has been used in the exercises throughout this chapter into an external style sheet. If
you have been doing the exercises, continue working with stroll.html. Otherwise, use
stroll_04.html from examples/ch04.

1. With stroll.html open in the Document window, open the CSS Styles panel and
select All mode, as described in the preceding section.

2. If necessary click the plus (+) icon (disclosure triangle on a Mac) alongside <style>
to expand its contents. Use Shift-click to select all the style rules, as shown in the
following screenshot.

3. Right-click and select Move CSS Rules from the context menu. This brings up the
following dialog box.

4. In the Move To External Style Sheet dialog box, select the radio button labeled A new
style sheet, and then click OK.

5. In the next dialog box, navigate to the workfiles/ch04 folder, and save the new
style sheet as stroll.css.

Moving embedded styles

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

182

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Check the CSS Styles panel. The styles should now be listed below stroll.css, as
shown in the following screenshot.

7. Check the Document window. The Related Files toolbar has been added between
the document tab and Document toolbar, as shown in the following screenshot.

USING CSS TO ADD A TOUCH OF STYLE

183

4

8. Click stroll.css in the Related Files toolbar. Dreamweaver switches to Split view, with
the external style sheet in the Code view section and the main page in the Design
view section, as shown in the following screenshot.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Click Source Code in the Related Files toolbar. This displays the source code of
stroll.html in Code view. Scroll to the top of the document. In the <head> sec-
tion, you’re now left with an empty <style> block followed by a <link> tag to the
external style sheet, as the following screenshot shows.

10. To get rid of the empty <style> block shown on lines 6–9 in the preceding screen-
shot, you can delete it manually in Code view. Alternatively, select <style> in the
CSS Styles panel in All mode, and then press Delete.

If you want to examine the finished files, they’re stroll_05.html and stroll.css
in examples/ch04.

The preceding exercise demonstrated how to move all rules from the <head> of a page
using the CSS Styles panel. You can also use the Move CSS Rules command in Code view.
Highlight the rules you want to move, right-click, and select CSS Styles ➤ Move CSS Rules
from the context menu. When moving a single rule, you don’t need to highlight the whole
rule. Your cursor can be anywhere inside the rule you want to move. Dreamweaver treats
partial selection of a rule as affecting the whole rule.

Moving rules within a style sheet

Whenever you add a new style rule through the New CSS Rule and CSS Rule Definition dia-
log boxes, Dreamweaver puts it at the bottom of the style sheet. To take advantage of the
cascade order, or simply to group your rules in a more logical way, you need to be able to
move them. Nothing could be easier.

Simply highlight the rules you want to move (use the
Shift or Ctrl/Cmd key to select multiple rules), and drag
and drop them within the top pane of the CSS Styles
panel in All mode. As the following screenshot shows,
the mouse pointer turns into a document icon while
dragging. The thick blue line indicates where the rule(s)
will be located when you release the mouse button.

Moving rules between external style sheets

The ability to drag and drop style rules doesn’t apply only to rules within the same style
sheet or <style> block. If more than one style sheet is attached to a page, you can move
them at will from one to another.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

184

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following exercise demonstrates the power of this feature. Not only are the style rules
moved, any change in the cascade is immediately reflected in Design view.

1. Open move_styles.html in examples/ch04. Open the CSS Styles panel in All mode,
and expand the tree menus for both style sheets. The page should look like this:

Changing the look of the page by moving style rules

USING CSS TO ADD A TOUCH OF STYLE

185

4

In All mode, the CSS Styles panel displays CSS selectors in the same order that they
are applied to the page. As you can see from the preceding screenshot, the first
style sheet contains two rules (for body and h1), and the second one contains only
a rule for h1. If you inspect the properties for h1 in the Properties pane, you will see
that the first style sheet sets the color to maroon, but the second one sets it to
deep blue. Because the second rule is lower in the cascade, it takes precedence.
That’s why the page heading in Design view is deep blue.

2. Drag the h1 selector from the first style sheet to immediately below the h1 selector
in the second style sheet. Dreamweaver detects a conflict and displays the follow-
ing dialog box so that you can compare both versions of the rule.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When a rule with the same name exists in the target style sheet, the rule being
moved is displayed in the left panel, and the rule in the target style sheet is shown
on the right. If you click Yes, Dreamweaver preserves the rule in the target style
sheet and inserts the rule being moved alongside it.

Selecting No instructs Dreamweaver not to move the rule currently displayed but
to carry on with the rest of the operation. Cancel tells Dreamweaver to abandon
the operation, and no rules are moved. If you select the checkbox labeled Use this
decision for all remaining conflicts, the Yes and No buttons are treated as Yes to All
and No to All.

3. Click Yes. The page heading should immediately turn maroon in Design view. An
asterisk is inserted alongside the names of the two style sheets in the Related Files
toolbar to indicate that they have been changed. When you close move_styles.html,
you will be asked if you want to save the changes to the style sheets. Dreamweaver
always reminds you if changes have been made to related files, but it’s up to you
whether to make the changes permanent.

The ability to move and edit style rules without ever needing to leave Design view makes
Dreamweaver a very powerful tool for creating websites with CSS.

Moving inline styles to a style sheet

Unless you need to create HTML email, inline styles are the most inflexible way of applying
CSS. As the name suggests, an inline style is a style rule embedded in the target element’s
opening tag. For example, the following paragraph has an inline style that displays its con-
tent as 12-pixel, bold, red Arial, Helvetica, or sans-serif:

<p style="color: #F00; font-weight: bold; font-size: 12px; font-family:
Arial, Helvetica, sans-serif;">The styles affect only this para.</p>

Using inline styles is inefficient because only one element is affected, and the properties in
an inline style always override any other rules.

Dreamweaver makes it easy to extract the properties from inline styles and convert them
into an ordinary style rule in the <head> of the page or an external style sheet. Use the Tag
selector to select the tag that contains the rule you want to convert, right-click, and select
Convert Inline CSS to Rule from the context menu. Alternatively, position your cursor any-
where inside a tag that contains an inline style, right-click, and select CSS Styles ➤ Convert
Inline CSS to Rule. In Code view, you can also use the Move or Convert CSS button on the
Coding toolbar (see Figure 1-31 in Chapter 1). The dialog box that opens lets you choose
whether to create a new class or define your own CSS selector. You can also choose where
to create the new rule.

This feature is particularly useful for cleaning up pages that have absolutely positioned ele-
ments defined using inline styles (layers in Dreamweaver MX 2004 or earlier). You can con-
vert only one layer at a time, but it’s a much quicker and more accurate way of tidying up
legacy pages than attempting to cut and paste everything manually. It doesn’t matter

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

186

http://lib.ommolketab.ir
http//lib.ommolketab.ir

whether you’re in Code view or Design view; as long as your cursor is anywhere inside the
absolutely positioned element, just right-click and select CSS Styles ➤ Convert Inline CSS
to Rule from the context menu. Dreamweaver presents you with the Convert Inline CSS
dialog box, as shown in Figure 4-15.

Figure 4-15. As long as your cursor is inside a layer, Dreamweaver can move the inline
styles to an external style sheet or the head of the document.

Dreamweaver automatically chooses the ID as the name of the selector for the new rule.
Although you can change the name in the dialog box, this affects only the new style rule.
It doesn’t change the ID of the <div>. The Convert to drop-down menu at the top left of
the dialog box has two other options: to create a class based on the inline styles or to
apply the styles to all <div> elements. They are for converting other inline styles and
should not be used when converting old-style absolutely positioned elements. You can test
this feature using layers.html in examples/ch04.

Creating inline styles for HTML email

Not all email programs are capable of displaying CSS correctly, so it’s a common practice
to revert to tags and other old-style formatting techniques to create the content
for HTML email. In previous versions of Dreamweaver, switching back temporarily to HTML
formatting was easy: you just deselected the option in the General category of the
Preferences panel to use CSS instead of HTML tags. When you had finished creating the
content for HTML email, you turned the option back on, and continued working with CSS.
However, that option has been removed from the Preferences panel in Dreamweaver CS4,
leaving no easy way of creating tags apart from hand-coding them in Code view.
The solution is to use inline CSS, which most, if not all, email programs support.

To create inline CSS, select the element you want to style. Then, in the CSS view of the
Property inspector select <New Inline Style> in the Targeted Rule drop-down menu, and
click the Edit Rule button, as shown in the following screenshot.

USING CSS TO ADD A TOUCH OF STYLE

187

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

188

This opens the CSS Rule definition dialog box (see Figure 4-6 and Table 4-1), where you can
define the properties for the inline style.

Inline styles are automatically copied to the next paragraph when you press Enter/Return
to create a new paragraph.

Setting your CSS preferences
Developers have individual ways of working, and Dreamweaver tries to accommodate
most common preferences. Two sections of the Preferences panel (Edit ➤ Preferences, or
Dreamweaver ➤ Preferences on a Mac) control the way Dreamweaver handles CSS:

The CSS Styles category of the Preferences panel (see Figure 4-16) controls the cre-
ation and editing of style rules.

The Code Format category of the Preferences panel also lets you determine how
style rules are laid out.

Figure 4-16. My personal preferences for the way style rules are created and edited

First, let’s take a look at the options in the CSS Styles category.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating and editing style rules

There are two ways of writing style rules for font, background, margin, padding, border, and
list-style: the long way and shorthand. For example, the following style rules both have the
same meaning:

/* long way of declaring font and margin properties */
p {
font-family: Arial, Helvetica, sans-serif;
font-size: 85%;
line-height: 1.4;
margin-top: 0;
margin-right: 5px;
margin-bottom: 5px;
margin-left: 15px;

}
/* shorthand version of preceding example */
p {
font: 85%/1.4 Arial, Helvetica, sans-serif;
margin: 0 5px 5px 15px;

}

The advantage of the long way of declaring these properties is that the meaning is crystal
clear. The disadvantage is that it makes your style sheets much longer. The shorthand version
is more compact, but it comes at a price: you need to remember the correct order of the
property values. For margin and padding, it’s easy: they start at the top and go in a clockwise
direction—top, right, bottom, and left. The shorthand for border is also easy: the width,
style, and color properties can go in any order. As shown in Figure 4-16, the CSS Styles
category of the Preferences panel lets you choose the default way of writing these rules. My
preference is to use shorthand for margin, padding, and border only.

The next set of options lets you specify whether to use shorthand when editing existing style
rules. If you’re working as part of a team, the first option (If original used shorthand) prevents
Dreamweaver from messing up the styles used by your colleagues. If you’re on your own,
choose the second option so that Dreamweaver converts style rules to your own preferred
format.

The checkbox labeled Open CSS files when modified makes a critical difference to the way
Dreamweaver handles changes to an external style sheet. What happens depends on whether
Related Files is enabled or disabled.

With Related Files enabled, if you select Open CSS files when modified, Dreamweaver tracks
changes in external style sheets and marks the file in the Related Files toolbar as having
changed. You can undo the last change by selecting the style sheet’s name in the Related Files
toolbar and pressing Ctrl+Z/Cmd+Z or selecting Edit ➤ Undo. To undo all changes, close the
main file, and click No when prompted to save the changes to the style sheet. If you deselect
Open CSS files when modified, Dreamweaver automatically saves any changes to external style
sheets. There is no way to undo them. However, if you open the external style sheet in Split
view by selecting its name in the Related Files toolbar, all subsequent changes are tracked and
undoable.

USING CSS TO ADD A TOUCH OF STYLE

189

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With Related Files disabled, if you select Open CSS files when modified, Dreamweaver opens
the external style sheet in a new tab, but leaves the focus in the main page. You can undo
any changes by selecting the tab that contains the style sheet. If you deselect Open CSS
files when modified, changes are made silently to the external style sheet and automatically
saved. There is no way to undo them.

The final section lets you choose what happens when you double-click inside the CSS
Styles panel. The first option, Edit using CSS dialog, opens the CSS Rule definition dialog box
(see Figure 4-6) described earlier in the chapter. This dialog box can be helpful, but I don’t
recommend its use on a regular basis. The most useful option is the last one, Edit using
code view. This opens the style sheet in the Document window and positions your cursor
inside the selected rule, ready to edit it.

Setting the default format of style rules

To control the way your style rules are laid out, select the Code Format category in the
Preferences panel, and click the CSS button in the Advanced Formatting section. This opens
the CSS Source Format Options dialog box (see Figure 4-17).

Figure 4-17. The CSS Source Format Options dialog box controls how
style rules are formatted.

In previous versions of Dreamweaver, I preferred Dreamweaver not to open CSS files
when modified, because I found it a nuisance to save the style sheet every time I wanted
to preview my page in a browser. However, Dreamweaver CS4 lets you preview the
effects of changes in Live view without saving the style sheet. So, selecting the option to
open CSS files when modified makes it much easier to undo the changes if you don’t like
the effect.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

190

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The options are self-explanatory, and the Preview panel at the bottom of the dialog box
shows you what your selections will look like. Click OK to close the dialog box, and click
OK to save your new preferences. All new style rules will use the new settings.

To apply your format preferences to existing style sheets, open the style sheet, and select
Apply Source Formatting from the Commands menu. This is an all-or-nothing option: you
can’t apply the formatting to a selection. Dreamweaver is smart enough to apply the CSS
format options to <style> tags in the <head> of a page, but it ignores styles inside condi-
tional comments (covered in the next chapter).

Checking how styles will look in other media
Many people think of style sheets in terms of “one size fits all”—in other words, they cre-
ate one set of style rules and hope that the site will look just as good in every medium.
However, you can specify different style sheets for a variety of media. Style sheets for ordi-
nary browsers (screen), print, and handheld devices have the best support. By default,
Dreamweaver Design view and Live view show your page as it will look in a visual browser,
but the Style Rendering toolbar and Device Central let you check what your page will look
like with style sheets designed for other media.

Using the Style Rendering toolbar

One of Dreamweaver’s best-kept secrets—because it isn’t enabled by default—is the Style
Rendering toolbar (see Figure 4-18). It’s indispensable if you work with style sheets for dif-
ferent types of media. To enable it, select View ➤ Toolbars and choose Style Rendering.

The Style Rendering toolbar lets you see the effect of each media style sheet in Design
view. It also allows you to disable CSS entirely, so that you can see the logical flow of your
web page in the same way that it would be presented to a search engine or a visually dis-
abled person using a screen reader.

The Design-time Style Sheets button gives direct access to the Design-time Style Sheets dia-
log box, giving you control over which style sheets are applied or hidden while working in
Design view. This allows you to view two or more style sheets in combination, whereas the
Style Rendering toolbar selects only one at a time. Design-time style sheets are covered in
Chapter 12.

Figure 4-18.
The Style Rendering toolbar
displays the effect of different style
sheets without leaving Design view.

USING CSS TO ADD A TOUCH OF STYLE

191

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you prefer working with menus, you can access the Style Rendering submenu from the
View menu. You can also access the Design-time Style Sheets dialog box by selecting Format
➤ CSS Styles ➤ Design-time.

Using Device Central CS4

In addition to Live view and launching a variety of browsers from within Dreamweaver to
preview your website, you can see how it will look in a mobile device by launching Adobe
Device Central CS4. This is a separate program shared by most programs in the Adobe
Creative Suite, which is installed at the same time as Dreamweaver unless you deselected
it during the installation setup. Figure 4-19 shows how Device Central emulates the display
of stroll.html in a generic mobile device, but you can choose skins from all the main
mobile phone manufacturers from the Device Central online library.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

192

Figure 4-19. Device Central lets you see what your site will look like in a wide range of mobile devices.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You access Device Central by selecting File ➤ Preview in Browser ➤ Device Central. The key-
board shortcut (Ctrl+Alt+F12/Ctrl+Opt+F12) is easy to remember because it’s so similar to
the shortcut for previewing in your default browser (F12/Opt+F12). The display in Device
Central is interactive, so you can use the mobile keypad and click links to navigate to other
pages. Although Device Central is intended to be used as an emulator in a development
environment, you can also view live pages on the Internet. Just type the website address
into the URL field in the right panel and press Enter/Return.

Chapter review
This chapter has shown you how to create basic style rules in Dreamweaver and covered
the main CSS tools in Dreamweaver. The next chapter builds on that knowledge by adapt-
ing one of the 32 built-in CSS layouts in Dreamweaver. You’ll also learn about using the
CSS Styles panel in Current mode, a powerful tool for analyzing the effect of the cascade
within your style sheets.

USING CSS TO ADD A TOUCH OF STYLE

193

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5 CREATING A CSS SITE STRAIGHT
OUT OF THE BOX

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this chapter, I’ll lead you through the process of creating a page using one of the 32 built-
in CSS layouts in Dreamweaver CS4, showing you how to get the most out of the CSS Styles
panel in Current mode. The CSS layouts were originally introduced in Dreamweaver CS3 and
provide a very solid foundation for creating a standards-compliant website consisting of
header, sidebar, main content area, and footer. For a sneak preview of where this chapter
ends up, load stroll_final.html from examples/ch05 into a browser, or take a look at
Figure 5-7 later in this chapter. If you’re new to CSS, you may find some parts of this chapter
daunting, but come along for the ride. Even if you don’t understand how all the style rules fit
together, you’ll pick up some cool techniques that will give your own sites that extra lift.

In this chapter, you’ll learn about the following:

Attaching external style sheets when creating a new page

Making sure conditional comments are applied correctly

Adapting a Dreamweaver CSS layout

Getting the most out of the CSS Styles panel in Current mode

Understanding the impact of the CSS cascade

Refining selectors in the New CSS Rule dialog box

Using Dreamweaver’s Find and Replace feature

Using a built-in CSS layout
If you click HTML or PHP in the Create New section of the welcome screen, Dreamweaver
opens a blank page using your default settings (see “Setting new document preferences”
in Chapter 2). You get a much bigger choice with File ➤ New, which opens the New
Document dialog box (see Figure 5-1).

Figure 5-1. Open the New Document dialog box to select one of the built-in CSS
layouts.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

196

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In both the Blank Page and Blank Template categories, the Layout column offers you a
choice of 32 CSS layouts when the Page Type is suitable for a complete web page, such as
HTML or PHP. You can also choose just a blank page by selecting <none> from the top of
the Layout column. The dialog box remembers your choices the next time you open it.

Choosing a layout

The layouts cover the most commonly used conventions of web page design: one-, two-,
and three-column pages, with and without a header and footer. They have been tested in
all the main browsers and provide a rock-solid basis for building a site.

You can choose four different types of column widths, identified by simple diagrams, as
follows:

Fixed: The width is defined in pixels.

Elastic: The width is defined in ems.

Liquid: The width is defined as a percentage.

Hybrid: The main column width is defined as a
percentage; other columns are defined in ems.

As you select each layout, a diagram appears on the right of the New Document dialog box
showing the style together with a brief description, as shown in Figure 5-1.

Deciding where to locate your style rules

When you select a layout, the Layout CSS menu at the bottom right of the New Document
dialog box is activated (it’s grayed out when <none> is selected). The menu has three
options, as follows:

Add to Head: This embeds the style rules in the <head> of the document.

Create New File: This puts all the style rules in an external style sheet.

Link to Existing File: This discards all style rules associated with the layout and links
to an existing style sheet.

The minimum versions required for the CSS layouts are Firefox 1.0, Opera 8, Safari 2.0
(Windows and Mac), and Internet Explorer 5.5 (Windows).

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

197

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Linking to existing style sheets
The third option is typically for subsequent pages based on the same layout. Before click-
ing Create, you must specify the style sheet by clicking the chain icon alongside Attach CSS
file, as shown here:

This opens the Attach External Style Sheet dialog box, which was described in the previous
chapter. After selecting the style sheet, click OK, and you will be returned to the New
Document dialog box. You can add as many style sheets as you want. The text area below
the chain icon displays a list of the selected style sheet(s).

When you’re satisfied, click Create to load the new layout page into the Document win-
dow. When you first save the page, Dreamweaver automatically adjusts any document-rel-
ative paths to style sheets.

In many dialog boxes, Dreamweaver remembers your last set of options—and this includes
the list of attached style sheets at the foot of the New Document dialog box. That’s very
helpful if you want to link the same style sheets to your next document, but it may give
you a nasty surprise if you forget. To remove style sheets from the list, highlight them, and
click the trash can icon alongside the chain icon.

Making sure conditional comments are applied
To make the style sheets easier to edit, as well as to ensure standards compliance, the lay-
outs don’t use any weird and wonderful CSS hacks to overcome bugs in Internet Explorer.
Instead, special rules to correct these bugs are embedded in conditional comments just
before the closing </head> tag of the layout page. Conditional comments are a Microsoft
extension of HTML comments and look like this:

<!--[if IE 5]>
<style type="text/css">
.twoColFixLtHdr #sidebar1 { width: 230px; }
</style>
<![endif]-->

Only the Windows version of Internet Explorer takes any notice of the style rules embed-
ded in them. All other browsers treat them as ordinary comments and ignore them. It’s a
perfect, standards-compliant way of tackling Internet Explorer bugs. However, for them to
be effective, they must come after all other style rules. If your style rules are in external
style sheets, the conditional comments must come after the <link> or @import commands
that attach them to the page. Although you can put special rules for Internet Explorer in

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

198

http://lib.ommolketab.ir
http//lib.ommolketab.ir

an external style sheet and use a conditional comment to attach the style sheet, the com-
ments themselves cannot go in an external style sheet. They must be in your web page.

This has important implications if you attach further style sheets. When you click the
Attach Style Sheet icon at the bottom of the CSS Styles panel, as described in Chapter 4,
Dreamweaver attaches external style sheets immediately before the closing </head> tag—
in other words, after any conditional comments. This means you must always move the
code that attaches your style sheet to before the conditional comments. Even if you’re
sure there’s no conflict of style rules, it’s safer to do so because Dreamweaver ignores the
conditional comments in the same way as a non-Microsoft browser, so you won’t notice
any difference in Design view if you forget to move the link to the new style sheet.
However, it will be immediately apparent to anyone using a version of Internet Explorer
with bugs that the conditional comments are meant to correct.

You must move the link to the external style sheet manually in Code view. Dragging and
dropping the style rules in the CSS Styles panel in All mode has no effect.

Styling a page

The layout I have chosen for this chapter is 2 column fixed, left sidebar, header and footer. It
creates a 780-pixel wide page centered horizontally in the browser. This is designed to fit
in an 800 × 600 monitor. You can change the width to suit your own needs, but I’m going
to leave it as it is.

The following exercise shows how to start transforming the basic layout. Of course, I didn’t
just pluck the settings out of thin air; it took some experimentation. But the way I did it was
exactly the same—using the CSS Styles panel to edit each property and watching the grad-
ual transformation of the page in Design view. The page you’ll build uses some of the same
materials as the previous chapter but results in a much more sophisticated design.

These instructions assume you have already familiarized yourself with using the CSS Styles
panel in All mode, as described in Chapter 4.

1. Open Dreamweaver, and select File ➤ New. In the New Document dialog box, select
the Blank Page category, and use the following settings:

Page Type: HTML

Layout: 2 column fixed, left sidebar, header and footer

DocType: XHTML 1.0 Transitional

Layout CSS: Create New File

Make sure there are no style sheets listed under Attach CSS file, and click Create.

Preparing the basic layout

Visit http://msdn.microsoft.com/workshop/author/dhtml/overview/ccomment_ovw.asp
to learn more about Microsoft conditional comments.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

199

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Dreamweaver prompts you to save the style sheet. Navigate to the workfiles
folder, create a new subfolder called ch05, and save the style sheet in the new folder
as stroll.css. When you click Save, the CSS layout loads into the Document
window as an unnamed and untitled document. Save it in workfiles/ch05 as
stroll.html. The style sheet is added to the Related Files toolbar at the top of the
Document window.

Your first reaction may be “Ugh, what an ugly duckling!” But this ugly duckling has
the right genes, or infrastructure, to turn it into a beautiful swan. The first task is to
analyze the structure. Do this with the help of the CSS visual aids by moving your
mouse around the Document window and clicking any solid lines that indicate the
presence of a <div> as described in the previous chapter. Also click in each part of
the document to see the structure revealed in the Tag selector.

To assist you, Figure 5-2 shows how the page is divided. The whole page is wrapped
in a <div> called container, which centers the content in the browser. The rest of
the page consists of four sections, each within a <div> named header, sidebar1,
mainContent, and footer. The sidebar and main content are both floated left.

Figure 5-2. The main underlying structure of the two-column fixed layout with header
and footer

3. Select stroll.css in the Related Files toolbar to display the contents of the style
sheet in Split view. As Figure 5-3 shows, the style sheet begins with an @charset
rule. This is not strictly necessary when working with English, but it tells
Dreamweaver and the web server which encoding you’re using. It must come
before any CSS selectors.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

200

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 5-3. The style rules are liberally commented to make it easy to understand the role they play in the layout.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

201

5The rules are copiously sprinkled with CSS comments that explain their purpose.
The styles applied to the body selector control the fonts and give the page a dark
gray background color. The white background is common to all elements in the
container <div>, but the header, sidebar1, and footer override this with various
shades of gray.

Most of the content on the page is dummy text, but the first paragraph in the left
sidebar contains the important information that the background color stretches only
as far as the content. It also advises adding a border to the left side of the
mainContent <div> if it will always contain more content. So let’s start by fixing that.

4. You can edit the style rules directly in stroll.css in Split view and see the effects
reflected in the Design view section of the Document window. However, I want to
show you how to use the CSS Styles panel in Current mode to identify which style
rules affect a particular part of the page when you don’t know the name of the
selector.

In Design view, click in the text beneath the
Main Content headline, select <div#mainContent>
in the Tag selector at the bottom of the
Document window, and then click the Current
button at the top of the CSS Styles panel. The
panel should now look similar to the screenshot
alongside.

In Current mode, the CSS Styles panel consists of
three sections, which you may need to resize to
see everything (the width of the columns is also
resizable by dragging horizontally). The top pane
(Summary for Selection) shows the rules that
apply to the current selection both through its
own selector and through the rest of the cas-
cade, whereas the bottom pane (Properties)
shows you the style rules for the currently high-
lighted selector. By default, the middle pane tells you where the property selected
in either pane is defined in the style sheet.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although it looks confusing at first glance, Current mode presents you with a lot of
useful information and is an extremely effective place to edit CSS. Using it in prac-
tice makes it easier to understand, so just follow along for the time being.

5. Click Add Property at the bottom of the Properties
pane. This opens a blank drop-down menu. This is
where you specify the CSS property you want to
add to the rule. To create a left border, you need
the border-left property. The drop-down menu
is editable, so either you can click the down
arrow on the right of the menu to reveal all the options or you can start typing the
name of a CSS property. If you don’t want to type the full name, type just bor, and
press the down arrow key (or click the menu’s down arrow). The border property
should already be highlighted. Scroll down to border-left, as shown alongside.

Press Tab or click border-left, and Dreamweaver opens the right side of the pane for
you to type the value you want to assign to the CSS property. If it doesn’t open
automatically, click to the right of border-left. Type 1px dashed #000, and press
Enter/Return.

Click anywhere in the mainContent <div> to deselect it, and you should see a dot-
ted black border on the left side of the text.

6. Now let’s deal with the sidebar background. Click anywhere in the sidebar. If you
look at the Properties pane of the CSS Styles panel, you’ll see that it refers to
.twoColFixLtHdr #container and not the sidebar. Because nothing is actually selected,
Dreamweaver shows you the rules for the parent <div> for the whole page.
Although this seems counterintuitive, it’s actually quite useful.

The drop-down menu that contains the CSS properties remains editable only
when you first open it. Once you have selected a property, you cannot change it;
only the value field to the right of the property name remains editable. If you
choose the wrong property, highlight it, and press Delete or click the trash can
icon at the bottom right of the CSS Styles panel. Then click Add Property again
to choose the correct property.

The built-in CSS layouts use a technique known as giving the page a CSS
signature. This is a class added to the <body> tag of the page, identifying the
layout. Each style rule uses a descendant selector that begins with the class
name. So the style rule for the mainContent <div> is called .twoColFixLtHdr
#mainContent. Adding the class makes the style rules more specific, so you can
combine one of these layouts with an existing site that already has its own style
rules. If you add new rules yourself, remember that CSS selectors are case sensi-
tive. Use the same camel-case spelling.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

202

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see from the screenshot alongside,
background, border, margin, and width are all
struck through with a horizontal line. This indi-
cates that a more specific rule is overriding these
properties in the sidebar. The useful piece of
information here is that the background property
for the container <div> is white (#FFFFFF). If
you remove the background for the sidebar, it
will inherit the color of its parent.

7. Click <div#sidebar1> in the Tag selector at the
bottom of the Document window. The Properties
pane now shows the rules for .twoColFixLtHdr
#sidebar1, which set the background color of
the sidebar to light gray (#EBEBEB). Highlight
background, and press Delete or click the trash
can icon at the bottom of the CSS Styles panel,
as shown here.

8. The sidebar should now have the same white background as the mainContent
<div>. Let’s do the same to the footer, which has a slightly different gray back-
ground color (#DDDDDD). Position your cursor anywhere in the footer <div>, select
<div#footer> in the Tag selector, and then delete background from the Properties
pane of the CSS Styles panel.

9. If you look at stroll.html in Design view or Live view, the gray background should
be gone from the sidebar and footer, and there should be a dashed border down
the left side of the main content. The only gray background remaining is behind
the header. However, if you press F12/Opt+F12 to preview the page in your main
browser, the gray backgrounds are still all there. Why? The answer lies in the
Related Files toolbar.

10. Switch back to Dreamweaver. You should see an asterisk alongside stroll.css in the
Related Files toolbar, as shown in the following screenshot:

Changes made to the style sheet are not automatically saved when working with
the Related Files toolbar. This allows you to roll back any changes, but it also means
you need to remember to save them if you want to keep them. To save a related
file that has been edited, select the file name in the Related Files toolbar, and select
File ➤ Save or press Ctrl+S/Cmd+S.

If you delete the wrong property, you cannot undo it by pressing Ctrl+Z/Cmd+Z
or selecting Edit ➤ Undo because the change has been made to an external style
sheet. Select the style sheet’s name in the Related Files toolbar to undo the
change.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

203

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Selecting a file name in the Related Files toolbar always opens the related file in
Split view. If you don’t want to open it, select File ➤ Save All, or right-click the main
document’s tab and select Save All from the context menu.

11. Save stroll.css, and test stroll.html in a browser. The sidebar and footer back-
grounds should now have disappeared.

Check your files, if necessary, against stroll_border.html and stroll_border.css
in examples/ch05.

Getting rid of the background colors doesn’t make a dramatic difference to the look of
the page. The real transformation begins with adding background images. By using the
CSS Styles panel, the changes are reflected immediately in Design view.

In this exercise, you’ll add a background image and banner to the header <div>, and you’ll
position a background image at the bottom of the container <div>. Continue working
with the same files as in the preceding exercise.

1. Instead of white or gray, I’ve chosen a shade of cornflower blue as the background
color for the header. This is because I’m going to use a background image but want
a similar color to be displayed if the image fails to load.

Click in the header <div>, select <div#header> in the Tag selector, and delete back-
ground from the Properties pane of the CSS Styles panel. Although you’re going to
use a different color, I’ve suggested deleting the shortcut property because it’s eas-
ier to use the separate background-color and background-image properties.

2. With the header <div> still selected, click Add Property, and select background-
image using either the arrow keys or the drop-
down menu. Dreamweaver not only opens the
right side of the pane for you to type the name of
the image but also displays two icons that should
be familiar from the main Property inspector, as
shown here.

You can click the Point to File icon on the left to point to the image in the Files
panel, or you can click the folder icon to navigate to the file. It’s often easier to
close the Files panel when working in the CSS Styles panel, so the latter tends to be
more useful. Use either method to select images/stroll_header_bg.jpg.

3. Click Add Property, select background-repeat, and select repeat-x from the drop-down
menu that appears alongside. This tiles the background image only horizontally.

Adding background images

It’s important to note that you cannot normally undo changes to an external
style sheet if the option Open CSS files when modified has been deselected in the
CSS Styles category of the Preferences panel (see Chapter 4). If you set your
preferences not to open CSS files and are wondering why your changes haven’t
been automatically saved, it’s because selecting stroll.css in the Related Files
toolbar in step 3 has the effect of opening it, making all changes undoable.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

204

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Click Add Property again, and select background-
color from the drop-down menu. This time,
Dreamweaver inserts the color picker alongside
the property, as shown alongside.

5. Click the color picker, and use the Eyedropper
tool to get the color of the background image in
the header <div>. It has a slight pattern, so the precise color isn’t important. I told
you that it was a lot easier not using shortcuts for the background property.

6. Remove all padding from the header <div> by clicking the value alongside
padding, and change it from 0 10px 0 20px to 0. Sizes in CSS must always be accom-
panied by a unit of measurement, such as em or px, with no gap between the num-
ber and unit. The only exception is 0, which doesn’t require a unit of measurement.
Although 0px is valid, the px isn’t necessary—and leaving it out saves typing.

7. Select the word Header, and replace it with Stroll Along the Thames. Then select the
<h1> tag in the Tag selector, and press the right arrow key on your keyboard. If you
open Split view, you’ll see that this positions the cursor between the closing </h1>
tag and the closing </div> tag in the underlying code.

8. Insert the header image by selecting the Insert Image button in the Common
category of the Insert bar or by selecting Insert ➤ Image. Browse to images/
stroll_header.jpg. In the Image Tag Accessibility Attributes dialog box, set Alternate
text to Stroll Along the Thames, and click OK.

9. Change the Document title to Stroll Along the Thames by replacing Untitled
Document in the Document toolbar. The top of the page should now look like this
in Design view:

When opening Split view with Related Files enabled, Dreamweaver remembers
which file was opened most recently in Split view. To make sure you open the
right file, always use the Related Files toolbar, rather than clicking the Split View
button on the Document toolbar. To inspect the HTML code of the main docu-
ment, click Source Code in the Related Files toolbar.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

205

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The text heading in the <h1> tags is for the benefit of search engines and browsers
that can’t cope with CSS, but you need to hide the text for visual browsers. Once
it’s out of the way, you can tuck the header image neatly into the top of the page.

10. Position your cursor in the text heading, and select the <h1> tag in the Tag selector.
Highlight the padding property in the Properties pane of the CSS Styles panel, and
delete it. Then add the following two properties and values:

position: absolute

top: –500px

Using absolute positioning removes the heading from the flow of the document,
and giving it a top position of –500 pixels moves it conveniently out of the way.

11. Now let’s add a bit of interest to the bottom of the page. Click anywhere in Design
view, and select <div#container> in the Tag selector. Highlight background in the
Properties pane of the CSS Styles panel, and delete it. The whole of Design view will
turn a dark gray, but fear not. You can restore the light right away by clicking Add
Property, selecting background-color, and setting its value to #FFF.

12. Next add the background-image property, and navigate to images/city_footer.jpg.
It tiles throughout the page, so you need to set the following properties and values:

background-repeat: no-repeat

background-position: left bottom

The first of these properties accepts only one value, so Dreamweaver lists valid
options as a drop-down menu. The second accepts combined values, so no drop-
down menu is available. Nevertheless, Dreamweaver still comes to your rescue by
displaying code hints when you hover your mouse pointer over the field where the
values need to be entered.

13. Click the Live View button in the Document toolbar. If your monitor is large
enough, the page should look similar to Figure 5-4.

If you want to check the page in a browser, remember to save stroll.css first.

14. The page is beginning to look pretty good, but the margins on both sides look
drab. Their color is controlled by the body selector; and after some experimenta-
tion, I decided to make them a light pink to match the winter sunset sky behind
Saint Paul’s Cathedral. The color I chose was #F8F1EB. Select <body.twoColFixLtHdr>
in the Tag selector, and click the value of background in the Properties pane of the
CSS Styles panel. Replace #666666 with #F8F1EB.

When entering a value like –500px, you can either type the unit of measurement
immediately after the number or select it from the drop-down menu that
Dreamweaver places alongside. Since you’re already at the keyboard, it’s
quicker to type it yourself.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

206

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 5-4. The built-in CSS layout looks very different after changing some background settings.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

207

5

15. The border around the container <div> is now a little too dark, so select
<div#container> in the Tag selector. The Properties pane of the CSS Styles panel
shows that border has been set to 1px solid #000000—in other words, a solid, black
border all around. Although I have set my preferences to use shorthand styles for
the border property, you can use shorthand only when all sides have the same
value. I want no border at the top and bottom, but a deep russet on either side.

Highlight the existing border property, and delete it. Then click Add Property to cre-
ate two separate rules for border-left and border-right with the value 1px solid
#C99466.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16. Save stroll.html and stroll.css, and preview the page in a browser. It’s now
looking quite respectable. If you want to check your progress, compare your files
with stroll_bg.html and stroll_bg.css in examples/ch05.

Making these changes to the background has already transformed the basic CSS layout,
but to make further changes, you need to exploit the Current mode of the CSS Styles
panel to its full potential by using it to analyze the way style rules interact with each
other—in other words, the cascade.

Inspecting the cascade in Current mode

Halfway down the right side of the CSS Styles panel in Current mode are two
insignificant-looking icons (shown alongside). By default, the left one is selected,
but the right one holds the key to the cascade of rules affecting the currently selected
tag. I recommend you select the icon on the right and use this as your default setting
(Dreamweaver always remembers your most recent choice).

Study Figure 5-5 carefully. The title bar of the Properties pane is identical in both screen-
shots, but the Summary for Selection is different, and all the properties are struck through
in the left screenshot. No, it’s not a bug; Dreamweaver isn’t broken. The left screenshot
was taken with the insertion point in the text of one of the paragraphs in the mainContent
<div>. The properties are struck through because they don’t affect the paragraph directly.
What Dreamweaver is telling you is that you can edit these values, but they won’t change
the look of the current selection in Design view. The screenshot on the right was taken
with the whole of mainContent <div> selected. As a result, the properties are no longer
struck through; they apply directly to the current selection. They’re also listed in the
Summary for Selection.

The Rules pane in the middle shows the full cascade of all style rules that affect the cur-
rent selection. As you hover your mouse pointer over each one, Dreamweaver displays the
rule’s specificity as four comma-separated numbers (see “Calculating specificity”).

The real power of Current mode comes in the ability to select any of the properties listed
in the Summary for Selection or any of the selectors in the Rules pane. Doing so immedi-
ately displays the relevant style rule in the Properties pane. For example, selecting font in

Cascading style sheets are so called because of the way rules
inherit properties from each other, rather like the increased
flow of water cascading down a waterfall. Not only do rules
inherit from one another, a more powerful influence further
down the cascade can override everything that has gone
before. Understanding how the cascade works is the key to
successful implementation of CSS.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

208

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

209

5

Calculating specificity
Specificity determines which rule “wins” when there’s a conflict—the higher
the numbers, the greater the precedence that’s given to a particular rule.
Specificity is calculated in a rather unusual way using a series of comma-
separated values like this:

For every ID attribute in the selector, add 0, 1, 0, 0.

For every class, attribute selector, and pseudo-class (such as a:link),
add 0, 0, 1, 0.

For every HTML element or pseudo-element, add 0, 0, 0, 1.

Precedence is given to numbers on the left. So a CSS selector with a speci-
ficity of 0, 1, 0, 0 overrides one that has a specificity of 0, 0, 0, 2. If you find
this confusing, a simple rule of thumb is that ID attributes have the highest
precedence, followed by classes. Type (tag) selectors have the lowest prece-
dence of all.

the top pane displays the body style rules ready for editing in the bottom pane (see
Figure 5-6).

It takes a while to get used to working with the CSS Styles panel in Current mode, but once
you do, you’ll wonder how you ever did without it.

Figure 5-5.
In Current mode, the
CSS Styles panel shows
the different impact of
the cascade on text in the
mainContent <div> (left)
and on the <div> itself.

Figure 5-6. The 100-percent font
size in the body selector needs to
be overridden further down the
cascade.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You might be wondering why there’s a fourth digit in specificity calculations since the first
one doesn’t seem to be used at all. Actually, an inline style has a specificity of 1, 0, 0, 0,
and overrides all other style rules. Inline styles are very inflexible and are rarely justified,
except perhaps for creating HTML email because of poor support for CSS in some email
programs.

For more details about specificity, see www.w3.org/TR/REC-CSS2/cascade.html#specificity.

Finishing the layout

Let’s return to stroll.html and smarten it up a little more by adding some images, chang-
ing the font size, and adding a pull quote.

Continue working with stroll.html and stroll.css. Alternatively, copy stroll_bg.html
and stroll_bg.css from examples/ch05 to your workfiles/ch05 folder. If Dreamweaver
asks you whether you want to update links, click Update.

1. Position your cursor near the top of the first paragraph in mainContent <div>, say
at the beginning of the third sentence, and insert images/living_statues.jpg.
Give the image some alternate text, such as Living statues on the South Bank.

2. Select the image in Design view, and click the arrow to the right of the Class drop-
down menu in the Property inspector. This lists all classes defined in the style sheet.
Adobe has anticipated the need to wrap text around images and provided two
classes, .fltlft and .fltrt, which float elements left and right, respectively.
Choose fltlft from the Class drop-down menu to float the image to the left.

3. Insert images/graffiti.jpg into the text beneath the second heading, give it
some alternate text, and select fltrt from the Class menu to float the image to
the right.

4. The size of the text is a bit too large for my liking, so let’s adjust it. Position your
cursor anywhere in the text in the mainContent <div>, and open the CSS Styles
panel in Current mode. It should look like the left screenshot in Figure 5-5.

Select font in the Summary for Selection pane. This reveals that all the font prop-
erties for the page are defined in the <body> tag, as shown in Figure 5-6.
Although you could edit the font size here, it would affect fonts throughout the
rest of the page, and using a percentage other than 100 percent on the body
selector makes it difficult to calculate font sizes further down the cascade. So
let’s create a new rule.

5. Click the New CSS Rule icon (see alongside) at the bottom of the CSS Styles
panel.

Dreamweaver makes an intelligent guess and suggests .twoColFixLtHdr #container
#mainContent p as the name of the new selector, as shown here:

Inserting images and adjusting fonts

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

210

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This isn’t what you want, because it would apply only to paragraphs in the
mainContent <div>. To apply it to all paragraphs, you want a simple type (tag)
selector.

6. You can do this in two ways. First, you could change Selector Type to Tag (redefines
an HTML element), and then type p in the Selector Name field.

The other way is to use the Less Specific button. The first time you click the Less
Specific button, .twoColFixLtHdr is removed from the Selector Name field. Click
twice more, and you’re left with just p. Although Selector Type still says Compound
(based on your selection), Dreamweaver creates the correct style rule.

Use either method to create a new style rule for all paragraphs, and click OK.

7. This opens the CSS Rule Definition dialog box. As I explained in Chapter 4, I find this
a rather clumsy way of defining a new rule because you need to wade through the
different categories to find what you want. But if you’re new to CSS, it may help fix
the available properties in your mind. Anyway, it opens automatically at the Type
category, which is what you want.

Enter 85% in the Size field, set Line-height to 1.3, and select multiple from the drop-
down menu alongside the Line-height field. Click Apply to view the result in Design
view (move the CSS Rule Definition dialog box if necessary). Make any adjustments
you want, and then click OK to create the rule.

8. The footer text is obscured by the background image, so let’s adjust that too. Click
anywhere in the footer <div>, and switch to Current mode in the CSS Styles panel.
The Dreamweaver CSS layout has already defined a selector called .twoColFixLtHdr
#footer p with values for margin and padding.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

211

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Click Add Property, and use the following settings:

color: #8A5B31

text-align: right

Moving the text across to the right and giving it a dark brown color makes it stand
out against the lighter part of the background image. Select File ➤ Save All to save
stroll.html and stroll.css, but keep them open for the next exercise.

Since it’s a page about London, there’s just one final touch I’d like to add: Samuel
Johnson’s famous assertion that when a man is tired of London, he’s tired of life.

In the bad old days, the <blockquote> tag was misused by all and sundry to indent text.
Well, let’s be honest, it still is, but you know better, don’t you? You’re going to use
<blockquote> for its real purpose—to highlight a quotation—and then style it with CSS to
turn it into a distinctive pull quote.

1. Place your cursor at the end of the first paragraph in the sidebar, and press
Enter/Return to create a new paragraph. Type: No, Sir, when a man is tired of London,
he is tired of life; for there is in London all that life can afford. Press Enter/Return again,
and type the attribution: Samuel Johnson, 1777.

2. Select both paragraphs in Design view, and click the Text Indent button in the HTML
view of the Property inspector, as shown here (make sure you’re in HTML view; the
icons in the CSS view look very similar but perform different functions):

This wraps the paragraphs in a pair of <blockquote> tags.

3. Switch to the CSS view of the Property inspector, and select <New CSS Rule> from
the Targeted Rule menu, as shown in the following screenshot:

The names of the Text Indent button and the one to its left (Text
Outdent) still reflect the old presentational type of markup that
you should avoid in a standards-compliant site. When applied to
ordinary text, think of them as the “blockquote” and “remove
blockquote” buttons. When used in an ordered or unordered list,
they create or remove a nested list, as explained in Chapter 3.

Adding a pull quote

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

212

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Click the Edit Rule button to open the New CSS Rule dialog box.

4. Dreamweaver suggests using the following selector: .twoColFixLtHdr #container
#sidebar1 blockquote p. That’s too precise for what you want to do at the
moment, so choose Tag (redefines an HTML element) for Selector Type. Because you
have a <blockquote> selected in Design view, Dreamweaver should automatically
enter blockquote in the Selector Name field. If for any reason it doesn’t, choose
blockquote from the Selector Name drop-down menu, and click OK.

5. In the CSS Rule Definition dialog box, select the Type
category, and set Font to Georgia, Times New Roman,
Times, serif and Color to white (#FFF). Next, select the
Background category, and set Background color to
#999 (medium gray). You need to add a few more
properties, but it’s much easier to do the rest in the
CSS Styles panel, because you can see exactly how
they affect the look of the pull quote in Design view.

Click OK to save the current rules. The pull quote
should now look like the one shown alongside.

6. The default margin around the <blockquote> is too
wide, so position your cursor anywhere in the quote,
and select <blockquote> in the Tag selector. With the CSS Styles panel in Current
mode, click Add Property to add the following settings:

margin: 10px

padding: 0

7. The text in the pull quote now needs to be pulled in from the edges. Click anywhere
in the <blockquote> element in Design view. This deselects <blockquote> in the Tag
selector but puts the insertion point in a paragraph nested in the <blockquote>.
You’ll see why this is important when you open the New CSS Rule dialog box.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

213

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Open the New CSS Rule dialog box in the same way as in step 3. Alternatively, click
the New CSS Rule icon at the bottom right of the CSS Styles panel. Dreamweaver
suggests the same selector as in step 4 (.twoColFixLtHdr #container #sidebar1
blockquote p). This time, it’s appropriate, but you don’t really need it to be so spe-
cific. Click the Less Specific button three times to change the contents of the
Selector Name field to blockquote p.

9. The descendant selector blockquote p restricts the rule to paragraphs in a
<blockquote>. Click OK, select the Box category in the CSS Rule Definition dialog
box, and use the following settings for Padding and Margin:

10. When you click OK to save the settings for the blockquote p rule, you’ll see that
the bottom line is flush with the gray background. Everything comes right in a
moment.

Select <blockquote> in the Tag selector again, and click Add Property in the
Properties pane of the CSS Styles panel. Select background-image, and navigate to
images/top_quote.gif. The image tiles horrendously, so add two further proper-
ties as follows:

background-repeat: no-repeat

background-position: left top

11. Just a couple more tweaks and you’re there. The beginning of the pull quote over-
laps the quotation marks of the background image, so click in the first paragraph of
the quote, and add the following property to the blockquote p style rule:

text-indent: 20px

12. CSS doesn’t let you apply two background images in the same rule (you’ll have to
wait for CSS3 to do that), so you need to create a new rule for the quote attribu-
tion within the <blockquote>. Position your cursor in the paragraph that reads
Samuel Johnson, 1777, and switch to the HTML view of the Property inspector.
Enter quote_attrib in the ID field, and press Enter/Return to register the change.

13. Use the ID selector #quote_attrib to create a new CSS rule. With your cursor still
in the same paragraph, open the New CSS Rule dialog box. This time, Dreamweaver
suggests .twoColFixLtHdr #container #sidebar1 blockquote #quote_attrib as
the selector. Click the Less Specific button four times until you’re left with
#quote_attrib in the Selector Name field. Then click OK to open the CSS Rule
Definition dialog box.

14. Select the Background category, and set Background image to images/
btm_quote.gif, Repeat to no-repeat, Background-position (X) to right, and Background-
position (Y) to bottom.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

214

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Then use either the CSS Rule Definition dialog box or the CSS Styles panel to set the
remaining properties:

font-size: 70%

margin-top: 0

padding-bottom: 30px

text-align: right

text-indent: 0

15. Select File ➤ Save All to save both stroll.html and stroll.css, and press
F12/Opt+F12 to preview the page in a browser. It should look similar to Figure 5-7
(I’ve changed the headings to give the page a more authentic look). The ugly duck-
ling in Figure 5-2 is now an elegant swan. You can compare your files with
stroll_final.html and stroll_final.css in examples/ch05.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

215

5

Figure 5-7. With a little imagination and work, you can transform the basic CSS layouts into attractive pages.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a new page with the same styles

All the hard work of creating an external style sheet is repaid by the fact that you can
apply the same styles instantly to any other page in the site. To round out this series of
exercises in adapting one of Dreamweaver’s CSS layouts, I want to show you quickly how
to create another page using the same style sheet.

This exercise shows you how to reuse the stroll.css style sheet with a new page. It also
shows you how to turn off the display of styles temporarily to make it easier to add content.

1. Open the New Document dialog box by selecting File ➤ New or pressing
Ctrl+N/Cmd+N.

2. In the Blank Page category, select HTML as Page Type and 2 column fixed, left sidebar,
header and footer as Layout (these are the same options as before).

3. At the bottom right of the New Document dialog box, set the value of Layout CSS
to Link to Existing File.

4. Click the chain icon to attach the existing style sheet, as shown here:

5. In the Attach External Style Sheet dialog box, click the Browse button, navigate to
workfiles/ch05/stroll.css, and then click OK (Choose on a Mac) to select it.

6. Click OK to close the Attach External Style Sheet dialog box and return to the New
Document dialog box. The settings at the bottom right should now look like this:

7. Click Create to create the new page with the attached style sheet. Dreamweaver
might display a warning about document-relative paths. This is nothing to worry
about. Just dismiss the warning by clicking OK.

Creating a subsequent page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

216

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Save the new page as page2.html in workfiles/ch05. If your monitor is large
enough, it should look like Figure 5-8. It has picked up all the styles from
stroll.css, but what has happened to the header?

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

217

5

Figure 5-8. The new page has picked up all the styles, but the header is missing.

You can’t see the header because the style rule for the <h1> heading was set to an
absolute position of –500px from the top. You need to disable that rule temporar-
ily to change the value of the header and insert the banner image.

If you’re wondering why the background image doesn’t make the header visible,
it’s because the <div> doesn’t have a height. Absolute positioning removes the
<h1> content from the flow of the document, and backgrounds don’t show if an
element doesn’t have a height. Of course, a simple solution would be to add the
height of stroll_header.jpg to the style rule for the header <div>, but I want
to show you another technique.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Select View ➤ Style Rendering ➤ Display Styles. Alternatively, if you have enabled
the Style Rendering toolbar (see Figure 4-18) as described in the previous chapter,
click the CSS On/Off button. This temporarily disables CSS in Design view.

10. Select the word Header in the <h1> element at the top of the page, and replace it
with Stroll Along the Thames.

11. Select <h1> in the Tag selector at the bottom of the Document window, and press
your right arrow key once to move the insertion point outside the closing </h1>
tag. Then insert stroll_header.jpg, giving it some alternate text.

12. Turn the display of CSS back on by selecting View ➤ Style Rendering ➤ Display
Styles or clicking the CSS On/Off button in the Style Rendering toolbar. The banner
at the top of the page should now be correctly displayed. If you want to check your
code, compare it with page2.html in examples/ch05.

That concludes this exercise in transforming one of the 32 CSS layouts that can be
accessed from the New Document dialog box. The structure of each layout is very similar,
so once you have learned how to adapt one, working with the others becomes a lot easier.

There’s just one thing that remains to be done. The comments in the Dreamweaver CSS
layouts are deliberately verbose—they’re there to help you understand what each rule
does. Although commenting style sheets is a good idea, you’ll probably want to get rid of
the Dreamweaver comments once you’re familiar with the layouts. It’s easy to do with
Dreamweaver’s Find and Replace feature.

Using Find and Replace
Dreamweaver’s Find and Replace feature is very powerful, so it’s useful to get to know how
it works. In many ways, it’s similar to the Find and Replace feature in word processing pro-
grams such as Microsoft Word, but it has dedicated features designed for working with
HTML and other web-related languages. It not only searches code and text, but you can
get it to search for specific attributes in tags or for tags that have a missing attribute. And
if that’s not enough for you, it will perform the same search on multiple files or even
through the whole current site.

To launch Find and Replace, select Edit ➤ Find and Replace, or press Ctrl+F/Cmd+F. This
opens the dialog box shown in Figure 5-9.

As I mentioned at the beginning of this chapter, Dreamweaver
remembers your last choice in most dialog boxes. Don’t forget that
stroll.css is now listed in the New Document dialog box and will
be automatically attached to any new page unless you remove it
from the Attach CSS file field.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

218

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 5-9. The Find and Replace dialog box enables you to perform sophisticated searches.

The basic dialog box has the following options:

Find in: This determines the broad scope of the search. The options are as follows:

Current Document: This is limited to the document that currently has focus in the
Document window. It does not include files listed in the Related Files toolbar.

Selected Text: This limits the scope to highlighted text or code.

Open Documents: This applies not only to documents currently open in the
Document window but also to files listed in the Related Files toolbar.

Folder: When you select this option, a field opens alongside for you to enter the
name of the folder you want to search. A folder icon alongside the field opens
the Choose Search Folder dialog box for you to navigate to the folder.

Selected Files in Site: This searches within files that have been selected in the
Files panel. Related files are not included.

Entire Current Local Site: Use this to search the entire site.

Search: This narrows the scope of the search. The options are as follows:

Text: This limits the search to text that can be seen in Design view. In other
words, tags and attributes are excluded.

Source Code: This searches everything, including text, tags, attributes, com-
ments, JavaScript, and server-side code.

Text (Advanced): This allows you to narrow your search for text to specific parts
of a page. For example, you can search for a word or phrase that appears in an
<h3> tag but ignore all other instances.

Specific Tag: This looks for specific tags with or without specified attributes.

Find: This is what you want to search for.

Replace: This is what you want to replace the search term with. You don’t need to
enter anything in this field if you’re just doing a search.

Options: Most of these are self-explanatory. The Use regular expression checkbox
lets you perform complex searches using Perl-compatible regular expressions
(regex), a powerful pattern-matching language. You’ll see how this works in an
exercise later in this chapter.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

219

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The two icons at the top right of the text area where you enter the search term are for sav-
ing and loading stored queries. The buttons on the right of the Find and Replace dialog box
are self-explanatory. The dialog box performs the dual purpose of simply finding some-
thing or finding specific text or code and replacing it.

As you can see, there are many options. Let’s start by looking at how to perform a basic
search.

Searching for text

Searching for text is quite simple. The Find and Replace feature works just like it does in
most word processors. Since this option is limited to Design view, it’s not available if the
current document contains only code (for example, a style sheet or JavaScript file). The
basic procedure is as follows:

1. Launch Find and Replace (Edit ➤ Find and Replace or Ctrl+F/Cmd+F).

2. Set the broad scope of the search with the Find in menu, as described in the pre-
ceding section.

3. Set the Search menu to Text.

4. Type the text you’re searching for in the Find field.

5. Enter the replacement text (if any) in the Replace field.

6. Select any options by putting a check mark in the appropriate checkbox. Make sure
that Use regular expression is unchecked.

7. Choose the appropriate button on the right to perform the operation you want.

You can step through the Find and Replace process one instance at a time by using the
Find Next and Replace buttons. This gives you the opportunity to inspect each instance
before replacing it. Alternatively, if you just want to find all instances, click Find All. If
you’re happy to do a global replace operation without checking, click Replace All.

As soon as you click one of the buttons (except for Close and Help), the Results panel
springs open and lists the items found or replaced. Some people find this intensely annoy-
ing, particularly on a small monitor, but you cannot disable this behavior. To minimize the
Results panel, click the dark gray bar anywhere to the right of the tabs, or press F7.

Dreamweaver is capable of conducting Find and Replace operations in documents that
are not currently open in the Document window. If you set the broad scope of the
search in the Find in menu to include closed documents and click Replace All,
Dreamweaver warns you that the operation cannot be undone. This is a very powerful
but potentially dangerous feature. It’s a good idea to make a backup of your site before
altering a large number of documents without first checking the effect such changes
will have. There isn’t a simple undo command for changes to open documents.
However, if you save them before running Find and Replace, you can either close the
documents without saving the changes or select File ➤ Revert. This discards all changes
to a document and restores it to its last saved state.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

220

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Searching source code

Searching the source code is identical to searching for text, except for step 3, where you
should choose Source Code from the Search menu. The important thing to remember
about selecting this option is that it searches everything, regardless of whether it’s part of
code or text. Also, searching the source code of any document that’s currently open
includes the code in all files listed in the Related Files toolbar.

If you’re not careful, a Find and Replace operation can alter your HTML in unintended
ways. The following exercise demonstrates the difference between searching text and
source code, and it demonstrates the danger of choosing the wrong one. The download
files in examples/ch05 contain two files called search_me.html and search_me.css, which
are copies of the finished exercise file from Chapter 4. You’ll discard the changes to the
files at the end of the exercise, so you can work on them in their current location.

1. Open search_me.html in the Document window, and launch Find and Replace by
selecting Find ➤ Find and Replace or pressing Ctrl+F/Cmd+F.

2. Use the following settings:

Find in: Current Document

Search: Text

Find: graffiti

Replace: doodle

3. Click Replace All.

4. The Results panel opens at the bottom of the Workspace, as shown in Figure 5-10.

Figure 5-10. The Results panel provides a direct link to items that have been found and
replaced.

Searching text and source code

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

221

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

At the bottom of the panel, it reports how many items have been found and
replaced (if you’re searching multiple files, it also reports how many documents it
searched). In the body of the panel, it shows the replaced text in context and
underlined in red. Double-click one of the results, and Dreamweaver selects the
text in the Document window, as shown in Figure 5-10.

5. To discard the changes, select File ➤ Revert. When prompted, confirm that you
want to revert to the previously saved version and lose the changes.

6. Open the Find and Replace dialog box again by clicking the right-facing green arrow
on the left of the Results panel, just below the Search tab.

7. Use the same settings as in step 2, except change the Search menu from Text to
Source Code.

8. Click Replace All.

9. This time, Split view opens because the search has been conducted in the underly-
ing code, and four items are listed in the Results panel. Double-click the first one,
and you’ll see that the name of graffiti.jpg has been changed to doodle.jpg.
The word graffiti has also been changed in the image’s alt attribute.

The two remaining instances are the same as before, confirming that Source Code
means both code and text.

10. Discard the changes by selecting File ➤ Revert.

11. Open the Find and Replace dialog box again. Leave Find in and Search at Current
Document and Source Code, respectively. Enter h1 in the Find field. It doesn’t mat-
ter what’s in the Replace field.

12. Click Find All. The Results panel should show two items: the opening and closing
<h1> tags around Stroll Along the Thames.

13. Change Find in to Open Documents, and click Find All again.

14. This time the Results panel reports four items; two of them are in search_me.css.
Even though the style sheet is not open in a tab of its own, it’s listed in the Related
Files toolbar so is considered to be an open document. Of course, this won’t hap-
pen if you have disabled the Related Files feature in the Preferences panel.

Performing advanced text searches

The options in the Find and Replace dialog box change when you select Text (Advanced) or
Specific Tag in the Search menu. The following screenshot shows what the dialog box looks
like when you first select Text (Advanced):

In addition to providing a direct link to items that have been found and
replaced, the Results panel lets you upload the amended files directly to your
remote server. Just select the file in the Results panel, right-click, and select Put
from the context menu.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

222

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The new menu inserted between the Find and Replace fields has two options: Inside Tag
and Not Inside Tag. The drop-down menu alongside lists all valid tags. So, for example, you
could select Inside Tag and table, and the search would be confined to text in a table.
Alternatively, Not Inside Tag and table would ignore any matching text in a table but would
search for matches elsewhere.

If you click the plus (+) button alongside the menu between the Find and Replace fields, a
new set of options is added, as shown in the next screenshot:

The related fields depend on which option you choose, as follows:

With/Without Attribute: This lets you choose an attribute, a comparison operator, and
a value. The comparison operator can be set to equal to, greater than, less than, or
not equal to.

Containing/Not Containing: This offers two choices: Text or Specific Tag. If you choose
Text, you enter the text in the adjacent field. If you choose Specific Tag, the adja-
cent field turns into a drop-down menu listing valid tags.

Inside/Not Inside Tag: The adjacent field turns into a drop-down menu listing valid tags.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

223

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can continue adding refinements to your search by clicking the plus button again. If
you decide to remove a set of options, click the minus (–) button alongside.

Using the options, you can build quite complex text search operations. However, you need
to specify individual tags. For instance, you can search for text in any <h1> heading, but
you cannot search for text in a range of heading levels. To perform that sort of search, you
need to use a regular expression.

Although all the settings relate to tags and attributes, the Text (Advanced) option looks for
text only within those tags. You cannot use it for altering the tags or attributes. That’s the
job of the Specific Tag option described next.

Performing complex replacements with specific tags

The Specific Tag option in the Search menu lets you drill down into your code to look for
a particular tag and perform a replace operation on it. For example, you might want to
search your code to insert an empty alt attribute in tags that don’t have one.

Selecting the Specific Tag option changes the Find and Replace dialog box like this:

You specify which tag you want to search for in the drop-down menu alongside Search
Specific Tag. You can then narrow the search by setting the same options as for Text
(Advanced). If you just want a general search, click the minus button to remove those
options. Finally, you set the Action options to tell Dreamweaver what to do when it finds a
matching tag.

The options offered by the Action menu differ according to your previous selections, but
they include the following:

Replace Tag & Contents

Replace Contents Only

Remove Tag & Contents

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

224

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Strip Tag: This removes the tag but leaves the contents.

Change Tag: For example, you could change <h1> tags to <h2>.

Set Attribute

Remove Attribute

Add Before/After Start Tag: This inserts text or code immediately preceding or after
the opening tag.

Add Before/After End Tag: This inserts text or code immediately preceding or after
the closing tag.

Specific tag Find and Replace operations are particularly powerful when used in combina-
tion with regular expressions, which you’ll look into in more detail now.

Using regular expressions in searches

Regular expressions (often shortened to regexes) describe patterns of text and other
characters. They are like wildcard characters but much more powerful. Regular expressions
use character sequences known as metacharacters to represent different types of char-
acters that you want to match in a pattern. Table 5-1 lists the most commonly used.

Table 5-1. Commonly used character sequences in regular expressions

Sequence Meaning Sequence Meaning

\n Newline character * Match zero or more times

\r Carriage return + Match at least once

\w ? Match zero or one time

\d Number {n} Match exactly n times

\s Whitespace {n,} Match at least n times

. {x,y} Match at least x times, but
no more than y times

\. Period (dot) *? Match zero or more times
but as few as possible

^ Beginning of a string +? Match one or more times
but as few as possible

$ End of a string

Any character, except
new line

Alphanumeric character
or underscore

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

225

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Learning how to use regular expressions is not easy, but it’s a skill worth acquiring, because
regexes are widely used in programming languages such as JavaScript and PHP. There are
two types of regex: Perl-compatible regular expressions (PCRE) and Portable Operating
System Interface (POSIX). Dreamweaver uses the Perl-compatible type, which is more effi-
cient and also the preferred type in PHP. To learn more about regexes, see Regular
Expression Recipes: A Problem-Solution Approach by Nathan A. Good (Apress, ISBN: 978-1-
59059-441-4). The standard work (not for faint hearts) is Mastering Regular Expressions,
Third Edition by Jeffrey Friedl (O’Reilly, ISBN: 978-0-59652-812-6). You can also learn about
regexes online at www.regular-expressions.info, and there’s a repository of regexes
(some good, some not so good) at http://regexlib.com/.

In spite of the difficulty of regular expressions, as you’ll see from the following exercise,
they can do some amazing things.

Many designers like to display the alternate text of an image as a tooltip when the user
moves the mouse pointer over the image. Internet Explorer does this automatically with
the alt attribute, but this is actually incorrect behavior. Other browsers use the title
attribute instead. So, if the title attribute is missing, no tooltip appears. This exercise
shows you how to use regular expressions to copy the content of every image’s alt attrib-
ute to its title attribute.

1. Open search_me.html from the previous exercise in the Document window (it’s in
examples/ch05).

2. Select one of the images in Design view, and click the Split View button to inspect
the underlying code. You should be able to see that it contains an alt attribute but
not a title one. Do the same with the other image.

3. Launch the Find and Replace dialog box (Edit ➤ Find and Replace or Ctrl+F/Cmd+F).

4. Use the following settings:

Find in: Current Document

Search: Specific Tag

5. Activate the drop-down menu alongside Specific Tag, and select img.

Automatically adding a title attribute to images

There are a couple of important differences about the way Dreamweaver
uses regular expressions in the Find and Replace dialog box. Perl-compatible
regular expressions are normally enclosed in a pair of characters known as
delimiters (forward slashes are used the most frequently, but you can use
any nonalphanumeric character). You omit the delimiters when using a
regex in Dreamweaver. This also means you cannot use any of the modifiers
that follow the closing delimiter.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

226

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Set the option immediately below to With Attribute (if there’s no option available
between Search and Action, click the plus button, and select With Attribute from the
menu that appears).

7. Select alt from the menu alongside With Attribute, set the comparison operator to
the equal sign (=), and enter (.+) in the next field. The opening parenthesis, period,
plus symbol, and closing parenthesis is a regex that copies any value as long as it
contains at least one character.

8. Select Set Attribute from the Action menu, select title from the drop-down menu
alongside, and enter $1 in the To field. $1 is a regular expression that contains the
value captured by the first regex.

9. Select the Use regular expression checkbox. The settings in the Find and Replace dia-
log box should now look like this:

10. Click Replace All. The Results panel should open and report that two replacements
have been made. Double-click one of them to confirm that the content of the alt
attribute has been copied to a new title attribute.

11. You’ll use the same file in the next exercise, so restore the page to its original state
by selecting File ➤ Revert and confirming that you want to abandon the changes.

Being able to copy the value of a tag’s alt attribute into its title attribute is pretty
impressive, but you probably don’t want to overwrite any existing title values. This exer-
cise improves on the settings used in the previous exercise to skip images that already
have a title attribute, thereby preserving the original value.

1. Continue working with search_me.html from the previous exercise. Let’s begin by
making sure that empty alt attributes aren’t copied.

2. Select one of the images in Design view, click the little arrow in the Alt field in the
Property inspector to open the drop-down menu, and select <empty>. This sets the
alt attribute to alt="".

Preventing an existing title from being overwritten

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

227

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Open the Find and Replace dialog box. Dreamweaver should have remembered the
previous settings, so click Replace All. If it hasn’t remembered the settings, use
those shown in step 9 of the previous exercise.

This time, the Results panel should report only one replacement. The image with
the empty alt attribute was ignored. That’s good but still not perfect. You need to
make sure that existing title attributes are not overwritten.

4. Restore the page to its original state by selecting File ➤ Revert.

5. Select one of the images. The Property inspector doesn’t have a field to set the
title attribute. You could use the Tag Inspector panel, but it’s probably quicker to
dive into Code view and add a title attribute to one of the images. It doesn’t mat-
ter what value you give it, as long as it’s different from the alt attribute.

6. Open the Find and Replace dialog box. It should still have the previous settings.

7. Click the plus button alongside With Attribute to add a new set of options. Set the
new options to Without Attribute and title. The settings should now look like this:

8. Click Replace All. This time, the Results panel should report just one replacement:
the image that you didn’t add a title attribute to. Check the other image to make
sure its original title is still intact.

9. You can close search_me.html without saving the changes, but don’t make any
changes to the settings in the Find and Replace dialog box just yet.

If you think that’s useful, it gets even better. You can store Find and Replace operations for
future use, as described in the next section.

Saving queries for future use

The two icons at the top right of the Find and Replace dialog box (see alongside)
are for working with stored queries. The icon that looks like a floppy disk
(remember them?) launches the Save Query dialog box. When you have a query you want

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

228

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to store for future use, click this icon, navigate to a folder where you want to store the
query (it doesn’t need to be in a Dreamweaver site), and give the query a name that will
help you remember what its purpose is. Dreamweaver automatically gives it a .dwr file
name extension. I have saved the query in step 7 of the previous exercise as add_title.dwr
in examples/ch05.

Crafting a regular expression to perform a complex query requires a lot of patience and
experimentation. Saving the query to a .dwr file can save a lot of heartache if you acci-
dentally delete the regex in the Find and Replace dialog box. Save early, and save often.

Once you have saved a query, all you need to do is click the icon that looks like a folder
with a sheet of paper protruding from it. This opens the Load Query dialog box. Navigate
to the folder where you keep your stored queries, select the one you want, and click Open.
Dreamweaver loads the query into the Find and Replace dialog box ready to run. That’s all
there is to it.

Using a stored query to remove CSS comments

Now that you know all about Find and Replace, regular expressions, and stored queries,
you can strip the verbose comments from the style sheet created by the Dreamweaver CSS
layout in the exercises in the first half of this chapter.

The regex to describe a CSS comment looks like this:

/*[\s\S]+?(?=*/)*/

Because this regex is so useful—and easy to mistype—I have created a stored query to
automate the process. It’s called css_comment_remover_v3.dwr and is in the examples/
ch05 folder. Simply load it as described in the previous section. To remove all the CSS
comments in a single operation, click Replace All. This removes all comments, including
any CSS hacks that look like comments. If you’re in any way uncertain, remove the com-
ments selectively by clicking Find Next to highlight the first one. Then click Replace to
remove it or Find Next to move to the next one.

Dreamweaver always remembers your last Find and Replace operation, so these settings
will be displayed the next time you open the Find and Replace dialog box. Delete the reg-
ular expression from the Find field, and deselect the Use regular expression checkbox
(unless you plan to use another regex). This final point is very important. When a Find
operation fails for no obvious reason, it’s usually because you have selected the Use regular
expression checkbox by accident.

Chapter review
Depending on your knowledge of CSS, this chapter is likely to have been relatively easy or
something of a nightmare. If you fall into the latter category, I encourage you to persevere.
It can take a long time for CSS to sink in. If you find it difficult to understand how to build

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

229

5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

your own style sheets, download a page from a site you admire, complete with images and
style sheets. Then use the CSS Styles panel to change or delete individual properties.
Watch the effect of each change. Also select different parts of the page to analyze the cas-
cade of styles.

Mastering the CSS Styles panel takes time and patience, but it will reward you in the end.
Remember that Current mode shows the cascade as it affects the current insertion point or
selection. Use the Tag selector at the bottom of the Document window to highlight spe-
cific elements, and then use the Summary for Selection and Rules panes to drill down to the
CSS rules you want to inspect or edit.

You’ll get some more practice with the CSS Styles panel in the next chapter when you
integrate a Spry menu bar into the page layout. The menu bar and other Spry widgets
come with their own predefined style sheets, so you need to know how to adapt them to
blend in with your own design.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

230

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 BUILDING SITE NAVIGATION WITH
THE SPRY MENU BAR

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Efficient and attractive navigation is an important element in every website. The Spry
menu bar combines CSS and JavaScript (using Spry, Adobe’s implementation of Ajax) to
create a flexible menu with flyout submenus that remains accessible even if JavaScript is
turned off. In essence, it’s an unordered list with optional nested lists for submenus. It
comes in two versions: horizontal and vertical. Figure 6-1 shows what the horizontal ver-
sion of the Spry menu bar looks like when integrated into the page built in the previous
chapter.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

234

Figure 6-1. You can easily integrate the Spry menu bar into a page by making a few adjustments to the CSS.

Although you can insert a Spry menu bar in seconds, the downside is that styling it
requires a good understanding of CSS. Knowing which style rules to change—and which to
leave alone—presents more of a challenge. This process has been made considerably eas-
ier in Dreamweaver CS4 by the introduction of Live view and Code Navigator.

In this chapter, you’ll learn about the following:

The structure of the Spry menu bar

How to insert and remove a Spry menu bar

The style rules that control a Spry menu bar

How to customize a Spry menu bar using Live view and Code Navigator

By the end of the chapter, you’ll be able to transform the rather bland default design of a
menu bar into something much more elegant like the menu in Figure 6-1. Because the
Spry menu bar is styled with CSS, this chapter assumes you’re familiar with the CSS Styles
panel, which was described in detail in Chapter 4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Examining the structure of a Spry menu bar
The Spry menu bar relies on external files to control the way it looks and works, so you
must always save your page in a Dreamweaver site (see Chapter 2 for how to define a site)
before attempting to insert a menu bar. If you forget, Dreamweaver tells you to save your
page and opens the Save As dialog box.

The best way to understand how a Spry menu bar works is to launch Dreamweaver and
start experimenting.

This brief exercise takes you through the steps of inserting a horizontal Spry menu bar in
a new page.

1. Create a blank HTML page in Dreamweaver by selecting File ➤ New. In the New
Document dialog box, select Blank Page, HTML for Page Type, and <none> for
Layout. Make sure that no style sheets are listed under Attach CSS file before click-
ing Create. Alternatively, just select New ➤ HTML from the welcome screen. Save
the file as horiz.html in workfiles/ch06.

2. Select the Spry tab on the Insert bar, and click the Spry Menu Bar button (it’s the
fifth from the right), as shown in the following screenshot:

3. This opens the Spry Menu Bar dialog box. There are just two options: Horizontal and
Vertical. Select Horizontal, and click OK.

4. Dreamweaver inserts a horizontal Spry menu bar at the top of the page, as shown
in Figure 6-2. Like all Spry widgets, the menu bar is surrounded in Design view by a
turquoise border and a tab at the top-left corner. The tab tells you what type of
widget it is, followed by the widget’s id attribute. Dreamweaver calls the first menu
bar on a page MenuBar1. The next one is MenuBar2, and so on. This means you can
have as many menu bars on a page as you want (don’t go mad—think of usability).

Figure 6-2. The Spry menu bar is given basic styling ready for you to customize.

Inserting a horizontal menu bar

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

235

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Notice that the Related Files toolbar lists two files: SpryMenuBar.js and
SpryMenuBarHorizontal.css. Until you save the page, these are temporary files.
You can verify this by switching to Code view and inspecting the code in the <head>
of the page, as in Figure 6-3.

Figure 6-3. Dreamweaver uses temporary files for the style sheet and JavaScript until you
save the page.

As you can see on lines 6 and 7 in Figure 6-3, the links to the external JavaScript file
and style sheet point to a temporary folder on my local hard disk. Therefore, it’s
essential to save the file before doing anything else. Otherwise, any changes you
make to the style sheet are likely to be lost. Moreover, the menu won’t work unless
the files are saved to your Dreamweaver site.

6. Save horiz.html. If this is the first time you have inserted a Spry menu bar in the
current site, you are prompted to save the dependent files (see Figure 6-4).

Figure 6-4. The Spry files need to be copied to your site the first time you
insert a menu bar.

As you can see in Figure 6-4, four images are also copied to your site. These are the
navigation arrows that appear on submenus. When you click OK, Dreamweaver
locates the files in the Spry assets folder. By default, this is called SpryAssets, but
you can specify a different location in your site definition (see “Setting other site
options” in Chapter 2). Once the files have been copied to the Spry assets folder,
they are shared with further instances of the menu bar in the same site.

7. Click the Live View button in the Document toolbar, and run your mouse pointer
over the menu bar. As you can see in Figure 6-5, you already have a menu bar ready
to customize.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

236

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inserting a vertical menu bar is the same. The only differences are
that you select the Vertical radio button in step 3 and Dreamweaver
inserts SpryMenuBarVertical.css instead of the style sheet for the
horizontal menu bar. The menu items in the vertical menu bar are
stacked vertically, and the first-level submenus fly out to the right
rather than beneath the main menu, as shown in the screenshot
alongside.

Figure 6-5.
The structure and styling of the
default menu bar are fully
customizable.

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

237

6
Looking at the menu bar’s structure

The Spry menu bar is a series of nested unordered lists ()
styled with CSS to look like a series of buttons. The submenu flyouts are controlled by
JavaScript. You can see the underlying structure of the menu either by switching to Code
view or by toggling the Turn Styles Off/On button in the Property inspector. (If you can’t see
the button, click the Spry Menu Bar tab at the top left of the menu bar.) Figure 6-6 shows
the horizontal menu bar in horiz.html, but the structure is identical in a vertical menu.
The different look and functionality are controlled entirely by JavaScript and CSS.

Figure 6-6. When styles are turned off, you can see the underlying list structure of the menu bar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6-7 shows the same menu in Code view. The code on lines 6 and 7 link the external
JavaScript file and style sheet to the page. The unordered list that contains the menu bar
is on lines 11–33. The block of JavaScript at the foot of the page on lines 34–38 initializes
the JavaScript object that controls the menu.

Figure 6-7. The scripts at the top and bottom of the page control the menu’s look and action.

When you add further content to the page, this initialization script remains just before the
closing </body> tag. If a menu stops working, you should always check that you haven’t
deleted the initialization script by mistake. If you have, you need to go back and reinsert
the menu from scratch.

Editing a menu bar

Since the menu bar is just a series of nested unordered lists, you can turn off the styles, as
shown in Figure 6-6, and edit the menu directly in Design view. However, it’s much more
convenient to do it in the Property inspector. Place your cursor anywhere inside the menu
bar, and click the Spry Menu Bar tab at the top left to display the menu bar details in the
Property inspector.

The three columns in the center of the Property inspector show the menu hierarchy, with
the top level on the left. When you select an item in this column, the middle one displays
the contents of the related submenu. The right column displays the next level down from
whatever is selected in the middle one.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

238

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To edit a menu item, highlight it, and fill in the fields on the right of the Property inspec-
tor as follows:

Text: This is the label you want to appear on the menu button.

Link: This is the page to which you want to link. Either type the file name directly
into the field or click the folder icon to the right of the field to browse to the tar-
get page.

Title: This adds a title attribute to the link. Most browsers display this as a tooltip.
It can also improve accessibility for visually impaired people using a screen reader
by describing the link’s destination more fully.

Target: This adds a target attribute to the link. This was originally designed for use
with frames. A value of _blank opens the linked page in a new browser window.
Although there are sometimes legitimate reasons for opening a new window, it’s
rarely justified to do so from a site’s navigation menu. The practice of using
target="_blank" provokes a lot of heated debate, so use with care.

To add an item, click the plus (+) button at the top of the relevant column. To delete an
item, select it and click the minus (–) button. You can also change the order of items by
highlighting them and using the up and down arrows at the top of each column.

As Figure 6-6 shows, the Property inspector lets you work on two levels of submenus. To
create a submenu at a deeper level, insert another nested list either by turning off styles as
shown in Figure 6-6 or editing directly in Code view. Two levels of submenus should be
sufficient for most purposes. If your menus require more levels, it’s probably time to
rethink the structure of your site.

After editing a menu bar, select one of the items in the left column before moving to
another part of the page. If you forget to do this, the submenus remain exposed in Design
view, preventing you from working on the underlying part of the page.

If this happens, position your cursor inside any part of the menu bar, and select the Spry
Menu Bar tab at the top left. This populates the Property inspector with the menu bar
details again. You can then select an item in the left column to hide the submenus.

Maintaining accessibility with the Spry menu bar

The Spry menu bar is much more accessible than the JavaScript pop-up menus in old ver-
sions of Dreamweaver, because the underlying structure and links are written in HTML,
rather than being obscured in JavaScript that search engines can’t follow. However, it’s
important to realize that JavaScript still controls the submenu flyouts. If someone visits
your site with JavaScript disabled or an ancient browser that can’t understand the Spry
code, the only parts of the menu that remain accessible are the top-level items.

This means you should always link the top-level items to a real page and not just use
dummy links to act as triggers for the submenus. So, for instance, if anyone clicks
Attractions in the menu shown in Figure 6-1, it should link to an introductory page leading
to that section. Unless you do so, some visitors may never be able to get to the pages
about London Eye and so on.

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

239

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Customizing the styles

Although the color scheme of the default style sheets isn’t exactly inspiring, the structural
layout has been carefully thought out, so you don’t need to change many properties to
achieve a rapid transformation of the menu bar. Select SpryMenuBarHorizontal.css in the
Related Files toolbar, and take a look at how the style rules are divided into the following
sections:

Layout Information: This controls the structure, such as font size and menu
widths.

Design Information: This styles the color scheme and borders.

Submenu Indication: The rules in this section control the display of the arrows
that indicate the existence of a submenu. Change these only if you need to adjust
the submenu arrows.

Browser Hacks: These rules deal with bugs in Internet Explorer. You should leave
them alone.

The style sheet for a vertical menu (SpryMenuBarVertical.css) is laid out in the same way.
In fact, both style sheets contain almost identical rules, although the names of the CSS
selectors reflect the orientation of the menu. The horizontal bar uses the class
MenuBarHorizontal, and the vertical one uses MenuBarVertical.

Customizing the CSS rules requires a good understanding of the hierarchy within the
menu bar’s nested lists. The entire menu is contained in an unordered list, so all selectors
begin with either ul.MenuBarHorizontal or ul.MenuBarVertical. Submenus are also
unordered lists nested within the main one, so rules that apply to submenus all use
ul.MenuBarHorizontal ul or ul.MenuBarVertical ul. However, the same rules apply to
links in both the main menu and the submenu, so they use ul.MenuBarHorizontal a or
ul.MenuBarVertical a.

There are a few other things to note:

All the measurements use relative units (ems and percentages).

The width of the horizontal menu is set to auto, but the vertical menu has a fixed
width of 8em.

The width of the menu items in both versions is fixed at 8em; submenus are 8.2em.

Changing the menu width
The use of ems for the width of the menu and submenu items makes the menu bar very
fluid. As explained in Chapter 4, an em is a typographical term that has been borrowed by
CSS to mean the height of the specified font. So, the width expands and contracts depend-
ing on the size chosen for the font. For a fixed layout, such as that used in stroll.html in
the previous chapter, you need to change all instances of 8em and 8.2em in the Layout
Information section to a fixed width in pixels.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

240

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Changing colors
All colors are defined in the Design Information section of the style sheet. Changing them
is simply a matter of substituting the existing hexadecimal numbers for background-color
and color in the relevant style rules. The default colors are light gray (#EEE) for the back-
ground and dark gray (#333) for the text of menu items in their normal state, and navy
blue (#33C) for the background and white (#FFF) for the text of items in a rollover state.

The menu bar uses JavaScript to assign a class dynamically to the links when the mouse
pointer moves over them. For some reason, Adobe has put the selectors for this dynamic
class in a separate style rule, which duplicates the a:hover and a:focus rules like this:

ul.MenuBarHorizontal a:hover, ul.MenuBarHorizontal a:focus
{
background-color: #33C;
color: #FFF;

}
ul.MenuBarHorizontal a.MenuBarItemHover, ul.MenuBarHorizontal
a.MenuBarItemSubmenuHover, ul.MenuBarHorizontal a.MenuBarSubmenuVisible
{
background-color: #33C;
color: #FFF;

}

Since both rules contain the same properties and values, it’s simpler to combine the selec-
tors like this:

ul.MenuBarHorizontal a:hover, ul.MenuBarHorizontal a:focus,
ul.MenuBarHorizontal a.MenuBarItemHover, ul.MenuBarHorizontal
a.MenuBarItemSubmenuHover, ul.MenuBarHorizontal a.MenuBarSubmenuVisible
{
background-color: #33C;
color: #FFF;

}

Don’t forget to add a comma after a:focus in the first line of the selector. Otherwise, it
won’t work. The equivalent rules for the vertical menu bar are identical, except for the
class name MenuBarVertical.

Adding borders
By default, a light gray border is added to the outer edge of the submenu containers in
both the horizontal and vertical menu bars. In addition, the vertical menu bar has the
same border around the entire menu. Change the following rules to alter the menu and
submenu borders:

ul.MenuBarHorizontal ul
ul.MenuBarVertical
ul.MenuBarVertical ul

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

241

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Individual menu items don’t have any borders, so the menu looks seamless. If you want to
give your menu a more button-like feel, apply a border to the following rules:

ul.MenuBarHorizontal a
ul.MenuBarVertical a

The links in the menu bar are styled to display as a block and have no fixed width.
Consequently, applying a border to the link style has the advantage of surrounding the
individual menu items without affecting either height or width. You’ll see how this is done
when inserting a menu bar into stroll.html.

Changing the font
The font-size property is set to 100% in two separate rules: ul.MenuBarHorizontal and
ul.MenuBarHorizontal li (ul.MenuBarVertical and ul.MenuBarVertical li). Change
the wrong one and you get the mysterious shrinking text shown in Figure 6-8.

Figure 6-8. The text gets progressively smaller if you change font-size
in the li selector.

The style rules that affect the size of the text in the horizontal menu bar are
ul.MenuBarHorizontal and ul.MenuBarHorizontal li. Both of them set font-size to
100%. The shrinking text in Figure 6-8 was caused by changing font-size in
ul.MenuBarHorizontal li to 85%.

Although this reduces the text in the main menu items to 85 percent of its original size,
the nesting of the submenus results in the first-level submenu being displayed at 85 per-
cent × 85 percent—in other words, 72.25 percent. The second-level submenu is further
reduced by another 85 percent—resulting in 61.4 percent.

To prevent this happening, leave the ul.MenuBar Horizontal li selector at 100%, and
change only the first one. The following rules produce a consistent text size:

ul.MenuBarHorizontal
{
font-size: 85%;

}
ul.MenuBarHorizontal li
{
font-size: 100%;

}

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

242

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The rules for the vertical menu bar are identical, except for the class name
MenuBarVertical.

If you decide to use pixels instead of percentages, it doesn’t matter which rule you change.
You should be aware, however, that using pixels for fonts can cause accessibility problems
for people with poor eyesight. Many designers mistakenly believe that using pixels for font
sizes “locks” their design. It doesn’t, because all browsers—apart from Internet Explorer
for Windows—permit users to adjust font sizes by default, and Internet Explorer’s accessi-
bility features have an option to ignore font sizes. If a change in font size causes your page
to fall apart, you need to rethink your design criteria—fast.

Styling a Spry menu bar
If you’re completely at home editing style sheets in Code view, the preceding sections tell
you all you need to know about customizing the CSS for a Spry menu bar. With the Related
Files feature enabled, you can edit the style rules in the Code view section of Split view
and monitor the changes by refreshing the Design view section of the Document window.
I’m going to devote the rest of the chapter to showing you how to add a horizontal menu
bar to stroll.html, the CSS layout that you styled in the previous chapter. You can see the
finished menu in Figure 6-1 at the beginning of this chapter.

To wrap or not to wrap, that is the question . . .

When I started working with Spry, my first instinct was to use the horizontal Spry menu bar
without a <div>. After all, it’s an unordered list, which is a block element, and it has its
own ID, so it should be possible to drop one into a page without the need for a wrapper.
After much experimentation, though, I discovered that a horizontal menu bar in a fixed-
width design like stroll.html behaves unpredictably in some older browsers unless you
wrap it in a <div> with both a specified width and height. The height is needed because all
the menu items are floated.

Continue working with your files from the previous chapter. Alternatively, copy
stroll_horiz_start.html and stroll_horiz_start.css from examples/ch06 to workfiles/
ch06. Rename the files stroll_horiz.html and stroll_horiz.css, and update any links
when prompted.

1. With stroll_horiz.html open in the Document window, select the Common or
Layout tab of the Insert bar, and click the Insert Div Tag button.

2. You’re going to insert the <div> to accommodate the Spry menu beneath the
header <div>, so use the following settings in the Insert Div Tag dialog box (refer to
Chapter 3 if you need to refresh your memory about inserting a <div>):

Inserting the horizontal menu bar

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

243

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Click the New CSS Rule button at the bottom of the Insert Div Tag dialog box.

4. The New CSS Rule dialog box should automatically be populated with the correct
values for Selector Type and Selector Name, but you should make sure that Rule
Definition is set to the existing style sheet (stroll.css). Check that your values are
the same as in Figure 6-9, and then click OK to accept.

Figure 6-9. The settings for creating the style rule for the nav <div>

5. In the CSS Rule Definition dialog box, select the Box category, where you need to set
the width and height for the nav <div>. The width is easy; it needs to be the same
as the container <div> that wraps the page content: 780px. This ensures the menu
bar will remain snugly in the <div>, even if the user increases the font size. I calcu-
lated the height by adding together the top and bottom padding (0.5em each) for
the links in the menu bar. The font-size property is set to 100%, which is the same
as 1em. That makes 2em. After testing, I decided to add an extra .2em to make sure
everything fits. Using relative units for the height ensures that the <div> expands
vertically to accommodate enlarged text.

Set Width to 780px and Height to 2.2em. Click OK to save the rule. This returns you
to the Insert Div Tag dialog box. Click OK again to close it. You should now have a
<div> with some placeholder text in it just beneath the header, as shown here:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

244

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. You need to get rid of the placeholder text for the nav <div>. Normally, pressing
Delete when the text is highlighted is sufficient. However, it’s a good idea to open
Split view to make sure that it’s only the text between the <div> tags that is
selected.

If necessary, go into Code view to adjust the selection, and press Delete. Make sure
your cursor is between the empty <div> tags.

7. Click the Spry Menu Bar button on the Spry tab of the Insert bar (it’s also on the
Layout tab), and insert a horizontal menu bar.

8. Save stroll_horiz.html. If you did the other exercises earlier in this chapter,
Dreamweaver won’t prompt you to save dependent files this time, because they
have already been copied to the Spry assets folder. The top of your page should
now look like Figure 6-10.

Figure 6-10. The Spry menu bar needs to be restyled to fit into the rest of the page.

When using a vertical menu bar, you can simply drop it into a sidebar, which
provides the necessary wrapper. Unless the sidebar is particularly wide, there is
no need for a separate <div> for the menu itself.

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

245

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Select the Spry Menu Bar tab, and edit the menu items as described in “Editing a
menu bar” earlier in the chapter. If you want to follow my structure, here it is:

Home
Food & Drink

Restaurants
Bars

Attractions
London Eye
Aquarium
South Bank

Royal Festival Hall
Hayward Gallery
Tate Modern

Bridges
History

St Paul's Cathedral
Tower of London
Houses of Parliament

In a live website, you need to create links to real pages, but for the purposes of the
example page, I have left the value of each link as # so the menu bar displays cor-
rectly, even though it doesn’t link to other pages.

10. If you have used the same menu structure as me, you’ll see that a long item, such
as Food & Drink, wraps onto a second line. This pushes the sidebar across to the
right, as shown in Figure 6-11.

Figure 6-11. Long menu items prevent subsequent floated elements from moving to the left
of the viewport.

To rectify this, you need to add clear: left to the sidebar’s style block. This is
necessary because both the menu buttons and the sidebar are floated, so the
sidebar tries to move into the nearest available space. By adding clear: left, the

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

246

http://lib.ommolketab.ir
http//lib.ommolketab.ir

sidebar is instructed to move below any previously floated elements and go to the
left side of its parent, the container <div>.

Hold down the Alt key on Windows or Opt+Cmd on a Mac, and click anywhere
inside the sidebar to launch the Code Navigator.

The Code Navigator displays the names of all CSS selectors that apply to the sec-
tion of the page that you clicked. Each selector displayed in the Code Navigator is
a link that shows the existing properties and values. Click the link for the
.twoColFixLtHdr #sidebar1 selector, as shown here:

11. This opens the style sheet in Split view, with your cursor in the selected rule ready
to edit it. Add clear: left; to the .twoColFixLtHdr #sidebar1 rule, and press F5 to
refresh Design view. You should see the sidebar move to its correct position, as
shown in Figure 6-12.

Figure 6-12. Pressing F5 after editing a style rule in Split view lets you see the effect
instantly.

12. Select File ➤ Save All to save the changes to both stroll_horiz.html and
stroll.css.

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

247

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Customizing the design

If you test the page in Live view or a browser, you have a navigation bar, but it looks pretty
ugly. The challenge is to customize the CSS to fit the rest of the page. This involves two
basic stages, namely:

Adjusting the width of the menu items so that the navigation bar stretches the full
width of the page. The submenus have a separate width so that needs to be
adjusted too.

Changing the colors so they blend in harmoniously with the rest of the page. At the
same time, you can add borders to the items to make them look more like buttons.

First, though, you need to do a little housekeeping with the menu’s style sheet.

All style rules exclusive to the menu bar are in SpryMenuBarHorizontal.css in the Spry
assets folder. Since this is common to all horizontal menu bars, it’s a good idea to give it a
different name. Also, as I mentioned earlier, the rollover colors for the submenus are
declared in a separate style rule. Unless you want them to be different from the main
menu items, it makes life a little easier to combine them into a single rule.

1. Select SpryMenuBarHorizontal.css in the SpryAssets folder in the Files panel, and
gently click the file name once to open its name for editing (alternatively, press F2,
or right-click and select Edit ➤ Rename from the context menu). Change the style
sheet’s name to SpryMenuBarHorizontal_stroll.css, and press Enter/Return.

Accept the option to update links when prompted. This updates the link to the
external style sheet in both horiz.html and stroll_horiz.html. Since horiz.html
was only a test page, it doesn’t matter on this occasion, but in a working project,
you need to check which links are being updated.

2. Open stroll_horiz.html in Code view. As explained in the previous chapter,
Dreamweaver adds new style sheets immediately before the closing </head> tag.
This puts the styles in SpryMenuBarHorizontal_stroll.css lower in the cascade
than the style rules in the conditional comments. Although nothing is likely to
clash, it’s good practice to cut and paste the link above the conditional comments.
Place it immediately after the link to stroll_horiz.css.

3. Select SpryMenuBarHorizontal_stroll.css in the Related Files toolbar, and locate
the following section:

Editing the default selectors

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

248

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Insert a comma after a:focus at the end of line 99 in the preceding screenshot,
and delete lines 100–104 (use the line numbers in the screenshot only as a guide;
it’s the code that matters). You should end up with this:

Save SpryMenuBarHorizontal_stroll.css, and switch back to Design view.

The default width of the menu items is 8em, but this is a fixed width design, so you need to
adjust the menu bar to fit. There are five top-level items, and the width of the container
<div> is 780 pixels. A quick calculation reveals that dividing 780 by 5 equals 156. So that’s
the width each item needs to be.

1. The menu bar is a styled unordered list, so the width of each item is controlled by
the element. Hold down the Alt key (Opt+Cmd on a Mac), and click anywhere
in the menu bar to open the Code Navigator. Move the mouse pointer over the link
for the ul.MenuBarHorizontal li rule, as shown in the following screenshot:

Customizing the menu bar: setting widths

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

249

6

As you can see, the width property is set to 8em. Click the link for the
ul.MenuBarHorizontal li rule to open the style sheet in Split view.

2. Dreamweaver should position your cursor at the beginning of the
ul.MenuBarHorizontal li rule. Change the value of the width property to 156px,
and press F5 to refresh Design view. You should now see the menu fits neatly across
the page, as shown in Figure 6-13 (you might need to switch back to Design view if
your monitor isn’t wide enough to see the effect in Split view).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6-13. Giving the elements a fixed pixel width matches the width of the container <div>.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

250

3. Click the Live View button, and move your mouse pointer
over the menu bar until you trigger one of the submenus.
As you can see from the screenshot alongside, the sub-
menus are now narrower than the main menu items.

The width of the submenus is controlled independently.
Some of my submenu items are long, so let’s make the
submenus 20px wider than the main items, in other words, 176px. With your mouse
still over one of the submenu items, hold down the Alt key (or Opt+Cmd), and click
to activate the Code Navigator. This is where Live view and the Code Navigator
really shine. This time, the Code Navigator also detects the style rules that affect
the submenus in their hover state. As you mouse over each selector in the Code
Navigator, the properties and values of each style rule are displayed as a tooltip.

Go down each one in turn until you find the rule that sets the width for the sub-
menus. It’s ul.MenuBarHorizontal ul, as shown in Figure 6-14. Click it to edit the
rule in Split view.

Figure 6-14. In Live view, the Code Navigator detects style rules that affect dynamically
generated elements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Change the width property of ul.MenuBarHorizontal ul to 176px.

5. Press F5 to refresh Design view, and move the mouse
pointer over the menu to trigger one of the sub-
menus again. Contrary to what you might expect,
the submenu items are still too narrow. If you look
closely, you’ll see that there’s a thin gray border sur-
rounding the whole submenu (I have deliberately
exaggerated the border in the screenshot alongside
to make it stand out more on the printed page). It’s the correct width, but the indi-
vidual submenu items are still their original width.

6. Open the Code Navigator again, and inspect the style rules until you find one that
defines the width property as 8.2em (it’s ul.MenuBarHorizontal ul li). Click the
link to edit the style rule, and change the value of width to 176px.

7. Press F5 to refresh Design view, and test the submenu again. The individual items
should now be the correct width.

8. I’m going to add a border to each menu item, so let’s get rid of the default border
around the submenus. Trigger one of the submenus in Design view, and open the
Code Navigator again. The border is defined in the ul.MenuBarHorizontal ul
selector. As explained earlier in this chapter, the rules in the style sheet are divided
into sections covering colors, layout, and so on. Consequently, there are two rules
for ul.MenuBarHorizontal ul. Click the second one, which contains the border
property, and change the value in the style sheet to border: none;.

Keep stroll_horiz.html open, because I’ll show you how to adjust the colors next.

The main colors of the Spry menu bar are controlled in style rules applied to the links.
These instructions assume you have edited the menu bar style sheet as described in
“Editing the default selectors.”

1. Make sure Live view is still active, hold down the Alt key (or Opt+Cmd), and click any
menu item that doesn’t lead to a submenu. In stroll_horiz.html, this means Home
or Bridges. The colors of the menu items are defined in the ul.MenuBarHorizontal a
rule. This is a descendant selector that applies to all links in the menu bar. Click the
selector in the Code Navigator so you can edit the rule’s properties in Split view.

2. Change background-color from #EEE to #A3AAC6 (mauve) and color from #333 to
#FFF (white). Press F5 to see the colors updated in Design view.

3. Things are beginning to look better, but let’s add a border around the links to
make them look like buttons. Add the following properties and values to the
ul.MenuBarHorizontal a rule (I’ll explain how I arrived at these values later in
the chapter):

border-left: #C4C9DB 1px solid;
border-top: #C4C9DB 1px solid;
border-right: #565968 1px solid;
border-bottom: #565968 1px solid;

Customizing the menu bar: changing colors and fonts

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

251

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Press F5 to refresh Design view. The menu links should now look more button-like,
but when you pass your mouse over them, the rollover colors need fixing.

Although you could use the Code Navigator to find the rollover selector, it’s a lot
quicker to just scroll down in the style rules in Split view, because it’s the next rule
down (it begins with ul.MenuBarHorizontal a:hover).

Change background-color from #33C to #7A85AD (dark mauve) and color from
#FFF to #333 (very dark gray). Press F5, and mouse over the menu to see the
changes in Design view.

5. There’s just one final change: the font would look better if it were bold and slightly
smaller. As I explained in “Customizing the styles” earlier in the chapter, the place
to change font properties is in the ul.MenuBarHorizontal rule. The quickest way
to find it in the style sheet is with the Code Navigator, so hold down Alt/Opt+Cmd,
and click the menu in Design view. Then click the ul.MenuBarHorizontal selector
in the Code Navigator.

6. Change the value of font-size to 90%, and add font-weight: bold; to the rule.

7. Select File ➤ Save All to save the page and style sheet. Test the page in a browser.
You should now have an attractive menu bar as shown in Figure 6-1 at the begin-
ning of this chapter.

You can check your files against stroll_horiz.html in examples/ch06 and
SpryMenuBarHorizontal_stroll.css in the SpryAssets folder.

Even if the text size is enlarged, the page structure is preserved, and the dark gray rollover
text ensures that spillover text remains reasonably legible. Enlarging the text does disrupt
the original design of the page, but certain trade-offs are inevitable in web design. The
purpose here has been to show you how to customize a Spry menu bar, rather than seek a
definitive answer to accessibility issues.

These instructions have concentrated on customizing a horizontal menu bar, but the
process is the same for a vertical one. The main difference is that you don’t need to wrap
a vertical menu bar in a <div> of its own. However, if you do decide to use a separate
<div>, it shouldn’t have a fixed height. Otherwise, you may run into display problems if the
user enlarges the text in the browser.

Choosing border colors
In the past, it was common to use images to create menu buttons, but that’s no longer
necessary with CSS. Styling links to display as a block makes the background color fill the
full width and height of each link. To give the link a raised effect like a button, all you need
to do is put a border around them, using a lighter color for the top and left borders and a
darker one for the right and bottom borders.

A neat way of finding the right colors is to create a rectangle in a graphics program like
Fireworks, give the rectangle the same color as your buttons, and then apply an inner
bevel effect. Figure 6-15 shows how it’s done in Fireworks CS4.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

252

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6-15. Use a graphics program to add a bevel to a block of solid color to find the best colors
for CSS borders.

Use an eyedropper tool to find the appropriate colors for the lighter and darker borders,
and make a note of the hexadecimal number. In this case, it’s probably easier to use the
eyedropper tool in your graphics program, but there’s a useful trick if you want to copy
the color of an object outside Dreamweaver. Adjust the size of the Dreamweaver work-
space so that you can see the object, click the color picker, and hold down the mouse
button. You can then drag the eyedropper outside Dreamweaver. The color picker in
Dreamweaver constantly updates to show the color currently being sampled by the eye-
dropper. Release the mouse button when you find the color you want.

Removing a menu bar

Removing a menu bar is quite simple: click the Spry Menu Bar tab at the top left of the
menu (see Figure 6-6), and press Delete. That’s it—not only is the HTML code removed
but so too are the links to the external JavaScript file and style sheet, as well as the initial-
ization script at the bottom of the page. However, the dependent files in the Spry assets
folder are not removed. This ensures they remain accessible to other pages that may rely
on them.

Moreover, the links to the external JavaScript file and style sheet are not removed if
another instance of the same type of menu exists on the page.

It’s important to remove menu bars cleanly by selecting the Spry Menu Bar tab and
pressing Delete. Otherwise, the initialization script shown on lines 34–38 of Figure 6-7
remains in the underlying code and might trigger errors when the page is loaded into a
browser.

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

253

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter review
Because it’s built with HTML and CSS, the Spry menu bar is accessible and search
engine–friendly. However, I’m sure that many noncoders will find customizing the CSS an
uphill struggle. Instead of creating menu buttons in a graphic environment and letting the
software take care of the coding, much more is left up to the designer’s individual skill.
However, Live view and the Code Navigator make the job considerably easier than it was in
Dreamweaver CS3.

The CSS skills required to customize a menu bar are essential for building modern
standards-compliant sites. In my own experience, CSS is not something you can pick up
overnight, but once the various pieces begin to fall together, progress becomes much
more rapid. So if you’re struggling, keep at it, and it will all come together in the end. In
Chapter 12, I’ll show you how to adapt the menu bar and move it to an external file that
can be included in all pages on a site, greatly reducing the amount of maintenance
required.

The menu bar is just one of many Spry widgets and effects in Dreamweaver. In the next
chapter, we’ll look at Spry effects, tabbed panels, the accordion, and collapsible panels.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

254

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7 USING SPRY DYNAMIC EFFECTS
AND COMPONENTS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver was first released in 1997 at the height of the “browser wars” between
Microsoft and Netscape. Both companies fought for dominance of the market by intro-
ducing new features that were frequently incompatible with those of their rivals. This pre-
sented a major headache for anyone trying to use JavaScript to add dynamic features, such
as image replacement, rollovers, and validation of user input. What worked in Internet
Explorer didn’t work in Netscape, and vice versa. Dreamweaver came to the rescue of
many web designers by creating prepackaged scripts called behaviors that resolved the
inconsistencies and incompatibilities. Even though the browser wars are now part of
Internet history, their legacy still lingers on. The version of JavaScript used by Microsoft
Internet Explorer (JScript) still doesn’t fully comply with standards laid down by the World
Wide Web Consortium (W3C). So, designers and developers still need help with scripts that
will work cross-browser.

Behaviors are still part of the Dreamweaver toolset, but they’re showing their age. Designed
to overcome problems caused by ancient browsers, such as Netscape 4, they lack the fea-
tures offered by recently developed JavaScript frameworks (code libraries), such as
Prototype (http://www.prototypejs.org/), script.aculo.us (http://script.aculo.us/), or
jQuery (http://jquery.com/). Adobe’s answer has been to develop Spry, an extensive
JavaScript code library that you can download free of charge from http://labs.adobe.com/
technologies/spry/home.html. You don’t actually need Dreamweaver to use Spry; it’s
completely tool-independent. As with any JavaScript framework, there’s a learning curve
involved if you want to integrate Spry features into your web pages. However, the Spry
learning curve is considerably shortened—or even eliminated—by Dreamweaver. As you
saw in the previous chapter, you can insert a Spry menu bar into a page in seconds. What
takes the time is customizing the CSS, not building the JavaScript to control the submenu
flyouts—all that is generated automatically. In this chapter, we’ll continue our exploration
of Spry by using Spry effects and components.

A common dilemma with website design is too little space to display all the content that
needs to be on a particular page. In common with other Ajax frameworks, Spry makes it
easy to build components—such as accordions and tabbed and collapsible panels—that
slot into a web page and give it a much more dynamic feel. The Spry tabbed panels and
accordion (see Figure 7-1) are a series of interlinked panels, in which just one panel is
open at a time. Tabbed panels use the intuitive metaphor of tabs like a card index, while
the panels of an accordion slide up and down to reveal their contents. Spry collapsible
panels look the same as an accordion, except that each panel is independent so they can
be opened and closed in any combination.

From the user’s point of view, all three are intuitive metaphors that shouldn’t need any
explanation. Equally important, from the developer’s point of view, they are easy to insert
and customize. All you have to do is supply the content and skin the components with CSS.
If you struggled with the Spry menu bar in the previous chapter, you’ll be pleased to know
that the style sheets of these Spry widgets are a lot simpler to edit. Dreamweaver CS4 adds
another space-saving widget, the Spry Tooltip, which displays hidden content when the
user mouses over an image or other element.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

258

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7-1. Tabbed panels and accordions are familiar website interfaces that users find easy to use.

In this chapter, you’ll learn about the following:

Applying Spry effects to different page elements

Saving space with tabbed panels, accordions, and collapsible panels

Selecting harmonious colors

Styling user interface components

Using the Spry Tooltip widget

Removing Spry components cleanly from a page

Before diving into the user interface components, I will cover Spry effects. This is a series
of dynamic effects, such as making page elements fade in and out, shrink, grow, and slide.

Animating page elements with Spry effects
Spry effects alter the look of a page element—or of the whole page itself—when a partic-
ular event occurs, such as the page loading, clicking a link, or mousing over an image.
From a technical point of view, they manipulate the Document Object Model (DOM) of
a web page. You don’t need to know the intricate details of the DOM to use Spry effects,
but it is important to understand the basic principle that underlies it.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

259

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DOM 101—why clean code matters

Figure 7-2 shows fade.html in examples/ch07, which contains a simple demonstration of
the Spry Appear/Fade effect. Click the link at the top of the page, and the image of the
Golden Pavilion in Kyoto fades out. Click it again, and the image fades back in.

Figure 7-2. The dynamic effect depends on JavaScript being able
to identify the correct element to fade in and out.

Before adding the Spry effect to the page, the HTML looked like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Spry effects - fade in/out</title>
</head>
<body>
<p>Fade image out/in</p>
<p><img src="../../images/kinkakuji.jpg" alt="Golden Pavilion" ➥

name="goldenpav" width="270" height="346" id="goldenpav" /></p>
</body>
</html>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

260

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The DOM sees this code in terms of the family tree shown in Figure 7-3.

Figure 7-3. The contents of fade.html as seen by the DOM

For the Spry effect to fade the image in and out, it needs to pass the message from the text
in the <a> tag in the first paragraph to the image in the second paragraph. The DOM acts as
a sort of road map to make sure the message reaches the right destination. Either it can do
it the hard way by following the hierarchy all the way up to the <body> tag and then drilling
down to the tag or it can do it the easy way with an id attribute. As you can see from
the code listing, I have given the tag an id attribute of goldenpav. Following the road
map analogy, this acts as a signpost guiding Spry to the correct destination.

For all this to work smoothly, the road map needs to be clear. Tags need to be properly
nested, and you should give id attributes to elements that you want the DOM and/or CSS
to handle in a particular way. Dreamweaver makes this task a lot easier by warning you
when tags are incorrectly nested (a message usually appears in the Property inspector, and
the invalid code is highlighted in yellow). But remember: Dreamweaver is only a tool. It will
do what you tell it. Even if Dreamweaver keeps your code perfectly valid, you should be
aware of what’s going on in Code view. If you clutter up your page with unnecessary
 and <div> tags, the DOM road map becomes harder to navigate, resulting in pages
that are sluggish and not user-friendly.

The other thing to remember is that an id attribute cannot be used more than once on
the same page. Inexperienced web designers sometimes think, “I want all these elements
to work the same way, so I’ll give them all the same ID.” It might work with CSS, but it
won’t work with Spry or any other JavaScript that relies on DOM manipulation.

An ID should be a unique identifier. Never use the same ID for
more than one element on a page.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

261

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver CS4 makes it a lot easier to assign an ID to page elements through the
Property inspector. Most elements now have an ID field on the left of the Property inspec-
tor (for text elements, it’s in the HTML view of the Property inspector). When assigning an
ID, you should also bear the following rules in mind:

Use only alphanumeric characters, hyphens, or underscores.

Do not use spaces or punctuation.

Never begin with a number.

Applying a Spry effect

Spry effects are event-driven, so you need to decide which event to use and which ele-
ment to trigger it. For example, you could attach a Spry effect to the <body> element of a
page and use the onload event to trigger it as soon as the page finishes loading. Other
common choices are using a text link that triggers the effect when it’s clicked, or using an
image to trigger an effect when the mouse passes over it. The other decision you need to
make is which element to apply the effect to. Dreamweaver refers to this as the target
element.

All Spry effects are grouped with the original Dreamweaver behaviors, which are in a
slightly different location from previous versions. The Behaviors panel has been combined
with the Tag Inspector panel, and you access its features by clicking the Behaviors button,
as shown in Figure 7-4.

Like the Property inspector, the Tag Inspector panel is context-sensitive. Its options depend
on where the insertion point is currently located in the Document window. Click in an ele-
ment or select it in the Document window before using the Tag Inspector panel. To open
the panel, double-click its tab or, if you’re using iconic mode, click its icon. You can also
use Window ➤ Tag Inspector or press F9/Shift+Opt+F9. There are also menu and keyboard

Figure 7-4.
Dreamweaver behaviors and
Spry effects are now in the Tag
Inspector panel.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

262

http://lib.ommolketab.ir
http//lib.ommolketab.ir

shortcuts that take you directly to the Tag Inspector panel in Behaviors mode: Window ➤

Behaviors or Shift+F4 (the keyboard shortcut is the same on both Windows and Mac).

To apply a Spry effect, select the element that will be used to trigger the effect, open the
Tag Inspector panel in Behaviors mode, click the plus (+) button, and select the effect from
the Effects submenu, as shown in Figure 7-5.

This brief exercise shows how to apply the Spry Appear/Fade effect to an image. The basic
procedure for applying all Spry effects is identical, so once you understand the technique,
you can quickly apply any effect.

1. Create a new subfolder called ch07 in the workfiles folder.

2. Create a new HTML document called fade.html, and save it in workfiles/ch07.

Fading an image

Figure 7-5.
The Spry effects are grouped
with the original Dreamweaver
JavaScript behaviors.

Don’t confuse the Tag Inspector panel in Behaviors mode with the Server Behaviors
panel. Dreamweaver uses behaviors to mean JavaScript-driven features. Server behav-
iors use server-side code, such as PHP. You’ll work with the Server Behaviors panel a lot
in the second half of this book.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

263

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Type some text to act as a trigger, and press Enter/Return. This wraps the text in
paragraph tags and creates a new paragraph.

4. Insert an image in the new paragraph. I used kinkakuji.jpg, but you can use any
image in the images folder. It’s not necessary for this exercise to give the image
alternate text, but you should get in the habit of doing so.

5. With the image selected in the Document window, give it a unique identity by
entering a name in the ID field of the Property inspector. Press Enter/Return to reg-
ister the change. Your page should now look similar to this:

6. Select the text in the first paragraph, and convert it into a dummy link by enter-
ing javascript:; in the Link field of the HTML view of the Property inspector, as
shown here:

Using javascript:; rather than # for a dummy link prevents the page from jump-
ing to the top if you have a lot of content on the page.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

264

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. Press Enter/Return or Tab to ensure that the link is created. This is important,
because you can’t apply the Spry effect until the trigger element exists.

8. Open the Tag Inspector panel in Behaviors mode, click the plus button to activate
the Behaviors menu, as shown in Figure 7-5, and select Effects ➤ Appear/Fade.

9. The dialog box that opens sets the options for the effect. The Target Element drop-
down menu lists all elements that can be used as targets (usually elements that
have an ID). The other options are self-explanatory. The Toggle effect checkbox at
the bottom of the dialog box lets you run the effect in reverse when the trigger
event is repeated. So, in the case of this effect, it makes the target element fade
back into view when the event is triggered again.

Choose the image as the target element, and select the option to toggle the effect.
Check your settings with the following screenshot, and click OK:

10. The effect is now listed in the Tag Inspector
panel, as shown here:

The event that will be used to trigger the effect
is displayed on the left. You can change this
value by clicking it to open a menu of the
available events. However, the default value,
onClick, is fine in this case (although Dreamweaver displays the event with an
uppercase C, the underlying code inserts onclick all in lowercase if you have
selected an XHTML document type).

Values entered in the Property inspector and other panels are not added to the
underlying code until the focus moves to another part of the UI. Pressing
Enter/Return registers the new value in the underlying code. Pressing the Tab key
or clicking elsewhere in the Document window has the same effect.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

265

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To change any of the effect’s settings, make sure the trigger element is selected in
the Document window, and double-click the listing shown in the preceding screen-
shot (or right-click, and select Edit Behavior from the context menu).

11. Save fade.html. If this is the first time you have used a Spry effect in the current
site, Dreamweaver displays a message telling you that it has copied SpryEffects.js
to your Spry assets folder (the default name is SpryAssets). Click OK.

12. Click the Live View button in the Document toolbar, and then click the text link in
fade.html. The image should fade out over one second. Click the link again, and
the image should fade back in.

If necessary, you can check your code against fade.html in examples/ch07.

The basic procedure for applying the original Dreamweaver JavaScript behaviors is the
same. Since many of them are rather old, I don’t plan to cover them in this book. You can
find a description of each one in Dreamweaver Help (F1 or Help ➤ Dreamweaver Help) ➤

Applying JavaScript behaviors ➤ Applying built-in Dreamweaver behaviors.

Exploring the available effects

Table 7-1 summarizes what each Spry effect does and which target elements it can be used
with. Appear/Fade and Highlight can be used with almost any tag, but the others are more
restricted. The complete list of supported target elements is reproduced mainly for refer-
ence. Most effects can be applied only to a block element, such as a heading, paragraph,
or <div>. Appear/Fade, Highlight, and Shake can be applied directly to an tag. If in
doubt, wrap the target element in a <div>, and assign it an ID.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

266

Table 7-1. Spry effects and supported target elements

Effect Action Supported targets Not supported

Appear/Fade Fades an element in or out Most tags applet, body, iframe,
object, tbody, th, tr

Blind Any other tag

Grow/Shrink Any other tag

Highlight Most tags applet, body, frame,
frameset, noframes

Applies a color transition to
the element’s background

address, applet, center, dd,
dir, div, dl, dt, form, img,
menu, p, pre, ol, ul

Grows or shrinks an
element to either the
center or top left

address, applet, center, dir,
dd, div, dl, dt, form, h1–6, li,
menu, p, pre, ol, ul

Reveals or conceals an
element, like pulling a
window blind up or down

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Effect Action Supported targets Not supported

Shake Any other tag

Slide Any other tag

Squish Any other tagaddress, applet, center, dd,
dir, div, dl, dt, form, img,
menu, p, pre, ol, ul

Collapses or expands an
element to or from its
upper-left corner

blockquote, center, dd, div,
form, img

Slides an element up or
down to conceal or reveal it

address, applet, blockquote, dd,
dir, div, dl, dt, fieldset, form,
h1–6, hr, iframe, img, li, menu,
object, p, pre, ol, table, ul

Shakes an element hori-
zontally for half a second

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

267

7

The dialog box for each effect is very similar, and all share the following common settings:

Target Element: Dreamweaver automatically identifies every element on the page
that the effect can be applied to. Select the element from the drop-down list.
Unless the effect is being applied to the trigger element, the target must have an
ID. In the case of the Shake and Squish effects, this is the only setting.

Effect duration: This is the length of the effect, measured in milliseconds. The
default setting is 1000—in other words, one second.

Effect: The available options depend on the effect but normally specify the direc-
tion in which the target element will move.

Toggle effect: Selecting this option reverses the effect the next time the event is
triggered.

The best way to learn how to use Spry effects is to experiment with them. However, the
hints in the following sections should help you.

Appear/Fade
This effect can be applied to just about any element on a page, and it affects everything
inside the target element. Making an element fade to nothing does not alter the layout of
the page. An empty space remains where the element originally was.

The <body> tag cannot be used as the target element of this effect. To get the whole page
to fade in after it finishes loading, wrap the entire contents of the page in a <div>. Use the
<body> tag as the trigger, set the <div> as the target element, and set the event to onLoad.
You can see this in fade_in.html in examples/ch07. A <div> called container has been
selected as the target element, the effect duration set to 3000 (3 seconds), and the effect
set to Appear.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Blind
This is very similar to Slide, except that Blind acts like a mask scrolling up or down in front
of the target element, whereas Slide moves the whole target element. Blind up results in
the target element disappearing from the bottom; with Blind down, the target element is
normally hidden, and the mask moves down to reveal it. Content below the target element
moves up and down in time with the effect.

Images need to be wrapped in a block element such as a paragraph or <div> to use Blind.
Use the block element as the target. For an example, see blind.html in examples/ch07.

Grow/Shrink
This effect works with a wide range of block elements and images, but it can have unex-
pected results (see Figure 7-6), so you need to test your pages and CSS carefully when
using it.

There are two options for the direction of movement: to and from the center of the
target element (see Figures 7-6A and 7-6B) or to and from its top-left corner (see
Figures 7-6C and 7-6D). Grow/Shrink can be applied directly to an image or its contain-
ing element. Each screenshot shows what happens when the target element is shrunk to
50 percent of its original size but in a variety of circumstances. (You can test the results
in shrinkA.html, shrinkB.html, shrinkC.html, and shrinkD.html in examples/ch07.)

Figure 7-6A shows what happens when the image itself is selected as the target
element and shrunk to its center. Any content below the target element moves
up, but the image moves down, resulting in an overlap. The same happens if the
effect is applied to a surrounding element with the same width and height as the
image.

Figure 7-6B shows what happens if the effect is applied to a surrounding block ele-
ment with no fixed height and is shrunk to its center: the parent element and its
contents shrink together but move to the center of the page.

Figure 7-6C shows what happens if the effect is set to move to the top left and is
applied to the surrounding <div>, regardless of whether the <div> has fixed
dimensions. The same happens if the image is selected as the target but only if the
surrounding <div> has no height.

Figure 7-6D shows the gap created by applying the effect directly to the image and
shrinking it to its top-left corner when the surrounding <div> has a fixed height.
The text remains in its original position, much further down the page.

Test your layout carefully if you use this effect.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

268

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7-6. The Grow/Shrink Spry effect can produce unexpected changes to your layout (see text for details).

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

269

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Highlight
Highlight changes the background color of the target element. As the following screenshot
shows, the Highlight dialog box has three color settings: Start Color, End Color, and Color
After Effect. You can set these either by typing the hexadecimal color value in the text field
(preceded by #) or by clicking the color picker to the left of the text field.

The meanings of Start Color and End Color are what you would expect. Effect duration sets
the time taken (in milliseconds) to transition from one color to the other—2000 (or 2 sec-
onds) seems to be the optimal choice—and the transition follows a visually pleasing curve.
Color After Effect is the color to which the background is set after the transition, and it cuts
in immediately. You need to choose this color carefully. I find it’s best to set this value
either to the same as Start Color or End Color. Otherwise, the transition appears unnaturally
abrupt. You can see an example in highlight_text.html in examples/ch07.

When Highlight is applied directly to an image, there must be padding around the
image for the background color to be visible. Adding only margins to the image has no
effect, because background color does not affect the margin of an element. See high-
light_padding.html and highlight_margin.html in examples/ch07.

Shake
This is my least favorite effect. It has only one option: the target element, which it shakes
horizontally for half a second. It might be appropriate in advanced Ajax contexts to indi-
cate that an element has been updated asynchronously, but it would be more useful if you
could set the speed and duration of the movement. The danger is that it will become the
modern equivalent of the <blink> tag—mercilessly abused because it looks “cool.” Use
with care. Depending on your layout, this effect sometimes spawns a horizontal scrollbar
in the browser. There’s an example in shake.html in examples/ch07.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

270

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Slide
Slide is similar to Blind, but rather than a mask moving over the target element, the ele-
ment itself moves. As Table 7-1 shows, this effect can be applied to only a small range of
block elements or images. You cannot apply the Slide effect directly to the element you
want to slide in and out of view. Instead, the target element must be a <div> wrapped
around it. Although that’s straightforward, what makes matters slightly complicated is that
the Slide effect is very picky about the elements it accepts immediately inside the wrapper.
The child element of the wrapper <div> must be one of the following: <blockquote>, the
deprecated <center> element, <dd>, <form>, , or another <div>. If the child element
is anything else, you get this warning:

The image of the Golden Pavilion in slide.html in examples/ch07 is wrapped in a <div>,
not a paragraph. If you want to use a paragraph with the Slide effect, you must wrap the
paragraph in two <div> tags and use the outer one as the target element.

Squish
Squish collapses the target element from the bottom-right corner toward the top left
until it disappears completely and is very easy to apply. The Squish dialog box has only
one setting: the target element. Any content below the target element moves up to fill
the gap, as demonstrated in squish.html in examples/ch07. Unlike other Spry effects,
there’s no toggle option in the Dreamweaver dialog box, and you can’t specify the start
and end sizes of the target element.

Applying multiple events to a trigger element

You’re not limited to applying a single event to the trigger element for a Spry effect or
behavior. In the examples of the Highlight effect, I have applied the onmouseover and
onmouseout events to the image. The first event applies the Highlight effect when you

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

271

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

mouse over the image. The second event applies the same effect in reverse.
To apply multiple events to the same trigger, just apply the effect again, and
select a different event from the drop-down menu in the Tag Inspector
panel, as shown here.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

272

cuted when the page first loads. You do this by selecting an event in the Tag Inspector
panel and moving it up or down the list with the up and down arrows at the top of the
panel.

Removing effects and behaviors cleanly

A question I often see in online forums is “Why does my browser report errors on the
page?” Frequently, the answer is that an effect or behavior has been removed, but the
event handler that triggers it has been left behind. Another cause is the removal of a page
element, such as an image or a <div>, that an effect or behavior is attempting to find. If
you treat Dreamweaver purely as a WYSIWYG tool, you’re likely to end up with similar
problems. If you remove an element that triggers an effect or behavior or is the target of
one, you must do it in the correct manner.

Removing an effect or behavior involves three simple steps, as follows:

1. Select the page element that the effect or behavior is applied to.

2. Select the effect or behavior in the Tag Inspector panel.

3. Click the minus (–) button, as shown in the following screenshot:

When you select an image, the drop-down menu contains a duplicate set of
events preceded by <A>, as shown in the screenshot alongside. This option
inserts the event handler in a pair of <a> tags wrapped around the image.
This is necessary for some older browsers that don’t recognize event han-
dlers attached directly to an image.

If you choose different event handlers, the order that behaviors or effects
are listed doesn’t matter. However, you may need to change the order when
you use the same event handler for more than one behavior. This some-
times happens when adding several behaviors to the <body> tag to be exe-

Dreamweaver often seems reluctant to let you change the trigger
event from onClick. I usually find it accepts the change the second
time you select the new event.

Instead of clicking the minus button, you can right-click
and select Delete Behavior. You can even just press
Delete (but make sure the behavior is selected in the
Behaviors panel first).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Everything is removed cleanly, preventing errors from popping up later in your page.
However, SpryEffects.js is not deleted from the SpryAssets folder, in case it’s needed
by other pages. The link to the external JavaScript file is also preserved if it’s required by
other effects in the page.

Restoring a deleted effect or behavior

If you delete a behavior by mistake, you can restore it by pressing Ctrl+Z/Cmd+Z or by
selecting Edit ➤ Undo Remove Behavior (Edit ➤ Undo on a Mac). This always undoes the
last action. By default, Dreamweaver remembers your last 50 steps. So, you can continue
pressing Ctrl+Z/Cmd+Z to restore a deleted effect or behavior if you change your mind
after doing something else (although you lose those changes too).

An alternative way to undo several steps is to use the History panel. The History panel is not
displayed by default but is automatically added to the bottom of the panel groups the first
time you open it (Window ➤ History). The keyboard shortcut (Shift+F10) is available on
Windows only. To learn more about the History panel, open Help (F1), and select Adding
content to pages ➤ Automating tasks ➤ Use the history panel.

You can change the number of steps that can be undone by altering Maximum number of
history steps in the General category of the Preferences panel (Edit/Dreamweaver ➤

Preferences). Resist the temptation to increase this number by a significant amount,
because it is memory intensive. The default 50 is the optimal level.

Another useful way of retracing your steps is the Revert command on the File menu. This
undoes all changes in a document and restores it to the last saved state.

Conserving space with Spry UI components
Dreamweaver CS4 comes with four Spry user interface components or widgets designed to
solve the problem of putting a lot of information at the user’s fingertips without creating
interminably long pages: tabbed panels, accordion panels, collapsible panels, and—new to
this version—tooltips. Several features are common to working with all Spry widgets. If
you worked through the previous chapter about the Spry menu bar, they should be famil-
iar to you, but it’s worth repeating them here:

Always save your page in a Dreamweaver site before inserting a Spry widget.
Dreamweaver prompts you if you forget.

After inserting a widget, save the page to link the external JavaScript file and style
sheet, and copy them to the site’s Spry assets folder (see “Setting other site
options” in Chapter 2). All instances of a widget in a site share the same files, so
they are copied only when inserting the first instance. You must upload these files to
your remote server when deploying your site on the Internet. The Spry widgets won’t
work without them.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

273

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver attaches the widget’s style sheet immediately above the closing
</head> tag. If your page has style rules embedded in conditional comments, move
the link to the style sheet above the conditional comments.

Dreamweaver inserts a block of JavaScript at the bottom of the page to initialize
the widget when the page loads.

To see the widget’s details in the Property inspector, hover your mouse pointer
over the widget in Design view, and click the tab at the top left of the surrounding
border.

Although the Spry UI components are great space savers, the contents of hidden panels
are loaded at the same time as the rest of the page. Don’t put lots of heavy graphics in
these widgets or overuse them on any individual page. The external JavaScript file and
style sheet for each widget add about 20KB to a page but are stored in the browser’s
cache after loading the first time.

Building a tabbed interface

Tabbed panels use the common metaphor of tabs at the top of folders in a filing cabinet.
Click the tab, and the associated content is displayed in the panel beneath. It’s a clean, intu-
itive way of storing a lot of content in a relatively small space. The example in Figure 7-7 has
four tabs, so the total space required to display the information is one fourth of what it
would normally be.

Figure 7-7. Tabbed panels are a great way of presenting related information in a
confined space.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

274

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Spry tabbed panels widget takes only the click of a button to insert, and it degrades
gracefully in old browsers or if JavaScript is turned off. The panels expand to display their
contents if the browser cannot handle the JavaScript. The accordion, collapsible panels,
and tooltip expand in a similar way, making all four user interface widgets accessible.

Let’s take a look at the anatomy of a tabbed panels widget.

Examining the structure of the tabbed panels widget
You can insert a Spry tabbed panels widget in three ways: from the Spry tab of the Insert
bar, from the Layout tab of the Insert bar, or by choosing Insert ➤ Spry ➤ Spry Tabbed
Panels. This creates a default two-tab widget (see Figure 7-8) at the current insertion point
in the page.

Figure 7-8. The default tabbed panels widget contains two tabs styled with a neutral gray interface.

As you can see in Figure 7-8, the Related Files toolbar displays the names of two depend-
ent files (SpryTabbedPanels.js and SpryTabbedPanels.css). Until you save the page,
these are stored in a temporary folder, so you should always save the page immediately
after inserting a Spry widget for Dreamweaver to update the links and copy the dependent
files to the site’s Spry assets folder.

The tabbed panels are controlled by JavaScript and CSS, but unlike the Spry menu bar,
there’s no option on the Property inspector to toggle the CSS on and off. However, if you
switch to Code view, the underlying HTML looks like this:

<div id="TabbedPanels1" class="TabbedPanels">
<ul class="TabbedPanelsTabGroup">
<li class="TabbedPanelsTab" tabindex="0">Tab 1
<li class="TabbedPanelsTab" tabindex="0">Tab 2

<div class="TabbedPanelsContentGroup">
<div class="TabbedPanelsContent">Content 1</div>
<div class="TabbedPanelsContent">Content 2</div>

</div>
</div>

The whole widget is wrapped in a <div>; the tabs are an unordered list, and the panels are
in a nested <div>. Each individual panel is also a <div>, nested one level further down. The
only element that has an ID is the overall wrapper <div>. Dreamweaver automatically calls
the first tabbed panels widget on a page TabbedPanels1 and numbers subsequent
instances TabbedPanels2, and so on. Everything else is controlled by classes. Although

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

275

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

each element has a class assigned to it explicitly in the underlying code, other classes are
generated dynamically by the external JavaScript file. Table 7-2 explains what each class is
for. In common with all user interface widgets, the class names are long but descriptive.

Table 7-2. The classes used to style the tabbed panels widget

Class Type Purpose

TabbedPanels Explicit Eliminates margin and padding
surrounding the widget and clears any
preceding floats. This class must always
have an explicit width. The default value
is 100% to fill all available space.

TabbedPanelsTabGroup Explicit Removes margin and padding from the
tabs as a group.

TabbedPanelsTab Explicit Styles the individual tabs. Uses relative
positioning to shift the tabs 1 pixel
down and gives the bottom border
the same color as the top border of
TabbedPanelsContentGroup. This creates
the illusion that the tabs are being drawn
behind the content panel. Two non-
standard properties (-moz-user-select
and -khtml-user-select) are set to none
to prevent users from selecting the text
in Firefox, Mozilla, and Konqueror.

TabbedPanelsTabHover Dynamic Controls the rollover look of the tabs.

TabbedPanelsTabSelected Dynamic Sets the background color and
bottom border of the currently
selected tab to the same as the
TabbedPanelsContentGroup to create the
illusion that the tab is part of the panel.

TabbedPanelsContentGroup Explicit Ensures that the panels sit beneath the
tabs. Sets the background and border
colors for the panels.

TabbedPanelsContent Explicit Styles the content of an individual panel.
By default, only adds 4px padding.

TabbedPanelsContentVisible Dynamic Empty style rule that can be used to give
a different style to the currently visible
panel.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

276

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Editing a tabbed panels widget
The Property inspector has only three settings for the tabbed panels widget (see Figure 7-9):
ID, number and order of panels, and the default panel. The Customize this widget link opens
Dreamweaver Help at the page listing the style settings.

Figure 7-9. The Property inspector for the tabbed panels widget is very simple.

Use the plus (+) and minus (–) buttons to add or remove panels, and use the up and down
arrows to reorder them. The name of each panel changes when you edit the tabs in Design
view. The Default panel drop-down menu on the right determines which panel is open
when the page first loads.

You can open a tab or panel for editing in Design view in two ways, as follows:

Bring up the details of the widget in the Property inspector, and select the panel
name in the Panels list.

Position your mouse pointer over the right side of the tab until an eye icon
appears, as shown in Figure 7-10, and click.

Figure 7-10. Click the eye icon at the right side of a tab to reveal its
associated panel for editing.

Each panel is a <div>, so you can insert anything you like: text, images, and so on.

The tags contain the tabindex attribute, which makes the code invalid
according to the W3C specifications. Although Spry generates classes dynami-
cally, Internet Explorer doesn’t support setting tabindex through JavaScript, so
this was the compromise adopted to make it possible to navigate the panels with
the Tab key. If W3C validation is vital to you, remove the tabindex attributes.
However, this will make your page less accessible to assistive technology for the
disabled and keyboard users. Occasionally bending the rules like this makes sense
and has no adverse effect in any browser.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

277

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Roll up your sleeves, and insert a tabbed panels widget into stroll.html. To make it eas-
ier to dip into individual chapters, the files in examples/ch07 use the version of
stroll.html from Chapter 5 without the Spry menu bar, because it involves fewer
dependent files.

1. Copy stroll.html and stroll.css from examples/ch07 to workfiles/ch07.
Update links if prompted by Dreamweaver. Save a copy of stroll.html as
stroll_tabbed.html.

Note that in Dreamweaver CS4, using File ➤ Save As (Ctrl+Shift+S/Shift+Cmd+S)
opens the renamed version in a separate tab and gives it focus in the Document
window. In previous versions, Dreamweaver closed the original document and dis-
played the new one in the same tab. Later in the chapter, you’ll make fresh copies
of stroll.html to experiment with other widgets, but you don’t need it at the
moment, so you can close it if you prefer to keep as few documents open as
necessary.

2. Scroll down to the end of the first block of text in the mainContent <div> (just
above the Artists at Work heading). Press Enter/Return to insert a new paragraph.
Type Getting There, and convert it to a heading by selecting Heading 2 from the
Format drop-down menu on the left of the Property inspector.

3. With your cursor at the end of the new heading, click the Spry Tabbed Panels but-
ton on the Spry tab of the Insert bar (or use the Layout tab or Insert menu as
described earlier). You should now have a tabbed panels widget in the middle of
the page, as shown in Figure 7-11.

If you make any changes to a file before using File ➤ Save As, the changes
are saved only in the renamed file, and the original file is restored to its last
saved state.

Inserting and editing a tabbed panels widget

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

278

Figure 7-11. By default, the tabbed panels widget fills the available horizontal space.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Save stroll_tabbed.html, and click OK if prompted to copy the dependent files (this
happens only the first time you create a tabbed panel widget in a site).

5. Rename SpryTabbedPanel.css in the Spry assets folder as SpryTabbedPanel_stroll.
css, and update the links when prompted. Move the link to SpryTabbedPanel_
stroll.css above the conditional comments in the <head> of the page. There won’t
be any conflicts of style rules, but this is a good habit to adopt.

6. Place your cursor inside the first tab, delete Tab 1, and type Tube.

7. Open getting_there.doc in examples/ch07, and copy the paragraphs labeled Tube to
your clipboard. If you can’t open a Word document, the text is in getting_there.txt,
but Dreamweaver won’t do the automatic formatting in the next step.

8. Highlight Content 1 in the tabbed panels widget, and paste the contents of your clip-
board into the panel. If you set the Copy/Paste options in the Preferences panel using
the settings shown in Figure 3-7 in Chapter 3, Dreamweaver should automatically
preserve the paragraph structure from the Word document. Otherwise, press
Ctrl+Shift+V/Shift+Cmd+V or select Edit ➤ Paste Special, and select Text with struc-
ture plus basic formatting (bold, italic) and Clean up Word paragraph spacing (Paste
Special is described in Chapter 3).

If you used the plain text in getting_there.txt, you need to format it manually as
paragraphs with the Format drop-down menu in the HTML view of the Property
inspector. Dreamweaver places a
 tag between the paragraphs, so you need to
split them by pressing Enter/Return and then remove the extra line created by the

 tag.

9. Position your cursor inside the second tab, and rename it Bus.

10. Open the second panel for editing by selecting it in the Property inspector (click the
turquoise tab at the top left of the widget, if necessary) or clicking the eye icon as
shown earlier in Figure 7-10. Copy the Bus paragraphs from getting_there.doc, and
paste them in place of the placeholder text in the second panel.

11. Click the turquoise Spry Tabbed Panels tab at the top left of the widget to bring up its
details in the Property inspector, and click the plus button in the Property inspector to
add two more panels. Rename them Water bus and Oyster Card, and replace the place-
holder text in each panel with the copy from getting_there.doc.

12. With the Oyster Card panel open, insert oystercard.jpg from the images folder at or
near the beginning of the second paragraph. Enter Oyster Card as the Alternate text
when prompted.

13. To make the text wrap around the image, with the image still highlighted, select fltlft
from the Class drop-down menu in the HTML view of the Property inspector.

As long as your cursor is at the beginning or end of an existing element when
you insert a widget, Dreamweaver correctly places the widget outside the exist-
ing element. If your cursor is anywhere else, Dreamweaver splits the existing
element by creating closing and opening tags and inserting the widget
between them.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

279

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14. Open the first panel (Tube) for editing, and insert underground.jpg at the begin-
ning of the first paragraph. Set Alternate text to Underground station sign and Class
to fltrt.

15. Click the Live View button in the Document toolbar. The bottom half of the page
should look like Figure 7-12. Click the various tabs to display the other panels.
You’ll see that the height of the panels expands and contracts depending on the
amount of content. All content below the tabbed panels is repositioned according
to the height of the selected panel, so you need to be careful when incorporating
this widget in a design where the layout needs to be pixel perfect.

Check your code if necessary with stroll_tabbed.html in examples/ch07.

Figure 7-12. Even without customizing the styles, Spry tabbed panels look at home in most pages.

The neutral gray styling fits in easily with many designs, so you could leave it as it is.
However, I don’t imagine that you’ll let me get away with that, so let’s restyle the panels.
The bottom of the panels is too close to the following headline, so that needs fixing, too.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

280

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Selecting harmonious colors
The tabbed panels style sheet uses four shades of gray, ranging from light (#EEE) to dark
(#999). I decided to use as my base colors the pink (#F8F1EB) from the page background
and the russet (#C99466) border down both sides of the container <div>. Table 7-3 lists
the colors that I finally decided on.

Table 7-3. Conversion chart for Dreamweaver defaults and substituted colors

Default color Replacement Applies to

Pale gray (#EEE) Light pink (#FAF3ED) Panel background color and
selected tab

Light gray (#DDD) Darker pink (#F2E1D2) Nonselected tabs

Medium gray (#CCC) Light brown (#DFBD9F) Tabs on rollover and lighter
borders

Dark gray (#999) Russet (#C99466) Darker borders

To simplify customization of a Spry widget, make a similar chart of the default colors and
your chosen replacements. You can then go through the style rules quite quickly to make
the substitutions.

Let’s style the tabbed panels using the color scheme outlined in Table 7-3. Continue work-
ing with stroll_tabbed.html from the previous exercise.

1. Select SpryTabbedPanels_stroll.css in the Related Files toolbar, and take a quick
look at the rules it contains. In addition to copious comments describing the role of
each selector, there are a lot of properties. Editing this style sheet with either the
CSS Styles panel or the Code Navigator is a lot of work. Surely there’s a simpler
way? There most certainly is: the Find and Replace dialog box (see Chapter 5 for a
detailed description of how to use it).

2. With SpryTabbedPanels_stroll.css still selected in the Related Files toolbar and the
style sheet open in Split view, launch the Find and Replace dialog box (Edit ➤ Find
and Replace or Ctrl+F/Cmd+F).

3. In the Find and Replace dialog box, set Find in to Current Document. The Search
option will be grayed out because Source Code is the only option inside a style
sheet. Enter #EEE in the Find field, and enter #FAF3ED in the Replace field. Make

Styling a tabbed panels widget

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

281

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

sure all the options at the bottom of the dialog box are deselected. Your settings
should look like this:

4. Click Replace All. The Results panel should open and report that it has made five
substitutions, as shown in the next screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

282

5. You now need to substitute the other colors. Use the right-facing green arrow at
the top left of the Results panel, as indicated in the preceding screenshot, to
relaunch the Find and Replace dialog box (the Search menu becomes selectable
when you open the dialog box this way, but it should remain set to Source Code).
Repeat steps 3 and 4 three times using the following values taken from Table 7-3:

Find: #DDD Replace: #F2E1D2

Find: #CCC Replace: #DFBD9F

Find: #999 Replace: #C99466

6. Close the Results panel, and test the tabbed panels in Live view. They now look
more in harmony with the page, but some fine-tuning still needs to be done to
margins and padding.

7. The TabbedPanels class controls the horizontal and vertical space around the
tabbed panels, as well as their overall width. As Figure 7-12 shows, there’s no gap
between the bottom of the panel and the following heading. So, you need to adjust
the margin property.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Hold down the Alt key (or Opt+Cmd on a Mac), and click anywhere inside the
tabbed panels to bring up the Code Navigator. Click the link for the .TabbedPanels
selector, as shown here:

8. Change the margin property from 0px to 0 0 15px 0. This adds a 15-pixel margin
on the bottom but leaves the other sides with a 0-pixel margin.

If you want to constrain the width of the panels, this is where you should edit the
width property. However, do not delete the width property, because it’s required
for the widget to display correctly in Internet Explorer.

9. Press F5 to refresh Design view. There should now be a nice offset between the
bottom of the tabbed panels and the following heading.

10. Now let’s improve the look of the text. Turn off Live view if it’s still active, and bring
up the Code Navigator by holding down Alt/Opt+Cmd and clicking in one of the
tabs. Click the link for the third selector (.TabbedPanelsTab).

The font property uses the shorthand version like this:

font: bold 0.7em sans-serif

Change it to this:

font: bold 0.7em Verdana, Geneva, sans-serif;

A neat way of doing this is to high-
light sans-serif and press Ctrl+space
(the combination is the same on
Windows and Mac). This brings up
code hints with a list of suggested
font families, as shown here:

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

283

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Use your down arrow key to select the fonts you want, and press Enter/Return to
insert them. You can also double-click your choice, but this is trickier and often
results in part of the original selection remaining in the code.

11. The one final improvement is to reduce the size of the text and add some horizon-
tal padding to the paragraphs. Position your cursor anywhere in one of the para-
graphs in the tabbed panels widget, and launch the New CSS Rule dialog box. If
you use the icon at the bottom right of the CSS Styles panel or the CSS view of the
Property inspector, the New CSS Rule dialog box suggests this horrendous depend-
ent selector:

.twoColFixLtHdr #container #mainContent #TabbedPanels1 ➥

.TabbedPanelsContentGroup ➥

.TabbedPanelsContent.TabbedPanelsContentVisible p

Click the Less Specific button five times to reduce the selector to this:

.TabbedPanelsContent.TabbedPanelsContentVisible p

Then edit the Selector Name field manually to this:

.TabbedPanelsContent p

12. Set Rule Definition to SpryTabbedPanels_stroll.css, and click OK.

13. In the Type category of the CSS Rule Definition dialog box, set Size to 75%. Then
select the Box category, deselect Same for all in the Padding section, set Right and
Left to 10px, and click OK.

14. Test the page in Live view and a browser. The contents of the tabbed panels should
now look more compact but with more breathing space on either side. If necessary,
compare your style sheet with SpryTabbedPanels_stroll_horiz.css in the
SpryAssets folder.

Converting to vertical tabs
The tabbed panels style sheet also contains a default set of rules that let you change the
orientation of the tabs. Instead of running across the top, you can have them running
down the left side of the panel. Table 7-4 describes the purpose of each selector.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

284

Table 7-4. Style rules for vertical tabs

Selector Type Notes

.VTabbedPanels .TabbedPanelsTabGroup Explicit Vertical tabs are displayed in a column.
This selector sets the background color,
border, height, and width of the column.
The height (default 20em) needs to
be the same as in .VTabbedPanels
.TabbedPanelsTabGroup. Don’t use a pixel
height unless the panels contain elements
of fixed dimensions, such as images.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Selector Type Notes

.VTabbedPanels .TabbedPanelsTab Explicit Works in combination with
.TabbedPanelsTab. Overrides top, left,
and right borders, float, and margin.
All other rules, such as background
color and font, are preserved from
the .TabbedPanelsTab class.

.VTabbedPanels .TabbedPanelsTabSelected Dynamic Overrides the background and bottom
border colors of the selected tab.
With horizontal tabs, the bottom
border is set to the same color as the
panel to create the illusion that the
tab is part of the panel, but with
vertical tabs, a solid bottom border
is needed.

.VTabbedPanels .TabbedPanelsTabGroup Explicit Sets the height and width of the
panels but inherits the background
color and borders from the
.TabbedPanelsTabGroup class.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

285

7

These descendant selectors work in conjunction with the classes listed in Table 7-2, which
control the basic colors. So, you need to perform steps 2–5 of the previous exercise to set
the colors for vertical tabbed panels. The main problem with vertical tabs is the need to
set a height, which must be sufficient to accommodate the content of the biggest panel. It
should be specified in ems so that the panels can expand if the user increases the size of
text in the browser. It is possible to omit the height to create a flexible layout, but the
result doesn’t look as good, as you’ll see shortly.

Let’s convert the tabbed panels widget in stroll_tabbed.html to use vertical tabs. This
time, I think it’s easier to use the CSS Styles panel in All mode to change the style rules
(using All mode was described in Chapter 4). Continue working with the same files as in the
previous exercise.

1. Click anywhere in the tabbed panels widget in Design view, and select
<div.TabbedPanels#TabbedPanels1> in the Tag selector at the bottom of the
Document window. This is the main <div> that wraps around the tabbed panels
widget. Right-click, and choose Set Class ➤ VTabbedPanels from the context menu,
as shown in Figure 7-13.

Switching the orientation of tabbed panels

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7-13. The first step in converting to vertical tabs is to change the class of the
surrounding <div>.

This changes the class of the <div> from TabbedPanels to VTabbedPanels, and the
widget immediately inherits the default rules for vertical tabs. Because the default
widths (10em + 30em) are too great, the design falls apart completely in Design view.

2. Open the CSS Styles panel in All mode, and highlight the first vertical tab selector
(.VTabbedPanels .TabbedPanelsTabGroup). Change the width property from
10em to 20%, as shown here:

3. Next highlight the final selector that controls vertical tabs (.VTabbedPanels
.TabbedPanelsContentGroup), and change the width property from 30em to 78%.
The widget springs back into shape. Choosing figures that add up to less than 100
percent avoids rounding errors. To display a web page, the browser needs to con-
vert percentages to whole pixels. If it rounds up, floated content no longer fits and
is pushed down the page, breaking your design.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

286

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Activate Live view, and test the tabbed panels. You’ll probably notice two things:
the fixed height makes the first panel (Tube) look rather bare, and there’s hardly
any gap between the bottom of the panel and the following headline. Click the
fourth tab (Oyster Card), and you’ll see that the contents of the panel spill out, as
shown in Figure 7-14.

Figure 7-14. The danger with a fixed height is that text might spill out of the panel.

5. Fixing the gap between the tabbed panel widget and the next headline is easy. Add
the margin-bottom property to the .VTabbedPanels .TabbedPanelsContentGroup
selector, and set its value to 15px.

6. Dealing with the text overspill problem is not so easy. One solution is to change
the height property of the .VTabbedPanels .TabbedPanelsTabGroup and
.VTabbedPanels .TabbedPanelsContentGroup selectors to 23.5em. The problem
with this is that the panels with less content begin to look decidedly empty.

7. The alternative is to remove the height property from both selectors. This causes
each panel to expand or contract according to its contents. However, the background
color of the column of tabs stretches down only as far as the last tab, as shown in
Figure 7-15. You can’t give a background color to the surrounding <div>, because
both the tabs and panels are floated inside, so the <div> itself has no height.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

287

7

Figure 7-15. Varying amounts of content result in an uneasy compromise.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. To revert to horizontal tabs, repeat step 1, changing the class back to
TabbedPanels. Compare your style sheet with SpryTabbedPanels_stroll_
both.css in the SpryAssets folder, if you need to check your own code. It contains
the styles for both horizontal and vertical tabs.

Avoiding design problems with tabbed panels
As the previous exercise demonstrates, content overspill creates problems with the pan-
els. You also need to take care with the tabs, because on a horizontal layout, they are
floated left. If you make the labels too long, you might end up with the effect shown in
Figure 7-16.

Figure 7-16. Too much content in the tabs breaks the design.

The result can look even more disastrous if you attempt to constrain the width of the tabs
by setting a width property in the .TabbedPanelsTab class, as Figure 7-17 shows.

Figure 7-17. Setting a fixed width on the tabs leads to even more
unpredictable results.

When using Spry tabbed panels, always keep the tab labels short. Don’t try to get them to
fit exactly across the top of the panels, because some visitors are likely to increase the text
size, forcing one or more tabs to drop down in the same way as too much content does in
Figure 7-16. In this sense, Spry tabbed panels aren’t 100-percent bulletproof, but the origi-
nal short labels (Tube, Bus, Water bus, and Oyster Card) don’t cause any problem even when
the largest font size is chosen in Internet Explorer. In Firefox, you need to increase the text
size four times before the last tab slips down. Somebody who needs to make the text so
large is unlikely to be concerned about design aesthetics. Still, if you are worried about over-
flow, you might consider adding the following properties to the .TabbedPanelsTab class:

max-width: /* less than total width divided by number of tabs */
white-space: nowrap;
overflow: hidden;

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

288

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This keeps all the tabs on one line, regardless of how much the text is enlarged. The dis-
advantage is that the end of the label may be hidden if it’s too long. Web pages cannot be
controlled as rigidly as print, so you need to take into account the need for flexible design.
Alternatively, avoid using design elements such as tabbed panels if you need to maintain
pixel-perfect accuracy in your layout.

Using the accordion widget

The Spry accordion is another convenient way of storing a lot of information in a compact
space. Figure 7-18 shows the same set of travel information as in the tabbed panels dis-
played in a Spry accordion. Instead of a tab, each panel has an individual title bar. When
the user clicks the title bar of a closed panel, it glides open and simultaneously closes the
panel that was previously open. By default, the panels are a fixed height and automatically
display scrollbars if the content is too big. However, it’s quite simple to change this so that
the panels expand and contract in line with the content.

Figure 7-18. The accordion widget displays a series of interlinked panels one at a time.

Examining the structure of an accordion
To insert an accordion widget, click the Spry Accordion button on the Spry or Layout tab of
the Insert bar. Alternatively, use the main menu: Insert ➤ Spry ➤ Spry Accordion.

Dreamweaver inserts a default two-panel accordion. The layout in Design view is very sim-
ilar to the tabbed panels widget, and you access closed panels for editing in exactly the
same way, by moving your mouse pointer over the right edge of the panel’s title bar and
clicking the eye icon.

The underlying HTML looks like this:

<div id="Accordion1" class="Accordion" tabindex="0">
<div class="AccordionPanel">
<div class="AccordionPanelTab">Label 1</div>
<div class="AccordionPanelContent">Content 1</div>

</div>

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

289

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<div class="AccordionPanel">
<div class="AccordionPanelTab">Label 2</div>
<div class="AccordionPanelContent">Content 2</div>

</div>
</div>

It’s a simple structure consisting of a wrapper <div>, inside which each panel is a <div>
with two more nested inside: one each for the title bar and the content panel. Like the
tabbed panels widget, the use of tabindex makes the code technically invalid. Remove it
from the opening <div> tag if W3C validation is a requirement, but doing so will disable
keyboard navigation of the accordion.

All the styles are controlled by classes and descendant selectors, which are described in
Table 7-5. As with Spry tabbed panels, some classes are declared explicitly in the HTML;
others are generated dynamically by JavaScript.

Table 7-5. Style rules for the accordion widget

Selector Type Notes

.Accordion Explicit Sets all borders for the accordion,
except for the top border, which is
taken from the first title bar. Also sets
overflow to hidden to prevent the
content of hidden panels from being
displayed. Add the background-color
property to this rule if you want the
panels to be shaded. By default,
accordion widgets expand horizontally
to fill all available space. Add the width
property to this selector to constrain
the space it occupies.

.AccordionPanel Explicit Eliminates padding and margin for each
panel so the accordion displays as a
single unit.

.AccordionPanelTab Explicit Sets the default background color and
border of the title bar of each panel.
The top border of the first title bar
becomes the top border of the whole
widget. Change this rule to style the
text in the title bar. The nonstandard
properties -moz-user-select and
-khtml-user-select prevent users
from selecting the title bar label in
Mozilla, Firefox, and Konqueror
browsers.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

290

http://lib.ommolketab.ir
http//lib.ommolketab.ir

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

291

7

Selector Type Notes

.AccordionPanelContent Explicit Sets the height and overflow
properties of the open panel. Change
these properties if you want a different
or flexible height. Do not change or
delete the padding property, which is
set to 0. Always add padding or margins
to elements inside the accordion panel,
rather than to the <div> itself.

Dynamic Sets the background color of the title
bar for the currently open tab. However,
this is overridden by later dynamic rules
if the accordion has focus.

.AccordionPanelTabHover Dynamic Sets the background color of the title
bar in rollover state.

Dynamic Sets the background color of the title
bar of the currently opened panel when
the mouse rolls over the title bar.

Dynamic Sets the background color of the title
bar of all panels when the accordion
has focus.

Dynamic Sets the background color of the title
bar of the currently open panel when
the accordion has focus.

Editing and styling a Spry accordion
Although the structure of the accordion makes it relatively easy to style, the proliferation
of dynamic classes and selectors can be confusing. It’s easier to understand how they work
through hands-on experimentation. So let’s get to work.

The following exercise is based on stroll.html, which you should have copied to your
workfiles/ch07 folder for the Spry tabbed panels exercises earlier in the chapter. If
you don’t have the file, copy stroll.html and stroll.css from examples/ch07 to
workfiles/ch07. Update links if prompted by Dreamweaver.

1. Open stroll.html in the Document window, and save it as stroll_
accordion.html.

2. Create the new level 2 heading Getting There just above the Artists at Work heading.

Inserting the accordion and adding content

.AccordionFocused

.AccordionPanelOpen

.AccordionPanelTab

.AccordionFocused

.AccordionPanelTab

.AccordionPanelOpen

.AccordionPanelTabHover

.AccordionPanelOpen

.AccordionPanelTab

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. With your cursor at the end of the new heading, click the Spry Accordion button on
the Spry or Layout tab of the Insert bar. The page should look like this:

The Property inspector for a Spry accordion has very few options (hover your
mouse pointer over the accordion in Design view, and click the Spry Accordion tab
at the top left, if the Property inspector is showing something else). Dreamweaver
automatically assigns Accordion1 as the ID of the first accordion in a page and
numbers subsequent instances Accordion2 and so on. The Property inspector dis-
plays the ID in the field on the left, where you can change it if you want. The only
other options are to add, remove, and reorder panels using the plus, minus, and
arrow buttons. Clicking Customize this widget opens Dreamweaver Help at the page
with details of the style rules that control an accordion.

4. Save stroll_accordion.html, and click OK to copy the dependent files.

5. Rename SpryAccordion.css in the Spry assets folder as SpryAccordion_
stroll.css, and update the links when prompted. Since the web page contains
style rules embedded in conditional comments, move the link to SpryAccordion_
stroll.css from just before the closing </head> tag to above the conditional
comments.

6. You edit an accordion in the same way as a tabbed panels widget. The only differ-
ence is that instead of Tab 1, and so on, the accordion uses Label 1, and so on.
Follow steps 6 through 11 of “Inserting and editing a tabbed panels widget” to pop-
ulate the accordion with four panels labeled Tube, Bus, Water bus, and Oyster Card.
Because the title bar of each panel stretches the full width of the accordion, the
eye icon that opens closed panels is much further to the right than in the tabbed
panels.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

292

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. When you paste the text into some panels, the end appears to be cut off. This is
because the default styles set a height of 200 pixels and hide the overflow. To dis-
play the accordion content for editing when this happens, double-click inside one
of the panels that have an overflow (sometimes you need to double-click twice).
Alternatively, right-click, and select Element View ➤ Full from the context menu.
This expands the whole accordion in Design view.

With the accordion fully expanded, insert underground.jpg in the first panel and
oystercard.jpg in the fourth panel, and apply the fltrt and fltlft classes to
them, respectively (see steps 12 through 14 of “Inserting and editing a tabbed pan-
els widget”).

8. To collapse the accordion after editing, press F5, or right-click and select Element
View ➤ Hidden from the context menu.

9. Activate Live view, and test the accordion panels. You’ll notice that the panels are
all the same height, and a vertical scrollbar appears inside each one. The colors are
the same neutral grays as in the tabbed panels widget.

10. Save stroll_accordion.html, and press F12/Opt+F12 to preview the page in a
browser. Use the Tab key to shift focus to the accordion. As soon as it has focus, the
color of the title bars changes from neutral grays to rather ghastly shades of blue.
This is the effect of the last two selectors listed in Table 7-5.

We’ll sort out the colors next, but first press the down arrow on your keyboard. As
long as you haven’t removed the tabindex, the next panel should glide open, clos-
ing the previous one behind it. While the accordion has focus, you can navigate
through the panels in sequence with the up and down keyboard arrows.
Alternatively, you can click any title bar to open a particular panel. Click anywhere
outside the accordion and the colors revert to gray.

The following instructions show you how to change the colors of stroll_accordion.html
from the preceding exercise, but they apply equally to any accordion. Just use your own
colors in place of those suggested here. The color scheme I have used is essentially the
same as for the tabbed panels. Table 7-6 summarizes the default background colors and
my replacements. The default style sheet uses keywords rather than hexadecimal notation
for some colors.

Changing the default colors of an accordion

The different colors should serve as an important reminder that you should
always test your pages in a browser—and preferably all the main browsers—
before deploying a site on the Internet. Live view speeds up the process of devel-
opment, but it’s no substitute for the real thing when it comes to judging what
your site will really look like.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

293

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 7-6. Background colors used in the accordion widget

Default color Replacement Applies to

Gray (gray) Light brown (#DFBD9F) Lighter borders

Black (black) Russet (#C99466) Darker borders

Medium gray (#CCCCCC) Dark pink (#F2E1D2) Closed title bar

Pale gray (#EEEEEE) Dark pink (#F2E1D2) Open title bar

Royal blue (#3399FF) None Closed title bar with focus

Sky blue (#33CCFF) None Open title bar with focus

1. Select SpryAccordion_stroll.css in the Related Files toolbar, and launch the Find and
Replace dialog box (Edit ➤ Find and Replace or Ctrl+F/Cmd+F). Replace the first
four colors listed in Table 7-6 in the same way as you did with the tabbed panels
widget earlier in this chapter.

2. Close the Results panel, scroll down to the bottom of SpryAccordion_stroll.css,
and locate the following section:

3. Delete the background-color properties and values shown on lines 109 and 116 of
the preceding screenshot. This leaves both style rules empty. I have left them like
this in case you decide you want to add different colors to indicate when the accor-
dion has focus. Of course, if you don’t want a visual indication that the accordion
has focus, you can delete these two rules in their entirety.

4. Save the style sheet, and load stroll_accordion.html into a browser. When you
test the accordion, the colors no longer clash with the rest of the page, but the
styles could still do with some improvement.

Currently, the panels have no background color, and the text in the title bars needs
to look a bit more substantial.

5. I’ll leave it up to you whether to make the remaining changes directly in the style
sheet or in the CSS Styles panel in All mode. The important thing here is to under-
stand which rules you’re changing and why.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

294

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To give the panels a background color, add the background-color property to the
.Accordion selector, and set it to #FAF3ED (light pink).

6. The .AccordionPanelTab selector styles the tab or title bar of each panel, so this is
where you can make changes to the text in the title bars. Add the following prop-
erties and values:

font-family: Verdana, Geneva, sans-serif;
font-size: 90%;
font-weight: bold;
color: #555;

7. The text could also do with a bit of horizontal space, so change the value of the
padding property in the .AccordionPanelTab selector from 2px to 2px 10px. This
gives 2 pixels of padding top and bottom and 10 pixels on either side.

8. The .AccordionPanelTabHover selector controls the rollover state of the title bars,
but only when the accordion doesn’t have focus. Change the color property to a
slightly darker gray (#333). Also add the background-color property, and set it to
#ECD3BD (dusky pink). This keeps the rollover color in harmony with the rest of the
accordion when the focus is elsewhere in the page.

9. Give the next selector (.AccordionPanelOpen .AccordionPanelTabHover) the
same values as in step 8. This makes the rollover colors the same, regardless of
whether the accordion has focus.

10. One final change: because you cannot add padding to the AccordionPanelTab
class, it’s a good idea to create a new rule for .AccordionPanelContent p. By this
stage, I expect you should have sufficient experience of creating new style rules.
Define it in SpryAccordion_stroll.css using the following properties and values:

font-size: 75%;
padding-left: 10px;
padding-right: 10px;

This makes the text slightly smaller than in the rest of the page and gives 10 pixels
breathing space on either side of the paragraphs inside the accordion. You can
check your code against SpryAccordion_stroll_done.css in the SpryAssets
folder.

The smaller font size created by the final change to the default styles removes the vertical
scrollbar from all except the last panel. In the next chapter, I’ll show you how to tweak the
settings of an accordion so that the panels expand and contract to fit the content in the
same way as the tabbed panels. You can’t do it with CSS alone; you need to get your hands
dirty (not very) with the Spry JavaScript code.

Using collapsible panels

Collapsible panels are very similar to the accordion. In fact, they look identical to an accor-
dion if you use several of them in succession. The difference is that each panel is sepa-
rately controlled, so they can be all open, all closed, or any combination in between.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

295

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Examining the structure of a collapsible panel
To insert a collapsible panel, click the Spry Collapsible Panel button in the Spry or Layout
tab of the Insert bar. Alternatively, use the menu option: Insert ➤ Spry ➤ Spry Collapsible
Panel. This inserts a default collapsible panel (see Figure 7-19) at the current insertion
point of the page.

Figure 7-19. A collapsible panel consists of a single tab and content area.

The underlying HTML is extremely simple: a <div> for the tab and another for the content,
both nested in a wrapper <div> like this:

<div id="CollapsiblePanel1" class="CollapsiblePanel">
<div class="CollapsiblePanelTab" tabindex="0">Tab</div>
<div class="CollapsiblePanelContent">Content</div>

</div>

This simple structure makes for equally simple CSS styling. Table 7-7 lists the default selec-
tors. As with the tabbed panels and accordion widgets, the use of tabindex is technically
invalid but is a compromise to make the panels accessible through keyboard navigation.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

296

Table 7-7. Style rules for the collapsible panel widget

Selector Type Notes

.CollapsiblePanel Explicit This zeros margin and padding on the widget and sets a
light-colored border on the left and bottom and a darker-
colored on the right and top. By default, collapsible panels
expand horizontally to fill the available space, so set a width
here if required. Set a background color for the panel here.

.CollapsiblePanelTab Explicit This styles the tab. Only the bottom border is set, as the
top, left, and right border styles come from the preceding
selector. Change this rule to style the text in the title bar.
The nonstandard properties -moz-user-select and -khtml-
user-select prevent users from selecting the title bar label
in Mozilla, Firefox, and Konqueror browsers.

.CollapsiblePanelContent Explicit This zeros padding and margins. Do not change or delete
the padding property. Always add padding or margins to
elements inside the panel, rather than to the <div> itself.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Selector Type Notes

.CollapsiblePanelTab a Explicit This doesn’t actively affect the widget in its default state. If
you put a dummy link around the text in a tab, this style rule
limits the focus lines around the text, rather than around the
entire tab.

Dynamic Sets the background color of the tab when the panel is open.

Dynamic Sets the background color of the tab in rollover state.

Dynamic Sets the background color of the tab when the panel has focus..CollapsiblePanelFocused
.CollapsiblePanelTab

.CollapsiblePanelTabHover,

.CollapsiblePanelOpen,

.CollapsiblePanelTabHover

.CollapsiblePanelOpen

.CollapsiblePanelTab

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

297

7
Editing and styling collapsible panels
When you insert a collapsible panel widget, it’s open by default, ready for editing.
However, since you can have collapsible panels open and closed in any combination, the
options in the Property inspector need a little explanation. As you can see in Figure 7-20,
there are two drop-down menus that are set to Open by default. The first one—labeled
Display—controls whether the content of the collapsible panel is visible in Design view.
The second—labeled Default state—controls whether the panel is open or closed when the
web page first loads.

Figure 7-20. Two settings control the state of a collapsible panel—one for Design view, the other for
the web page.

The Display setting is purely for your convenience when editing the page in Dreamweaver.
If you set Default state to Closed, the panel is closed when the page first loads into a
browser window.

The Enable animation option at the bottom of the Property inspector is checked by default.
If you deselect it, the collapsible panel snaps open and closed, rather than gliding.

If you have more than one collapsible panel on a page, Dreamweaver initializes each one
independently, so you need to set the options individually for each panel. There is no way
of setting global options for all panels on a page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Since collapsible panels are so similar to the Spry accordion, I won’t give step-by-step
instructions for inserting and editing them. Table 7-8 lists the default colors used in
SpryCollapsiblePanel.css together with the substitutes I used to fit the color scheme in
the exercise file that we have been using throughout this chapter.

Table 7-8. Background colors used in collapsible panels

Default color Replacement Applies to

Pale gray (#EEE) Light pink (#FAF3ED) Open tab

Light gray (#DDD) Dark pink (#F2E1D2) Tab

Medium gray (#CCC) Light brown (#DFBD9F) Tab on rollover and light
borders

Dark gray (#999) Russet (#C99466) Dark borders

Royal blue (#3399FF) Dusky pink (#ECD3BD) Tab on focus

All the other changes follow the same pattern as for an accordion. To give the panels a
background color, add a background-color property to the .CollapsiblePanel selector.
I used #FAF3ED (light pink).

To make the text in the tabs look more substantial, I added the same rules to
.CollapsiblePanelTab as I did with the accordion tabs, namely:

color: #555;
font-family: Verdana, Geneva, sans-serif;
font-size: 90%;
font-weight: bold;

To ensure the text in the tabs stands out on rollover, add a color property to
.CollapsiblePanelTabHover, .CollapsiblePanelOpen .CollapsiblePanelTabHover. I
used #333.

Finally. because you cannot add padding to the CollapsiblePanelTab class, it’s a good
idea to create a new rule for .CollapsiblePanelContent p in the same way as for the
accordion. I used the following properties and values:

font-size: 75%;
padding: 5px 10px;
margin: 0;

You can see the finished result in stroll_collapsible.html. The amended style sheet is
in SpryCollapsiblePanel_stroll.css in the SpryAssets folder.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

298

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating tooltips with Spry

The Spry Tooltip widget is new to Dreamweaver CS4. It makes it very easy to add an
extended tooltip to a page element. Figure 7-21 shows a Spry Tooltip attached to one of
the images in stroll.html, but any page element can be used as a trigger.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

299

7

Figure 7-21. Tooltips are a good way of adding supplementary information to a page.

Examining the structure of a Spry tooltip
To insert a Spry Tooltip, click the Spry Tooltip icon on the Spry tab of the Insert bar or use
the menu option: Insert ➤ Spry ➤ Spry Tooltip.

A Spry Tooltip consists of two parts: the trigger element and the tooltip. The tooltip is
always a <div>, which Dreamweaver places at the end of the document, just before the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

closing </body> tag (although you can move this later). The trigger depends on what, if
anything, is selected in the page, as follows:

If nothing is selected, the trigger consists of placeholder text wrapped in a
and inserted at the current insertion point.

If an HTML element, such as an image, paragraph, or <div>, is selected,
Dreamweaver adds an id attribute to the element’s tag to associate it with the
tooltip.

If the element already has an id attribute, the existing ID is preserved and used to
associate the element with the tooltip.

If only part of a text element is selected, the selected portion is wrapped in a
, and an id attribute is added to the tag.

Like all Spry widgets, the Spry Tooltip relies on an external JavaScript file (SpryTooltip.js)
and a style sheet (SpryTooltip.css). In contrast with the other UI components, the
style sheet is extremely simple. It contains just two selectors: .iframeTooltip and
.tooltipContent. The first selector is a hack that overcomes a problem with Internet
Explorer and shouldn’t be altered. The .tooltipContent selector contains just a single
property: the background color of the tooltip, which is set to light yellow (#FFFFCC).

Inserting and styling tooltips
The following screenshot shows the Property inspector for a Spry Tooltip:

The field on the left of the Property inspector displays the ID of the selected tooltip <div>.
Dreamweaver automatically assigns this value, incrementing the number for each tooltip
added to the page. You can change this value, but you must ensure that the same ID is not
used elsewhere on the same page.

The other options are as follows:

Trigger: This displays the ID of the trigger element. You can change the trigger ele-
ment by clicking the arrow on the right of the field to reveal a list of all IDs on the
current page, except that of the tooltip <div>.

Follow mouse: Selecting this checkbox makes the tooltip follow the mouse within
the bounds of the trigger element.

Hide on mouse out: By default, tooltips are hidden when the mouse moves off the
trigger element. Selecting this option keeps the tooltip open as long as the mouse
remains over the tooltip, even if it’s no longer over the trigger element. See the fol-
lowing exercise for a practical example.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

300

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Horizontal/Vertical offset: By default, the top-left corner of the tooltip is displayed
20 pixels to the right and below the cursor. To set a different offset, enter the
desired values (use only numbers without px) in these fields. Negative numbers
move the tooltip above and to the left of the cursor. Positive numbers move it
below and to the right. The new offset is calculated from the current position of
the cursor, not from the default top left of the tooltip.

Show/Hide delay: These fields let you delay the appearance or disappearance of the
tooltip by a specified number of milliseconds (1000 = 1 second).

Effect: This determines how the tooltip is displayed. There are three options:

None: The whole tooltip appears or is hidden immediately.

Blind: The tooltip is revealed from the top. When being hidden, it disappears
from the bottom. This effect sometimes results in the background being drawn
too big or too small. Test it thoroughly in your target browsers.

Fade: This fades the tooltip in or out.

This exercise shows you how to add tooltips to various elements in the page that has been
used throughout this chapter. It also examines how the tooltips are dynamically generated.

1. Save stroll.html as stroll_tooltip.html in exercises/ch07.

2. Click anywhere in the sidebar. Then select <div#sidebar1> in the Tag selector at the
bottom of the Document window. This selects the whole <div>.

3. Insert a Spry Tooltip using either the Insert bar or the Insert menu. Although it looks
as though nothing happened, scroll down to the bottom of the page, and you
should see that the tooltip <div> has been inserted below the footer, as shown in
Figure 7-22. Notice that the value of the Trigger field is #sidebar1, indicating that
Dreamweaver has used the existing id attribute of the selected element.

Applying tooltips to text and images

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

301

7

Figure 7-22. The tooltip <div> is always placed at the foot of the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Save stroll_tooltip.html to copy the dependent files to the site’s Spry assets
folder.

5. Rename SpryTooltip.css to SpryTooltip_stroll.css, and update the link to
stroll_tooltip.html when prompted.

6. As you can see in Figure 7-22, the placeholder text in the tooltip is centered. To
understand why, hold down the Alt key (or Opt+Cmd), and click inside the tooltip
<div>. The Code Navigator displays two CSS selectors: .tooltipContent and body.
Mouse over them to inspect the style rules they define. You’ll see that the
.tooltipContent selector specifies only a background color. It’s the body selector
that’s centering the text, as the following screenshot shows:

If you read the comments in stroll.css, you’ll see that it’s to center the con-
tainer <div> in Internet Explorer 5. The text in the container <div> is realigned
in a separate rule. However, as I explained before, Dreamweaver inserts the tooltip
<div> just before the closing </body> tag, so it’s outside the container <div> and
not affected by its style rules. Although Internet Explorer 5 is becoming increasingly
rare, rather than risk problems, it’s better to change the text alignment for the
tooltip.

7. Select SpryTooltip_stroll.css in the Related Files toolbar. and amend the
.tooltipContent style rule by adding the text-align and padding properties
like this:

.tooltipContent
{
background-color: #FFFFCC;
text-align: left;
padding: 0 10px;

}

8. Replace the placeholder text with something relatively short like This is the sidebar.

9. Select living_statues.jpg in Design view, and apply a Spry Tooltip. Scroll down to
the bottom of the page. You’ll see that the new tooltip <div> has been inserted
below the footer but above the previous tooltip <div>. Check the value of Trigger
in the Property inspector. The image didn’t have an ID, so Dreamweaver has auto-
matically assigned #sprytrigger1.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

302

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. Replace the placeholder text in the new tooltip <div> with a paragraph containing
several sentences. You can use the text in tooltip.doc or tooltip.docx in
examples/ch07. The bottom of the page should now look like this in Design view
(the size of the text in the second tooltip is smaller because it’s in a paragraph):

11. Save both stroll_tooltip.html and its style sheet. Then preview the page in a
browser. As you move your mouse over the sidebar, the first tooltip should appear
and disappear again when you move your mouse away.

12. Now, mouse over the image of the living statues. Move your mouse from the top
left of the image down toward the bottom right. As the mouse reaches the top left
corner of the tooltip, the tooltip jumps to maintain its distance and keeps on doing
so until you’re no longer over the image.

13. Return to Dreamweaver, and select the second tooltip (click the turquoise tab at
the top left to bring up its details in the Property inspector). Select the Hide on
mouse out option.

14. Save the page, and view it again in the browser. Mouse over the image from the top
left again. This time, the tooltip remains in its original position until your mouse
leaves both the image and the tooltip.

15. I’ll leave you to experiment with other options, but finally let’s examine how the
browser displays the tooltip. Back in Dreamweaver, switch to Split view, and select
Source Code in the Related Files toolbar. Press F4 to hide the panels if you need
more room to see both the underlying HTML and part of the page in Design view.
You don’t need to see the whole page, but just enough to be able to mouse over
the image of the living statues.

16. Activate Live view, and mouse over the image to display the tooltip. Now press F6
to freeze the JavaScript. This lets you move your mouse off the image to click the
Live Code button in the Document toolbar (or select View ➤ Live Code). The Code
view section of the Document window turns yellow, indicating that it’s showing the
dynamically generated code.

17. Scroll down the Code view section of the Document window until you find the
beginning of the tooltip <div>. It should look like this:

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

303

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Notice that it has an inline style attribute that converts the <div> into an
absolutely positioned element. This is dynamically generated by the Spry Tooltip’s
external JavaScript file.

When the page first loads, the JavaScript sets the visibility property to none, hid-
ing it from view. Passing the mouse over the image triggers a JavaScript event that
manipulates the DOM. Live Code shows you the information being passed to the
browser to display the tooltip.

18. Turn off Live Code by clicking the Live Code button or selecting View ➤ Live Code.
The same section of code should now look like this:

The inline style attribute has gone. Also, the line numbers have changed. This
reflects the fact that the DOM is no longer being manipulated by JavaScript.

Like all Spry widgets, the tooltip degrades gracefully when JavaScript is turned off. The
content of each tooltip <div> is displayed as ordinary text. Dreamweaver locates them at
the bottom of the page, but you can put them anywhere in the page as long as it’s a valid
place to locate a <div>. After all, as far as HTML is concerned, a tooltip <div> is no differ-
ent from any other. It’s the JavaScript that converts it temporarily into an absolutely posi-
tioned element.

To preserve the logical flow of the page for search engines and anyone browsing without
JavaScript enabled, it’s a good idea to move each tooltip <div> to the section of the page
to which it refers. However, you should always do this in Code view.

Removing a Spry widget

Removing a Spry widget is very easy: just click the turquoise tab at the top left of the
widget, and press Delete. Dreamweaver removes both the widget and its associated
JavaScript. However, if you have renamed the style sheet (as in the exercises in this chap-
ter), the link to the style sheet isn’t removed. Dreamweaver removes only style sheets that
retain the default name.

Although this sounds simple and convenient, it comes with a big downside: removing a
widget also removes all its contents. So, think carefully before pressing Delete. Do you
need to display the contents in some other format? If so, make sure you have a copy
before blasting everything to cyberoblivion.

Do not use Design view to move a tooltip <div> to a different part of the page. When
you cut the <div>, it also removes a vital part of the JavaScript code, which is not
restored when you paste the <div> in its new location.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

304

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter review
In this chapter, I’ve given you an in-depth look at Spry effects and user interface compo-
nents. The effects are easy to use: just a couple of clicks, and you’re done. The user inter-
face components are also easy to insert into a page. The difficulty comes with styling them
to fit in with the rest of your design. However, once you have worked out a set of colors to
replace the defaults, you can customize them fairly quickly.

As I said at the beginning of the chapter, you don’t even need Dreamweaver to use Spry.
You could, in fact, implement everything in this chapter by downloading the external
JavaScript files of the Spry framework and hand-coding a few lines to embed the effects
and widgets in your page. There’s no doubt that Dreamweaver lightens the load when
using these features, but it can’t automate everything. For example, you can’t create a link
to open an accordion or tabbed panel without learning about the Spry application pro-
gramming interface (API) and diving into Code view. Dreamweaver code hints for Spry, as
well as improved support for the DOM and other JavaScript libraries, make this easier. So,
in the next chapter, I invite you to roll up your sleeves and get closer to the code.

USING SPRY DYNAMIC EFFECTS AND COMPONENTS

305

7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 GOING BEYOND THE BASICS
WITH SPRY AND AJAX

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Spry effects and widgets described in the previous chapter owe their existence to a fun-
damental shift that has taken place in the past few years in the way that JavaScript is used
to generate dynamic effects in the browser. Traditionally, JavaScript has been used to tackle
specific tasks. For example, if you wanted to change an image on rollover, you would write
a script designed simply for that purpose or use an existing one (Dreamweaver automates
the process for you with Insert ➤ Image Objects ➤ Rollover Image). This has the advantage
of producing lightweight dedicated scripts. For example, Dreamweaver’s image rollover
script is fewer than 20 lines of code. However, improvements in browser capabilities and
better support for the DOM (see Chapter 7) spurred developers to see how far they could
push JavaScript. The Spry effects might look quite simple, but they all involve changing the
state of the target element (its position, transparency, or color) over a specified period. The
amount of scripting required for each effect is considerable. Yet each effect shares com-
mon tasks: the need to identify the target element, a timer to control the transition, ways
of dynamically manipulating the element’s style rules, and so on. Rather than reinvent the
wheel for each new script, it became more efficient to develop a framework or library of
common functions.

The sudden explosion of JavaScript frameworks in recent years is a mixed blessing for web
developers. In one respect, using a framework reduces the amount of code the developer
needs to write because most complex tasks are handled by the framework. On the other
hand, it involves a considerable learning curve. Books about the most popular frameworks,
Prototype, script.aculo.us, jQuery, and Mootools, run to hundreds of pages. Dreamweaver
has tried to reduce the Spry learning curve by automating the insertion and configuration
of a large number of widgets and effects. All the JavaScript coding is handled for you
seamlessly behind the scenes (it might come as a surprise that SpryEffects.js contains
nearly 2,500 lines of code).

If you don’t want to get your hands dirty with JavaScript, you can skip this chapter. On the
other hand, if you do, you might find yourself frustrated at not being able to use Spry to its
full extent. Because Spry is a fully fledged JavaScript framework, it’s capable of doing much
more than you can achieve through the Property inspector or dialog boxes. Doing things
such as opening a panel from a link or making the height of accordion panels expand and
contract depending on the amount of content in them involves diving under the hood and
hand-coding JavaScript. Spry code hints make this a relatively painless process.

In this chapter, you’ll learn about the following:

Passing additional arguments to Spry effects and widgets

Creating an accordion with flexible-height panels

Opening Spry panels from links

Combining Spry effects

Using the Spry selector to manipulate styles on the fly

Saving bandwidth with minified Spry files

Creating unobtrusive JavaScript with the JavaScript Extractor

Using other JavaScript libraries with Dreamweaver CS4

Installing Dreamweaver extensions

Experimenting with jQuery and YUI Library web widgets

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

308

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you have worked previously with JavaScript, you should have little difficulty customizing
Spry effects and widgets. However, for the benefit of readers taking their first steps with
programming, the following section explains some of the basic concepts.

Programming terminology 101
Programming languages like JavaScript and PHP (which you’ll use in the second half of this
book) change the output displayed in a web page in response to events or user input.
Since the developer has no way of knowing in advance how users will interact with a page,
programming languages use a variety of mechanisms to produce the required output. The
following are some of the most important.

A variable acts as a placeholder for an unknown or changeable value, which may come
from user input, a database, the result of a calculation, and so on. Although this sounds
abstract, we use variables all the time in everyday life. My name is David, and my editor’s
name is Ben. In this case, “name” plays the same role as a variable—the word “name”
always remains the same, but the value assigned to it can change.

Functions can be regarded as the verbs of programming languages; they do things. Many
functions are built into the language, but you can also build your own functions by
combining a series of commands. In both JavaScript and PHP, function names are always
followed by a pair of parentheses. Often, the parentheses contain variables, known as
parameters or arguments. Passing a value as an argument tells the function to do some-
thing with it, such as perform a calculation or format text.

JavaScript is triggered by events, such as when the page has finished loading or the user
clicks a link. You tell the browser to run a function by assigning it (plus any arguments, if
necessary) to an event handler such as onclick, onmouseover, or onmouseout. To give a
trivial example, the following code pops up an annoying message when the link is clicked:

Click me quick

A string is the name that programming languages give to text. A string is always enclosed
in quotes (single or double). By contrast, numbers should not normally be enclosed in
quotes, unless they’re part of a string.

An array is a variable that can hold multiple values, rather like a shopping list.

An object is like a super variable, which can have variables (called properties) and func-
tions (called methods) of its own. New instances of an object are created using the new
keyword followed by a constructor function, which looks and works very much like any
other function.

In spite of the similarity of names, JavaScript is wholly unrelated to
Java. They are different programming languages, and “Java” should
never be used as an abbreviation for JavaScript.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

309

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Understanding Spry objects
In common with other JavaScript frameworks, Spry uses JavaScript objects. The idea of
using objects is that all the complex coding remains locked away in the object definition,
so you need concern yourself only with parts exposed through the object’s methods and
properties. Methods are functions that can be used to get the object to perform particu-
lar actions. Properties define the state of an object. All Spry effects and widgets are
objects. So, for example, the properties of an accordion determine whether a panel is
open or whether the panels have a fixed height; and to open the panel of a tabbed panels
object, you use its showPanel() method.

Initializing a Spry object

When you insert a Spry tabbed panels widget, Dreamweaver initializes the JavaScript
object at the bottom of the page just before the closing </body> tag like this:

<script type="text/javascript">
<!--
var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1");
//-->
</script>
</body>

The line of JavaScript highlighted in bold creates a new tabbed panels object and stores
a reference to it in a JavaScript variable with the same name as the ID of the <div> that
contains the panels. The ID and the JavaScript variable don’t need to be the same, but
Dreamweaver adopts this convention to make it easy to use Spry properties and methods.

Dreamweaver normally handles all the coding for you, but if you want to get more adven-
turous with Spry widgets, you need to understand what the code means. So, let’s analyze
it piece by piece:

The object definitions aren’t literally locked away. You can study them by opening the
external JavaScript files that Dreamweaver copies to the Spry assets folder. However,
you should never edit the JavaScript in those files unless you really know what you’re
doing. And if you do know what you’re doing, you would probably create your own
methods and properties without touching the original files.

Both JavaScript and PHP are case-sensitive. You must use the right combination of
uppercase and lowercase when typing JavaScript and PHP code. Dreamweaver code
hints are invaluable in helping get the spelling right.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

310

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var: This is a JavaScript keyword used to declare a new variable. Variable names in
JavaScript cannot begin with a number and should not contain any spaces or punc-
tuation, except for the underscore (_).

TabbedPanels1: This is the name of the new variable, which can be used elsewhere
in the script to represent whatever value is assigned to it.

The assignment operator (=): This assigns the value on the right to the variable on
the left. Try not to think of it as an equal sign, because both JavaScript and PHP use
two equal signs to indicate equality.

new: This is a JavaScript keyword that creates an instance of an object.

Spry.Widget: This is the object of which a new instance is being created.

TabbedPanels("TabbedPanels1"): This is the constructor method of the object. In
this case, it creates a tabbed panels widget. The value in quotes between the paren-
theses is an argument being passed to the new object. Arguments set the values of
specific properties. In the case of Spry objects, the first argument is always the ID
of the target element.

If you change the value of the Default panel in the Property inspector to Tab2,
Dreamweaver changes the initialization code like this:

var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1", ➥

{defaultTab:1});

The format of the second argument is important. Unlike the first argument, it’s not
enclosed in quotes but in a pair of curly braces. In JavaScript, this is called an object
literal. An object literal is simply a shorthand way of creating a new object. It consists of
name/value pairs surrounded by curly braces. Each name/value pair defines a property,
with a colon separating the value from the property name. This object literal contains a
single name/value pair: defaultTab, which is a property of a tabbed panels widget, and 1,
which is the value assigned to that property. No, it’s not a mistake. Like most programming
languages, JavaScript counts from zero, so the number of the second tab is 1, not 2.

The second argument in most Spry constructor methods sets various options. Since an
object literal can accept multiple name/value pairs as a comma-separated list, using an
object literal as the second argument makes it easy to pass multiple options to the Spry
effect or widget like this:

var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1", ➥

{property1:value1, property2:value2, property3:value3});

You can put whitespace around the colons and insert new lines after the commas for ease
of reading. Don’t worry if all this terminology sounds intimidating. As you’ll see in the fol-
lowing exercises, hand-coding Spry is relatively painless.

Changing accordion defaults
As explained in Chapter 7, the Property inspector for an accordion lets you change only the
ID and the number and order of panels. Unlike Spry tabbed panels, there’s no option to
select a panel to be displayed by default when the page first loads. What’s more, changing

GOING BEYOND THE BASICS WITH SPRY AND AJAX

311

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the default behavior of using fixed-height panels isn’t just a question of tweaking the style
sheet. To make both changes, you need to pass options to the accordion object constructor.

By default, an accordion is always displayed with the first panel open. This exercise shows
how to display a different panel when the page first loads. This technique always displays
the same panel. It cannot be used to open a specific panel from a link in a different page.

1. Create a new folder called ch08 in your workfiles folder, copy accordion_
start.html from examples/ch08, and save it in the new folder as accordion.html.
Update the links when prompted. The page should look like this in Design view:

The accordion contains the same material as used in Chapter 7. However, I have left
the accordion unstyled apart from constraining its width.

2. To change the default open panel, open the page in Code view, and scroll down to
the bottom. Locate the following line of code, which initializes the accordion object:

var Accordion1 = new Spry.Widget.Accordion("Accordion1");

3. Insert your cursor just before the closing parenthesis, and type a comma.
Dreamweaver displays the following code hint:

Changing an accordion’s default open panel

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

312

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This tells you that Spry expects the constructor method to take two arguments:
element (the ID of the <div> that houses the accordion) and options. Because
options is highlighted in bold, that’s what Dreamweaver now expects you to enter.
The curly braces remind you that options must be a JavaScript object literal.

4. Type an opening curly brace. This pops up a second code hint, as shown here:

This shows you some of the available options. Double-click defaultPanel, or use the
down arrow key to select it and press Enter/Return. Dreamweaver inserts the
defaultPanel property followed by a colon ready for you to insert the value.
JavaScript numbers the panels from 0, so to open the third panel, type 2 followed
by a closing curly brace. The code should now look like this:

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{defaultPanel:2});

5. Save accordion.html, and load it in a browser (or activate Live view). The third
panel (Water bus) should open instead of the first one.

Check your code, if necessary, with accordion_default.html in examples/ch08.

Using a fixed height for an accordion is very useful when you need to keep different parts
of a page in alignment, but the scrollbars tend to look unsightly (only Internet Explorer for
Windows supports the nonstandard CSS properties for styling scrollbars).

Converting an accordion to flexible height involves two stages: editing the CSS and passing
an option to the accordion object’s constructor method. Continue using accordion.html
from the preceding exercise.

1. With accordion.html open in the Document window, select SpryAccordion.css in
the Related Files toolbar. Then select File ➤ Save As, and save the style sheet as
SpryAccordion_flexible.css. This opens the style sheet in a new tab. Close the
new tab straightaway, because you’ll work with it as a related file.

2. Although you have saved the style sheet with a different name, the original style
sheet is still attached to accordion.html. The quickest way to attach the new style
sheet is to select Source Code in the Related Files toolbar to reveal the HTML code
of accordion.html. Change SpryAccordion.css to SpryAccordion_flexible.css in the

Converting an accordion to flexible height

GOING BEYOND THE BASICS WITH SPRY AND AJAX

313

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<link> tag in the <head> of the document, save the page, and press F5 to update
the Related Files toolbar, as shown here:

3. You need to change the properties in the .AccordionPanelContent selector of the
style sheet. There are several ways you can do it, but a quick way to find the right
section of code to edit is to switch to Design view, hold down the Alt key (or
Opt+Cmd on a Mac), and click anywhere inside the accordion. Click the link for the
.AccordionPanelContent selector in the Code Navigator, as shown in the following
screenshot:

4. Change the value of overflow from auto to hidden. If you leave the overflow
property set to auto, some longer panels still spawn a scrollbar. You need to set it
to hidden so that only the currently open panel is visible. Also delete the height
property from the rule, which should now look like this:

.AccordionPanelContent {
overflow: hidden;
margin: 0px;
padding: 0px;

}

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

314

http://lib.ommolketab.ir
http//lib.ommolketab.ir

That takes care of the CSS. Now you need to tell the Accordion object to use flex-
ible height.

5. Select Source Code in the Related Files toolbar to return to the HTML code for
accordion.html, and then scroll right to the bottom of the page and locate the
code that initializes the Accordion object (see step 2 in the preceding exercise).

6. If you changed the default open panel in the preceding exercise, amend the con-
structor function like this (new code is in bold):

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{defaultPanel:2, useFixedPanelHeights:false});

If you just want to remove the fixed panel heights, amend the code like this:

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{useFixedPanelHeights:false});

Make sure you don’t omit the comma after "Accordion1".

7. Select File ➤ Save All to save the changes to both accordion.html and the style
sheet, and test the page in your browser. You now have a flexible-height accordion
and no ugly scrollbars.

Check your code, if necessary, with accordion_flexible.html in examples/ch08.
The style sheet, SpryAccordion_flexible.css, is in the SpryAssets folder.

Using an object’s methods

Once you have created an object, you can use its methods. You do this by adding a period
to the end of the variable that contains the object, followed by the method name and
any arguments. So, to open the second panel of a tabbed panels widget stored in
TabbedPanels1, you use its showPanel() method like this:

TabbedPanels1.showPanel(1)

Opening panels from a link on the same page
The technique for opening a specific panel differs not only for each type of Spry widget
but also depending on whether the link is located in the same page. This section contains
instructions for opening a panel from links within the same page as the widget. There are
separate instructions for tabbed panels, accordions, and collapsible panels.

This exercise shows you how to open a specific panel in a tabbed panels widget from a link
in the same page.

1. Copy tabbed_start.html from examples/ch08 to workfiles/ch08, and save the
file as tabbed.html. Update the links when Dreamweaver prompts you to do so.

Opening a tabbed panel from a link on the same page

GOING BEYOND THE BASICS WITH SPRY AND AJAX

315

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The page contains a tabbed panels widget, as shown in the following screenshot:

As with the accordion in the previous exercises, the panels are unstyled apart from
a rule that constrains their width.

2. In Design view, select the tab named Bus in the Property inspector, or click its eye
icon to reveal the panel content.

3. Select the words Oyster Card in the final sentence, and type javascript:; in the Link
field of the HTML view of the Property inspector to create a dummy link.

4. With the words Oyster Card still highlighted, open Split view to reveal the underlying
code, and position your cursor just before the closing angle bracket of the <a> tag.

5. Press the spacebar. Code hints should pop up. Type onc, and press Enter/Return
when onclick is highlighted. The link surrounding Oyster Card should now look like
this (with the cursor between the quotes following onclick):

Oyster Card

6. To call one of the Spry methods (functions) on a widget, type the ID of the widget
followed by a period and the name of the method. The ID of this widget is
TabbedPanels1. As soon as you type the period after the ID, Dreamweaver pops up
code hints for the selected widget, showing the available methods (see Figure 8-1).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

316

Figure 8-1. Code hints recognize Spry widgets and display available methods.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Use your mouse or keyboard arrow keys to select showPanel(elementOrIndex), and
double-click or press Enter/Return. This inserts showPanel followed by an opening
parenthesis. Type 3 followed by a closing parenthesis.

Following JavaScript convention, Spry counts the panels from 0, so 3 represents the
fourth panel (Oyster Card). The Oyster Card link code should now look like this:

Oyster ➥

Card

7. Activate Live view. Select the Bus tab, and click the Oyster Card link within the dis-
played panel. The fourth panel should open.

8. The link to open another panel doesn’t need to be inside the widget; it can be any-
where in the page. You can also identify the panel you want to open with an ID
rather than counting its number from zero. This is particularly useful if the order of
the panels is likely to change.

Switch off Live view, and select the Water bus tab. With your cursor anywhere inside
the content of the third panel, select <div.TabbedPanelsContent> in the Tag selector
at the bottom of the Document window. This selects the <div> that contains the
third panel.

9. Enter waterbus in the Div ID field of the Property inspector, and press Tab or
Enter/Return. The ID of the <div> should be added to the selected tag in the Tag
selector, as shown here:

GOING BEYOND THE BASICS WITH SPRY AND AJAX

317

8

10. You can now use this to open the panel from a link. Select the text in the bullet
point at the top of the page, and create a dummy link by entering javascript:; in the
Link field of the HTML view of the Property inspector.

11. Open Split view, and insert an onclick event handler inside the link as you did in
steps 5 and 6. However, this time, use the ID of the panel. The link should look like
this:

 ➥

Water bus

Note that the ID of the panel must be in single quotes. Do not use double quotes.
In programming languages, quotes must always be in matching pairs. The onclick
attribute uses double quotes, so any quotes used inside must be single. Otherwise,
the code won’t work.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12. Activate Live view, and click the Water bus link. The Water bus panel should open.

13. Turn off Live view, select the tabbed panels widget by clicking the turquoise tab at
the top left, and use the up and down arrows in the Property inspector to move the
Water bus and Oyster card panels to different positions.

14. Test the page in Live view again. The Water bus panel should still open correctly.
However, the link that you created in the Bus panel will no longer open the Oyster
card panel. Instead, it opens whatever has been moved to the fourth position.

Check your code, if necessary, against tabbed_link.html in examples/ch08.

Unlike a tabbed panels widget, an accordion doesn’t have a showPanel() method.
However, the process is very similar. Continue working with accordion.html from the
exercises earlier in the chapter. Alternatively, copy accordion_flexible.html from
examples/ch08, and save it as accordion.html in workfiles/ch08. Update the links when
Dreamweaver prompts you to do so.

1. If you did the exercises with the accordion earlier in this chapter, remove the
defaultPanel argument from the options used to initialize the accordion constructor.
Open Code view, and make sure the code at the bottom of the page looks like this:

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{useFixedPanelHeights:false});

2. Back in Design view, highlight the text in the bullet point at the top of
accordion.html, and type javascript:; into the Link field of the HTML view of the
Property inspector to create a dummy link. Open Split view, and add an onclick
attribute to the <a> tag in the same way as in step 5 in the preceding exercise.

3. With your cursor between the quotes of the onclick attribute, type Accordion1 fol-
lowed by a period. As soon as you type the period, Dreamweaver pops up code
hints of the available methods. Scroll down to the bottom of the list, as shown in
the following screenshot:

Opening an accordion panel from a link on the same page

Understanding the use of quotes is vital when working with languages like JavaScript
and PHP. In many circumstances, it doesn’t matter whether you use single or double
quotes, as long as they’re a matching pair. For example, onclick could use single
quotes, but in that case, the ID nested inside would need to use double quotes. When a
programming language sees an opening quote, it grabs the next matching one as the
closing quote. So, you always need to make sure you don’t accidentally end a command
prematurely by using the wrong type of quotation mark.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

318

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Note that showPanel() is not listed, but there are four methods that target
specific panels: openFirstPanel(), openLastPanel(), openNextPanel(), and
openPreviousPanel(). Because they target specific panels, you don’t need to add
anything between the parentheses. However, Water bus is the third panel, so none
of these will work. Select openPanel(elementOrIndex).

4. Since Water bus is the third panel, JavaScript counts its position (or index) as 2. So,
add 2, and close the parentheses. The link should look like this:

Water bus

5. Save accordion.html, and load the page into a browser. Click the link at the top of
the page. The Water bus panel slides open. This is a considerable improvement over
the version of Spry in Dreamweaver CS3, which forced you to go through two steps
to open a panel using its index.

6. As you saw in the previous exercise, using a number to identify a panel is risky
because you need to recode everything if the panel’s position changes. Giving the
panel an ID and passing it as an argument to the openPanel() method is more reli-
able. However, you need to make sure you apply the ID to the correct element.

Open the Water bus panel in Design view. Select all or part of it to make it easy to
identify in Split view. Notice that the tab and the panel content are each in a sepa-
rate <div> nested inside another <div> that holds tab and content together like
this:

<div class="AccordionPanel">
<div class="AccordionPanelTab">Water bus</div>
<div class="AccordionPanelContent">
<p>For many years, Londoners . . .</p>
</div>
</div>

</div>

7. The ID must be applied to the outer <div>. Applying it to the <div> that contains
the tab or panel content won’t work. To make sure you get the correct <div>, either
work in Code view or click inside the content of the panel in Design view and select
<div.AccordionPanel> from the Tag selector, as shown in the following screenshot:

After selecting the correct tag, enter the ID in the Div ID field of the Property
inspector. For this exercise, enter waterbus.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

319

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Amend the argument passed to the openPanel() method in step 3 like this (using
single quotes around the ID):

 ➥

Water bus

9. Select the turquoise tab at the top left of the accordion widget to open its details
in the Property inspector, and use the up or down arrow to move the Water bus
panel to a different position.

10. Save the page, and test it in a browser. When you click the Water bus link, the cor-
rect panel should still open.

You can check your code, if necessary, against accordion_link.html in
examples/ch08.

Since collapsible panels work independently, opening one from a link is simply a matter of
applying the open() method to the JavaScript variable that identifies the target panel. By
default, Dreamweaver names the first panel on a page CollapsiblePanel1 and increments
the number by one for each subsequent panel.

This exercise shows how to open collapsible panels from a link on the same page.

1. Copy collapsible_start.html from examples/ch08, and save it in workfiles/ch08
as collapsible.html. Update the links when Dreamweaver prompts you to do so.

The page contains four collapsible panels with the same content as before. The first
panel is set to display open, while the others remain closed. Again, the only styling
on the page limits the width of the panels.

2. Select Water bus at the top of the page, and create a dummy link as you have done
in all previous exercises.

3. Switch to Code view, and scroll to the bottom of the page. The code that initializes
the collapsible panel objects looks like this:

As you can see, there are four separate objects. The first argument passed to the
constructor method of a Spry object is always the ID of the target element, so
CollapsiblePanel3 is a unique identifier for the Water bus panel. Even if you move
the panels about on the page, each one retains its original ID.

4. Scroll back up to the dummy link, and add an onclick attribute to the <a> tag.

5. With your cursor between the quotes of the onclick attribute, type CollapsiblePanel3
followed by a period. As soon as you type the period, Dreamweaver pops

Opening a collapsible panel from a link in the same page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

320

http://lib.ommolketab.ir
http//lib.ommolketab.ir

up code hints of the available methods. Scroll down until you locate open(), as
shown here:

GOING BEYOND THE BASICS WITH SPRY AND AJAX

321

8

6. Double-click open(), or press Enter/Return. That’s it.

7. Save the page, and test it in a browser. When you click the Water bus link at the top
of the page, the Water bus panel opens. Because collapsible panels are independent
of each other, this has no effect on any other panels that are open.

You can check your code with collapsible_link.html in examples/ch08.

Although it’s useful to open a collapsible panel from a link, wouldn’t it be nice to be able
to close it as well? As you scrolled down the list of code hints in step 5 of the previous
exercise, you probably noticed that there’s a close() method, too. Although you can use
that with a different link, how about toggling a panel open and closed from the same link?

This next exercise shows you how to build a custom function to toggle any collapsible
panel open and closed from a link on the same page. Continue working with
collapsible.html from the preceding exercise.

The instructions in this exercise are deliberately verbose to help readers who are new to
JavaScript. If you already have experience writing your own JavaScript, you might prefer
to skim over most of the explanations and study the finished (very simple) script in
collapsible_toggle.html.

1. As you have already learned, a collapsible panel object has both an open() method
and a close() method. To toggle a panel open and closed, you need a way of find-
ing out its current state. Take a closer look at the screenshot in step 5 of the pre-
ceding exercise. Among the code hints is another method called isOpen() (it’s the
third one down in the screenshot). There isn’t an equivalent method that tells you
whether a panel is closed, but that’s not important. If a panel’s not open, it must be
closed.

2. Open Code view, and scroll up to the closing </head> tag (it should be around
line 24). Create some space before the closing </head> tag, and insert a <script>
block like this (the new code is shown in bold):

</style>
<script type="text/javascript">
</script>
</head>

Toggling a collapsible panel open and closed from a remote link

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. To create a custom function, you type the keyword function followed by the name
you want to use for the function. The name is followed by a pair of parentheses.
The body of the function goes between a pair of curly braces. So, amend the code
like this:

<script type="text/javascript">
function togglePanel()
{
}
</script>

4. Since we have been working with the Water bus panel (CollapsiblePanel3), let’s
continue doing so. Decisions in programming languages are made by determining
whether a condition is true or false. The isOpen() method produces a Boolean
value (true or false). So, CollapsiblePanel3.isOpen() will equate to true if it’s
open. Otherwise, it equates to false. In programming terms, a function or method
is said to return a value. So, what we’re interested in is whether it returns true or
false.

Conditional decisions are handled by using the keyword if followed by the condi-
tion in parentheses. Any code you want to run only if the condition is true goes
inside a pair of curly braces.

If the panel is open, you want to close it, but if it’s closed, you want to open it. To
run different code when a condition is false, you use the else keyword and put the
code in another pair of curly braces.

Put everything together, and it looks like this:

<script type="text/javascript">
function togglePanel()
{
if (CollapsiblePanel3.isOpen()) {
CollapsiblePanel3.close();

} else {
CollapsiblePanel3.open();

}
}
</script>

5. To use this function, you now need to change the code in the dummy link. It cur-
rently looks like this:

Water bus

Change it to this:

Water bus

6. Save collapsible.html, and test the page in a browser. When you click the Water
bus link, the panel should now open or close depending on its current state.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

322

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Check your code, if necessary, with collapsible_toggle_waterbus.html in
examples/ch08. JavaScript is intolerant of mistakes, so use the File Compare fea-
ture, as described in Chapter 2, if you’re having problems. A missing period, quota-
tion mark, parenthesis, or curly brace will prevent the function from working.

7. This works fine, but it’s very inflexible, because it works only with
CollapsiblePanel3. This is where passing an argument to a function makes it far
more useful. The argument is a variable that goes between the parentheses at the
end of the function name. You then use that variable inside the function to repre-
sent the actual value that’s passed when the function is used. We’re toggling the
open and closed states of a panel, so let’s call the variable panel.

Change the function like this (the changes are in bold):

function togglePanel(panel)
{
if (panel.isOpen()) {
panel.close();

} else {
panel.open();

}
}

8. Finally, you need to pass the ID of the panel you want to open as an argument to
togglePanel() like this:

Water ➥

bus

Note that the ID is not in quotes because you’re passing the object, and not a
string.

9. Save collapsible.html, and test the page in a browser again. It should toggle the
Water bus panel open and closed as before.

10. Now, the real test. Copy and paste the Water bus link, and change it like this:

<p> ➥

Water bus</p>
<p> ➥

Oyster card</p>

11. Save the page, and test the new link, which should toggle the Oyster card panel
open and closed.

Check your code, if necessary, against collapsible_toggle.html in examples/ch08.

That solves the problem of toggling a single panel open and closed. How about opening
and closing all panels with a single click? Actually, this feature is already built into the
external JavaScript file that controls collapsible panels, but you need to implement it man-
ually. It’s very easy, as the next exercise shows.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

323

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise shows you how to group collapsible panels so they can be opened or closed
as a single unit. Each panel, however, can be opened or closed independently.

1. Continue working with the file from the preceding exercise. Alternatively, copy
collapsible_toggle.html from examples/ch08, and save it as collapsible.html
in workfiles/ch08.

2. To open and close all panels simultaneously, you need to wrap them in an outer
<div>. Selecting multiple elements in Design view can be tricky, so the safest way to
do this is in Code view. Insert a new <div> tag just before the first collapsible panel.
It needs both an ID and a class. The ID can be anything you like, as long as it’s
unique on the page (I used panelgroup). The class must be CollapsiblePanelGroup.
The amended code looks like this (it should be around line 40):

<p>Open all | Close all</p>
<div id="panelgroup" class="CollapsiblePanelGroup">
<div id="CollapsiblePanel1" class="CollapsiblePanel">

3. Scroll to the end of the last panel, and insert a closing </div> tag. It should go
immediately above the <script> block around line 70, like this:

more than two years).</p>
</div>

</div>
</div>
<script type="text/javascript">

4. When you create a collapsible panel group like this, it’s no longer necessary to
initialize each panel individually. You just need to create an instance of the
CollapsiblePanelGroup object.

The <script> block at the bottom of the page currently looks like this:

5. Delete the code shown on lines 73–76 of the preceding screenshot, and replace it
with this single line of code:

var panelgroup = new Spry.Widget.CollapsiblePanelGroup("panelgroup");

You can combine CollapsiblePanelGroup with other classes in the same class
attribute, but you need to do this in Code view or the Tag Inspector panel,
because Dreamweaver doesn’t support assigning multiple classes through the
Property inspector.

Opening and closing all collapsible panels simultaneously

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

324

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Save collapsible.html, and test the page in Live view or in a browser. The first
thing you should notice is that all the panels are open when the page loads, but
you can open and close them independently.

7. You probably don’t want all of them open when the page loads, so amend the code
at the bottom of the page like this:

var panelgroup = new Spry.Widget.CollapsiblePanelGroup("panelgroup", ➥

{contentIsOpen: false});

This passes the contentIsOpen property to the constructor and makes sure that all
panels are closed when the page first loads.

8. What’s that? You don’t want them all closed? No problem. Remember that the
code at the bottom of the page initializes Spry widgets when the page loads, so all
you need to do is open one of the closed panels.

Insert a new line after the one you entered in the last step, and type panelgroup
followed by a period. Since panelgroup is the variable to which you assigned the
CollapsiblePanelGroup object, Dreamweaver displays code hints for the avail-
able properties and methods. Scroll down until you find openPanel(panelIndex), as
shown here:

9. Double-click the code hint, or press Enter/Return to insert it. Then type the num-
ber of the panel you want to open (counting from zero), followed by a closing
parenthesis and a semicolon. To open the first panel, the code looks like this:

panelgroup.openPanel(0);

10. Save collapsible.html, and test it again. This time, the first panel should slide
open as the page loads (it might not render correctly in Live view, so test it in a
browser).

11. As you can see in the preceding screenshot, the code hints for a
CollapsiblePanelGroup object show that it has a closeAllPanels() method and
an openAllPanels() one, too. So, to wire up the links to open and close all panels,
all you need to do is create a dummy link on each one and add an onclick attrib-
ute to call the appropriate method on the panelgroup object. You have done this
plenty of times before, so I’ll just show the final code, which looks like this:

<p>Open ➥

all | <a href="javascript:;" onclick="panelgroup. ➥

closeAllPanels()">Close all</p>

GOING BEYOND THE BASICS WITH SPRY AND AJAX

325

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12. Save the page, and test it. The panels now work both individually and as a group.
There’s just one problem: the togglePanel() function created in the preceding
exercise no longer works because the individual objects identifying each panel no
longer exist. Let’s fix that.

13. To be able to toggle an individual panel open and closed, you need to know which
panel group it belongs to and its position within the group. So, I have renamed the
function toggleGroupPanel(), and the function will now take two arguments:
group and num.

To find the individual panel, you first need to use the getPanels() method of the
CollapsiblePanelsGroup object. This gets an array of all panels within the group.
However, you can’t just use the array index to get the panel. You need to pass the
array element to the getElementWidget() method. Once you have identified the
panel, the rest of the function remains the same. Here’s the rewritten function with
the amended parts highlighted in bold:

function toggleGroupPanel(group, num)
{
var allPanels = group.getPanels();
var panel = group.getElementWidget(allPanels[num-1]);
if (panel.isOpen()) {
panel.close();

} else {
panel.open();

}
}

In the fourth line, I have subtracted 1 from the value of num, so the second argu-
ment passed to toggleGroupPanel() can use the more intuitive practice of count-
ing the panels from one rather than zero.

14. Finally, amend the links that toggle the Water bus and Oyster card panels like this:

<p> ➥

Water bus</p>
<p> ➥

Oyster card</p>

Check your code, if necessary, against collapsible_all.html in examples/ch08.

So far, all the methods of opening panels have been confined to links on the same page.
While that’s useful, it’s arguably more useful to be able to target a particular tab or panel
to open when linked to from a different page. It can be done, but it requires part of the

A restriction with the CollapsiblePanelsGroup object in Spry 1.6.1 appears to
be that nothing else should be inside the outer <div> that’s wrapped around the
panels. Although everything works correctly to start with, the code rapidly gets
confused and behaves erratically.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

326

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Spry framework that’s not included with Dreamweaver. I’ll come back to that later in the
chapter, but before that I’ll show you how to combine different Spry effects to make cus-
tom effects of your own.

Using the Cluster object to combine effects

Spry effects bring together several complex actions to create a smooth transition
onscreen. The secret weapon that makes this possible is the Spry.Effect.Cluster object,
which determines whether to run each part of the effect simultaneously or in sequence.
Since the built-in effects rely on the Cluster object, it’s automatically at your disposal.

The Cluster object has many methods, but the following four are the ones that interest us:

call(): This initiates the object. It expects two arguments: the effect’s target ele-
ment and an object literal containing any options.

addNextEffect(): This chains effects in sequence. It takes an effect object as its
sole argument.

addParallelEffect(): This runs an effect in parallel with other effects. It takes an
effect object as its sole argument.

start(): This runs the effect. It takes no arguments.

To create a new effect, you need to extend the Spry.Effect.Cluster object. You do this
by defining a function with the name of the new effect. Then you define a new JavaScript
class using the same name and assigning its prototype object as Spry.Effect.Cluster.
Finally, you assign the function as the constructor of the new class. It sounds more com-
plicated than it really is. The basic syntax looks like this:

NewEffect = function(element, {options})
{
Spry.Effect.Cluster.call(this, options);
// details of effect go here

};
NewEffect.prototype = new Spry.Effect.Cluster();
NewEffect.prototype.constructor = NewEffect;

The best way to show you how to use the Cluster object is through a couple of practical
examples. The next two exercises create a dissolve effect that can be used to fade one
image into another, and an extension of the Spry highlight effect that makes a smooth
transition to the final color.

This exercise demonstrates the use of the addParallelEffect() method of the Cluster
object to fade out one image at the same time as another is faded in. Although images are
used in this exercise, the effect could be applied to any elements on a page.

Dissolving one image into another

GOING BEYOND THE BASICS WITH SPRY AND AJAX

327

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Copy dissolve_start.html from examples/ch08, and save it in workfiles/ch08 as
dissolve.html. The page contains a dummy link at the top and two images along-
side each other inside a paragraph, as shown in the following screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

328

The two images will eventually be superimposed on each other. The image on the
left has an ID called pond, and the other has an ID called duck. If you have a small
monitor and the second image is pushed down below the first one, use two smaller
images of your own.

2. Click the Live View button. The image of the duck should disappear.

3. Turn off Live view, and look in Code view to see why the duck vanished. The fol-
lowing <style> block embedded in the <head> of the page reduces the opacity of
the duck image to zero when the page is displayed. In other words, whatever is
behind it shows through.

<style type="text/css">
#duck {
opacity: 0;
filter: alpha(opacity=0);

}
</style>

The filter property is nonstandard CSS but is required by Internet Explorer.

4. Create an external JavaScript file by selecting File ➤ New. In the Blank Page section
of the New Document dialog box, select JavaScript as Page Type, and click Create.
Save the new page as clusters.js in workfiles/ch08.

5. Following the basic syntax outlined earlier, let’s call the new effect Dissolve. Add
the following code to clusters.js:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dissolve = function(elem1, elem2, duration)
{
Spry.Effect.Cluster.call(this, {duration: duration});

};
Dissolve.prototype = new Spry.Effect.Cluster();
Dissolve.prototype.constructor = Dissolve;

Notice that I am using three arguments to be passed to the Dissolve effect: the
first two are the IDs of the elements to be cross-faded, and the last one is for
the duration in milliseconds. This is the only option, so it is passed to
Spry.Effect.Cluster.call() as an object literal.

6. The Dissolve() function needs to instantiate two effects: one to reduce the opacity
of the first element to zero and the other to increase the opacity of the second ele-
ment from zero to fully opaque. The Spry effects library contains an object for pre-
cisely this purpose: Opacity. Amend the Dissolve() function definition like this:

Dissolve = function(elem1, elem2, duration)
{
Spry.Effect.Cluster.call(this, {duration: duration});
var fadeOut = new Spry.Effect.Opacity(elem1, 1, 0, {duration: ➥

duration, toggle: true});
var fadeIn = new Spry.Effect.Opacity(elem2, 0, 1, {duration: ➥

duration, toggle: true});
};
Dissolve.prototype = new Spry.Effect.Cluster();
Dissolve.prototype.constructor = Dissolve;

The Opacity object takes four arguments: the target element, the starting opac-
ity (1 is fully opaque, 0 is fully transparent), the ending opacity, and an object
specifying any options. So, the Opacity object stored as fadeOut fades the first
element from total opacity to total transparency, while fadeIn does the reverse
to the second element. The same options are passed to both: they take the value
of the duration property from the third argument passed to Dissolve() and set
the toggle property to true. This last option reverses the effect the next time it
is triggered.

7. With both effects stored as variables, you can now use the addParallelEffect()
method to attach them to the target element (identified by this) as follows:

Dissolve = function(elem1, elem2, duration)
{
Spry.Effect.Cluster.call(this, {duration: duration});
var fadeOut = new Spry.Effect.Opacity(elem1, 1, 0, {duration: ➥

duration, toggle: true});
var fadeIn = new Spry.Effect.Opacity(elem2, 0, 1, {duration: ➥

duration, toggle: true});
this.addParallelEffect(fadeOut);
this.addParallelEffect(fadeIn);

};
Dissolve.prototype = new Spry.Effect.Cluster();
Dissolve.prototype.constructor = Dissolve;

GOING BEYOND THE BASICS WITH SPRY AND AJAX

329

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Save clusters.js, and switch back to dissolve.html in the Document window.
The code you have just created is dependent on the SpryEffects.js external file,
so both JavaScript files need to be attached to the HTML page.

9. A quick way to add external JavaScript files to a page is to display a representation
of the page’s <head> content in Design view. Select View ➤ Head Content, or press
Ctrl+Shift+H/Shift+Cmd+H. This opens a section at the top of the Document win-
dow with icons representing HTML elements in the <head> of the page, as shown in
Figure 8-2.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

330

Figure 8-2.
The <head> isn’t visible in
Design view, but you can

inspect its contents by
displaying them as icons.

The icons are displayed in the same order as in the <head>, and you can drag them
to the left or right to reposition them. You can also inspect and edit most elements
by selecting an icon and viewing its contents in the Property inspector.

10. Click to the right of the last icon in the Head Content bar (it represents the embed-
ded <style> block that you inspected in step 3). The Head Content bar should turn
white to indicate that it has focus. Click the Script button in the Insert bar, or select
Insert ➤ HTML ➤ Script Objects ➤ Script.

In the Script dialog box, click the folder icon alongside the Source field, navigate to
SpryAssets/SpryEffects.js, and select it. Dreamweaver automatically selects
text/javascript as the value for Type. Leave the Content and No script fields empty
(these are for embedding JavaScript directly into the body of a page). The values
should look like the following screenshot:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11. Click OK to close the Script dialog box. Dreamweaver will display the following
message:

Like the Content and No script fields, this applies only when you are embedding
JavaScript directly into a page. You can safely ignore the message.

12. Repeat steps 10 and 11 to attach clusters.js to the page. There should now be
two script icons in the Head Content bar, and both external files should be listed in
the Related Files toolbar, as shown here:

GOING BEYOND THE BASICS WITH SPRY AND AJAX

331

8
13. Close the separate tab that contains clusters.js. You’ll work with it through the

Related Files feature from now on, so having two versions open in the Document
window is likely to lead to confusion. You can also close the Head Content bar by
selecting Head Content in the View menu or by pressing Ctrl+Shift+H/Shift+Cmd+H.

14. Switch to Code view, and create a <script> block at the foot of the page, just
before the closing </body> tag. Create a Dissolve object like this:

var myDissolve = new Dissolve('pond', 'duck', 2000);

As soon as you type the opening parenthesis after Dissolve, Dreamweaver should
display code hints for your newly defined effect like this:

This is Dreamweaver CS4’s new code introspection at work.

15. Add an onclick event to the dummy link at the top of the page, and set it to apply
the start() method to the effect you have just created like this (you refer to it
through the variable in which it is stored):

Dissolve images

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16. Save the page, and activate Live view. Click the Dissolve images link at the top of
the page, and the two images should begin a simultaneous transition: the pond fad-
ing out and the duck fading in, as shown in Figure 8-3.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

332

Figure 8-3. The new Dissolve effect switches the transparency of both images simultaneously.

17. If the effect doesn’t work, load the page into a browser, such as Firefox, and use
Tools ➤ Error Console (or a debugging extension, such as Firebug) to troubleshoot
any JavaScript errors. You can also compare your files with dissolve_01.html and
clusters_01.js in examples/ch08.

18. Amend the style rule for the duck image like this:

#duck {
opacity: 0;
filter: alpha(opacity=0);
position: relative;
left: -400px;

}

Both images are 400 pixels wide, so this simply moves the duck image the same dis-
tance to the left so that both images are superimposed. Note that this won’t work
if the browser window is less than 800 pixels wide, because the second image will
drop down and be pushed too far left. If this happens, you might need to use
absolute positioning instead.

If you test the page now, the images should dissolve from one to the other.

19. There’s just one refinement that needs to be made to clusters.js. It’s a good idea
to set a default duration property. Then, the effect can be instantiated with just

http://lib.ommolketab.ir
http//lib.ommolketab.ir

two arguments: the IDs of the elements you want to dissolve. Amend the code in
clusters.js like this:

Dissolve = function(elem1, elem2, duration)
{
var dur = 2000;
if (duration != null) dur = duration;
Spry.Effect.Cluster.call(this, {duration: dur});
var fadeOut = new Spry.Effect.Opacity(elem1, 1, 0, {duration: dur, ➥

toggle: true});
var fadeIn = new Spry.Effect.Opacity(elem2, 0, 1, {duration: dur, ➥

toggle: true});
this.addParallelEffect(fadeOut);
this.addParallelEffect(fadeIn);

};
Dissolve.prototype = new Spry.Effect.Cluster();
Dissolve.prototype.constructor = Dissolve;

The two new lines added at the top of the function create a variable, dur, with a
default value of 2000. If the third variable passed to the Dissolve() constructor is
omitted, it uses the default value. Note that the variable, dur, is now used as the
value for the duration property in all the option objects.

20. Remove the duration from the code that instantiates the Dissolve object at the
bottom of dissolve.html like this:

var myDissolve = new Dissolve('pond', 'duck');

21. Save both dissolve.html and clusters.js, and test them. The effect should now
use the default duration of 2000 milliseconds. If you add a different value, it will
use that instead.

Check your code, if necessary, against dissolve.html and clusters_dissolve.js
in examples/ch08.

The next exercise shows how to create a custom effect that chains effects one after
another. Rather than go through everything step by step, I’ll just explain the main points,
because the principles are the same as when running effects in parallel.

The default Spry highlight effect uses three colors: a start color, the end color, and the
color to which the background reverts at the end of the transition. I find this sudden
switch at the end rather jarring, so this exercise creates a new effect that runs two color
transitions in sequence.

1. Add the following code to clusters.js from the preceding exercise:

HighlightTransition = function(element, options)
{
Spry.Effect.Cluster.call(this, options);
var col1 = '#FFFFFF';

Creating a smooth highlight transition

GOING BEYOND THE BASICS WITH SPRY AND AJAX

333

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var col2 = '#DCBD7D';
var col3 = '#FFFFFF';
var dur1 = 2000;
var dur2 = 2000;
if (options.col1 != null) col1 = options.col1;
if (options.col2 != null) col2 = options.col2;
if (options.col3 != null) col3 = options.col3;
if (options.dur1 != null) dur1 = options.dur1;
if (options.dur2 != null) dur2 = options.dur2;
var transition1 = new Spry.Effect.Color(element, col1, col2, ➥

{duration: dur1, transition: Spry.sinusoidalTransition});
var transition2 = new Spry.Effect.Color(element, col2, col3, ➥

{duration: dur2, transition: Spry.sinusoidalTransition});
this.addNextEffect(transition1);
this.addNextEffect(transition2);

};
HighlightTransition.prototype = new Spry.Effect.Cluster();
HighlightTransition.prototype.constructor = HighlightTransition;

This defines a new HighlightTransition object using the same syntax as before
to extend the Spry.Effect.Cluster object. The important lines are highlighted in
bold. They create two Spry Color objects and then add them to the current object
using the addNextEffect() method. This runs the effects in sequence one after the
other, instead of running them in parallel like the Dissolve effect.

The Spry Color object is another basic effect in the Spry effects library. It takes four
arguments: the target element, the starting color, the end color, and an object lit-
eral with any options. I have used two options: the duration of the effect and the
type of transition. The Spry.sinusoidalTransition starts slowly, speeds up in the
middle, and then slows down again at the end. Table 8-1 lists the available transi-
tion options for Spry effects.

The first effect, stored as transition1, changes the background color of the target
element from col1 to col2, and the second effect (transition2) changes the
background color from col2 to col3.

The rest of the code sets defaults for all the colors and durations. This means you
need set only those options that you want to change from the default, although
you must set at least one option for the effect to work.

Table 8-1. Transition options for Spry effects

Transition Description

Spry.linearTransition Progresses evenly throughout

Spry.circleTransition Rapid start followed by a long easing

Spry.fifthTransition Similar to Spry.linearTransition but eases
toward the end

Spry.growSpecificTransition Starts gently, then dips back before rapid
finish

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

334

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Transition Description

Spry.pulsateTransition Rapid pulsation between start and finish values,
ending with finish value

Spry.sinusoidalTransition Starts slowly, speeds up, then eases toward the end

Spry.squareTransition Starts slowly and gradually speeds up

Spry.squarerootTransition Starts quickly and gradually eases

2. Copy highlight_transition_start.html from examples/ch08, and save it as
highlight_transition.html in workfiles/ch08.

3. Link SpryEffects.js and clusters.js to highlight_transition.html in the
same way as in steps 10–12 of the preceding exercise.

4. The image has 20 pixels of padding that can be used as a test for the new highlight
effect. The image’s ID is goldenpav, so add the following code to the bottom of the
page to initialize a HighlightTransition object:

<script type="text/javascript">
var myHighlight = new HighlightTransition('goldenpav', {dur2: 1000});
</script>

The options must be passed to the constructor method as an object literal, using
the same names as in HighlightTransition definition in step 1 (col1, col2, col3,
dur1, and dur2). You must pass at least one option to the constructor in this way.
This example changes the duration of the second color change from the default
2000 milliseconds to 1000.

5. Add an onclick attribute to the dummy link at the top of the page to trigger the
effect like this:

<p>Highlight ➥

image</p>

6. Test the page. The image should be surrounded by a golden brown border that
fades in and out smoothly. Experiment with other colors and durations.

Check your code, if necessary, with highlight_transition.html and clusters.js
in examples/ch08.

Using Spry utilities
As I explained in Chapter 7, Spry is software neutral. You can download the latest copy of
the Spry framework from Adobe Labs at http://labs.adobe.com/technologies/spry/
home.html and use it with any script editor. At the time of this writing, the current version
is 1.6.1, which is the same as Dreamweaver CS4, although newer versions will be posted
when available. In addition to the same external JavaScript files that Dreamweaver uses,

GOING BEYOND THE BASICS WITH SPRY AND AJAX

335

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the Spry framework contains a lot of documentation and samples. If you’re interested in
getting the most out of Spry, it’s well worth downloading. The drawback for inexperienced
developers is that most examples assume a good understanding of JavaScript. Often the
explanation of how something works is lurking in comments in the source code.

The full Spry framework also includes several useful files that are missing from
Dreamweaver. Two of the most useful are SpryDOMUtils.js, which makes it easy to
manipulate the DOM (see Chapter 7), and SpryURLUtils.js, which lets you pass options
to Spry objects through a URL—essential for opening a specific panel from a link on a
different page.

To continue with the exercises in this section, you need to download the most recent
version of the Spry framework from http://labs.adobe.com/technologies/spry/
home.html and unzip the compressed file. The Readme.html and docs.html files contain
links to all the documentation and samples. I’ll leave you to explore them at your leisure.
The files you need for the following exercises are in the includes folder. Copy
SpryDOMUtils.js and SpryURLUtils.js to the SpryAssets folder in the site you’re using
for this book.

Passing information to a Spry widget through a URL

When you link from one page to another, you can pass information to the target page by
adding parameters to the end of the URL. There are two ways of doing this:

A query string: This is a series of name/value pairs following a question mark, like
this: ?variable1=value1&variable2=value2. Each name is separated from its value
by an equal sign, and each pair is separated by an ampersand (in XHTML, the
ampersand needs to be embedded in the link as &).

A fragment identifier: This is the hash (or pound) symbol followed by the name of
an ID or anchor tag, indicating the section of the page you want the browser to go
to, for example, #thisSection.

The SpryURLUtils.js file contains a method called getLocationParamsAsObject(), which
extracts this information from a URL. You can then pass this information to the code that
initializes the Spry widget when the page loads.

Opening a tab or accordion panel from another page
To open a specific tab or panel in a Spry widget on a different page, you need to pass the
information as a query string. For example, to open the second accordion panel, you
would add this to the end of the URL: ?panel=1. If the panel is identified by an ID, you pass
the ID as the value instead, for example, ?panel=waterbus.

To open a specific tab or panel—and go straight to it—you need to combine both meth-
ods like this: ?panel=waterbus#waterbus.

It's important to get the order right. The query string must come before the fragment
identifier. If you put them the other way round, both sets of information will be ignored.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

336

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the page that contains the Spry widget, you use the getLocationParamsAsObject()
method in SpryURLUtils.js like this:

var params = Spry.Utils.getLocationParamsAsObject();

This stores the query string as an object called params, enabling you to pass the values it
contains to the widget’s constructor method. Since the page might be accessed directly,
the values passed to the constructor need to use the JavaScript conditional (or ternary)
operator like this:

{defaultTab: params.tab ? params.tab : 0}

If the URL used to access the page has a query string that contains a variable called tab, its
value will be held in params.tab. This rather cryptic piece of code means “If params.tab
exists, assign its value to defaultTab; but if params.tab doesn’t exist, use 0 instead.”

That’s the theory. Now, let’s get coding.

This exercise demonstrates how to open a specific tab of a tabbed panels widget from a
link in another page. The same technique applies to an accordion.

1. Copy tabbed_start.html from examples/ch08 to workfiles/ch08, and rename it
tabbed_other.html.

2. Attach SpryURLUtils.js by adding it to the <head> of tabbed_other.html. If
you’re not sure how to do this, use the same technique as described in steps 10 and
11 of the “Dissolving one image into another” exercise earlier in the chapter.

3. Switch to Code view, and add the following code block inside the <head> section. It
doesn’t matter where it goes, but it must come after the <script> tag that attaches
SpryURLUtils.js to the page. Spry code hints should help you get the spelling and
combination of uppercase and lowercase correct.

<script type="text/javascript">
var params = Spry.Utils.getLocationParamsAsObject();
</script>

This calls the getLocationParamsAsObject() method from SpryURLUtils.js,
which converts all the information passed to the page through the URL into a
JavaScript object called params. You can now use params to retrieve the values from
the URL.

4. Scroll down to the bottom of the page until you come to the code that initializes
the tabbed panels. It currently looks like this:

var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1");

5. To open a specific panel, you need to pass a second argument to the constructor
method. As explained in “Initializing a Spry object” earlier in this chapter, this
needs to be in the form of an object literal. For a tabbed panels widget, the

Preparing the target page

GOING BEYOND THE BASICS WITH SPRY AND AJAX

337

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

property that controls the default panel is called defaultTab. For an accordion,
it’s defaultPanel.

If the value of the tab or panel you want to open is passed through the URL, it will
be a property of the params object you created in step 3. You can call the proper-
ties sent through the URL anything you like, but it makes sense to use tab for a
tabbed panels widget and panel for an accordion. So, the selected value will be
params.tab or params.panel.

However, you need to take into account the likelihood that nothing is passed
through the URL (for example, when a user accesses the page directly). So, change
the code in step 4 like this:

var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1",
{defaultTab: params.tab ? params.tab : 0});

If you’re using an accordion, the code should look like this:

var Accordion1 = new Spry.Widget.Accordion("Accordion1",
{defaultPanel: params.panel ? params.panel : 0});

This uses the conditional (ternary) operator, which is the same in both JavaScript
and PHP, to determine the value assigned to defaultTab or defaultPanel. When
used like this with an object literal, the conditional operator can seem confusing
because it also uses a colon. The first colon is part of the object literal syntax and
separates the object property from its value. The second colon is part of the con-
ditional operator, which comprises a question mark and a colon.

If the expression to the left of the question mark equates to true, the value imme-
diately to the right of the question mark is used. However, if the expression equates
to false, the value following the colon is used instead.

So if params.tab or params.panel has a value, it will equate to true, and its value
will be assigned to the defaultTab or defaultPanel property. If params.tab or
params.panel doesn’t have a value, 0 is used instead, making the first tab or panel
the default.

6. Tabs and panels can be identified either by their index (position within the widget
counted from zero) or by an ID. When linking from another page, it’s safer to use
an ID in case the order of tabs/panels changes. Instructions on how to add an ID
were given in the exercises on creating links from the same page earlier in this
chapter.

For the purposes of this exercise, give the third panel an ID of waterbus.

7. Save tabbed_other.html, and test it in a browser. The first tab should be displayed
when the page loads.

You can check your code, if necessary, against tabbed_other.html in examples/ch08.

That finishes the changes to the target page. There is no need to create named anchors for
the tabbed panels or accordion, because you can use the ID Dreamweaver automatically
assigns to each set of tabbed panels or accordion.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

338

http://lib.ommolketab.ir
http//lib.ommolketab.ir

All that’s necessary now is to create a link to the target page using a query string, as
described at the beginning of this section.

1. Create a new HTML page, and save it as link_to_tab.html in workfiles/ch08.

2. Type some text in the page to use as a link to the Water bus tab of
tabbed_other.html.

3. Highlight the text you plan to use as a link, and select the HTML view of the
Property inspector. You can type the link and query string directly into the Link
field. However, if you prefer to let Dreamweaver create the correct syntax for you,
click the folder icon to the right of the Link field.

4. In the Select File dialog box, select tabbed_other.html, and click the Parameters
button, as shown in the following screenshot:

5. In the Parameters dialog box, enter tab in the Name field. Then use the Tab key or
mouse to open the Value field, and enter waterbus, as shown here:

Creating the link from the other page

GOING BEYOND THE BASICS WITH SPRY AND AJAX

339

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

On this occasion, the query string consists of a single name/value pair, but a query
string can contain several pairs. Use the plus and minus keys to add or remove
name/value pairs. You can also change their order with the up and down arrows.

6. Click OK to close the Parameters dialog box, and then click OK again (Choose on a
Mac) to close the Select File dialog box.

The value in the Link field of the Property inspector should now look like this:

tabbed_other.html?tab=waterbus

7. Save link_to_tab.html, and load it in a browser. Click the link. This time, when
tabbed_other.html loads, the Water bus tab should be displayed instead of the
first tab.

Check your code, if necessary, against link_to_tab.html and tabbed_other.html
in examples/ch08.

Opening a collapsible panel from another page
The principle behind opening a collapsible panel through a URL is identical to opening a
tab or accordion panel. The main difference is that each panel is independent. Its open or
closed state is determined by the contentIsOpen option. Consequently, the ID is not
important when sending a query string. All you need is a name to identify the panel and to
give it a value of true or false.

You can see a working example of this in collapsible_other.html and link_to_
collapsible.html in examples/ch08. The query string in link_to_collapsible.html
looks like this:

Oyster Card

The code that initializes the fourth collapsible panel in collapsible_other.html looks
like this:

var CollapsiblePanel4 = new Spry.Widget.CollapsiblePanel(➥

"CollapsiblePanel4", {contentIsOpen: params.oyster ? ➥

params.oyster : false});

This means that if the URL contains a variable called oyster, its value will be used for the
contentIsOpen option. Otherwise, contentIsOpen is set to false.

You could, in fact, dispense with a value for oyster and use this instead:

var CollapsiblePanel4 = new Spry.Widget.CollapsiblePanel(➥

"CollapsiblePanel4", {contentIsOpen: params.oyster ? ➥

true : false});

Selecting and manipulating page elements with Spry.$$

If you thought Spry was just about widgets and effects, think again. In common with other
JavaScript frameworks like Prototype and jQuery, Spry uses CSS selectors to manipulate
the DOM and change the look or behavior of targeted page elements. Table 8-2 describes

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

340

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the selectors supported by Spry 1.6.1. If you’re familiar with either Prototype or jQuery,
you’ll immediately recognize them. They’re based on the proposed selectors for CSS3
(http://www.w3.org/TR/css3-selectors). Although CSS3 is still a long way from becom-
ing a reality, the selectors have basically been agreed upon, so learning them for use with
a JavaScript framework serves a dual purpose.

While the Spry selector utility matches Prototype and jQuery in its ability to select ele-
ments on a page, it currently has only ten methods (listed in Table 8-3) that manipulate
the DOM. They’re mainly useful for changing the CSS styles of an element in response to a
JavaScript event.

The Spry selector utility uses the Prototype convention of two dollar signs to select ele-
ments but avoids conflict with other frameworks by prefixing them with Spry. The follow-
ing code selects all elements that use a class called optional:

Spry.$$('.optional')

As a simple example of how you can use the selector utility, you can create a function to
toggle the display of selected elements on and off by creating a class called hideMe with
the property display: none like this:

function toggleOpts()
{
Spry.$$('.optional').toggleClassName('hideMe');

}

GOING BEYOND THE BASICS WITH SPRY AND AJAX

341

8
Table 8-2. CSS selectors supported by Spry.$$, as of Spry 1.6.1

Pattern Meaning Example

* Any element. Spry.$$(*)

E Spry.$$('div')

E.class Spry.$$('img.floatleft')
Spry.$$('.floatleft')

E#id Spry.$$('div#nav')
Spry.$$('#nav')

E F Spry.$$('ul a')

E > F Spry.$$('p > a')

E + F Spry.$$('h1 + p')

Continued

An F element immediately preceded by an E element
(an adjacent sibling), e.g., the first paragraph after a
level 1 heading.

An F element that is a direct child of an E element.

An F element descendant of an E element, e.g., all links
in unordered lists.

An E element with a specified ID (the element is
optional).

An E element with a specified class (the element is
optional).

An element of type E, e.g., an HTML tag.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 8-2. Continued

Pattern Meaning Example

E ~ F Spry.$$('h1 ~ p')

E[foo] Spry.$$('a[title]')

E[foo="bar"] Spry.$$('img[width="50"]')

E[foo^="bar"] Spry.$$('img[title^="Art"]')

E[foo$="bar"] Spry.$$('a[href$=".pdf"]')

E[foo*="bar"] Spry.$$('p[class*="left"]')

E[foo~="bar"] Spry.$$('p[class~="warn"]')

E:first-child Spry.$$('tr:first-child')

E:last-child Spry.$$('tr:last-child')

E:only-child Spry.$$('img:only-child')

E:first-of-type Spry.$$('td:first-of-type')

E:last-of-type Spry.$$('td:last-of-type')

E:only-of-type Spry.$$('img:only-of-type')

E:nth-child(n) An E element that is the nth child of its
parent (see main text for an explanation).

An E element that is the only sibling of
its type.

An E element that is the last sibling of its
type, e.g., the last cell in a table row.

An E element that is the first sibling of its
type, e.g., the first cell in a table row.

An E element that is the only child of its
parent, e.g., an image wrapped in a <div>.

An E element that is the last child of its
parent.

An E element that is the first child of its
parent, e.g., the first row in a table.

An E element with a foo attribute that
comprises a list of space-separated values,
one of which is exactly equal to “bar”.

An E element with a foo attribute that
contains the substring “bar”.

An E element with a foo attribute that ends
with the string “bar”.

An E element with a foo attribute that
begins with the string “bar”.

An E element with a foo attribute exactly
equal to “bar”.

An E element with a foo attribute, e.g., all
links with a title attribute. Do not use
E[class] as a bug in Internet Explorer adds
a class attribute to every element.

All F elements preceded by having the
same parent as an E element, e.g., all
paragraphs at the same level as a level 1
heading that precedes them. Other
elements may intervene.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

342

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Pattern Meaning Example

E:nth-last-child(n)

E:nth-of-type(n)

E:nth-last-of-type(n)

E:empty Spry.$$('td:empty')

E:not(s) Spry.$$('*:not(p)')

E:checked Spry.$$('input:checked')

E:disabled A form E element that is disabled. Spry.$$('input:disabled')

E:enabled Spry.$$('input:enabled')

E[hreflang|="en"] Spry.$$('link[hreflang|="en"]')An E element with an hreflang
attribute that has a hyphen-separated
list of values beginning with “en”.

Form elements that are not
explicitly disabled.

An E element that is checked (radio
buttons or checkboxes).

An E element that does not match
simple selector s, e.g., everything
except a paragraph.

An E element that has no children
(including text nodes).

An E element that is the nth sibling
of its type, counting from the
last one.

An E element that is the nth sibling
of its type.

An E element that is the nth child
of its parent, counting from the
last one.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

343

8

Attribute selectors do not permit spaces around the operators. For example, the following
is incorrect:

Spry.$$('a[href $= ".pdf"]') // WRONG

It must be like this:

Spry.$$('a[href$=".pdf"]') // RIGHT

The nth-child selectors are designed to select elements in a repeating pattern. The sim-
plest way to use them is for odd and even elements like this:

tr:nth-child(odd) // picks odd rows
tr:nth-child(even) // picks even rows

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following function (in odd_even.html in examples/ch08) adds class names to odd and
even table rows:

function init() {
Spry.$$('tr:nth-child(odd)').addClassName('odd');
Spry.$$('tr:nth-child(even)').addClassName('even');
Spry.$$('tr:first-child').removeClassName('odd'). ➥

addClassName('headerRow');
}

The function runs when the page loads and produces striped table rows, as shown in
Figure 8-4. The final line uses the first-child selector to remove the odd class from the
first row and apply a different class. Spry selector utility methods can be chained in the
same way as with other JavaScript libraries.

Figure 8-4. The alternating background colors are applied automatically to odd and
even rows.

You can achieve even more ambitious effects with nth-child by using the formula
an+b, where a and b are both numbers. The first number represents how many ele-
ments are in the repeat sequence. The second number identifies the element that you
want to select within the sequence. So if you want a repeating pattern of three, the for-
mula works like this:

tr:nth-child(3n+1) // picks rows 1, 4, 7, etc
tr:nth-child(3n+2) // picks rows 2, 5, 8, etc
tr:nth-child(3n+3) // picks rows 3, 6, 9, etc

You can see the effect in Figure 8-5 and nth-child.html in examples/ch08.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

344

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8-5. Using the nth-child selector targets repeating elements in a user-defined
sequence.

Table 8-3. Methods used by the Spry selector utility

Method Argument(s) Description

addClassName() class Adds the specified class to all selected
elements. The argument should be in quotes.

addEventListener() event, handler, capture Adds a listener for the specified event. The
first argument should be a string consisting
of the event name (without “on”). The
second argument is the name of the function
to be used as the event handler. The final
argument is a Boolean (true or false)
that specifies whether the handler should
respond in the capture phase. Internet
Explorer does not support the capture
phase, so you should normally use false.

forEach() function Runs the specified function on each selected
element.

removeAttribute() attribute Removes the specified attribute from the
selected elements. The name of the attribute
should be in quotes.

removeEventListener() event, handler, capture Removes the specified event listener. The
arguments are the same as for
addEventListener().

removeClassName() class Removes the specified class. The class name
should be in quotes.

Continued

GOING BEYOND THE BASICS WITH SPRY AND AJAX

345

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 8-3. Continued

Method Argument(s) Description

setAttribute() attribute, value Adds the attribute and value to all
selected elements. Both arguments
should be in quotes.

setProperty() property, value Sets a property on the selected
object(s). Both arguments should be
in quotes.

setStyle() style Sets the specified styles on the selected
elements. The argument should be a
string consisting of CSS property/value
pairs separated by semicolons.

toggleClassName() class Removes the specified class if it
already exists on the selected elements.
Otherwise, adds it. The class name
should be in quotes.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

346

I have included Tables 8-2 and 8-3 to whet the appetite of readers who already have some
experience with JavaScript and encourage them to delve deeper into the Spry application
programming interface (API). If you’re new to JavaScript, all this might seem like impene-
trable gobbledygook, but you should have little difficulty implementing the code in the
following exercise.

This exercise uses the Spry.$$ selector to style alternate items in an ordered list with a dif-
ferent background color. It also uses a class selector to toggle on and off the display of
certain items. The page also gracefully degrades in a browser that has JavaScript disabled.

1. Copy spry_selector_start.html from examples/ch08, and save it in workfiles/
ch08 as spry_selector.html. The page looks like the following screenshot.

Styling on the fly with the Spry selector

To get up to speed on JavaScript, I suggest you read an up-to-date introductory text,
such as Beginning JavaScript with DOM Scripting and Ajax: From Novice to
Professional by Christian Heilmann (Apress, ISBN: 978-1-59059-680-7). Do not read
anything published before, say, 2005. The whole approach to JavaScript has changed
radically since the early days of the Web. It’s important not to get stuck with outdated
concepts and techniques.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It contains an ordered list of books that I have written for friends of ED and Apress
over the past few years. Some of the books were coauthored with other writers. The
dummy link at the top of the page will be used to hide and display those books.

2. Open Code view. You’ll see that, in addition to a few style rules to improve the look
of the text, there are three classes embedded in the <head> of the page: odd, even,
and hideMe.

The only class that’s added to any of the HTML tags is coauthored, but there are no
style rules for the coauthored class. That’s because you’re going to use that class to
identify the books that will be hidden or displayed when the link is clicked at the
top of the page.

3. To use the Spry.$$ selector, you need to attach SpryDOMUtils.js to the page
<head>. You should be familiar with doing this by now, but refer to steps 9–11 of
the “Dissolving one image into another” exercise if you’re still unsure.

4. Let’s start off by giving the list items an alternating background color. Add the fol-
lowing <script> block to the <head> anywhere after the <script> tag that links
SpryDOMUtils.js to the page (code hints will help you a lot with the typing):

<script type="text/javascript">
function init()
{
Spry.$$('li:nth-child(odd)').addClassName('odd');
Spry.$$('li:nth-child(even)').addClassName('even');

}
</script>

This uses the nth-child structural pseudo-selector to select odd and even
tags and adds the appropriate class to each one.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

347

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. What you have just created is a function, so you need to trigger it to run when the
page loads. Either you can put a call to the function in a <script> block at the bot-
tom of the page, as Dreamweaver does with the calls to the widget constructors, or
you can add it to the <body> tag as an onload event. Let’s take the latter course, so
amend the <body> tag like this:

<body onload="init()">

6. Switch to Design view, and activate Live view. The list should now look like this:

The list items now have alternating background colors—certainly a lot easier than
adding the odd and even classes manually to each item, because the same code
works however many items are in the list. In fact, it works for any list on a page.
Also, by changing the selector from li to tr, you could easily apply this to a table
with many rows.

7. Now let’s wire up the link that toggles the display of coauthored books. Switch
back to Code view, and add the following function definition inside the same
<script> block as in step 4:

function showCoauthored()
{
Spry.$$('li.coauthored').toggleClassName('hideMe');

}

This selects all elements with the class coauthored and toggles the hideMe
class on and off. As described in Table 8-3, the toggleClassName() method adds a
class if it’s absent and removes it if it’s already applied to an element. So, this will
have the effect of adding or removing a style rule that sets the element’s display
property to none.

8. Add it to the dummy link at the top of the page with the onclick attribute like this:

<p>Show/hide
co-authored books</p>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

348

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Switch to Design view, and activate Live view. Click the link at the top of the page.
The list of books should display only those books I wrote on my own, as shown in
Figure 8-6.

Figure 8-6. The contents of the list have been dynamically altered without needing to
reload the page.

Click the link again, and the full list is restored.

10. There’s one final improvement: the link should be visible only when JavaScript is
enabled. Switch off Live view, and position your cursor inside the link at the top of
the page. Select the <p> tag in the Tag inspector at the bottom of the Document
window, and choose hideMe from the Class drop-down menu in the HTML view of
the Property inspector. The link will disappear.

11. You want the link to be visible when JavaScript is enabled, so you can use the
Spry.$$ selector to remove the hideMe class. Amend the init() function like this:

function init()
{
Spry.$$('li:nth-child(odd)').addClassName('odd');
Spry.$$('li:nth-child(even)').addClassName('even');
Spry.$$('p.hideMe').removeClassName('hideMe');

}

This removes the hideMe class from any paragraph that has the hideMe class.

12. Save and test the page again. Check your code, if necessary, against spry_
selector.html in examples/ch08.

This has been only a brief example of what you can do with SpryDOMUtils.js, but I hope
it will encourage you to experiment more. Working your way through the samples
included with the Spry framework download should give you further ideas.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

349

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Reducing download times with smaller files

One drawback with using a JavaScript library is the size of the files. Spry effects make your
pages livelier, but they add 77KB to the download size. That’s quite a lot of code just to
add one or two pleasing effects, particularly if some of your users are still on dial-up con-
nections. Even if your target audience uses broadband, file size remains a consideration
because bigger files consume more bandwidth, and on a popular site, that can cost you or
your clients a lot of money.

However, it’s not quite as bad as it sounds. JavaScript files are stored in the user’s browser
cache, so they are normally downloaded only the first time they are required. Still, if
you’re concerned about the size of the Spry external files, you can replace them with
smaller versions. If you download the full Spry framework from Adobe Labs, as described
earlier, the ZIP file contains two folders, includes_minified and includes_packed. These
contain versions of the library files that have been compressed to reduce their size. The
files have exactly the same names as the versions installed by Dreamweaver, so all you
need to do is swap your existing files for ones of the same name from either
includes_minified or includes_packed. The two folders use different techniques to
reduce file size, but those in includes_packed are considerably smaller. To give just one
example, the version of SpryEffects.js installed by Dreamweaver is 77KB, the one in
includes_minified is 62KB, whereas the one in includes_packed is just 29KB. On a pop-
ular site, the bandwidth savings could be considerable.

Creating unobtrusive JavaScript
If implemented skillfully, CSS separates a page’s content from instructions about how it
should be presented. This has inspired many developers to apply the same principle to
JavaScript, separating behavior from structure. “Wouldn’t it be better,” the argument goes,
“to add JavaScript to a page only if the browser is capable of handling it?”

Since JavaScript lets you manipulate the DOM, you can. This is a technique known as unob-
trusive JavaScript. Instead of embedding onclick and other event handling attributes in
the HTML code, unobtrusive JavaScript uses DOM manipulation to add them on the fly in
just the same way as the previous exercise added the odd and even classes to the list items.

The difficulty with unobtrusive JavaScript is that it requires a lot of careful planning.
Because you can’t see the features being added to the HTML code, you need to work out
exactly how everything can be added dynamically.

Using the JavaScript Extractor to externalize scripts

Dreamweaver CS4 has come up with a feature designed to take all the guesswork out of
creating unobtrusive JavaScript: the JavaScript Extractor. This works on the simple principle
that you embed the JavaScript elements in a page in the normal way. Once you’re happy
with the way the page works, you extract the JavaScript and externalize it. The drawback
with this is that it’s like squeezing toothpaste from a tube: it’s easy to do, but don’t try get-
ting it back in afterward. . .

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

350

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise demonstrates how to use the JavaScript Extractor using spry_selector.html
from the preceding section.

1. Because the JavaScript Extractor cannot restore JavaScript once it has been
removed from a page, it’s always a good idea to create a new copy of the file that
you want to work on. Save spry_selector.html from the previous exercise (or
from examples/ch08) as spry_unobtrusive.html in workfiles/ch08.

2. Close the original file and work with spry_unobtrusive.html.

3. Select Commands ➤ Externalize JavaScript. Dreamweaver analyzes the page and
opens the following dialog box:

The radio buttons at the top of the dialog box offer the following two options:

Only externalize JavaScript: This simply moves functions to an external file and
attaches the file to the page.

Externalize JavaScript and attach unobtrusively: This attempts to move everything
and creates the necessary external script to add inline event handlers, such as
onclick, through DOM manipulation.

With the first option selected, Dreamweaver finds only the function definitions in
the <head> of spry_unobtrusive.html.

4. Select the second radio button. Dreamweaver displays a warning that behaviors will
no longer be editable through the Behaviors panel (this includes Spry effects).
When you click OK to dismiss the warning, the Externalize JavaScript dialog box
changes to this:

Moving JavaScript to an external file

GOING BEYOND THE BASICS WITH SPRY AND AJAX

351

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver lists all the JavaScript that it can find in the page. The checkbox
alongside each proposed edit lets you decide whether to implement a particular
suggestion. In this case, each edit is selected by default. However, Dreamweaver
automatically deselects any scripts that use document.write, because these cannot
be externalized.

To be able to manipulate the DOM, Dreamweaver automatically creates IDs for
inline elements that don’t already have them. As you can see in the preceding
screenshot, it says it will add a1 as the ID for the onclick attribute. If you want to
change the ID, the field is editable.

5. Click OK when you’re happy with your selections. Dreamweaver then presents you
with a report of what it has done, like this:

The important thing about this report is the last section, which tells you the name
of the external JavaScript file that it has created. You must upload this to your web-
site. Otherwise, none of the JavaScript will work.

The external file is given the same name as the file you have just extracted the
JavaScript from, except with a .js filename extension. If a file with that name
already exists, Dreamweaver adds a number just before the filename extension.

The external JavaScript file is created in the same folder, but you can move it to a
dedicated scripts folder through the Files panel. If you move the file, don’t forget
to update the links when Dreamweaver prompts you.

Using other JavaScript libraries
Adobe realizes that not everyone will want to use Spry, so support for all flavors of
JavaScript has been greatly improved in Dreamweaver CS4. As explained in Chapter 1,
Dreamweaver now provides code hints for all the main data types and the DOM. More

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

352

http://lib.ommolketab.ir
http//lib.ommolketab.ir

significantly, Dreamweaver constantly analyzes the JavaScript attached to a page, providing
code hints for custom functions and classes. This includes popular JavaScript frameworks,
such as Prototype and jQuery, as shown in Figure 8-7.

Figure 8-7. Dreamweaver’s code introspection provides code hints for Prototype and other
JavaScript libraries.

Code hints normally pop up when you type a period or opening parenthesis. You can also
trigger them by pressing Ctrl+spacebar (the combination is the same on Windows and Mac).

Code hints generated by code introspection are available only in pages that are directly
attached to the file that contains the function or class definition. For example, if you
attach prototype.js to a page, you get Prototype hints in that page. However, if you
attach an external file to the same page, you don’t get any Prototype hints in the external
file. Spry’s code hints, on the other hand, are hardwired into Dreamweaver, so they’re
available in any page. Consequently, if you want to use JavaScript libraries other than
Spry—and you want code hints—you need to attach the external library directly to the
page where you create your JavaScript. The simple way to do this is to build your JavaScript
in the <head> of the page and then use the JavaScript Extractor, as described in the previ-
ous section, to export it to an external file. That’s how I created jquery_selector.html
and jquery_selector.js in examples/ch08.

The other drawback with external libraries is that the level of hinting is determined by the
structure of those libraries. Although you get hints for all the methods available to a
Spry.$$ selector, similar hints are not generated for the Prototype $$ or jQuery $ selectors.
Let’s hope this situation will be improved either in a future version of Dreamweaver or by
the release of a third-party extension to provide code hints for all the main frameworks.

Talking of third-party extensions, perhaps the best support of all for other JavaScript
libraries comes through Adobe’s decision to release the Web Widgets Software
Development Kit (SDK). This enables JavaScript developers to package web widgets as
Dreamweaver extensions. Prior to the release of Dreamweaver CS4, Adobe contacted the
teams behind jQuery (http://jquery.com/) and the Yahoo! User Interface (YUI) Library
(http://developer.yahoo.com/yui/) and asked them to adapt some of their widgets so
they can be easily installed in Dreamweaver. Other leading developers are also being
encouraged to package JavaScript widgets for Dreamweaver. To find out what widgets are
available, open the Extend Dreamweaver control on the Application bar, as shown in
Figure 8-8, and select Browse for Web Widgets.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

353

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8-8. The Extend Dreamweaver control on the Application bar is your gateway to JavaScript
widgets.

As long as you’re connected to the Internet, this takes you directly to a dedicated web
widget section on the Adobe Exchange. Choose the widgets you want, download, and
install them.

The next section walks you through the installation process for all Dreamweaver exten-
sions. Then, to round out the chapter, I’ll show you how to use two of the new web widg-
ets, the jQuery Dialog and the YUI calendar.

Installing Dreamweaver extensions
One of the main reasons for Dreamweaver’s enduring dominance as the leading website
development program is its extensibility. Extensions created by third-party developers add
new functionality to the program. Some extensions are quite simple. Others are much
more powerful and are designed to take your productivity to a whole new level. For exam-
ple, Cartweaver (http://www.cartweaver.com), the PHP version of which was created by
my partner in crime on this book, Tom Muck, greatly simplifies the construction of a fully
featured ecommerce site. The following is a short—and by no means exhaustive—list of
some of the most respected third-party developers (the more sophisticated extensions,
such as Cartweaver, are sold on a commercial basis, but many others are free):

Community MX (http://communitymx.com/)

DMXzone (http://dmxzone.com/)

Kaosweaver (http://kaosweaver.com/)

Project Seven (http://www.projectseven.com)

Tom Muck (http://tom-muck.com/)

Adobe has also taken the decision to focus some aspects of Dreamweaver functionality in
extensions, rather than make them part of the core product. This makes it easier to update
that functionality between releases of the program itself. So, you’re likely to see more
extensions in the future.

Regardless of whether an extension is free or commercial, the method of installation is
identical and is done through the Adobe Extension Manager.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

354

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Adobe Extension Manager

In previous versions of Dreamweaver, the Extension Manager was installed automatically.
However, the CS4 installer now gives you the option not to install many of the shared pro-
grams, such as Device Central, Bridge, and the Extension Manager. If you accepted the
default selection of programs when installing Dreamweaver CS4, you should see Adobe
Extension Manager CS4 listed among the programs in the Windows Start menu or in your
Applications folder on a Mac. If it’s not there, you need to install it from your
Dreamweaver or Creative Suite DVD. You should also ensure that you have the Adobe
Integrated Runtime (AIR) installed, because the Extension Manager is now an AIR applica-
tion (AIR is included in the default Dreamweaver installation).

You can launch the Extension Manager in several ways, but perhaps the quickest way is by
selecting Extension Manager in the Extend Dreamweaver control on the Application bar (see
Figure 8-8). If you have hidden the Application bar on a Mac, alternative ways of opening
the Extension Manager are by selecting Commands ➤ Manage Extensions or Help ➤

Manage Extensions. You can also open the program directly from the Windows Start menu
or the Applications folder on a Mac. As if that weren’t enough, you can usually also
launch the Extension Manager by double-clicking the .mxp file of the extension you want
to install.

Migrating extensions from a previous version
If you’re upgrading from an earlier version of Dreamweaver, you’ll immediately notice that
the Extension Manager looks completely different. However, most of its functionality is
unchanged. The first time you launch the Extension Manager, it detects any extensions
installed in a previous version of Dreamweaver on the same computer account and pres-
ents you with the following options:

If you click Yes, the Extension Manager copies details of existing extensions to your CS4
configuration folder. It then tells you to relaunch the Extension Manager. Migrating exten-
sions like this does not automatically enable them in CS4. You need to do that manually
for each one, because some older extensions might not be compatible. However, it’s a use-
ful way to preserve functionality between versions.

To enable an extension, put a check mark in the Enabled checkbox to the left of the exten-
sion name, as shown in Figure 8-9. Some extensions require you to restart Dreamweaver,
but you don’t need to do so until you have selected all those you want to migrate.
However, it’s a wise policy to install extensions only one at a time, because this makes it

GOING BEYOND THE BASICS WITH SPRY AND AJAX

355

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

easier to detect which extension is responsible if Dreamweaver starts behaving erratically.
Sometimes changes to Dreamweaver make older extensions incompatible with the latest
version.

Figure 8-9. The Extension Manager provides a simple interface to add and remove Dreamweaver
extensions.

Installing an extension
The Extension Manager is shared by several Creative Suite programs, so it’s important to
check that you have the correct program selected in the Products column on the left of
the Extension Manager (see Figure 8-9). If you launched the Extension Manager from
Dreamweaver CS4, it should automatically select the correct program.

Installing an extension involves the following simple steps:

1. Click the Install button at the top of the Extension Manager.

2. In the Select Extension to Install dialog box, navigate to the folder where you down-
loaded the extension, select the extension’s .mxp file, and click Open.

Unlike previous versions, Extension Manager CS4 cannot be used to manage extensions
in older programs. It recognizes only programs in Creative Suite 4.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

356

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. You’re then presented with a disclaimer notice that tells you Adobe does not offer
technical support for the extension and that any license is between you and its cre-
ator. In addition to a standard disclaimer that applies to all extensions, there might
also be a license specific to the extension. You must click Accept to proceed with
the installation.

4. The extension now installs. Small extensions install almost instantaneously. Larger
ones may take several minutes. Extensions created by the same developer often
share common files, so you might see warnings that an older or newer version of a
particular file already exists. Click Yes to replace older versions and No if the exist-
ing version is newer.

When the process is complete, the Extension Manager will tell you whether you
need to restart Dreamweaver. This usually happens with extensions that need to
rebuild part of the menu system. The pane at the bottom of the Extension Manager
provides a brief description of the extension and how to use it (see Figure 8-9).

Some commercial extensions require registration or activation. Follow the instructions
onscreen the first time you launch Dreamweaver after installing such an extension.

Removing an extension
Removing an extension is easy. Just launch the Extension Manager, and click the Remove
button alongside the name of the extension you want to remove (see Figure 8-9).

If you don’t want to remove an extension completely from Dreamweaver, disable it tem-
porarily by deselecting the Enabled checkbox alongside the extension name. Just select the
checkbox again when you want to restore the extension.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

357

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Right, after that brief detour, let’s get on with the jQuery and YUI web widgets.

Using jQuery and YUI web widgets
After downloading the extensions from the Adobe Exchange and installing them as
described in the previous section, you need to restart Dreamweaver. The jQuery and YUI
web widgets are then accessible through their own tabs on the Insert bar, as shown in the
following screenshot, or submenus added at the bottom of the Insert menu. The icons and
menu listings appear in the same order as you install each widget.

Both jQuery and YUI have packaged several of their best widgets for Dreamweaver, includ-
ing calendars and sliders. The jQuery collection also includes an accordion and tabbed
panels, which you might want to use in preference to the Spry versions described in
Chapter 7, particularly if you’re already at home with jQuery and want to incorporate
other jQuery features into the widgets. A quick look at the jQuery accordion demonstrates
the difference between the Spry widgets that are a core part of Dreamweaver CS4 and the
third-party widgets.

To install a web widget, just position your cursor where you want to insert the widget, and
click its icon on the Insert bar or select it from the Insert menu. Figure 8-10 shows a default
jQuery UI Accordion widget inserted in stroll.html, the sample page that I showed you
how to create in Chapter 5.

As you can see from the files listed in the Related Files toolbar in Figure 8-10, the jQuery
accordion widget comes complete with three external JavaScript files, including the basic
jQuery library, and a style sheet. However, no styles are applied in Design view, and the
Property inspector simply has a link to online help. To see what the widget will look like
when the page is deployed on the Web and to use the Code Navigator to inspect the wid-
get’s CSS, you need to turn on Live view (see Figure 8-11).

Extensions install files in your personal configuration folder, so they are vis-
ible only to the current user account. If there is more than one user account
on the computer, the extension needs to be installed separately in each
one. Because extensions make changes to your configuration files, you
should install extensions only from sources that you can trust.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

358

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8-10. The jQuery UI accordion widget appears unstyled in Design view.

Figure 8-11. Turn on Live view to see what third-party widgets will look like in the finished page.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

359

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In spite of the lack of styling in Design view, using one of these web widgets is a huge time-
saver. All the necessary files are attached and stored in a dedicated jQuery or YUI folder
ready to be uploaded to your website. Inserting a widget also creates the necessary code
to initialize it. However, instead of placing the initialization script at the bottom of the
page, as Spry does, the third-party widgets insert it immediately after the HTML portion of
the widget. Selecting the turquoise tab at the top-left of the widget and pressing Delete
removes the widget, its contents, the initialization script, and all links to dependent files.

Adding content to the jQuery accordion is simply a matter of substituting the placeholder
text, so it’s one of the easiest third-party widgets to use. Other widgets require a knowl-
edge of jQuery or the YUI Library API. Using jQuery and the YUI Library API is beyond the
scope of this book, but the following sections give you a brief taster of what’s possible. If
you have a basic understanding of JavaScript, it doesn’t take long to achieve impressive
results.

Inserting a jQuery UI dialog widget

The jQuery UI dialog widget (http://docs.jquery.com/UI/Dialog) creates modeless and
modal floating windows and dialog boxes. A modeless window is a pop-up window that
permits access to the originating page, whereas a modal one blocks access until the pop-
up window is closed. In combination with a modal window, the dialog widget makes it easy
to dim the rest of the page so that the user’s concentration is focused on the content of
the pop-up—a technique that has become popular with image galleries (see Figure 8-13).

The following exercise uses the jQuery UI dialog widget to display a larger version of liv-
ing_statues.jpg in stroll.html. Initially, the widget will be physically inserted into the
page, but it will then be converted to use unobtrusive JavaScript so the page degrades
gracefully in browsers that have JavaScript turned off. The exercise uses some basic jQuery
techniques, but you should be able to follow the instructions even if you have never used
jQuery before.

1. Copy stroll.html from examples/ch08, and save it as stroll_dialog.html in
workfiles/ch08. Also copy stroll.css to the same folder.

2. Position your cursor at the end of the first paragraph, just before the Artists at Work
heading. Insert a jQuery UI dialog widget from the Insert bar or Insert menu. A
widget with some placeholder text is inserted in the page like this:

Displaying a larger image with a dialog widget

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

360

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Save stroll_dialog.html. Dreamweaver presents you with a dialog box informing
you that it’s copying dependent files to your site. These are all located in a dedi-
cated folder called jQuery.ui-1.5.2 in the site root (the name of the folder is
likely to change when new versions are released).

4. Click the Live View button or load the page into a browser to view the default dia-
log widget (see Figure 8-12). The dialog box loads immediately. It’s both resizable
and draggable, and it closes when you click the close button at the top-right of the
dialog box. It’s not very practicable in its default state, but it doesn’t take much
effort to change.

Figure 8-12. The default widget displays a dialog box in the center of the page as soon as it loads.

5. Close the dialog box, and deactivate Live view. Switch to Code view to examine the
code inserted by the widget. It’s just above the second heading and looks like this:

As you can see, the dialog box is simply a <div>. The text in the dialog box title bar
is taken from the title attribute of the <div>, and the content of the <div> deter-
mines what is displayed inside the dialog box.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

361

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The code shown on line 53 of the preceding screenshot initializes the widget. To
avoid conflicts with other JavaScript libraries, it uses the jQuery() function instead
of the shorthand $() notation.

6. You’re going to use the dialog box to display a larger version of living_
statues.jpg, so replace the title attribute shown on line 50 with Living Statues on
the South Bank.

7. Delete the placeholder text between the <div> tags, and with your cursor between
the empty tags insert living_statues_680.jpg from the images folder. Add some
alternative text when prompted to do so.

8. Enclose the entire <div> in single quotes, cut it to your clipboard, and paste it as
the argument to the jQuery function in place of "jQueryUIDialog1". You might see
the following warning when you try to select the code, but you can safely ignore it:

The code inside the <script> block should now look like this:

// BeginWebWidget jQuery_UI_Dialog: jQueryUIDialog1
jQuery('<div id="jQueryUIDialog1" class="flora" title="Living Statues ➥

on the South Bank"><img src="../../images/living_statues_680.jpg" ➥

width="680" height="449" alt="Living Statues" /></div>').dialog(➥

{draggable: true, resizable: true});
// EndWebWidget jQuery_UI_Dialog: jQueryUIDialog1

9. If you save the page and test it now, the dialog box still appears immediately. It
remains the same size, but you can resize it to see the larger image. By using the
code for the <div> as the argument to jQuery(), the <div> and its contents are
now being generated on the fly by JavaScript. This means the larger image won’t be
loaded in a browser that has JavaScript disabled.

10. The jQuery UI dialog() constructor method takes an object literal containing the
options you want to set. At the moment, the options object has two properties:
draggable and resizable, both of which are set to true. Let’s set two more, height
and width, so the image fits the dialog box. Amend the object literal like this:

{draggable: true,
resizable: true,
height: 515,
width: 720}

Although adding newlines to JavaScript statements usually causes them to malfunc-
tion, you can use newlines in objects for ease of reading without causing problems.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

362

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11. To make the dialog box modal, all you need to do is add modal: true to the
options object like this:

{draggable: true,
resizable: true,
height: 515,
width: 720,
modal:true}

12. To dim the background, you also need to use the overlay property, which expects
its values as an object, so you nest it within the options object like this:

{draggable: true,
resizable: true,
height: 515,
width: 720,
modal:true,
overlay: {
opacity: 0.5,
background: 'black'

}
}

13. Test the page to make sure everything is working as expected. You should see the
larger image displayed fully inside a modal dialog box, with the rest of the window
dimmed (see Figure 8-13 on the next page).

14. To prevent the dialog box from opening automatically when the page loads, you
need to set the autoOpen property of the options object to false. You also need a
reference to the dialog box so that it can be opened when the user clicks the
smaller image. Add the autoOpen property, and assign the whole declaration to a
variable called bigImage. The complete code should look like this:

var bigImage = jQuery('<div id="jQueryUIDialog1" class="flora" ➥

title="Living Statues on the South Bank"><img ➥

src="../../images/living_statues_680.jpg" width="680" height="449" ➥

alt="Living Statues" /></div>').dialog({
draggable: true,
resizable: true,
height: 515,
width: 720,
modal: true,
overlay: {
opacity: 0.5,
background: 'black'

},
autoOpen:false

});

15. You can now attach an onclick event handler dynamically to the smaller image,
which can be identified using the following attribute selector:

jQuery('img[src$=living_statues.jpg]')

GOING BEYOND THE BASICS WITH SPRY AND AJAX

363

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This looks for an image with a src attribute that ends with living_statues.jpg.
Add the following code immediately after the code in step 14:

jQuery('img[src$=living_statues.jpg]').css('cursor', 'pointer')
.attr('title', 'Click for a larger image')
.click(function(e){bigImage.dialog('open')});

In typical jQuery fashion, this chains several methods and applies them to
living_statues.jpg. First, the css() method converts the cursor to a hand
pointer whenever anyone mouses over the image. Then the attr() method adds a
title attribute, which will be displayed as a tooltip, inviting users to click the
image to see a larger version. Finally, the click() method is passed a function that
references the dialog box using the variable bigImage and passes 'open' as an
argument to its dialog() method.

16. Save stroll_dialog.html, and test it. When you mouse over living_statues.jpg,
the cursor should turn to a hand and display a tooltip inviting you to view a larger
image. Click, and you should see a much bigger version centered in a dialog box
with the rest of the window dimmed, as shown in Figure 8-13.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

364

Figure 8-13. The dialog widget displays the larger image and dims the rest of the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17. Finally, to tidy up the page and remove the JavaScript from the middle of the HTML,
cut the script block and paste it into the <head> of the document after the links to
the jQuery external files (or put it in an external file of its own, linked to the page
after the other jQuery files). Once you move the script outside the body of the page,
you need to wrap the script in a jQuery document ready handler like this:

jQuery(function() {
var bigImage = jQuery('<div id="jQueryUIDialog1" class="flora" ➥

title="Living Statues on the South Bank"><img ➥

src="../../images/living_statues_680.jpg" width="680" height="449" ➥

alt="Living Statues" /></div>').dialog({
draggable: true,
resizable: true,
height: 515,
width: 720,
modal: true,
overlay: {
opacity: 0.5,
background: 'black'

},
autoOpen:false

});
jQuery('img[src$=living_statues.jpg]').css('cursor', 'pointer')
.attr('title', 'Click for a larger image')
.click(function(e){bigImage.dialog('open')});

});

I have used jQuery() instead of the shorthand $(), but you can use $() if you’re
not mixing jQuery with other JavaScript libraries that use the same shorthand.

Check your code, if necessary, against stroll_dialog.html in examples/ch08.

Selecting dates with a YUI calendar

The YUI Library is a massive collection of utilities, controls, and components written in
JavaScript. Just to give you a taste of the type of things available, I have chosen the YUI
Calendar, which is one of the first web widgets to have been released for Dreamweaver.
Inserting a calendar requires nothing more than clicking its icon in the YUI tab of the Insert
bar or selecting it from the Insert menu and saving the external files to your site. However,
you need to write your own JavaScript functions to do anything with selected dates.

This exercise shows how to capture the date selected in a YUI calendar and display it as a
JavaScript alert.

1. Create a new page called yui_calendar.html in workfiles/ch08, and insert a YUI
Calendar widget from the Insert bar or Insert menu.

Displaying the selected date

GOING BEYOND THE BASICS WITH SPRY AND AJAX

365

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Save the page to copy the external JavaScript files and style sheet to your site.
Dreamweaver stores them in a dedicated folder called YUI.

3. When you look at the page in Design view, you might be distinctly underwhelmed,
because all you get is a turquoise border and tab with nothing inside.

4. Click the Live View button, and everything comes to life, with the current month
and date selected, as shown in Figure 8-14 (so now you know when I wrote this
part of the book). The calendar is fully functional in the sense that you can move
back and forth through the months and select dates, but nothing happens when
you select a particular date. It’s up to you to add that functionality yourself.

5. Deactivate Live view, and switch to Code view. As you can see in the following
screenshot, the calendar is an empty <div>, and there are just a few lines of script.
The code shown on lines 17–20 initializes the calendar, assigning it to a variable
called oCalendar_YahooCalendar1. The code on line 21 loads the calendar into the
page when the DOM is ready.

Figure 8-14.
The YUI calendar is
generated entirely

dynamically by
JavaScript.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

366

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. When you select one or more dates in the calendar, it dispatches an event called
selectEvent, which contains the selected date(s) as a multidimensional array in
the format [[YYYY, MM, DD], [YYYY, MM, DD] . . .]. So, you can define an event
handler function to capture the selection. You need to add it inside the initializa-
tion function like this:

YAHOO.init_YahooCalendar1 = function() {
function selectHandler(type, args, obj)
{
var dates = args[0];
var date = dates[0];
var months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'June', 'July', ➥

'Aug', 'Sep', 'Oct', 'Nov', 'Dec'];
var year = date[0], month = months[date[1]-1], day = date[2];
alert('Selected date is : ' + month + ' ' + day + ', ' + year);

}
var oCalendar_YahooCalendar1 = new YAHOO.widget.Calendar(➥

"YahooCalendar1");
oCalendar_YahooCalendar1.render();

}

The event handler needs to take three arguments: the type of event, the arguments
dispatched by the event, and the object that was the event’s target. The function
needs the first and third arguments to know what to expect, but all you’re inter-
ested in is extracting the value of the arguments passed by the event.

The selectEvent dispatches a single multidimensional array of dates, so there’s
only one argument, which can be extracted as args[0] and is assigned to a variable
called dates.

For the purposes of this exercise, you want to extract just the first date in the dates
array. This can be identified as dates[0] and is assigned to a variable called date.

Since each date is in itself an array in the format [YYYY, MM, DD], you can extract
the day as date[2], the month as date[1], and the year as date[0].

To avoid confusion with different national conventions regarding date formats, I
have created an array of month names. JavaScript counts arrays from zero, so you
get the month name by subtracting one from the month number like this:
months[date[1]-1].

Finally, the function passes the selected date to an alert.

7. The event handler function needs to be registered to listen for the selectEvent
by using the subscribe() method after the calendar object has been instantiated
like this:

var oCalendar_YahooCalendar1 = new YAHOO.widget.Calendar(➥

"YahooCalendar1");
oCalendar_YahooCalendar1.selectEvent.subscribe(selectHandler, ➥

oCalendar_YahooCalendar1, true);
oCalendar_YahooCalendar1.render();

GOING BEYOND THE BASICS WITH SPRY AND AJAX

367

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The subscribe() method takes three arguments: the event handler function, the
object, and the Boolean variable true.

8. Save yui_calendar.html, and test it in Live view or a browser. Select a date in the
calendar, and you should see its value displayed in a JavaScript alert, as shown in
Figure 8-15.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

368

Figure 8-15. The event handler extracts and formats the selected date.

Check your code, if necessary, against yui_calendar.html in examples/ch08.

Of course, displaying the date as a JavaScript alert serves no practical value. The purpose
of this exercise has been to demonstrate how to create an event handler to respond to the
selection of dates. You can use the data gathered by the event handler for a variety of
things, including populating date fields in online forms or triggering a request to display
events related to that date. Your ability to do that depends on your JavaScript skills.

Chapter review
This has been very much a hands-on chapter, digging into the mysteries of JavaScript, Spry,
and other web widgets. However, it has barely managed to scratch the surface of a vast
subject. Spry, jQuery, and the YUI Library have many enthusiastic fans, but JavaScript
remains an uphill struggle for many others. While the web widgets are an attractive addi-
tion, they are not integrated into Dreamweaver to the same extent as Spry. Their principal
advantage is that they speed up the deployment of sophisticated UI components by bring-
ing together all the necessary external files, installing them, and creating the initialization

http://lib.ommolketab.ir
http//lib.ommolketab.ir

script with a single mouse click. After that, it’s up to you. I hope this chapter has whetted
your appetite to experiment further with the framework(s) of your choice.

In the next chapter, we take an in-depth look at creating online forms, which lay the foun-
dation for much of the rest of this book. Forms are the principal way of communicating
with a database. You’ll also continue your exploration of Spry, because Dreamweaver
incorporates an impressive set of validation widgets that check user input before submit-
ting it to the server for processing.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

369

8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9 BUILDING ONLINE FORMS AND
VALIDATING INPUT

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Online forms are the gateway to the server and lie at the very heart of working with PHP,
the focus of most of the remaining chapters. You use forms for logging into restricted
pages, registering new users, placing orders with online stores, entering and updating
information in a database, and sending feedback by email. But gateways need protection.

You need to filter out incomplete or wrong information: a form isn’t much use if users for-
get to fill in required fields or enter an impossible phone number. It’s also important to
make sure that user input doesn’t corrupt your database or turn your website into a spam
relay. That’s what input validation is all about—checking that user input is safe and meets
your requirements. This is different from validating your HTML or CSS against W3C stan-
dards, and it’s much more important because it protects your data.

Validating user input is a theme that will run through much of the rest of this book. In this
chapter, we’ll look at client-side validation with the assistance of Spry. Then, in Chapter 11,
I’ll show you how to process the form and validate its content on the server with PHP.
Server-side validation is more important, because it’s possible for users to evade client-
side filters. Even so, client-side validation is useful for catching errors before a form is sub-
mitted, improving user experience.

In this chapter, you’ll learn about the following:

Creating a PHP page

Creating forms to gather user input

Understanding the difference between GET and POST

Passing information through a hidden form field

Making online forms accessible

Using Spry widgets to validate input

Displaying and controlling the number of characters in a text area

Building a simple feedback form
All the components for building forms are on the Forms tab of the Insert bar. They’re also
on the Form submenu of the Insert menu, but for the sake of brevity, I’ll refer only to the
Insert bar in this chapter.

Most form elements use the <input> tag, with their function and look controlled by the type
attribute. The exceptions are the multiline text area, which uses the <textarea> tag, and
drop-down menu and scrollable lists, which use the <select> tag. Dreamweaver handles all
the coding for you, but you need to dive into Code view frequently when working with forms
and PHP, so if your knowledge of the tags and attributes is a bit rusty, brush it up with a good
primer, such as HTML and CSS Web Standards Solutions: A Web Standardista’s Approach by
Christopher Murphy and Nicklas Persson (friends of ED, ISBN: 978-1-43021-606-3).

Choosing the right page type

HTML contains all the necessary tags to construct a form, but it doesn’t provide any means
to process the form when submitted. For that, you need a server-side solution, such as

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

372

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PHP. In the past, you may have used FormMail or a similar script to send the contents of a
form by email. Such scripts normally reside in a directory called cgi-bin and work with
.html pages. The action attribute in the opening <form> tag tells the form where to send
the contents for processing. It usually looks something like this:

<form id="sendcomments" method="post" action="/cgi-bin/formmail.cgi">

You can do the same with PHP: build the form in an .html page, and send the contents to
an external PHP script for processing. However, it’s far more efficient to put the form in a
page with a .php file name extension and use the same page to process the form. This
makes it a lot easier to redisplay the contents with error messages if any problems are
found. So, from now on, we’ll start using PHP pages. Before going any further, you should
have specified a PHP testing server, as described in Chapter 2.

Creating a PHP page
You can create a PHP page in Dreamweaver in several ways, namely:

Select Create New ➤ PHP in the Dreamweaver welcome screen.

Select File ➤ New to open the New Document dialog box, and select Blank Page and
PHP as the Page Type. As Figure 9-1 shows, this offers the same choice of CSS lay-
outs as an HTML page. Click Create when you have made your selection.

Right-click in the Files panel, and select New File. If you have defined a PHP testing
server, Dreamweaver creates a default blank page with a .php file name extension.

Change the file name extension of an existing page to .php in the Files panel or
Save As dialog box.

Figure 9-1. You have access to the same wide range of CSS layouts for a PHP page as for an HTML one.

BUILDING ONLINE FORMS AND VALIDATING INPUT

373

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The file name extension is the only difference between a blank PHP page and an HTML
one. If you switch to Code view, you’ll see the same DOCTYPE declaration and HTML tags.
The .php extension tells the server to send the page to the PHP engine for processing
before sending it to the browser.

Mixing .php and .html pages in a site
It’s perfectly acceptable to mix .html and .php files in the same site. However, when build-
ing a new site, it’s a good idea to create all pages with a .php extension, even if they don’t
contain dynamic code. That way, you can always add dynamic content to a page without
needing to redirect visitors from an .html page. If you are converting an old site, you can
leave the main home page as a static page and use it to link to your PHP pages.

A lot of people ask whether you can treat .html (or any other file name extension) as PHP.
The answer is yes, but it’s not recommended, because it places an unnecessary burden on
the server and makes the site less portable. Also, reconfiguring Dreamweaver to treat
.html files as PHP is messy and inconvenient.

Inserting a form in a page

It’s time to get to work and build a feedback form. To concentrate on how the form is val-
idated and processed, let’s work in a blank page and keep the styling to a minimum.

The final code for this page is in feedback.php in examples/ch09.

1. Create a new PHP page as described in the previous section, and save it in
workfiles/ch09 as feedback.php. If you use the New Document dialog box, set
Layout to <none>, and make sure no style sheets are listed under Attach CSS file.

2. Add a heading, followed by a short paragraph. Make sure you’re in Design view or,
if Split view is open, that the focus is in Design view. Inserting a form is completely
different when the focus is in Code view, as explained in “Inserting a form in Code
view” later. With the insertion point at the end of the paragraph, click the Form
button in the Forms tab of the Insert bar. It’s the first item, as shown here:

3. This inserts the opening and closing <form> tags in the underlying code. In Design
view, the form is surrounded by a red dashed line, as shown in the next screenshot:

Building the basic form

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

374

http://lib.ommolketab.ir
http//lib.ommolketab.ir

All form elements must be inserted inside the red line, so don’t click anywhere else
in Design view. Otherwise, you might end up outside the form. Of course, once you
start inserting form elements, the boundary expands to accommodate the content.

4. The Property inspector displays the form’s settings, as shown here:

Dreamweaver gives forms a generic name followed by a number. This is applied to
both the name and id attributes in the underlying code. If you change the value in
the Form ID field of the Property inspector, Dreamweaver updates both attributes.

The Action field is where you enter the path of the script that processes the form.
Since this will be a self-processing form, leave the field empty.

The Method menu has three options: Default, GET, and POST. This determines how
the form sends data to the processing script. Leave the setting on POST. I’ll explain
the difference between GET and POST shortly. If you select the Default option,
Dreamweaver omits the method attribute from the <form> tag. This results in the
form behaving the same way as if you had selected GET. I recommend against using
it, because you’re less likely to make mistakes by selecting GET or POST explicitly.

You can ignore the Target and Enctype options. Target should normally be used only
with frames, and Dreamweaver automatically selects the correct value for Enctype
if required. The only time it needs a value is for uploading files. Dreamweaver
server behaviors don’t handle file uploads. See my book PHP Solutions: Dynamic
Web Design Made Easy (friends of ED, ISBN: 978-1-59059-731-6) for details of how
to do it by hand-coding.

If you try to insert a form element outside the dashed red line, Dreamweaver
asks you whether you want to insert a form tag. Unless you want to create two
separate forms, this is normally an indication that your insertion point is in the
wrong place. Although you can have as many forms as you like on a page, each
one is treated separately. When a user clicks a form’s submit button, only infor-
mation in the same form is processed; all other forms are ignored.

BUILDING ONLINE FORMS AND VALIDATING INPUT

375

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inserting a form in Code view
If you insert a form in Code view or in Split view with the focus in Code view,
Dreamweaver displays the Tag Editor (see Figure 9-2). This offers the same options as the
Property inspector, but you need to fill in all the details yourself. Inserting a form in Design
view is much more user-friendly.

Figure 9-2. The Tag Editor is a less user-friendly way to insert a form.

The Tag Editor selects get as the default value for Method. (GET and POST are case-insensi-
tive in the HTML method attribute.) If you enter a value in the Name field, Dreamweaver
inserts the name attribute, even if you’re using a strict DOCTYPE declaration, and doesn’t
assign the same value to the id attribute. To insert an ID, you need to select Style
Sheet/Accessibility in the left column and enter the value manually.

Adding text input elements

Most online forms have fields for users to enter text, either in a single line, such as for a
name, password, or telephone number, or a larger area, where the text spreads over many
lines. Let’s insert a couple of single-line text fields and a text area for comments.

Opinions vary on the best way to lay out a form. A simple way to get everything to line up
is to use a table, but this creates problems for adding accessibility features, such as
<label> tags. The method that I’m going to use is to put each element in a paragraph and
use CSS to tidy up the layout.

Continue working with the form from the preceding exercise.

1. With your insertion point inside the red outline of the form, press Enter/Return.
This inserts two empty paragraphs inside the form. Press your up arrow key once to
return to the first paragraph, and click the Text Field button in the Forms tab of the
Insert bar, as shown here:

Inserting text fields and a text area

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

376

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. By default, this launches the Input Tag Accessibility Attributes dialog box (see
Figure 9-3).

The ID field uses the same value for the <input> tag’s id and name attributes.

The Label field is for the label you want to appear next to the form element,
including any punctuation, such as a colon, that you want to appear onscreen.

The Style option lets you choose how to associate the <label> tag with the form
element. If you choose the first radio button, Wrap with label tag, it creates code
like this:

<label>Name:
<input type="text" name="name" id="name" />
</label>

The second radio button, Attach label tag using ‘for’ attribute, creates code like this:

<label for="name">Name:</label>
<input type="text" name="name" id="name" />

From an accessibility point of view, either method is fine. However, using the for
attribute often makes the page easier to style with CSS because the <label> and
<input> tags are independent of each other.

Figure 9-3.
Dreamweaver makes it
easy to build forms that
follow accessibility
guidelines.

BUILDING ONLINE FORMS AND VALIDATING INPUT

377

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The final radio button, No label tag, inserts no label at all. You normally use this with
form buttons, which don’t need a label because their purpose is displayed as text
directly on the button.

This Style option is sticky, so Dreamweaver remembers whichever radio button you
chose the last time.

The Position option, on the other hand, automatically chooses the recommended
position for a form label. In the case of a text field, this is in front of the item, but
with radio buttons and checkboxes, it’s after the item. You can, however, override
the default choice if you want to.

The final two options let you specify an access key and a tab index. Finally, if you
don’t want to use these accessibility features, there’s a link that takes you to the
relevant section of the Preferences panel to prevent this dialog box from appearing
again. However, since accessibility is such an important issue in modern web design,
I recommend you use these attributes as a matter of course.

Use the following settings, and click OK to insert a text field and label in the form:

ID: name

Label: Name:

Style: Attach label tag using ‘for’ attribute

Position: Before form item

Access key/Tab index: Leave blank

3. Move your insertion point into the empty paragraph below, and insert another text
field. Enter email in the ID field, and enter Email: in the Label field. Leave the other
settings the same as in the previous step, and click OK.

4. Position your cursor after the new text field, and press Enter/Return twice to insert
two more blank paragraphs in the form.

5. Put your cursor in the first blank paragraph, and click the Text Area button in the
Forms tab of the Insert bar, as shown in the following screenshot:

In the Input Tag Accessibility Attributes dialog box, set ID to comments and Label to
Comments:, leave the other settings as before, and click OK.

6. Move into the final blank paragraph, and select Button in the Forms tab of the Insert
bar, as shown here:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

378

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the Input Tag Accessibility Attributes dialog box, set ID to send, leave the Label
field empty, select No label tag as Style, and click OK. This inserts a submit button.

7. In the Property inspector, change Value from Submit to Send comments. This
changes the label on the button (press Enter/Return or move the focus out of the
Value field for the change to take effect). Leave Action on the default Submit form.
The form should now look like this in Design view:

If you switch to Code view, the underlying HTML for the form should look like this:

<form action="" method="post" name="form1" id="form1">
<p>
<label for="name">Name:</label>
<input type="text" name="name" id="name" />

</p>
<p>
<label for="email">Email:</label>
<input type="text" name="email" id="email" />

</p>
<p>
<label for="comments">Comments:</label>
<textarea name="comments" id="comments" cols="45" rows="5"> ➥

</textarea>
</p>
<p>
<input type="submit" name="send" id="send" value="Send comments" />

</p>
</form>

The XHTML 1.0 specification (http://www.w3.org/TR/xhtml1) lists a number of elements,
including <form>, for which the name attribute has been deprecated. If you select a strict

If you select Reset form in the Property inspector, this creates a reset button that
clears all user input from the form. However, in Chapter 11, you’ll learn how to
preserve user input when a form is submitted with errors. This technique relies
on setting the value attribute of each form element, which prevents Reset form
from working after the form has been submitted.

BUILDING ONLINE FORMS AND VALIDATING INPUT

379

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DOCTYPE declaration, Dreamweaver omits the name attribute from the <form> tag. However,
it’s important to realize that this applies only to the opening <form> tag and not to ele-
ments within a form. The name attribute doesn’t play a significant role in the <form> tag,
which is why it has been deprecated, but its role on input elements in the form is crucial.

Setting properties for text fields and text areas
In the preceding exercise, you inserted two text fields and a text area. A text field permits
user input only on a single line, whereas a text area allows multiple lines of input. The
Property inspector offers almost identical options for both types of text input and even
lets you convert from one to the other. Figure 9-4 shows the Property inspector for the
Name text field. Notice that Type is set to Single line. This is Dreamweaver trying to be user-
friendly by adopting descriptive terms, rather than using the official attribute names.

Figure 9-4. The Property inspector for a text field lets you convert it into a text area, and vice versa.

Unfortunately, if you’re familiar with the correct HTML terminology, the labels in the
Property inspector can be more confusing than enlightening. Let’s run through the various
options and their meanings:

Type: The radio buttons determine the type of text input, as follows:

Single line: This creates an <input> tag and sets its type attribute to text. In
other words, it creates a single-line text input field.

Multi line: This is what Dreamweaver uses to indicate a text area. If you select this
radio button after inserting a single-line input field, Dreamweaver converts the
<input> tag to a pair of <textarea> tags, as described in the next section.

Password: Select this option to change the type attribute of a single-line input
field from text to password. This makes browsers obscure anything typed into
the field by displaying a series of stars or bullets. It doesn’t encrypt the input but
prevents anyone from seeing it in plain text.

The name attribute not only remains valid for <input>, <select>, and <textarea>; PHP
and other scripting languages cannot process data without it. Although the id attrib-
ute is optional, you must use the name attribute for each element you want to be
processed. The name attribute should consist only of alphanumeric characters and the
underscore and should contain no spaces.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

380

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Char width: This specifies the width of the input field, measured in characters. For a
text field, this inserts the size attribute in the <input> tag. I normally use CSS to
style the width of input fields, so you can leave this blank. This setting has no
impact on the number of characters that can be typed into the field.

Max chars: This sets the maximum number of characters that a field accepts by set-
ting the maxlength attribute of a text field. If left blank, no limit is imposed.

Init val: This lets you specify a default value for the field. It sets the value attribute,
which is optional and normally left blank.

Disabled: This is a new addition in Dreamweaver CS4. It adds the disabled attribute
to the opening tag. This grays out the field when the form is displayed in a browser,
preventing users from entering anything in the field.

Read-only: This is also new to Dreamweaver CS4. Selecting this checkbox adds the
readonly attribute to the opening tag. There’s no change to the look of the field,
but it prevents the user from deleting or changing the existing value.

Figure 9-5 shows the Property inspector for the Comments text area. As you can see, it
looks almost identical to Figure 9-4, although Type is set to Multi line. This time, Type has no
direct equivalent in the underlying HTML. Selecting Multi line changes the tag from <input>
to <textarea>.

The other important differences are that Max chars has changed to Num lines and default
values have been set for Char width and Num lines. These determine the width and height
of the text area by inserting the rows and cols attributes in the opening <textarea> tag.
Both attributes are required for valid HTML and should be left in, even if you plan to use
CSS to set the dimensions of the text area.

Figure 9-5. When you insert a text area, Dreamweaver gives it a default width and height.

An important change from previous versions of Dreamweaver is the removal of the Wrap
option. This used to insert the invalid wrap attribute, which was ignored by most browsers.
All modern browsers automatically wrap user input in a text area, so its removal is no loss.
In its place are the Disabled and Read-only checkboxes, which work the same way as for a
text input field.

The Disabled and Read-only checkboxes are visible only if you have the Property inspec-
tor expanded to its full height. Hiding the bottom half of the Property inspector saves a
small amount of screen real estate but is normally a false economy.

BUILDING ONLINE FORMS AND VALIDATING INPUT

381

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Converting a text field to a text area, and vice versa
Although text fields and text areas use completely different tags, Dreamweaver lets you
convert from one type to the other by changing the Type option in the Property inspector.
If you change Type from Single line to Multi line, the <input> tag is replaced by a pair of
<textarea> tags, and vice versa. Dreamweaver makes the process seamless by changing or
removing attributes. For example, if you convert a text area to a text field, the cols attrib-
ute changes to size, and the rows attribute is deleted.

This is convenient if you change your mind about the design of a form, because it saves
deleting one type of text input field and restarting from scratch. However, you need to
remember to set both Char width and Num lines if converting a single-line field to a text area;
Dreamweaver sets the defaults only when inserting a text area from the Insert bar or menu.

The Password option works only with single-line input. It cannot be used with a text area.

Styling the basic feedback form

The form looks a bit unruly, so let’s give it some basic styling.

With the exception of a single class, all the style rules use type selectors (in other words,
they redefine the style for individual HTML tags). Rather than using the New CSS Style dia-
log box to create them, it’s quicker and easier to type them directly into a new style sheet
in Code view.

1. Create a new style sheet by selecting File ➤ New. In the New Document dialog box,
select Blank Page and CSS for Page Type. Insert the following rules, and save the
page as contact.css in the workfiles/ch09 folder. (If you don’t want to type
everything yourself, there’s a copy in the examples/ch09 folder. The version in the
download files contains some extra rules that will be added later.)

body {
background-color:#FFF;
color:#252525;
font-family:Arial, Helvetica, sans-serif;
font-size:100%;

}
h1 {
font-family:Verdana, Arial, Helvetica, sans-serif;
font-size:150%;

}
p {
font-size:85%;
margin:0 0 5px 25px;
max-width:650px;

}
form {

Styling the form

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

382

http://lib.ommolketab.ir
http//lib.ommolketab.ir

width:600px;
margin:15px auto 10px 20px;

}
label {
display:block;
font-weight:bold;

}
textarea {
width:400px;
height:150px;

}
.textInput {
width:250px;

}

The style rules are very straightforward, mainly setting fonts and controlling the
size and margins of elements. By setting the display property for label to block,
each <label> tag is forced onto a line of its own above the element it refers to.

2. Switch to feedback.php in the Document window, and attach contact.css as its
style sheet. There are several ways of doing this. One is to open the Class drop-down
menu in the HTML view of the Property inspector and select Attach Style Sheet.
Alternatively, you can use the menu option, Format ➤ CSS Styles ➤ Attach Style
Sheet, or click the Attach Style Sheet icon at the bottom right of the CSS Styles panel.

Browse to contact.css, and attach it to feedback.php. The form should now look
a lot neater.

3. Select the Name text field, and set its class to textInput to set its width to 250 pixels.
Do the same with the Email text field.

4. Save feedback.php, and press F12/Opt+F12 to preview it in a browser. The form
should look like Figure 9-6.

BUILDING ONLINE FORMS AND VALIDATING INPUT

383

9

Figure 9-6.
The basic feedback form
is ready for business.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Understanding the difference between GET and POST

Now that you have a form to work with, this is a good time to see how information is
passed from the form and demonstrate the difference between choosing GET and POST as
the method attribute. With feedback.php displayed in a browser, type anything into the
form, and click the Send comments button. Whatever you typed into the text fields should
disappear. It hasn’t been processed because there’s no script to handle it, but the content
of the text fields hasn’t entirely disappeared. Click the browser’s reload button, and you
should see a warning that the data will be resent if you reload the page.

If the action attribute is empty, the default behavior is to submit the data in the form to
the same page. As the warning indicates, the data has been passed to the page, but since
there’s no script to process it, nothing happens. Processing the data is the subject of
Chapter 11, but let’s take a sneak preview to see the different ways POST and GET submit
the data.

In this exercise, you’ll add a simple PHP conditional statement to display the data trans-
mitted by the POST method. You’ll also see what happens when the form is submitted
using the GET method. Use feedback.php from the preceding exercise. If you just want to
test the code, use feedback_post.php in examples/ch09.

1. Save a copy of feedback.php as feedback_post.php in workfiles/ch09. Open it in
Code view, and scroll to the bottom of the page.

2. Add the following code shown in bold between the closing </form> and </body>
tags:

</form>
<pre>
<?php if ($_POST) {print_r($_POST);} ?>
</pre>
</body>

As soon as you type the underscore after the
dollar sign, Dreamweaver pops up a PHP code
hint, as shown in the screenshot alongside. Type p
(uppercase or lowercase—it doesn’t matter), and
press Enter/Return. Dreamweaver completes $_POST
and automatically places an opening square bracket
after it. Delete the square bracket. $_POST is a PHP
superglobal array, which is created automatically.
As the name suggests, it contains data sent by the POST method. (The role of super-
global arrays is explained in Chapter 11.)

Don’t worry about the meaning of the PHP code. Just accept it for the moment,
and concentrate on what it does.

Examining the data submitted by a form

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

384

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Save the page, and load it into a browser. Enter some text in the form, and click
Send comments. This time, you should see the value of each field identified by its
name attribute displayed at the bottom of the page as in Figure 9-7.

The values gathered by the $_POST array contain not only the information entered
into the text fields but also the value attribute of the submit button.

4. Change the value of method in the opening <form> tag from post to get like this:

<form action="" method="get" name="form1" id="form1">

5. Save the page, and display it again in the browser by clicking inside the address bar
and pressing Enter/Return. Don’t use the reload button, because you don’t want to
resend the POST data.

6. Type anything into the form, and click Send comments. This time, nothing will be
displayed below the form, but the contents of the form fields will be appended to
the URL, as shown in Figure 9-8. Again, each value is identified by its name attribute.

Figure 9-8. Data sent using the GET method is appended to the URL as a series of name/value pairs.

As you have just seen, the GET method sends your data in a very exposed way, making it
vulnerable to alteration. Also, most browsers limit the amount of data that can be sent
through a URL. The effective maximum is determined by Internet Explorer, which accepts
no more than 2,083 characters, including both the URL and variables (http://support.
microsoft.com/kb/208427). The POST method is more secure and can be used for much
larger amounts of data. By default, PHP permits up to 8MB of POST data, although hosting
companies may set a smaller limit.

Because of these advantages, you should normally use the POST method with forms. The
GET method is used mainly in conjunction with database searches and has the advantage
that you can bookmark a search result because all the data is in the URL.

Although the POST method is more secure than GET, you shouldn’t assume that it’s
100-percent safe. For secure transmission, you need to use encryption or the Secure
Sockets Layer (SSL).

Figure 9-7.
The PHP $_POST superglobal array contains the
data submitted from the form.

BUILDING ONLINE FORMS AND VALIDATING INPUT

385

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Passing information through a hidden field

Frequently, you need to pass information to a script without displaying it in the browser.
For example, a form used to update a database record needs to pass the record’s ID to the
update script. You can store the information in what’s called a hidden field.

Although you don’t need a hidden field in this feedback form, let’s put one in to see
how it works. Hidden fields play an important role in later chapters. Continue work-
ing with feedback_post.php from the preceding exercise. The finished code is in
feedback_hidden.php.

1. Set the value of method back to post. Do this in Code view or by selecting the form
in Design view and setting Method to POST in the Property inspector.

2. A hidden field isn’t displayed, so it doesn’t matter where you locate it, as long as it’s
inside the form. However, it’s normal practice to put hidden fields at the bottom of
a form. Switch back to Design view, and click to the right of the Send comments
button.

3. Click the Hidden Field button in the Forms tab of the Insert bar, as shown here:

4. Dreamweaver inserts a hidden field icon alongside the Send comments button.
Type a name for the hidden field in the left text field in the Property inspector and
the value you want it to contain in the Value field, as shown in Figure 9-9.

Note that the PHP script at the bottom of the page is indicated by a gold PHP icon.
If you can’t see the hidden field or PHP icons in Design view, select View ➤ Visual
Aids ➤ Invisible Elements.

Figure 9-9.
Select a hidden field’s
icon in Design view to

edit its name and value
in the Property inspector.

Adding a hidden field

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

386

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Switch to Code view. You’ll see that Dreamweaver has inserted the following code
at the end of the form:

<input name="secret" type="hidden" id="secret" value="Guess what?" />

6. Save feedback_post.php, and press F12/Opt+F12 to load the page in a browser (or
use feedback_hidden.php in examples/ch09). The hidden field should be, well . . .
hidden. Right-click to view the page’s source code. The hidden field and its value
are clearly visible. Test the form by entering some text and clicking Send comments.
The value of secret should be displayed with the rest of the form input.

Just because a hidden field isn’t displayed in a form doesn’t mean that it really is hidden.
Frequently, the value of a hidden field is set dynamically, and the field is simply a device
for passing information from one page to another. Never use a hidden field for informa-
tion that you genuinely want to keep secret.

Using multiple-choice form elements
Useful though text input is, you have no control over what’s entered in the form. People spell
things wrong or enter inappropriate answers. There’s no point in a customer ordering a yellow
T-shirt when the only colors available are white and black. Multiple-choice form elements
leave the user in no doubt what the options are, and you get answers in the format you want.

Web forms have four multiple-choice elements, as follows:

Checkboxes: These let the user select several options or none at all. They’re useful
for indicating the user’s interests, ordering optional accessories, and so on.

Radio buttons: These are often used in an either/or situation, such as male or
female and yes or no, but there’s no limit to the number of radio buttons that can
be used in a group. However, only one option can be chosen.

Drop-down menus: Like radio buttons, these allow only one choice but are more
compact and user-friendly when more than three or four options are available.

Multiple-choice lists: Like checkboxes, these permit several options to be chosen,
but present them as a scrolling list. Often, the need to scroll back and forth to see
all the options makes this the least user-friendly way of presenting a multiple choice.

Let’s add them to the basic feedback form to see how they work.

The option on the View menu controls the display of invisible elements only on
the current page. To change the default, open the Preferences panel from the
Edit menu (Dreamweaver menu in a Mac), and select the Invisible Elements cate-
gory. Make sure there’s a check mark alongside Hidden form fields and Visual
Server Markup Tags, and then click OK. The Visual Aids submenu is useful for
turning off the display of various tools when they get in the way of the design of
a page. You can toggle currently selected visual aids on and off with the key-
board shortcut Ctrl+Shift+I/Shift+Cmd+I.

BUILDING ONLINE FORMS AND VALIDATING INPUT

387

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Offering a range of choices with checkboxes

There are two ways to use checkboxes. One is to give each checkbox a different name; the
other is to give the same name to all checkboxes in the same group. Which you choose
depends on the circumstances. Use the first when the options represented by checkboxes
aren’t related to each other; create a checkbox group when there’s a logical relationship
between them. Normally, Dreamweaver uses the same values for the id and name attrib-
utes of form elements. Since an ID must always be unique, treating checkboxes as a group
in previous versions of Dreamweaver involved adjusting the name attribute of each check-
box in Code view.

That’s no longer a problem in Dreamweaver CS4, because you have the choice of creating
individual checkboxes or a checkbox group. Individual checkboxes have the same value for
both name and id attributes. Members of a checkbox group have separate id attributes
but share a common name. You create a checkbox group through the simple dialog box
shown in Figure 9-10. Access the dialog box through the Checkbox Group button in the
Forms tab of the Insert bar or by selecting Insert ➤ Form ➤ Checkbox Group.

Figure 9-10. The new Checkbox Group dialog box speeds up the creation
of related checkboxes.

The Checkbox Group dialog box has the following options:

Name: This field is where you enter the name attribute that you want to assign to all
checkboxes within the group. If you’re feeling lazy, you can just accept the default.
Dreamweaver automatically increments the number at the end of the default name
if there is more than one checkbox group on a page.

Checkboxes: This field is prefilled with two dummy checkboxes. To change the
placeholder text, click inside the first Label field to open it for editing. You can
move to the other prefilled fields with the Tab key or by clicking directly inside
them. Add or remove checkboxes with the plus and minus buttons at the top left
of the Checkboxes field. Change their order with the up and down arrows at the
top right.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

388

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Label: This is for the text you want to appear alongside the checkbox.

Value: This is the value you want the checkbox to represent, if selected, when the
form is submitted for processing.

Lay out using: Choose whether to lay out the checkbox group using line breaks
(
 tags are used with an XHTML DOCTYPE declaration) or a single-column table.

However, you can’t reopen the dialog box to add new checkboxes after the group has
been created. Any extra checkboxes need to be added individually. The next exercise
shows you how to do both.

Continue working with feedback_post.php from the preceding exercise. Alternatively,
copy feedback_multi_start.php from examples/ch09 to workfiles/ch09. The finished
code for this exercise is in feedback_checkbox.php.

1. Save the page as feedback_checkbox.php in workfiles/ch09.

2. With the page open in Design view, click immediately to the right of the Comments
text area. Press Enter/Return to insert a new paragraph.

3. Each checkbox has its own label, so you need a heading for the checkbox group
that uses the same font size and weight as the <label> tags.

Make sure that the HTML view of the Property inspector is selected, and click the
Bold button (the large B just to the right of the CSS button). Although the tooltip
says Bold, this inserts the tag in accordance with current standards, rather
than the presentational tag.

4. Type a heading for the checkbox group. I used What aspects of London most interest
you? Click the Bold tag again to move the cursor outside the closing tag
in the underlying code.

5. Checkboxes usually have short labels, so it’s often a good idea to display them in
columns. The Checkbox Group dialog box has two layout options. You can display
the checkboxes in a single-column table or use line breaks (
 tags).

If you choose line breaks, Dreamweaver automatically wraps the checkbox group in
a pair of <p> tags unless the insertion point is already in a paragraph, in which case
it uses the existing tags.

Rather than use a table, I’m going to use a couple of floated paragraphs. You need
to create a style rule for them later, but let’s start by creating the checkbox group.

With your insertion point at the end of the paragraph you entered in step 4, press
Enter/Return to create a new paragraph.

When clicking the Bold button, it’s vital that you’re in the HTML view of the
Property inspector. If you’re in the CSS view, clicking the Bold button adds
font-weight: bold; to the current selection in Targeted Rule. Since you’re inside
a paragraph, this makes the text in all paragraphs bold, not just the current one.

Inserting a group of checkboxes

BUILDING ONLINE FORMS AND VALIDATING INPUT

389

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Click the Checkbox Group button in the Forms tab of the Insert bar, as shown here:

This opens the Checkbox Group dialog box shown in Figure 9-10.

7. In Chapter 11, you will build a PHP script to process this form. If more than one
form item has the same name attribute, PHP expects the values to be submitted as
an array (PHP arrays are described in the next chapter). To get PHP to treat all val-
ues in the checkbox group as an array, you need to add an empty pair of square
brackets after the name attribute. I want to use interests as the name for this
checkbox group, so enter interests[] in the Name field (there should be no space
between interests and the square brackets).

8. Click the plus button alongside Checkboxes twice to add two checkboxes, and edit
the Label and Value fields using the following values:

Classical concerts Classical concerts

Rock & pop events Rock/pop

Drama Drama

Guided walks Walks

9. Select Line breaks (
 tags) for the layout. The Checkbox Group dialog box should
now look like this:

Make sure you select the correct button. The Checkbox Group button uses the
same icon as the Radio Group button (two buttons farther right). I find them
easy to tell apart because each group button is immediately to the right of the
button that inserts a single checkbox or radio button. However, if you find the
plethora of icons in Dreamweaver confusing, either use the menu alternatives or
display the Insert bar as a panel with labels (see Chapter 1).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

390

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As the preceding screenshot shows, Dreamweaver wraps the <label> tags around
the checkbox <input> tags, rather than using the for attribute. This doesn’t affect
the way the checkboxes are displayed in this form, so I’m going to leave them as
they are. You can also see that each checkbox has the same name attribute, but the
id attributes are all unique. Dreamweaver has numbered them incrementally as
interests_0, interests_1, and so on.

11. As explained earlier, you cannot reopen the Checkbox Group dialog box to add
more checkboxes. The simple way to add another checkbox is to open Code view
and copy and paste an existing checkbox. For example, to add a checkbox for Art,
you could copy and paste the code shown on lines 39–41 in the preceding screen-
shot and edit them like this (new code is shown in bold):

<label>
<input type="checkbox" name="interests[]" value="Art" ➥

id="interests_4" />
Art</label>

Alternatively, you need to add a single checkbox using the Checkbox button imme-
diately to the left of the Checkbox Group button in the Forms tab of the Insert bar
(or Insert ➤ Form ➤ Checkbox). The next few steps show you how to do that.

12. One of the trickiest aspects of adding a checkbox to an existing group is getting the
insertion point in the right place. As with the <form> tag, you get a far less user-
friendly dialog box if you position your cursor in Code view. To get to the right
position in Design view, open Split view, and keep an eye on the position of the
insertion point in Code view.

BUILDING ONLINE FORMS AND VALIDATING INPUT

391

9

10. Click OK to insert the checkbox group. The new code should look like this in
Split view:

Click to the right of the label of the last checkbox
(Guided walks) in Design view, and press the down
arrow key twice. This should move the insertion
point to just inside the closing </p> tag of the
checkbox group, as shown.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

13. Click the Checkbox button in Forms tab of the Insert bar, as shown in the following
screenshot:

14. In the Input Tag Accessibility Attributes dialog box, enter the following values, and
click OK.

ID: interests_4

Label: Art

Style: Wrap with label tag

Position: After form item (Dreamweaver selects this automatically)

15. Dreamweaver inserts the following code in Code view:

<label>
<input type="checkbox" name="interests_4" id="interests_4" />

Art</label>

You need to change the value of the name attribute to match the other checkboxes
like this:

<label>
<input type="checkbox" name="interests[]" id="interests_4" />

Art</label>

You must do this in Code view. If you use the Property inspector, Dreamweaver
uses the same value for both name and id attributes. Square brackets are permitted
in the name attribute, but not in an ID.

16. Save the page, and load it into a browser. Select some of the checkboxes, and click
the Send comments button. The checked values should appear at the bottom of
the page. Try it with no boxes checked. This time, interests isn’t listed.

Check your code, if necessary, with feedback_checkbox.php in examples/ch09.
Keep the file open, because you’ll continue working with it in the next exercise.

As you can see, adding an extra checkbox to an existing checkbox group is rather fiddly,
because you can’t set the name and id attributes separately at the time of creation.
However, if you are creating a stand-alone checkbox, for example one that asks users to
confirm they agree to the terms and conditions of the site, it doesn’t matter if the name
and id are the same.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

392

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Currently, the checkboxes are stacked one on top of the other. Moving them into two
columns is simply a matter of splitting them into two paragraphs and floating them left.
Continue working with the same file as in the previous exercise.

1. To split the checkboxes into separate paragraphs, you need to go into Code view
and replace the
 tag between the third and fourth checkboxes with a closing
</p> tag and an opening <p> one like this:

Drama</label>
</p>
<p>
<label>
<input type="checkbox" name="interests[]" value="Walks" ➥

id="interests_3" />

2. You now need to create a couple of style rules to float the paragraphs. Select
contact.css in the Related Files toolbar, and add the following rules at the bottom
of the page:

.chkRad {
float: left;
margin-bottom: 15px;
margin-left: 50px;

}
.clearIt {
clear: both;

}

The first rule creates the chkRad class, which will be applied to both checkboxes
and radio buttons, floating them left and adding margins on the bottom and left.

The .clearIt selector uses the clear property, which prevents other elements
from moving up into empty space alongside a floated element. This will be applied
to the paragraph containing the submit button.

3. Click inside any of the first three checkboxes, and right-click the <p> tag in the Tag
selector at the bottom of the Document window. Select Set Class ➤ chkRad from
the context menu, as shown here:

Displaying the checkboxes in columns

BUILDING ONLINE FORMS AND VALIDATING INPUT

393

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Do the same for the second paragraph containing checkboxes. This results in the
Send comments button floating up alongside the second column of checkboxes, as
shown here:

5. Fix this by selecting the Send comments button in Design view and then right-
clicking the <p> tag in the Tag selector at the bottom of the Document window.
Select Set Class ➤ clearIt from the context menu.

The Send comments button should move down to its original position, as shown in
the following screenshot:

If the button remains floating, make sure you applied the class to the surrounding
paragraph, not to the button itself.

Check your code, if necessary, with feedback_checkbox_cols.php in examples/ch09.

Using radio buttons to offer a single choice

The term radio buttons is borrowed from the preset buttons common on radios: you
push a button to select a station and the currently selected one pops out; only one can be
selected at any given time. Like a radio, there shouldn’t be too many buttons to choose
from. Otherwise, the user gets confused.

As with checkboxes, Dreamweaver offers you the choice of inserting radio buttons one at
a time or as a group in a single operation. Similarly, there’s no way of relaunching the
Radio Group dialog box to edit the radio buttons or add a new one to the group. The
options in the Radio Group dialog box are identical to the Checkbox Group dialog box (see
Figure 9-10), so refer to the previous section for details.

The following exercise shows how to insert individual radio buttons.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

394

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Continue working with the form from the preceding exercise, or copy feedback_checkbox_
cols.php from examples/ch09 to workfiles/ch09. The finished code is in feedback_
radio.php.

1. Save the file as feedback_radio.php.

2. Like checkboxes, each radio button has its own label, so you need to create a
heading to indicate the question being asked. To add a new paragraph below the
checkbox group, click in the last checkbox label in the right column (Art) in Design
view, and press Enter/Return. Instead of the cursor moving below the checkbox
group, it lines up alongside the Guided walks label. This is because Dreamweaver
automatically applies the same style as the preceding paragraph when you press
Enter/Return.

3. You need to remove the chkRad class from the new paragraph and replace it with
the clearIt class. Right-click <p.chkRad> in the Tag selector at the bottom of the
Document window, and select Set Class ➤ clearIt from the context menu. This is
the same technique as in step 3 of the previous exercise, only this time you are
changing the class rather than applying a new one.

4. Click the Bold button in the HTML view of the Property inspector, and type a ques-
tion. I used Would you like to receive regular details of events in London?

5. At the end of the line, click the Bold button again to move the insertion point out-
side the closing tag, and press Enter/Return to create a new paragraph.

6. Click Radio Button in the Forms tab of the Insert bar, as shown here:

7. Enter the following settings in the Input Tag Accessibility Attributes dialog box:

ID: subscribeYes

Label: Yes

Style: Wrap with label tag

Position: After form item (Dreamweaver selects this automatically)

You cannot use the Tag selector or Property inspector to apply multiple classes
to the same element. The only ways to do so in Dreamweaver are through the
Tag Inspector panel or in Code view.

Creating a radio button group with individual buttons

BUILDING ONLINE FORMS AND VALIDATING INPUT

395

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. When you click OK, Dreamweaver inserts the radio button and its associated label.
Select the radio button element in Design view to display its details in the Property
inspector, which should look like this:

The field on the left immediately below Radio Button sets the name attribute for the
radio button. Change it to subscribe. Unlike other form elements, the name and id
attributes of radio buttons aren’t automatically linked in the Property inspector
because Dreamweaver is smart enough to know that all buttons in a radio group
share the same name, but they must have unique IDs. However, since only one
value is submitted from a radio group, unlike a checkbox group, you don’t need to
add square brackets after the name.

Dreamweaver automatically enters the same value as the ID in Checked value.
While this is OK, you can change the value here without affecting the ID. Just type
the letter y in the Checked value field.

Leave the other values unchanged. Although the Class field displays clearIt, this is
inherited from the surrounding paragraph. You need to change the paragraph’s
class, but it’s better to do it after you have finished inserting the other radio but-
ton because it’s easier to position the insertion point in Design view in nonfloated
elements.

9. Click to the right of the Yes label in Design view, and press Enter/Return to insert a
new paragraph. Repeat steps 6 and 7 to insert a second radio button, setting ID to
subscribeNo and Label to No.

10. Select the second radio button element in Design view to display its details in the
Property inspector. Change its name from radio to subscribe, and shorten Checked
value to the letter n. It’s always a good idea to set a default value for a radio button
group, so set Initial state to Checked.

11. All that remains to do is change the class of the paragraphs surrounding the two
radio buttons and float them alongside each other. However, to make it easy to
insert the next form element in the following exercise, click to the right of the No
label, and press Enter/Return to insert a new paragraph. This inherits the clearIt
class, so it won’t float alongside the radio buttons.

12. Click to the right of the Yes label in Design view, right-click <p.clearIt> in the Tag
selector at the bottom of the Document window, and select Set Class ➤ chkRad

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

396

http://lib.ommolketab.ir
http//lib.ommolketab.ir

from the context menu. Do the same with the paragraph surrounding the No radio
button. The radio buttons should float alongside each other like this:

13. Save the page, and load it in a browser. Test it to make sure that the value of
subscribe is y or n depending on the radio button selected.

Check your code, if necessary, against feedback_radio.php in examples/ch09.

Offering a single choice from a drop-down menu

Drop-down menus and multiple-choice lists both use the HMTL <select> tag, with each
individual item in an <option> tag. Apart from two attributes in the opening <select> tag,
their underlying structure is identical, so Dreamweaver uses the same tools to insert and
configure them. First, let’s take a look at a single-choice menu. The following instructions
show you how to add one to the feedback form.

Continue working with the form from the preceding exercise, or copy feedback_radio.php
from examples/ch09 to workfiles/ch09. The finished code is in feedback_select.php.

1. Save the file as feedback_select.php.

2. Insert your cursor in the empty paragraph between the radio buttons and the Send
comments button, and click the List/Menu button on the Forms tab of the Insert
bar, as shown here:

3. Enter the following settings in the Input Tag Accessibility Attributes dialog box:

ID: visited

Label: How often have you been to London?

Style: Attach label tag using ‘for’ attribute

Position: Before form item (Dreamweaver selects this automatically)

Inserting and configuring a drop-down menu

BUILDING ONLINE FORMS AND VALIDATING INPUT

397

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. When you click OK, Dreamweaver inserts the label and a blank menu element in
Design view. Click the menu element to select it and display its details in the
Property inspector, as shown in the following screenshot:

5. Type is set by default to Menu, which builds a single-choice drop-down menu. The
List option creates a scrolling list. You’ll see how that works in the next section.

To populate the menu, click the List Values button in the Property inspector. This
opens the List Values dialog box, as shown in the following screenshot:

Item Label is what you want to be shown in the menu, and Value is the data you
want to be sent if the item is selected when the form is submitted. The value
attribute of the <option> tag is optional, so the Value field needs to be set only if
you want the label and the data to be different.

This is another example of Dreamweaver using what it regards as user-friendly
expressions. Item Label is the text element that goes between the <option> tags
of a <select> menu. While this is, no doubt, helpful to some users, it can also be
confusing because it bears no relation to the <label> tags that are used to
improve the accessibility of online forms.

If you have difficulty selecting the menu element in Design view, open Split view,
and click anywhere inside the <select> tag.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

398

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The easiest way to fill in the dialog box is to tab between the fields. Tabbing from
the Value field creates the next item. You can also click inside an existing field to
edit it. Use the minus (–) button to delete a selected item and the up and down
arrows to reorder the list.

I used the following values:

-- Select one -- 0

Never been Never

Once or twice 1-2 times

Less than once a year Not yearly

I go most years Yearly

I live there Resident

The first item simply asks users to select one of the options. I have set the Value
field to 0 to indicate that nothing has been selected. Without an explicit value, the
text contents of the <option> tag is submitted by the form.

Click OK when you are finished.

6. Dreamweaver normally displays the longest option in Design view. To specify the
one you want to be displayed when the form first loads, select it in the Initially
selected field in the Property inspector. This adds selected="selected" to the
<option> tag.

By default, browsers show the first item in the menu if you don’t set the Initially
selected field. However, it’s often useful to select an item that’s lower down the list.
For example, you may want to display a list of countries in alphabetical order, but
if most of your visitors are from the United States, it’s a courtesy to display that by
default rather than forcing them to scroll all the way down the list to select it.

7. Save feedback_select.php, and load it in a browser. Select a menu item, and
click Send comments. The value should be displayed as visited at the bottom of
the page.

Check your code, if necessary, against feedback_select.php in examples/ch09.

Creating a multiple-choice scrollable list

The way you build a multiple-choice list is almost identical to a drop-down menu. It
involves only a couple more steps to set the size and multiple attributes in the opening
<select> tag. Strictly speaking, the multiple attribute is optional. If it’s omitted, the user
can select only a single item.

You could convert the menu from the preceding section by changing Type from Menu to
List in the Property inspector. However, the way you process data from a multiple-choice
list is different, so let’s add a separate list to the same form.

BUILDING ONLINE FORMS AND VALIDATING INPUT

399

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Continue working with the form from the preceding exercise, or copy feedback_select.php
from examples/ch09 to workfiles/ch09. The finished code is in feedback_multiselect.php.

1. Save the file as feedback_multiselect.php.

2. In Design view, click immediately to the right of the drop-down menu you inserted
in the previous exercise, and press Enter/Return to insert a new paragraph. Because
the clearIt class was applied to the preceding paragraph, Dreamweaver applies
the same class to the new paragraph. Leaving it does no harm, but you don’t really
need it either, so reset Class to None in the HTML view of the Property inspector.

3. Click the List/Menu button on the Forms tab of the Insert bar.

4. Enter the following settings in the Input Tag Accessibility Attributes dialog box:

ID: views

Label: What image do you have of London?

Style: Attach label tag using ‘for’ attribute

Position: Before form item (Dreamweaver selects this automatically)

5. When you click OK, Dreamweaver inserts a blank drop-down menu into the page in
the same way as in step 4 of the preceding exercise. Select the menu element in
Design view to display its details in the Property inspector.

Change Type to List. This activates the Height and Selections options. These are
more examples of Dreamweaver’s attempt at user-friendly names instead of using
the HTML attributes. Height sets the size attribute, which determines the number
of items visible in the list; the browser automatically adds a vertical scrollbar.
Change the value to 6, and put a check mark in the Selections checkbox to permit
multiple choices. This adds multiple="multiple" in the <select> tag. The menu is
converted into a tall, narrow rectangle, as shown here:

Inserting and configuring a scrollable list

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

400

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Click the List Values button to enter the labels and data values the same as for a
drop-down menu. Leave Value blank if you want the data sent by the form to be
the same as the label. The following screenshot shows the first five values I used:

I set the sixth Item Label to A transport nightmare, and its Value to Transport
nightmare.

7. Save the page, and load it into a browser. Select several items in the list (holding
down the Shift or Ctrl/Cmd key while clicking), and click the Send comments
button.

Uh, oh . . . something is wrong. Only the last selected item appears at the bottom
of the page. To get all items, you need to use an array in the same way as with the
checkbox group by appending a pair of square brackets to the end of the name
attribute. Fortunately, there’s only one name attribute to change.

The problem with the Property inspector is that it uses the same field for the name
and id attributes. If you add the square brackets to views in the Property inspector,
it affects both name and id. You could dive into Code view to fix the problem, but
let me show you another way—using the Tag Inspector panel.

8. Make sure the list is selected in Design
view, and open the Tag Inspector panel
(F9/Shift+Opt+F9 or Window ➤ Tag
Inspector). If the Behaviors button is
selected, click the Attributes button at
the top left of the Tag Inspector panel.
This gives you direct access to the attrib-
utes of the element currently selected in
the Document window. It has two views:
listing attributes by category or in alpha-
betical order.

Expand the General and CSS/Accessibility
categories in category view to reveal the
name and id attributes. Click inside the
name field to add a pair of square brack-
ets after views, as shown in the screen-
shot alongside. (Depending on your monitor’s resolution, they might appear to
merge into an upright rectangle. This doesn’t matter.)

BUILDING ONLINE FORMS AND VALIDATING INPUT

401

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Press Enter/Return to save the change. Save the page, and test it again in a browser.
This time, all selected items from the multiple-choice list should be displayed as an
array at the bottom of the page.

10. Click Send comments without selecting anything in the list. This time, views won’t
be among the items displayed at the bottom of the page. This is the same as with a
checkbox group, and it has important implications for how you process the output
of a form, as you’ll see in Chapter 11.

Compare your code, if necessary, with feedback_multiselect.php in examples/ch09.

Organizing form elements in logical groups
An important element in designing a usable form is making sure that everything is laid out
logically so that users can see at a glance what sort of information is required. It can also
help to divide the form into a number of clearly labeled sections. HTML provides two tags
for this purpose: <fieldset> and <legend>, which most browsers automatically style with
a border (see Figure 9-11).

Figure 9-11. Fieldsets give forms a visual and logical structure that help make them more
accessible to all users.

Inserting a fieldset

You can add fieldsets to your form before inserting the individual form elements or after
you have finished. To insert a fieldset, click the Fieldset button on the Forms tab of the
Insert bar, as shown here:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

402

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This opens the Fieldset dialog box. It has just one field: Legend, which is the title you want
to give to the group of form elements within the fieldset.

When you click OK, Dreamweaver inserts the following code in your form:

<fieldset>
<legend>Your details</legend>
</fieldset>

If you create the fieldset before inserting the individual form elements, press your right
keyboard arrow after clicking OK in the Fieldset dialog box. This positions the insertion
point between the closing </legend> and </fieldset> tags ready for adding the form ele-
ments that belong to the fieldset.

To add a fieldset to existing form elements, select the elements you want to include by
dragging your mouse across them in Design view. If you have Split view open, you will see
that Dreamweaver doesn’t select the opening and closing tags of your selection. However,
when you insert the fieldset, it’s smart enough to put the <fieldset> and <legend> tags in
the correct place. If the fieldset border and legend appear in the wrong place, it probably
means that you failed to select the form elements correctly. Press Ctrl+Z/Cmd+Z or Edit ➤
Undo, and try again. Alternatively, go into Code view, and make sure the target form ele-
ments are between the closing </legend> and </fieldset> tags.

To see the effect of adding fieldsets to the form you have been using throughout this
chapter and to study the code, take a look at feedback_fieldsets.php in examples/ch09.
You can alter the look of fieldsets with CSS by adding fieldset and legend type selectors
to your style sheet.

Now that I’ve covered all the main form input and layout elements, let’s turn our attention
to checking user input before submitting the form to the server for processing.

Validating user input before submission
Validation of user input plays a very important role in the design and processing of online
forms. Let’s say you’re building a form that offers to send customers more information.
There’s no point processing the form if it doesn’t contain certain details, such as email or
postal address. Similarly, a form that asks for the user’s age needs to make sure the infor-
mation supplied falls within an acceptable range. For example, it must be a number. Is
there a minimum age, such as 16? Setting a maximum age is more difficult, but obviously
a figure such as 402 should be rejected. Validation can’t stop people from entering false

BUILDING ONLINE FORMS AND VALIDATING INPUT

403

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

information; its role is to ensure that you get the type of information you expect—an
email address in an email field and something that looks like a phone number in a phone
number field. Well-designed sites usually perform validation twice—on the client side
before the data is submitted to the server and once again on the server side.

The problem with client-side validation is that it relies on JavaScript. A visitor simply needs
to turn off JavaScript in the browser and press the submit button; all your client-side filters
are rendered useless. Consequently, some developers argue that client-side validation is a
waste of time. Nevertheless, most visitors to your sites aren’t deliberately trying to abuse
your forms and are likely to have JavaScript enabled. So, it’s generally a good idea to detect
errors before a form is submitted. JavaScript validation is conducted locally and is usually
instantaneous. It’s done as a courtesy to the user, who doesn’t need to wait for a response
from the server if there’s a mistake in the information submitted. It also helps reduce the
burden on the server, because forms aren’t submitted with incomplete information.

Nevertheless, the fact that client-side validation can be so easily evaded raises the question
of how thorough it should be. Since the real checks need to be done on the server, there’s
a strong argument for keeping client-side checks to the absolute minimum or eliminating
them altogether. Client-side validation is optional; server-side validation should never be
omitted. We’ll look at server-side validation in Chapter 11. The rest of this chapter is
devoted to client-side validation with Spry validation widgets.

Using Spry validation widgets

The Spry validation widgets, which were first introduced in Dreamweaver CS3, are anything
but rudimentary. They’re capable of performing a wide range of checks and use a combi-
nation of JavaScript and CSS to display customized alerts alongside the affected field.
Three new validation widgets were added in Dreamweaver CS4, bringing the types of form
input they can handle to seven, as follows:

Text fields

Text areas

Checkboxes

Radio button groups

Menus and lists

Password fields

Password confirmation fields

In addition to Spry validation widgets, the Validate Form behavior can be accessed
through the Behaviors panel. However, the checks it performs are so rudimentary as to
be virtually worthless.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

404

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The text field widget is particularly impressive, because it lets you test for a wide range of
formats, including numbers, currency, IP addresses, Social Security numbers, and credit
card numbers. You can even set up your own custom patterns without the need to master
the complex subject of regular expressions. The text area validation widget also provides
one of the most frequently requested features—the ability to display how many characters
the user has entered or still has left before reaching a predetermined limit. The validation
widgets also display warning messages that you can easily edit and style with CSS.

You can access the validation widgets on both the Forms and Spry tabs of the Insert bar. As
Figure 9-12 shows, the icons are very similar to those of their related form elements.
However, if you prefer menus to icons, the same options are also available on the Spry
submenu of the Insert menu.

Spry validation widgets are certainly powerful, but they greatly increase page size. If you
add all seven widgets to a form, the external JavaScript files and style sheets weigh in at
more than 200KB. The text field widget is responsible for roughly one third that amount
because of its extensive pattern-matching features. It’s overkill for a very basic form, but
could be extremely useful in validating user input on a form for a job application or an
insurance policy quote.

If you insert a widget into a blank part of a form, Dreamweaver inserts both the validation
code and the form element. Alternatively, you can apply a widget to an existing form ele-
ment. Whichever approach you use, the method of configuration is exactly the same. In
the remaining pages of this chapter, I’m going to show you how to apply validation widg-
ets to an existing form.

I suggest you study carefully the first section of “Validating a text field with Spry,” because
it contains most of the knowledge you need to work with all validation widgets, particu-
larly with regard to editing and controlling the display of alert messages.

The external files are cached by the user’s browser, so are downloaded only once.
However, if you’re concerned about file size, you can use optimized versions of the Spry
JavaScript files by downloading the Spry framework from http://labs.adobe.com/
technologies/spry/. The versions of the files in the includes_packed folder weigh in
at just 85KB. The files have the same names as those inserted by Dreamweaver, so just
swap them over.

Figure 9-12.
Spry validation widgets have an
orange sunburst on the same icons
as their related form elements.

BUILDING ONLINE FORMS AND VALIDATING INPUT

405

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inserting a Spry validation widget
As with all Spry widgets, the page must have been saved at least once before you can apply
a validation widget. Save the page again immediately afterward to attach the external
JavaScript code and style sheet, and copy them to the Spry assets folder if necessary.

Removing a validation widget
Removing a widget immediately after you have applied it is easy. Unfortunately, the stan-
dard method of removing a Spry widget (selecting its turquoise tab and pressing Delete)
removes the form element with it. The simple way to get around this problem is to select
the form element (and label, if necessary) in Design view and cut it to your clipboard
(Ctrl+X/Cmd+X). Then select the turquoise tab to delete the widget. If you see the follow-
ing warning that the widget has been damaged, you can safely ignore it:

Once you have removed the widget, paste (Ctrl+V/Cmd+V) the form element back into
the page.

Validating a text field with Spry

To validate a text field, either select an existing text field or position your cursor inside a
form where you want to insert a new text field, and click the Spry Validation Text Field but-
ton on the Insert bar. If you are inserting a new text field, fill in the ID and Label fields in
the Input Tag Accessibility Attributes dialog box as described earlier in the chapter.

Figure 9-13 shows what happens when you apply a validation widget to the first text field
in the form that you have been working with throughout the chapter. The screenshot was
taken with the Document window open in Split view, so you can see the underlying code
(the section highlighted on lines 19–21).

Dreamweaver is context-sensitive. If you cut from Design view,
always paste back into Design view; the same with Code view.
If you don’t, Dreamweaver is likely to mess up your page.

Unless you’re a JavaScript expert, don’t try to use other JavaScript validation functions,
such as the Validate Form behavior, on the same form with Spry validation widgets,
because they’re likely to conflict and cease functioning.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

406

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 9-13. Validation widgets insert tags and control their display with JavaScript.

The <input> tag has been surrounded by a tag with the ID set to sprytextfield1.
Immediately after the <input> tag is another , which contains the text: A value is
required. As you can see in Figure 9-13, that text isn’t displayed in Design view. This is
because the display of all validation messages in Spry widgets is controlled by JavaScript.

As you can see in Figure 9-13, the text field validation widget has a lot of options in the
Property inspector. Let’s run through them quickly before a practical exercise to show
them in action:

Type: This is where the real power of the text field validation widget lies. It lets you
check user input against a wide range of formats, summarized in Table 9-1. All
options, except None, insert an Invalid format in the underlying code. Use
the Preview states menu to display this in Design view for editing and/or styling.

Format: This displays a drop-down menu of available formats, depending on the
value of Type (see Table 9-1). It is disabled if the validation type is not associated
with any formats.

Pattern: Some validation types accept a custom pattern, which should be entered in
this field. See “Building your own custom pattern” later in this chapter.

Hint: This displays default text that disappears as soon as the text field has focus or
anything is entered into it. It’s useful for indicating the type of input or format
expected. The value is displayed dynamically, so it won’t be submitted as part of
the form data if the user enters nothing in the field.

Preview states: This controls the display of validation messages in Design view,
allowing you to see what they look like and edit them and their associated styles.

BUILDING ONLINE FORMS AND VALIDATING INPUT

407

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Validate on: This determines when the field is validated, namely:

Blur: This validates the input when focus moves from the field to another part of
the page, for example when the user moves to the next input field.

Change: This validates the input each time the field changes. You should rarely
use this on a text field, because it performs the validation each time the user
types or deletes a character.

Submit: Validation is always performed when the form is submitted, so this
checkbox is read-only.

Min/Max chars: These fields let you specify the minimum or maximum number of
characters required for validation. They add an alert message in a , and the
Preview states menu is updated to include an option to display and edit the alert.

Min/Max value: These let you set a minimum or maximum value for validation.

Required: This makes the field required. It is selected by default.

Enforce pattern: This blocks invalid characters. For example, if Type is set to Integer,
nothing is entered in the field if the user attempts to type a letter.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

408

Table 9-1. Formats that the text field validation widget can recognize

Type Available formats Notes

None Use this when no other suitable format is available.

Integer This validates whole numbers only. Negative numbers are accepted
but not decimal fractions or thousands separators. Use Real
Number/Scientific Notation for decimals or Currency for whole
numbers with thousands separators.

Email address This performs only a rudimentary check for an email address, making
sure that it contains a single @ mark followed by at least one period.

Date This checks not only the format but also the validity of the date,
rejecting impossible dates, such as September 31. Leap years are
recognized. A bug in Dreamweaver CS3 that incorrectly rejected
February 29, 2000, has been fixed.

Time HH represents the 24-hour clock, hh the 12-hour clock. Hours before
10 must have a leading zero. When using the 12-hour clock, tt
stands for AM or PM; t stands for A or P. Lowercase is not accepted.

HH:mm
HH:mm:ss
hh:mm tt
hh:mm:ss tt
hh:mm t
hh:mm:ss t

mm/dd/yy
mm/dd/yyyy
dd/mm/yyyy
dd/mm/yy
yy/mm/dd
yyyy/mm/dd
mm-dd-yy
dd-mm-yy
yyyy-mm-dd
mm.dd.yyyy
dd.mm.yyyy

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Type Available formats Notes

Credit Card Matches basic patterns for major credit
cards but should not be relied upon to
check for a valid card number. Numbers
must be entered without hyphens or spaces.

Zip Code This tests only that the right combination of
numbers and/or letters is used. It doesn’t
check whether the code exists or matches
other parts of an address. See “Building your
own custom pattern” for details of how to
use the Custom Pattern format.

Phone Number US/Canada must be in the same format as
(212) 555-0197. For Custom Pattern, see
“Building your own custom pattern.”

Social Security Number This has been updated since Dreamweaver
CS3 to accept a custom pattern.

Currency In both formats, the thousands separator
is optional, as is the decimal fraction. This
makes it possible to validate currencies,
such as yen, which aren’t normally quoted
with a smaller unit.

Real Number/ Used for numbers with a decimal fraction,
Scientific Notation which can optionally be expressed in

scientific (exponential) notation, for
example, 3.14159, 1.56234E+29, or
1.56234e29. The letter E can be uppercase
or lowercase, but it must not be preceded
by a space.

IP Address Covers all formats of IP address.

URL This converts the URL to punycode
(http://en.wikipedia.org/wiki/Punycode)
before validation, so it should also accept
international URLs that contain non-Latin
characters.

Custom This allows you to define your own format
as described in “Building your own custom
pattern.”

IPv4 only
IPv6 only
IPv6 and IPv4

1,000,000.00
1.000.000,00

US/Canada
Custom Pattern

US/Canada
Custom Pattern

US-5
US-9
UK
Canada
Custom Pattern

All
Visa
MasterCard
American Express
Discover
Diner’s Club

BUILDING ONLINE FORMS AND VALIDATING INPUT

409

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following exercise shows you how to control the display of validation alerts in a form.
It uses the same form as has been used throughout this chapter. Continue using the form
you built earlier. Alternatively, copy feedback_spry_start.php from examples/ch09, and
save it in workfiles/ch09 as feedback_spry.php.

1. Select the Name text input field in Design view, and click the Spry Validation Text
Field button in the Forms or Spry tab of the Insert bar (or use Insert ➤ Spry ➤ Spry
Validation Text Field). Save the page to copy the external JavaScript file and style
sheet to your site.

2. Make sure there’s a check mark in the Required checkbox in the Property inspector
(it should be selected by default), and choose Required from the Preview states
drop-down menu. The text field should now look like this in Design view:

Not only is the text displayed, the background color of the text field has turned an
alarming shade of pink.

3. Both the text field and the validation message are highlighted, so click inside the
message so you can edit it. Shorten the text to Required.

4. With your cursor still inside the validation message, select the CSS view of the
Property inspector, and click the Bold button, as shown here:

It’s very important to use the CSS view of the Property inspector because this
changes the targeted rule in the external style sheet, SpryValidationTextField.css,
rather than in the underlying HTML. As a result, all validation messages will now be
styled with bold text, not just the one you’re currently editing.

5. Select the text field in Design view. The CSS view of the Property inspector is no
longer visible, so you need to access the style sheet directly to change the back-
ground color of the text field. Hold down the Alt key (or Opt+Cmd keys on a Mac)
to open the Code Navigator. As you can see in the following screenshot, the back-
ground color of the text field is controlled by a very complex selector:

Editing and controlling the display of validation alerts

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

410

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The selector is complex because it controls the look of the text field when valida-
tion fails in a wide range of circumstances. Don’t worry about the selector. Just click
its link in the Code Navigator to open the style sheet in Split view. Your cursor
should automatically be located inside the right style rule.

6. Change the value of the background-color property from #FF9F9F to a less dra-
matic pink. I chose #FFDFDF. You can check the result by pressing F5 to refresh
Design view.

7. Click the turquoise tab at the top left of the widget. In the Property inspector,
change Preview states to Valid. The background color of the text field changes to
green.

8. Select the text field, and then hold down the Alt/Opt+Cmd key(s) to open the
Code Navigator. Select the style rule from SpryValidationTextField.css, as
shown in the following screenshot:

9. Change the value of the background-color property from #B8F5B1 to a different
shade of green. I chose #E3FBE1.

It’s important to select the text field first. If you open the Code Navigator by
holding down Alt/Opt+Cmd and clicking without first selecting the input field,
Dreamweaver cannot detect the correct style rule. This is because the classes are
dynamically generated by Spry, not hard-coded into the HTML tags.

BUILDING ONLINE FORMS AND VALIDATING INPUT

411

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. Select File ➤ Save All to save the page and style sheet, and load feedback_spry.php
into a browser. Click inside the Name field. Assuming you’re using a modern
browser and JavaScript is enabled, the field should turn yellow, indicating that it has
focus.

11. Don’t enter anything in the field, but move the focus to another field. The Name
field reverts to its previous state.

12. Click the Send comments button. The background of the text field turns pink, and
the word Required is displayed alongside in bold crimson text. Also note that noth-
ing is displayed below the Send comments button. The file feedback_spry.php
contains the PHP script used earlier to display the data submitted by the form, so
this is confirmation that the validation widget prevented the form from being
submitted.

13. Type your name in the Name field, and move the focus to another field. Although the
field turns yellow while you’re typing, it turns pink again when the focus moves to
another field, and the Required alert isn’t cleared, as the following screenshot shows:

This is because the default behavior is to validate form elements only when the
form is submitted, although you can easily change that.

14. Click the Send comments button. If your monitor is large enough for you to still
see the text field, you’ll see the background momentarily turn green indicating
that it passed validation. You’ll also see the form data displayed at the bottom of
the page.

15. Back in Dreamweaver, select the turquoise tab at the top left of the validation
widget to display its details in the Property inspector. Select the Blur checkbox, save
the page, and repeat steps 10–14 to test it again. This time, the field turns green,
and the Required message disappears in step 13.

Check your code, if necessary, against feedback_spry_text.php and
SpryValidationTextField_edit.css in examples/ch09.

The styles changed in the preceding exercise affect all text field validation widgets in the
same page, and they apply equally to all text field validation alerts. Although the Preview
states menu gives you access to most style rules, you might want to edit the following two
selectors directly in SpryValidationTextField.css:

.textfieldFocusState input, input.textfieldFocusState: This gives the text
field a yellow background when it has focus. The default color is #FFFFCC.

.textfieldFlashText input, input.textfieldFlashText: This applies only when
you select Enforce pattern in the Property inspector, and it makes the text briefly
flash red if an invalid character is inserted.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

412

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Building your own custom pattern
Spry makes it easy to build custom patterns using special pattern characters that act as a
mask for the user’s input. Spry custom patterns aren’t as powerful as regular expressions,
but they’re a lot easier to use, so it’s a reasonable trade-off for most people. Table 9-2
describes the special pattern characters.

Styling the alert messages for all remaining validation widgets follows the same princi-
ples as for a text field. Study the style sheets in the Spry assets folder, or click the
Customize this widget link in the Property inspector to display the help file, which
explains which style rules to change.

BUILDING ONLINE FORMS AND VALIDATING INPUT

413

9

Table 9-2. Special characters used for building custom patterns in Spry

Character Matches Case sensitivity

0 Any number 0–9

A Any letter A–Z Converted to uppercase

a Any letter a–z Converted to lowercase

B Any letter A–Z Original case preserved

b Any letter A–Z Original case preserved

X Any alphanumeric character (A–Z and 0–9) Letters converted to uppercase

x Any alphanumeric character (A–Z and 0–9) Letters converted to lowercase

Y Any alphanumeric character (A–Z and 0–9) Letters preserve original case

y Any alphanumeric character (A–Z and 0–9) Letters preserve original case

? Any character

Although there are ten special pattern characters, you need concern yourself with only
eight of them, because uppercase and lowercase B are identical. So are uppercase and
lowercase Y.

When using a custom pattern, you must select the Enforce pattern checkbox at the bot-
tom right of the Property inspector (see Figure 9-13 earlier in the chapter).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Any other character included in a custom pattern is treated as an auto-complete charac-
ter. For example, let’s say you have a stock code that looks like this: BC-901/c. If all stock
codes follow the same pattern of two uppercase letters followed by a hyphen, three digits,
a forward slash, and a lowercase letter, you could use the following custom pattern:

AA-000/a

Immediately after the first two letters are inserted, Spry automatically inserts the hyphen.
Then after the next thee digits, it inserts the forward slash ready for the user to insert the
final letter.

If you want to use any of the special characters listed in Table 9-2, you must precede them
with a backslash (for example, \A). To insert a backslash as part of an auto-complete
sequence, use a double backslash (\\).

Validating a text area with Spry

Unlike a text field, the <textarea> tag doesn’t have any way in HTML to control the
acceptable number of characters, so the text area validation widget optionally displays a
counter that tells the user how many have been entered or can still be entered. This is
important when inserting text in a database, because the text is truncated if the user
inputs more than the maximum accepted by the database column. With Spry, this is no
longer a problem, because you can block further input once the maximum has been
reached.

To validate a text area, either select an existing text area or position your cursor in a form
where you want to insert a new text area, and click the Spry Validation Text Area button in
the Forms or Spry tab in the Insert bar or select Insert ➤ Spry ➤ Spry Validation Text Area. If
you are inserting a new text area, fill in the ID and Label fields in the Input Tag Accessibility
Attributes dialog box as described earlier in the chapter. Figure 9-14 shows the options
available in the Property inspector for a text area validation widget.

Figure 9-14. The text area validation widget has options to control and monitor the number of
characters entered.

The layout of options in the Property inspector is slightly different, but Required, Preview
states, Validate on, Min chars, Max chars, and Hint all work exactly the same as for a text
field, so I won’t explain them again (refer to “Validating a text field with Spry” if you need
to refresh your memory).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

414

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s take a look at the two new options:

Counter: There are three settings to choose from, as follows:

None: This is the default. It turns off automatic counting of characters entered.

Chars count: This displays the total number of characters entered. If you com-
bine this with Validate on Change, it displays a constantly updated total (see
Figure 9-15).

Chars remaining: This is grayed out until you enter a value in Max chars. It uses this
value to calculate how many more characters can be accepted. If combined with
Validate on Change, it displays a running total of characters left (see Figure 9-15).

Block extra characters: This is self-explanatory. It prevents the user from entering
more characters than the number specified in Max chars. The checkbox remains
grayed out if Max chars is not specified.

BUILDING ONLINE FORMS AND VALIDATING INPUT

415

9

Figure 9-15. The character counter appears at the bottom right of the text area but gives no indication of its
meaning.

As Figure 9-15 shows, the Spry character counter simply displays a number at the bottom
right of the text area. Although most users will probably guess its meaning, it’s more user-
friendly to add a label to the counter. The following instructions show you how to do this.
I have used feedback_spry.php from the previous exercise, but you can use any form with
a text area.

1. In Design view, select the Comments text area, and apply a validation widget by
clicking the Spry Validation Text Area button on the Insert bar (or use the Insert menu).
Save the page to copy the external JavaScript file and style sheet to your site.

2. In the Property inspector, select Validate on Change, and set Counter to Chars count.

3. Open Split view to inspect the code inserted by Dreamweaver. It should look
like this:

Improving the character counter

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first shown on line 35 in the preceding screenshot contains a non-
breaking space (). Spry uses this to display the character count. Because the
content of the is generated dynamically, the label needs to go outside.

4. Click in Code view, position your cursor immediately to the left of the first
shown on line 35, and insert the following code shown in bold:

 Count:

5. Save the page and test it. You should now see a more user-friendly display like this:

When using the Chars remaining option, change the text inside the new to Remaining:.

Validating checkboxes with Spry

A common requirement on forms is a checkbox to confirm that the user agrees with cer-
tain terms and conditions. Creating this with Dreamweaver couldn’t be simpler. If you
already have the checkbox in your form, select it, and click the Spry Validate Checkbox but-
ton on the Insert bar. Save the page to copy the external JavaScript file and style sheet to
your Spry assets folder.

If you don’t have a checkbox, position your cursor where you want it to go inside the form,
and click the Spry Validate Checkbox button in the Forms or Spry tab of the Insert bar. Fill in
the ID and Label fields in the Input Tag Accessibility Attributes dialog box, and save the page.

That’s all there is to it.

Validating a checkbox group is also easy, but the default use of tags makes it diffi-
cult to create a layout that uses valid code and looks halfway decent. However, this is also

By default, Dreamweaver puts all alerts in tags and styles them to display inline
alongside the form element. This can result in the alert splitting across two lines, which
makes the default border look very messy. Either shorten the text or change the style
rules so that they blend in with your design. In fact, there is nothing to stop you from
moving the alerts to a different position. As long as you keep the classes and IDs
assigned by Dreamweaver, you can change the tags to other HTML elements, as
demonstrated in the next exercise.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

416

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a good opportunity to show you that you don’t need to be constrained by Dreamweaver’s
way of doing things. The best way to explain is with a practical example based on the form
you have been using throughout the chapter.

The form has a group of five checkboxes displayed in two columns, each of which is
formed by a paragraph floated left. The Dreamweaver documentation tells you to add
multiple checkboxes in the created by the validation widget, but tags can-
not contain block-level elements like <div>, <table>, or <p>. So the best way to validate a
checkbox group is to apply the widget first to a single checkbox. You can then convert the
Dreamweaver code to wrap the entire group in <div> tags.

Continue using the page from the preceding exercises, or copy feedback_spry_start.php
from examples/ch09 to workfiles/ch09 and save it as feedback_spry.php.

1. In Design view, select the checkbox labeled Classical concerts, and click the Spry
Validation Checkbox button on the Insert bar (or use the Insert menu). Save the page
to copy the external style sheet and JavaScript file to your site.

2. In the Property inspector, select the Enforce range (multiple) radio button, and type
2 in the Min # of selections field. Press Enter/Return or Tab to make sure
Dreamweaver updates the validation code.

3. Open Split view to inspect the code inserted by Dreamweaver. It should look like
Figure 9-16.

Applying a checkbox validation widget to a checkbox group

BUILDING ONLINE FORMS AND VALIDATING INPUT

417

9

Figure 9-16. Apply a validation widget to a single checkbox, and edit the code to validate a group.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see on line 39 in Figure 9-16, Dreamweaver creates an opening
tag with the ID sprycheckbox1 to wrap the checkbox (the closing tag is at
the end of line 43). Another at the beginning of line 43 is assigned the class
checkboxMinSelectionsMsg and contains the alert message.

With Preview states set to Min No. of Selections Not Met, you can see that the alert is
displayed between the checkbox and its label. It looks a mess, but not for long . . .

4. What you need to do is to convert the sprycheckbox1 into a <div> and
wrap it around the entire checkbox group.

Switch to Code view, select the following tag shown on line 39 of Figure 9-16,
and cut it to your clipboard:

5. Create a new line immediately above, paste the code back into the new line, and
change span to div. The resulting code should look like this (the lines above
and below are included for context):

<p>What aspects of London most interest you?</p>
<div id="sprycheckbox1">
<p class="chkRad">

6. Cut the following (it’s shown on line 43 of Figure 9-16), and paste immedi-
ately below the line you moved in the previous step:

Minimum number of selections ➥

not met.

The resulting code should look like this:

<div id="sprycheckbox1">
<p class="chkRad">
Minimum number of selections ➥

not met.
<label>
<input type="checkbox" name="interests_" value="Classical concerts" ➥

id="interests_0" />
Classical concerts</label>

7. The closing tag highlighted in bold after the Classical concerts label is left
over from the you converted into an opening <div> tag in step 5. It needs
to be converted to a closing </div> tag and moved right to the end of the check-
box group.

This is where a good understanding of HTML and your page structure comes in.
Although it’s just a case of moving a closing tag, you must get it in the correct
position after the closing tag of the second chkRad class paragraph (it should now
be on line 62). The following code shows the new tag in bold in its surrounding
context:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

418

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<label>
<input type="checkbox" name="interests_4" id="interests_4" />

Art</label>
</p>
</div>
<p class="clearIt">Would you like to receive regular details ➥

of events in London?</p>

8. Switch back to Design view, and click the turquoise tab at the top left of the check-
box validation widget. The checkbox group should now look like this:

You can tell whether you have inserted the closing </div> tag in the right place by
looking at the Spry widget’s thin turquoise border. It should wrap all the check-
boxes but not extend into the following line of text.

You can still display and hide the alert message using the Preview states menu in the
Property inspector. The heavy blue outline around the validation widget doesn’t
enclose the checkboxes because they’re floated. If you put the checkbox group in
a nonfloated element, such as a table, the outline would enclose the whole group.

9. Select Validate on Change in the Property inspector, save the page, and test it in a
browser. Select one checkbox, and the alert message should appear above the
checkbox group. Select a second checkbox, and the alert disappears.

You might want to make some changes to the CSS, but this shows you how you can adapt
the basic code created by Dreamweaver. This is something you will appreciate even more
during the second half of this book when working with PHP. Dreamweaver provides a solid
basis, but the rest is up to you.

This exercise just lifts the lid on the possibilities. I’ll leave you to experiment with other
variations.

Validating a radio button group with Spry

The Spry radio button group validation widget is unusual in that you cannot apply it to an
existing radio button group. If anything is selected on the page, even a radio button,
Dreamweaver opens the Spry Validation Radio Group dialog box and inserts a new radio
button group after the selected element. If nothing is selected on the page, the new
radio button group is inserted at the current insertion point.

To insert a radio button group validation widget, click the Spry Validation Radio Group but-
ton on the Forms or Spry tab of the Insert bar (or use the Insert menu). The options in the

BUILDING ONLINE FORMS AND VALIDATING INPUT

419

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Spry Validation Radio Group dialog box are identical to the Checkbox Group dialog box (see
Figure 9-10), so refer to the description earlier in the chapter if you need help.

Figure 9-17 shows the Property inspector for a Spry radio button group validation widget.
It has very few options. Most are the same as for other validation widgets, but the follow-
ing two require explanation:

Empty Value: This is used when you want to force the user to select a radio button
other than the default. For example, rather than two buttons with the values yes
and no, you might have a default button with the value unspecified. If you enter
unspecified in this field, validation will fail until one of the other values is chosen.

Invalid Value: This is for a button that contains an unacceptable answer. For exam-
ple, if users must agree to terms and conditions before submitting a form, you
could have two radio buttons with the values accept and decline. If you enter
decline in this field, validation will fail, and a message will be displayed when the
user selects the decline button.

Figure 9-17. The Spry radio button group validation widget has only a small number of
options.

You edit and style the validation messages in the same way as other validation widgets. To
edit individual radio buttons after creating the validation widget, select the radio button
element in Design view to display the normal radio button Property inspector.

Validating a drop-down menu with Spry

The Spry validation widget for <select> elements does not have an option to enforce
multiple choices. It has options only to reject a blank or invalid value. Consequently, it’s
more suited to single-choice drop-down menus than multiple-choice lists.

To apply the validation widget to an existing <select> element, highlight the menu object
in Design view, and click the Spry Validation Select button in the Forms or Spry tab of the
Insert bar (or use the Insert menu). Figure 9-18 shows the available options in the Property
inspector.

Figure 9-18. The select validation widget checks only whether a single value is blank or invalid.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

420

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Apart from those common to all validation widgets, there are just two options, namely:

Blank value: This option is selected by default. Validation fails if the user selects a
menu item that doesn’t have a value. Spry considers a blank value to be an
<option> tag either without a value attribute or with value="".

The value attribute is not required in the <option> tag. When it’s omitted, forms
use the contents of the <option> tag as the submitted value. If you build a menu
that doesn’t set the value attribute for each item, you must deselect the Blank
value checkbox. Otherwise, the menu will fail validation, even when an option is
selected.

Invalid value: If you select this option, enter the value you want to be treated as
invalid in the field alongside. For example, in the form built in the exercises earlier
in the chapter, the value for -- Select one -- was set to 0. To prevent this from being
accepted, select Invalid value, and enter 0 in the field alongside.

Validating passwords with Spry

There are two validation widgets for passwords, both of which are new to Dreamweaver
CS4. Since they work in combination with each other, I’ll deal with them together. The first
widget lets you specify criteria against which the password should be validated, while the
second simply checks whether the password entered in a confirmation field matches the
original password.

You can apply the password validation widget to an existing password field or use it to
insert a new field. To apply it to an existing password field, select the field in Design view,
and click the Spry Validation Password button on the Forms or Spry tab of the Insert bar (or
use the Insert menu).

If the selected element is not a password field, Dreamweaver opens the Input Tag
Accessibility Attributes dialog box for you to enter the ID and label for the password field.
Even if you click OK or Cancel without filling in any of the fields, Dreamweaver inserts a
new password field immediately after the currently selected element and assigns it default
values.

Figure 9-19 shows the options in the Property inspector for a password validation widget.
There are a lot of them, but their meaning is self-explanatory. They let you specify the
strength of the password by setting a minimum and maximum number of characters, as
well as upper and lower limits for letters, numbers, uppercase, and special characters.
Letters are defined as unaccented letters of the Roman alphabet (A–Z, both uppercase and
lowercase). Special characters are anything other than a number or unaccented letter.

Figure 9-19. The password validation widget lets you specify the strength of the password.

BUILDING ONLINE FORMS AND VALIDATING INPUT

421

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can apply the password confirmation validation widget to an existing text input or
password field, or you can use it to insert a new field. However, there must already be at
least one other text input or password field in the form. Otherwise, the widget will gener-
ate errors.

The password confirmation field should normally be positioned below the original pass-
word field. Dreamweaver scans the page upward to locate the first password field and uses
its ID to associate the two fields with each other. As you can see in Figure 9-20, there’s an
option to change the field against which the password is validated.

Figure 9-20. The password confirmation widget has very few options.

Chapter review
This has been a long chapter, crammed with detail, but it’s an important one. You’ll use
forms time and again when building dynamic sites, and making sure that user input is in
the right format saves endless headaches later. Spry does a lot to help with validation and
is fairly easy to use, but the Dreamweaver interface could still do with some improvement.
However, it’s important to remember that client-side validation is only half the story.
Because JavaScript can be turned off in the browser, you also need to check user input on
the server side with PHP.

Moreover, forms are useless without a script capable of processing the data. The next
chapter serves as a crash course in PHP basics for readers new to PHP. Then in Chapter 11,
we get down to the nitty-gritty of server-side programming, using PHP to validate user
input and then send it to your mail inbox.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

422

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10 INTRODUCING THE
BASICS OF PHP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This chapter is a cross between a crash course in PHP and a handy reference. It’s aimed at
readers who are completely new to PHP or who may have dabbled without really getting to
grips with the language. The intention is not to teach you all there is to know but to arm
you with sufficient knowledge to dig into Code view to customize Dreamweaver code with
confidence. Dreamweaver’s automatic code generation does a lot of the hard work for you,
but you need to tweak the code to get the best out of it, and when it comes to sending an
email from an online form, you have to do everything yourself.

In this chapter, you’ll learn about the following:

Writing and understanding PHP scripts

Using variables to represent changing values

Understanding the difference between single and double quotes

Organizing related information with arrays

Creating pages that make decisions for themselves

Using loops and functions for repetitive work

If you’re already comfortable with PHP, just glance at the section headings to see what’s
covered, because you might find it useful to refer to this chapter if you need to refresh
your memory about a particular subject. Then move straight to the next chapter and start
coding.

If you’re new to PHP, don’t try to learn everything at one sitting, or your brain is likely to
explode from information overload. On the first reading, look at the headings and maybe
the first paragraph or two under each one to get a general overview. Also read the section
“Understanding PHP error messages.”

Understanding what PHP is for
Back in the early 1990s, web pages consisted of nothing but text. Things didn’t stand still
for long, and it soon became possible to add images and scrolling text. But even if some
things moved around the page in an irritating way, everything on the Web was static in the
sense that the content was fixed at the time the developer created the page. Genuinely
dynamic features began to be added around 1995 with the help of two distinct types of
technology: client-side and server-side. The primary distinction between the two is con-
cerned not with how dynamic features are generated but with where.

At its most basic level, the Internet involves a simple request and response between the
user’s computer (the client) and the remote website (the server), as illustrated in
Figure 10-1. JavaScript is the most common example of a client-side technology. The
scripts that control the Spry widgets you used in previous chapters are downloaded with
the web page and loaded into the client’s memory. When a user clicks a collapsible panel
or tabbed interface, all the action takes place in the browser on the client computer.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

426

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 10-1. The basic relationship on the Internet is between client
and server.

With server-side technology, on the other hand, all the action takes place on the web
server before it’s sent to the client. PHP is the most widely used server-side language for
web development. In spite of its power, it’s relatively easy to learn, and it has the advan-
tage of being cross-platform. In other words, with only a handful of minor differences, it
works the same on Windows, Mac OS X, and Linux.

Increasing user interactivity with server-side
technology

With a static web page, everything is fixed at the time of design. All text, links, images, and
client-side scripts are hard-coded into the underlying markup. Dynamic web pages built
with a server-side language like PHP work in a very different way. Instead of all content
being embedded in the underlying code, much of it is automatically generated by the
server-side language or drawn from a database. Figure 10-2 illustrates this extra stage in
the process.

Figure 10-2. Server-side technology involves processing on the server before the web page is sent
back to the client.

Generating content dynamically on the server makes it possible to offer the user a much
richer variety of content. Perhaps the best known example is http://www.amazon.com. The
Amazon catalog contains many thousands of items, something that would be impossible if it

Server-side technology encompasses a much broader range, but I’m concerned here
with the way it integrates with the Web.

INTRODUCING THE BASICS OF PHP

427

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

were necessary to create and store a separate web page for every item. International news
providers, such as the BBC (http://www.bbc.com/news) or CNN (http://www.cnn.com), are
able to update their pages constantly in response to breaking news because most of the con-
tent is stored in a database. The web server uses server-side technology to extract the rele-
vant information and build web pages on the fly. Although this involves extra processing, it’s
normally very quick, and the whole sequence appears seamless to the user.

By the end of this book, you will be able to create web pages that do the same: querying
or searching a database, extracting the information, and displaying it as part of your web-
site. You’ll also be able to insert new material in the database and update or delete exist-
ing material. Admittedly, the projects in the remaining chapters won’t be as grandiose as
Amazon or a major news site, but they work on the same principles. It will involve getting
your hands dirty from time to time with code, but Dreamweaver will do most of the hard
work for you.

Writing PHP scripts
The web server processes your PHP code and sends only the results—usually as HTML—to
the browser. Because all the action is on the server, you need to tell it that your pages con-
tain PHP code. This involves two simple steps, namely:

Give every page a PHP filename extension. Do not use anything other than .php
unless you are told to specifically by your hosting company.

Enclose all PHP code within PHP tags.

The opening tag is <?php, and the closing tag is ?>. You may come across <? as a short ver-
sion of the opening tag. However, <? doesn’t work on all servers. Stick with <?php, which is
guaranteed to work.

Embedding PHP in a web page

When somebody visits your site and requests a PHP page, the server sends it to the PHP
engine, which reads the page from top to bottom looking for PHP tags. HTML passes
through untouched, but whenever the PHP engine encounters a <?php tag, it starts pro-
cessing your code and continues until it reaches the closing ?> tag. If the PHP code
produces any output, it’s inserted at that point. Then, any remaining HTML passes through
until another <?php tag is encountered.

PHP doesn’t always produce direct output for the browser. It may, for instance, check the
contents of form input before sending an email message or inserting information into a
database. So, some code blocks are placed above or below the main HTML code. You can

You can have as many PHP code blocks as you like on a page, but they cannot be nested
inside each other.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

428

http://lib.ommolketab.ir
http//lib.ommolketab.ir

also store code in external files. Code that produces direct output, however, always goes
where you want the output to be displayed.

A typical PHP page uses some or all of the following elements:

Variables to act as placeholders for unknown or changing values

Arrays to hold multiple values

Conditional statements to make decisions

Loops to perform repetitive tasks

Functions to perform preset tasks

Ending commands with a semicolon

PHP is written as a series of commands or statements. Each statement normally tells the
PHP engine to perform a particular action, and it must always be followed by a semicolon,
like this:

<?php
do this;
now do something else;
finally, do that;
?>

PHP is not like JavaScript or ActionScript. It won’t automatically assume there should be a
semicolon at the end of a line if you leave it out. This has a nice side effect: you can spread
long statements over several lines and lay out your code for ease of reading. PHP, like
HTML, ignores whitespace in code. Instead, it relies on semicolons to indicate where one
command ends and the next one begins.

Using variables to represent changing values

A variable is simply a name you give to something that may change or that you don’t
know in advance. The name that you give to a variable remains constant, but the value
stored in the variable can be changed at any time.

Although this concept sounds abstract, you use variables all the time in everyday life.
When you meet somebody for the first time, one of the first things you ask is, “What’s your
name?” It doesn’t matter whether the person you’ve just met is Tom, Dick, or Harry, name
remains constant, but the value you store in it varies for different people. Similarly, with
your bank account, money goes in and out all of the time (mostly out, it seems), but it
doesn’t matter whether you’re scraping the bottom of the barrel or as rich as Croesus, the
amount of money in your account is always referred to as the balance. In computer terms,
name and balance are variables.

To save space, I won’t always surround code samples with PHP tags.

INTRODUCING THE BASICS OF PHP

429

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Naming variables
You can choose just about anything you like as the name for a variable, as long as you keep
the following rules in mind:

Variables always begin with $ (a dollar sign).

The first character after the dollar sign cannot be a number.

No spaces or punctuation are allowed, except for the underscore (_).

Variable names are case-sensitive: $name and $Name are not the same.

A variable’s name should give some indication of what it represents: $name, $email, and
$totalPrice are good examples. Because you can’t use spaces in variable names, it’s a
good idea to capitalize the first letter of the second or subsequent words when combining
them (sometimes called camel case). Alternatively, you can use an underscore (for exam-
ple, $total_price).

Don’t try to save time by using really short variables. Using $n, $e, and $tp instead of
descriptive ones makes code harder to understand. More important, it makes errors more
difficult to spot.

Assigning values to variables
Variables get their values from a variety of sources, including the following:

User input through online forms

A database

An external source, such as a news feed or XML file

The result of a calculation

Direct inclusion in the PHP code

Wherever the value comes from, it’s always assigned in the same way with an equal sign
(=), like this:

$variable = value;

Because it assigns a value, the equal sign is called the assignment operator. Although it’s
an equal sign, get into the habit of thinking of it as meaning “is set to” rather than
“equals.” This is because, in common with many other programming languages, PHP uses
two equal signs (==) to mean “equals” when comparing items—something that catches out
a lot of beginners (experienced PHP programmers are not immune to the occasional lapse,
either).

Although you have considerable freedom in the choice of variable names, you can’t use
$this, because it has a special meaning in PHP object-oriented programming. It’s also
advisable to avoid using any of the keywords listed at http://docs.php.net/manual/
en/reserved.php.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

430

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Use the following rules when assigning a value to a variable:

Text must be enclosed in single or double quotes (the distinction between the dif-
ferent types of quotes is explained later in the chapter).

Numbers should not be in quotes—enclosing a number in quotes turns it into a
string.

You can also use a variable to assign a value to another variable, for example:

$name = 'David Powers';
$author = $name; // both $author and $name are now 'David Powers'

If the value of $name changes subsequently, it doesn’t affect the value of $author. As this
example shows, you don’t use quotes around a variable when assigning its value to another.
However, as long as you use double quotes, you can embed a variable in text like this:

$blurb = "$author has written several best-selling books on PHP.";

The value of $blurb is now “David Powers has written several best-selling books on PHP.”
There’s a more detailed description on the use of variables with double quotes in
“Choosing single or double quotation marks” later in the chapter.

Displaying PHP output

The most common ways of displaying dynamic output in the browser are to use echo or
print. The differences between the two are so subtle you can regard them as identical.
I prefer echo, because it’s one fewer letter to type. It’s also the style used by Dreamweaver.

Put echo (or print) in front of a variable, number, or string like this to output it to the
browser:

$name = 'David';
echo $name; // displays David
echo 5; // displays 5
echo 'David'; // displays David

You may see scripts that use parentheses with echo and print, like this:

echo('David'); // displays David
print('David'); // displays David

The parentheses make no difference. Unless you enjoy typing purely for the sake of it,
leave them out.

In common with other computer languages, PHP refers to a block of text as a string.
This comes from the fact that text is a string of characters. From now on, I’ll use the cor-
rect terminology.

INTRODUCING THE BASICS OF PHP

431

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Commenting scripts for clarity and debugging

Even if you’re an expert programmer, code is not always as immediately understandable as
something written in your own human language. That’s where comments can be a life-
saver. You may understand what the code does five minutes after creating it, but when you
come back to maintain it in six months’ time—or if you have to maintain someone else’s
code—you’ll be grateful for well-commented code.

In PHP, there are three ways to add comments. The first will be familiar to you if you write
JavaScript. Anything on a line following a double slash is regarded as a comment and will
not be processed:

// Display the name
echo $name;

You can also use the hash sign (#) in place of the double slash:

Display the name
echo $name;

Either type of comment can go to the side of the code, as long as it doesn’t go onto the
next line:

echo $name; // This is a comment
echo $name; # This is another comment

The third style allows you to stretch comments over several lines by sandwiching them
between /* and */ (just like CSS comments):

/* You might want to use this sort of comment to explain
the whole purpose of a script. Alternatively, it's a
convenient way to disable part of a script temporarily.
*/

As the previous example explains, comments serve a dual purpose: they not only allow you
to sprinkle your scripts with helpful reminders of what each section of code is for; they can
also be used to disable a part of a script temporarily. This is extremely useful when you are
trying to trace the cause of an error.

Choosing single or double quotation marks

As I mentioned earlier, strings must always be enclosed in single or double quotes. If all
you’re concerned about is what ends up on the screen, most of the time it doesn’t matter

The important thing to remember about echo and print is that they work only with
variables that contain a single value. You cannot use them to display more complex
structures that are capable of storing multiple values.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

432

http://lib.ommolketab.ir
http//lib.ommolketab.ir

which quotes you use, but behind the scenes, PHP uses single and double quotes in very
different ways:

Anything between single quotation marks is treated as plain text.

Anything between double quotation marks is processed.

Quotation marks need to be in matching pairs. If a string begins with a single quote, PHP
looks for the next single quote and regards that as the end of the string. Since an apostro-
phe uses the same character as a single quote, this presents a problem. A similar problem
arises when a string in double quotes contains double quotes. The best way to explain this
is with a practical example.

This simple exercise demonstrates the difference between single and double quotes and
what happens when a conflict arises with an apostrophe or double quotes inside a string.

1. Create a new PHP page called quotes.php in workfiles/ch10. If you just want to
look at the finished code, use quotes.php in examples/ch10.

2. Switch to Code view, and type the following code between the <body> tags:

<?php
$name = 'David Powers';
echo 'Single quotes: The author is $name
';
echo "Double quotes: The author is $name";
?>

3. Save the page, and load it into a browser. As you can see from the following
screenshot, $name is treated as plain text in the first line but is processed and
replaced with its value in the second line, which uses double quotes.

4. Slightly change the text in lines 3 and 4 of the code, as follows:

echo 'Single quotes: The author's name is $name
';
echo "Double quotes: The author's name is $name";

To display the output on separate lines, you have to include HTML tags, such as

, because echo outputs only the values passed to it—nothing more.

Experimenting with quotes

INTRODUCING THE BASICS OF PHP

433

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you type, the change in Dreamweaver syntax coloring should alert you to a
problem, but save the page nevertheless, and view it in a browser (it’s quotes2.php
in examples/ch10). You should see something like this:

As far as PHP is concerned, an apostrophe and a single quote are the same thing,
and quotes must always be in matching pairs. What’s happened is that the apostro-
phe in author's has been regarded as the closing quote for the first line, what was
intended as the closing quote of the first line becomes a second opening quote,
and the apostrophe in the second line becomes the second closing quote. This is all
quite different from what was intended—and if you’re confused, is it any wonder
that PHP is unable to work out what’s meant to happen?

5. To solve the problem, insert a backslash in front of the apostrophe in the first sen-
tence, like this (see quotes3.php in examples/ch10):

echo 'Single quotes: The author\'s name is $name
';

You should now see the syntax coloring revert to normal. If you view the result in a
browser, it should display correctly like this:

Using escape sequences in strings
Using a backslash like this is called an escape sequence. It tells PHP to treat a character in
a special way. Double quotes within a double-quoted string? You guessed it—escape them
with a backslash:

echo "Swift's \"Gulliver's Travels\""; // displays the double quotes

The meaning of parse error and other error messages is explained in
“Understanding PHP error messages” later in this chapter.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

434

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The next line of code achieves exactly the same thing, but by using a different combina-
tion of quotes:

echo 'Swift\'s "Gulliver\'s Travels"';

So, what happens when you want to include a literal backslash? You escape it with a back-
slash (\\).

The backslash (\\) and the single quote (\') are the only escape sequences that work in a
single-quoted string. Because double quotes are a signal to PHP to process any variables
contained within a string, there are many more escape sequences for double-quoted
strings. Most of them are to avoid conflicts with characters that are used with variables,
but three of them have special meanings: \n inserts a newline character, \r inserts a car-
riage return (needed mainly for Windows), and \t inserts a tab. Table 10-1 lists the main
escape sequences supported by PHP.

Table 10-1. The main PHP escape sequences

Escape sequence Character represented in double-quoted string

\" Double quote

\n Newline

\r Carriage return

\t Tab

\\ Backslash

\$ Dollar sign

\{ Opening curly brace

\} Closing curly brace

\[Opening square bracket

\] Closing square bracket

When creating strings, the outside pair of quotes must match—any quotes of the same
style in the string must be escaped with a backslash. However, putting a backslash in
front of the opposite style of quote will result in the backslash being displayed. To see
the effect, put a backslash in front of the apostrophe in the doubled-quoted string in
the previous exercise.

INTRODUCING THE BASICS OF PHP

435

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Joining strings together
PHP has a rather unusual way of joining strings. Although many other computer languages
use the plus sign (+), PHP uses a period, dot, or full stop (.), like this:

$firstName = 'David';
$lastName = 'Powers';
echo $firstName.$lastName; // displays DavidPowers

As the comment in the final line of code indicates, when two strings are joined like this,
PHP leaves no gap between them. Don’t be fooled into thinking that adding a space after
the period will do the trick. It won’t. You can put as much space on either side of the
period as you like; the result will always be the same, because PHP ignores whitespace in
code. You must either include a space in one of the strings or insert the space as a string
in its own right, like this:

echo $firstName.' '.$lastName; // displays David Powers

Adding to an existing string
Often you need to add more text at the end of an existing string. One way to do it is like this:

$author = 'David';
$author = $author.' Powers'; // $author is now 'David Powers'

Basically, this concatenates Powers (with a leading space) on the end of $author and then
assigns everything back to the original variable.

Adding something to an existing variable is such a common operation that PHP offers a
shorthand way of doing it—with the combined concatenation operator. Don’t worry
about the highfalutin name; it’s just a period followed by an equal sign. It works like this:

$author = 'David';
$author .= ' Powers'; // $author is now 'David Powers'

There should be no space between the period and equal sign. You’ll find this shorthand
very useful when building the string to form the body of an email message in the next
chapter.

The period—or concatenation operator, to give it its correct name—can be difficult
to spot among a lot of other code. Make sure the font size in Code view is large enough
to read without straining to see the difference between periods and commas. You can
adjust the size in the Fonts category of the Preferences panel (Edit menu on Windows or
Dreamweaver menu on a Mac).

The escape sequences listed in Table 10-1, with the exception of \\, work only in double-
quoted strings. If you use them in a single-quoted string, they are treated as a literal
backslash followed by the second character.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

436

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using quotes efficiently
Award yourself a bonus point if you spotted a better way of adding the space between
$firstName and $lastName in the preceding example. Yes, that’s right . . . Use double
quotes, like this:

echo "$firstName $lastName"; // displays David Powers

Choosing the most efficient combination of quotation marks isn’t easy when you first start
working with PHP, but it can make your code a lot easier to use. The coding standard for
the Zend Framework (http://framework.zend.com/manual/en/coding-standard.html)
lays down the following rules:

Use single quotes for literal strings (ones that contain no variables to be
processed).

When a literal string contains apostrophes, use double quotes around the whole
string.

Use double quotes when the string contains variables that need to be processed.

The Zend Framework is a set of advanced PHP scripts written by leading programmers,
including members of the core PHP development team. By following its rules, you start out
writing scripts the way an expert would. One of the main objectives is to make code effi-
cient and readable, avoiding unnecessary escaping. I frequently see scripts written by inex-
perienced developers that contain lines like this:

echo "";

Compare it with the following line, which wraps the whole literal string in single quotes:

echo '';

It doesn’t take a genius to work out which version is easier to read, not to mention type.

Special cases: true, false, and null
Although text should be enclosed in quotes, three special cases—true, false, and null—
should never be enclosed in quotes unless you want to treat them as strings. The first two
mean what you would expect; the last one, null, means “nothing” or “no value.”

PHP makes decisions on the basis of whether something evaluates to true or false.
Putting quotes around false has surprising consequences. The following code:

$OK = 'false';

does exactly the opposite of what you might expect: it makes $OK true! Why? Because the
quotes around false turn it into a string, and PHP treats strings as true (see “The truth

How long can a string be? As far as PHP is concerned, there’s no limit. In practice, you
are likely to be constrained by other factors, such as server memory; but in theory,
you could store the whole of War and Peace in a string variable.

INTRODUCING THE BASICS OF PHP

437

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

according to PHP” later in this chapter). The other thing to note about true, false, and
null is that they are case-insensitive. The following examples are all valid:

$OK = TRUE;
$OK = tRuE;
$OK = true;

Working with numbers

PHP can do a lot with numbers—from simple addition to complex math. Numbers can
contain a decimal point or use scientific notation, but they must contain no other punctu-
ation. Never use a comma as a thousands separator. The following examples show the
right and wrong ways to assign a large number to a variable:

$million = 1000000; // this is correct
$million = 1,000,000; // this generates an error
$million = 1e6; // this is correct
$million = 1e 6; // this generates an error

When using scientific notation, the letter e can be uppercase or lowercase and optionally
followed by a plus or minus sign. No spaces are permitted.

Negative numbers are preceded by a minus sign (use the hyphen on your keyboard or the
minus key on a numeric keypad) with no space before the first digit, for example:

$loss = -50000;

Performing calculations
The standard arithmetic operators all work the way you would expect, although some of
them look slightly different from those you learned at school. For instance, an asterisk (*)
is used as the multiplication sign, and a forward slash (/) is used to indicate division.

Table 10-2 shows examples of how the standard arithmetic operators work. To demon-
strate their effect, the following variables have been set:

$x = 20;
$y = 10;
$z = 3;

Table 10-2. Arithmetic operators in PHP

Operation Operator Example Result

Addition + $x + $y 30

Subtraction - $x - $y 10

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

438

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Operation Operator Example Result

Multiplication * $x * $y 200

Division / $x / $y 2

Modulo division % $x % $z 2

Increment (add 1) ++ $x++ 21

Decrement (subtract 1) -- $y-- 9

You may not be familiar with the modulo operator. This returns the remainder of a divi-
sion, as follows:

26 % 5 // result is 1
26 % 27 // result is 26
10 % 2 // result is 0

A quirk with the modulo operator in PHP is that it converts both numbers to integers
before performing the calculation. Consequently, if $z is 4.5 in Table 10-2, it gets rounded
up to 5, making the result 0, not 2, as you might expect.

A practical use of the modulo operator is to work out whether a number is odd or even.
$number % 2 will always produce 0 or 1.

The increment (++) and decrement (--) operators can come either before or after the
variable. When they come before the variable, 1 is added to or subtracted from the value
before any further calculation is carried out. When they come after the variable, the main
calculation is carried out first, and then 1 is either added or subtracted. Since the dollar
sign is an integral part of the variable name, the increment and decrement operators go
before the dollar sign when used in front:

++$x
--$y

You can set your own values for $x, $y, and $z in calculation.php in examples/ch10 to
test the arithmetic operators in action. The page also demonstrates the difference
between putting the increment and decrement operators before and after the variable.

As noted earlier, numbers should not normally be enclosed in quotes, although PHP will
usually convert to its numeric equivalent a string that contains only a number or that
begins with a number.

Calculations in PHP follow the same rules as standard arithmetic. Table 10-3 summarizes
the precedence of arithmetic operators.

INTRODUCING THE BASICS OF PHP

439

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 10-3. Precedence of arithmetic operators

Precedence Group Operators Rule

Highest Parentheses () Operations contained within
parentheses are evaluated
first. If these expressions are
nested, the innermost is
evaluated foremost.

Next Multiplication and division * / % These operators are
evaluated next. If an
expression contains two
or more operators, they are
evaluated from left to right.

Lowest Addition and subtraction + - These are the final
operators to be evaluated
in an expression. If an
expression contains two or
more operators, they are
evaluated from left to right.

If in doubt, use parentheses all the time to group the parts of a calculation that you want
to make sure are performed as a single unit. For example:

4 * 5 – 2 // result is 18
4 * (5 – 2) // result is 12

Combining calculations and assignment
You will often want to perform a calculation on a variable and assign the result back to the
same variable. PHP offers the same convenient shorthand for arithmetic calculations as for
strings. Table 10-4 shows the main combined assignment operators and their use.

Table 10-4. Combined arithmetic assignment operators used in PHP

Operator Example Equivalent to

+= $a += $b $a = $a + $b

-= $a -= $b $a = $a - $b

*= $a *= $b $a = $a * $b

/= $a /= $b $a = $a / $b

%= $a %= $b $a = $a % $b

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

440

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Don’t forget that the plus sign is used in PHP only as an arithmetic operator:

Addition: Use += as the combined assignment operator.

Strings: Use .= as the combined assignment operator.

Using arrays to store multiple values

Arrays are an important—and useful—part of PHP. You met one of PHP’s built-in arrays,
$_POST, in the previous chapter, and you’ll work with it a lot more through the rest of this
book. Arrays are also used extensively with a database, because you fetch the results of a
search in a series of arrays.

An array is a special type of variable that stores multiple values rather like a shopping list.
Although each item might be different, you can refer to them collectively by a single
name. Figure 10-3 demonstrates this concept: the variable $shoppingList refers collec-
tively to all five items—wine, fish, bread, grapes, and cheese.

Figure 10-3. Arrays are variables that store multiple items, just like a shopping list.

Individual items—or array elements—are identified by means of a number in square
brackets immediately following the variable name. PHP assigns the number automatically,
but it’s important to note that the numbering always begins at 0. So, the first item in the
array, wine, is referred to as $shoppingList[0], not $shoppingList[1]. And although
there are five items, the last one (cheese) is $shoppingList[4]. The number is referred to
as the array key or index, and this type of array is called an indexed array.

INTRODUCING THE BASICS OF PHP

441

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Instead of declaring each array element individually, you can declare the variable name
once and assign all the elements by passing them as a comma-separated list to array(),
like this:

$shoppingList = array('wine', 'fish', 'bread', 'grapes', 'cheese');

PHP numbers each array element automatically, so this creates the same array as in
Figure 10-3. To add a new element to the end of the array, use a pair of empty square
brackets like this:

$shoppingList[] = 'coffee';

PHP uses the next number available, so this becomes $shoppingList[5].

Using names to identify array elements
Numbers are fine, but it’s often more convenient to give array elements meaningful
names. For instance, an array containing details of this book might look like this:

$book['title'] = 'Essential Guide to Dreamweaver CS4';
$book['author'] = 'David Powers';
$book['publisher'] = 'friends of ED';

This type of array is called an associative array. Note that the array key is enclosed in
quotes (single or double; it doesn’t matter). It mustn’t contain any spaces or punctuation,
except for the underscore.

The shorthand way of creating an associative array uses the => operator (an equal sign fol-
lowed by a greater-than sign) to assign a value to each array key. The basic structure looks
like this:

$arrayName = array('key1' => 'element1', 'key2' => 'element2');

So, this is the shorthand way to build the $book array:

$book = array('title' => 'Essential Guide to Dreamweaver CS4',
'author' => 'David Powers',
'publisher' => 'friends of ED');

It’s not essential to align the => operators like this, but it makes code easier to read and
maintain.

The comma must go outside the quotes, unlike American typo-
graphic practice. For ease of reading, it’s recommended to insert
a space following each comma, but omitting the space is per-
fectly valid.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

442

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inspecting the contents of an array with print_r()
As you saw in the previous chapter, you can inspect the contents of an array using
print_r(). This is the code you inserted at the bottom of feedback.php:

<pre>
<?php if ($_POST) {print_r($_POST);} ?>
</pre>

It displays the contents of the array like this:

The <pre> tags are simply to make the output more readable. What really matters here is
that print_r() displays the contents of an array. As explained earlier, echo and print
work only with variables that contain a single value. However, print_r() is no good in a
live web page; it’s used only to inspect the contents of an array for testing purposes. To
display the contents of an array in normal circumstances, you need to use a loop. This
gives you access to each array element one at a time. Once you get to an element that
contains a single value, you can use echo or print to display its contents. Loops are cov-
ered a little later.

Making decisions

Decisions, decisions, decisions . . . Life is full of decisions. So is PHP. They give it the ability
to display different output according to circumstances. Decision making in PHP uses
conditional statements. The most common of these uses if and closely follows the
structure of normal language. In real life, you may be faced with the following decision
(admittedly not very often if you live in Britain):

If the weather's hot, I'll go to the beach.

In PHP pseudo-code, the same decision looks like this:

if (the weather's hot) {
I'll go to the beach;

}

Technically speaking, all arrays in PHP are associative. This means you can use
both numbers and strings as array keys in the same array. Don’t do it, though,
because it can produce unexpected results. It’s safer to treat indexed and
associative arrays as different types.

INTRODUCING THE BASICS OF PHP

443

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The condition being tested goes inside parentheses, and the resulting action goes between
curly braces. This is the basic decision-making pattern:

if (condition is true) {
// code to be executed if condition is true

}

The code inside the curly braces is executed only if the condition is true. If it’s false, PHP
ignores everything between the braces and moves on to the next section of code. How
PHP determines whether a condition is true or false is described in the following section.

Sometimes, the if statement is all you need, but you often want a default action to be
invoked. To do this, use else, like this:

if (condition is true) {
// code to be executed if condition is true

} else {
// default code to run if condition is false

}

What if you want more alternatives? One way is to add more if statements. PHP will test
them, and as long as you finish with else, at least one block of code will run. However, it’s
important to realize that all if statements will be tested, and the code will be run in every
single one where the condition equates to true. If you want only one code block to be
executed, use elseif like this:

if (condition is true) {
// code to be executed if first condition is true

} elseif (second condition is true) {
// code to be executed if first condition fails
// but second condition is true

} else {
// default code to run if both conditions are false

}

You can use as many elseif clauses in a conditional statement as you like. It’s important
to note that only the first one that equates to true will be executed; all others will be
ignored, even if they’re also true. This means you need to build conditional statements in
the order of priority that you want them to be evaluated. It’s strictly a first-come, first-
served hierarchy.

Confusion alert: I mentioned earlier that statements must always be followed by a semi-
colon. This applies only to the statements (or commands) inside the curly braces.
Although called a conditional statement, this decision-making pattern is one of PHP’s
control structures, and it shouldn’t be followed by a semicolon. Think of the semicolon
as a command that means “do it.” The curly braces surround the command statements
and keep them together as a group.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

444

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The truth according to PHP
Decision making in PHP conditional statements is based on the mutually exclusive
Boolean values, true and false (the name comes from a 19th-century mathematician,
George Boole, who devised a system of logical operations that subsequently became the
basis of much modern-day computing). If the condition equates to true, the code within
the conditional block is executed. If false, it’s ignored. Whether a condition is true or
false is determined in one of the following ways:

A variable set explicitly to true or false

A value PHP interprets implicitly as true or false

The comparison of two values

Explicit true or false values

This is straightforward. If a variable is assigned the value true or false and then used in a
conditional statement, the decision is based on that value. As explained earlier, true and
false are case-insensitive and must not be enclosed in quotes.

Implicit true or false values

PHP regards the following as false:

The case-insensitive keywords false and null

Zero as an integer (0), a floating-point number (0.0), or a string ('0' or "0")

An empty string (single or double quotes with no space between them)

An empty array

A SimpleXML object created from empty tags

All other values equate to true.

How comparisons equate to true or false is described in the next section.

Using comparisons to make decisions
Conditional statements often depend on the comparison of two values. Is this bigger than
that? Are they both the same? If the comparison is true, the conditional statement is exe-
cuted. If not, it’s ignored.

This definition explains why "false" (in quotes) is interpreted by PHP as
true. The value –1 is also treated as true in PHP.

Although elseif is normally written as one word, you can use else if
as separate words.

INTRODUCING THE BASICS OF PHP

445

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To test for equality, PHP uses two equal signs (==) like this:

if ($status == 'administrator') {
// send to admin page

} else {
// refuse entry to admin area

}

Size comparisons are performed using the mathematical symbols for less than (<) and
greater than (>). Let’s say you’re checking the size of a file before allowing it to be
uploaded to your server. You could set a maximum size of 50KB like this:

if ($bytes > 51200) {
// display error message and abandon upload

} else {
// continue upload

}

If you’re wondering why I used 51200 instead of 50000, it’s because when measuring
computer storage capacity, a kilobyte is traditionally calculated as 1,024 (210) bytes.
International standards organizations insist this should be called a kibibyte (KiB) instead
of a kilobyte, but this doesn’t seem to have caught on in general usage (http://
en.wikipedia.org/wiki/Kilobyte).

Comparison operators

These compare two values (known as operands because they appear on either side of an
operator). If both values pass the test, the result is true (or to use the technical expres-
sion, it returns true). Otherwise, it returns false. Table 10-5 lists the comparison opera-
tors used in PHP.

Table 10-5. PHP comparison operators used for decision-making

Symbol Name Use

== Equality Returns true if both operands have the same value;
otherwise, returns false.

!= Inequality Returns true if both operands have different values;
otherwise, returns false.

Don’t use a single equal sign in the first line like this:

if ($status = 'administrator') {

Doing so will open the admin area of your website to everyone. Why? This automati-
cally sets the value of $status to administrator; it doesn’t compare the two values. To
compare values, you must use two equal signs. It’s an easy mistake to make, but one
with potentially disastrous consequences.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

446

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Symbol Name Use

<> Inequality This has the same meaning as !=. It’s rarely used in PHP
but has been included here for the sake of
completeness.

=== Identical Determines whether both operands are identical. To be
considered identical, they must not only have the same
value but also be of the same datatype (for example,
both floating-point numbers).

!== Not identical Determines whether both operands are not identical
(according to the same criteria as the previous
operator).

> Greater than Determines whether the operand on the left is greater
in value than the one on the right.

>= Greater than Determines whether the operand on the left is greater
or equal to in value than or equal to the one on the right.

< Less than Determines whether the operand on the left is less in
value than the one on the right.

<= Less than or Determines whether the operand on the left is less in
equal to value than or equal to the one on the right.

Testing more than one condition
Frequently, comparing two values is not enough. PHP allows you to set a series of condi-
tions using logical operators to specify whether all, or just some, need to be fulfilled.

All the logical operators in PHP are listed in Table 10-6. Negation—testing that the oppo-
site of something is true—is also considered a logical operator, although it applies to indi-
vidual conditions rather than a series.

Table 10-6. Logical operators used for decision-making in PHP

Symbol Name Use

&& Logical AND Evaluates to true if both operands are true. If
the left-hand operand evaluates to false, the
right-hand operand is never tested.

and Logical AND Exactly the same as &&, but it takes lower
precedence.

Continued

INTRODUCING THE BASICS OF PHP

447

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 10-6. Continued

Symbol Name Use

|| Logical OR Evaluates to true if either operand is true;
otherwise, returns false. If the left-hand operand
returns true, the right-hand operand is never
tested.

or Logical OR Exactly the same as ||, but it takes lower
precedence.

xor Exclusive OR Evaluates to true if only one of the two operands
returns true. If both are true or both are false,
it evaluates to false.

! Negation Tests whether something is not true.

Technically speaking, there is no limit to the number of conditions that can be tested. Each
condition is considered in turn from left to right, and as soon as a defining point is reached,
no further testing is carried out. When using && or and, every condition must be fulfilled, so
testing stops as soon as one turns out to be false. Similarly, when using || or or, only one
condition needs to be fulfilled, so testing stops as soon as one turns out to be true.

$a = 10;
$b = 25;
if ($a > 5 && $b > 20) // returns true
if ($a > 5 || $b > 30) // returns true, $b never tested

The implication of this is that when you need all conditions to be met, you should design
your tests with the condition most likely to return false as the first to be evaluated. When
you need just one condition to be fulfilled, place the one most likely to return true first. If
you want a particular set of conditions considered as a group, enclose them in parentheses.

if (($a > 5 && $a < 8) || ($b > 20 && $b < 40))

Operator precedence is a tricky subject. Stick with && and ||, rather than and and or, and
use parentheses to group expressions to which you want to give priority. The xor operator
is rarely used.

Using the switch statement for decision chains
The switch statement offers an alternative to if . . . else for decision making. The
basic structure looks like this:

switch(variable being tested) {
case value1:
statements to be executed
break;

case value2:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

448

http://lib.ommolketab.ir
http//lib.ommolketab.ir

statements to be executed
break;

default:
statements to be executed

}

The case keyword indicates possible matching values for the variable passed to switch().
When a match is made, every subsequent line of code is executed until the break keyword
is encountered, at which point the switch statement comes to an end.

You can group several instances of the case keyword together to apply the same block of
code to them. For example:

switch($httpStatus) {
case 200:
$message = 'File OK';
break;

case 301:
case 302:
case 303:
case 307:
case 410:
$message = 'File moved or does not exist';
break;

case 404:
$message = 'File not found';
break;

default:
$message = 'Other error';

}

Dreamweaver uses a switch statement in the GetSQLValueString() function (see Figure 15-1
in Chapter 15), which it inserts into pages that insert or update records in a database.

The main points to note about switch are as follows:

The expression following the case keyword must be a number or a string.

You can’t use comparison operators with case. So, case > 100: isn’t allowed.

Each block of statements should normally end with break, unless you specifically
want to continue executing code within the switch statement.

If no match is made, any statements following the default keyword will be
executed. If no default has been set, the switch statement will exit silently and
continue with the next block of code.

Using the conditional (ternary) operator
The conditional operator (?:) is a shorthand method of representing a simple condi-
tional statement. Because it uses three operands, it’s also called the ternary operator.
The basic syntax looks like this:

condition ? value if true : value if false;

INTRODUCING THE BASICS OF PHP

449

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

What this means is that, if the condition to the left of the question mark is true, the value
immediately to the right of the question mark is used. However, if the condition evaluates
to false, the value to the right of the colon is used instead. Here is an example of it in use:

$age = 17;
$fareType = $age > 16 ? 'adult' : 'child';

The conditional operator can be quite confusing when you first encounter it, so let’s break
down this example section by section.

The first line sets the value of $age to 17.

The second line sets the value of $fareType using the conditional operator. The condition
is between the equal sign and the question mark—in other words, $age > 16.

If $age is greater than 16, the condition evaluates to true, so $fareType is set to the
value between the question mark and the colon—in other words, 'adult'. Otherwise,
$fareType is set to the value to the right of the colon—or 'child'. The equivalent code
using if . . . else looks like this:

if ($age > 16) {
$fareType = 'adult';

} else {
$fareType = 'child';

}

The if . . . else version is much easier to read, but the conditional operator is more
compact, and it’s used frequently by Dreamweaver. Most beginners hate this shorthand,
but you need to understand how it works if you want to customize Dreamweaver code.

Using loops for repetitive tasks

Loops are huge time-savers, because they perform the same task over and over again yet
involve very little code. They’re frequently used with arrays and database results. You can
step through each item one at a time looking for matches or performing a specific task.
Loops frequently contain conditional statements, so although they’re very simple in struc-
ture, they can be used to create code that processes data in often sophisticated ways.

Loops using while and do . . . while
The simplest type of loop is called a while loop. Its basic structure looks like this:

while (condition is true) {
do something

}

The following code displays every number from 1 through 100 in a browser (you can see it
in action in while.php in examples/ch10). It begins by setting a variable ($i) to 1 and then
using the variable as a counter to control the loop, as well as display the current number
onscreen.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

450

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$i = 1; // set counter
while ($i <= 100) {
echo "$i
";
$i++; // increase counter by 1

}

A variation of the while loop uses the keyword do and follows this basic pattern:

do {
code to be executed

} while (condition to be tested);

The only difference between a do . . . while loop and a while loop is that the code
within the do block is executed at least once, even if the condition is never true. The fol-
lowing code (in dowhile.php in examples/ch10) displays the value of $i once, even
though it’s greater than the maximum expected.

$i = 1000;
do {
echo "$i
";
$i++; // increase counter by 1

} while ($i <= 100);

Dreamweaver uses a do . . . while loop in its Repeat Region server behavior to loop
through the results of a database query (what Dreamweaver calls a recordset) and display
them on your page.

The danger with creating while and do . . . while loops yourself is forgetting to set a
condition that brings the loop to an end or setting an impossible condition. When this
happens, you create an infinite loop that either freezes your computer or causes the
browser to crash.

The versatile for loop
The for loop is less prone to generating an infinite loop, because you specify in the first
line how you want the loop to work. The for loop uses the following basic pattern:

for (initialize counter; test; increase or decrease the counter) {
code to be executed

}

The three expressions inside the parentheses control the action of the loop (note that they
are separated by semicolons, not commas):

The first expression initializes the counter variable at the start of the loop. You can
use any variable you like, but the convention is to use $i. When more than one
counter is needed, $j and $k are frequently used. This is the exception to the rule
about using descriptive names for variables. The convention of using $i (or another
single letter) as a counter is so deeply entrenched in programming and mathematic
culture, it’s unnecessary to use anything else.

INTRODUCING THE BASICS OF PHP

451

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The second expression is a test that determines whether the loop should continue
to run. This can be a fixed number, a variable, or an expression that calculates a
value.

The third expression shows the method of stepping through the loop. Most of the
time, you will want to go through a loop one step at a time, so using the increment
(++) or decrement (--) operator is convenient.

The following code does the same as the previous while loop, displaying every number
from 1 to 100 (see forloop.php in examples/ch10):

for ($i = 1; $i <= 100; $i++) {
echo "$i
";

}

There is nothing stopping you from using bigger steps. For instance, replacing $i++ with
$i+=10 in this example would display 1, 11, 21, 31, and so on.

Looping through arrays with foreach
The final type of loop in PHP is used exclusively with arrays. It takes two forms, both of
which use temporary variables to handle each array element. If you need to do something
only with the value of each array element, the foreach loop takes the following form:

foreach (array_name as temporary_variable) {
do something with temporary_variable

}

The following example loops through the $shoppingList array and displays the name of
each item (see shopping_list.php in examples/ch10):

$shoppingList = array('wine', 'fish', 'bread', 'grapes', 'cheese');
foreach ($shoppingList as $item) {
echo $item.'
';

}

The preceding example accesses only the value of each array element. An alternative form
of the foreach loop gives access to both the key and the value of each element. It takes
this slightly different form:

foreach (array_name as key_variable => value_variable) {
do something with key_variable and value_variable

}

The foreach keyword is one word. Inserting a space between for and
each doesn’t work.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

452

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This next example uses the $book array from “Using names to identify array elements” ear-
lier in the chapter and incorporates the key and value of each element into a simple string,
as shown in the screenshot (see book.php in examples/ch10):

foreach ($book as $key => $value) {
echo "The value of '$key' is '$value'
";

}

The use of $key and $value as the variables in a foreach loop has also become something
of a convention. In this example, it makes sense because the loop is exposing the keys and
values of array elements. However, it’s a good idea to use descriptive variables where
appropriate. For example, when looping through an array of book titles, it’s much more
meaningful to use something like this:

foreach ($titles as $title) {
echo $title . '
';

}

Descriptive variables make code much easier to read and understand.

Breaking out of a loop
To bring a loop prematurely to an end when a certain condition is met, insert the break
keyword inside a conditional statement. As soon as the script encounters break, it exits the
loop. For example, the following loop comes to an end as soon as a banned word is found
in $input:

foreach ($bannedWords as $word) {
if (strpos($input, $word) !== false) {
$reject = true;
break;

}
}

INTRODUCING THE BASICS OF PHP

453

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The strpos() function reports the position of a substring inside a longer string, counting
from zero. If the presence of a single banned word is sufficient to reject $input, there’s no
point in looping through the whole array, so break terminates the loop as soon as the con-
dition is met. (The reason for using !== false is to avoid a false negative; a matching word
at the beginning of $input would return 0, which PHP treats as false.)

To skip an iteration of the loop when a certain condition is met, use the continue key-
word. Instead of exiting, it returns to the top of the loop and executes the next iteration.
In the next example, the loop goes through an array of prices, counting how many items
are less than $20.

$total = 0;
foreach ($prices as $price) {
if ($price > 20) {
continue;

}
$total++;

}

The continue keyword forces the script to abandon the rest of the current iteration if
$price is higher than 20, so $total isn’t incremented. Of course, you could achieve the
same result by using the following code:

$total = 0;
foreach ($prices as $price) {
if ($price < 20) {
$total++;

}
}

But then it wouldn’t demonstrate how continue works . . .

Using functions for preset tasks

Functions do things . . . lots of things, mind-bogglingly so in PHP. The last time I counted,
PHP had nearly 3,000 built-in functions, and more have been added since. Don’t worry:
you’ll only ever need to use a handful, but it’s reassuring to know that PHP is a full-
featured language capable of industrial-strength applications.

The functions you’ll be using in this book do really useful things, such as send email, query
a database, format dates, and much, much more. You can identify functions in PHP code,
because they’re always followed by a pair of parentheses. Sometimes the parentheses are
empty. Often, though, the parentheses contain variables, numbers, or strings, like this:

$thisYear = date('Y');

This calculates the current year and stores it in the variable $thisYear. It works by feeding
the string 'Y' to the built-in PHP function date(). Placing a value between the parentheses

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

454

http://lib.ommolketab.ir
http//lib.ommolketab.ir

like this is known as passing an argument to a function. The function takes the value in
the argument and processes it to produce (or return) the result. For instance, if you pass
the string 'M' as an argument to date() instead of 'Y', it will return the current month as
a three-letter abbreviation (for example, Mar, Apr, May). The date() function is covered in
detail in Chapter 17.

Some functions take more than one argument. When this happens, separate the argu-
ments with commas inside the parentheses, like this:

$mailSent = mail($to, $subject, $message);

It doesn’t take a genius to work out that this sends an email to the address stored in the
first argument, with the subject line stored in the second argument and the message
stored in the third one. You’ll see how this function works in the next chapter.

As if the 3,000-odd built-in functions weren’t enough, PHP lets you build your own custom
functions. Even if you don’t relish the idea of creating your own, throughout this book
you’ll use some that I have made. You use them in exactly the same way.

Understanding PHP error messages

There’s one final thing you need to know about before savoring the delights of PHP: error
messages. They’re an unfortunate fact of life, but it helps a great deal if you understand
what they’re trying to tell you. The following illustration shows the structure of a typical
error message:

The first thing to realize about PHP error messages is that they report the line where PHP
discovered a problem. Most newcomers—quite naturally—assume that’s where they have
to look for their mistake. Wrong . . .

What PHP is telling you most of the time is that something unexpected has happened. In
other words, the mistake frequently lies before that point. The preceding error message
means that PHP discovered a foreach command where there shouldn’t have been one.
(Error messages always prefix PHP elements with T_, which stands for token. Just ignore it.)

You’ll often come across the term parameter in place of argument.
There is a technical difference between the two words, but for all practi-
cal purposes, they are interchangeable.

INTRODUCING THE BASICS OF PHP

455

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Instead of worrying what might be wrong with the foreach command (probably nothing),
start working backward, looking for anything that might be missing. Usually, it’s a semi-
colon or closing quote. In this example, the error was caused by omitting the semicolon at
the end of line 27 in book.php. In other words, the error was on the previous line, not the
line in the error message.

Sometimes you’ll see an error message that tells you it found a problem on or after the
last line on the page. That normally means you left out a closing curly brace earlier in the
script. Use the Balance Braces tool, as described in the next chapter, to find the cause of
the problem.

There are five main categories of error, presented here in descending order of importance:

Fatal error: Any HTML output preceding the error will be displayed, but once the
error is encountered—as the name suggests—everything else is killed stone dead.
A fatal error is normally caused by referring to a nonexistent file or function.

Parse error: This means there’s a mistake in your code, such as mismatched
quotes, or a missing semicolon or closing brace. Like a fatal error, it stops the script
in its tracks and doesn’t even allow any HTML output to be displayed.

Warning: This alerts you to a serious problem, such as a missing include file.
(Include files are covered in Chapter 12.) However, the error is not serious enough
to prevent the rest of the script from being executed.

Deprecated: This is a new type of error introduced in PHP 5.3 that warns you
about code that won’t work in future versions. Don’t say you haven’t been warned.

Notice: This advises you about relatively minor issues, such as the use of a nonde-
clared variable. Although you can turn off the display of notices, you should always
try to eliminate the cause, rather than sweep the issue under the carpet. Any error
is a threat to your output.

Hosting companies have different policies about the level of error checking. If error check-
ing is set to a high level and the display of errors is turned off, any mistakes in your code
will result in a blank screen. Even if your hosting company has a more relaxed policy, you
still don’t want mistakes to be displayed for all to see. Test your code thoroughly, and elim-
inate all errors before deploying it on a live website.

Another type of error, strict, was introduced in PHP 5.0, mainly for the benefit of
advanced developers. Strict error messages are not displayed by default, but this will
change in PHP 6. The official definition of a strict message is that it suggests changes to
“ensure the best interoperability and forward compatibility of your code.” Quite how this
differs from deprecated is unclear, although the implication appears to be that depre-
cated means a feature will definitely be removed, whereas strict means a change is under
consideration.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

456

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter review
After that crash course, I hope you’re feeling not like a crash victim but invigorated and
raring to go. Although you have been bombarded with a mass of information, you’ll dis-
cover that it’s easy to make rapid progress with PHP. In the next chapter, you’ll use most of
the techniques from this chapter to send user input from an online form to your email
inbox. To begin with, you’ll probably feel that you’re copying code without much compre-
hension, but I’ll explain all the important things along the way, and you should soon find
things falling into place.

INTRODUCING THE BASICS OF PHP

457

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11 USING PHP TO PROCESS A FORM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In Chapter 9, I showed you how to build a feedback form and validate the input on the
client side with Spry validation widgets. In this chapter, we’ll take the process to its next
stage by validating the data on the server side with PHP. If the data is OK, we’ll send the
contents by email and display an acknowledgment message. If there’s a problem with any of
the data, we’ll redisplay it in the form with messages prompting the user to correct any
errors or omissions. Figure 11-1 shows the flow of events.

Figure 11-1. The flow of events in processing the feedback form

Sending an email from an online form is just the sort of task that Dreamweaver should
automate, but unfortunately it doesn’t. Commercial extensions are available to automate
the process for you, but not everyone will have—or want to buy—a commercial extension
in addition to Dreamweaver CS4, so I think it’s important to show you how to hand-code
this vital feature. At the same time, it gives you practical experience working with PHP
code, which is essential unless you are willing to be limited to very basic tasks. The
Dreamweaver server behaviors and data objects that you will use in later chapters take a
lot of the hard work out of creating dynamic applications, but like the CSS layout that you
used in Chapter 5, they lay a solid foundation for you to build on, rather than do
absolutely everything for you.

In this chapter, you’ll learn about the following:

Gathering user input and sending it by email

Using PHP conditional logic to check required fields

Displaying errors without losing user input

Saving frequently used code as a snippet

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

460

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Filtering out suspect material

Avoiding email header injection attacks

Processing multiple-choice form elements

Blocking submission by spam bots

The flow of events shown in Figure 11-1 is controlled by a series of conditional statements
(see “Making decisions” in the previous chapter). The PHP script will be in the same page
as the form, so the first thing it needs to know is if the form has been submitted. If it has,
the contents of the $_POST array will be checked. If it’s OK, the email will be sent and an
acknowledgment displayed, else a series of error messages will be displayed. In other
words, everything is controlled by if . . . else statements.

Activating the form
As you saw in Chapter 9, data entered into the form can be retrieved by using
print_r($_POST); to inspect the contents of the $_POST array. This is one of PHP’s so-
called superglobal arrays. They’re such an important part of PHP that it’s worth pausing for
a moment to take a look at what they do.

Getting information from the server with PHP
superglobals

Superglobal arrays are built-in associative arrays that are automatically populated with
really useful information. They all begin with a dollar sign followed by an underscore. The
most important superglobal arrays are as follows:

$_POST: This contains values sent through the post method.

$_GET: This contains values sent through the get method or a URL query string.

$_SERVER: This contains information stored by the web server, such as file name,
pathname, hostname, and so on.

$_SESSION: This stores information that you want to preserve so that it’s available
to other pages. Sessions are covered in Chapter 15.

$_FILES: This contains details of file uploads. File uploads are not covered in this
book. See http://docs.php.net/manual/en/features.file-upload.php or my book
PHP Solutions: Dynamic Web Design Made Easy (friends of ED, ISBN: 978-1-59059-
731-6) for details.

The keys of $_POST and $_GET are automatically derived from the names of form ele-
ments. Let’s say you have a text input field called address in a form; PHP automatically
creates an array element called $_POST['address'] when the form is submitted by the
post method or $_GET['address'] if you use the get method. As Figure 11-2 shows,
$_POST['address'] contains whatever value a visitor enters in the text field, enabling you

USING PHP TO PROCESS A FORM

461

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to display it onscreen, insert it in a database, send it to your email inbox, or do whatever
you want with it.

Figure 11-2. The $_POST array automatically creates variables with the same name and
value as each form field.

It’s important to realize that variables like $_POST['address'] or $_GET['address'] don’t
exist until the form has been submitted. So, before using $_POST or $_GET variables in a
script, you should always test for their existence with isset() or wrap the entire section
of script in a conditional statement that checks whether the form has been submitted.
You’ll see both of these techniques in action in this chapter and the rest of this book.

You may come across old scripts or tutorials that tell you PHP automatically creates vari-
ables with the same name as form fields. In this example, it would be $address. This relies
on a setting called register_globals being on. The default for this setting has been off
since 2002, because it leaves your site wide open to malicious attacks. Most hosting com-
panies now seem to have turned it off, but don’t be tempted to try to find a way to turn it
back on. It has been removed from PHP 6, so scripts that rely on register_globals will
break in future.

Some scripts also recommend the use of $_REQUEST, which is another PHP superglobal. It’s
much less secure. Always use $_POST for data submitted using the post method and $_GET
for the get method or when values are passed through a query string at the end of a URL.

Dreamweaver code hints make it easy to type the names of superglobals. As soon as you
type the underscore after the dollar sign, it displays a list of the array names; and for arrays
such as $_SERVER with predefined elements, a second menu with the predefined elements
is also displayed, as you’ll see when you start scripting the form.

Sending email

To send an email with PHP, you use the mail() function, which takes up to five arguments,
as follows (the first three are required):

Recipient(s): The email address(es) to which the message is being sent. Addresses
can be in either of the following formats:

'user@example.com'
'Some Guy <user2@example.com>'

Don’t forget that PHP is case-sensitive. All superglobal array names are written in
uppercase. $_Post or $_Get, for example, won’t work.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

462

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To send to more than one address, use a comma-separated string like this:

'user@example.com, another@example.com, Some Guy <user2@example.com>'

Subject: A string containing the subject line of the message.

Body: This is the message being sent. It should be a single string, regardless of how
long it is. However, the email standard imposes a maximum line length. I’ll describe
how to handle this later.

Additional headers: This is an optional set of email headers, such as From, Cc,
Reply-to, and so on. They must be in a specific format, which is described later in
this chapter.

Additional parameters: As an antispam measure, some hosting companies require
verification that the email originates from the registered domain. I’ll explain how to
use this argument later in the chapter.

It’s important to understand that mail() isn’t an email program. It passes data to the web
server’s mail transport agent (MTA). PHP’s responsibility ends there. It has no way of
knowing whether the email is delivered to its destination. It doesn’t handle attachments or
HTML email. Still, it’s efficient and easy to use.

These days, most Internet service providers (ISPs) enforce Simple Mail Transfer Protocol
(SMTP) authentication before accepting email for relay from another machine. However,
mail() was designed to communicate directly with the MTA on the same machine, with-
out the need for authentication. This presents a problem for testing mail() in a local test-
ing environment. Since mail() doesn’t normally need to authenticate itself, it’s not
capable of doing so. More often than not, when you attempt to use mail() on your local
computer, it can’t find an MTA or the ISP rejects the mail without authentication.

Scripting the feedback form
To make things simple, I’m going to break up the PHP script into several sections. To start
off, I’ll concentrate on the text input fields and sending their content by email. Then I’ll
move onto validation and the display of error messages before showing you how to han-
dle checkboxes, radio buttons, menus, and multiple-choice lists.

Most readers should be able to send a simple email after the following exercise, but even
if you are successful, you should implement the server-side validation described later in
the chapter. This is because, without some simple security precautions, you risk turning
your online forms into a spam relay. Your hosting company might suspend your site or
close down your account altogether.

Although I normally recommend testing everything locally before uploading PHP
scripts to a remote server, it’s usually not possible with mail(), especially if you need to
log into your normal email account. Some parts of the following script can be tested
locally, but when it comes to the sections that actually send the mail, the overwhelming
majority of readers will need to upload the script to their website and test it from there.

USING PHP TO PROCESS A FORM

463

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This involves a lot of hand-coding—much more than you’ll encounter in later chapters. To
reduce the amount of typing you need to do, I have created an extension that contains
several PHP functions stored as Dreamweaver snippets (small pieces of code that can be
easily inserted into any page). I suggest you install them now so they’re ready for use in
this and subsequent chapters.

To install the snippets, you need to have installed the Extension Manager when you origi-
nally installed Dreamweaver CS4. If you accepted the default options when installing
Dreamweaver, you should have access to the Extension Manager. However, if you dese-
lected all the optional programs and components, you will need to install the Extension
Manager from your Dreamweaver or Creative Suite 4 DVD. The extension file is called
dwcs4_snippets.mxp and is in the extras folder of the download files for this book.

1. Launch the Extension Manager as described in Chapter 8.

2. Click the Install button, navigate to dwcs4_snippets.mxp, and install it.

3. Close and relaunch Dreamweaver.

4. The snippets should have been installed in a folder called PHP-DWCS4 in the
Dreamweaver Snippets panel (see Figure 11-3). They are now accessible for use in
any site.

I’ll show you how to insert a snippet in a page later in this chapter.

Figure 11-3.
The extension

installs a set of
useful PHP scripts.

Installing the PHP snippets

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

464

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The starting point is in feedback_01.php in examples/ch11. It’s the same as
feedback_fieldsets.php from Chapter 9 but with the small block of PHP code removed
from the bottom of the page. If you want to use your own form, I suggest you remove any
client-side validation from it, because the client-side validation makes it difficult to check
whether the more important server-side validation with PHP is working correctly. You can
add the client-side validation back at the final stage.

1. Copy feedback_01.php and contact.css from examples/ch11 to workfiles/ch11.
Rename feedback_01.php to feedback.php. If Dreamweaver asks you whether to
update links, click No.

2. Select contact.css in the Related Files toolbar to open it in Split view, and add the
following style rule:

.warning {
font-weight:bold;
color:#F00;

}

This adds a class called warning, which displays text in bold red. Save contact.css.

3. Select Source Code in the Related Files toolbar to display the underlying code of
feedback.php in Split view, click anywhere in the form, and use the Tag selector at
the bottom of the Document window to select the entire form. This should bring
the opening tag of the form into view in Code view. Click in Code view so that your
cursor is between the quotes of the action attribute. Although you can set the
action for the form through the Property inspector, doing so in Code view greatly
reduces the possibility of making a mistake.

4. Select the PHP tab on the Insert bar, and click the Echo button (the menu option is
Insert ➤ PHP Objects ➤ Echo). This will insert a pair of PHP tags followed by echo

Processing and acknowledging the message

This is a long script. Give yourself plenty of time to absorb the details. You can
check your progress at each stage with the files in examples/ch11. The final code
is in feedback_12.php. Even if you don’t want to do a lot of PHP programming,
it’s important to get a feel for the flow of a script, because this will help you cus-
tomize the Dreamweaver code once you start working with a database. The
script uses a lot of PHP’s built-in functions. I explain the important ones but don’t
always go into the finer points of how they work. The idea is to give you a work-
ing solution, rather than overwhelm you with detail. In the next chapter, I’ll show
you how to put the main part of the script in an external file so that you can
reuse it with other forms without the need to hand-code everything from scratch
every time.

USING PHP TO PROCESS A FORM

465

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

between the quotes of the action attribute, and Dreamweaver positions your cur-
sor in the correct place to start typing, as shown in the following screenshot:

5. To set the action attribute of the form to process itself, you need to use a variable
from the $_SERVER superglobal array. As noted before, superglobals always begin
with $_, so type just that at the current position. Dreamweaver automatically pres-
ents you with a pop-up menu containing all the superglobals, as shown here:

You can navigate this pop-up menu in several ways: continue typing server in either
uppercase or lowercase until SERVER is highlighted or use your mouse or the
arrow keys to highlight it. Then double-click or press Enter/Return. Dreamweaver
will present you with another pop-up menu. Locate PHP_SELF as shown here, and
either double-click or press Enter/Return:

6. Although it’s not strictly necessary for a single command, get into the habit of end-
ing all statements with a semicolon, and type one after the closing square bracket

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

466

http://lib.ommolketab.ir
http//lib.ommolketab.ir

(]) of the superglobal variable that’s just been entered. The code in the opening
<form> tag should look like this (new code is highlighted in bold type):

<form id="form1" name="form1" method="post" action="<?php echo ➥

$_SERVER['PHP_SELF']; ?>">

The predefined variable $_SERVER['PHP_SELF'] always contains the name of the
current page, so using echo between the quotes of the action attribute auto-
matically sets it to the current page, making this a self-processing form. As you
saw in Chapter 9, leaving out the value of action also results in the form
attempting to process itself. So, technically speaking, this isn’t 100-percent nec-
essary, but it’s common practice in PHP scripts, and it’s useful to know what
$_SERVER['PHP_SELF'] does.

7. You now need to add the mail-processing script at the top of the page. As you saw
in Chapter 9, the $_POST array contains not only the data entered into the form but
also the name and value of the submit button. You can use this information to
determine whether the submit button has been clicked. From this point onward, it
will be easier to work in Code view. Switch to Code view, and insert the following
block of PHP code immediately above the DOCTYPE declaration:

<?php
if (array_key_exists('send', $_POST)) {
// mail processing script
echo 'You clicked the submit button';

}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

This uses the PHP function array_key_exists() to check whether the $_POST array
contains a key called send, the name attribute of the form submit button. If you
don’t want to type the function name yourself, you can press Ctrl+Space to bring
up an alphabetical list of all PHP functions. Type just the first few letters, and then
use your arrow keys to select the right one. When you press Tab or Enter/Return,
Dreamweaver finishes the rest of the typing and pops up a code hint. Alternatively,
just type the function name directly, and the code hint appears as soon as you
enter the opening parenthesis after array_key_exists, as shown here:

The mixed data type refers to the fact that array keys can be either numbers or
strings. In this case, you are using a string, so enclose send in quotes, and then after

USING PHP TO PROCESS A FORM

467

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a comma, type $_POST. Because it’s a superglobal, you are presented with the same
pop-up menu as in step 5. If you select POST, Dreamweaver assumes you want to
add the name of an array key and will automatically add an opening square bracket
after the T. On this occasion, you want to check the whole $_POST array, not just a
single element, so remove the bracket by pressing Backspace. Make sure you use
two closing parentheses—the first belongs to the function array_key_exists(),
and the second encloses the condition being tested for by the if statement.

If the send array key exists, the submit button must have been clicked, so any script
between the curly braces is executed. Otherwise, it’s ignored. Don’t worry that echo
will display text above the DOCTYPE declaration. It’s being used for test purposes
only and will be removed eventually.

8. Save feedback.php, and test it in a browser. It should look no different from
before.

9. Click the Send comments button. A message should appear at the top of the page
saying “You clicked the submit button.”

10. Reload the page without using the browser’s reload button. Click inside the address
bar, and press Enter/Return. The message should disappear. This confirms that any
code inside the curly braces runs only if the submit button has been clicked.

11. Change the block of code you entered in step 7 so it looks like this:

<?php
if (array_key_exists('send', $_POST)) {
//mail processing script
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from Essential Guide';

// process the $_POST variables
$name = $_POST['name'];
$email = $_POST['email'];
$comments = $_POST['comments'];

// build the message
$message = "Name: $name\r\n\r\n";
$message .= "Email: $email\r\n\r\n";
$message .= "Comments: $comments";

// limit line length to 70 characters
$message = wordwrap($message, 70);

// send it
$mailSent = mail($to, $subject, $message);

}
?>

Remember, an if statement doesn’t always need to be followed by else or
elseif. When the condition of a solitary if statement isn’t met, PHP simply
skips to the next block of code.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

468

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The code that does the processing consists of five stages. The first two lines assign
your email address to $to and the subject line of the email to $subject.

Next, $_POST['name'], $_POST['email'], and $_POST['comments'] are reassigned
to ordinary variables to make them easier to handle.

The shorter variables are then used to build the body of the email message, which
must consist of a single string. As you can see, I have used the combined concate-
nation operator (.=) to build the message and escape sequences to add carriage
returns and newline characters between each section (see “Adding to an existing
string” and “Using escape sequences in strings” in Chapter 10).

Once the message body is complete, it’s passed to the wordwrap() function, which
takes two arguments: a string and an integer that sets the maximum length of each
line. Although most mail systems will accept longer lines, it’s recommended to limit
each line to 70 characters.

After the message has been built and formatted, the recipient’s address, subject
line, and body of the message are passed to the mail() function. There is nothing
magical about the variable names $to, $subject, and $message. I chose them to
describe what each one contains, making much of the script self-commenting.

The mail() function returns a Boolean value (true or false) indicating whether it
succeeded. By capturing this value as $mailSent, you can use it to redirect the user
to another page or change the contents of the current one.

12. For the time being, let’s keep everything in the same page, because the rest of the
chapter will add further refinements to the basic script. Scroll down, and insert the
following code just after the page’s main heading (new code is highlighted in bold):

<h1>Contact us</h1>
<?php
if ($_POST && !$mailSent) {
?>
<p class="warning">Sorry, there was a problem sending your message.

Please try later.</p>
<?php
} elseif ($_POST && $mailSent) {
?>
<p>Your message has been sent. Thank you for your feedback.

</p>
<?php } ?>
<p>We welcome feedback from visitors . . .</p>

The official format for email is described in a document known as Request For
Comments (RFC) 2822 (http://tools.ietf.org/html/rfc2822). Among other
things, it says that carriage returns and newline characters must not appear
independently in the body of a message; they must always be together as a pair.
It also sets the maximum length of a line in the body at 998 characters but rec-
ommends restricting lines to no more than 78. The reason I have set wordwrap()
to a more conservative 70 characters is to avoid problems with some mail
clients that automatically wrap messages. If you set the value too high, you end
up with alternating long and short lines.

USING PHP TO PROCESS A FORM

469

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Many beginners mistakenly think you need to use echo or print to display HTML in
a PHP block. However, except for very short pieces of code, it’s more efficient to
switch back to HTML, as I’ve done here. Doing so avoids the need to worry about
escaping quotes. Also, Dreamweaver code hints and automatic tag completion
speed things up for you. As soon as you type a space after <p in the first paragraph,
Dreamweaver pops up a code hint menu like this:

Select class. As soon as you do so, Dreamweaver checks the available classes in the
attached style sheet and pops up another code hint menu, as shown in the next
screenshot, so you can choose warning:

This makes coding much quicker and more accurate. Dreamweaver’s context sensi-
tivity means you get the full range of HTML code hints only when you’re in a sec-
tion of HTML code. When you’re in a block of PHP code, you get a list of HTML tags
when you type an opening angle bracket, but there are no attribute hints or auto-
completion. So, it makes more sense to use PHP for the conditional logic but keep
the HTML separate. The only thing you need to watch carefully is that you balance
the opening and closing curly braces correctly. I’ll show you how to do that in
“Using Balance Braces” a little later in the chapter.

So, what does this code do? It may look odd if you’re not used to seeing scripts that
mix HTML with PHP logic, but it can be summarized like this:

<h1>Contact us</h1>
<?php
if ($_POST && !$mailSent) {
// display a failure message

} elseif ($_POST && $mailSent) {
// display an acknowledgment
}
?>
<p>We welcome feedback from visitors . . .</p>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

470

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Both parts of the conditional statement check the Boolean values of $_POST and
$mailSent. Although the $_POST array is always set, it doesn’t contain any values
unless the form has been submitted. Since PHP treats an empty array as false (see
“The truth according to PHP” in Chapter 10), you can use $_POST on its own to test
whether a form has been submitted. So, the code in both parts of this conditional
statement is ignored when the page first loads.

However, if the form has been submitted, $_POST equates to true, so the next con-
dition is tested. The exclamation mark in front of $mailSent is the negative opera-
tor, making it the equivalent of not $mailSent. So, if the email hasn’t been sent,
both parts of the test are true, and the HTML containing the error message is dis-
played. However, if $mailSent is true, the HTML containing the acknowledgment is
displayed instead.

13. Save feedback.php, and switch to Design view. The top of the page should now
look like this:

USING PHP TO PROCESS A FORM

471

11

There are three gold shields indicating the presence of PHP code, and both the
error and acknowledgment messages are displayed. You need to get used to this
sort of thing when designing dynamic pages.

If you don’t see the gold shields, refer to “Passing information through a hidden
field” in Chapter 9 for details of how to control invisible elements in Design view.

14. To see what the page looks like when the PHP is processed, click the Live View but-
ton in the Document toolbar. Dreamweaver will ask whether you want to update
the copy on the testing server. Click Yes.

If you have coded everything correctly, the error message and acknowledgment
should disappear. Click the Live View button to toggle it off again.

If you got a PHP error message, read “Using Balance Braces,” and then check your
code against feedback_02.php.

The script in step 11 is theoretically all you need to send email from an online
form. Don’t be tempted to leave it at that. Without the security checks described in
the rest of the chapter, you run the risk of turning your website into a spam relay.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using Balance Braces
Even if you didn’t encounter a problem in the preceding exercise, Balance Braces is a tool
that you definitely need to know about. Like quotes, curly braces must always be in match-
ing pairs, but sometimes the opening and closing braces can be dozens, even hundreds, of
lines apart. If one of a pair is missing, your script will collapse like a house of cards. Balance
Braces matches pairs in a highly visual way, making troubleshooting a breeze.

Let’s take a look at the code in step 12 that I suspect will trip many people up. I deliber-
ately removed an opening curly brace at the end of line 39 in the following screenshot.
That triggered a parse error, which reported an unexpected closing curly brace on line 42.
Now, that could mean either of the following:

There’s a missing opening brace to match the closing one.

There’s an extra closing brace that shouldn’t be there.

The way to resolve the problem is to place your cursor anywhere between a pair of curly
braces, and click the Balance Braces button in the Coding toolbar. This highlights the code
between the matching braces. I started by placing my cursor on line 37. As you can see, it
highlighted all the code between the braces on lines 35 and 38.

Next, I positioned my cursor on line 41. When I clicked the Balance Braces button again,
nothing was highlighted, and my computer just beeped. So there was the culprit. All I
needed to work out was where the opening brace should go. My first test showed that
I had a logical block on lines 35–38 (the closing brace is at the beginning of line 39), so it
was just a process of elimination tracking down the missing brace. If the problem had been
an extra curly brace that shouldn’t have been there, the code would have been high-
lighted, giving me a clear indication of where the block ended.

Although it can’t tell you whether your code logic is right or where a missing brace should
go, you’ll find this tool a great time-saver. It works not only with braces but also with
square brackets and parentheses. Just position your cursor inside any curly brace, square
bracket, or parenthesis, and click the Balance Braces button to find the other one of the
pair. You may need to test several blocks to find the cause of a problem, but it’s an excel-
lent way of visualizing code blocks and the branching logic of your scripts.

You can also access Balance Braces through the Edit menu, and if you’re a keyboard short-
cut fan, the combination is Ctrl+’/Cmd+’ (single quote).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

472

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Testing the feedback form
Assuming that you now have a page that displays correctly in Live view, it’s time to test it.
As mentioned earlier, testing mail() in a local PHP testing environment is unreliable, so I
suggest you upload feedback.php to a remote server for the next stage of testing. Once
you have established that the mail() function is working, you can continue testing locally.

Upload feedback.php and contact.css to your remote server. Enter some text in the
Name, Email, and Comments fields. Make sure your input includes at least an apostrophe
or quotation mark, and click Send comments. The form should clear, and you should see a
confirmation message, as in Figure 11-4.

Figure 11-4. Confirmation that the mail() function has passed the message to the server’s mail
transport agent

Shortly afterward, you should receive the message in your inbox. Most of the time, it
should work, but there are several things that might go wrong. The next section should
help you resolve the problem.

Troubleshooting mail()
If you don’t receive anything, the first thing to check is your spam trap, because the email
may appear to come from an unknown or a suspicious source. For example, it may appear
to come from Apache or a mysterious nobody (the name often used for web servers).
Don’t worry about the odd name; that will be fixed soon. The main thing is to check that
the mail is being sent correctly.

Improving the security of the mail-processing script

As the preceding exercise showed, the basic principles of processing the contents of a
form and sending it by email to your inbox are relatively simple. However, you can
improve the script in many ways; indeed, some things must be done to improve its secu-
rity. One of the biggest problems on the Internet is caused by insecure scripts. As the
mail processing script currently stands, it’s wide open to abuse. If you received an error

If you see an error message saying that the From header wasn’t set or that sendmail_from
isn’t defined in php.ini, keep building the script as described in each section, and I’ll tell
you when you can test your page on the remote server again. If you get a blank page, it
means you have a syntax error in your PHP script, use the File Compare feature (see
Chapter 2) to compare your code with feedback_02.php in examples/ch11.

USING PHP TO PROCESS A FORM

473

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

message about the From header not being set, it indicates that your hosting company has
taken measures to increase security and prevent poorly written mail scripts from being
used as spam relays. Your script won’t work until you implement the security measures in
the following sections.

Most of the rest of this chapter is devoted to improving the security and user experience of
the existing script. First I’ll deal with unwanted backslashes that might appear in your email.

Getting rid of unwanted backslashes
Some day back in the mists of time, the PHP development team had the “brilliant” idea of
creating a feature known as magic quotes . . . only it wasn’t so brilliant after all. When
inserting data into a database, it’s essential to escape single and double quotes. So, the
idea of magic quotes was to make life simpler for beginners by doing this automatically for
all data passed through the $_POST and $_GET arrays, and cookies. While this seemed like
a good idea at the time, it has caused endless problems. To cut a long story short, magic
quotes are being officially phased out of PHP (they’ll be gone in PHP 6), but they’re still
enabled on a lot of shared servers. You will know whether your server uses them if your
test email has backslashes in front of any apostrophes or quotes, as shown in Figure 11-5.

Dreamweaver’s server behaviors automatically handle magic quotes by stripping the back-
slashes, if necessary, and preparing data for database input. However, when you’re hand-
coding like this, you need to deal with the backslashes yourself.

I have created a Dreamweaver snippet so that you can drop a ready-made script into any
page that needs to get rid of unwanted backslashes. It automatically detects whether
magic quotes are enabled, so you can use it safely on any server. If magic quotes are on, it
removes the backslashes. If magic quotes are off, it leaves your data untouched. It’s part of
the collection of snippets that you should have installed as a Dreamweaver extension at
the beginning of this chapter.

These instructions continue the creation of the form processing script. So, continue work-
ing with feedback.php from the previous section. They also show you how to insert code
from the Snippets panel.

1. Open feedback.php in Code view. Position your cursor at the beginning of line 4, just
under the mail processing script comment, and insert a couple of blank lines.

Move your cursor onto one of the blank lines, and open the Snippets panel by
clicking the Snippets tab in the Files panel group or selecting Window ➤ Snippets.

Using the POST stripslashes snippet

Figure 11-5.
PHP magic quotes insert

unwanted backslashes
in the email.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

474

http://lib.ommolketab.ir
http//lib.ommolketab.ir

On Windows, you can also use the keyboard shortcut Shift+F9, but this doesn’t
work on the Mac version.

Highlight the POST stripslashes snippet in the PHP-DWCS4 folder, and double-click it,
or click the Insert button at the bottom of the panel.

2. This inserts the following block of code into your page:

// remove escape characters from $_POST array
if (PHP_VERSION < 6 && get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);
return $value;
}

$_POST = array_map('stripslashes_deep', $_POST);
}

Lying at the heart of this code is the PHP function stripslashes(), which removes
the escape backslashes from quotes and apostrophes. Normally, you just pass the
string that you want to clean up as the argument to stripslashes().
Unfortunately, that won’t work with an array. This block of code checks whether
the version of PHP is prior to PHP 6 and, if so, whether magic quotes have been
turned on (magic quotes have been removed from PHP 6); and if they have, it goes
through the $_POST array and any nested arrays, cleaning up your text for display
either in an email or in a web page.

3. Save feedback.php, and send another test email that includes apostrophes and
quotes in the message. The email you receive should be nicely cleaned up. This
won’t work yet if you weren’t able to send the first test email.

If you have any problems, check your page against feedback_03.php.

Making sure required fields aren’t blank
When required fields are left blank, you don’t get the information you need, and the user
may never get a reply, particularly if contact details have been omitted. The following
instructions make use of arrays and the foreach loop, both of which are described in
Chapter 10. So if you’re new to PHP, you might find it useful to refer to the relevant sec-
tions in the previous chapter before continuing.

In this part of the script, you create three arrays to hold details of variables you expect to
receive from the form, those that are required, and those that are missing. This not only
helps identify any required items that haven’t been filled in; it also adds an important
security check before passing the user input to a loop that converts the names of $_POST
variables to shorter ones that are easier to handle.

1. Start by creating two arrays: one listing the name attribute of each field in the form
and the other listing all required fields. Also, initialize an empty array to store the
names of required fields that have not been completed. For the sake of this

Checking required fields

USING PHP TO PROCESS A FORM

475

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

demonstration, make the email field optional so that only the name and comments
fields are required. Add the following code just before the section that processes
the $_POST variables:

$subject = 'Feedback from Essential Guide';

// list expected fields
$expected = array('name', 'email', 'comments');
// set required fields
$required = array('name', 'comments');
// create empty array for any missing fields
$missing = array();

// process the $_POST variables

2. At the moment, the $_POST variables are assigned manually to variables that use
the same name as the $_POST array key. With three fields, manual assignment is
fine, but it becomes a major chore with more fields. Let’s kill two birds with one
stone by checking required fields and automating the naming of the variables at
the same time. Replace the three lines of code beneath the $_POST variables com-
ment as follows:

// process the $_POST variables
foreach ($_POST as $key => $value) {
// assign to temporary variable and strip whitespace if not an array
$temp = is_array($value) ? $value : trim($value);
// if empty and required, add to $missing array
if (empty($temp) && in_array($key, $required)) {
array_push($missing, $key);

} elseif (in_array($key, $expected)) {
// otherwise, assign to a variable of the same name as $key
${$key} = $temp;

}
}

// build the message

If studying PHP code makes your brain hurt, you don’t need to worry about how
this works. As long as you create the $expected, $required, and $missing arrays in
the previous step, you can just copy and paste the code for use in any form.

So, what does it do? In simple terms, this foreach loop goes through the $_POST
array, strips out any whitespace from user input, and assigns its contents to a vari-
able with the same name (so $_POST['email'] becomes $email, and so on). If a
required field is left blank, its name attribute is added to the $missing array.

The code uses several built-in PHP functions, all of which have intuitive names:

is_array() tests whether a variable is an array.

trim() trims whitespace from both ends of a string.

empty() tests whether a variable contains nothing or equates to false.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

476

http://lib.ommolketab.ir
http//lib.ommolketab.ir

in_array() checks whether the first argument is part of the array specified in
the second argument.

array_push() adds a new element to the end of an array.

At this stage, you don’t need to understand how each function works, but you can
find details in the PHP online documentation at http://docs.php.net/manual/en/
index.php. Type the name of the function in the search for field at the top right of
the page (see Figure 11-6), and click the right-facing arrow alongside function list.
The PHP documentation has many practical examples showing how functions and
other features are used.

USING PHP TO PROCESS A FORM

477

11

Figure 11-6. Refer often to the excellent PHP online documentation, and your skills will increase rapidly.

3. You want to build the body of the email message and send it only if all required
fields have been filled in. Since $missing starts off as an empty array, nothing is
added to it if all required fields are completed, so empty($missing) is true. Wrap
the rest of the script in the opening PHP code block like this:

// go ahead only if all required fields OK
if (empty($missing)) {

// build the message
$message = "Name: $name\r\n\r\n";
$message .= "Email: $email\r\n\r\n";
$message .= "Comments: $comments";

// limit line length to 70 characters
$message = wordwrap($message, 70);

Why is the $expected array necessary? It’s to prevent an attacker from injecting
other variables in the $_POST array in an attempt to overwrite your default val-
ues. By processing only those variables that you expect, your form is much more
secure. Any spurious values are ignored.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// send it
$mailSent = mail($to, $subject, $message);
if ($mailSent) {
// $missing is no longer needed if the email is sent, so unset it
unset($missing);

}
}

}

This ensures that the mail is sent only if nothing has been added to $missing.
However, $missing will be used to control the display of error messages in the
main body of the page, so you need to get rid of it if the mail is successfully sent.
This is done by using unset(), which destroys a variable and any value it contains.

4. Let’s turn now to the main body of the page. You need to display a warning if any-
thing is missing. Amend the conditional statement at the top of the page content
like this:

<h1>Contact us</h1>
<?php
if ($_POST && isset($missing) && !empty($missing)) {
?>
<p class="warning">Please complete the missing item(s) indicated.</p>

<?php
} elseif ($_POST && !$mailSent) {
?>
<p class="warning">Sorry, there was a problem sending your message.

Please try later.</p>

This adds a new condition. The isset() function checks whether a variable exists.
If $missing doesn’t exist, that means that all required fields were filled in and the
email was sent successfully, so the condition fails, and the script moves on to con-
sider the elseif condition. However, if all required fields were filled in but there
was a problem sending the email, $missing still exists, so you need to make sure
it’s empty. An exclamation mark is the negative operator, so !empty means “not
empty.”

On the other hand, if $missing exists and isn’t empty, you know that at least one
required field was omitted, so the warning message is displayed.

I’ve placed this new condition first. The $mailSent variable won’t even be set if any
required fields have been omitted, so you must test for $missing first.

5. To make sure it works so far, save feedback.php, and load it in a browser. You don’t
need to upload it to your remote server, because you want to test the message
about missing items. Don’t fill in any fields. Just click Send comments. The top of the
page should look like this (check your code against feedback_04.php if necessary):

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

478

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. To display a suitable message alongside each missing required field, add a PHP code
block to display a warning as a inside the <label> tag like this:

<label for="name">Name: <?php
if (isset($missing) && in_array('name', $missing)) { ?>
Please enter your name<?php } ?>
</label>

Since the $missing array is created only after the form has been submitted, you
need to check first with isset() that it exists. If it doesn’t exist—such as when the
page first loads or if the email has been sent successfully—the is never dis-
played. If $missing does exist, the second condition checks whether the $missing
array contains the value name. If it does, the is displayed as shown in
Figure 11-7.

7. Insert a similar warning for the comments field like this:

<label for="comments">Comments: <?php
if (isset($missing) && in_array('comments', $missing)) { ?>
Please enter your comments<?php } ?>
</label>

The PHP code is the same except for the value you are looking for in the $missing
array. It’s the same as the name attribute for the form element.

8. Save feedback.php, and test the page again locally by entering nothing into any
of the fields. The page should look like Figure 11-7. Check your code against
feedback_05.php if you encounter any problems.

Figure 11-7. The PHP script displays alerts if required information is missing, even when
JavaScript is disabled.

9. Try one more test. Open Code view, and amend the line that sends the email like this:

$mailSent = false; // mail($to, $subject, $message);

This temporarily sets the value of $mailSent to false and comments out the code
that actually sends the email.

USING PHP TO PROCESS A FORM

479

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. Reload feedback.php into your browser, and type something in the Name and
Comments fields before clicking Send comments. This time you should see the mes-
sage telling you there was a problem and asking you to try later.

11. Reverse the change you made in step 9 so that the code is ready to send the email.

Preserving user input when a form is incomplete
Imagine you have just spent ten minutes filling in a form. You click the submit button, and
back comes the response that a required field is missing. It’s infuriating if you have to fill
in every field all over again. Since the content of each field is in the $_POST array, it’s easy
to redisplay it when an error occurs.

When the page first loads or the email is successfully sent, you don’t want anything to
appear in the input fields. But you do want to redisplay the content if a required field is
missing. So, that’s the key: if the $missing variable exists, you want the content of each
field to be redisplayed. You can set default text for a text input field by setting the value
attribute of the <input> tag.

At the moment, the <input> tag for name looks like this:

<input name="name" type="text" class="textInput" id="name" />

To add the value attribute, all you need is a conditional statement that checks whether
$missing exists. If it does, you can use echo to display value="" and put the value held in
$_POST['name'] between the quotes. It sounds simple enough, but this is one of those
situations where getting the right combination of quotes can drive you mad. It’s made
even worse by the fact that the user input in the text field might also contain quotes.
Figure 11-8 shows what happens if you don’t give quotes in user input special treatment.
The browser finds the first matching quote and throws the rest of the input away.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

480

Figure 11-8. Quotes within user input need special treatment before form fields can be redisplayed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

USING PHP TO PROCESS A FORM

481

11

Magic quotes work only with input into a database (and not very well,
either, which is why they are being phased out). The browser still sees the first matching
quote as the end of the value attribute. The solution is simple: convert the quotes to
the HTML entity equivalent ("), and PHP has a function called—appropriately—
htmlentities(). Passing the $_POST array element to this function converts all charac-
ters (except space and single quote) that have an HTML entity equivalent to that entity.
As a result, the content is no longer truncated. What’s cool is that the HTML entity
" is converted back to double quotes when the form is resubmitted, so there’s no
need for any further conversion.

The htmlentities() function was created in the days before widespread support for
Unicode (UTF-8), so it uses Latin-1 or Western European encoding (ISO-8859-1) as its
default. Since Dreamweaver uses UTF-8 as the default encoding for web pages, you need
to pass an argument to htmlentities() to tell it to use the correct encoding.
Unfortunately, to set the encoding argument, you need to pass a total of three arguments
to htmlentities(): the string you want converted, a PHP constant describing how to han-
dle quotes, and a string containing the encoding. Tables 11-1 and 11-2 list the available
values for the second and third arguments.

Table 11-1. PHP constants for handling quotes in htmlentities()

Constant Meaning

ENT_COMPAT Converts double quotes to " but leaves single quotes alone.
This is the default. You don’t need to use this unless you also pass
a third argument to htmlentities().

ENT_QUOTES Converts double quotes to " and single quotes to '.

ENT_NOQUOTES Leaves both double and single quotes alone.

Table 11-2. Character encodings supported by htmlentities()

Encoding Aliases Description

ISO-8859-1 ISO8859-1 Western European (Latin-1). This is the default and
not normally required as an argument to
htmlentities().

ISO-8859-15 ISO8859-15 Western European (Latin-9). Includes the euro
symbol and characters used in French and Finnish.

UTF-8 Unicode, the default encoding in Dreamweaver CS4.

Continued

You might be thinking that this is a case where magic quotes would be
useful. Unfortunately, they won’t work either. If you don’t use the
POST stripslashes snippet, this is what you get instead:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 11-2. Continued

Encoding Aliases Description

cp866 ibm866, 866 DOS-specific Cyrillic character set.

cp1251 Windows-1251, Windows-specific Cyrillic character set.
win-1251, 1251

cp1252 Windows-1252, 1252 Windows-specific character set for Western
European.

KOI8-R koi8-ru, koi8r Russian.

GB2312 936 Simplified Chinese; national standard
character set used in People’s Republic of
China.

BIG5 950 Traditional Chinese; mainly used in Taiwan.

BIG5-HKSCS Big5 with Hong Kong extensions.

Shift_JIS SJIS, 932 Japanese.

EUC-JP EUCJP Japanese.

If you are using the Dreamweaver default encoding, passing a value to htmlentities()
involves using all three arguments like this:

htmlentities(value, ENT_COMPAT, 'UTF-8');

This converts double quotes but leaves single quotes alone. More importantly, it preserves
accented characters and any other characters outside the Latin-1 character set.

If you are using a different encoding for your web pages or want quotes to be handled dif-
ferently, substitute the appropriate values for the second and third arguments using
Tables 11-1 and 11-2. The third argument must be a string, so it should be enclosed in
quotes. The aliases in Table 11-2 are alternative spellings or names for the character
encoding supported by PHP.

So, to summarize, the way you redisplay the user’s input in the Name field if one or more
required fields are missing is like this:

<input name="name" type="text" class="textInput" id="name"
<?php if (isset($missing)) {
echo 'value="'.htmlentities($_POST['name'], ENT_COMPAT, 'UTF-8').'"';

} ?>
/>

This code is quite short, but the line inside the curly braces contains a tricky combination
of quotes and periods. The first thing to realize is that there’s only one semicolon—right at

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

482

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the end—so the echo command applies to the whole line. You can break down the rest of
the line into three sections, as follows:

'value="'.

htmlentities($_POST['name'], ENT_COMPAT, 'UTF-8')

.'"'

The first section outputs value=" as text and uses the concatenation operator (a period—
see “Joining strings together” in Chapter 10) to join it to the next section, which passes
$_POST['name'] and the two arguments from Tables 11-1 and 11-2 to the htmlentities()
function. The final section uses the concatenation operator again to join the next string,
which consists solely of a double quote. So if $missing has been set and $_POST['name']
contains Joe, you’ll end up with this inside the <input> tag:

<input name="name" type="text" class="textInput" id="name" ➥

value="Joe" />

Whenever you need this code, the only thing that changes is the name of the $_POST array
element. So, rather than laboriously type it out every time, it’s a good idea to convert it
into a snippet.

Saving frequently used code as a snippet
Although I have provided some snippets for you in the extension that you installed at the
beginning of this chapter, it’s easy enough to create snippets of your own. The following
instructions show you how to turn the code described in the previous section into a snippet
that leaves your cursor in the correct position to insert the name of the $_POST array ele-
ment. You can use the same technique to create a snippet from any frequently used code.

1. Open the Snippets panel, right-click, and select New Folder from the context menu.
Name the new folder PHP.

2. With the PHP folder selected in the Snippets panel, right-click, and select New Snippet
from the context menu. This opens the Snippet dialog box shown in Figure 11-9.

USING PHP TO PROCESS A FORM

483

11

Figure 11-9.
Snippets are a useful way
of storing short pieces of
frequently used code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Snippets panel has the following options:

Name: This is the name that appears in the Snippets panel. Choose a short but
descriptive name. Spaces are permitted.

Description: This is for a more detailed description. It appears alongside the
name in the Snippets panel (you might need to expand the panel horizontally to
see it). When you mouse over it, the full description appears as a tooltip.

Snippet type: Wrap selection creates a wraparound snippet that leaves the cur-
sor in the correct place to type in a value. Insert block inserts a single block
of code.

Insert before: This is the first section of code in a wraparound snippet. The cur-
sor will be positioned immediately after the code you enter here. If you select
the Insert block radio button, the Insert before and Insert after fields are merged
into a single one labeled Insert code.

Insert after: This applies only to a wraparound snippet. Enter the code you want
to appear after the cursor.

Preview type: This determines how the snippet is displayed in the preview pane
at the top of the Snippets panel. Snippets can consist of HTML code. So,
selecting Design shows the output rather than the underlying code in the pre-
view pane.

3. Enter Sticky input value in the Name field.

4. Type a brief description in the Description field. I used this: Redisplays user input by
inserting value attribute when $missing is set.

5. Select the Wrap selection radio button, and enter the following code in the Insert
before field:

<?php if (isset($missing)) {
echo 'value="' . htmlentities($_POST['

6. Enter the following code in the Insert after field:

'], ENT_COMPAT, 'UTF-8') . '"';
} ?>

7. Select the Code radio button for Preview type, and click OK to save the snippet.

That’s all there is to creating a snippet. As well as typing in the code directly as you have
done here, you can also select existing code in the Document window and choose Create
New Snippet from the context menu. Dreamweaver automatically inserts the selected code
in the Insert before field.

To edit a snippet, select it in the Snippets panel, right-click, and select Edit from the con-
text menu.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

484

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that you have a new snippet to cut down on the coding, let’s put it to work.

1. Insert a blank line just before the closing /> of the <input> tag for the Name text
field like this:

<input name="name" type="text" class="textInput" id="name"

/>

2. With your cursor on the blank line, double-click Sticky input value in the Snippets
panel. Alternatively, select the snippet, and click the Insert button at the bottom of
the Snippets panel, or right-click and select Insert from the context menu.

Dreamweaver should insert the code in the snippet and leave your cursor in the
right position to type the name of the $_POST array element, as shown here:

3. Make sure your cursor is between the single quotes of $_POST[''], and enter name
so that it reads $_POST['name'].

4. Repeat steps 1–3 to amend the email input field in the same way, entering email
instead of name between the quotes of $_POST['']

5. The comments text area needs to be handled slightly differently, because
<textarea> tags don’t have a value attribute. You place the PHP block between
the opening and closing tags of the text area like this (new code is shown in bold):

<textarea name="comments" id="comments" cols="45" rows="5"><?php
if (isset($missing)) {
echo htmlentities($_POST['comments'], ENT_COMPAT, 'UTF-8');

} ?></textarea>

It’s important to position the opening and closing PHP tags right up against the
<textarea> tags. If you don’t, you’ll get unwanted whitespace in the text area.

In my testing, I found that Dreamweaver inserted the cursor after the pair of
single quotes instead of between them. The only way I could correct this prob-
lem was by adding a space before the closing quote in the Insert after field of the
Snippets dialog box (see Figure 11-9). I decided that moving the cursor one
character to the left with my arrow keys was still a lot easier than typing the full
code every time.

Creating sticky form fields

USING PHP TO PROCESS A FORM

485

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Save feedback.php, and test the page. If the first test message earlier in the chap-
ter was successful, you can upload it to your remote server. If any required fields
are omitted, the form displays the original content along with any error messages.
However, if the form is correctly filled in, the email is sent, an acknowledgment is
displayed, and the input fields are cleared.

If your remote server test didn’t succeed earlier in the chapter, just test locally. You’ll
probably get a PHP error message if all required fields are filled in, but that’s noth-
ing to worry about. We’re almost at the stage to get your remote server working.

You can check your code with feedback_06.php.

You might want to save the PHP code inserted in step 5 as another snippet. The easiest way
is to highlight the whole section of PHP code, right-click, and select New Snippet from the
context menu. You can then cut and paste the code inside the Snippets panel to split it
between the Insert before and Insert after fields.

Filtering out potential attacks
A particularly nasty exploit known as email header injection emerged in mid-2005. It
seeks to turn online forms into spam relays. A simple way of preventing this is to look for
the strings “Content-Type:”, “Cc:”, and “Bcc:”, because these are email headers that the
attacker injects into your script in an attempt to trick it into sending HTML email with
copies to many people. If you detect any of these strings in user input, it’s a pretty safe
bet that you’re the target of an attack, so you should block the message. An innocent
message may also be blocked, but the advantages of stopping an attack outweigh that
small risk.

In this section, we’ll create a pattern to check for suspect phrases and pass the form input
to a custom-built function that checks for any matches. The function is one of the snip-
pets that you installed earlier in the chapter, so the most complex part of the coding is
already done for you. If a match is found, a conditional statement prevents the email
from being sent.

1. PHP conditional statements rely on a true/false test to determine whether to
execute a section of code. So, the way to filter out suspect phrases is to create a
Boolean variable that is switched to true as soon as one of those phrases is
detected. The detection is done using a search pattern or regular expression.
Insert the code for both of these just above the section that processes the $_POST
variables:

// create empty array for any missing fields
$missing = array();

// assume that there is nothing suspect
$suspect = false;

Blocking emails that contain specific phrases

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

486

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// create a pattern to locate suspect phrases
$pattern = '/Content-Type:|Bcc:|Cc:/i';

// process the $_POST variables

The string assigned to $pattern will be used to perform a case-insensitive search
for any of the following: “Content-Type:”, “Bcc:”, or “Cc:”. It’s written in a format
called Perl-compatible regular expression (PCRE). The search pattern is enclosed in
a pair of forward slashes, and the i after the final slash makes the pattern case-
insensitive.

2. You can now use $pattern to filter out any suspect user input from the $_POST
array. At the moment, each element of the $_POST array contains only a string.
However, multiple-choice form elements, such as checkboxes, return an array of
results. So, you need to tunnel down any subarrays and check the content of each
element separately. In the snippets collection you installed earlier in the chapter,
you’ll find a custom-built function to do precisely that.

Insert two blank lines immediately after the $pattern variable from step 1. Then
open the Snippets panel, and double-click Suspect pattern filter in the PHP-DWCS4
folder to insert the code shown here in bold:

// create a pattern to locate suspect phrases
$pattern = '/Content-Type:|Bcc:|Cc:/i';

// function to check for suspect phrases
function isSuspect($val, $pattern, &$suspect) {
// if the variable is an array, loop through each element
// and pass it recursively back to the same function
if (is_array($val)) {
foreach ($val as $item) {
isSuspect($item, $pattern, $suspect);

}
} else {
// if one of the suspect phrases is found, set Boolean to true
if (preg_match($pattern, $val)) {
$suspect = true;

}
}

}

3. I won’t go into detail about how this code works. All you need to know is that call-
ing the isSuspect() function is very easy. You just pass it three values: the $_POST
array, the pattern, and the $suspect Boolean variable. Insert the following code
immediately after the code in the previous step:

// check the $_POST array and any subarrays for suspect content
isSuspect($_POST, $pattern, $suspect);

4. If any suspect phrases are detected, the value of $suspect changes to true, so you
need to set $mailSent to false and delete the $missing array to prevent the email
from being sent and to display an appropriate message in the form. There’s also no

USING PHP TO PROCESS A FORM

487

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

point in processing the $_POST array any further. Wrap the code that processes the
$_POST variables in the second half of an if . . . else statement like this:

if ($suspect) {
$mailSent = false;
unset($missing);

} else {
// process the $_POST variables
foreach ($_POST as $key => $value) {
// assign to temporary variable and strip whitespace if not an array
$temp = is_array($value) ? $value : trim($value);
// if empty and required, add to $missing array
if (empty($temp) && in_array($key, $required)) {
array_push($missing, $key);
}

// otherwise, assign to a variable of the same name as $key
elseif (in_array($key, $expected)) {
${$key} = $temp;
}

}
}

Don’t forget the extra curly brace to close the else statement.

5. If suspect content is detected, you don’t want the code that builds and sends the
email to run, so amend the condition in the opening if statement like this:

// go ahead only if not suspect and all required fields OK
if (!$suspect && empty($missing)) {
// build the message

6. Save feedback.php, and check your code against feedback_07.php.

Because the if statement in step 4 sets $mailSent to false and unsets $missing if it
detects any suspect pattern, the code in the main body of the page displays the same mes-
sage that’s displayed if there’s a genuine problem with the server. A neutral message
reveals nothing that might assist an attacker. It also avoids offending anyone who may
have innocently used a suspect phrase.

You can use isSuspect() with any array or pattern, but it always requires the following
three arguments:

An array that you want to filter. If the array contains other arrays, the function bur-
rows down until it finds a simple value against which it can match the pattern.

A regular expression containing the pattern(s) you want to search for. There are two
types of regular expression, Perl-compatible regular expression (PCRE) and Portable
Operating System Interface (POSIX). You must use a PCRE. This function won’t work
with a POSIX regular expression. A good online source is http://regexlib.com.

A Boolean variable set to false. If the pattern is found, the value is switched to true.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

488

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Safely including the user’s address in email headers
Up to now, I’ve avoided using one of the most useful features of the PHP mail() function:
the ability to add extra email headers with the optional fourth argument. A popular use of
extra headers is to incorporate the user’s email address into a Reply-To header, which
enables you to reply directly to incoming messages by clicking the Reply button in your
email program. It’s convenient, but it provides a wide open door for an attacker to supply
a spurious set of headers. With the isSuspect() function in place, you can block attacks
and safely use the fourth argument with the mail() function.

The most important header you should add is From. Email sent by mail() is often identi-
fied as coming from nobody@servername. Adding the From header not only identifies your
mail in a more user-friendly way, but it also solves the problem you might have encoun-
tered on the first test of there being no setting for sendmail_from in php.ini.

You can find a full list of email headers at http://www.faqs.org/rfcs/rfc2076, but some
of the most well-known and useful ones enable you to send copies of an email to other
addresses (Cc and Bcc) or to change the encoding (often essential for languages other
than Western European ones).

Like the body of the email message, headers must be passed to the mail() function as a
single string. Each new header, except the final one, must be on a separate line terminated
by a carriage return and newline character. This means using the \r and \n escape
sequences in double-quoted strings.

Let’s say you want to send copies of messages to other departments, plus a copy to
another address that you don’t want the others to see. This is how you pass those addi-
tional email headers to mail():

$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= "Cc: sales@example.com, finance@example.com\r\n";
$headers .= 'Bcc: secretplanning@example.com';

$mailSent = mail($to, $subject, $message, $headers);

The default encoding for email is iso-8859-1 (English and Western European). If you want
to use a different encoding, set the Content-Type header. Dreamweaver uses Unicode
(UTF-8) as its default, so you need to add a header like this:

$headers .= "Content-Type: text/plain; charset=utf-8\r\n";

The web page that the form is embedded in must use the same encoding (usually set in a
<meta> tag). The preceding code assumes other headers will follow. If it’s the final header,
omit the \r\n sequence at the end of the line.

Hard-coded additional headers present no security risk, but anything that comes from user
input must be filtered before it’s used.

USING PHP TO PROCESS A FORM

489

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This section incorporates the user’s email address into a Reply-To header. Although
isSuspect() should sanitize user input, it’s worth subjecting the email field to a more rig-
orous check to make sure that it doesn’t contain illegal characters or more than one
address.

1. At the moment, the $required array doesn’t include email, and you may be happy
to leave it that way. So, to keep the validation routine flexible, it makes more sense
to handle the email address outside the main loop that processes the $_POST array.

If email is required but has been left blank, the loop will have already added
email to the $missing array, so the message won’t get sent anyway.

If it’s not a required field, you need to check $email only if it contains some-
thing. So, you need to wrap the validation code in an if statement that uses
!empty().

Insert the code shown in bold after the loop that processes the $_POST array.

// otherwise, assign to a variable of the same name as $key
elseif (in_array($key, $expected)) {
${$key} = $temp;

}
}

}

// validate the email address
if (!empty($email)) {

}

// go ahead only if not suspect and all required fields OK
if (!$suspect && empty($missing)) {

2. Position your cursor on the blank line between the curly braces of the conditional
statement you have just inserted. Open the Snippets panel, and double-click Check
email PCRE in the PHP-DWCS4 folder. This inserts the following regular expression:

$checkEmail = '/^[^@]+@[^\s\r\n\'";,@%]+$/';

Designing a regular expression to recognize a valid-looking email address is notori-
ously difficult. So, instead of striving for perfection, $checkEmail, takes a negative
approach by rejecting characters that are illegal in an email address. However, to
make sure that the input resembles an email address in some way, it checks for an
@ mark surrounded by at least one character on either side.

3. Now add the code shown in bold to check $email against the regular expression:

// validate the email address
if (!empty($email)) {
// regex to ensure no illegal characters in email address
$checkEmail = '/^[^@]+@[^\s\r\n\'";,@%]+$/';

Adding email headers and automating the reply address

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

490

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// reject the email address if it doesn't match
if (!preg_match($checkEmail, $email)) {
$suspect = true;
$mailSent = false;
unset($missing);

}
}

The conditional statement uses the preg_match() function, which takes two argu-
ments: a PCRE and the string you want to check. If a match is found, the function
returns true. Since it’s preceded by the negative operator, the condition is true if
the contents of $email don’t match the PCRE.

If there’s no match, $suspect is set to true, $mailSent is set to false, and
$missing is unset. This results in the neutral alert saying that the message can’t be
sent and clears the form. This runs the risk that someone who has accidentally
mistyped the email address will be forced to enter everything again. If you don’t
want that to happen, you can omit unset($missing);. However, the PCRE detects
illegal characters that are unlikely to be used by accident, so I have left it in.

4. Now add the additional headers to the email. Place them immediately above the
call to the mail() function, and add $headers as the fourth argument like this:

// limit line length to 70 characters
$message = wordwrap($message, 70);

// create additional headers
$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= 'Content-Type: text/plain; charset=utf-8';
if (!empty($email)) {
$headers .= "\r\nReply-To: $email";

}

// send it
$mailSent = mail($to, $subject, $message, $headers);

Use your own email address in the first header, rather than the dummy one
shown here.

The second header assumes you are using the Dreamweaver default encoding. If
you are using a different character encoding on your page, you need to change
charset=utf-8 to the appropriate value for your character set. You can find the
correct value by inspecting the Content-Type <meta> tag in the <head> of your
web page.

Many popular PHP scripts use pattern-matching functions that begin with ereg.
These work only with POSIX regular expressions. I recommend you always use
the PCRE functions that begin with preg_. Not only is PCRE more efficient, sup-
port for the ereg family of functions has been removed from PHP 6.

USING PHP TO PROCESS A FORM

491

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you don’t want email to be a required field, there’s no point in using a nonexist-
ent value in the Reply-To header, so I have wrapped it in a conditional statement.
Since you have no way of telling whether the Reply-To header will be created, it
makes sense to put the carriage return and newline characters at the beginning of
the second header. It doesn’t matter whether you put them at the end of one
header or the start of the next one, as long as a carriage return and newline char-
acter separate each header. For instance, if you wanted to add a Cc header, you
could do it like this:

$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= "Content-Type: text/plain; charset=utf-8\r\n";
$headers .= 'Cc: admin@example.com';
if (!empty($email)) {
$headers .= "\r\nReply-To: $email";

}

Or like this:

$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= 'Content-Type: text/plain; charset=utf-8';
$headers .= "\r\nCc: admin@example.com";
if (!empty($email)) {
$headers .= "\r\nReply-To: $email";

}

5. Save feedback.php, upload it to your remote server, and test the form. When you
receive the email, click the Reply button in your email program, and you should see
the address that you entered in the form automatically entered in the recipient’s
address field. You can check your code against feedback_08.php.

What if you still don’t get an email?
For security reasons, some hosting companies require a fifth argument to mail(). Normally,
it takes the form of a string comprised of -f followed by your email address like this:

'-fdavid@example.com'

Add it to the line of code that sends the mail like this:

$mailSent = mail($to,$subject,$message,$headers,'-fdavid@example.com');

If using this fifth argument does not work, ask your hosting company for a sample script
for sending email. Some companies tell you to use ini_set() to adjust a setting called
sendmail_from. The $headers in the previous section should avoid the need to do this.

When building your own forms, don’t forget to add the name of each text field to
the $expected array. Also add the name of required fields to the $required
array, and add a suitable alert as described in “Checking required fields.”

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

492

http://lib.ommolketab.ir
http//lib.ommolketab.ir

However, if you still get an error message about sendmail_from, amend the preceding
code like this (use your own email address instead of david@example.com):

ini_set('sendmail_from', 'david@example.com');
$mailSent = mail($to,$subject,$message,$headers,'-fdavid@example.com');

Handling multiple-choice form elements
You now have the basic knowledge to process text input from an online form and email it
to your inbox. The principle behind handling multiple-choice elements is exactly the same:
the name attribute is used as the key in the $_POST array. However, as you saw in Chapter 9,
checkboxes and multiple-choice lists don’t appear in the $_POST array if nothing has been
selected, so they require different treatment.

The following exercises show you how to handle each type of multiple-choice element. If
you’re feeling punch drunk at this stage, come back later to study how to handle multiple-
choice elements when you need to incorporate them into a script of your own.

In Chapter 9, I showed you how to create a checkbox group, which stores all checked val-
ues in a subarray of the $_POST array. However, the subarray isn’t even created if all boxes
are left unchecked. So, you need to use isset() to check the existence of the subarray
before attempting to process it.

1. Add the name of the checkbox group to the $expected array like this:

$expected = array('name', 'email', 'comments', 'interests');

In the form, interests is followed by square brackets like this:

<input type="checkbox" name="interests[]" . . .

The square brackets in the form tell the $_POST array to store all checked values in
a subarray called $_POST['interests']. However, don’t add square brackets to
interests in the $expected array. Doing so would bury the checked values in a
subarray one level deeper than you want. See “Using arrays to store multiple val-
ues” in Chapter 10 for a reminder of how arrays are created.

2. If you want the checkboxes to be required, add the name of the checkbox group to
the $required array in the same way.

3. Because the checkbox array might never be created, you need to set a default
value before processing the $_POST variables. You need to do this even if you’re not
making the checkbox group required, because it affects the way the message is
built. The following code in bold goes after the $missing array is initialized:

// create empty array for any missing fields
$missing = array();
// set default values for variables that might not exist
if (!isset($_POST['interests'])) {
$_POST['interests'] = array();

}

Getting data from checkboxes

USING PHP TO PROCESS A FORM

493

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This uses a conditional statement to check whether $_POST['interests'] has
been set. If it hasn’t, it’s initialized as an empty array. This will trigger the code that
processes the $_POST variables to add interests to the $missing array if no check-
box has been selected.

4. If you want more than one checkbox to be required, you need to add another test
immediately after the code in the previous step like this:

// minimum number of required checkboxes
$minCheckboxes = 2;
// if fewer than required add to $missing array
if (count($_POST['interests']) < $minCheckboxes) {
$missing[] = 'interests';

}

This sets a variable containing the minimum number of required checkboxes (I’m
using a variable so the number can be reused in the error message) and then com-
pares it with the number of elements in $_POST['interests']. The count() func-
tion, as you might expect, counts the number of elements in an array.

5. To extract the values of the checkbox array, you can use the oddly named
implode() function, which joins array elements. It takes two arguments: a string to
be used as a separator and the array. So, implode(', ', $interests) joins the ele-
ments of $interests as a comma-separated string. Add the following code shown
in bold to the script that builds the body of the email:

$message .= "Comments: $comments\r\n\r\n";
$message .= 'Interests: '.implode(', ', $interests);

Note that I added two newline characters at the end of the line that adds the user’s
comments to the email. On the following line, I put Interests: in single quotes
because there are no variables to be processed, and I used the concatenation oper-
ator to join the result of implode(', ', $interests) to the end of the email mes-
sage. You cannot include a function inside a string.

6. If you have made the checkbox group required, add an alert like this:

<p>What aspects of London most interest you?
<?php if (isset($missing) && in_array('interests', $missing)) { ?>
Please choose at least
<?php echo $minCheckboxes; ?><?php } ?>
</p>

This assumes you have set a value for $minCheckboxes in step 4. If you want only
one checkbox selected, you can replace <?php echo $minCheckboxes; ?> with the
word “one” inside the .

7. The next listing shows the code for the first two checkboxes in the body of the
page. The code in bold preserves the user’s checkbox selections if any required
field is missing.

<label>
<input type="checkbox" name="interests[]" value="Classical concerts" ➥

id="interests_0"

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

494

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<?php
if (isset($missing) && in_array('Classical concerts', ➥

$_POST['interests'])) {
echo 'checked="checked"';

} ?>
/>Classical concerts</label>

<label>
<input type="checkbox" name="interests[]" value="Rock/pop" ➥

id="interests_1"
<?php
if (isset($missing) && in_array('Rock/pop', $_POST['interests'])) {
echo 'checked="checked"';

} ?>
/>Rock & pop events</label>

The PHP code for each checkbox tests whether the $missing variable exists and
whether the value of the checkbox is in the $_POST['interests'] subarray. If both
are true, echo inserts checked="checked" into the <input> tag. (If you’re using
HTML instead of XHTML, use just checked.) Although it looks like a lot of hand-
coding, you can copy and paste the code after creating the first one. Just change
the first argument of in_array() to the value of the checkbox. The complete code
is in feedback_09.php.

Radio button groups allow you to pick only one value. This makes it easy to retrieve the
selected one. All buttons in the same group must share the same name attribute, so the
$_POST array contains the value attribute of whichever radio button is selected. However,
if you don’t set a default button in your form, the radio button group’s $_POST array ele-
ment remains unset.

1. Add the name of the radio button group to the $expected array.

2. If you haven’t set a default button and you want a choice to be compulsory, also
add it to the $required array. This isn’t necessary if a default choice is set in the
form.

3. If you haven’t set a default button, you need to set a default value before building
the body of the email message. You do this in a similar way to a checkbox group,
but since a radio button group can have only one value, you set the default as an
empty string, not an array, as shown in this example:

if (!isset($_POST['radioGroup'])) {
$_POST['radioGroup'] = '';

}

4. Add the value of the radio button group to the body of the message like this:

$message .= 'Interests: '.implode(', ', $interests)."\r\n\r\n";
$message .= "Subscribe: $subscribe";

Getting data from radio button groups

USING PHP TO PROCESS A FORM

495

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Assuming a default button has been defined, amend the radio button group like this:

<label>
<input type="radio" name="subscribe" id="subscribeYes" value="y"
<?php
if (isset($missing) && $_POST['subscribe'] == 'y') {
echo 'checked="checked"';

} ?>
/>

Yes</label>
<label>
<input name="subscribe" type="radio" id="subscribe-no" value="n"
<?php
if (!$_POST || isset($missing) && $_POST['subscribe'] == 'n') {
echo 'checked="checked"';

} ?>
/>

No</label>

The conditional statement for the default radio button begins with !$_POST ||,
which means “if the $_POST array is empty or . . .” So, if the form hasn’t been sub-
mitted or if the user has selected No and the form is incomplete, this button will be
checked.

The completed script is in feedback_10.php.

You need to add a required alert only if no default has been defined in the original form.

Drop-down menus created with the <select> tag normally allow the user to pick only one
option from several. One item is always selected, even if it’s only the first one inviting the
user to select one of the others. Setting the value of this first <option> to 0 has the advan-
tage that the empty() function, which is used to check required fields, returns true when
0 is passed to it either as a number or string.

1. Add the name of the drop-down menu to the $expected array. Also add it to the
$required array if you want a choice to be compulsory.

2. Add the value of the drop-down menu to the email message like this:

$message .= "Subscribe: $subscribe\r\n\r\n";
$message .= "Visited: $visited";

One option will always be selected, so this doesn’t need special treatment.
However, change the value of the first <option> tag in the menu to No response if
it isn’t a required field. Leave it as 0 if you want the user to make a selection.

3. The following code shows the first two items of the drop-down menu in
feedback.php. The PHP code highlighted in bold assumes that the menu has been
made a required field and resets the selected option if an incomplete form is

Getting data from a drop-down menu

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

496

http://lib.ommolketab.ir
http//lib.ommolketab.ir

submitted. When the page first loads, the $_POST array contains no elements, so
you can select the first <option> by testing for !$_POST. Once the form is submit-
ted, the $_POST array always contains an element from a drop-down menu, so you
don’t need to test for it.

<label for="visited">How often have you been to London? <?php
if (isset($missing) && in_array('visited', $missing)) { ?>
Please select a value<?php } ?></label>
<select name="visited" id="visited">
<option value="0"
<?php
if (!$_POST || $_POST['visited'] == '0') {
echo 'selected="selected"';

} ?>
>-- Select one --</option>
<option value="Never"
<?php
if (isset($missing) && $_POST['visited'] == 'Never') {
echo 'selected="selected"';

} ?>
>Never been</option>

. . .
</select>

When setting the second condition for each <option>, it’s vital that you use the same
spelling and mixture of uppercase and lowercase as contained in the value attribute.
PHP is case-sensitive and won’t match the two values if there are any differences.

The finished code is in feedback_11.php.

Multiple-choice lists are similar to checkboxes: they allow the user to choose zero or more
items, so the result is stored in an array. If no items are selected, the $_POST array contains
no reference to the list, so you need to take that into consideration both in the form and
when processing the message.

1. Add the name of the multiple-choice list to the $expected array. Also add it to the
$required array if you want a choice to be compulsory.

2. Set a default value for a multiple-choice list in the same way as for an array of
checkboxes.

// set default values for variables that might not exist
if (!isset($_POST['interests'])) {
$_POST['interests'] = array();

}
if (!isset($_POST['views'])) {
$_POST['views'] = array();

}

Getting data from a multiple-choice list

USING PHP TO PROCESS A FORM

497

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. When building the body of the message, use implode() to create a comma-
separated string, and add it to the message like this:

$message .= "Visited: $visited\r\n\r\n";
$message .= 'Impressions of London: '.implode(', ', $views);

4. The following code shows the first two items from the multiple-choice list in
feedback.php. The code works in an identical way to the checkboxes, except that
you echo 'selected="selected"' instead of 'checked="checked"'. It also assumes
you have made at least one selection required.

<label for="views">What image do you have of London? <?php
if (isset($missing) && in_array('views', $missing)) { ?>
Please select a value<?php } ?>

</label>
<select name="views[]" size="6" multiple="multiple" id="views">
<option value="Vibrant/exciting"
<?php
if (isset($missing) && in_array('Vibrant/exciting', ➥

$_POST['views'])) {
echo 'selected="selected"';

} ?>
>A vibrant, exciting city</option>
<option value="Good food"
<?php
if (isset($missing) && in_array('Good food', $_POST['views'])) {
echo 'selected="selected"';

} ?>
>A great place to eat</option>
. . .

</select>

The completed code is in feedback_12.php.

If you want to make more than one item in the multiple-choice list required, create a vari-
able for the minimum number of items, and use count() to add the name of the multiple-
choice list to the $missing array in the same way as in step 4 of “Getting data from
checkboxes.”

Redirecting to another page

Everything has been kept within the same page, even if the message is sent successfully.
To redirect the visitor to a different page, change the code at the end of the message-
processing section like this:

// send it
$mailSent = mail($to, $subject, $message, $headers);
if ($mailSent) {

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

498

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// redirect the page with a fully qualified URL
header('Location: http://www.example.com/thanks.php');
exit;

}
}

}

The HTTP/1.1 protocol stipulates a fully qualified URL for a redirect command, although
most browsers will perform the redirect correctly with a relative pathname.

When using the header() function, you must be careful that no output is sent to the
browser before PHP attempts to call it. If, when testing your page, you see an error mes-
sage warning you that headers have already been sent, check that there are no characters,
including newline characters, spaces, or tabs, ahead of the opening PHP tag.

Blocking submission by spam bots

The battle against spam is never ending. The filters used in this chapter should prevent
turning your form into a spam relay, but they won’t stop spammers from using the form to
send unwanted mail to your inbox. Most spam is sent by automated bots, so several tech-
niques have been developed to try to prevent forms from being submitted automatically.

Using a CAPTCHA
One of the most common methods of combating spam is to use a CAPTCHA (Completely
Automated Public Turing Test to Tell Computers and Humans Apart). This requires the user
to decipher distorted text and type it into a field before submitting the form. Figure 11-10
shows a typical example. The idea is that such text is easy for humans to read but that it’s
beyond the capability of current computer programs.

The problem with using a CAPTCHA is that, for the text to defeat optical character recog-
nition, it needs to be difficult to read. I have pretty good eyes, but I found the first word
in Figure 11-10 difficult to make out. If it weren’t a real word, I would have difficulty guess-
ing some of the letters. For anyone who is not a native speaker of English or with poor eye-
sight, it would be a major challenge. This particular example also has an audio button,
but—for me at least—the audio test was even more difficult. It also assumes that the user
has an audio player and speakers installed.

Figure 11-10.
If a CAPTCHA is hard to read,
it deters humans just as much
as spam bots.

USING PHP TO PROCESS A FORM

499

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In theory, CAPTCHA is a good idea, but its major drawback lies in the need to make the
test too difficult for computer programs to solve. As a result, it becomes more difficult for
humans. So, there’s a danger that using a CAPTCHA will prevent not only the spammers
but also the people you want to use the form.

You can learn more about CAPTCHA at http://www.captcha.net.

Using a question in plain text
A simpler form of CAPTCHA asks a question in plain text, for example “What is the sum of
three plus four?” If the answer is entered in a text input field called test, you could add
the following code to the script in feedback.php after the $missing array is initialized:

if (empty($_POST['test']) || $_POST['test'] != 7 || ➥

strtolower($_POST['test']) != 'seven') {
$missing[] = 'test';

}

This checks whether any value has been entered in the test field and whether its value
gives the right answer either as a number or in words (strtolower() converts the answer
to lowercase, so any combination of uppercase and lowercase is acceptable). If the field
hasn’t been filled in or the answer is wrong, test is added to the $missing array, prevent-
ing the mail from being processed.

The problem with this sort of solution is that its simplicity makes it relatively easy to break.
It could be strengthened by rotating the questions on a random basis, but that makes the
code much more complex.

Using a honeypot
Another technique is based on the principle that just like bears can’t resist honey, spam
bots can’t resist filling in every field they find. A honeypot is a form field that’s hidden
from view in normal browsers, so it shouldn’t contain any input. Give the field a name
attribute that a spammer is likely to want to fill in, and give its surrounding paragraph an
ID that gives no indication that you’re using it as a honeypot, for example:

<p id="website">
<label for="url">Website: </label>
<input type="text" name="url" id="url" />

</p>

In your style sheet, create a style rule for the surrounding paragraph’s ID like this:

#website {
display: none;

}

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

500

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the form processing script, check whether $_POST['url'] contains a value. If it does,
the form has almost certainly been filled in by a spam bot, so can be rejected. If you want
to check that genuine form submissions aren’t rejected by mistake, change the address
and subject line of the email like this:

if (!empty($_POST['url'])) {
$to = 'spamtrap@example.com';
$subject = 'Suspected bot submission from feedback form';

} else {
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from Essential Guide';

}

On the other hand, if you want to dump all suspect submissions, set $suspect to true
when $_POST['url'] contains a value like this:

// check the $_POST array and any subarrays for suspect content
isSuspect($_POST, $pattern, $suspect);
if (!empty($_POST['url'])) {
$suspect = true;

}

No doubt, spammers will get wise to the existence of honeypots, but this technique
appears to be reasonably successful at the time of this writing.

Chapter review
If that was your first encounter with PHP, your head will probably be reeling. This has been
a tough chapter. In the next chapter, you’ll adapt this script so that it can be reused as an
external file with most forms. The external file never changes, and the hand-coding is cut
down to about a dozen lines. I could, of course, have given you the external file without
explanation, but if you don’t understand the code, you can’t adapt it to your own require-
ments. Even if you never write an original PHP script of your own, you should know what
the code in your page is doing. If you don’t, you’re storing up trouble for the future.

What makes PHP pages dynamic—and so powerful—is the fact that your code makes deci-
sions, even though you have no way of knowing in advance what is going to be input into
the form. The Dreamweaver code that you’ll encounter in subsequent chapters tries to
anticipate a lot of these unknown factors, but its beauty lies in the fact that it’s config-
urable. If you know how to hand-code, you can get Dreamweaver to do a lot of the hard
work for you and then take it beyond the basics.

However, it’s no fun spending all your time churning out code. Life becomes simpler if you
can reuse code. So, that’s what the next chapter is about—saving time with PHP includes.

USING PHP TO PROCESS A FORM

501

11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12 REDUCING YOUR WORKLOAD
WITH PHP INCLUDES

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Wouldn’t it be wonderful if you could make changes to just a single page and have them
reflected through the site in the same way as CSS? Well, with PHP includes, you can. As the
name suggests, the contents of an include file are included and treated as an integral part
of the page. They can contain anything you would normally find in a PHP page: plain text,
HTML, and PHP code. The file name extension doesn’t even need to be .php, although for
security it’s common practice to use it.

Dreamweaver makes working with includes easy thanks to its ability to display the con-
tents of an include in Design view (or Live view for dynamic content).

In this chapter, you’ll learn about the following:

Using PHP includes for common page elements

Applying CSS to page fragments with design-time style sheets

Exporting a navigation menu to an external file

Adapting the mail processing script to work with other forms

Avoiding the “headers already sent” error with includes

To start with, let’s take a quick look at how you create a PHP include.

Including text and code from other files
The ability to include code from other files is a core part of PHP. All that’s necessary is to
use one of PHP’s include commands and tell the server where to find the file.

Introducing the PHP include commands

PHP has four separate commands for creating an include: include(), include_once(),
require(), and require_once(). Why so many? And what’s the difference?

They all do the same thing, but “require” is used in the sense of “mandatory”; everything
comes to a grinding halt if the external file is missing or can’t be opened. The “include”
pair of commands, on the other hand, soldier bravely on. The purpose of _once is to pre-
vent variables being accidentally overwritten and functions from being redefined (defining
the same function more than once triggers a fatal error). The PHP engine uses the first
instance it encounters and ignores any duplicates. If in doubt about which to use, choose
include_once() or require_once(). Using them does no harm and could avoid problems.

Telling PHP where to find the external file

The include commands take a single argument: a string containing the path of the external
file. While this sounds simple enough, it confuses many Dreamweaver users. PHP looks for
the external file in what’s known as the include_path. By default, this includes the current
directory (folder), although some hosting companies configure PHP to restrict you to

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

504

http://lib.ommolketab.ir
http//lib.ommolketab.ir

including files only from specified locations. In any case, PHP expects either a relative or an
absolute path to an include file. It won’t work with a path relative to the site root.

If Links relative to is set to Document in the Local Info category of your site definition (see
Figure 12-1), Dreamweaver automatically uses the correct path for include files. However,
if you have selected Site root as your default style for links, includes won’t work unless you
override the default setting to change the path to a document-relative one or take alter-
native measures to set the include_path.

Figure 12-1. Dreamweaver’s site definition dialog box lets you specify the default
format of internal links.

A practical exercise should clarify the situation.

In this exercise, you’ll see what happens if you use the wrong type of path for an include
file. You’ll also learn how to override the default setting so that you can use includes suc-
cessfully even if your site definition specifies using links relative to the site root.

1. Create a new subfolder called includes in your workfiles folder, and copy
include.txt from examples/includes to the new folder.

2. Go to File ➤ New. Select Blank Page and PHP for Page Type. Choose any of the pre-
defined layouts. The one I chose was 2 column fixed, left sidebar. This is only going to
be a test page, so you can leave Layout CSS on Add to Head. Click Create, and save
the file as include_test.php in workfiles/ch12.

3. Position your cursor at the beginning of the first paragraph under the Main Content
headline. Press Enter/Return to insert a new paragraph, and then press your up
keyboard arrow to move the insertion point into the empty paragraph.

4. Select the PHP tab on the Insert bar, and click the Include button as shown in the
following screenshot (alternatively use the menu option Insert ➤ PHP Objects ➤
Include). Dreamweaver opens Split view, inserts a PHP code block complete with an
include() command, and positions the insertion point between the parentheses,
ready for you to enter the path of the external file (it’s on line 72 in the following
screenshot).

Including a text file

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

505

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. The path needs to be a string, so enter a quotation mark (I prefer a single quote,
but it doesn’t matter, as long as the closing quote matches). Dreamweaver’s syntax
coloring turns all the subsequent code red, but this reverts to normal once you
have finished. Inserting the quotation mark places a tiny Browse icon at the inser-
tion point like this:

6. Click the Browse icon to open the Select File dialog box. Navigate to the
workfiles/includes folder, and select include.txt. Before clicking OK, check the
setting of Relative to at the bottom of the dialog box. It displays Document or Site
Root, depending on the default in your site definition (see Chapter 2 and Figure 12-1).
If necessary, change it to Site Root, as shown here, and click OK:

7. Type a closing quote after the path that has just been entered into the include()
command. Syntax coloring turns the rest of the code back to its normal color—a
useful reminder of the importance of matching quotes. Move your cursor further
along the line to remove the just before the closing </p> tag.

Bringing up the Browse icon automatically is a small but welcome productivity
improvement in Dreamweaver CS4. In previous versions, you needed to select
URL Browser from Code Hint Tools on the context menu.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

506

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The code in that line should now look like this:

<p><?php include('/workfiles/includes/include.txt'); ?></p>

8. Click inside Design view. The content of the external text file should be displayed
just below the main heading. Magic . . . well, not quite.

9. Click the Live View button. Dreamweaver will ask whether you want to save the
page and update it on the testing server. Click Yes in both cases. You should see
something like Figure 12-2.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

507

12

Figure 12-2. If PHP can’t find the include file, it displays ugly warning messages.

The first warning says there was no such file or directory, but of course, there is.
The second warning gives a cryptic clue as to why PHP can’t open the file. The
include_path is where PHP looks for include files. The value shown on your com-
puter for include_path won’t necessarily be the same as in Figure 12-2; the default
on most web servers is . (a period), which is shorthand for the current working
directory, and either the main PHP folder or pear (PEAR—the PHP Extension and
Application Repository—is a library of extensions to PHP).

What these warnings are telling you is that PHP doesn’t understand a leading for-
ward slash as meaning the site root, so it starts from the current folder and ends up
in a nonexistent part of the site.

10. Switch off Live view, and delete the value between the parentheses of include().

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11. Repeat steps 5 and 6 to include.txt again, but this time make sure that Relative to
is set to Document. Switch on Live view again, saving and updating the files when
prompted. The content of the include file should now be correctly displayed, as
shown in Figure 12-3.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

508

Figure 12-3. The include file is displayed correctly when a relative path is used.

12. Switch off Live view, and change the command from include to require like this:

<?php require('../includes/include/txt'); ?>

13. Test the page again in Live view. It should look identical to Figure 12-3.

14. Change the path to point to a nonexistent file, such as includ.txt. When you test
the page in Live view, it should look similar to Figure 12-2, but instead of the sec-
ond warning, you should see Fatal error. The other difference is that there’s no text
after the error message. As explained in “Understanding PHP error messages” in
Chapter 10, any output preceding a fatal error is displayed, but once the error is
encountered, everything else is killed stone dead.

Using site-root-relative links with includes

As you have just seen, PHP cannot find include files referenced by a link relative to the site
root. My recommendation is that, if you have selected links relative to the site root as your
default, you simply select Relative to Document in the Select File dialog box (as described in
step 11 of the preceding exercise) when creating an include.

Nevertheless, there are a couple of alternatives if you have a pressing reason for wanting
to use links relative to the site root. The problem is that they don’t work on all servers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The virtual() function accepts both document-relative and site-root-relative paths and
can be used as a direct replacement for include() and require(). It works only when PHP
is run as an Apache module.

$_SERVER['DOCUMENT_ROOT'] is a predefined PHP variable that contains the path of the
server’s root folder, so adding it to the beginning of a site-root-relative link has the effect
of turning it into an absolute path. The following works on most servers:

<?php include($_SERVER['DOCUMENT_ROOT'].'/workfiles/includes/ ➥

include/txt'); ?>

Unfortunately, $_SERVER['DOCUMENT_ROOT'] isn’t supported by IIS running PHP in CGI mode.

To check whether your server supports either method, run server_check.php in
examples/ch12. If both are supported, you should see output similar to this:

The preceding screenshot shows the output from my local testing server, but it’s important
to test your remote server as well. If neither virtual() nor $_SERVER['DOCUMENT_ROOT']
is supported and you still want to use site-root-relative links, you need to define a
constant containing the path to the site root. A constant is like a variable, except that
once defined in a script, its value cannot be changed. Constants don’t begin with a dollar
sign, and by convention, they are always in uppercase. You define a constant like this:

define('SITE_ROOT', 'C:\inetpub\wwwroot\dwcs4');

You could then use SITE_ROOT with a site-root-relative link like this:

<?php include(SITE_ROOT.'/workfiles/includes/include/txt'); ?>

The disadvantage with this approach is that you need to include the definition of the con-
stant in every page that uses includes.

The restriction on site-root-relative links applies only to the include command.
Inside include files, all links should be site-root-relative. Document-relative
links inside an include file will be broken if the file is included at a different
level of the site hierarchy.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

509

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Lightening your workload with includes
So far, you have seen only a fairly trivial use of an include to insert a block of text inside a
paragraph. This might be useful in a situation where you want to change the content of
part of a page on a frequent basis without going to the bother of building a database-
driven content management system. A much more practical use of includes is for content
that appears on many pages, for example a navigation menu or footer. Any changes made
to the include file are immediately reflected throughout the site.

Choosing the right file name extension for include files

As I explained at the beginning of the chapter, the external file doesn’t need to have a
.php file name extension. Many developers use .inc as the default file name extension to
make it clear that the file is an include. Although this a common convention, Dreamweaver
doesn’t automatically recognize an .inc file as containing PHP code, so you don’t get code
hints or syntax coloring. More importantly, browsers don’t understand .inc files. So, if
anybody accesses an .inc file directly through a browser (as opposed to it being included
as part of a PHP page), everything is displayed as plain text.

This is a potential security risk if you put passwords or other sensitive information in exter-
nal files. One way around this problem is to store include files outside the server root
folder. Many hosting companies provide you with a private folder, which cannot be
reached by a browser. As long as the PHP script knows where to find the external file and
has permission to access it, include files can be outside the server root. However, this cre-
ates problems for Dreamweaver site management.

A simpler, widely adopted solution is to use .inc.php as the file name extension. Browsers
and servers treat only the final .php as the file name extension and automatically pass the
file to the PHP engine if requested directly. The .inc is simply a reminder to you as the
developer that this is an include file.

As long as you store passwords and other sensitive information as PHP variables within PHP
code blocks and you use .php as the final file name extension, your data cannot be seen
by anyone accessing the page directly in a browser (of course, it will be revealed if your
code uses echo or print to display that information, but I assume you have the sense not
to do that).

Displaying HTML output

When PHP includes an external file, it automatically treats the contents of the external file
as plain text or HTML. This means that you can cut a section out of an existing page built
in HTML and convert it into an include file. In order to preserve your sanity, it’s important
to put only complete, logical elements in external files. Putting the opening part of a <div>
in one external file and the closing part in another file is a disaster waiting to happen. It
becomes impossible to keep track of opening and closing tags, and Dreamweaver is likely
to start trying to replace what it regards as missing tags.

Usually, I find the best approach is to build the complete page first and then convert com-
mon elements into include files.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

510

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise shows you how to extract the menu from the “Stroll along the Thames” site
in Chapter 6 and convert it into an include file. The menu bar currently contains only
dummy links. I’ll show you later in this chapter how to edit the menu to update the links.

1. Copy stroll_horiz.php and stroll.css from examples/ch12 to workfiles/ch12.
This is an identical copy of the completed page from Chapter 6. The only difference
is that the file name extension has been changed to .php so that the PHP engine
knows to process it and include the external files you are about to create. Test the
page in a browser to make sure it displays correctly. It should look like Figure 12-4.

Converting a navigation menu into an include

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

511

12

Figure 12-4. The menu is the same on every page of the site, so it is a prime candidate for an include file.

2. Create a new PHP file, and save it in the workfiles/includes folder as
menu.inc.php. You don’t need one of the CSS layouts, because you need a com-
pletely blank page. Switch to Code view in menu.inc.php, and delete everything,
including the DOCTYPE declaration. There should be nothing left in the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Switch to stroll_horiz.php in the Document window. Click anywhere inside the
navigation menu, and click <div#nav> in the Tag selector to select the entire
menu. Switch to Code view, and then cut the menu to your computer clipboard
(Ctrl+X/Cmd+X or Edit ➤ Cut).

You must be in Code view when cutting the menu to the clipboard. If you remain
in Design view, Dreamweaver cuts all the Spry-related code and pastes it into the
include file. You want to move only the HTML code and the Spry object initializa-
tion, but they’re in different parts of the page, so it has to be done in two steps.
Click No if Dreamweaver displays the warning shown in the preceding screenshot at
any time during the next few steps. Once you move the initialization script, the
warning message no longer appears.

4. Without moving the insertion point, click the Include button on the PHP tab of the
Insert bar (or use the menu alternative). This inserts a PHP code block and positions
your cursor between the parentheses of an include() command.

5. Type a single quote, and click the Browse icon to navigate to menu.inc.php in the
workfiles/includes folder in the same way as in “Including a text file” earlier in
the chapter. In the Select File dialog box, make sure Relative to is set to Document.
Click OK, and type a closing quote after the path. Save stroll_horiz.php.

6. Switch to menu.inc.php in the Document window. Make sure you are in Code view,
and paste the menu that you cut from stroll_horiz.php. (If you are in Design
view, you won’t get all the HTML code. Always cut and paste in the same view in
Dreamweaver—Design view to Design view or Code view to Code view.)

7. Go back to stroll_horiz.php, scroll down to the bottom of the page, and cut to
your clipboard the section of code highlighted on lines 53–57 in the following
screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

512

This is the initialization script for the Spry menu bar. Make sure you have the open-
ing and closing <script> tags.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Paste the Spry object initialization script into menu.inc.php after the closing
</div> tag. Save menu.inc.php, and close the file.

9. Switch to Design view in stroll_horiz.php. The menu should be visible as it was
before. If you can’t see the menu, open Preferences from the Edit menu
(Dreamweaver menu on a Mac), select the Invisible Elements category, and make
sure there’s a check mark in Server-Side includes: Show contents of included file.

10. Hover your mouse pointer over the navigation menu, and click the turquoise Spry
Menu Bar tab at the top-left corner. The Property inspector recognizes it as a
server-side include (SSI) and displays the name of the file, together with an Edit
button, as shown in Figure 12-5. If the Spry Menu Bar tab doesn’t appear, make sure
there’s a check mark alongside Invisible Elements in the View ➤ Visual Aids submenu.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

513

12

Figure 12-5. The Property inspector provides a direct link to edit the include file.

If the Related Files feature is enabled, clicking the Edit button in the Property
inspector opens the include file in Split view ready for editing. Frequently, though,
it’s better to open the include file as a separate file so that you can edit it in Design
view as well as in Code view. To do so, right-click the include file’s name in the
Related Files toolbar, and select Open as Separate File.

If you have disabled Related Files, clicking Edit opens the file in a separate tab.

11. Test stroll_horiz.php in a browser. It should look like Figure 12-4, and the menu
should work as before. You can check your code against stroll_horiz_menu.php
in examples/ch12 and menu.inc.php in examples/includes.

Putting the Spry object initialization script at the end of menu.inc.php results in it being
called earlier than it was in the original page, but it’s still in the right order and doesn’t
result in invalid code. It also prevents the warning in step 3 from being displayed every
time you open the parent page.

An added advantage is that you can edit the Spry menu through the Property inspector in
the same way as in Chapter 6. Even though the include file has no direct link to the Spry
menu bar external JavaScript file, Dreamweaver automatically finds it because the Spry assets
folder is specified in the site definition.

However, what you put in an external file doesn’t always have such benign consequences.

An annoying quirk in the way Dreamweaver handles PHP includes in Design
view is that the include command must be in its own PHP code block. If you put
any other PHP code in the same block—even a comment—Dreamweaver just
displays the gold PHP shield.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Avoiding problems with include files

The server incorporates the content of an include file into the page at the point of the
include command. If you pasted all the Spry-related code into menu.inc.php, rather than
just the constructor, you would end up with the link to the external style sheet within the
<body> of stroll_horiz.php. Although some browsers might render the page correctly,
<style> blocks are invalid outside the <head> of a web page. If it doesn’t break now, it
probably will sooner or later as browsers get increasingly standards-compliant.

The most common mistake with include files is adding duplicate <head> and <body> tags.
Keep your include files free of extraneous code, and make sure when everything fits back
together that you have a DOCTYPE declaration, a single <head> and <body>, and that every-
thing is in the right order.

Dreamweaver depends on the DOCTYPE declaration at the top of a page to determine
whether to use XHTML rules. Code added to an include will normally use HTML style, so
when editing an include, you need to keep a close eye on what is happening in Code view.
This is why I recommend extracting code into include files only toward the end of a proj-
ect or if the external file uses mainly dynamic code.

Another common problem is a broken link in an include file. Always use links relative to
the site root inside include files. As explained in Chapter 2, root-relative links provide a
constant reference to a page or an asset, such as an image. If you use document-relative
links inside an include file, the relationship—and therefore the link—is broken if the file is
included at a different level of the site hierarchy than where it was originally designed.

Let’s test that with the menu bar that was extracted to an external file in the preceding
exercise.

This exercise demonstrates the importance of using root-relative links in an include file. It
updates two of the links in menu.inc.php, the include file created in the preceding exer-
cise. Continue working with the same files.

1. With stroll_horiz.php open in the Document window, right-click menu.inc.php
in the Related Files toolbar, and select Open as Separate File, as shown here:

2. This opens menu.inc.php in a separate tab. The menu bar displays as an unstyled
unordered list (see Figure 12-6). In the next section, I’ll show you how you can dis-
play the styles while working on an include file like this. However, that’s not impor-
tant at the moment. What you’re interested in is updating the links.

Updating links in the menu bar

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

514

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you prefer working with the Spry menu bar Property inspector, select the Spry
Menu Bar turquoise tab at the top left of the unordered list. However, I think it’s
quicker to just click inside the individual links and use the HTML view of the
Property inspector.

Whichever method you use, select the Home link, click the Browse for File icon to the
right of the Link field in the Property inspector, and navigate to stroll_horiz.php
in the workfiles/ch12 folder. Make sure Relative to in the Select File dialog box is set
to Document, as shown in the following screenshot (I’m deliberately doing this to
demonstrate what happens when you use document-relative links in an include file):

Figure 12-6.
The menu bar is unstyled
in the include file.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

515

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Click OK to update the link. Then select the London Eye link, and create a link to
eye.php, which is in the examples/ch12/attractions folder. Also make sure
Relative to is set to Document, and click OK to update the link. There is no need to
move eye.php to the workfiles folder. I have created the page so that it automat-
ically includes your version of menu.inc.php from workfiles/includes.

4. Save menu.inc.php, switch back to horiz_stroll.php, and press F12/Opt+F12 to
load the page into a browser. Click Yes when asked whether you want to update
the page on the testing server.

5. Mouse over Attractions in the menu bar to reveal the drop-down menu, and click
London Eye. You should see the page shown in Figure 12-7.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

516

Figure 12-7. The menu navigates successfully to a page at a different level in the site hierarchy.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Now click the Home link in the new page. This time, you should see something
similar to Figure 12-8.

Figure 12-8. Document-relative links prevent the menu from navigating back to
the correct location.

If you’re using the same site structure as I am, you’ll see that the menu has tried
to find stroll_horiz.php in the examples folder, rather than return to your
workfiles folder. Not only that, but it’s trying to find two levels of ch12. Although
the browser was able to find the correct file the first time, document-relative links
make it impossible for an include file to navigate through a complex site structure.
Using document-relative links works only if you keep everything in the same folder.

7. Return to menu.inc.php, and update the Home and London Eye links. They should
still point to the same pages, but this time select Site Root as the value for Relative
to. The values in the URL field should look like this:

/workfiles/ch12/stroll_horiz.php
/examples/ch12/attractions/eye.php

This works only if you have set up your testing server as a virtual host in Apache or
as a web site in IIS7.

If you defined your site in a subfolder of the server root, you need to prefix these
values with the name of the subfolder preceded by a forward slash. For example, if
you created the site in a subfolder of the server root called dwcs4 and you use
http://localhost/dwcs4/workfiles/ch12/stroll_horiz.php to display the first
page, you need to manually adjust the preceding values like this:

/dwcs4/workfiles/ch12/stroll_horiz.php
/dwcs4/examples/ch12/attractions/eye.php

If you have built the site in your Sites folder on a Mac, you need to add your user-
name as well, like this:

/~username/dwcs4/workfiles/ch12/stroll_horiz.php
/~username/dwcs4/examples/ch12/attractions/eye.php

8. The script that initializes the menu bar also uses document-relative links like this:

var MenuBar1 = new Spry.Widget.MenuBar("MenuBar1", ➥

{imgDown:"../../SpryAssets/SpryMenuBarDownHover.gif", ➥

imgRight:"../../SpryAssets/SpryMenuBarRightHover.gif"});

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

517

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Because the include file always remains in the same location relative to the
SpryAssets folder, you don’t need to edit these links. However, for the sake of
consistency, it’s a good idea to do so. Remove the ../.. from the beginning of
both links like this:

var MenuBar1 = new Spry.Widget.MenuBar("MenuBar1", ➥

{imgDown:"/SpryAssets/SpryMenuBarDownHover.gif", ➥

imgRight:"/SpryAssets/SpryMenuBarRightHover.gif"});

9. Save menu.inc.php and reload stroll_horiz.php in a browser. You should now be
able to navigate successfully between the Home and London Eye pages.

Applying styles with design-time style sheets

Although Dreamweaver displays the menu normally in stroll_horiz.php, it looks com-
pletely different in menu.inc.php. As Figure 12-6 shows, the menu is completely unstyled;
all you can see is the underlying series of nested unordered lists. Design-time style sheets
let you apply the styles in an external style sheet to a page or code fragment without the
need to attach the style sheet directly to the page. As the name suggests, the style sheet is
applied only at design time; in other words, it’s applied in Design view.

To apply design-time style sheets to a page or an include file, select CSS Styles ➤ Design-time
from either the Format menu or from the context menu when right-clicking in Design view.
This opens the Design-Time Style Sheets dialog box, as shown in the following screenshot:

The instructions in step 7 for prefixing the links with the server root subfolder are purely for
the benefit of this exercise. When deploying the file on a live site, you would need to
remove the /dwcs4 or /~username/dwcs4 from each link, making the process cumber-
some and prone to error. If you plan to use links in include files, it’s essential to set up your
testing server in a virtual host or a standalone web site in IIS7 (see Chapter 2 for details).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

518

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The dialog box has two sections. The first one, Show only at design time, lets you apply a
style sheet without attaching it to the file. The second one, Hide at design time, works with
style sheets that are attached to a file, letting you hide the effect of selected style sheets
while working in Design view. It’s particularly useful when working with style sheets for dif-
ferent media, such as print and screen.

Both sections work the same way: add a style sheet to the list by clicking the plus (+) button
and navigating to the style sheet in the site file system. The rules of the CSS cascade apply, so
add multiple style sheets in the same order as to the original page. To remove a style sheet,
highlight it, and click the minus (–) button. Figure 12-9 shows menu.inc.php after apply-
ing workfiles/ch12/stroll.css and SpryAssets/SpryMenuBarHorizontal_stroll.css
as design-time style sheets. It now looks the same as in the page it was extracted from.

Figure 12-9. After applying design-time style sheets, the include file looks the same as in the
original page.

With the design-time style sheets applied, you can manipulate the styles of the include file
by changing the class or ID of individual elements. You can also change the style rules in
the external style sheets through the CSS Styles panel or the CSS view of the Property
inspector. But—and it’s a rather large one—you should remember that the code fragment
you’re working with is no longer in the context of its parent page. As a result, you cannot
access the Code Navigator by holding down Alt/Opt+Cmd and clicking in the page, nor are
the styles preserved in Live view. More importantly, the full effect of the CSS cascade may
not be accurately reflected if particular styles are dependent on being inside a parent ele-
ment that’s not part of the code fragment. Also, changes made to the external style sheet
may have unexpected consequences on other parts of your design. Although useful,
design-time style sheets have their limitations.

Another drawback is that design-time style sheets can be applied to only one page at a
time. There is a commercial extension available that lets you apply design-time style sheets
to an entire site. See http://www.communitymx.com/abstract.cfm?cid=61265 for details.
Dreamweaver stores details of style sheets applied to a page in this way in a subfolder
called _notes. The subfolder is hidden in the Files panel but can be inspected in Windows
Explorer or Finder.

Adding dynamic code to an include

The footer of a page frequently contains details that might change, such as company
address or telephone number, making it an ideal candidate for an include file.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

519

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The footer in stroll_horiz.php contains only a copyright notice, which normally changes
only once a year, but with a little PHP magic, you can get it to update automatically at the
stroke of midnight on New Year’s Eve every year. Continue working with the files from the
previous exercise.

1. Create a PHP page, and save it in workfiles/includes as footer.inc.php. Switch to
Code view, and remove all code so the file is completely blank. Switch to Design view.

2. Open stroll_horiz.php in Design view, and click anywhere inside the copyright
notice at the bottom of the page. Select the entire footer by clicking <div#footer>
in the Tag selector, and cut it to your clipboard.

3. Without moving the insertion point, click the Include button on the PHP tab of the
Insert bar. Dreamweaver opens Split view with the cursor placed between the
parentheses of an include() block. Type a single quote, click the Browse icon as
before to insert the path to footer.inc.php, and type a closing quote.

4. Switch to footer.inc.php, and paste the contents of your clipboard into Design
view (do not paste into Code view—remember always to paste back to the same
view as you cut from). The footer is unstyled, but if you save footer.inc.php,
switch to stroll_horiz.php, and click in Design view, then you’ll see the footer
properly styled as though you had never moved it.

5. Close the separate tab containing footer.inc.php. The rest of the work on the
include file needs to be done in Code view, so you can now access it through the
Related Files toolbar. Select footer.inc.php in the Related Files toolbar to open it in
Split view, as shown in the following screenshot:

6. A copyright notice should have a year. You could just type it in, but the PHP date()
function generates the current year automatically. Add the following code like this:

<p>©
<?php
ini_set('date.timezone', 'Europe/London');
echo date('Y');
?>
Footsore in London</p>

Automatically updating a copyright notice

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

520

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 17 explains dates in PHP and MySQL in detail, but let’s take a quick look at
what’s happening here. The core part of the code is this line:

echo date('Y');

This displays the year using four digits. Make sure you use an uppercase Y. If you
use a lowercase y instead, only the final two digits of the year will be displayed.

The reason for the preceding line is because PHP 5.1.0 or higher requires a valid
time-zone setting. This should be set in php.ini, but if your hosting company for-
gets to do this, you may end up with ugly error messages in your page.

What if your hosting company is using an earlier version of PHP? No problem.
Earlier versions simply ignore this line.

Setting the time zone like this is not only good insurance against error messages,
but it also allows you to override the hosting company setting, if your host is in a
different time zone from your own. The second argument for ini_set() must be
one of the time zones listed at http://docs.php.net/manual/en/timezones.php.

7. Save both stroll_horiz.php and footer.inc.php, and click the Live View button.
You should see the current year displayed alongside the copyright symbol, as
shown in Figure 12-10.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

521

12

Figure 12-10. The PHP code generates the current year and displays it in the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Click the Live Code button, and scroll down to the bottom of the Code view section
of the Document window. This shows you the actual code being sent to the
browser. As you can see in the following screenshot, the PHP code remains on the
server, and only the generated output is visible. The line numbers are different
because Live Code merges the include files into the main page.

9. Copyright notices normally cover a range of years, indicating when a site was first
launched. To improve the copyright notice, you need to know two things: the start
year and the current year. Turn off both Live view and Live Code. Select
footer.inc.php in the Related Files toolbar, if necessary, and change the PHP code
like this:

<p>©
<?php
ini_set('date.timezone', 'Europe/London');
$startYear = 2008;
$thisYear = date('Y');
if ($startYear == $thisYear) {
echo $startYear;

} else {
echo "{$startYear}-{$thisYear}";

}
?>
Footsore in London</p>

This uses simple conditional logic (if you’re new to PHP, see “Using comparisons to
make decisions” in Chapter 10, and take particular note of the use of two equal
signs in the conditional statement). The static value of $startYear is compared to
the dynamically generated value of $thisYear. If both are the same, only the start
year is displayed; if they’re different, you need to display both with a hyphen
between them.

I’ve used curly braces around the variables in the following line:

echo "{$startYear}-{$thisYear}";

This is because they’re in a double-quoted string that contains no whitespace. The
curly braces enable the PHP engine to identify the beginning and end of the vari-
ables. Since hyphens aren’t permitted in variable names, you could omit the curly
braces on this occasion. However, their presence makes the code easier to read.

10. Save footer.inc.php, and toggle Live view on again. Assuming you used the cur-
rent year for $startYear, you’ll see no difference, so experiment by changing the
value of $startYear and alternating between uppercase and lowercase y in the
date() function.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

522

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Depending on the value of $startYear and the current date, you should see some-
thing like © 2007–2008 if you used an uppercase Y, and © 2007–08 with a lower-
case y.

The values of $startYear, $thisYear, and the name of the copyright owner are the
only things you need to change, and you have a fully automated copyright notice.
You can check your code against footer.inc.php in examples/includes and
stroll_horiz_footer.php in examples/ch12.

Using includes to recycle frequently used PHP code

Includes become really useful when you create PHP code that can be used in any site. A
simple example is the POST stripslashes snippet you used in the previous chapter. Instead
of putting the code directly inside your script, you could put it in an external file and use
include() to incorporate it.

Let’s take a look at the code again:

// remove escape characters from POST array
if (PHP_VERSION < 6 && get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);
return $value;

}
$_POST = array_map('stripslashes_deep', $_POST);

}

It contains nothing but PHP code, and the code itself consists of a conditional statement
that removes backslashes from the $_POST array if magic quotes are enabled on the server.
To use it successfully as an include, you must do the following two things:

The code in the external file must be surrounded by PHP tags. Although include()
and its related commands are part of PHP, the PHP engine treats everything in an
include file as plain text or HTML until it encounters an opening PHP tag. The open-
ing tag must be matched by a closing one at or before the end of the include file.

The code must be included at the point in the script where you want to run it. In
this respect, it’s the same as the text and HTML includes earlier in the chapter.

PHP can be used in two main ways: as a procedural language and as an object-oriented
one. In a procedural language, everything is usually in the same page, and the code is exe-
cuted from top to bottom. However, to avoid the need to retype frequently used sections
of script, you can package them up as custom-built functions. An object-oriented language
takes the concept of functions much further and packages most of the code in libraries
called classes.

For an in-depth look at object-oriented PHP, see my PHP Object-Oriented Solutions
(friends of ED, ISBN: 978-1-4302-1011-5).

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

523

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

That’s a vast oversimplification, but in both approaches, unless the contents of an external
file define functions or classes, the include command must come at the point in the code
where you want to run it. The POST stripslashes snippet does include the definition of the
stripslashes_deep() function, but it’s buried inside a conditional statement. So, the snip-
pet itself is a chunk of procedural code that must be included at the point of the script
where it’s needed.

However, you can convert the snippet into a new function called nukeMagicQuotes()
like this:

<?php
function nukeMagicQuotes() {
// remove escape characters from POST array
if (get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value): stripslashes($value);
return $value;

}
$_POST = array_map('stripslashes_deep', $_POST);

}
}
?>

If you save this as nukequotes.inc.php, you can include the external file at the beginning
of your script and run this function at any stage in your script like this (you can see the
code in feedback_nuke.php in examples/ch12 and nukequotes.inc.php in examples/
includes):

nukeMagicQuotes();

The difference of this approach is that the include file initializes the function, but the func-
tion doesn’t actually run until it’s called in the main body of the script. Since this particu-
lar piece of code runs only once, there’s no immediate advantage of doing it this way.
However, let’s say you find a way of improving this script; the changes need to be made
only in the external file, saving you the effort of hunting through every page where it
might have been used. External files can define more than one function, so you can store
frequently used functions together. In this respect, includes are the PHP equivalent of link-
ing external JavaScript files or style sheets.

Although building your own function library is an important use of includes, you shouldn’t
ignore the opportunity to recycle procedural code.

When functions or classes are stored in an external file, the include
command must come before you use the functions or classes in your
main script.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

524

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adapting the mail processing script as an
include

The mail processing script in the previous chapter performs a series of tasks, some of them
specific to the feedback form, others more generic in nature. The next section shows you
how to adapt the script and make it generic so that it can handle the output of any feed-
back form. If you glance ahead at the next few pages, you’ll see there’s a lot of PHP code.
Don’t despair. Most of the work involves cutting and pasting from one page to another. At
the end, you will have an include file that can be used with just about any online form to
process the input and send it by email. This considerably reduces the amount of coding
that needs to be done in the page that contains the form itself.

Analyzing the script

To make the script reusable, you need to identify what’s specific, what’s generic, and
whether any of the specific tasks can be made generic. Once you have identified the
nature of each task, you need to concentrate the generic ones into a single unit that can
be exported to an external file.

Table 12-1 lists the tasks in the order they are currently performed and identifies their
roles. You can study the code in feedback_orig.php in examples/ch12.

Table 12-1. Analysis of the mail processing script

Step Description Type

1 Check whether form has been submitted. Specific

2 Remove magic quotes. Generic

3 Set to address and subject. Specific

4 List expected and required fields. Specific

5 Initialize $missing array. Generic

6 Set default values for checkbox group and multiple-choice list. Specific

7 Filter suspect content. Generic

8 Process $_POST variables and check for missing fields. Generic

9 Validate email address. Generic

10 Build the message body. Specific

11 Create additional headers. Specific

12 Send email. Generic

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

525

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see from Table 12-1, most tasks are generic, but they don’t form a single block.
However, step 2 can easily be moved after step 6. That leaves just steps 6, 10, and 11 that
get in the way. The easy way to deal with step 6 is to initialize the $missing array as part
of the specific script. After all, it’s only one line.

So, what about step 10? This builds the body of the message, which would appear to be
something that’s always specific to each form. Let’s take another look at that part of
the script:

// build the message
$message = "Name: $name\r\n\r\n";
$message .= "Email: $email\r\n\r\n";
$message .= "Comments: $comments\r\n\r\n";
$message .= 'Interests: '.implode(', ', $interests)."\r\n\r\n";
$message .= "Subscribe: $subscribe\r\n\r\n";
$message .= "Visited: $visited\r\n\r\n";
$message .= 'Impressions of London: '.implode(', ', $views);

It doesn’t take a genius to work out that the message is built using text labels followed by
variables with the same name as the label. Since the variable names come from the name
attributes in the form, all you need is a way of displaying the name attributes as well as the
values of each input field. That’s easily done with PHP. It’s also easy to set default values for
variables that contain nothing.

That leaves just step 11, the creation of additional headers. With the exception of the
return email address, it doesn’t matter when you specify the additional headers. They sim-
ply need to be passed to the mail() function in step 12. So, you can move the creation of
most headers to the form-specific section at the beginning of the script. Table 12-2 shows
the revised order of tasks.

Table 12-2. The revised mail processing script

Where defined Step Description

Main script

1 Check whether form has been submitted.

2 Set to address and subject.

3 Set form-specific email headers.

4 List expected and required fields.

5 Initialize missing array.

6 Set default values for checkbox group and multiple-
choice list.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

526

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Where defined Step Description

Include file

1 Remove magic quotes.

2 Filter suspect content.

3 Process $_POST variables, and check for missing fields.

4 Validate email address.

5 Build the message body.

6 Add return email address to headers.

7 Send email.

Building the message body with a generic script

Loops and arrays take a lot of the hard work out of PHP scripts, although they can be dif-
ficult to understand when you’re new to PHP. You may prefer just to use the completed
script, but if you’re interested in the details, take a look at the following code, and I’ll
explain how it works:

// initialize the $message variable
$message = '';
// loop through the $expected array
foreach($expected as $item) {
// assign the value of the current item to $val
if (isset(${$item}) && !empty(${$item})) {
$val = ${$item};

} else {
// if it has no value, assign 'Not selected'
$val = 'Not selected';

}
// if an array, expand as comma-separated string
if (is_array($val)) {
$val = implode(', ', $val);

}
// add label and value to the message body
$message .= ucfirst($item).": $val\r\n\r\n";

}

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

527

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This replaces the code for step 10 that was listed in the preceding section. It begins by ini-
tializing $message as an empty string. Everything else is inside a foreach loop (see
“Looping through arrays with foreach” in Chapter 10), which iterates through the
$expected array. This array consists of the name attributes of each form field (name, email,
and so on).

A foreach loop assigns each element of an array to a temporary variable. In this case, I
have used $item. So, the first time the loop runs, $item is name; the next time it’s email,
and so on. This means you can use $item as the text label for each form field, but before
you can do that, you need to know whether the field contains any value. The code that
processes the $_POST variables assigns the value of each field to a variable based on its
name attribute ($name, $email, and so on). The rather odd-looking ${$item} is what’s
known as a variable variable (the repetition is deliberate, not a misprint). Since the value
of $item is name the first time the loop runs, ${$item} refers to $name. On the next pass
through the loop, it refers to $email, and so on.

In effect, what happens is that on the first iteration the following conditional statement

if (isset(${$item}) && !empty(${$item})) {
$val = ${$item};

}

becomes this:

if (isset($name) && !empty($name)) {
$val = $name;

}

If the variable doesn’t exist (which would happen if nothing was selected in a checkbox
group) or if it doesn’t contain a value, the else clause assigns $val the string Not selected.

So, you now have $item, which contains the label for the field, and $val, which contains
the field’s value.

The next conditional statement uses is_array() to check whether the field value is an
array (as in the case of checkboxes or a multiple-choice list). If it is, the values are con-
verted into a comma-separated string by implode().

Finally, the label and field value are added to $message using the combined concatenation
operator (.=). The label ($item) is passed to the ucfirst() function, which converts the
first character to uppercase. The concatenation operator (.) joins the label to a double-
quoted string, which contains a colon followed by the field value ($val) and two pairs of
carriage returns and newline characters.

This code handles all types and any number of form fields. All it needs is for the name
attributes to make suitable labels and to be added to the $expected array.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

528

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following instructions show you how to adapt feedback.php from the previous chap-
ter so that it can be recycled for use with most forms. If you don’t have a copy of the file
from the previous chapter, copy feedback_orig.php from examples/ch12 to work-
files/ch12, and save it as feedback.php.

1. Create a new PHP file, and save it as process_mail.inc.php in workfiles/
includes. Switch to Code view, and strip out all existing code.

2. Insert the following code:

<?php
if (isset($_SERVER['SCRIPT_NAME']) && strpos($_SERVER['SCRIPT_NAME'],➥

'.inc.php')) exit;

?>

This uses the predefined variable $_SERVER['SCRIPT_NAME'] and the strpos()
function to check the name of the current script. If it contains .inc.php, that
means somebody is trying to access the include file directly through a browser, so
the exit command brings the script to a halt. When accessed correctly as an
include file, $_SERVER['SCRIPT_NAME'] contains the name of the parent file, so
unless you also give that the .inc.php file name extension, the conditional state-
ment returns false and runs the rest of the script as normal.

Calling process_mail.inc.php directly shouldn’t have any negative effect, but if
display_errors is enabled on your server, it generates error messages that might
be useful to a malicious attacker. This simple security measure prevents the script
running unless it’s accessed correctly.

3. Cut the POST stripslashes code from the top of feedback.php, and paste it on the
blank line before the closing PHP tag in process_mail.inc.php.

4. Leave $to, $subject, $expected, and $required in feedback.php. Cut the remaining
PHP code above the DOCTYPE declaration (DTD), except for the closing curly brace
and PHP tag. The following code should be left above the DTD in feedback.php:

<?php
if (array_key_exists('send', $_POST)) {
//mail processing script
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from Essential Guide';

// list expected fields
$expected = array('name', 'email', 'comments', 'interests', ➥

'subscribe', 'visited', 'views');
// set required fields
$required = array('name', 'comments', 'interests', 'visited', ➥

'views');

Converting feedback.php to use the generic script

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

529

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// create empty array for any missing fields
$missing = array();
// set default values for variables that might not exist
if (!isset($_POST['interests'])) {
$_POST['interests'] = array();

}
if (!isset($_POST['views'])) {
$_POST['views'] = array();

}
// minimum number of required checkboxes
$minCheckboxes = 2;
// if fewer than required, add to $missing array
if (count($_POST['interests']) < $minCheckboxes) {
$missing[] = 'interests';

}
}
?>

5. Paste into process_mail.inc.php just before the closing PHP tag the code you cut
from feedback.php.

6. Cut the following two lines from process_mail.inc.php:

// create additional headers
$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= 'Content-Type: text/plain; charset=utf-8';

7. Paste them into feedback.php just before the closing curly brace of the code
shown in step 4 like this:

if (count($_POST['interests']) < $minCheckboxes) {
$missing[] = 'interests';

}
// create additional headers
$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= 'Content-Type: text/plain; charset=utf-8';

}
?>

8. Replace the code that builds the message with the generic version shown at the
beginning of this section. The full listing for process_mail.inc.php follows, with
the new code highlighted in bold:

<?php
if (isset($_SERVER['SCRIPT_NAME']) && strpos($_SERVER['SCRIPT_NAME'],➥

'.inc.php')) exit;
// remove escape characters from POST array
if (get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

530

http://lib.ommolketab.ir
http//lib.ommolketab.ir

return $value;
}
$_POST = array_map('stripslashes_deep', $_POST);

}

// assume that there is nothing suspect
$suspect = false;
// create a pattern to locate suspect phrases
$pattern = '/Content-Type:|Bcc:|Cc:/i';

// function to check for suspect phrases
function isSuspect($val, $pattern, &$suspect) {
// if the variable is an array, loop through each element
// and pass it recursively back to the same function
if (is_array($val)) {
foreach ($val as $item) {
isSuspect($item, $pattern, $suspect);

}
} else {
// if one of the suspect phrases is found, set Boolean to true
if (preg_match($pattern, $val)) {
$suspect = true;

}
}

}

// check the $_POST array and any subarrays for suspect content
isSuspect($_POST, $pattern, $suspect);

if ($suspect) {
$mailSent = false;
unset($missing);

} else {
// process the $_POST variables
foreach ($_POST as $key => $value) {
//assign to temporary variable and strip whitespace if not an array
$temp = is_array($value) ? $value : trim($value);
// if empty and required, add to $missing array
if (empty($temp) && in_array($key, $required)) {
array_push($missing, $key);

} elseif (in_array($key, $expected)) {
// otherwise, assign to a variable of the same name as $key
${$key} = $temp;

}
}

}

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

531

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// validate the email address
if (!empty($email)) {
// regex to identify illegal characters in email address
$checkEmail = '/^[^@]+@[^\s\r\n\'";,@%]+$/';
// reject the email address if it deosn't match
if (!preg_match($checkEmail, $email)) {
$suspect = true;
$mailSent = false;
unset($missing);

}
}

// go ahead only if not suspsect and all required fields OK
if (!$suspect && empty($missing)) {
// initialize the $message variable
$message = '';
// loop through the $expected array
foreach($expected as $item) {
// assign the value of the current item to $val
if (isset(${$item}) && !empty(${$item})) {
$val = ${$item};

} else {
// if it has no value, assign 'Not selected'
$val = 'Not selected';

}
// if an array, expand as comma-separated string
if (is_array($val)) {
$val = implode(', ', $val);

}
// add label and value to the message body
$message .= ucfirst($item).": $val\r\n\r\n";

}

// limit line length to 70 characters
$message = wordwrap($message, 70);

// create Reply-To header
if (!empty($email)) {
$headers .= "\r\nReply-To: $email";
}

// send it
$mailSent = mail($to, $subject, $message, $headers);
if ($mailSent) {
// $missing is no longer needed if the email is sent, so unset it
unset($missing);
}

}
?>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

532

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. All that remains is to include the mail processing script. Since the form won’t work
without it, it’s a wise precaution to check that the file exists and is readable before
attempting to include it. The following is a complete listing of the amended code
above the DOCTYPE declaration in feedback.php. The new code, including the
$header pasted in the previous step, is highlighted in bold.

<?php
if (array_key_exists('send', $_POST)) {
//mail processing script
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from Essential Guide';

// list expected fields
$expected = array('name', 'email', 'comments', 'interests', ➥

'subscribe', 'visited', 'views');
// set required fields
$required = array('name', 'comments', 'interests', 'visited', ➥

'views');
// create empty array for any missing fields
$missing = array();
// set default values for variables that might not exist
if (!isset($_POST['interests'])) {
$_POST['interests'] = array();

}
if (!isset($_POST['views'])) {
$_POST['views'] = array();

}
// minimum number of required checkboxes
$minCheckboxes = 2;
// if fewer than required, add to $missing array
if (count($_POST['interests']) < $minCheckboxes) {
$missing[] = 'interests';

}
$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= 'Content-Type: text/plain; charset=utf-8';
$process = '../includes/process_mail.inc.php';
if (file_exists($process) && is_readable($process)) {
include($process);

} else {
$mailSent = false;

}
}
?>

The path to process_mail.inc.php is stored in $process. This avoids the need
to type it three times. The conditional statement uses two functions with self-
explanatory names: file_exists() and is_readable(). If the file is OK, it’s
included. If not, $mailSent is set to false. This displays the warning that there was
a problem sending the message.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

533

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. To be super-efficient, send yourself an email alerting you to the problem with the
include file by amending the conditional statement like this:

if (file_exists($process) && is_readable($process)) {
include($process);

} else {
$mailSent = false;
mail($to, 'Server problem', "$process cannot be read", $headers);

}

You can check the final code in feedback_process.php in examples/ch12 and
process_mail.inc.php in examples/includes.

Because process_mail.inc.php uses generic variables, you can slot this include file into
any page that processes a form and sends the results by email. The only proviso is that you
must use the same variables as in step 9, namely, $to, $subject, $expected, $required,
$missing, $minCheckboxes, $headers, and $mailSent. If you don’t want to set a minimum
number of checkboxes, set $minCheckboxes to 0.

Programming purists would criticize this use of procedural code, arguing that a more
robust solution should be built with object-oriented code. An object-oriented solution
would be better. In fact, I have created one in my book, PHP Object-Oriented Solutions,
but it would be more difficult for a PHP beginner to adapt. It also requires a minimum
of PHP 5.2. The purpose of this exercise has been to demonstrate how even procedural
code can be recycled with relatively little effort. It also prepares the ground for cus-
tomizing the PHP code automatically generated by Dreamweaver. With the exception of
the XSL Transformations server behavior (covered in Chapter 18), Dreamweaver uses
procedural code.

Avoiding the “headers already sent” error
A problem that you’re bound to encounter sooner or later is this mysterious error
message:

Warning: Cannot add header information - headers already sent

It happens when you use header() to redirect a page, as described in the previous chap-
ter, or with PHP sessions (covered in Chapter 15). Frequently, the cause of the problem lies
in an include file. The other main culprit lurks inside the main file just before you include
the external file.

Using header() or starting a PHP session must be done before any output is sent to the
browser. This includes not only HTML but also any whitespace. As far as PHP is concerned,
whitespace means any space, tab, carriage return, or newline character outside a PHP
block. Why the error message is so mysterious—and causes so much head banging—is
because the whitespace is often at the end of an include file. Use the line numbers in Code

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

534

http://lib.ommolketab.ir
http//lib.ommolketab.ir

view, as shown in Figure 12-11, to make sure there are no blank lines at the end of an
include file. Also make sure that there is no whitespace after the closing PHP tag on the
final line.

Whitespace inside the PHP tags is unimportant, but the PHP code must not generate any
HTML output before using header() or starting a session. The same applies to the parent
page: there must be no whitespace before the opening PHP tag.

On rare occasions, the error is triggered by an invisible control character at the beginning
of the file. Use View ➤ Code View Options ➤ Hidden Characters to check, and delete the
character.

Figure 12-11. Eliminate whitespace outside the PHP tags to avoid the “headers already sent” error.

Since Dreamweaver CS3 adopted UTF-8 as its default encoding, an increasing
number of people have reported problems with headers being already sent,
even if they’ve removed all of the whitespace as specified earlier. The reason is
because they have selected Include Unicode Signature (BOM) in the New
Document category of Preferences (Edit ➤ Preferences, or Dreamweaver ➤

Preferences on a Mac) or in the Title/Encoding category of Page Properties (see
Chapter 4). BOM stands for byte-order mark, which is used by some versions of
Unicode to indicate how the data is stored. PHP interprets a BOM as output,
preventing the use of header() or sessions. UTF-8 does not require a BOM.
Make sure the option to include it is deselected in all PHP pages (this is the
Dreamweaver default setting).

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

535

12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter review
This chapter has given you a thorough overview of PHP includes, their advantages, and
their pitfalls. Once you understand the potential pitfalls, includes are very easy to use. The
PHP code generated by Dreamweaver uses them all the time, so at a minimum you need
to know how to deal with the “headers already sent” error even if you don’t yet have the
confidence to start creating your own include files.

When you first start working with PHP, the idea of splitting a page into its various compo-
nent parts can be a difficult concept to come to terms with, particularly if you come from
a nonprogramming background. So, in the next chapter, we’re going to take a brief respite
from PHP coding to look at Dreamweaver templates and a new feature called Adobe
InContext Editing. Templates are a way of building a master page that contains all the com-
mon elements for a site, spawning child pages from the master, and updating all the child
pages automatically whenever changes are made to the master. InContext Editing bears
many similarities to templates but is an online hosted service that lets authorized users
update the content in certain parts of a page.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

536

http://lib.ommolketab.ir
http//lib.ommolketab.ir

13 PRESERVING DESIGN INTEGRITY
WITH TEMPLATES AND

INCONTEXT EDITING

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To give a unified look to a website, most pages have common elements, such as a header,
navigation menu, and footer. Nobody likes repeating work just for the sake of it, so the abil-
ity to build page templates has long been one of Dreamweaver’s most popular features. All
common features can be defined and locked, but Dreamweaver propagates to all child
pages any changes that you make to the master template. This sounds like a wonderful idea
until you realize that every time you make a change all the affected pages must be uploaded
again to your remote server. On a large site, this can be a major undertaking. Nevertheless,
templates can be useful on small sites or in a team environment. Because you can lock the
main design elements of the page, you can generate a child page and hand it to a less expe-
rienced developer in the knowledge that only the editable regions can be changed.

Adobe InContext Editing is a new online service that shares many similarities with tem-
plates in that it permits the developer to designate certain areas of a web page as editable.
The main difference is that the editing is done through a browser. It’s designed mainly for
simple updates to the content of a page. A typical scenario where it might be used is
where a web developer creates individual or small business websites on behalf of clients
who want to be able to update content themselves. The developer designates which parts
of a page can be edited and sets rules for how the content can be changed, for example,
whether fonts and colors can be edited. All the tools for creating pages ready for
InContext Editing are included in Dreamweaver CS4, but the service itself is hosted on
Adobe servers and must be purchased through a monthly or annual subscription
(http://www.adobe.com/products/incontextediting/).

You don’t need PHP to use either templates or InContext Editing. In fact, they are arguably
more suited to sites created in static HTML. I’m covering them in the PHP section of the
book because there are certain things you need to be aware of when using templates or
InContext Editing with PHP pages.

In this chapter, you’ll learn about the following:

Converting an existing page into a template

Defining editable, optional, and repeating regions in a template

Generating and editing child pages

Resolving inconsistencies when editing a template

Locking PHP code outside the <html> tags

Preparing a page for InContext Editing

Editing a page using the Adobe InContext Editing service

The information in this chapter is not a prerequisite to working with later chapters. So if
you’re keen to start using Dreamweaver’s PHP server behaviors to build a database-driven
content management system, skip ahead to the next chapter. You can come back to this
chapter at any time.

Using Dreamweaver templates
In the previous chapter, I showed you how to extract two sections from the “Stroll along
the Thames” site and turn them into includes. You could go further and convert the

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

540

http://lib.ommolketab.ir
http//lib.ommolketab.ir

header and fixed parts of the document <head> into includes so that each page consists of
several includes, with just the sidebar and main content forming the actual content of the
page. As long as you keep each include as a coherent block, it’s relatively easy to manage,
and Design view preserves the unified look of the page.

However, it’s not an approach that everybody feels comfortable with. That’s where
Dreamweaver templates can be a useful alternative. A template locks the fixed elements
of the design but lets you designate editable regions for the content you want to change
on each page. Dreamweaver templates allow you to control what can and can’t be edited
with a great degree of precision, right down to the individual attributes of a tag. If you
change anything in a locked region of a master template, Dreamweaver automatically
updates all child pages (as long as you accept the option to do so). Although this is con-
venient, you still need to upload the changed pages manually to the live website.

Templates are a vast subject. The following pages give a broad overview of creating a tem-
plate, designating editable regions, and creating child pages. I’ll also touch on issues that
apply specifically to working with PHP in a Dreamweaver template.

Creating a template

In theory, you can create a template from scratch by selecting Blank Template from the
New Document dialog box. However, this is not the most efficient way of working. It’s much
easier to design a page in the Document window in the normal way. It’s then a simple mat-
ter of saving the page as a template and designating the editable regions. The following
exercise shows how it’s done.

This exercise uses one of the exercise files from the previous chapter and converts it into
a Dreamweaver template, combining the benefits of both templates and PHP includes. The
menu and footer are PHP includes, so can be edited separately, while the rest of the page
as a template locks down the main design elements.

1. Open stroll_horiz_footer.php from examples/ch12 in the Document window.
There is no need to copy or move it, because converting it into a template takes
care of that.

2. Choose Make Template from the Common tab of the Insert bar, as shown in the fol-
lowing screenshot. Alternatively, use the menu option File ➤ Save as Template.

Converting an existing page into a template

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

541

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. This opens the following dialog box:

In theory, you can choose to save the template in a different site, but this is likely
to cause problems with images, so leave Site unchanged. Existing templates displays
a list of templates that you have already defined, if any. Optionally enter a descrip-
tion of the template in the Description field. The Save as field suggests using the
current file name. You can change this, if you like, but don’t add a file name exten-
sion, because Dreamweaver uses a special extension for templates. Click Save.

4. Dreamweaver asks whether you want to update links. You must click Yes, or your
template will have broken links and cause endless trouble.

5. Although it may appear as though nothing happens, this saves the file as a template
in a new folder called Templates in the site root. You can tell that it’s a template
because it has a .dwt.php file name extension, as shown here (templates created
from static HTML pages simply have a .dwt extension):

The file with the .dwt.php file name extension is now the master template from
which you create child pages. Any changes to the design of this page will affect all
child pages created from it—as long as you accept the option to update them.

Adding editable regions to the master template

Everything in a template is locked, except for the <title> tag and an editable region in the
<head> of the document. This is needed so that external JavaScript files and style sheets
can be added to a child page. It’s also where Dreamweaver behaviors insert the JavaScript

You must never move templates from the Templates folder. This is perhaps the
single most common mistake with templates—moving the master template to
another folder will cause you endless grief. Don’t do it.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

542

http://lib.ommolketab.ir
http//lib.ommolketab.ir

functions that they require. However, the area above the DOCTYPE declaration and below
the closing </html> tag is not locked in templates for server-side languages, such as PHP.
I’ll come back to this issue a little later, because it causes a lot of confusion.

It goes without saying that you must unlock at least one part of the page for the template
to be of any real value. Otherwise, every child page would be identical. Deciding what to
lock and unlock depends entirely on the level of control that you want over a page. For
instance, you could create separate editable regions for each of the headings on the page.
If you select the entire heading, including its surrounding tags, the heading can be
replaced by anything: a table, a <div>, an <iframe>, or whatever you like. If you select just
the content of an <h2> tag and convert it into an editable region, only the content can be
changed in a child page. You can’t even change it to an <h1> tag.

Since the remaining chapters of this book are about building dynamic content with PHP,
you don’t want such rigid control. So, you could make everything inside the container
<div> one big editable region. However, we’ll take a slightly different approach.

This exercise shows you how to create separate editable regions for the sidebar heading
and paragraphs, as well as for the whole main content area.

1. Open stroll_horiz_footer.dwt.php in the Templates folder if it’s not already
open.

2. Open Split view. Click immediately to the left of the heading that reads The
pleasures of London. Hold down your mouse button, and drag to the end of the
heading. Alternatively, hold down the Shift key while pressing the keyboard right
arrow to select the content of the heading. Make sure you have just the text and
not the surrounding <h3> tags, as shown in the following screenshot:

Making the sidebar and main content areas editable

It’s important to note that template code is locked only in Dreamweaver. You can edit
locked regions in any other text or HTML editor. The whole concept of templates breaks
down unless everyone responsible for handling the pages uses only Dreamweaver to
edit them.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

543

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. There are several ways to make this an editable region. If you’re a fan of the Insert
bar, click the down arrow next to the Make Template button on the Common tab,
and select Editable Region. The Insert bar remembers your last selection, so the
Editable Region button remains displayed, ready for the creation of more editable
regions.

Alternatively, right-click and select Templates ➤ New Editable Region from the con-
text menu, or select Insert ➤ Template Objects ➤ Editable Region.

4. This opens the New Editable Region dialog box. It has just one field for a name for
the editable region. It can be anything you like, but each region must have a differ-
ent name. Enter sidebarHead, and click OK.

5. This wraps the contents of the <h3> tag in two special HTML comment tags, as shown
in Figure 13-1. These tell Dreamweaver to treat this as an editable region in child
pages. Dreamweaver also displays a turquoise border around the region in Design
view, with a tab at the top left indicating the name of the editable region.

Figure 13-1. Editable regions are easily identified in both Code view and Design view.

6. Select the first paragraph in the sidebar by clicking inside it and selecting <p> in
the Tag selector at the bottom of the Document window. Repeat steps 3 and 4 to
turn it into an editable region called sidebarTop.

7. Do the same with the bottom paragraph in the sidebar, and call it sidebarFollow.

8. This leaves the <blockquote> outside the editable regions in the sidebar. Because
the pull quote is styled in a particular way, you probably don’t want an inexperi-
enced person to do anything other than change the text. So, select the text in the

Always check the position of the TemplateBeginEditable and TemplateEndEditable
comments in Code view, because you can easily move them or any of the sur-
rounding code while still in the template. Checking now saves a lot of frustration
later, when you discover that you didn’t select the region accurately in Design
view and your child pages don’t work the way you expect. These comments are an
integral part of the template control mechanism and are propagated to the child
pages, where they remain part of the HTML.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

544

http://lib.ommolketab.ir
http//lib.ommolketab.ir

first paragraph of the <blockquote> element, and apply an editable region called
quote. Even if you don’t select the surrounding <p> tags, Dreamweaver usually
assumes you want them included in the editable region, so you need to move them
manually in Code view.

9. Do the same with the quote_attrib paragraph, and call the editable region
quoteAttrib. After you have moved the <p> tags, the TemplateBeginEditable and
TemplateEndEditable comments should be inside the paragraphs like this:

<blockquote>
<p><!-- TemplateBeginEditable name="quote" -->No, Sir, when a man is ➥

tired of London, he is tired of life; for there is in London all that ➥

life can afford.<!-- TemplateEndEditable --></p>
<p id="quote_attrib"><!-- TemplateBeginEditable name="quoteAttrib" -->

Samuel Johnson, 1777<!-- TemplateEndEditable --></p>
</blockquote>

You can tell if you have positioned the tags correctly because the turquoise outlines
of the editable regions should now hug the text in Design view, rather than surround
the quotation marks of the pull quote’s background images, as shown here:

10. Select all the content in the mainContent <div>, but not the surrounding <div> tags,
and create an editable region called mainContent. Check that the template com-
ments are in the right place in Code view, and save stroll_horiz_footer.dwt.php.

11. Dreamweaver should display a warning that sidebarHead is inside a block tag and
that users of the template won’t be able to create new blocks in this region. This is
because the <h3> tags are outside the sidebarHead editable region, which prevents
anything other than a level-three heading being created. That’s fine. So, click OK.

Creating child pages from a template

Now that you have a template, you can build pages based on it. The editable regions can
be freely changed, but the other areas remain locked and can be changed only by editing
the master template.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

545

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise uses the template from the previous exercise to create a child page and
explores the way editable regions control the extent of editing you can do.

1. Go to File ➤ New. When the New Document dialog box opens, select Page from
Template from the options on the left side. Assuming you created the template in
the preceding exercises, the dialog box should look similar to Figure 13-2.

Figure 13-2. The New Document dialog box gives you access to all the templates you have
created.

Dreamweaver lists all your sites. Select the current site and the template you want
to use as the basis for a new page (you can have as many templates as you like in a
site, using different designs for pages that serve different functions).

The New Document dialog box shows a preview of the selected template, together
with the description you entered when it was first created.

The idea of a template is that all changes to common elements are propagated
automatically to child pages when the master template is updated. Unless you want
to create a page that doesn’t automatically update, make sure that there’s a check
mark in Update page when template changes, and click Create.

2. A new page is created in the Document window. At first glance, it looks identical to
the template, but several features tell you that it’s a child page (see Figure 13-3) and
that you can make changes only to the editable regions indicated by the turquoise
borders and tabs. Whenever your mouse is over a locked part of the page, the
pointer turns into a circle with a diagonal bar to warn you that no changes can
be made.

Creating and editing a template-based page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

546

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 13-3. The child page is identical to the master template, but locked areas can no
longer be edited.

3. Save the page as stroll_index.php in workfiles/ch13.

4. Insert your cursor in the sidebar heading (The pleasures of London). Select the
HTML view of the Property inspector, and change Format from Heading 3 to
Heading 2. You should see the warning shown in Figure 13-4.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

547

13
Figure 13-4.
Dreamweaver refuses to make any
changes that violate the rules laid
down in the master template.

It doesn’t matter how hard you try; you cannot change the level of the heading
because the <h3> tags are outside the editable region. Even if you attempt to
change the tags in Code view, Dreamweaver rejects the changes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Insert your cursor anywhere in the sidebarTop editable region, and press
Enter/Return. Dreamweaver creates a new paragraph as normal.

6. Now try the same in the quote editable region. The text moves down a line but
doesn’t form a new paragraph. If you check the code in Split view, you’ll see that a

 tag has been inserted. The difference in behavior is determined by the rules
you set when creating the editable regions.

In sidebarTop, the paragraph tags are inside the editable region, so you can edit
the content freely. You can even replace the paragraphs with any HTML elements.
The same is true of the mainContent editable region: everything is replaceable,
except for the <div> tags that define the region.

The header, menu bar, and footer cannot be changed, because they are locked by
the master template. Make any changes you like to stroll_index.php, and save it.

Although the pull quote is editable, let’s say you don’t want it on every page. The answer
is to convert it into an optional region.

Creating and controlling an optional region

Creating an optional region in a template is very similar to creating an editable region. You
just select the element(s) you want to make optional and choose Optional Region from the
Template submenu on the Common tab of the Insert bar or from the Template Objects sub-
menu of the Insert menu. You can also right-click and choose Templates ➤ New Optional
Region from the context menu. Like editable regions, you can have more than one
optional region in a template, but you must give each one a unique name. Optional
regions can contain editable regions, but not the other way round.

You can control the display of an optional region in a child page in several ways, but the
simplest is to open the Template Properties dialog box from the Modify menu and select
whether to display the optional region.

This exercise shows you how to convert the <blockquote> element in
stroll_horiz_footer.dwt.php into an optional region and control its display in a child
page. Continue working with the same template as in the previous exercises.

1. Open stroll_horizon_footer.dwt.php, and insert your cursor anywhere inside
the pull quote in the sidebar. Then select <blockquote> in the Tag selector at the
bottom of the Document window to select the whole element.

2. Select Optional Region from the Templates submenu on the Common tab of the
Insert bar as shown in Figure 13-5 (or use one of the menu options). Do not choose
Editable Optional Region, because this works a different way and will be explained
later.

Converting the pull quote into an optional region

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

548

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 13-5. The Template submenu on the Insert bar

3. This opens the New Optional Region dialog box shown in Figure 13-6.

Figure 13-6. The Basic tab just sets a name for the optional region and
whether to show it by default.

Just enter pullQuote in the Name field of the Basic tab, and check that Show by
default is selected. If you want to use an optional region only occasionally, simply
deselect the Show by default checkbox.

You don’t need to touch the Advanced tab now, because I’ll explain it later.

4. Click OK to create the optional region. The entire
pull quote should now be surrounded by a pale blue
border with an If tab at the top left, as shown here:

5. Save stroll_horiz_footer.dwt.php. Dreamweaver
displays a dialog box asking whether you want to
update all files based on this template (there’s only
one: stroll_index.php). Click Update. Dreamweaver
displays another dialog box reporting that the updates
have been completed. Click Close to dismiss it.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

549

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Check stroll_index.php. It should look exactly the same as before. If the pull
quote in the sidebar has disappeared, you must have deselected Show by default in
the New Optional Region dialog box (see Figure 13-6). It doesn’t matter, because
you’ll soon see how to enable or disable an optional region in a child page.

7. Open the New Document dialog box, and create another child page from the
stroll_horiz_footer template. Save the new page as parliament.php in a new
subfolder called history in workfiles/ch13.

8. Just so you can distinguish the pages from each other, change the main heading
in parliament.php to Mother of Parliaments, and replace living_statues.jpg with
bigben.jpg.

9. To remove the pull quote in the sidebar, select Modify ➤ Template Properties to
open the dialog box shown in Figure 13-7.

Figure 13-7. The Template Properties dialog box controls the display of optional regions.

Deselect the Show pullQuote checkbox (if you have more than one optional region
in the template, you need to select it in the upper pane first). The Value field should
turn from true to false. Click OK.

10. The pull quote has gone away, as shown in Figure 13-8.

11. Check in the sidebar in Code view. The <blockquote> and its content are not there.
Dreamweaver doesn’t use CSS or HTML comments to hide an optional region. The
code is physically removed from the child page.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

550

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 13-8. The optional region has been removed from the sidebar.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

551

13

12. To see how Dreamweaver knows whether to include the code from an optional
region, scroll up in Code view until you reach the <head> section. Just before the
closing </head> tag, you’ll see the code shown on line 27 of Figure 13-9.

Figure 13-9.
Dreamweaver controls the
optional region with a template
parameter in the <head> of the page.

This code creates a template parameter, which is basically an instruction to the
template engine telling it whether to display the optional region. Although you can
edit this code, changing false to true in Code view won’t restore the pull quote.
You need to do that through the Template Properties dialog box (see Figure 13-7).

13. Save parliament.php. You can close it, because it won’t be needed in the next
exercise.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using advanced options with an optional region
Unless you plan to make heavy use of Dreamweaver templates, you don’t need to concern
yourself with the Advanced tab of the New Optional Region dialog box (see Figure 13-10).

Figure 13-10. The Advanced tab automates the visibility of an optional region.

The Advanced tab has the following two options:

Use parameter: This determines whether to display the optional region depending
on another template parameter. The drop-down menu alongside this option lists
the parameters defined in the current template. So, for example, you could create
a new optional region and select pullQuote from the drop-down menu. This ties the
two optional regions together. If pullQuote is displayed, so is the other optional
region. If pullQuote is not displayed, both are removed from the page.

Enter expression: This option lets you craft sophisticated rules to govern the display
of an optional region. To learn about this feature, enter template expressions in the
Search for Help field on the Application bar. Many of the results refer to earlier ver-
sions of Dreamweaver, but they are still applicable to Dreamweaver CS4. Template
expressions have not changed since they were introduced in Dreamweaver MX.
They are a complex subject beyond the scope of this book.

Using editable optional regions
You may have noticed in Figure 13-5 that there are menu options for Optional Region and
Editable Optional Region. By default an optional region is not editable, but as you saw in the
previous exercise, it can contain editable regions. This gives you great control over the
content of the optional region.

On the other hand, the entire content of an editable optional region can be edited, so you
have no control over what goes into it. More important, you cannot select existing content
and turn it into an editable optional region. An editable optional region is created at the
current insertion point and contains nothing. If you want to add any default content to an
editable optional region, you must do so after creating it. Normally, it’s more efficient to
use an ordinary optional region.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

552

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a repeating region

Templates give you a further level of control over content with repeating regions and
repeating tables. I don’t intend to cover repeating tables because they are of little use in a
PHP site. In template terms, a repeating table creates the basic table structure and lets you
determine the number of rows and content in individual child pages. As you’ll see in the
following chapters, Dreamweaver’s PHP server behaviors populate tables automatically
and far more efficiently.

However, using repeating regions in a template can be useful for things like bulleted or
numbered lists. You can also use them to ensure that everything is in identically styled
paragraphs. To add a repeating region, select the element you want to repeat (it’s a good
idea to use the Tag selector to make sure you get the opening and closing tags) and
choose Repeating Region from the Template submenu on the Common tab of the Insert bar
(see Figure 13-5), or use the menu option, Insert ➤ Template Objects ➤ Repeating Region.

By default, a repeating region is not editable, so it should contain at least one editable
region unless you want the same content (such as an icon) repeated several times. The
next exercise shows how to use a repeating region.

Removing or changing template regions

Inevitably the time comes when you change your mind about the design or your require-
ments change. If no child pages have been created from a template, the solution is sim-
ple: right-click the tab at the top left of the template region you want to remove, and
select Templates ➤ Remove Template Markup from the context menu. Alternatively, you
can select the tab and choose Modify ➤ Templates ➤ Remove Template Markup.
Dreamweaver removes the template comments cleanly from the underlying code.

Things become more complicated if you have already created child pages. When you
remove a template region, Dreamweaver needs to be told what to do with the existing
content. After saving the changes to the template, you are presented with the Inconsistent
Region Names dialog box (see Figure 13-11) indicating any unresolved regions. You can
either move the content to another template region or tell Dreamweaver to delete it. If
you have a large number of child pages generated from the template, this can be a major
headache causing the loss of vital content.

This exercise takes you through the process of changing template regions and resolving
what to do with the affected content. It also shows you how to create a repeating region
with an unordered list. Continue working with the same template as in the previous
exercises.

1. In stroll_horiz_footer.dwt.php, right-click the tab at the top left of the
sidebarHead editable region, and select Templates ➤ Remove Template Markup.

2. Change the text in the <h3> tags from The pleasures of London to In this section:.
This is now a locked region, so this heading will appear on all child pages.

Converting editable regions in the sidebar

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

553

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Remove the template markup from the sidebarTop editable region, and replace
the text in the existing paragraph with Feature.

4. Convert the paragraph you have just edited into an unordered list by clicking the
Unordered List button in the HTML view of the Property inspector or by selecting
Format ➤ Lists ➤ Unordered List.

5. You’re going to convert this to a repeating region, so the text inside the tags
needs to be converted to an editable region. Select the word Feature in Design
view, and open Split view to make sure you have selected only the text and not the
surrounding tags.

6. Apply an editable region, and call it feature.

7. To apply the repeating region, you need to select the surrounding tags. You
can do that either in Code view or by clicking in the Tag selector.

8. Select Repeating Region from the Templates submenu on the Common tab of the
Insert bar (see Figure 13-5), or use the Insert menu. The New Repeating Region dia-
log box has just one field for the name of the new region. Call it featureList.

The section you have just edited should look like this in Split view:

The <h3> header shown on line 40 of the preceding screenshot has no template
markup, so it’s now locked. The same text will appear in all child pages.

The template markup for the beginning of the repeating region is on line 42
between the opening and tags. The editable region markup is on line 43
inside the tags, and the end of the repeating region is on line 44 between the
closing and tags.

9. Save stroll_horiz_footer.dwt.php. Ignore the message about placing an
editable region inside a block tag. That’s exactly what you want to do. When
Dreamweaver asks whether you want to update all files based on the template,
click Update.

10. Because you have removed two editable regions from the original template,
Dreamweaver needs to know what to do with the content in those regions in the
child pages and presents you with the Inconsistent Region Names dialog box, as
shown in Figure 13-11.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

554

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 13-11. Before updating child pages, you need to decide what to do with content
from regions that no longer exist.

11. You want the new content in the <h3> heading to replace the original text. So, high-
light sidebarHead in the Inconsistent Region Names dialog box, and open the Move
content to new region drop-down menu. This contains a list of all editable regions in
the page, plus three other entries:

Nowhere: This discards the content.

doctitle: This is the page’s <title> tag. Although it’s an editable region, you
should not move the content here.

head: This is an editable area just before the closing </head> tag, which is
intended to let you add links to style sheets and external JavaScript files in child
pages. Dreamweaver also uses it to insert JavaScript functions for behaviors.
Again, you should not move content here.

Select Nowhere to discard the old <h3> heading that was in sidebarHead.

12. The child pages that you have created contain only dummy text in what used to be
the sidebarTop editable region, so you could tell Dreamweaver to discard it, too.
However, let’s imagine that it contains vital content. To avoid losing it, you must
move it elsewhere. Since it’s already in the sidebar, I suggest moving it to the
sidebarFollow editable region.

Highlight sidebarTop in the Inconsistent Region Names dialog box, and select
sidebarFollow in the Move content to new region drop-down menu.

The Use for all button moves all unresolved content to the same location as
selected for the currently highlighted region.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

555

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

13. The settings in the Inconsistent Region Names dialog box should now look like this:

Click OK to save the changes and update the child pages. Click Close to dismiss the
update report.

14. The top of both child pages now contains a fixed <h3> heading and a repeating
region containing a dummy item for an unordered list, as shown in Figure 13-12.

Editing the repeating region follows a familiar pattern common to many Dreamweaver
dialog boxes. Click the plus and minus buttons at the top right of the repeating region,
and use the up and down arrows to change their order (see Figure 13-12).

15. Replace the dummy text in the list item, click the plus
button, and add another. The result should look like this:

You can add as many list items as you like, but you
cannot add any other element.

Comparing templates with PHP includes

The main drawback with using templates is that any change to the master template
involves updating all child pages. Although Dreamweaver handles the updating automati-
cally on your local computer, you still need to upload all the revised pages to the live
server on the Internet. As the site grows in size, this becomes a heavier burden. This means
that if your navigation menu is part of the template, every page on the site needs to be
updated whenever you add a new item to the menu. Any advantages offered by templates
rapidly fade in comparison with includes.

However, the template you have been working on throughout this chapter doesn’t actually
contain the code for the navigation menu. The code for the menu is in a PHP include file,
menu.inc.php. All that’s in the template is an include command. Consequently, any
changes to the menu can be made in menu.inc.php, and that’s the only file you need to
upload to the server.

This exercise demonstrates how changes to an include file are propagated automatically to
template child pages without the need to update each page individually. It assumes you
have created stroll_index.php and parliament.php in the exercises earlier in this chapter.

Updating the menu

Figure 13-12.
The repeating region
uses familiar icons to
show how to edit it.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

556

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. When you created the template at the beginning of the chapter, it was based on a
file in the examples folder, so the include command points to the version of
menu.inc.php in examples/includes. For testing purposes, you need to point to
the version in workfiles/includes (if you didn’t create menu.inc.php in the previ-
ous chapter, copy it from examples/includes to workfiles/includes).

Open stroll_horiz_footer.dwt.php if it’s not already open, and click the turquoise
Spry Menu Bar tab at the top left of the navigation menu. This displays the details of
the include file in the Property inspector, as shown here (SSI stands for server-side
include):

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

557

13

2. Click the icon that looks like a folder to the right of the Filename field, and navigate
to menu.inc.php in the workfiles/includes folder. Click OK (Choose on a Mac) to
close the Select File dialog box. The value in the Filename field should now be
../workfiles/includes/menu.inc.php.

3. Save stroll_horiz_footer.dwt.php, and click Update when Dreamweaver asks
whether you want to update all files based on the template.

When linking a template to other files within the site, always use the
Dreamweaver interface to navigate to the correct location. Dreamweaver
adjusts document-relative links automatically when creating child pages, so it
needs to know where the file is in relation to the master template. Unless you are
using links relative to the site root, typing the link directly into the Property
inspector is likely to result in broken links.

4. Before clicking Close to dismiss the next dialog box,
select the Show log checkbox. As you can see in the
screenshot alongside, Dreamweaver presents a report
of the number of files examined and updated. On
this occasion, it has updated two files.

5. Launch stroll_index.php in a browser. Use the nav-
igation menu to try to go to History ➤ Houses of
Parliament. It should come as no surprise that nothing
happens, because you haven’t created that link yet.

If you did the exercises with menu.inc.php in the
previous chapter, click the Home link. You’ll be taken
to the old version of the Stroll Along the Thames page
because the menu links to stroll_horiz.php in
workfiles/ch12.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. In Dreamweaver, open menu.inc.php in workfiles/includes. Update the Home
link to point to stroll_index.php in workfiles/ch13. Because this is in an include
file, the link must be relative to the site root. If necessary, adjust the Relative to
menu in the Select File dialog box to Site Root, as shown in Figure 13-13.

Figure 13-13. Links inside an include file should always be relative to the site root.

7. Update the Houses of Parliament link to point to parliament.php in the
workfiles/ch13/history folder. Also make sure the link is relative to the site root.

8. Save menu.inc.php. Note that the file saves just like an ordinary file. You are not
prompted to update child files.

9. Reload stroll_index.php in a browser. The History ➤ Houses of Parliament link
should now take you to parliament.php, and the Home link should take you back
to stroll_index.php. If you did the exercises in the previous chapter, the
Attractions ➤ London Eye link should also load eye.php.

As noted in the previous chapter, the menu works only if you are using a virtual
host in Apache or a stand-alone web site in IIS7. If you are using a subfolder of the
server root to test your site, you need to prefix the links in the menu with the
name(s) of the subfolder(s), as described in Chapter 12.

This final exercise with Dreamweaver templates should help convince you of the value of
includes. In this exercise, only two child pages were involved, but imagine if you had a site
of 50 pages or more. Instead of updating every page, you need to update only the include
file for the changes to be available in each page that uses the include.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

558

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Locking code outside the <html> tags

To round out this discussion of Dreamweaver templates, I’d like to deal with a question
that often appears in online forums from people puzzled by the fact that the code isn’t
propagated to child pages when a server behavior is applied to a template. Although cov-
erage of server behaviors begins in the next chapter, it makes sense to discuss this issue
here, while still on the subject of templates.

Dreamweaver uses the space above the DOCTYPE declaration and below the closing
</html> tag to create the PHP scripts used for server behaviors, such as inserting or updat-
ing records in a database. This is the same technique as you used in Chapter 11 to build
the mail processing script. The reason for doing this is quite simple: the PHP engine reads
the page from top to bottom and processes the dynamic code in the order that it encoun-
ters it. So if you have a page that displays the results of a database search, it stands to rea-
son that you need to conduct the search before displaying the results as HTML.
Dreamweaver uses the area after the closing </html> tag to clean up any resources used
by the script.

Templates are intended to lock common elements, but dynamic code is almost always
unique to a page. As a result, Dreamweaver doesn’t lock the code outside the <html> tags.
So even if you apply a server behavior to a master template (or write your own custom
script above the DOCTYPE declaration), the code outside the <html> tags will not be prop-
agated to any child pages.

If, for any reason, you want to create a template that propagates code outside the <html>
tags, add the following code anywhere inside the <head> of the master template:

<!-- TemplateInfo codeOutsideHTMLIsLocked="true" -->

This is an all or nothing option. The PHP code will be propagated to child pages, but you
cannot apply any other server behaviors to such child pages. The circumstances in which
this option is useful are extremely rare, so use with care—if at all.

Breaking the link between a page and a template

Sometimes, it’s useful to create a page from a template, but then break the link between
the two. This lets you edit locked regions and no longer updates the page when the tem-
plate is changed. Breaking the link is simple. Just select Modify ➤ Templates ➤ Detach from
Template. All template markup is removed, and the page acts just like an ordinary one.

Updating Content with Adobe InContext
Editing

A common dilemma for web developers is a request from a client or department manager
who wants to be able to update content directly. The thought of letting unskilled people
loose on a painstakingly crafted website gives many a developer nightmares. “Don’t worry;

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

559

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I only want to change a little bit of text.” Rather than soothing nerves, these words set
them jangling. That little bit of text almost certainly contains HTML tags marked up with
classes or IDs. Once they’re deleted, the site begins to fall apart. Even worse, the semi-
skilled dabbler might decide to add extra flourishes such as tags or features that
destroy the unity of the design.

One solution is to create a content management system (CMS) allowing users to enter
only plain text or use a limited set of HTML tags. But creating a CMS is time-consuming
and expensive because each one normally needs to be tailored to the needs of the par-
ticular website. Another solution is to use a program like Adobe Contribute (http://
www.adobe.com/products/contribute/), which uses Dreamweaver templates but gives
the developer a much finer level of control over how pages can be updated. The draw-
back of Contribute is that it requires each person responsible for updating pages to have
a copy of the program. It’s cheaper than Dreamweaver but still represents a barrier to
some users.

Adobe’s latest attempt to solve this problem is InContext Editing, a hosted service that
requires no software other than a modern browser. It doesn’t give the same level of con-
trol as Contribute, and Adobe says it’s not intended as a replacement for Contribute.
Because the service is hosted on Adobe servers, it’s not free, but Adobe says it’s aware that
pricing will be a sensitive factor in the adoption and success of the service. From the devel-
oper’s point of view, everything needed to make a website ready for use with InContext
Editing is included in Dreamweaver CS4. There’s nothing to pay unless you want to use the
online service.

InContext Editing is designed to make it easy for developers to give clients the opportunity
to update their own web pages either because the developer doesn’t have time to devote
to minor updates or the client doesn’t want the expense of a maintenance contract. The
editing interface is easy to use, so this is likely to suit a lot of clients. However, problems
are likely to arise with clients who make changes but forget to publish them or who real-
ize they have made a mess and need the developer to put things right. Because InContext
Editing uses inline styles in tags and some presentational markup, cleaning up a
page that has been heavily edited through this service will involve a lot of work. On the
other hand, a well-designed page with InContext Editing markup that carefully controls the
available options should work well. It’s ideal for a restaurant page with a special dish that
changes every day or an organization site listing this week’s guest speaker. In most cases,
it’s probably better suited to one or two pages in a site, rather than applied to every page.

InContext Editing is a new service, so it’s impossible to give a considered opinion based on
experience. My initial assessment is that the underlying technology is impressive, but the
level of control that it offers the designer still has some way to go. For example, author-
ized users can upload files to the web server, but there is no limit on the size or type of file
that is accepted. Also, the range of tags that can be used for editable and repeating
regions is severely limited, making InContext Editing much less flexible than either tem-
plates or Contribute. Because the service is likely to evolve in response to user feedback,
the following sections give just a brief overview of how to prepare a page for InContext
Editing and updating it online.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

560

http://lib.ommolketab.ir
http//lib.ommolketab.ir

How InContext Editing works

To use InContext Editing, the developer adds special markup to pages that authorized
users will be permitted to edit through the service. The pages are then uploaded to the
site’s normal web server. The Adobe server comes into the picture only when the user
browses to a page that contains the special markup and presses a preset key combination
(the default is Ctrl+E/Cmd+E). This prompts the user to log into the Adobe server. Once
logged in, InContext Editing uses JavaScript and the Adobe Flash Player to display editing
tools in the user’s browser. All changes are made to a local copy of the page directly within
the user’s browser. The user can save the changes to the Adobe server, where they remain
until a decision is taken whether to discard or publish them. Up to this point, the live web-
site remains unaffected.

When the authorized user is ready to publish the revised page, the Adobe server transfers it
via FTP (File Transfer Protocol) or SFTP (Secure File Transfer Protocol) to the live website on
the server where the page is normally hosted, overwriting the original file. On logging out, the
user is returned to the updated page on the live website. Once changes have been published,
they cannot be rolled back, except by connecting to the Adobe server and editing the page
again. From the user’s point of view, the whole operation is seamless. Although all the updat-
ing process is done through the Adobe server, the web page remains in the browser the whole
time, but with an editing toolbar at the top of the viewport, as shown in Figure 13-14.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

561

13

Figure 13-14. InContext Editing lets you edit the page in a browser, so the results are immediately visible.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Minimum requirements for InContext Editing
The requirements for using InContext Editing are relatively simple.

The web server must be publicly accessible. InContext Editing cannot be used with
an intranet.

It must be possible to connect to the server via FTP or SFTP.

To edit files, the user must access the site using one of the following browsers:

Internet Explorer 6

Internet Explorer 7

Safari 3

Firefox 3

JavaScript must be enabled in the browser

The browser must have Flash Player (minimum version 9.0.124) installed.

It’s important to note that Safari 2 and Firefox 2 are not supported. Support will probably
be added for Internet Explorer 8 when the final version is released.

Adding InContext Editing markup to a page

To add the necessary markup for InContext Editing, you can use the InContext Editing tab
of the Insert bar (see Figure 13-15) or the menu option Insert ➤ InContext Editing. You can
also add the markup directly in Code view with the help of code hints.

As Figure 13-15 shows, there are just three options: editable and repeating regions, and
CSS. The concepts of editable and repeating regions are very similar to the way they are
used in templates, but they can be applied only to a limited range of tags. The CSS option
lets you designate external style sheets that contain classes that authorized users can apply
to elements in an editable region.

Creating an editable region
An editable region can be applied to only three tags: <div>, <th>, and <td>. In effect, this
means that, with the exception of table headers and cells, only block-level elements—such
as headings, paragraphs, and lists—can be designated as editable regions, because any-
thing else you want to make editable must be wrapped in a <div>.

Figure 13-15.
InContext Editing has a
more limited range of

options than templates.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

562

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To create an editable region, select the element(s) you want to make editable, and click the
Create Editable Region button on the InContext Editing tab of the Insert bar or use the menu
option Insert ➤ InContext Editing ➤ Create Editable Region. If you choose a single <div>,
<th>, or <td> element, Dreamweaver automatically converts it into an editable region. If
you choose anything else, Dreamweaver presents you with the following dialog box:

Normally, it offers to wrap the selection in a <div> tag. However, if the immediate parent
tag of the current selection is a <div>, <th>, or <td>, you can choose to apply the editable
region to the parent tag instead.

If, for example, you select a single paragraph, Dreamweaver adds the following code:

<div ice:editable="*">
<p>This content is editable in InContext Editing.</p>

</div>

However, if you select all the content inside a <div> and choose to convert the parent tag
into and editable region, Dreamweaver simply adds the ice:editable attribute to the par-
ent <div> like this:

<div id="mainContent" ice:editable="*">
<h2>Living Statues</h2>
<p>Lorem ipsum . . .</p>
<h2>Artists at work</h2>
<p> Lorem ipsum . . .</p>

</div>

You need to be very careful when selecting content in Design view. If you just drag your
mouse across a paragraph or several elements, Dreamweaver doesn’t normally select the
opening and closing tags. Attempting to apply an editable region to an incomplete selec-
tion like this brings up this warning:

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

563

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When selecting a single element to convert into an editable region, always use the Tag
selector at the bottom of the Document window to ensure that you select the whole ele-
ment. When selecting several elements, it’s best to do so in Code view.

An editable region is identified in Design view by a turquoise tab at the top-left corner, as
shown in Figure 13-16. Unlike an editable region in a template, the tab is not always visi-
ble. The tabs for InContext Editing act in the same way as JavaScript widgets in that they
are displayed only when you mouse over the element or select it.

Controlling what can be edited in an editable region
In its initial state, an editable region gives the user complete freedom to change just about
everything. However, you can control the range of tools available to users through the
Property inspector. To display the editable region options in the Property inspector (see
Figure 13-17), select the turquoise tab at the top left of the region.

Figure 13-17. The options for an editable region give the developer considerable control over what
can be changed.

As you can see in Figure 13-17, there are a lot of options, all of which are enabled by default.
To enable just a few, click the Uncheck all button, and select the checkboxes you want.

Some of the icons are intuitive, but others are less so. Table 13-1 describes the editing
options made available to the user by selecting each icon.

Table 13-1. Options for InContext Editing editable regions

Icon Permits Comments

Bold text Uses font-weight: bold.

Italic text Uses font-style: italic.

Figure 13-16.
Editable regions are

identified by a turquoise tab.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

564

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Icon Permits Comments

Underline text Uses text-decoration: underline.

Align text Text can be aligned left, right, centered, and justified.
Uses the deprecated align attribute.

Change font User can choose from a selection of fonts. Uses
font-family style property.

Change font size User can select one of the following sizes: 10px, 13px,
16px, 18px, 24px, 32px, and 48px. Uses font-size
style property.

Indent text Wraps the text in a <div> and applies the margin-
left property as an inline style. If the selection is
already inside a block-level tag, the style is applied
to the existing tag.

Insert and edit lists Numbered and bulleted lists only. Uses standard
HTML , , and tags.

Create headings The tooltip for this icon misleadingly describes it as
Paragraph Styles. Paragraphs are simulated by
inserting
 tags. This option controls only
heading styles (<h1> to <h6>). There is no way to
restrict the range of available heading levels.

Change background Colors must be chosen from the 216 in the same
color basic color picker as used in Dreamweaver. Uses

background-color style property.

Change text color Allows the user to pick one of 216 colors for selected
text. Uses color style property.

Use CSS classes Gives the user access to all classes defined in selected
external style sheets. The class is applied via a
wrapped around the selection.

Insert media or Files can be sourced from the Internet, the user’s local
image files hard disk, or a designated media folder in the site.

Create links Links can be to other pages, external websites, and
files in the site’s designated media folder. InContext
Editing automatically inserts a title attribute. If
the user doesn’t enter anything in the tooltip field,
title="" is added to the <a> tag. Optionally inserts
target="_blank" to open the target page in a new
browser window or tab.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

565

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Depending on the options you choose, the ice:editable attribute in the editable region’s
parent tag changes. If all options are selected, the opening <div> tag looks like this:

<div ice:editable="*">

If you select only bold, italic, CSS classes, media and images, and links, it looks like this:

<div ice:editable="bold,italic,css_styles,media,hyperlink" >

Understanding the code created through selecting the options in the Property inspector
gives you a finer level of control. For example, the icon to align text inserts the following
values into the parent tag:

<div ice:editable="align_justify,align_right,align_center,align_left">

You can restrict this to centering text by amending the attribute like this:

<div ice:editable="align_center">

Most options result in wrapping content in tags. Wherever possible, InContext
Editing uses CSS properties as inline styles. However, you can disable these features and
create your own classes as described later in the chapter.

Copying the InContext Editing files to your site
The first time you save a page containing InContext Editing markup, Dreamweaver displays
the dialog box shown in Figure 13-18 advising you that three files are being copied to a
folder called includes/ice in your site root. You must upload these files to your remote
server in order to use the InContext Editing service.

Figure 13-18. InContext Editing relies on external files that must be saved
and uploaded to your server.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

566

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Changing the InContext Editing login shortcut

One of the files, ice.conf.js, determines the keyboard shortcut used to log into the
InContext Editing server. The default shortcut is Ctrl+E/Cmd+E. However, you can change
this by editing this file.

All you need to do is edit these two lines of code:

ICE.USER_LOGIN_PC = "CTRL+E";
ICE.USER_LOGIN_MAC = "CMD+E";

To change the login shortcut to Ctrl+Alt+Shift+W/Cmd+Opt+Shift+W, amend the two
lines like this:

ICE.USER_LOGIN_PC = "CTRL+ALT+SHIFT+W";
ICE.USER_LOGIN_MAC = "CMD+ALT+SHIFT+W";

When setting a new shortcut, you need to be careful not to override any of the keyboard
shortcuts used by the browsers listed earlier in “Minimum requirements for InContext
Editing.” Otherwise, anyone who uses that shortcut will be prompted to log into
InContext Editing, rather than getting the browser to respond as expected.

Creating a repeating region
As with templates, repeating regions are not automatically editable, so you will normally
apply an editable region first and then convert it to a repeating region. To convert the
whole of an editable region into a repeating region, select the turquoise tab at the top left
of the region and click the Create Repeating Region button on the InContext Editing tab (see
Figure 13-15) of the Insert bar, or use the menu option Insert ➤ InContext Editing ➤ Create
Repeating Region.

This adds the ice:repeating attribute to the opening tag like this:

<div ice:repeating="true" ice:editable="*">

The turquoise tab at the top left of the region changes from Editable Region to Repeating
Region, but the options in the Property inspector remain the same as in Figure 13-17 and
Table 13-1.

If you apply a repeating region to content that cannot be edited or to content that con-
tains a mixture of material that can and cannot be edited, the Property inspector looks like
Figure 13-19.

Figure 13-19. Unless the entire repeating region is editable, it has no options.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

567

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This is because options common to repeating regions need to be set through the repeat-
ing regions group they belong to. When you insert a repeating region, Dreamweaver auto-
matically converts its parent element into a repeating regions group by adding the
ice:repeatinggroup attribute to the parent element’s opening tag. Clicking the Repeating
Regions Group link in the Property inspector selects the parent element and reveals
options that affect all repeating regions within the same group (see Figure 13-20).

Controlling actions within a repeating regions group
The purpose of a repeating regions group is to control the scope of repeating regions, as
well as what the user can do with all repeating regions within the same group. Select the
Repeating Regions Group turquoise tab at the top left of the parent element to display
the group options, as shown in Figure 13-20.

Figure 13-20. The Repeating Regions Group controls all repeating regions within the same parent
element.

As Figure 13-20 shows, there are just two options for a repeating regions group:

Reorder: Selecting this allows the user to change the order of repeating regions
within the group.

Add/Remove: This option allows the user to add or remove repeating regions. The
type of new content that can be added is controlled by the options set in each
editable region within the repeating regions group.

Removing editable and repeating regions
The Remove Region button on the Property inspector removes the ice:editable,
ice:repeating, or ice:repeatinggroup attribute from the opening tag of the selected
region. This is a nondestructive operation, because it leaves intact all the content within
the region. However, you should note the following points:

The Remove Region button does not remove any <div> tags inserted when an
editable region was created. To remove redundant tags, right-click the tag in the
Tag selector, and select Remove Tag from the context menu. If you’re not careful,
failure to do so could affect how your CSS works.

Removing an editable repeating region involves clicking Remove Region twice. The
first time removes the editable region. The second time removes the repeating
region.

When you remove the last repeating region from a repeating region group,
Dreamweaver selects the parent tag ready for you to remove the group markup.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

568

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Enabling the use of CSS classes
Although the editable region options cover most aspects of presentation, the range of col-
ors is very limited. There’s also a danger that the integrity of your design could be quickly
ruined by inexperienced users selecting inappropriate fonts, font sizes, and colors. A much
greater level of control can be achieved by deselecting most of the options in Table 13-1
and creating dedicated styles for the user.

InContext Editing lets you designate one or more external style sheets for use with the
hosted service. The only restrictions are as follows:

Only class selectors can be used. They must be simple class selectors. For example,
.warning is supported; p.warning is not.

Only style sheets attached to the page using the <link> tag are supported. Styles
attached using @import are ignored.

Styles embedded in the <head> of the document are ignored.

It’s important to emphasize that these restrictions affect only what is accessible to the user
when amending a page through the InContext Editing server. This means you can utilize all
your CSS skills to design the overall look of the site and restrict the user to a small subset.

To enable CSS classes in an InContext Editing page, click the Manage Available CSS Classes
button (see Figure 3-15) in the InContext Editing tab of the Insert bar, or use the menu
option Insert ➤ InContext Editing ➤ Manage Available CSS Classes. This opens the dialog
box shown in Figure 13-21.

Figure 13-21. You can choose which style sheets to make available to users.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

569

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The dialog box lists all style sheets attached to the page through the <link> tag. Select
those you want to make available through InContext Editing, and click OK. This inserts the
ice:classes attribute into the <link> tags of selected style sheets like this:

<link href="stroll.css" rel="stylesheet" type="text/css" ➥

ice:classes="*" />

Listing the class names in place of the asterisk has no effect. The only way to limit the
classes available to users appears to be by creating a separate style sheet.

To disable the use of a style sheet with InContext Editing, open the Manage Available CSS
Classes dialog box (see Figure 13-21), and deselect the style sheet. To remove all style
sheets, click Uncheck all.

Preparing a page for InContext Editing
This section guides you through the process I used to adapt the Stroll Along the Thames
page for use with InContext Editing. If you worked through the template exercises in the
first half of this chapter, you’ll see that I needed to take a different approach. Instead of
making the entire mainContent <div> an editable region, I turned it into two repeating
editable regions. By contrast, it proved impossible to turn the bulleted list at the top of the
sidebar into a repeating region, so I wrapped it in an editable region restricted to using
only lists.

If you want to follow along as a hands-on exercise, use stroll_ice_start.php in
examples/ch13. The finished code is in stroll_ice.php. However, to edit the page with
InContext Editing, you need to sign up for an account (see http://www.adobe.com/
products/incontextediting/ for details).

1. To convert the bulleted list at the top of the sidebar into an editable region, click
inside the list, and select in the Tag selector.

2. Click the Create Editable Region button in the InContext Editing tab of the Insert bar,
and accept the option to wrap the selection in a <div>.

3. With the editable region still selected, click Uncheck all in the Property inspector,
and select the Numbered List and Bulleted List checkbox.

4. Open Split view, and edit the ice:editable attribute in the opening <div> tag to
remove ordered_list. The bulleted list should now look like this:

In theory, this should restrict the editable region to creating or editing bulleted
lists. However, in my tests, it still permitted numbered lists as well.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

570

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although this would seem ideal to turn into a repeating region, you can’t do so
because the elements need to be wrapped in <div> tags. When you publish
the page through InContext Editing, the <div> tags remain, but the tags are
deleted, leaving you with no bullets alongside each item.

5. In the mainContent <div>, select the Living Statues heading and the following para-
graph. Turn it into an editable region in the same way as in step 2.

6. With the editable region still selected, deselect all options except for bold, italic,
numbered and bulleted lists, paragraph styles, CSS classes, images, and links. The
selections in the Property inspector look like this:

7. With the editable region still selected, click the Create Repeating Region button in
the InContext Editing tab of the Insert bar to convert it into an editable repeating
region.

Since this is the first repeating region that has been created, Dreamweaver converts
the mainContent <div> into a repeating regions group and selects the entire
<div>. Because there is no margin above the Living Statues heading, the turquoise
tabs of the repeating region and its parent group overlap, making them difficult to
distinguish or select. Clicking the right end of the turquoise tab selects the group,
whereas clicking the left of the tab selects the first repeating region.

8. Select the Artists at Work heading and the following paragraph. Convert it into an
editable region with the same options as in step 6. Then convert it into a repeating
region.

9. Click the Manage Available CSS Classes button in the InContext Editing tab of the
Insert bar, and select stroll.css, as shown in Figure 13-21 in the preceding
section.

10. Save stroll_ice.php. If this is the first InContext Editing page in the site, click OK
to save the external files to the inserts/ice folder (see Figure 13-18).

These changes give anyone authorized to edit the page through InContext Editing rela-
tively limited scope to damage the overall integrity of the design yet sufficient freedom to
add new material to the page.

Editing a page with InContext Editing

Before you can use InContext Editing, the web designer or whoever administers the
account needs to set up details of the website. This is a relatively simple process to regis-
ter the FTP details of the site you want to edit through InContext Editing. Follow the
instructions given by Adobe when you sign up for the service.

Upload your website to your remote server in the same way as usual. The only extra step
involves uploading the contents of the includes/ice folder. The site operates in the same
way as an ordinary site.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

571

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Logging into InContext Editing
The difference starts when you press the InContext Editing keyboard shortcut
(Ctrl+E/Cmd+E unless you change it as described in “Changing the InContext Editing login
shortcut”) in one of the supported browsers listed earlier.

Within a few seconds, you should see a login screen, as shown in Figure 13-22.

The following pages describe the editing process immediately prior to the official
launch. Because InContext Editing is an online service, it can be updated more easily
than a desktop program. So, some aspects of the service are likely to change in response
to user feedback. Consult the online help for the most up-to-date information.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

572

Figure 13-22. Pressing the InContext Editing keyboard shortcut prompts the user to log in.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once you have logged in, the InContext Editing toolbar (Figure 13-23) is displayed at the
top of your page.

With some keyboards, the login screen inserts a double quote when you type
the @ sign in your email address. If this happens, press the double quote key
instead of the @ one.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

573

13

Figure 13-23. The InContext Editing toolbar sits at the top of the page inside the browser.

Updating an editable region
To start editing, click Edit. This adds a second toolbar at the top of the page, and as you
move the mouse over the different elements, a tooltip indicates which elements are
editable. A heavy border and mini-toolbar are also displayed on repeating regions, as
shown in Figure 13-24.

Figure 13-24. The editing interface is intuitive to use.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you click inside an editable region, the rest of the page is dimmed (see Figure 13-25),
as are the editing tools that the developer deselected when adding the InContext Editing
markup.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

574

Figure 13-25. The rest of the page is dimmed when editing, giving a clear indication of the section being worked on.

The editing toolbar is controlled by three buttons on the left.
As shown in the screenshot alongside, they give access to tools
for editing text, inserting images and media files, and creating
links.

Editing text

The editing toolbar always displays the full range of options, but
items that have been disabled by the developer are dimmed and have no effect. All of the
options should be familiar to users from word processing programs and use the same
icons. With the text button selected on the editing toolbar, the following options are avail-
able (see Figure 13-24):

Font: The drop-down menu offers a choice of web-safe fonts.

Font size: The user can choose one of the following sizes: 10px, 13px, 16px, 18px,
24px, 32px, and 48px.

Font color: The color of the font is displayed in an unlabeled square alongside the
font size. Clicking the down arrow to the right of the square reveals a color picker
with 216 web-safe colors.

Bold, Italic, Underline: Formatting can either be applied to a selection or toggled on
and off as text is being typed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Align: Content can be aligned left, centered, right, or justified. All text up to the fol-
lowing line break is affected.

Bulleted/numbered lists: These buttons work in the same way as a word processor.

Indent/outdent: These have the effect of indenting text by adding or removing a
margin-left style to the parent block-level tag.

Advanced: Clicking the Advanced button reveals the options shown in Figure 13-26,
namely:

Styles: This can be used to apply a class from an external style sheet enabled as
described in “Enabling the use of CSS classes” earlier in this chapter.

Headings: This applies <h1> though <h6> to all text up to the next line break.

Highlight: This applies a background color to the current selection.

Inserting images and media files

Selecting the second button on the left of the editing toolbar reveals the initial set of
options for inserting an image or other media file, as shown in Figure 13-27.

Figure 13-27. Before inserting an image or media file, you need to tell InContext Editing where to
find it.

The Media Location drop-down menu offers three options:

The Internet: Enter the URL of the asset in the field alongside, and click Insert media.

My Computer: This displays a dialog box for the user to locate a file on your local
computer and upload it to the website’s designated media folder.

My Site: This displays the contents of the designated media folder to select a file.

After the file has been inserted, the editing toolbar displays the options shown in
Figure 13-28.

Figure 13-26.
Advanced text editing options

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

575

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The meaning of most options is self-explanatory. The padlock icon on the right is selected
by default; it constrains the proportions of the image. For example, if the width of the
image in Figure 13-28 is reset to 150 (pixels), the height is automatically adjusted to 200.
Although both dimensions are displayed in the toolbar, InContext Editing inserts neither in
the tag when the image is left at its default size. When an image is proportionally
resized, it inserts only the width or height attribute, but not both.

Figure 13-29 shows the Advanced options for images. The Tooltip option inserts the same
value for the alt and title attributes of the tag. If this field is left blank, InContext
Editing inserts alt="" title="" into the tag.

The Image Alignment options insert align, hspace, vspace, and border attributes.
Standards warriors will be horrified at the description of deprecated presentational attrib-
utes as “advanced,” but it seems that label was chosen for options for which there was no
room on the main toolbar.

Figure 13-29.
Advanced image editing options

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

576

Figure 13-28. The editing toolbar lets the user change an image, delete it, or alter its size.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Original Size button restores the image to its original size by removing its dimensions
from the underlying code.

Creating links

Selecting the third button on the left of the toolbar reveals the options for creating links,
as shown in Figure 13-30.

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

577

13

Figure 13-30. Links can be created to other web pages, files on the same site, and email addresses.

The Link To drop-down menu has the following four options:

Web Page: Enter the URL in the field alongside. Use this for external links.

Document from My Website: This creates a text link to a file in the designated media
folder. Selecting this option displays a dialog box for the user to choose a file.

Page in My Website: Use this for internal links. Selecting this option displays a dialog
box for the user to choose a file. It gives access to all files in the site.

Email Address: This inserts a mailto link. Enter the email address in the field
alongside.

Select the text or image that is to be used for the link, choose the appropriate option, and
click the Insert Link button to create the link. Once the link has been created, this button
serves to remove the link.

The Open in new window checkbox adds target="_blank" to the <a> tag.

The Advanced option is visible only when a link exists. It has a single field, Tooltip, which
adds a title attribute to the <a> tag. If nothing is entered in this field, a link to a web page
contains title="". Links to an email address or file are automatically populated with the
email address or file name. However, this can be replaced with any text.

Editing a repeatable region
Clicking inside an editable repeatable region displays the mini-toolbar in the following
screenshot:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Clicking each icon performs the following operation:

Add a region: This adds a blank editable region immediately above the current
selection. What can be added to the new region depends on the settings selected
by the developer when adding the InContext Editing markup.

Duplicate region: This creates a duplicate of the currently selected region immedi-
ately below it. Both content and editing capabilities are duplicated.

Delete region: This deletes the selected repeating region.

Move region down/up: This lets you change the order of repeating regions within the
parent group.

Saving drafts and publishing
After making an edit, you can save it as a draft by clicking Save in the main InContext
Editing toolbar. To undo all changes, click Cancel.

Clicking Save does not publish the changes to the live website. They’re saved only to the
Adobe server. User accounts for InContext Editing can be set up with different access lev-
els, so a junior person can be given permission to make changes but not publish them. This
provides an opportunity to show the proposed changes to another person for approval, to
make further changes, or to discard them altogether. When you have finished editing, click
Done on the main InContext Editing toolbar. The options on the toolbar change to let you
edit the current draft, discard it, or publish it, as shown in Figure 13-31.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

578

Figure 13-31. After saving, you can make further edits, discard the changes, or publish the revised page.

The draft remains on the Adobe server until you or another authorized user decide what
to do with it. However, if you click the Publish button and confirm that you want to update
the live site, that’s it. There is no way of rolling back. The page is immediately updated on
the live website. The only ways of restoring it to its former state are to edit the page
through InContext Editing again, or upload the original version of the page from the devel-
oper’s computer.

After working on a page, you can return to the live website by clicking the icon at the bot-
tom right of the toolbar. This keeps you signed into the InContext Editing server, so you
can choose another page to edit without the need to sign back in again. Once you have
finished, click the Sign Out button at the top right.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Assessing the pros and cons of InContext Editing

It’s too early at the time of this writing to offer a considered judgment of InContext
Editing. In my testing, adding the markup to a web page was very easy once I understood
the limitations of using only <div>, <th>, and <td> as editable elements. Editing through
the InContext Editing service was also very easy. However, I also found it very easy to turn
a unified design into a hideous mess by changing fonts, colors, and backgrounds. To avoid
this, you need to disable many of the editing options.

Used carefully on a handful of pages to make limited edits, this could be a very useful
service. However, I don’t believe it is suitable for editing whole pages or websites.

The following points also need to be taken into consideration:

Once a page has been edited through InContext Editing, the version on the devel-
opment computer is out of date. Uploading a page from the development com-
puter restores the page to its original state but deletes any new content.

Although InContext Editing uses CSS wherever possible and you can enable your
own classes, most presentational markup is applied through tags and inline
styles. This produces a modern version of tag soup little different from old-style
markup with tags. Editing pages that have been updated through InContext
Editing could be time-consuming for the developer.

Dynamic code, such as PHP or JavaScript, must not be included in an editable area.
Otherwise, it is likely to be overwritten when changes are made to the page
through InContext Editing.

Repeating regions should not contain elements with IDs because this will result in
multiple instances of the same IDs if a repeating region is duplicated. This will pre-
vent any JavaScript that interacts with those IDs from working.

The InContext Editing markup inserts nonstandard attributes inside HTML tags,
preventing pages from validating. To get around this problem, Adobe has devel-
oped an unobtrusive version of the markup using CSS classes. This requires the
installation of a Dreamweaver extension that was released just as this book went
to the printers. For details and a tutorial, see http://www.adobe.com/devnet/
dreamweaver/articles/incontext_applying_unob_code.html.

Even if unobtrusive markup is used, InContext Editing relies on easily identifiable
markup within the HTML. This could be used by a hacker to identify sites to try to
break into. All communication with the Adobe server is done through the secure
sockets layer, and Adobe encrypts the site’s FTP login details; but if individual users
choose passwords that are simple to guess or share their login details with others,
pages that are enabled for InContext Editing could easily be compromised.

Chapter review
Templates and InContext Editing both offer solutions to the problem of allowing less
skilled people to update a website’s content without destroying the overall integrity of the

PRESERVING DESIGN INTEGRITY WITH TEMPLATES AND INCONTEXT EDITING

579

13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

design. However, templates currently offer the developer a much finer level of control.
They can also be useful even when no one else is involved in the creation or updating of a
site, because they allow the developer to lock fixed elements of the design and generate
identical child pages in seconds. When used in combination with PHP includes, they
become even more versatile because the contents of the include file are propagated to all
files without the need to update every page in the site. Adobe has developed InContext
Editing in response to what it perceives as a market demand for simple updates to web
pages. It will be interesting to see how the market responds.

This chapter has covered most aspects of working with templates apart from repeating
tables and advanced features, such as nested templates and editable attributes. I have
omitted them because I believe that PHP offers a more flexible solution to similar issues.
The next chapter begins an in-depth exploration of Dreamweaver’s PHP server behaviors,
which make light work of storing information in a MySQL database, retrieving the infor-
mation for display in a web page, as well as updating and deleting it. Even if you have
never used a database before, you will have a basic content management system up and
running in surprisingly little time.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

580

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 STORING USER RECORDS
IN A DATABASE

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dynamic websites take on a whole new meaning in combination with a database. Drawing
content from a database allows you to present material in ways that would be impractical—
if not impossible—with a static website. Examples that spring to mind are online stores, such
as Amazon.com; news sites, such as the International Herald Tribune (http://www.iht.com);
and the big search engines, including Google and Yahoo!. Database technology allows these
websites to present thousands, sometimes millions, of unique pages with remarkably little
underlying code. Even if your ambitions are nowhere near as grandiose, a database can
increase your website’s richness of content with relatively little effort.

Although PHP is capable of interacting with most popular databases (and some less well-
known ones, too), Dreamweaver has made the choice for you. All the server behaviors are
designed to work with MySQL. In one respect, this is a good choice, because it’s widely
available, free, and very fast and it offers an excellent range of features. The downside is
that the server behaviors work only with MySQL. If you want to use a different database,
such as PostgreSQL (http://www.postgresql.org/), SQLite (http://www.sqlite.org/),
or Microsoft Access (http://office.microsoft.com/access), you have to do all the cod-
ing by hand.

Although Dreamweaver does a lot of the hard work for you when building a database-
driven website, it’s important to remember that you’re combining several technologies. So,
there’s a lot to learn. A big mistake that most beginners make is to rush headlong into cre-
ating a database and cram it full of data without understanding how databases work (I
know, I did it myself many years ago). I’ll try not to overburden you with too much heavy
theory, but this chapter starts with some of the basic knowledge that you’ll need to start
working with a MySQL database.

In this chapter, you’ll learn about the following:

Creating MySQL user accounts

Defining a database table through the phpMyAdmin graphical interface

Choosing the appropriate data types for database columns

Using Dreamweaver server behaviors to insert, update, and delete records

Creating a simple user registration system

I assume you already have access to a MySQL database, preferably in a local testing envi-
ronment. The current stable version of MySQL is 5.0, but MySQL 5.1 should be released
around the time this book is published. Dreamweaver is compatible with MySQL as far
back as MySQL 3.23, but you should ideally be using a minimum of MySQL 4.1, because
older versions do not support UTF-8 encoding.

Introducing MySQL
If you have ever worked with Microsoft Access, your first encounter with MySQL might
come as something of a shock. For one thing, it doesn’t have a glossy interface. As

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

584

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-1 shows, it looks like a throwback to the old days of DOS before the friendly
interfaces of Mac and Windows. Its beauty lies, however, in its simplicity. What’s more,
most of the time you’ll never see MySQL in its raw state like this. You’ll use either
Dreamweaver or a graphic front end. Several graphic front ends for MySQL are available—
some free, others commercial products. The one I’ll be using in this book is a free applica-
tion called phpMyAdmin (http://www.phpmyadmin.net/). Best of all, you’ll be designing
your own personalized interface by creating PHP pages.

Figure 14-1. The unadorned interface of MySQL in a Windows Command Prompt window

The other thing that comes as a surprise to Access users is that your database is not kept
in a single file that you can upload to your remote server. MySQL keeps all databases in a
central data folder, and each database table normally consists of three separate files. The
way you transfer data from one server to another is by creating a text file that contains all
the necessary commands to build the database and its contents—in other words, a backup
file. All you need to know now is that there isn’t “a database file”—there are lots of them,
and normally, you should never handle them directly.

Understanding basic MySQL terminology

If you haven’t worked with a relational database before, you may find your head spinning
with some of the names that crop up throughout the rest of this book. So, here’s a quick
guide:

SQL: Structured Query Language is the international standard behind all major
relational databases. It’s used to insert and otherwise manipulate data and is based
on natural English. For instance, let’s say you have a database table called members
that stores each person’s details as first_name, family_name, and username. You

STORING USER RECORDS IN A DATABASE

585

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

would use the following command (or SQL query) to find the first_name and
family_name for the person whose username is dpowers:

SELECT first_name, family_name
FROM members
WHERE username = 'dpowers'

As you can see, it’s very human-readable, unlike many other computer languages.
Although SQL is a standard, all of the main databases have added enhancements
on top of the basic language. If you have been using another database, such as
Access or Microsoft SQL Server, be prepared for some slight differences in the use
of functions. Some people pronounce SQL “sequel,” while others say “Ess-queue-
ell.” Both are right.

MySQL: This refers to the entire database system created by MySQL AB, originally
a Swedish company but now part of Sun Microsystems (http://www.sun.com). It’s
always spelled in uppercase, except for the “y,” and the official pronunciation is
“My-ess-queue-ell.” It’s not just a single program, but a client/server system with a
number of related programs that perform various administrative tasks. The two
main components are mysql and mysqld, with both terms entirely in lowercase.

mysql: This has three distinct meanings. The first is the client program used to feed
requests to the database. mysql is also the name of the main administrative data-
base that controls user accounts, and on Windows, it is the name of the Windows
service that starts and stops the database server. Once you start working with
MySQL, differentiating between the different meanings of “mysql” is not as confus-
ing as it first seems.

Using MySQL with a graphic interface

Although you can use MySQL in a Windows Command Prompt window or Mac Terminal,
it’s a lot easier to use a graphic interface. There are several to choose from, both com-
mercial and free. Among the free offerings are two from MySQL: MySQL Administrator
and MySQL Query Browser (http://www.mysql.com/products/tools). Three other popu-
lar graphical front ends for MySQL are Navicat (http://www.navicat.com), a commercial
product, and DBTools Manager (http://www.dbtools.com.br/EN/dbmanagerpro/) and
SQLyog (http://www.webyog.com), which are available in both commercial and free
versions.

However, the most popular graphical interface for MySQL is phpMyAdmin (http://
www.phpmyadmin.net). It’s a PHP-based administrative system for MySQL that has been
around since 1998, and it constantly evolves to keep pace with MySQL developments. It
works on Windows, Mac OS X, and Linux. What’s more, many hosting companies provide it
as the standard interface to MySQL. For that reason, I plan to use phpMyAdmin through-
out the rest of this book.

If you installed XAMPP or MAMP, phpMyAdmin is already installed on your local computer.
However, for the benefit of readers who need to install phpMyAdmin, the next section
describes the process.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

586

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting up phpMyAdmin on Windows and Mac

Like a lot of open source applications, phpMyAdmin is constantly evolving. At the time of
this writing, a major rewrite of the application, phpMyAdmin 3, had reached release can-
didate status. The upgrade to version 3 has been necessitated by the imminent release of
MySQL 5.1, which is not supported by phpMyAdmin 2. Fortunately, the installation process
for the new version remains unchanged—at least it was at the time I wrote the following
instructions. Any changes of a substantial nature will be listed on my website at http://
foundationphp.com/dwcs4/updates.php.

Since phpMyAdmin is PHP-based, all that’s needed to install it is to download the files,
unzip them to a website in your local testing environment, and create a simple configura-
tion file. phpMyAdmin 3 requires a minimum of PHP 5.2 and MySQL 5.0. If you are running
earlier versions, you must install phpMyAdmin 2.

1. Go to http://www.phpmyadmin.net, and download the version you require. The
files can be downloaded in three types of compressed file: BZIP2, GZIP, and ZIP.
Choose whichever format you have the decompression software for.

2. Unzip the downloaded file. It will extract the contents to a folder called
phpMyAdmin-x.x.x, where x represents the version number.

3. Highlight the folder icon, and cut it to your clipboard. On Windows, paste it inside
the folder designated as your web server root (with an Apache server, this is usually
a folder called htdocs). If you’re on a Mac and want phpMyAdmin to be available
to all users, put the folder in Macintosh HD:Library:WebServer:Documents rather
than in your own Sites folder.

4. Rename the folder you have just moved to this: phpMyAdmin.

5. Create a new subfolder called config within the phpMyAdmin folder. Windows users
skip to step 7. Mac users continue with step 6.

6. On Mac OS X, use Finder to locate the config folder you have just created. Ctrl-
click and select Get Info. In Ownership & Permissions, expand Details, and click the
lock icon so that you can make changes to the settings. Change the setting for
Others to Read & Write. Close the config Info panel.

7. Open a browser, and type the following into the address bar:

http://localhost/phpmyadmin/scripts/setup.php

If you created the phpMyAdmin folder inside your Sites folder on a Mac, use the
following address, substituting username with your Mac username:

http://localhost/~username/phpmyadmin/scripts/setup.php

8. You should see the page shown in Figure 14-2.

Downloading and installing phpMyAdmin

STORING USER RECORDS IN A DATABASE

587

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ignore any warning about the connection not being secure. This is intended for
server administrators installing phpMyAdmin on a live Internet server. If, on the
other hand, you see the following warning, it means you have not set up the con-
fig folder correctly and should go back to step 5.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

588

Figure 14-2. A built-in script automates the configuration of phpMyAdmin.

9. Click the Add button in the Servers section. This loads a form with most of the nec-
essary information already filled in. Check the following settings:

Server hostname: localhost

Server port: Leave blank unless your web server is running on a nonstandard
port, such as 8080

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Server socket: Leave blank

Connection type: tcp

PHP extension to use: mysqli

10. The default setting for Authentication type is config. If you don’t need to password
protect access to phpMyAdmin, check that User for config auth is set to root, and
enter your MySQL root password in the next field, Password for config auth.

If you want to restrict access to phpMyAdmin by prompting users for a password,
change Authentication type to http, and delete root from the User for config auth field.

11. Scroll down to the Actions field, and click Add. As shown here, there are two Add
buttons close to each other; click the one circled in the screenshot:

12. The next screen will probably warn you that you didn’t set up a phpMyAdmin data-
base, so you won’t be able to use all the phpMyAdmin features. This is not impor-
tant. You can set up one later if you decide to use the advanced features of
phpMyAdmin.

13. Scroll down to the Configuration section near the bottom of the page, and click
Save.

14. Open the config folder in Explorer or Finder. You should see a new file called
config.inc.php. Move it to the main phpMyAdmin folder. The official instructions
tell you to delete the config folder, but this isn’t necessary in a local testing
environment.

Launching phpMyAdmin

To use phpMyAdmin, launch a browser, and enter http://localhost/phpMyAdmin/index.php in
the address bar (on a Mac, use http://localhost/~username/phpMyAdmin/index.php if
you put phpMyAdmin in your Sites folder). If you stored your root password in
config.inc.php, phpMyAdmin should load right away, as shown in Figure 14-3. If you
chose to password protect phpMyAdmin, enter root as the username and whatever you
specified as the MySQL root password when prompted.

STORING USER RECORDS IN A DATABASE

589

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I have a large number of databases on my computer, so you’ll have a much shorter list in
the left frame than shown in Figure 14-3. If you’re used to glossy software design, your ini-
tial impression of phpMyAdmin may not be all that favorable, particularly if you don’t have
a large monitor. The interface is sorely in need of a face-lift, but don’t let that fool you;
phpMyAdmin is both powerful and easy to use. The layout is slightly different in
phpMyAdmin 2, so don’t be surprised if your version doesn’t look exactly like the screen-
shots in this book.

Troubleshooting
The following common errors occur when launching phpMyAdmin:

If you get a message saying that the server is not responding or that the socket is
not correctly configured, make sure that the MySQL server is running.

If you get a message that the mysqli module cannot be loaded, there’s a mistake in
your installation of PHP. This normally happens only on Windows. Display your
server’s PHP configuration details by creating a script with <?php phpinfo(); ?> in
it (and nothing else), and load it in a browser. Scroll roughly halfway down the page
to locate sections for mysql and mysqli. If they’re not there, you need to reinstall
PHP and select both MySQL and MySQLi in the list of extensions to be enabled.

If you get messages about failing to write session data or not being able to start a
session without errors, it means that the folder PHP uses to save session informa-
tion doesn’t exist or is read-only. Use phpinfo() to display your PHP configuration
details, and find the value of session.save_path (it’s close to the bottom of the
page in the session section). Make sure that the folder exists and is writable.

If the folder doesn’t exist, create it. On Windows, you don’t normally need to set
any permissions to make the folder writable. On a Mac, select the folder in Finder,
and press Cmd+I to display a Get Info panel. In the Ownership & Permissions section,
expand Details, and set Others to Read & Write.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

590

Figure 14-3. phpMyAdmin is a very user-friendly and stable graphical interface to MySQL.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Logging out of phpMyAdmin
If you opted to password protect phpMyAdmin, a Log out link is added to the front page.
When you click the link, you are immediately prompted for your username and password.
Click Cancel, and you are presented with a screen informing you that you supplied the
wrong username/password—in other words, you have been logged out. Odd, but that’s
the way it works. You cannot log back in to phpMyAdmin from the wrong username/pass-
word screen. You must enter the original URL into the browser address bar.

Setting up a database in MySQL
MySQL isn’t a single database, but a relational database management system (RDBMS). The
screenshot in Figure 14-3 was taken on my development computer, which contains more
than a dozen databases listed in the left frame of phpMyAdmin. However, if you examine
a new installation of MySQL in phpMyAdmin, you’ll see it contains the following three
databases:

information_schema: This is a virtual database that contains details of other data-
bases within the RDBMS.

mysql: This contains all the user account and security information and should never
be edited directly unless you’re really sure what you’re doing.

test: This contains nothing. You can either use it for testing or delete it.

The numbers phpMyAdmin displays in parentheses alongside each database name indicate
how many tables that database contains.

If you’re using a remote server and your hosting company provides phpMyAdmin, the list
of databases will be limited to those on your account, or you may be limited to only one
database.

Creating a local database for testing

Assuming you have set up a local testing environment, you need to create a test database
to work with the remaining chapters. I’m going to call the database dwcs4, and that’s how
I’ll refer to it from now on. However, if you already have a hosting package, I suggest you
use the name of a database on your remote server, because this will make things a lot eas-
ier when it comes to testing your pages on the Internet.

Type the name of the database in the field labeled Create new database in the phpMyAdmin
welcome screen, and click Create, as shown in Figure 14-4. Most readers can leave Collation
in its default position. However, if you’re working in a language other than English, Swedish,
or Finnish, and your remote server runs MySQL 4.1 or later, read “Understanding collation”
before clicking Create.

STORING USER RECORDS IN A DATABASE

591

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-4. To create a new database, just type its name into the phpMyAdmin
welcome screen, and click Create.

The database should be created instantly, and phpMyAdmin will invite you to create a new
table. Before doing that, you need to create at least one user account for the database.
Leave phpMyAdmin open.

Understanding collation
Collation determines the sort order of records. Different languages have their own sort-
ing rules, so MySQL 4.1 and above let you set the default sort order at different levels: for
the entire database, for individual tables, and for individual columns. MySQL was originally
developed in Sweden, so the default sort order is latin1_swedish_ci. English and Finnish
share the same sort order.

If you work in a different language and your remote server is MySQL 4.1 or above, click
the Charsets tab (or the Character Sets and Collations link in phpMyAdmin 2) on the
phpMyAdmin welcome screen to see the full range of supported sort orders. When defin-
ing a new database or table, select the appropriate sort order from the Collation drop-
down menu.

You can change the collation of an existing database or table in phpMyAdmin by selecting
it in the left frame and then clicking the Operations tab. Since collation can be set at dif-
ferent levels, this sets the default only for new tables or columns. Existing tables and
columns preserve their original collation unless you edit them individually.

If you are working in a language, such as Spanish or French, that uses accented
characters, MySQL 3.23 and 4.0 do not support UTF-8 (Unicode). This affects the
way accented characters are stored. If accented characters are garbled when
retrieving records from MySQL, change the default encoding of your web pages
from UTF-8 to the encoding appropriate for your language. Alternatively, store
accented characters as HTML entities (for example, é for é). Better still,
upgrade to MySQL 5.

Because phpMyAdmin is a browser-based application, the precise layout of what
you see onscreen depends on the size of your monitor and browser viewport. The
layout of phpMyAdmin 3 also differs slightly from phpMyAdmin 2. However, the
basic functionality remains the same.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

592

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating user accounts for MySQL

A new installation of MySQL has only one registered user—the superuser account called
root, which has complete control over everything. A lot of beginners use root for every-
thing and don’t even bother setting up a password for root. This is a big mistake. The root
user should never be used for anything other than administration, and you should get into
the good habit of using a password for root. XAMPP and MAMP both have instructions for
setting the root password. If you need to change the root password in phpMyAdmin, follow
the instructions in the next section. Otherwise, skip ahead to “Granting user privileges.”

Changing the MySQL root password in phpMyAdmin
Changing the MySQL root password in phpMyAdmin is quick and easy. Just follow these
steps:

1. Launch phpMyAdmin, and click the Privileges tab in the welcome screen (it’s a link
on the left side of the main frame in phpMyAdmin 2).

2. This displays a list of MySQL user accounts, as shown in Figure 14-5 (if it’s a new
installation, the only one listed is root). Click the Edit privileges icon alongside root.

Figure 14-5. Click the icon in the right column to edit a user’s privileges.

3. This opens the Edit Privileges screen. Scroll down until you find the following section:

STORING USER RECORDS IN A DATABASE

593

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Select the Password radio button, and enter the new password in both fields.
Unless you are using an old version of MySQL, leave Password Hashing on the
default, MySQL 4.1+.

5. Click Go in the Change password section. There are several Go buttons on the page.
Make sure you select the one in the right section.

6. If you selected config as the authentication type when setting up phpMyAdmin,
don’t forget to update config.inc.php. You can do this manually by opening the
file and changing the following line:

$cfg['Servers'][$i]['password'] = 'newRootPassword';

Granting user privileges
MySQL stores all databases in a common directory. So, on shared hosting, your database—
with all its precious information—rubs shoulders with everyone else’s. Clearly, you need a
way to prevent unauthorized people from seeing or altering your data. The answer is to
create user accounts that have the fewest number of privileges necessary to perform
essential tasks, preferably on a single database.

You normally want visitors to your site to be able to see the information it contains but not
to change it. However, as administrator, you need to be able to insert new records and
update or delete existing ones. This involves four types of privileges, all named after the
equivalent SQL commands:

SELECT: Retrieves records from database tables

INSERT: Inserts records into a database

UPDATE: Changes existing records

DELETE: Deletes records but not tables or databases (the command for that is DROP)

In an ideal setup, you create two separate user accounts: one for administrators, who
require all four privileges, and another one for visitors, limited to SELECT. If your hosting
company lets you set up user accounts with different privileges, I suggest you create two
accounts like this. However, if you have no choice, set up one account and use the same
username and password as on your remote server.

These instructions show you how to set up user accounts in a local testing environment.
You can skip this section if you are using your remote server as your testing server.

1. Click the home icon at the top of the left frame in phpMyAdmin to return to the
welcome screen, and then click Privileges. In phpMyAdmin 3, this is a tab at the top
of the screen. In phpMyAdmin 2, it’s a link in the left column of the main frame.

To create a new user account, you must use the link in the welcome screen. The
Privileges tab in other screens displays details of existing accounts only.

Setting up MySQL user accounts

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

594

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. The User overview screen opens. Click Add a new User halfway down the page.

3. In the page that opens, enter the name of the user account that you want to create
in the User name field. Select Local from the Host drop-down menu. This automati-
cally enters localhost in the field alongside. This option restricts the user to connect-
ing to MySQL only from the same computer. Enter a password in the Password field,
and confirm it in the Re-type field. The Login Information table should look like this:

4. Beneath the Login Information table is one labeled Global privileges. Granting such
extensive privileges is insecure, so scroll past the Global privileges table, and click
the Go button at the bottom of the page.

5. The next page confirms that the user has been created and displays many options,
beginning with the Global privileges again. Scroll down to the section labeled
Database-specific privileges. Activate the drop-down menu, as shown here, to dis-
play a list of all databases. Select the name for the database you plan to use for
testing.

Dreamweaver needs these details later to make a connection to the database.
The password I used for the cs4admin user when creating the download files is
humpty. If you want to use the download files exactly as they are, you need to
use the same password and username as I did. However, I suggest you use your
own username and password both here and when creating the MySQL connec-
tion in Dreamweaver later in the chapter.

STORING USER RECORDS IN A DATABASE

595

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. The next screen allows you to set the user’s privileges for just this database. You
want the admin user to have all four privileges listed earlier, so click the SELECT,
INSERT, UPDATE, and DELETE checkboxes (if you hover your mouse pointer over
each option, phpMyAdmin displays a tooltip describing what it’s for). After select-
ing the four privileges, as shown here, click the top Go button.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

596

7. phpMyAdmin presents you with confirmation that the privileges have been
updated for the user account. The page displays the Database-specific privileges
table again, in case you need to change anything. Assuming you got it right, click
the Privileges tab at the top right of the page. You should now see the new user
listed in the User overview.

If you ever need to make any changes to a user’s privileges, click the Edit Privileges
icon to the right of the listing (see Figure 14-5 in the previous section). You can also
delete users by selecting the checkbox to the left of the User column and then
clicking Go.

8. If your hosting company permits you to create multiple user accounts, click Add a
new User, and repeat steps 3–7 to create a second user account. If you want to use
the same username and password as in the download files, call the account
cs4user, and give it the password dumpty. This user will have restricted privileges,
so in step 6, check only the SELECT option.

Now that you have a database and at least one user account, you can start adding tables
to store information. However, first, you need to understand the principles behind table
construction.

phpMyAdmin frequently offers you a variety of options on the same page, each
of which normally has its own Go button. Always click the one at the foot of or
alongside the section that relates to the options you want to set.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

How a database stores information
All data in MySQL is stored in tables, with information organized into rows and columns
very much like a spreadsheet. Figure 14-6 shows a simple database table as seen in
phpMyAdmin.

Figure 14-6. Information in a database table is stored in rows and columns, just like in a spreadsheet.

Each column has a name (image_id, filename, and caption) indicating what it stores.

The rows aren’t labeled, but the first column (image_id) contains a unique identifier
known as a primary key, which can be used to identify the data associated with a partic-
ular row. Each row contains an individual record of related data. The significance of pri-
mary keys is explained in the next section.

The intersection of a row and a column, where the data is stored, is called a field. So, for
instance, the caption field for the third record in Figure 14-6 contains the value The
Golden Pavilion in Kyoto, and the primary key for that record is 3.

How primary keys work

Although Figure 14-6 shows image_id as a consecutive sequence from 1 to 8, they’re not
row numbers. Figure 14-7 shows the same table with the captions sorted in alphabetical
order. The field highlighted in Figure 14-6 has moved to the seventh row, but it still has the
same image_id and filename.

The terms “field” and “column” are often used interchangeably. A field
holds one piece of information for a single record, whereas a column con-
tains the same field for all records.

STORING USER RECORDS IN A DATABASE

597

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although the primary key is rarely displayed, it identifies the record and all the data stored
in it. If you know the primary key, you can update a record, delete it, or use it to display
data. Don’t worry about how you find the primary key; it’s easy using Structured Query
Language (SQL), the standard means of communicating with all major databases. The
important thing is to assign a primary key to every record.

A primary key doesn’t need to be a number, but it must be unique.

Social Security, staff ID, or product numbers make good primary keys. They may
consist of a mixture of numbers, letters, and other characters but are always
different.

MySQL will generate a primary key for you automatically.

Once a primary key has been assigned, it should never—repeat, never—be
changed.

Because a primary key must be unique, MySQL doesn’t normally reuse the number when a
record is deleted, leaving holes in the sequence. Don’t even think about renumbering. By
changing the numbers to close the gaps, you put the integrity of your database at serious
risk. Some people want to remove gaps to keep track of the number of records, but you
can easily get the same information with SQL.

Although Figures 14-6 and 14-7 show the similarity between a database table and a
spreadsheet, there’s an important difference. With a spreadsheet, you can enter data with-
out the need to specify beforehand what type of data it is or how it’s to be structured. You
can’t do that with a database.

Designing a database table

Before entering data, you need to define the table structure. This involves the following
decisions:

The name of the table

How many columns it will have

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

598

Figure 14-7. Even when the table is sorted in a different order, each record can be
identified by its primary key.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The name of each column

What type of data will be stored in each column

Whether the column must always have data in each field

Which column contains the table’s primary key

Don’t be tempted to choose the first thing that comes into your head. Experienced data-
base developers often say at least half the total development time is spent deciding the
structure of a database. Although the structure of a database can be altered, some deci-
sions tie your hands so badly you need to redesign everything from scratch. That’s not
much fun when the database contains several thousand records. The time spent on these
early decisions can save a lot of agony and frustration later.

Because each database is different, it’s impossible to prescribe one simple formula, but the
next few pages should help guide you in the right direction. Don’t attempt to commit
everything to memory at the first read-through. Come back later when you need to
refresh your memory or check a particular point.

Choosing the table name
The basic MySQL naming rules for databases, tables, and columns are as follows:

Names can be up to 64 characters long.

Legal characters are numbers, letters, the underscore, and $.

Names can begin with a number but cannot consist exclusively of numbers.

Some hosting companies seem blissfully ignorant of these rules and assign clients data-
bases that contain one or more hyphens (an illegal character) in their names. If a name
contains spaces or illegal characters, you must surround it by backticks (`) in SQL queries.
Note that this is not a single quote (') but a different character. Dreamweaver and
phpMyAdmin normally do this for you automatically.

Choose names that are meaningful. Tables hold groups of records, so it’s a good strategy
to use plural nouns. For example, use products rather than product. Don’t try to save on
typing by using abbreviations, particularly when naming columns. Explicit names make it
much easier to build SQL queries to extract the information you want from a database.
SQL is designed to be as human-readable as possible, so don’t make life difficult for your-
self by using cryptic naming conventions.

When choosing column names, there is a danger that you might accidentally choose
one of MySQL’s many reserved words (http://dev.mysql.com/doc/refman/5.0/en/
reserved-words.html), such as date or time. A good technique is to use compound
words, such as arrival_date, arrival_time, and so on. These names also tell you much
more about the data held in the column.

Case sensitivity of names

Windows and Mac OS X treat MySQL names as case-insensitive. However, Linux and Unix
servers respect case sensitivity. To avoid problems when transferring databases and PHP
code from your local computer to a remote server, I recommend you use only lowercase

STORING USER RECORDS IN A DATABASE

599

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

in database, table, and column names. Using camel case (for example, arrivalDate) is
likely to cause your code to fail when transferring a database from your local computer to
a Linux server.

Deciding how many columns to create
How should you store each person’s name? One column? Or one each for the family and
personal names? A commercial contacts management program like Microsoft Outlook
goes even further, splitting the name into five parts. In addition to first and last name, it
stores a title (Mr., Mrs., and so on), a middle name, and a suffix (I, II, III, Jr., and Sr.).
Addresses are best broken down into street, town, county, state, ZIP code, and so on.
Think of all the possible alternatives, and add a column for each one. Things like company
name, apartment number, and extra lines in an address can be made optional, but you
need to make provision for them. This is an important principle of a relational database:
break down complex information into its component parts, and store each part separately.

This makes searching, sorting, and filtering much easier. Breaking information into small
chunks may seem a nuisance, but you can always join them together again. It’s much eas-
ier than trying to separate complex information stored in a single field.

Choosing the right column type in MySQL
MySQL 5.0 has 28 different column types. Rather than confuse you by listing all of them,
I’ll explain just the most commonly used. You can find full details of all column types in the
MySQL documentation at http://dev.mysql.com/doc/refman/5.0/en/data-types.html.

Storing text

The difference between the main text column types boils down to the maximum number
of characters that can be stored in an individual field and whether you can set a default
value.

CHAR: A fixed-length width text column up to a maximum of 255 characters. You
must specify the size when building the table, although this can be altered later.
Shorter strings are OK. MySQL adds trailing space to store them and automatically
removes it on retrieval. If you attempt to store a string that exceeds the specified
size, excess characters are truncated. You can define a default value.

VARCHAR: A variable-length character string. The maximum number must be speci-
fied when designing the table, but this can be altered later. Prior to MySQL 5.0, the
limit is 255; this has been increased to 65,535 in MySQL 5.0. Another change in
MySQL 5.0 affects the way trailing space is treated. Prior to MySQL 5.0, trailing
space is stripped at the time of storing a record. Since MySQL 5.0, trailing space is
retained for both storage and retrieval. You can define a default value.

TEXT: Stores a maximum of 65,535 characters (approximately two thirds of this
chapter). You cannot define a default value.

TEXT is convenient, because you don’t need to specify a maximum size (in fact, you can’t).
Although the maximum length of VARCHAR is the same as TEXT in MySQL 5.0, other factors
such as the number of columns in a table reduce this.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

600

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Prior to MySQL 5.0, you cannot use CHAR in a table that also contains VARCHAR, TEXT, or
BLOB. When creating the table, MySQL silently converts any CHAR columns to VARCHAR.

Storing numbers

The most frequently used numeric column types are as follows:

TINYINT: Any whole number (integer) between –128 and 127. If the column is
declared as UNSIGNED, the range is from 0 to 255. This is particularly suitable for
storing people’s ages, number of children, and so on.

INT: Any integer between –2,147,483,648 and 2,147,483,647. If the column is
declared as UNSIGNED, the range is from 0 to 4,294,967,295.

FLOAT: A floating-point number.

DECIMAL: A floating-point number stored as a string. This column type is best
avoided.

DECIMAL is intended for currencies, but you can’t perform calculations with strings inside a
database, so it’s more practical to use INT. For dollars or euros, store currencies as cents;
for pounds, use pence. Then use PHP to divide the result by 100, and format the currency
as desired.

Storing dates and times

MySQL stores dates in the format YYYY-MM-DD. This may come as a shock, but it’s the ISO
(International Organization for Standardization) standard, and it avoids the ambiguity
inherent in national conventions. The most important column types for dates and times
are as follows:

DATE: A date stored as YYYY-MM-DD. The supported range is 1000-01-01 to 9999-12-31.

DATETIME: A combined date and time displayed in the format YYYY-MM-DD
HH:MM:SS.

TIMESTAMP: A timestamp (normally generated automatically by the computer).
Legal values range from the beginning of 1970 to partway through 2037.

MySQL timestamps are based on a human-readable date and, since MySQL 4.1, use
the same format as DATETIME. As a result, they are incompatible with Unix and PHP

Don’t use commas or spaces as the thousands-separator. Apart from
numerals, the only characters permitted in numbers are the negative
operator (-) and the decimal point (.). Although some countries use a
comma as the decimal point, MySQL accepts only a period.

Keep it simple: use VARCHAR for short text items and TEXT for longer ones.

STORING USER RECORDS IN A DATABASE

601

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

timestamps, which are based on the number of seconds elapsed since January 1, 1970.
Don’t mix them.

Storing predefined lists

MySQL lets you store two types of predefined lists that could be regarded as the database
equivalents of radio button and checkbox states:

ENUM: This column type stores a single choice from a predefined list, such as “yes,
no, don’t know” or “male, female.” The maximum number of items that can be
stored in the predefined list is a mind-boggling 65,535—some radio-button group!

SET: This stores zero or more choices from a predefined list, up to a maximum of
64. Although this violates the principle of storing only one piece of information in
a field, it’s useful when the items form a coherent unit (for example, optional
extras on a car).

The values stored in the ENUM and SET columns are stored as a comma-separated string.
Individual values can include spaces and other characters but not commas.

Storing binary data

Binary data, such as images, bloat your tables and cannot be displayed directly from a
database. However, the following column types are designed for binary data:

TINYBLOB: Up to 255 bytes

BLOB: Up to 64KB

MEDIUMBLOB: Up to 16MB

LONGBLOB: Up to 4GB

With such whimsical names, it’s a bit of a letdown to discover that BLOB stands for binary
large object.

Deciding whether a field can be empty
When defining a database table, specifying a column as NOT NULL is the equivalent of des-
ignating a required field. Since the phpMyAdmin default is NOT NULL, you need to manu-
ally override this to make a field optional. You can change a column definition from NOT
NULL to NULL, and vice versa, at any time.

If you set a default value for a NOT NULL column, MySQL automatically
uses that value if nothing is entered in the field. Unfortunately,
Dreamweaver doesn’t support this useful feature.

Attempting to insert a date in any format other than YYYY-MM-DD
results in the date being stored as 0000-00-00. Handling dates in differ-
ent formats is covered in Chapter 17.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

602

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a user registration system
After that essential introduction, it’s now time to get down to business and create a simple
application that registers a person’s name, username, and password. This will become the
basis of a user registration system that controls access to selected pages in your website.
Once you have created the database table, Dreamweaver’s Insert Record, Update Record,
and Delete Record server behaviors make light work of creating the forms that add the
user’s details to the database. They are easy to use, and they protect you against a type of
malicious attack known as SQL injection. An injection attack can be used to reveal sensi-
tive information or even delete all your data by passing spurious values through form
fields or URL query strings. That’s the good news

The not-so-good news is that the server behaviors do nothing to ensure that user input
meets your criteria for suitable data. So, you could end up with someone just pressing the
spacebar a couple of times, rather than typing a username or a password. However, that’s
an issue that can wait until the next chapter. To begin with, I’ll concentrate on getting your
first database application up and running.

To register users for your site, you need the following elements:

A database table to store user details, such as username and password

A registration form

A page to display a list of registered users

A form to update user details

A form to delete users

Defining the database table

Let’s start with creating the necessary table to store user details in the database. I plan to
use the same table for both site administrators and ordinary visitors. So, it will also store
the level of user privileges. This means the table needs a total of six columns to store the
user’s first name, family name, username, password, and privilege level. That’s only five
The missing column is needed for the primary key.

These instructions show you how to define the users table in phpMyAdmin. If you’re new
to working with MySQL, I suggest you work through this section step-by-step to familiarize
yourself with table definition. More experienced users might prefer to use the
phpMyAdmin Import tab to build the table structure with ch14_users.sql in the extras
folder of the download files (for MySQL 4.0 use ch14_users40.sql).

1. Launch phpMyAdmin, and select the dwcs4 database from the list of databases in
the left frame. Since the database doesn’t yet have any tables, you should see a
message that no tables were found and a form to create a new one. You want to

Creating the users table

STORING USER RECORDS IN A DATABASE

603

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

create new table called users. It needs to have six columns, so fill in the form as
shown here, and click Go.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

604

2. This opens a huge matrix where you define the table. Although it looks intimidat-
ing at first glance, it’s quite straightforward to fill in. The layout in phpMyAdmin 3
has changed since the previous version, so both versions are shown in Figures 14-8
and 14-9.

Figure 14-8. The new table definition layout in phpMyAdmin 3

Figure 14-9. The phpMyAdmin 2 interface uses radio buttons to specify indexes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

For the sake of consistency, I will use screenshots of phpMyAdmin 3. If you are
using phpMyAdmin 2 or need to switch between versions because your hosting
company still uses phpMyAdmin 2, you should be aware of the following
differences:

When setting a default value in phpMyAdmin 3, you need to select a value
from the drop-down menu. The options are None, As defined, NULL, and
CURRENT_TIMESTAMP. If you select As defined, type the value in the field below.
In phpMyAdmin 2, you simply enter a default value or leave the field blank.

Both versions of phpMyAdmin set all columns to NOT NULL—in other words,
required. To make a column optional in phpMyAdmin 3, select the Null check-
box; in phpMyAdmin 2, select null from the drop-down menu.

phpMyAdmin 3 uses a drop-down menu to specify whether the column should
have an index (this includes setting the table’s primary key). In phpMyAdmin 2,
use the radio buttons labeled in Figure 14-9.

To create an auto incrementing column (normally used in conjunction with the
primary key), select the A_I checkbox in phpMyAdmin 3. In phpMyAdmin 2,
select auto_increment from the Extra drop-down menu.

The settings for each column are summarized in Table 14-1.

STORING USER RECORDS IN A DATABASE

605

14

Table 14-1. Settings for the users table

Field Type Length/Values Default Attributes Null Index A_I

user_id INT None UNSIGNED No PRIMARY Yes

username VARCHAR 15 None No UNIQUE No

pwd VARCHAR 40 None No No

first_name VARCHAR 30 None No No

family_name VARCHAR 30 None No No

admin_priv ENUM 'n', 'y' n No No

The table’s primary key is user_id. Setting the Attributes field to UNSIGNED
restricts the column to use only positive numbers. By selecting A_I (auto_increment),
the value will automatically increase by one each time a record is added to the
table.

The next column, username, has Type set to VARCHAR with a length of 15, which
should be long enough for a username. You don’t want anyone to have the same
username as anyone else, so a unique index is applied to the column ensuring that
the same value can never be entered more than once.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The next three columns—pwd, first_name, and family_name—all have Type set to
VARCHAR. I have set the length of pwd to 40, because the function used to encrypt
the passwords always produces a hexadecimal string exactly 40 characters long.

Thirty characters each for first_name and family_name might seem a lot, but it’s
better to be overgenerous than to end up with truncated data.

The final column, admin_priv, uses the ENUM column type. As explained earlier, this
is typically used for “choose one of the following” situations. In this case, it’s
whether a user has administrative privileges. Type the permitted values in the
Length/Values field as comma-separated strings like this:

'n', 'y'

In the Default column for admin_priv, enter n without any quotes (in phpMyAdmin
3, you also need to set the Default drop-down menu to As defined).

All columns have been set to not null. This is because I want all of them to be
required fields. Click Save.

3. Check that the table structure displayed in phpMyAdmin looks like this:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

606

Note that the Indexes table at the bottom left of the screenshot lists user_id as the
primary key and both user_id and username are listed as unique indexes. The pri-
mary key is always unique.

If you need to make any changes, click the pencil icon in the row that needs
amending. To change several rows, select the checkbox alongside the column
names, and click the pencil icon at the bottom of the table structure. If you make
a complete mess and need to start again, click the Drop tab at the top right of the
screen and confirm that you want to delete the table.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Telling Dreamweaver how to connect to the database

Before you can communicate with your database inside Dreamweaver, you need to create
a MySQL connection. If you defined your site correctly in Chapter 2, it should take no
more than a minute or two.

A MySQL connection is simply a convenient way of storing the details needed to connect
to MySQL: the server address, username, password, and database name. Dreamweaver
stores them in an include file, which it automatically attaches to a web page whenever you
select the connection in a server behavior.

1. Before you can create a MySQL connection, you need to have a PHP page open in
the Document window. Create a blank PHP page, and save it as register_user.php
in workfiles/ch14.

2. With register_user.php open in the Document window, open the Databases
panel. If you can’t see the panel, you can open it from the menu system (Window
➤ Databases) or use the keyboard shortcut Ctrl+Shift+F10/Shift+Cmd+F10.

3. Click the plus (+) button, and select MySQL
Connection, as shown here:

4. The dialog box that opens asks you for the fol-
lowing details:

Connection name: You can choose any name
you like, but it must not contain any spaces or
special characters. This connection will be
used by the administrator user account, so I
have entered connAdmin.

MySQL server: This is the address of the database server. If MySQL is on the
same computer as Dreamweaver, you should enter localhost.

If you are running MySQL on a port other than the default 3306 (this happens
with some of the all-in-one PHP packages, such as MAMP), add the port number
after a colon (for example, localhost:8889).

If you are using your remote server as a testing server, use the address your
hosting company gave you. In most cases, this is also localhost. Dreamweaver
uploads hidden files to your remote server and creates a local connection there.

Some hosting companies locate the MySQL server on a different computer from
your web files. If you are doing remote testing and have been given a server
name other than localhost, enter that name now. If you are testing locally but
know that your host doesn’t use localhost, you will have to change this field
when you finally upload your site to the remote server.

User name: Enter the name of the MySQL user account that you want to use. This
connection will be used for administrative pages, so I have entered cs4admin.

Creating a MySQL connection

STORING USER RECORDS IN A DATABASE

607

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Password: Enter the password for the user account. This should be the password
you registered when creating the MySQL account.

Database: Enter the name of the database that you want to use. You can also use
the Select button to get Dreamweaver to show you a list of databases that the
named user has access to.

Fill in the necessary details. The completed dialog box should look something like
the following screenshot. When you have finished, click the Test button. If all goes
well, Dreamweaver will tell you that the connection was made successfully.

5. If you got the thumbs-up from Dreamweaver, click OK to close both dialog boxes.
If you failed to make the connection, cancel the connection setup, and check the
points listed in step 4 before trying again. If that fails, see “Troubleshooting the
connection.”

6. In the Databases panel, you should see a database
icon that has been created for connAdmin.
Expand the tree menu by clicking the tiny plus
button (it’s a triangle on the Mac) to the left of
connAdmin. It displays the database features
available to the connection, including a brief
description of every column in the users table.
The columns are listed in alphabetical order, not
the order they appear in the database. The little
key icon alongside user_id indicates that it’s the
table’s primary key. Both Stored procedures and
Views are empty. Although MySQL 5.0 supports
these features, support for them has not been
implemented in Dreamweaver CS4.

If you ever need to change the connection details, double-click the database icon
in the Databases panel to reopen the MySQL Connection dialog box, make your
changes, and click OK. Alternatively, right-click the connection name, and choose
Edit Connection from the context menu.

7. If you have created two user accounts for MySQL, create another MySQL connec-
tion called connUser for the second account that has only SELECT privileges.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

608

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Troubleshooting the connection
Hopefully, everything went OK, but this section should help identify what might have gone
wrong if you get an error message. Normally, you get a message about there being no test-
ing server or saying that the testing server doesn’t map to a particular URL.

All communication between Dreamweaver and MySQL is conducted through two files,
MMHTTPDB.php and mysql.php, located in a hidden folder called _mmServerScripts.
Dreamweaver automatically creates the hidden folder and files in the site root of your
testing server. If you have defined the URL prefix incorrectly in your site definition, the
folder will be in the wrong place. The solution is to use an Explorer window or Finder to
see where the folder has been created. Then adjust the testing server site definition (see
Chapter 2) so that both the testing server folder and URL prefix point to the site root.

If you’re using your remote server as the testing server, Dreamweaver uploads the hid-
den folder and files to your remote server. Even if you have defined the URL prefix cor-
rectly, Dreamweaver might not be able to create the _mmServerScripts folder because
of permission problems. Create the folder yourself, and make sure it has read and write
permissions.

You may see a rather unhelpful message about an unidentified error. Things to check when
this happens are that MySQL and your web server are running. Also check your username
and password—both are case-sensitive and will fail if you use the wrong case (make sure
Caps Lock isn’t on by accident). A software firewall may also be blocking communication
between Dreamweaver and MySQL. Try turning it off temporarily. If that solves the prob-
lem, adjust the firewall settings.

Inserting user details into the database

Although you can use phpMyAdmin or another graphical interface to insert records in a
database table, it’s more common to build a dedicated form to do so. Building dedicated
forms gives you control over which parts of your database can be accessed by different
people. The form you’ll build over the next few pages is intended to be used by an admin-
istrator to control who has access to different parts of a website, but you could use a sim-
ilar form in a public part of your site for users to register their details, such as email
address.

There are two ways to create a form to insert records into a database table: either you can
design your own form and use the Insert Record server behavior or you can use the
Record Insertion Form Wizard to build the form and apply the server behavior in a single

Dreamweaver stores the MySQL connection details in a file with the same
name as the connection. So, connAdmin becomes connAdmin.php, which is
stored in a folder called Connections that Dreamweaver creates in the site
root. Don’t forget to upload the contents of this folder to your remote server
when deploying a PHP site on the Internet.

STORING USER RECORDS IN A DATABASE

609

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

operation. Personally, I think the insert wizard creates ugly forms, but it offers a quick way
to build a form to interact with a database. I’ll use the wizard in this chapter, but in subse-
quent chapters, I’ll show you how to adapt your own forms.

These instructions step through the process of building a form to insert records in the
users table. Continue working with register_user.php from the previous section.

1. Create another blank PHP page, and save it as list_users.php in workfiles/ch14.
This will be used later to display a list of registered users. You don’t need the page
for the time being, so you can close it if you want.

2. Return to register_user.php. Give the page a title, such as Register User. Select
Heading 1 from the Format menu in the HTML view of the Property inspector, and
type the same heading at the top of the page. Then select the <h1> tag in the Tag
selector at the bottom of the Document window, and press your right keyboard
arrow to move the insertion point out of the heading. If you forget to do this,
Dreamweaver embeds the entire form inside the <h1> tags.

3. Open the Data tab of the Insert bar, and locate the fifth icon from the right. It
should display Insert Record as a tooltip. If this is the first time you have accessed
this icon, clicking it opens a submenu, as shown in the following screenshot. Select
Record Insertion Form Wizard from the submenu. On subsequent occasions,
Dreamweaver remembers the option you used most recently, so you can just click
the button.

If you’re not sure whether you have used this option before, click the small down
arrow alongside the icon to access the submenu directly.

If you prefer working with the main menu system, use Insert ➤ Data Objects ➤

Insert Record ➤ Record Insertion Form Wizard.

4. This opens the Record Insertion Form dialog box (see Figure 14-10). When it first
loads, you need to select a MySQL connection with INSERT privileges. If you cre-
ated two user accounts for MySQL, use the administrator connection (connAdmin).

This populates the Table drop-down menu with a list of tables in the database. They
are listed in alphabetical order, so you need to select users. The dialog box then
presents you with its suggested values for the record insertion form, as shown in
Figure 14-10.

Using a wizard to build the registration form

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

610

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-10. The Record Insertion Form Wizard helps build the insertion form automatically.

5. Dreamweaver uses the table column names to suggest labels and appropriate types
of input fields for the form. The columns are listed in the same order as they
appear in the database, but you can use the up and down arrow buttons at the top
right of the Form fields area to rearrange the order they will be displayed in the
record insertion form. If you don’t want to display a particular field, remove it by
clicking the minus button. To restore a deleted item, click the plus button, and
select it from the list.

You can also specify where you want to go to after the record has been inserted. If
you leave the option blank, the same page will be redisplayed ready for another
record.

6. The primary key is generated automatically, so you don’t want a field for it in the
form. Select user_id in the Form fields area, and click the minus button to delete it.

7. The suggested labels for the pwd, first_name, family_name, and admin_priv
columns all need amending. Select each one in turn, and edit the value in the Label
field (see Figure 14-10). Expand Pwd: to Password: and change the value of Display
as to Password field; remove the underscore from First_name: and Family_name:,
and change admin_priv to Administrator:.

8. The admin_priv column uses the ENUM column type, so you want to use a radio
button group. With admin_priv selected in Form fields, change Display as to Radio
group, and then click the Radio Group Properties button that appears. This opens
the Radio Group Properties dialog box. Use the plus button to create two Radio
items: Yes with a value of y, and No with a value of n, as shown in the following
screenshot. These match the values defined in the ENUM column in the database

STORING USER RECORDS IN A DATABASE

611

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Reorder the items with the up and down arrows at the top right of the Form fields
area so that they look like this:

10. Click the Browse button alongside the field labeled After inserting, go to. Navigate to
list_users.php, and select it. This will redirect the user to list_users.php after a
record has been inserted in the database table.

11. Click OK to create the form. In Design view, the page should now look like
Figure 14-11. The form’s light blue coloring indicates that it contains dynamic code.

Once you click OK in the Record Insertion Form dialog box, you cannot reopen
it to make any changes. All further changes to the form need to be made in
the Document window. If you want to start afresh, use the minus button in the
Server Behaviors panel to remove the Insert Record code before deleting
the form. Otherwise, you’ll end up with a tangle of impossible code.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

612

table. To make No the default value, enter n in the field labeled Select value equal
to, and click OK.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-11. The Record Insertion Form Wizard creates the form and the necessary PHP code in a
single operation.

12. Save register_user.php, and load it into a browser (don’t use Preview in Browser
with a temporary file). Enter some details in each field, and click Insert Record. Don’t
worry if you see a blank page; you should have been taken to list_users.php,
which doesn’t yet contain anything.

13. Launch phpMyAdmin, select the dwcs4 database, and then select the users table.
When you click the Browse tab, you should see the details of the record you just
inserted listed like this:

Compare your code, if necessary, with register_user.php in examples/ch14.

It’s as easy as that!

Before you start celebrating too soon, I should warn you that there are lots of things
wrong with this registration form. The password is stored in the database in plain text,
which is insecure. Also, the form is incapable of handling the database error if someone
chooses the same username as another person. In fact, there’s nothing to prevent some-
one from entering a single space in each field and registering that. This form is functional,
but a lot of work still needs to be done on it.

We’ll come back to server-side validation in the next chapter. The next stage is to create a
page that displays a list of entries in the database table, but first a quick word about things
that might have gone wrong:

If you get a string of errors about mysql_real_escape_string() and the ODBC
connection, it means you have used Preview in Browser with a temporary file. Load
the actual page into a browser, and try again.

STORING USER RECORDS IN A DATABASE

613

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you get a fatal error about a call to undefined function virtual(), it means your
site defaults to links relative to the site root and you’re not using Apache as the
web server. See the next section.

Using server behaviors with site-root-relative links

If you open register_user.php in Code view to see the PHP code that Dreamweaver has
added to the page and you use document-relative links, the top section will look like this:

<?php require_once('../../Connections/connAdmin.php'); ?>

This code uses require_once() to include the MySQL connection details. However, if your
site definition uses links relative to the site root, this will be replaced by the following:

<?php virtual('/Connections/connAdmin.php'); ?>

The virtual() function works only on Apache. If your code uses virtual(), make sure it
is supported on both your testing and remote servers before going any further (see “Using
site-root-relative links with includes” in Chapter 12 for details of how to do this).

All Dreamweaver server behaviors need to include the MySQL connection. If your server
doesn’t support virtual(), you have two options, namely:

Change your site definition to use document-relative links, and manually override
the default when creating links that you want to be relative to the site root. You do
this in the Select File dialog box by changing the Relative to drop-down menu to Site
Root, as described in “Including a text file” in Chapter 12.

Manually replace virtual() with require_once() and a document-relative link in
pages that use server behaviors. The require_once() command works on all
servers.

Neither solution is ideal. I believe that Dreamweaver needs a platform-neutral way of con-
necting to MySQL when site-root-relative links are used, or it should use require_once()
regardless of the default link type.

Retrieving information from the database

Inserting information into a database is fine, but there’s not much point unless you can
retrieve it and do something useful with it. Retrieving information from a database
involves creating a SQL SELECT query. As the name suggests, it selects information from
the database according to your criteria and returns the results. Dreamweaver calls this a
recordset. Once you have created a recordset, you can use it to display the results of the
query in a web page. Although there’s currently only one record in the users table, let’s
build a page to display a list of all registered users, because this is an essential prerequisite
to being able to update and delete information stored in the database.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

614

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These instructions show you how to use the Recordset dialog box in Simple mode to query
the users table in preparation for displaying the results in a web page.

1. Open list_users.php, and give it a title and heading, such as Registered Users.
Insert a link to register_user.php and a table with two rows and three columns. I
made the table 500 pixels wide, with no border, cellpadding, or cellspacing. I also
set Header to Top.

Type Name, Username, and Administrator in the first row. The page should look like this:

2. Open the Recordset dialog box by clicking the plus button in the Server Behaviors
panel and selecting Recordset. The Server Behaviors panel is normally grouped with
the Database and Bindings panels. If you can’t see it, select Window ➤ Server
Behaviors to open it, or press Ctrl+F9/Cmd+F9.

You can also click the Recordset button on the Data tab of the Insert bar or select
Insert ➤ Data Objects ➤ Recordset.

The Recordset dialog box has two modes: Simple and Advanced. If this is the first
time you have opened the dialog box, it will be in Simple mode, as shown in
Figure 14-12.

Creating a recordset

STORING USER RECORDS IN A DATABASE

615

14

Figure 14-12.
The Recordset dialog box
in Simple mode is used for
basic SELECT queries.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can tell which mode you’re in by looking at the buttons on the right side of the
dialog box. If you’re in Simple mode, the fourth button is labeled Advanced; and if
you’re in Advanced mode, it’s labeled Simple (because it switches to the opposite
mode).

3. By default, Dreamweaver enters a generic value such as Recordset1, Recordset2,
and so on, in the Name field. However, the name is used to create several PHP vari-
ables, so it’s better to choose something that tells you what the recordset is for.
Use only letters, numbers, and the underscore. Don’t use any spaces. Some people
use the convention of beginning recordset names with rs, but this isn’t necessary.
The name I have chosen is listUsers.

4. Dreamweaver CS4 now remembers the most recent connection you used, so the
connAdmin connection is automatically selected. Although this recordset performs
only a SELECT operation, you’ll be editing the records later, so it’s more consistent
to use the administrator connection for all the pages.

5. There’s only one table in the database at the moment, so the users table is also
selected automatically.

6. The Columns field has two radio buttons: All and Selected. By default, the All radio
button is selected, and the columns are grayed out. A lot of beginners select All
every time, even if they need only one or two columns. It’s easy, and it makes the
SQL query a lot easier to read (we’ll study SQL syntax in Chapter 16). However, it’s
a bad habit. Even if you need all columns, it’s considered best practice to select
them individually because it makes the meaning of your code much clearer.

Choose the Selected radio button, and Ctrl-click/Cmd-click username, first_name,
family_name, and admin_priv.

7. You can ignore the Filter settings this time. I’ll explain their use later.

8. Although there’s only one record at the moment, it’s a good idea to decide how
the results should be sorted when there are more records in the table. Open the
drop-down menu labeled Sort. It lists all the columns in the table. Choose
family_name. This enables the drop-down menu to the right. It has two options:
Ascending and Descending. Select Ascending. This will sort all results by the family
name in alphabetical order.

9. Click the Test button on the right of the Recordset dialog box. This opens the Test
SQL Statement panel with the results of the query, as shown here:

In Simple mode, you can sort by only one column. In Chapter 16, I’ll show you
how to use Advanced mode to sort by multiple columns.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

616

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. Click OK to close the test panel, and then click OK again to close the Recordset dia-
log box and create the recordset.

11. The listUsers recordset should now be listed at the top of the Server Behaviors
panel, as shown in the following screenshot:

12. Save list_users.php. Leave the page open ready to insert the code that will dis-
play the results of the recordset. If you want to check your page so far, compare it
with list_users_01.php in examples/ch14.

Editing and removing server behaviors
Whenever you create a recordset or apply a server behavior, Dreamweaver adds it to the
list in the Server Behaviors panel (some server behaviors add several items to the list). If
you need to edit a server behavior, double-click its listing in the Server Behaviors panel to
reopen its dialog box. To delete a server behavior, always select it from this list and click
the minus button at the top of the panel. Failure to do so will result in code that is likely
to behave erratically.

Displaying the results of a recordset

Once you have created a recordset, Dreamweaver makes its results available through the
Bindings panel, which displays a list of the database columns retrieved by each recordset
you create. You use the panel to insert PHP code into your web page and display the
results of the database query.

The following instructions show how to insert dynamic text from the Bindings panel and
display the results of the listUsers recordset. Continue working with list_users.php
from the previous section.

1. Open the Bindings panel by selecting its tab, selecting Window ➤ Bindings, or press-
ing the keyboard shortcut Ctrl+F10/Cmd+F10.

Creating the list of registered users

Dreamweaver creates a lot of PHP code behind the scenes when working with server
behaviors. You’ll examine a lot of it in coming chapters to get to know what it’s for.
Until you understand the code, it’s dangerous to highlight PHP elements in Design view
and press Delete. Using the minus button in the Server Behaviors panel removes the
code cleanly.

STORING USER RECORDS IN A DATABASE

617

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Expand the listUsers recordset as shown in Figure 14-13 by clicking to the left of
the icon alongside Recordset (listUsers).

3. To insert the database results into a page, you can drag the column names from the
Bindings panel into the Document window. Alternatively, position your cursor in
the Document window where you want to display the result, select the column
name in the Bindings panel, and click the Insert button at the bottom of the panel.

Use either method to insert first_name from the Bindings panel into the first cell of
the second row of the table. This inserts a dynamic text placeholder in the page
like this:

4. Click to the right of the dynamic text placeholder, and insert a space. Then insert
family_name from the Bindings panel alongside. Insert username into the second cell
of the second row, and insert admin_priv into the third cell. The table should now
look like this:

It doesn’t matter if the dynamic text placeholders in the first cell stack on top of
each other like this, because the placeholders are longer than the actual text that
will be displayed.

Figure 14-13.
The Bindings panel gives

access to the query result.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

618

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Save list_users.php, and press F12/Opt+F12 to load it into a browser. You should
see the details of the record you inserted into the users table displayed in the page
like this:

Don’t worry about the way the page looks. That’s cosmetic and can be easily fixed
with CSS. At the moment, I just want to concentrate on working with the server
behaviors. If anything went wrong, compare your code with list_users_02.php in
examples/ch14.

6. Assuming everything went OK, click the Register new user link to go to
register_user.php, and enter a new record in the database. Choose a family name
that comes before the existing record in alphabetical order. When you click the
Insert record button in register_user.php, list_users.php should automatically
load and display the new name, as shown here:

This is progress. The results have been sorted in alphabetical order, but only the
first result is displayed. Keep list_users.php open in Dreamweaver, and we’ll fix
that next.

STORING USER RECORDS IN A DATABASE

619

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Displaying multiple results with a repeat region

Unless you explicitly limit the results of a database query (you’ll learn how to do that later
in the book), a recordset contains all the records in the database that match your search
criteria. However, the dynamic text placeholders inserted from the Bindings panel display
only the first result. To display the remaining ones, you need to apply the Repeat Region
server behavior. Let’s do that now so you can see both results.

These instructions show you how to display multiple results from a recordset by applying
a Repeat Region server behavior to the table row that contains the dynamic text place-
holders. Continue working with list_users.php from the preceding section.

1. Position your cursor inside the second table row in list_users.php, and click <tr>
in the Tag selector at the bottom of the Document window to select the entire row.

2. Open the Server Behaviors panel. Note that the
four instances of dynamic text have been added
to the list, as shown here:

3. Click the plus button in the Server Behaviors
panel, and select Repeat Region from the menu
that appears. Alternatively, click the Repeat
Region button on the Data tab of the Insert panel,
or use the menu option, Insert ➤ Data Objects ➤ Repeat Region.

This opens the Repeat Region dialog box shown in Figure 14-14.

4. There’s only one recordset on the page, so the Repeat Region dialog box auto-
matically selects listUsers. The Show option lets you choose whether to show a
limited number of records or all of them. The default is to show a maximum of
ten records, but you can change this by entering your own value in the text field.

Figure 14-14.
A repeat region can

display a selected number
of records or all of them.

It’s important to select the entire row, including the opening and closing <tr>
tags. If you simply drag across the table cells to select them in Design view,
there’s a danger that Dreamweaver will select only the <td> tags. Using the Tag
selector ensures you get the correct selection every time.

Adding a Repeat Region server behavior

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

620

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You’ll learn in Chapter 16 how to page through a long recordset several records at
a time. On this occasion, though, select All records, and click OK to apply the
repeat region.

5. Save list_users.php, and reload it in a browser. You should now see both records
listed, as shown in Figure 14-15.

STORING USER RECORDS IN A DATABASE

621

14

Figure 14-15.
The repeat region now displays
all records in the table.

If the results end up being displayed across the page as shown in the following
screenshot, it means that you failed to select the entire table row in step 1:

If this happened to you, select Repeat Region (listUsers) in the Server Behaviors
panel, click the minus button to remove it cleanly, and start again from step 1.

Check your code, if necessary, against list_users_03.php in examples/ch14. You’ll
improve the page further in the next section, so keep it open in the Document
window.

Updating and deleting records

To update a record in a database, you need to populate a form with the existing details so
they can be edited and reinserted into the database. This is where a table’s primary key plays
a vital role. If you know the primary key of a record, you can easily retrieve it and populate
the update form. Equally important, you can use the primary key to delete a record when it’s
no longer wanted. So, how do you find the primary key? Simple . . . Look it up in the data-
base, and store it in a link that loads the update form or triggers the delete mechanism.

The listUsers recordset that you created earlier retrieves the first_name, family_name,
username, and admin_priv columns. All you need to do is to edit the recordset to get it to
retrieve the primary key, user_id, as well. You can then use that information to create edit
and delete links in list_users.php.

Time to get back to work

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These instructions show you how to edit the listUsers recordset to retrieve the primary
key of each record and then incorporate the primary key into links that will be used to
update and delete individual records.

1. Create two new blank PHP pages called update_user.php and delete_user.php.
You don’t need them for the time being, so you can close them if you want.

2. You need to add two columns on the right of the table in list_users.php. The eas-
iest way to do this is to right-click in the last column and select Table ➤ Insert Row
or Columns from the context menu. In the dialog box that opens, select the
Columns radio button, set Number of columns to 2, and select After current Column,
as shown here:

3. When you click OK to insert the extra columns, you might find it difficult to insert
your cursor in the new cells. To make it easier to work in the table, turn on
Expanded Tables mode by pressing Alt+F6/Opt+F6 (you can also click the Expanded
button on the Layout tab of the Insert bar or select View ➤ Table Mode ➤ Expanded
Tables Mode.

Type EDIT in the fourth cell of the second row, and type DELETE in the final cell.
Once you have entered the text in the new cells, you can exit Expanded Tables
mode by clicking Exit at the top of the Document window.

4. Open the Server Behaviors panel, and double-click Recordset (listUsers) to open the
Recordset dialog box. Edit the settings by holding down the Ctrl/Cmd key and
selecting user_id in the Columns field.

5. Click the Test button to make sure the query now includes the user_id primary
key, as shown in the following screenshot:

6. Close the test panel, and save the amended recordset.

7. Select the text in the fourth cell (EDIT). You need to turn it into a link to the update
page and add the record’s primary key to a query string at the end of the URL.

Adding a record’s primary key to a query string

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

622

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Begin by clicking the Browse for File button to the right of the Link field in the HTML
view of the Property inspector. In the Select File dialog box that opens, select
update_user.php. Then click the Parameters button alongside the URL field.

8. In the Parameters dialog box, type user_id in the Name field. Click the lightning bolt
icon on the right of the Value field. In the Dynamic Data dialog box, highlight
user_id, as shown in Figure 14-16.

STORING USER RECORDS IN A DATABASE

623

14

Figure 14-16. The Parameters and Dynamic Data dialog boxes build the query string.

This is where many people go wrong. The Name field in the Parameters dialog
box takes a static value, which you type in yourself. The Value field takes a
dynamic value, which you insert by clicking the lightning bolt icon and selecting
the primary key from the Dynamic Data dialog box.

9. Click OK to close both the Dynamic Data and Parameters dialog boxes. Then click
OK (Choose on the Mac) to close the Select File dialog box.

10. Repeat steps 7 through 9 with the text in the fifth cell (DELETE). In step 7, select
delete_user.php.

11. Save list_users.php, and preview it in a browser. Mouse over the EDIT and DELETE
links. The status bar of your browser should display links to update_user.php and
delete_user.php and have a query string containing user_id and the user’s primary
key, as shown in Figure 14-17.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-17. The query string has been added to the URL.

Make sure the query string is correctly formed at the end of the URL when you
mouse over the links. This is very important; the update and delete pages won’t
work unless the query string displays user_id= followed by a number. Review
steps 7–10 again if the URL doesn’t look right. If necessary, check your code against
list_users_04.php in examples/ch14.

Retrieving a database record using its primary key
The wizard that builds update forms is almost identical to the one that inserts new records
into a database. The main difference is that you can’t use it until you have already created
a recordset to retrieve the existing details of the record you want to update. So, the
process involves three basic steps, namely:

1. Create a recordset to retrieve a single record.

2. Display the results of the recordset in a form ready for editing.

3. Submit the edited information to update the existing record.

Since each record has a unique primary key, you can retrieve the details of a specific
record by using its primary key as a filter. You don’t need to know the actual primary key
to create the recordset. All you need to know is the name of the variable containing the
primary key and where it’s coming from. The query string you added at the end of the
URL in the EDIT link of list_users.php in the previous section contains the individual
record’s primary key as a variable called user_id. So, this is the value you use to filter
the recordset.

The following instructions show you how to retrieve a record identified by its primary key:

1. Open update_user.php. Give the page a suitable title and a heading, such as
Update User Record.

Using the primary key to filter a recordset

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

624

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Click the plus button in the Server Behaviors panel, and select Recordset from the
menu that appears. The Recordset dialog box should still be in Simple mode from
the last time you used it.

3. Name the recordset getUser.

4. Check that the Connection field has been set to connAdmin (Dreamweaver should
remember from the most recent time you used it).

5. Since you have only one table, users should be automatically selected. Click the
Selected radio button, and Shift-click all the columns.

6. The Filter section consists of three drop-down menus and a text field. The first
drop-down menu lists all the columns in the users table. You want to use the pri-
mary key to select the record, so choose user_id from the list.

The drop-down menu on the right contains a range of comparison operators that
determine how the filter is used. You want the variable passed through the query
string to be equal to the user_id column, so the default, =, is fine.

The drop-down menu in the second row determines where the value comes from.
On this occasion, it’s being passed in through a query string, so select URL Parameter.

The text field on the right of the second row is where you enter the name of the
variable whose value you want to match in the selected column. Dreamweaver
assumes you want to use the same name as the column, which is why I used
user_id in the query string. If you use a different variable name, you can type it in
here, but it’s not necessary on this occasion.

The settings in the Recordset dialog box should now look like this:

7. Click the Test button. Because you’re filtering the recordset, Dreamweaver asks you
to provide a test value for user_id. Assuming you haven’t deleted any records in
the table, enter 1 or 2, and click OK. You should see details of the record that has
that primary key.

8. Click OK to dismiss the test panel, and then click OK again to save the recordset.
You’re now ready to create the update form. Leave update_user.php open to con-
tinue with the next section.

STORING USER RECORDS IN A DATABASE

625

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the Record Update Form Wizard
Now that you have a recordset that retrieves the details of the record you want to update,
you can use the Record Update Form Wizard (if you attempt to use the wizard without first
creating the recordset, Dreamweaver displays a message telling you to do so).

You use the wizard in almost the same way as the one that created the form to insert new
records. Here’s how

1. You need to make sure the wizard builds the update form outside the <h1> tags of
the page heading in update_user.php. So, insert your cursor in the page heading,
select <h1> in the Tag selector, and press your right arrow key once.

2. Select Record Update Form Wizard in the Data tab of the Insert bar (it’s the fourth
icon from the right), as shown in the following screenshot. Alternatively, use the
menu option, Insert ➤ Data Objects ➤ Update Record ➤ Record Update Form Wizard.

3. This opens the Record Update Form dialog box shown in Figure 14-18. It’s very sim-
ilar to the dialog box used to create the form for new records, but there are some
important differences. The wizard recognizes the getUser recordset you created in
the previous section and automatically fills most fields to use it.

Building the update form

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

626

Figure 14-18.
The update wizard

automatically populates
the dialog box with

most options.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first four options (Connection, Table to update, Select record from, and Unique
key column) already have the correct details and don’t need to be changed. The
Unique key column refers to the primary key you’re using to identify the correct
record to update. The Numeric checkbox alongside is selected because the user_id
column was defined as an INT type when you built the users table earlier in the
chapter. This is an important security check that Dreamweaver makes to help pro-
tect your database from malicious attack.

4. The field labeled After updating, go to is where you want to redirect the user after the
record has been updated. Click the Browse button, navigate to list_users.php, and
select it.

5. Form fields lists all the columns retrieved in the getUser recordset. You use it in the
same way as when you built the form to insert new records. You should never
change the primary key of a record, so select user_id in Form fields, and click the
minus button to remove it from the list.

6. Amend the labels for the pwd, first_name, family_name, and admin_priv columns in
the same way as before by selecting each one and editing it in the Label field. Expand
Pwd to Password, remove the underscores from First_name and Family_name, and
change Admin_priv to Administrator. Use the up key at the top right of Form fields to
move the first and family name items to the top of the list.

Notice that the Text field at the bottom of the dialog box is automatically popu-
lated with PHP code. This uses the getUser recordset results to display the record’s
existing value in the update form.

7. Leave the Display as drop-down menu set to Text for all columns except
admin_priv.

8. Select admin_priv in Form fields, and select Radio group from the Display as drop-down
menu. Click the Radio Group Properties button to open the following dialog box:

Set the values for the two radio buttons as shown in the screenshot. Notice that,
this time, you don’t need to fill in the field labeled Select value equal to.
Dreamweaver automatically populates this field with PHP code to select the correct

STORING USER RECORDS IN A DATABASE

627

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

radio button according to the value stored in the getUser recordset. Click OK to
close the Radio Group Properties dialog box.

9. The update wizard is like the one you used earlier—once you click OK to close the
Record Update Form dialog box, there’s no way to reopen it to edit it. Check that
you have made all the necessary changes, and click OK to create the update form,
which should look like Figure 14-19. The form is basically the same as the one used
to insert a new record, but each field contains a dynamic text placeholder that uses
the getUser recordset to insert the existing value stored in the database. At the
bottom left of the update form, you should see two gold shields. These are hidden
form fields that Dreamweaver has created to send the record’s primary key and
details of the form to the update script.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

628

Figure 14-19. The update form contains dynamic text placeholders to display the record’s details.

10. Save update_user.php. You now need to test the update form, but if you load the
page directly into a browser, you’ll get an empty form. Even if you fill it in, it won’t
create a new record because the underlying code uses the SQL UPDATE command,
rather than INSERT. Without a primary key, there’s nothing to update. So, to test
the page, you need to load list_users.php into a browser.

If you can’t see the gold shields, make sure there’s a check mark alongside
Invisible Fields in View ➤ Visual Aids. Also check the Invisible Elements category in
the Dreamweaver Preferences panel (Edit ➤ Preferences or Dreamweaver ➤

Preferences on a Mac). Make sure that the Hidden form fields checkbox is
selected.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-20. The update form displays the existing details ready for editing.

STORING USER RECORDS IN A DATABASE

629

14

If the form is empty, check that the query string has been added correctly to the
end of the URL. Also check the spelling of the variable in the query string. It must
match exactly the way you spelled the primary key in the users table.

12. Make some changes to the record, such as changing the first name and administra-
tor status, and click Update record. The amended details (apart from the password)
are displayed immediately in list_users.php, as shown here:

Check your code, if necessary, against update_users.php in examples/ch14.

Deleting a record
Deleting a record is an irreversible action, so it’s essential to get confirmation not only that
the deletion should go ahead but also that the correct record is being deleted. There isn’t

11. Click the EDIT link alongside one of the records. The update form should load into
the browser with the record’s details ready for updating, as shown in Figure 14-20.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a wizard for creating a delete page, but it’s not difficult to build the page yourself. As when
updating a record, you need a recordset to identify whether Dreamweaver can apply the
necessary server behavior. The good news is that you can save time by copying the record-
set from the update page.

These instructions show you how to create a page that asks the user for confirmation
before deleting a record from the database. They assume you have created
list_users.php, update_user.php, and delete_user.php from the preceding sections.
You should also be familiar with form building techniques (see Chapter 9 if you need to
refresh your memory).

1. Open delete_user.php in the Document window.

2. Open update_user.php, or switch to it if it’s still open.

3. In the Server Behaviors panel, highlight Recordset (getUser), right-click, and select
Copy from the context menu.

4. Switch back to delete_user.php, right-click inside the Server Behaviors panel, and
select Paste. Bingo, one quick, easy recordset.

5. Give the page a heading and title, and insert a form. Use the Bindings panel to
insert some details that will identify the user (this is the same as displaying details
in list_users.php earlier in the chapter), and add a submit button named delete
with a suitable label. The screenshot shows a suggested layout:

6. Insert a hidden field into the form. This will be used to pass the primary key to the
DELETE command, so name the field user_id. You need to get its value from the
getUser recordset, so click the lightning bolt icon to the right of the Value field to
open the Dynamic Data dialog box, and select user_id from the getUser recordset, as
shown in Figure 14-21.

Building the delete page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

630

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-21. Bind the value of a form field to a recordset result by clicking the lightning bolt icon alongside
the field.

STORING USER RECORDS IN A DATABASE

631

14

7. You’re now ready to apply the Delete Record server behavior. Use the plus button
in the Server Behaviors panel, and select Delete Record from the menu that opens.
Alternatively, use the Delete Record button on the Data tab of the Insert bar, or the
menu option, Insert ➤ Data Objects ➤ Delete Record.

This opens the Delete Record dialog box, as shown in Figure 14-22. Most of the val-
ues are selected automatically by Dreamweaver, but you should always check them.

Figure 14-22.
The Delete
Record server
behavior needs to
use the primary
key submitted
by the form.

Make sure the connection that has administrative privileges and the correct table
are selected.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you select the table from which the record is to be deleted, Dreamweaver
should automatically select the correct value for the Primary key column. However,
the server behavior uses the hidden field to identify the correct record to delete,
so make sure you select Form Variable as the Primary key value and that the primary
key’s name (user_id) is entered in the text field alongside.

After the record has been deleted, it’s a good idea to load the complete list, so
enter list_users.php in the final field labeled After deleting, go to. Click OK to insert
the server behavior.

8. The delete user page is now fully operational, but what happens if you have
selected the wrong record or change your mind about deletion? The easy way is to
use the browser back button or a text link to return to the list of registered users.
However, it looks more professional to add a cancel button.

You’ll notice that the Delete Record server behavior has inserted a hidden field
icon alongside the Confirm deletion button in Design view. Position your cursor
alongside the hidden field icon, and insert another submit button. In the Property
inspector, enter cancel in the Button name field, and set the Value field to Cancel.

9. You need to be very careful where you put the code to cancel the delete operation.

Switch to Code view, and locate the code shown in the following screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

632

The code shown on lines 34–47 is the Delete Record server behavior. The important
thing to notice is the conditional statement on line 34. It simply checks whether
$_POST['user_id'] is set and that it’s not an empty string. Because the hidden
field inserted by the server behavior sets $_POST['user_id'], you must cancel the
delete operation before the script gets to this line.

10. Insert the following code at the point indicated in the preceding screenshot:

if (array_key_exists('cancel', $_POST)) {
header('Location: http://dwcs4/workfiles/ch14/list_users.php');
exit;

}

The first argument to array_key_exists() must be the name you give to the can-
cel button. It’s case-sensitive, so make sure you spell it correctly. The code inside

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the braces uses header() to redirect the user back to list_users.php. Change the
URL to the page you want users to be sent to when cancelling a delete operation.
Calling exit after header() terminates the PHP script, ensuring that the form is not
displayed again. Technically speaking, exit is not a function, so it doesn’t need to
be followed by a pair of parentheses. However, exit; and exit(); are both equally
correct.

11. Load list_users.php into a browser, and click the DELETE link alongside one of
the names. Make sure that delete_user.php displays the details of the record you
selected for deletion. If the details aren’t there, check the query string at the end
of the URL. Make sure it’s correctly formed with the variable and primary key num-
ber. Also check the spelling, paying careful attention to uppercase and lowercase.

If the details display correctly, test the Cancel button first. When you’re taken back
to the list of users, the record should still be listed. If it isn’t, check the location of
the code inserted in step 10.

Finally, test the Confirm deletion button. This time, the record should be deleted.
Don’t worry that you’re losing data that has already been saved. Testing is essential.
You should always be prepared to sacrifice data while making sure everything
works as expected.

That’s all there is to it. You can check your code against delete_user.php in
examples/ch14.

You now have a basic but nevertheless fully functional user registration system. In the next
chapter, you’ll improve it considerably, but to round out this chapter, I want to show you
how to control what is displayed onscreen when a recordset produces no results.

Displaying different content when a recordset is empty

Use list_users.php to delete all records in the users table. When the final record has
been deleted, the page looks rather odd, as shown in Figure 14-23.

Figure 14-23. The list of users looks untidy when no records are left
in the table.

Dreamweaver has a convenient set of server behaviors that can display different content
depending on whether a recordset is empty. Let’s put them into action in list_users.php.

STORING USER RECORDS IN A DATABASE

633

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These instructions show you how to hide the table and display a different message
onscreen when the listUsers recordset is empty.

1. Open list_users.php in the Document window.

2. Insert a new paragraph between the Register new user link and the table that dis-
plays the listUsers recordset. Type No records found.

3. Select the paragraph you have just created by clicking <p> in the Tag selector at the
bottom of the Document window.

4. Click the plus button in the Server Behaviors panel, and select Show Region ➤ Show
If Recordset Is Empty from the menu that appears. The same options are available
on the Data tab of the Insert bar and the Insert ➤ Show Region menu.

5. This opens a dialog box that asks you to select the recordset. Since there’s only one
on the page, listUsers is chosen automatically, so just click OK to apply the server
behavior.

6. Select the table that displays the results of the listUsers recordset, and repeat steps
4 and 5. However, this time select Show If Recordset Is Not Empty. The paragraph and
table should now be surrounded by Show If tabs, as shown in Figure 14-24.

Applying the Show Region server behavior

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

634

Figure 14-24. Dreamweaver surrounds optional regions with Show If tabs.

7. Save list_users.php, and load it into a browser. This time, you should see No
records found. The empty table is hidden.

8. Click the Register new user link, and add a new record to the users table. When
list_users.php reloads, you should see the details in the table, and the No records
found message has disappeared. A simple but effective solution.

You can check your code, if necessary, against list_users_05.php in examples/ch14.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you mouse over the EDIT and DELETE links in list_users.php, you’ll see that the
number used for the primary key has not been reset to 1. MySQL continues assigning new
numbers as the primary key. As I wrote earlier in this chapter, don’t even think about
renumbering. The primary key is intended as a unique identifier and should not be reused
even when a record is deleted. If you need to find out how many records there are in a
database table, it’s easy to do with the following SQL:

SELECT COUNT(*) AS total FROM tableName

I’ll show you in Chapter 17 how to build your own SQL queries like this.

Chapter review
This chapter has taken you through all the basic commands in SQL: INSERT, SELECT,
UPDATE, and DELETE. With the exception of activating the Cancel button on the delete
page, I have deliberately avoided diving into the code that Dreamweaver has created on
your behalf. What you have built is only a simple table, but the principle behind creating a
more complex table to store much more information is identical. Most of your work with
a database involves these four commands.

Dreamweaver has taken virtually all the hard work out of creating this user registration
system, but if you’re hoping to leave all the coding to Dreamweaver, you’ll rapidly discover
that you’re very limited in what you can do with a database. The Adobe development team
says it regards the server behaviors as serving two main purposes: rapid prototype devel-
opment and as a learning tool. Rapid prototype development lets you build a database-
driven site as a proof of concept to demonstrate how the site will work. Once the plan has
been approved, it’s necessary to add server-side validation to the basic code generated by
Dreamweaver. As a learning tool, Dreamweaver takes a lot of the tedium and uncertainty
out of connecting with a database and building the basic SQL queries to manage and dis-
play database content.

The next chapter begins the learning process by examining the code created by
Dreamweaver for the user registration system and then makes it more secure by adding
server-side validation. You’ll also use the details stored in the users table to control access
to different parts of your website.

STORING USER RECORDS IN A DATABASE

635

14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

15 VALIDATING DATABASE INPUT
AND USER AUTHENTICATION

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver provides you with the basic functionality of inserting and updating records
in a database, but it’s up to you to make sure that the data entered by a user meets the cri-
teria you envisaged when designing the database structure. When designing database
forms, you must remember the GIGO principle—garbage in, garbage out. Unless you con-
trol carefully what you allow to go into a database, a lot of your results will be useless
garbage. Many developers rely on JavaScript validation to filter user input before it’s sub-
mitted to the database, but JavaScript is easily turned off in the browser leaving your site
vulnerable. JavaScript validation, such as that provided by Spry validation widgets (see
Chapter 9), should be regarded as a convenience offered to the user. The only way to
make sure data is safe to insert into a database is to validate it with PHP.

In this chapter, we’re going to get down and dirty with PHP code. If you don’t come from
a programming background, that thought might fill you with horror, but you should never
deploy dynamic code on a website without understanding what it’s for. In any case, PHP is
not difficult. A major reason for its popularity is that it’s relatively easy to learn. If the code
looks strange to you, it’s because it’s unfamiliar. The more you work with it, the more
familiar—and easier—it becomes. If you feel inspired to study PHP more, for a hands-on
approach take a look at my PHP Solutions: Dynamic Web Design Made Easy (friends of ED,
ISBN: 978-1-59059-731-6). Or if you prefer a reference book, grab hold of Beginning PHP
and MySQL: From Novice to Professional, Third Edition by W. Jason Gilmore (Apress, ISBN:
978-1-59059-862-7).

We’ll start by examining the code that Dreamweaver created when you built the insert and
update forms in the previous chapter. There’s no need to study every line of code. The key
thing is to recognize the code Dreamweaver generates, where it puts it, and what it’s for.
This makes it easy to adapt the code to do much more than the basic functionality pro-
vided by the server behaviors. I’ll also show you how to create simple server behaviors of
your own to speed up the process of creating interactive web pages.

By the end of this chapter you will have enhanced the insert and update forms and made
them much more user-friendly by preventing invalid input, displaying error messages, and
preserving user input when it fails validation. Once the forms have been updated, you’ll be
able to use the user registration system to control access to sensitive or protected areas of
your site.

In this chapter, you’ll learn about the following:

Recognizing the code generated by Dreamweaver server behaviors

Preventing the creation of duplicate usernames

Building your own custom server behaviors

Preserving information related to an individual visitor with PHP sessions

Restricting access to your pages

This chapter builds on the user registration system created in the previous chapter, so it
assumes you have built register_user.php, list_users.php, update_user.php, and
delete_user.php. However, to make sure everyone begins from the same starting point, I
have included versions of each file in the download files for this chapter. Let’s begin by
examining the code that Dreamweaver generated for you.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

638

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Analyzing the code generated by
Dreamweaver

My first attempt at developing a database-driven website was with Dreamweaver UltraDev
4 using ASP. It was a disaster. There were two major problems. First, I didn’t realize the
importance of removing server behaviors cleanly through the Server Behaviors panel if I
changed my mind about how I wanted the page to work. Second, the code didn’t look any-
thing like the ASP in any of the books I consulted. I was so frustrated; I went away and
learned to hand-code everything in PHP.

Even if you have studied some PHP, you might find the code generated by Dreamweaver
overwhelming at first sight. However, it’s actually quite straightforward, and it’s organized
in blocks that are relatively easy to recognize. It needs to be, because Dreamweaver needs
to recognize them in order to let you edit or remove them through the Server Behaviors
panel. Once you learn to recognize the blocks, you can begin to modify them yourself to
add much greater functionality and flexibility to your websites. Wherever possible, I try to
leave Dreamweaver’s code blocks intact, because that preserves the ability to edit them
through the Server Behaviors panel. However, that’s not always possible, but if you keep a
cool head, you’ll quickly find that Dreamweaver speeds up development by creating the
basic code for you to improve upon. I have no difficulty hand-coding a database query, but
Dreamweaver accomplishes in seconds what it would take me many minutes to type.

As I said before, I don’t intend to go through the code line by line, nor will I cover all the
code generated by Dreamweaver when building the user registration system in the previous
chapter. This is intended as a quick overview so you can recognize the code associated with
the main server behaviors. It should also help you troubleshoot some common problems.

Inspecting the server behavior code

I suggest you open the pages in Code view as you read through this section to help famil-
iarize yourself with the code. Copies of the finished pages from the previous chapter are in
examples/ch15. The insert and update pages are called register_user_start.php and
update_user_start.php, because they will be used as the starting point for building the
server-side validation later in this chapter. The other two pages, list_users.php and
delete_user.php, don’t need further improvement, so their names are unchanged.

Connecting to the database
If you open each of the pages, you’ll see that they all begin with the following line of code:

<?php require_once('../../Connections/connAdmin.php'); ?>

If your site definition uses links relative to the site root, require_once() is replaced by
virtual() like this:

<?php virtual('/Connections/connAdmin.php'); ?>

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

639

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This includes the login details for the MySQL user account. If this code or the include file
is missing, the rest of the script cannot connect to the database, so nothing will work. As
explained in the previous chapter, virtual() is supported only by the Apache web server.
So, a page that works perfectly on Apache will suddenly stop working if you move the site
to any other web server.

Preventing SQL injection
Immediately following the line of code that includes the database connection details is the
lengthy block of code shown in Figure 15-1. This defines a custom function called
GetSQLValueString(), which prepares values submitted through a form or query string
for insertion into a database query. Its main task is to prevent a malicious attack known as
SQL injection, which attempts to pass spoof values to a database in the hope of extract-
ing confidential information or corrupting the data.

Figure 15-1. The GetSQLValueString() function helps protect your database from malicious attack.

The function also ensures that strings are correctly enclosed in quotes when incorporated
in a SQL query.

Inserting a record into a database
Figure 15-2 shows the rest of the code Dreamweaver inserted above the DOCTYPE declara-
tion in register_user_start.php.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

640

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first four lines (34–37) set a variable called $editFormAction to the name of the cur-
rent page and preserve any query string in the URL. The variable is used later in the page
to set the value of the action attribute in the insert form. You can normally leave this
block of code alone unless you want to add anything to the query string.

Immediately following these four lines of code is the core of the Insert Record server
behavior.

The server behavior is wrapped in a conditional statement that makes sure the code is run
only when the insert form has been submitted. It’s easy to tell that this is an Insert Record
server behavior because all the variables begin with $insert (Dreamweaver’s variables and
functions use names that make it easy to guess their purpose). As you can see on lines
41–45 of Figure 15-2, the value of each form field is passed to the GetSQLValueString()
function to prepare it for insertion in the SQL query.

Lines 40–45 build the SQL query; line 47 selects the correct database; and line 48 executes
the query, inserting the new record into the database table.

The remaining lines redirect the user to the next page (in this case, list_users.php), pre-
serving any values in the query string. The actual redirect is performed by the header()
function on line 55.

If you don’t specify a page to redirect to after the record is inserted, the code shown on
lines 50–55 is omitted.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

641

15

Figure 15-2. The Insert Record server behavior inserts a record and redirects the user to the next page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Understanding why a redirect doesn’t work
A question that turns up regularly in online forums is why an insert or update form doesn’t
redirect the user to the next page after inserting or updating the record. The key to under-
standing the problem lies in knowing how the header() function works. I have mentioned
this several times already, but it confuses so many people, it’s worth repeating here. The
header() function cannot do its job if any output is sent to the browser before you call
the function.

This means you can’t use echo, print, or any other function that outputs content any-
where before a call to header(). Nor can any HTML appear before header(). Other things
that prevent header() from working are using the byte-order mark or whitespace outside
PHP tags. A common cause of failure is extra whitespace at the end of an include file (see
“Avoiding the ‘headers already sent’ error” in Chapter 12).

Updating a database record
Now take a look at update_user_start.php. Figure 15-3 shows the code immediately fol-
lowing the GetSQLValueString() function. Compare it with the code in Figure 15-2. It’s
almost identical. The differences are that all the variables begin with $update and the SQL
query built on lines 40–46 uses the UPDATE command rather than INSERT.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

642

Figure 15-3. The Update Record server behavior code is almost identical to the Insert Record server behavior.

Everything else works exactly the same way as an Insert Record server behavior.

Deleting a record
Figure 15-4 shows the Delete Record server behavior in delete_user.php. It’s easy to rec-
ognize because all the variables begin with $delete. It simply deletes a record and redi-
rects to another page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 15-4.
The Delete Record server
behavior deletes a record
without confirmation.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

643

15

The key point to note about this server behavior, as I explained in the previous chapter, is
that the conditional statement surrounding the server behavior checks only that the vari-
able being used to identify the record exists. If it does, it goes ahead and deletes the record.

In the previous chapter, I told you to set the Primary key value in the Delete Record dialog
box to Form Variable. This makes the server behavior use the $_POST array and gives you
the opportunity to confirm that the correct record is being deleted. If, on the other hand,
you use the default setting, URL Parameter, the server behavior uses the $_GET array. This
results in the record being deleted immediately without confirmation.

Distinguishing between Form Variable and URL Parameter
A lot of server behavior dialog boxes ask you to specify the origin of a variable. The two
most frequently used values are Form Variable and URL Parameter, so it’s important to
understand the difference.

Form Variable: This uses the $_POST array and takes the value from a form submit-
ted using the post method.

URL Parameter: This uses the $_GET array and takes the value from a query string at
the end of a URL or from a form submitted using the get method.

If a server behavior doesn’t pick up a variable, check that you haven’t selected the wrong one.

Many beginners get mixed up between get and post, but it makes a crucial difference to
how your page works. If you’re still unclear about the difference, skip back to Chapter 9
and refresh your memory.

Retrieving database records with a recordset
Figure 15-5 shows the remaining code inserted above the DOCTYPE declaration in
update_user_start.php. This is the code for the getUser recordset.

Figure 15-5.
Dreamweaver
uses the
recordset name
to create the
variables.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you cast your mind back to the previous chapter, I told you that you needed to create
the recordset before using the Record Update Form Wizard, yet the recordset code has
been inserted after the Update Record server behavior. This is the way that Dreamweaver
works—the code for a recordset is always inserted immediately above the DOCTYPE decla-
ration. Normally, this is fine, but a recordset often produces information that can be use-
ful for validation and needs to be moved. The good news is that Dreamweaver doesn’t
mind you moving the code, just as long as you keep it all together.

The first thing to notice about a recordset is that the names of all the variables are based
on the name you give the recordset. So, giving a recordset a name that describes its pur-
pose makes it a lot easier to recognize the right code. This is what the variables mean
(recordsetName changes depending on the name you give the recordset):

$colname_recordsetName: This is the variable being used as a filter for the recordset. In
the getUser recordset, you set the primary key, user_id, as the filter, so this holds the
value of user_id passed in through the query string of the URL. As you’ll see in later
chapters, you can use more than one variable to filter results. When you use more
than one variable, colname is replaced by the variable name you choose yourself.

$query_recordsetName: This contains the SQL query used to create the recordset.

$recordsetName: This contains the results of the database query.

$row_recordsetName: This is an array that contains the results from the current
record. Dreamweaver automatically gets the first record so that it’s ready for dis-
play inside the page.

$totalRows_recordsetName: This contains the number of records retrieved from
the database. This is extremely useful in determining whether the query produced
any results.

The basic recordset code is on lines 63–67 of Figure 15-5. All recordsets contain these five
lines of code. The code shown on lines 59–62 defines the variable for the filter. If more
than one variable is used as a filter, each one is defined in the same way.

Creating a repeat region
The code used to create a repeat region is very simple. It consists of just two lines wrapped
around the code that you want to repeat. Figure 15-6 shows the repeat region that you
applied to the second table row in list_users.php. The two lines that repeat the table row
are highlighted on lines 62 and 70. They create a simple do . . . while loop (see
Chapter 10). Dreamweaver uses a do . . . while loop because the first record is already

All the server behavior code you have looked at so far is placed above the DOCTYPE dec-
laration. This is perfectly OK because it doesn’t send any output to the browser, except
when redirecting the user to another page. When adapting server behaviors or writing
PHP code of your own, don’t put anything above the DOCTYPE that will send output to
the browser, because it will render your CSS in quirks mode, possibly breaking your
design. The only exception is when debugging code. Sometimes, it’s useful to display the
value of variables to see why your code isn’t working as expected, but you should
remove the debugging code when you have finished testing.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

644

http://lib.ommolketab.ir
http//lib.ommolketab.ir

stored in $row_recordsetName, as explained in the preceding section. The code inside the
parentheses at the end of the loop on line 70 gets the next row of results from the recordset.

Figure 15-6. The code for a repeat region is simple, but its location is vital.

Usually when a repeat region goes haywire, it’s the result of selecting the wrong elements
in Design view before applying the server behavior. A quick look at the code should con-
firm what the problem is.

Adding server-side validation
The user registration form created by the Record Insertion Form Wizard has several prob-
lems. Figure 15-7 shows what happens if you submit the form without filling in any fields
(top screenshot) or if a username is used more than once (bottom screenshot).

Figure 15-7. The default error messages are not user-friendly.

Setting all columns to NOT NULL in the table definition prevents anyone from submitting the
form without filling in each field, but there’s no guarantee that the right type of information
will be input. As things currently stand, a single space would satisfy the form’s definition of a
required field. Applying a unique index to the username column certainly prevents duplicate
entries, but the error message isn’t very informative. More important, the form has disap-
peared, and the only way to get back to it is to click the back button in the browser.

Of course, you could prevent this sort of problem by applying the Spry validation widgets
that you studied in Chapter 9. This would probably be sufficient for most bona fide users,
but the Web is a dangerous place filled with people with less honorable intentions. Anyone
intent on a malicious attack normally disables JavaScript, and even if the information in

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

645

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

your database remains intact, it could easily be filled with unwanted garbage. So, it’s
important to validate input on the server before inserting it into your database.

The registration form created by the Dreamweaver wizard needs the following improvements:

All required fields must contain specified minimum content.

When a field fails to validate, a suitable error message must be displayed.

Existing input must be preserved when an error occurs.

Let’s begin by making sure that each field is filled in with a minimum amount of content.

Verifying that required fields have been filled in

All fields are required, so you need to check that they contain at least something. If a
problem is detected, the validation code needs to prevent the INSERT command from
being executed. The series of tests that you’ll add to the code in register_user.php per-
form only simple checks on the user input. You can make them much more rigorous. The
purpose of the following exercises is to demonstrate the principles behind server-side val-
idation, rather than incorporate exhaustive tests. The level of testing you choose depends
entirely on what the form is for. An insurance proposal form is likely to warrant far more
rigorous validation than one for a community forum.

Adding server-side validation to the Insert Record server behavior is easy to implement,
but it involves editing the server behavior, so it’s no longer accessible through the Server
Behaviors panel. The idea of losing access to server behaviors through the panel instills ter-
ror into the mind of most newcomers to dynamic design, but it’s important to remember
that Dreamweaver server behaviors cannot do everything. To get the best out of them, you
frequently need to amend the code. If you cling tenaciously to the dialog box interface,
you’ll be severely limited in what you can achieve.

This section uses the PHP functions, trim(), empty(), and strlen(), to trim whitespace
from user input and check whether it’s empty or how many characters it contains. If any
problems are encountered, error messages are created for display later in the registration
form. You can continue using register_user.php from the previous chapter. Alternatively,
copy register_user_start.php from examples/ch15 to workfiles/ch15, and rename it
register_user.php.

1. With register_user.php open in the Document window, switch to Code view. The
validation code should run only if the form has been submitted. Locate the follow-
ing code (it should be on or around line 39):

if ((isset($_POST["MM_insert"])) && ($_POST["MM_insert"] == "form1")) {

This conditional statement checks the value of a hidden field to see whether the
insert form has been submitted. So, if you place the validation code inside the
braces of this conditional statement, your new code runs only at the same time as
the Insert Record server behavior. Doing so means that the server behavior ceases

Checking required fields

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

646

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to be editable through a dialog box, but this is a sacrifice you must make in the
interests of data integrity.

Place your cursor at the end of this line, and press Enter/Return a couple of times
to make room for the validation code, as shown in the following screenshot:

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

647

15

Insert the following code:

// Initialize array for error messages
$error = array();
// Remove whitespace and check first and family names
$_POST['first_name'] = trim($_POST['first_name']);
$_POST['family_name'] = trim($_POST['family_name']);
if (empty($_POST['first_name']) || empty($_POST['family_name'])) {
$error['name'] = 'Please enter both first name and family name';

}

This initializes $error as an empty array. PHP treats an array with zero elements as
false (see “The truth according to PHP” in Chapter 10), so this can be used later to
test whether any errors have been found and, if so, to prevent the Insert Record
server behavior from attempting to execute the INSERT query.

The remaining lines use trim() to remove leading and trailing whitespace from the
first_name and family_name fields and then pass them to empty(). If either field
has no value, an appropriate message is added to the $error array.

2. The next check makes sure that the username contains at least six characters. It
uses the PHP function strlen(), which determines the number of characters in any
string passed to it. Add the following code immediately after the code in the
preceding step:

// Check the username for length
$_POST['username'] = trim($_POST['username']);
if (strlen($_POST['username']) < 6) {
$error['length'] = 'Please select a username that contains at least ➥

6 characters';
}

You might wonder why I haven’t reassigned the values of the $_POST array vari-
ables to shorter ones, as with the mail processing script in Chapter 11. It’s
because they’re required by the Insert Record server behavior. Changing them
here would involve further changes to the code generated by Dreamweaver,
increasing not only your workload but also the likelihood of errors creeping in.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. A similar check is done next on the password. The following code goes immediately
after the code in the previous step:

// set a flag that assumes the password is OK
$pwdOK = true;
// trim leading and trailing white space
$_POST['pwd'] = trim($_POST['pwd']);
// if less than 6 characters, create alert and set flag to false
if (strlen($_POST['pwd']) < 6) {
$error['pwd_length'] = 'Your password must be at least 6 characters';
$pwdOK = false;

}

This code starts by setting a variable that assumes the password is OK. After trim-
ming any whitespace, strlen() is used to check that the trimmed password con-
tains at least six characters. If it doesn’t, an error message is added to the $error
array, and $pwdOK is set to false. You’ll see the purpose of the $pwdOK variable in
the next section.

If you would like to check your code so far, compare it against register_user_01.php
in examples/ch15.

Verifying and encrypting the password

Since the password won’t appear onscreen, you should get the user to type it in twice to
confirm the spelling. Also, to keep the password secure, it should be encrypted before it’s
stored in the database. Encryption is important because it keeps the passwords secret,
even if someone manages to compromise the security of the database and expose the
stored passwords.

In this section, you’ll add an extra field for the user to retype the password to ensure that
both versions match. You’ll also encrypt the password before it’s passed to the SQL query.
Continue working with the same file as in the preceding section.

1. Adding a new field for the user to confirm the password means adding a new row
to the table that contains the registration form. You can do this in several ways.
Start by switching back to Design view and clicking inside the table cell that con-
tains the Administrator label. If you have a good memory for keyboard shortcuts,
the quickest and easiest way to add a new table row is to press Ctrl+M/Cmd+M.
This always inserts a new row above the current one.

Alternative ways of adding a new row are to use the menu system. Modify ➤ Table
➤ Insert Row does the same as the keyboard shortcut: the new row goes above the
current one. Modify ➤ Table ➤ Insert Rows or Columns opens a dialog box that lets
you specify the number of rows or columns to be inserted and on which side of the

Improving password validation

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

648

http://lib.ommolketab.ir
http//lib.ommolketab.ir

current selection to put them. Finally, the Layout tab of the Insert bar offers a visual
way of doing it.

Use whichever method you prefer to create a new row between Password and
Administrator. Then type Confirm password as the label in the left cell, and insert a
text field in the right cell. Name the text field conf_pwd, and set Type to Password
in the Property inspector (form creation was covered in Chapter 9).

2. You can now compare the content of the pwd and conf_pwd fields. Switch to Code
view, and add the following code immediately after the code you inserted in step 3
of the previous section:

$error['pwd_length'] = 'Your password must be at least 6 characters';
$pwdOK = false;

}
// if no match, create alert and set flag to false
if ($_POST['pwd'] != trim($_POST['conf_pwd'])) {
$error['pwd'] = "Your passwords don't match";
$pwdOK = false;

}

This trims whitespace off both ends of $_POST['conf_pwd'] and compares the
result with $_POST['pwd']. There’s no need to pass the original password to
trim() because that was already done in the previous section and the value
reassigned to $_POST['pwd']. Also, there’s no need to store the result of
trim($_POST['conf_pwd']), because you’re using it only to make sure the two
entries match. If they do, this conditional statement will be ignored. However, if
there’s a mismatch, an error message is created, and $pwdOK is set to false.

3. Finally, if $pwdOK is still true, you can encrypt the password by passing it to the
sha1() function like this (the code goes immediately after the code in the previous
step):

// if password OK, encrypt it
if ($pwdOK) {
$_POST['pwd'] = sha1($_POST['pwd']);

}
The sha1() function converts any string passed to it into a 40-character hexadeci-
mal number—in effect, encrypting the string ready for insertion into the database.

You can check your code, if necessary, against register_user_02.php in
examples/ch15.

The table layout for the insert form created by the wizard doesn’t use <label>
tags, so choose the No label tag option in the Input Tag Accessibility Attributes dia-
log box. Using the wizard is best avoided except when you’re developing a pro-
totype as a proof of concept, which will be rebuilt using your own forms and
designs later. I’ll show you how to apply Insert Record and Update Record server
behaviors to custom-built forms in the next chapter.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

649

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dealing with duplicate usernames

Dreamweaver has a server behavior called Check New User that queries your database to
find out whether a username is already in use. Unfortunately, it’s badly designed and guar-
anteed to enrage visitors to your site. If it finds a duplicate username, it takes the visitor to
another page and wipes out all the information that had been entered into the form.
Applying a unique index to the username column, as you did in the previous chapter, is a
much more elegant way of handling the situation, but you need a way to prevent the form
from disappearing when a duplicate entry is detected. This is done by checking the error
code returned by MySQL.

The following instructions show you how to amend the Insert Record server behavior to
generate a user-friendly error message when the INSERT query fails as the result of a dupli-
cate username being submitted. Continue working with the same file.

1. Approximately ten lines below the last section of code you have just inserted,
locate the line that looks like this (it should be on or around line 80):

$Result1 = mysql_query($insertSQL, $connAdmin) or die(mysql_error());

What this line does is execute the INSERT query; but if there’s a problem, the sec-
tion highlighted in bold displays an error message and brings all further processing
to a halt.

The draconian-sounding function die() tells a PHP script to terminate immediately
if it encounters an error. It takes a single argument: the error message you want to
display onscreen. In this case, the message is generated by another function,
mysql_error(), which gives you access to the most recent error message from
MySQL.

Instead of bringing the script to a halt, it’s far more user-friendly to redisplay the
form ready for the user to submit an alternative username.

2. Remove the section highlighted in bold so the line of code looks like this:

$Result1 = mysql_query($insertSQL, $connAdmin);

Make sure you don’t lose the semicolon at the end of the line.

3. In addition to mysql_error(), PHP has a function called mysql_errno(), which
returns an error code from MySQL. Although error messages are easier for human
beings to understand, it’s easier for PHP to work with numbers. Add the conditional
statement highlighted in bold, as shown here:

$Result1 = mysql_query($insertSQL, $connAdmin);
if (!$Result1 && mysql_errno() == 1062) {
$error['username'] = $_POST['username'] . ' is already in use. ➥

Please choose a different username.';
} elseif (mysql_error()) {

Creating an error message for duplicate usernames

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

650

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$error['dbError'] = 'Sorry, there was a problem with the database. ➥

Please try later.';
}
$insertGoTo = "list_users.php";

If the Insert Record server behavior succeeds, $Result1 is true. So, placing the
negative operator (!) in front of $Result1 tests whether it is not true—in other
words, whether it fails. A duplicate value entered into a unique index column pro-
duces the MySQL error code 1062. So if the Insert Record server behavior fails and
the error code is 1062, you know it’s because of a duplicate value.

The code inside the first conditional statement uses $_POST['username'], the
value submitted from the registration form, to create an error message and stores
the message in $error['username'].

You should never display the contents of MySQL error messages in a live web page,
because it can reveal information that might be helpful to an attacker. So, the sec-
ond conditional statement checks for any other MySQL error and creates a generic
error message.

If you encounter problems when testing the page, substitute the line of code in the
second conditional statement with the following:

$error['dbError'] = mysql_error();

This gives you access to the MySQL error message. Once you have identified the
problem, replace mysql_error() with the neutral message.

4. If the database returns an error, you need to prevent the script from redirecting
the user to the next page, so wrap the code that redirects the page in a final else
statement like this:

$error['dbError'] = 'Sorry, there was a problem with the database.
Please try later.';
} else {
$insertGoTo = "list_users.php";
if (isset($_SERVER['QUERY_STRING'])) {
$insertGoTo .= (strpos($insertGoTo, '?')) ? "&" : "?";
$insertGoTo .= $_SERVER['QUERY_STRING'];

}
header(sprintf("Location: %s", $insertGoTo));

}
}

By placing the redirection code in the final else block of the conditional state-
ment, the redirect goes ahead only if the database doesn’t return an error (you can
see the full chain of conditions in Figure 15-8).

You can check your code so far against register_user_03.php in examples/ch15.

MySQL error messages can appear rather cryptic. Chapter 17 contains advice on
understanding them and troubleshooting problems with SQL queries.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

651

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Displaying the error messages

Now that the checks are complete, you need to build the logic that determines whether
the record is inserted in the database. If there are no errors, the new record is inserted
into the database, and the user is redirected to the next page. However, if errors are
detected, the INSERT command is ignored, and the form needs to be redisplayed with the
appropriate error messages.

This section completes the validation process by wrapping the code that inserts the record
in a conditional statement to prevent it from being executed if any errors are discovered.
You will also add code to the insert form to display any error messages. Continue working
with the same file.

1. If no errors have been found, the $error array will contain zero elements, which, as
you know, PHP treats as false. Wrap the remaining section of the Insert Record
server behavior code with this conditional statement (the exact location is shown in
Figure 15-8):

// if no errors, insert the details into the database
if (!$error) {
// Insert Record server behavior code

}

Building the error detection logic

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

652

Figure 15-8. The conditional statement prevents the record from being inserted if any errors are found.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The negation operator (an exclamation mark) gives you the reverse meaning of a
value. So if $error is an empty array, this test equates to true, and the Insert
Record server behavior is executed. If errors are found, the test equates to false,
and the server behavior is ignored.

2. Scroll down to the page heading (around line 106) just below the <body> tag, and
insert the following code block between the heading and the opening <form> tag:

<h1>Register user </h1>
<?php
if (isset($error)) {
echo '';
foreach ($error as $alert) {
echo "<li class='warning'>$alert\n";

}
echo '';

}
?>
<form action="<?php echo $editFormAction; ?>" method="post" ➥

name="form1" id="newUser">

This begins by checking whether the $error array exists, because it’s created only
when the form is submitted. If it doesn’t exist, the whole block is ignored. If it does
exist, a foreach loop iterates through the array and assigns each element to the
temporary variable $alert, which is used to display the error messages as a bulleted
list. (See Chapter 10 if you need to refresh your memory about foreach loops.)

3. Save register_user.php, and load it into a browser. Click the Insert record button
without filling in any fields. The page should reload and display the following
warnings:

4. Now try filling in all fields, but with a username that is already registered. This time,
you should see something similar to this:

If you have any problems, check your code against register_user_04.php in
examples/ch15. The page contains no style rules, but if you add a warning class,
you could make the error messages stand out in bold, red text.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

653

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This has improved the insert form considerably, but imagine the frustration of being
forced to fill in all the details again because of a mistake in just one field. What you really
need is a server behavior to provide the same solution you used in the contact form in
Chapter 11. There isn’t one, but you can make it yourself.

Building custom server behaviors
One reason for the great success of Dreamweaver is that, in addition to its massive range
of features, it’s also extensible. You can build your own server behaviors to take the
tedium out of repetitive tasks.

To redisplay the contents of a text field after a form has been submitted, all you need to
do is insert a PHP conditional statement between the quotes of the <input> element’s
value attribute like this:

value="<?php if (isset($_POST['field'])) {echo htmlentities(➥

$_POST['field'], ENT_COMPAT, UTF-8);} ?>"

This checks whether the $_POST array element exists. If it does, it’s passed to
htmlentities() to avoid any problems with quotes, and the resulting output is inserted
into the value attribute using echo. It’s very similar to the snippet you created in
Chapter 11. Apart from field, the code never changes. This consistency makes it ideal for
creating a new server behavior, which involves the following steps:

1. Create a unique name for each block of code that the server behavior will insert
into your page. The Server Behavior Builder generates this automatically for you.

2. Type the code into the Server Behavior Builder, replacing any changeable values
with Dreamweaver parameters. The parameters act as placeholders until you insert
the actual value through a dialog box when the server behavior is applied.

3. Tell Dreamweaver where to insert the code.

4. Design the server behavior dialog box.

Creating a Sticky Text Field server behavior

These instructions show you how to create your own server behavior to insert a condi-
tional statement in the value attribute of a text field to preserve user input in any page.
You must have a PHP page open in the Document window before you start.

1. In the Server Behaviors panel, click the plus button, and select New Server Behavior.
In the dialog box that opens, make sure that Document type is set to PHP MySQL.
Type Sticky Text Field in the Name field, and click OK.

2. This opens the Server Behavior Builder dialog box. Click the plus button next to
Code blocks to insert. Dreamweaver suggests a name for the new code block based

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

654

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. The Code block area in the center is where you insert the PHP code that you want
to appear on the page. The value of field will change every time, so you need to
replace it with a parameter. Parameter names must not contain any spaces, but
they are used to label the server behavior dialog box, so it’s a good idea to choose
a descriptive name, such as FieldName. To insert a parameter, click the Insert
Parameter in Code Block button at the appropriate point in the code, type the name
in the dialog box, and click OK. Dreamweaver places it in the code with two @ char-
acters on either side. You can also type the parameters in the code block directly
yourself. Whichever method you use, replace the dummy text in the Code block
area with this:

<?php if (isset($_POST['@@FieldName@@'])) {
echo htmlentities($_POST['@@FieldName@@'], ENT_COMPAT, 'UTF-8');} ?>

I am using the optional second and third arguments to htmlentities(), as
described in Chapter 11. If you want to encode single quotes or are using a dif-
ferent encoding from Dreamweaver’s default UTF-8, change the second and
third arguments to suit your own requirements (see Tables 11-1 and 11-2 for the
available options).

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

655

15

Figure 15-9. The Server Behavior Builder makes it easy to create your own server behaviors.

on the name of the new server behavior. Click OK to accept it. Dreamweaver fills in
the remaining fields of the Server Behavior Builder, as shown in Figure 15-9.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. As soon as you add any parameters in the Code block area, the label on the OK but-
ton changes to Next, but first you need to tell Dreamweaver where you want the
code to appear in the page. It needs to be applied to the value attribute of <input>
tags, so select Relative to a Specific Tag from the Insert code drop-down menu.

5. This reveals two more drop-down menus. Select input/text for Tag, and select As the
Value of an Attribute for Relative position.

6. This triggers the appearance of another drop-down menu labeled Attribute. Select
value. The bottom section of the Server Behavior Builder should now look like this:

This specifies that the code you entered in step 3 should be applied as the value
attribute of a text field. Click Next at the top right of the Server Behavior Builder dia-
log box.

7. To be able to use your new server behavior, you need to create a dialog box where
you can enter the values that will be substituted for the parameters. Dreamweaver
does most of the work for you, and on this occasion, the suggestions in the
Generate Behavior Dialog Box dialog box are fine, so just click OK.

Creating a server behavior for Sticky Text Areas

The server behavior you have just built works only with text fields, so it’s worth building
another to handle text areas. Unlike text fields, text areas don’t have a value attribute.

1. Repeat steps 1 and 2 of the previous section, only this time call the new server
behavior Sticky Text Area.

2. In step 3 of the previous section, enter the following code in the Code block area:

<?php if (isset($_POST['@@TextArea@@'])) {echo ➥

htmlentities($_POST['@@TextArea@@'], ENT_COMPAT, 'UTF-8');} ?>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

656

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I have split the code over two lines because of printing constraints, but you should
enter the code all on a single line to avoid adding any whitespace between the
<textarea> tags when this code is executed. Although the value is inserted directly
between the tags as plain text, it’s still a good idea to use htmlentities() to pre-
vent malicious users from attempting to embed executable script, such as JavaScript,
in your page.

3. Fill in the bottom section of the Server Behavior Builder, as shown in the following
screenshot. This places the content of the $_POST variable between the opening
and closing <textarea> tags.

4. Click Next, and accept the defaults suggested for the server behavior dialog box.

Both server behaviors will be available in all PHP sites from the menu in the Server
Behaviors panel.

Completing the user registration form
Now that you have built your own server behaviors, you can complete register_user.php.
What remains to be done is to redisplay the user’s input if any errors are detected by the
server-side validation. In the case of the text fields, this is done by the Sticky Text Field
server behavior that you have just built. However, the radio buttons need to be handled dif-
ferently. First, let’s deal with the text fields.

Preserving user input in text fields

Applying the Sticky Text Field server behavior to each text field ensures that data already
inserted won’t be lost through the failure of any validation test.

This section shows you how to use the Sticky Text Field server behavior. Continue working
with register_user.php from earlier in the chapter.

1. In Design view, select the first_name text field. Click the plus button in the Server
Behaviors panel. The new server behaviors are now listed. Select Sticky Text Field.

2. The Sticky Text Field dialog box appears. If you have selected the first_name text
field correctly, the input/text tag field should automatically select first_name. If it’s

Applying the Sticky Text Field server behavior

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

657

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

not selected, activate the drop-down menu to select it. Type the field’s name in
FieldName, as shown here, and click OK:

3. Dreamweaver inserts a dynamic content placeholder inside the text field in Design
view. Open Split view, and as the next screenshot shows, the conditional statement
you created in the Code block area of the Server Behavior Builder has been inserted,
but @@FieldName@@ has been replaced by the actual name of the field:

4. Apply the Sticky Text Field server behavior to the family_name and username fields.
Dreamweaver doesn’t include password fields in the drop-down menu, so you can’t
apply the server behavior to them. In any case, the password is encrypted by
sha1(), so you shouldn’t attempt to redisplay it.

5. All instances of Sticky Text Field are now listed in the Server Behaviors panel. If you
ever need to edit one, highlight it and double-click, or use the minus (–) button to
remove it cleanly from your code.

6. Save register_user.php, and load it into a browser. Test it by entering an incom-
plete set of details. This time, the content of text fields is preserved. Check your
code, if necessary, against register_user_05.php in examples/ch15.

Applying a dynamic value to a radio group

The Administrator radio buttons still don’t respond to the changes. We’ll fix that next.
Dreamweaver lets you bind the value of radio buttons to a dynamic value, such as from a
recordset or a variable. You can type the variable directly into the dialog box, but
Dreamweaver also lets you define superglobal variables, such as from the $_POST and
$_GET arrays, for use throughout the site.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

658

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this section, you’ll define the $_POST variable that contains the value of the selected
radio button and apply it to the radio button group so that it displays the value selected
by the user when an error is detected. Continue working with register_user.php from
the previous section.

1. When any errors are detected, you need
checked="checked" to be inserted in the tag of
the radio button that the user selected. Since the
radio group is called admin_priv, the value you
want is contained in $_POST['admin_priv'].
Although you can type this directly into the
Dynamic Radio Group dialog box, Dreamweaver
lets you define $_POST, $_GET, and other super-
global variables in the Bindings panel.

In the Bindings panel, click the plus button to dis-
play the menu shown alongside.

Dreamweaver uses generic names because the
same menu applies to other server-side lan-
guages. As explained earlier, Form Variable refers
to the $_POST array, and URL Variable refers to the $_GET array. You want to define
a $_POST variable, so click Form Variable.

2. Type admin_priv in the Name field of the Form
Variable dialog box, and click OK. The new
dynamic variable is now listed in the Bindings
panel like this:

3. Select one of the radio buttons in Design view,
and click the Dynamic button in the Property
inspector.

4. The admin_priv radio group will be automatically selected in the Dynamic Radio
Group dialog box and grayed out, because the Record Insertion Form Wizard
bound the value of the radio group to n. Change the binding by clicking the light-
ning bolt icon to the right of the Select value equal to field. Then choose admin_priv
from the Dynamic Data panel (click the tiny plus sign or triangle alongside Form if
you can’t see admin_priv). Click OK twice to close both panels.

5. The problem with binding the value of the radio button group to
$_POST['admin_priv'] is that this variable doesn’t exist when the registration form
first loads. As a result, neither radio button is selected. If PHP error reporting is set
to its highest level, this displays unsightly error messages. And even if the display of
errors is turned off, you’re still left without a default radio button checked, which
could lead to the user forgetting to select one and generating another error. So,
this needs to be fixed—and it involves another journey into Code view.

Making the radio buttons sticky

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

659

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver uses a rather unusual PHP function called strcmp() to check
whether $_POST['admin_priv'] is y or n. The function takes two arguments and
returns 0 if they’re exactly the same. Since 0 equates to false, the negation opera-
tor (!) converts it to true. If you find the logic difficult to follow, just take my word
for it—it works.

6. You need to check whether the form has been submitted. Although the POST array
is always set, it will be empty if the form hasn’t been submitted. And as you should
know by now, an empty array equates to false. Amend the beginning of both sec-
tions of radio button code (shown on lines 147 and 151 in the preceding screen-
shot) like this:

<input <?php if ($_POST && !(strcmp($_POST['admin_priv'],

7. Save the page, and load it into your browser. The radio buttons should now be
back to normal. The only problem is that you don’t have a default checked value
when the page first loads. In one respect, it shouldn’t be a problem, because you
set a default value when defining the users table earlier. Unfortunately,
Dreamweaver server behaviors treat unset values as NULL, causing your form to fail
because admin_priv was defined as “not null.”

8. Change the code for the No radio button shown on line 151 in the preceding
screenshot like this (the change made in step 6 is also shown in bold):

<input <?php if (($_POST && !(strcmp($_POST['admin_priv'],"n"))) ➥

|| !$_POST) {echo "checked=\"checked\"";} ?> name="admin_priv" ➥

type="radio" value="n" />

I have enclosed the original test (as adapted in step 6) in an extra pair of parenthe-
ses to ensure that it’s treated as a single unit. Then I added a second test:

|| !$_POST

This tests whether the $_POST array is empty. The result is this (in pseudocode):

if ((the form has been sent AND admin_priv is "n")
OR the form has not been sent) {mark the button "checked"}

9. Just one thing remains to be tidied up. If your PHP configuration has magic quotes
turned on (and many hosting companies seem to use this setting), your sticky text
fields will end up with backslashes escaping apostrophes in users’ names. So, scroll

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

660

In Design view, highlight one of the radio buttons so that you can easily locate the
relevant code, and switch to Code view. The radio button code looks like this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

down to the section of code that displays the error messages, and insert a new line
just before the closing curly brace. Open the Snippets panel, and insert the POST
stripslashes snippet that you installed in the PHP-DWCS4 folder in Chapter 11. The
amended code at the top of the body of the page should now look like this:

<?php
if (isset($error) && $error) {
echo '';
foreach ($error as $alert) {
echo "<li class='warning'>$alert\n";

}
echo '';
// remove escape characters from POST array
if (PHP_VERSION < 6 && get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);
return $value;

}
$_POST = array_map('stripslashes_deep', $_POST);

}
}
?>

10. Save register_user.php. You now have a user registration form that performs all
the necessary checks before entering a new record into your database, but all the
input fields will still be populated if an error is detected.

Check your code, if necessary, against register_user_06.php in examples/ch15.

Building server-side validation into a simple user registration form has taken a lot of effort.
You could have used the version from the previous chapter right away, but before long,
you would have ended up with a lot of unusable data in your database, not to mention
the frustration of users when an input error results in all their data being wiped from the
screen. The more time you spend refining the forms that interact with your database,
the more time you will save in the long run.

Applying server-side validation to the
update form

The validation tests required by the update form are the same as those for the insert form,
so there’s considerably less new script involved. However, you need to take the following
points into consideration:

The password has been encrypted, so it can no longer be displayed in the update
form. The code needs to be amended so that the password is updated only if a

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

661

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

value is inserted into the form. If the password fields are left empty, the original
password is retained.

When the update form first loads, it populates the form fields with values from the
database, but you need to preserve any changes if the server-side validation
detects errors when the form is submitted. This means adapting the Sticky Text
Field server behavior to work with an update form.

Right, let’s get to work.

Merging the validation and update code

Much of the work involved in adapting the code created by the Record Update Form
Wizard can be done by copying and pasting the server-side validation code from the
insert form.

These instructions show how to apply the same validation tests to update_user.php. You can
use your own version from the previous chapter. Alternatively, copy update_user_start.php
from examples/ch15 to workfiles/ch15, and rename it update_user.php. Continue working
with the amended version of register_user.php from the preceding section. However, if
you want to start with a clean copy, use register_user_06.php in examples/ch15.

1. Open both register_user.php and update_user.php in Code view.

2. In update_user.php, locate the conditional statement that controls the update
server behavior, and insert a couple of blank lines, as shown in the following screen-
shot. This is where you will paste the validation script from register_user.php.

Adapting update_user.php

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

662

3. Switch to register_user.php, and copy the validation script shown highlighted in
Figure 15-10.

4. Paste the code into update_user.php in the location indicated in the screenshot in
step 2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. There’s just one change you need to make to the validation script you have pasted
into update_user.php. When a user’s record is being updated, you want either to
preserve the same password or to set a new one. The simplest way to handle this is
to decide that if pwd is left blank, the existing password will be maintained.
Otherwise, the password needs to be checked and encrypted as before.

Amend the password validation code as follows (new code shown in bold):

$_POST['pwd'] = trim($_POST['pwd']);
// if password field is empty, use existing password
if (empty($_POST['pwd'])) {
$_POST['pwd'] = $row_getUser['pwd'];

} else {
// otherwise, conduct normal checks
// if less than 6 characters, create alert and set flag to false
if (strlen($_POST['pwd']) < 6) {
$error['pwd_length'] = 'Your password must be at least 6➥

characters';
$pwdOK = false;

}

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

663

15

Figure 15-10. Most of the validation script can be copied and pasted into the update page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// if no match, create alert and set flag to false
if ($_POST['pwd'] != trim($_POST['conf_pwd'])) {
$error['pwd'] = 'Your passwords don\'t match';
$pwdOK = false;

}
// if new password OK, encrypt it
if ($pwdOK) {
$_POST['pwd'] = sha1($_POST['pwd']);

}
}

This checks whether $_POST['pwd'] is empty. If it is, the value of the existing pass-
word is taken from the getUser recordset and assigned to $_POST['pwd']. Because
the existing password is already encrypted, there is no need to pass it to sha1(). If
$_POST['pwd'] isn’t empty, the else clause executes the checks inherited from
register_user.php.

6. You now need to prevent the update query from being executed if there are any
errors. This involves wrapping the section of code immediately below the validation
script in a conditional statement in the same way as in register_user.php.
Figure 15-11 shows where to insert the code.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

664

Figure 15-11. The conditional statement prevents the update code from being run if there are validation
errors.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. You also need to make the same changes as before to the code that runs the
update query to catch any database errors and prevent the page from being redi-
rected if any are found. Remove or die(mysql_error()) shown on line 89 of
Figure 15-11, and amend the code on lines 89–96 like this:

$Result1 = mysql_query($updateSQL, $connAdmin);
if (!$Result1 && mysql_errno() == 1062) {
$error['username'] = $_POST['username'] . ' is already in use. ➥

Please choose a different username.';
} elseif (mysql_error()) {
$error['dbError'] = 'Sorry, there was a problem with the ➥

database. Please try later.';
} else {
$updateGoTo = "list_users.php";
if (isset($_SERVER['QUERY_STRING'])) {
$updateGoTo .= (strpos($updateGoTo, '?')) ? "&" : "?";
$updateGoTo .= $_SERVER['QUERY_STRING'];

}
header(sprintf("Location: %s", $updateGoTo));

}
}

You can copy and paste the first two conditions from register_user.php, because
they are identical. Don’t forget to add the closing curly brace after the code that
redirects to the next page.

8. That deals with the changes to the validation script in Code view, but the update
form doesn’t have the password confirmation field. You also need to add some
text to inform the user to leave the password fields blank if the same password is
to be kept.

So, switch to Design view, and add (leave blank if unchanged) to the Password label.

9. The original update form showed the password in plain text, so select the pwd field,
and change the Type radio button from Single line to Password in the Property
inspector.

10. Create a new table row between Password and Administrator. Type Confirm password
as the label in the left cell, and insert a text field in the right cell. Name the text
field conf_pwd, and set Type to Password in the Property inspector.

11. The change you made to the password validation in step 6 compares
$_POST['pwd'] with $row_getUser['pwd']. However, as I explained at the begin-
ning of the chapter, Dreamweaver always inserts the code for recordsets immedi-
ately above the DOCTYPE declaration. Consequently, $row_getUser['pwd'] won’t
have been created unless you move the recordset script to an earlier position.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

665

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Cut the recordset code shown on lines 105–113 of the following screenshot, and
paste it in the position indicated (I used Code Collapse to hide most of the valida-
tion script).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

666

12. Save the page, and leave it open for the next section. There have been a lot of impor-
tant changes, so check your code against update_user_01.php in examples/ch15.

The final set of changes you need to make to the update page involves removing the exist-
ing code that binds the values from the database to the input fields and replacing it with
code that not only displays the values retrieved from the database but also preserves the
user’s input if there are any errors when the update form is submitted. The Sticky Text
Field server behavior won’t work in these circumstances, but it’s easy to adapt.

Adapting the Sticky Text Field server behavior

As you have already seen, it’s only when the form has been submitted—and errors
detected—that the Sticky Text Field code executes. So if the $_POST variables haven’t been
set, you know the form hasn’t been submitted and that you need to display the values
stored in the database instead.

Dreamweaver always uses the following naming convention to refer to the results of a
recordset: $row_RecordsetName['FieldName']. So, all that’s needed is to add an else
clause to the existing code:

<?php if (isset($_POST['field'])) {
echo htmlentities($_POST['field'], ENT_COMPAT, 'UTF-8');

} else {
echo htmlentities($row_RecordsetName['FieldName'], ENT_COMPAT, ➥

'UTF-8');
} ?>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Most of the settings are identical to the Sticky Text Field server behavior that you built ear-
lier, so you can use the existing server behavior to create the new one.

1. Make sure you have a PHP page open, and click the plus button in the Server
Behaviors panel. Select New Server Behavior.

2. Name the new server behavior Sticky Edit Field, and place a check mark in the box
labeled Copy existing server behavior. This will populate a drop-down menu with the
names of server behaviors you have already built (unfortunately, the dialog box
won’t let you base a new server behavior on one of Dreamweaver’s). Select Sticky
Text Field, and click OK.

3. Edit the contents of the Code block area like this:

<?php if (isset($_POST['@@FieldName@@'])) {
echo htmlentities($_POST['@@FieldName@@'], ENT_COMPAT, 'UTF-8');

} else {
echo htmlentities($row_@@RecordsetName@@['@@FieldName@@'], ➥

ENT_COMPAT, 'UTF-8');
} ?>

Dreamweaver will use the new parameter—@@RecordsetName@@—in combination
with @@FieldName@@ to build a variable like $row_getUser['family_name'].

4. Click Next. Dreamweaver warns you that the server behavior’s HTML file already
exists and asks whether you want to overwrite it. The HTML file is actually a copy,
so there’s no problem overwriting it. It controls the server behavior’s dialog box,
which needs to be redesigned, so the answer is Yes.

5. In the Generate Behavior Dialog Box dialog box, reset Display as for RecordsetName
by clicking to the right of the existing value and selecting Recordset Menu. Set
FieldName to Recordset Field Menu, and reorder the items as shown here. Click OK.

To create a similar server behavior for text areas, name it Sticky Edit Area, and select Sticky
Text Area in step 2. The code block in step 3 is identical for both Sticky Edit Area and Sticky
Text Area.

Sometimes Dreamweaver prevents you from using the same parameter name in
more than one server behavior. If that happens, change both instances of
@@FieldName@@ to @@Field@@.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

667

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Binding the field values to the update form

Now that you have the Sticky Edit Field server behavior, you can bind the results of the
getUser recordset to the form fields so that the existing values are ready for editing but
will be replaced by the user’s input if the update process fails for any reason. The text
fields are quite easy, but the radio button group needs special handling.

These instructions show how to apply the Sticky Edit Field server behavior and adapt the
code in the radio button group. Continue working with update_user.php from before.

1. Before you can apply the Sticky Edit Field server
behavior, you need to remove the existing code
from the form fields. In the Server Behaviors
panel, Shift-click to select the Dynamic Text Field
entries for first_name, family_name, username,
and pwd. Then click the minus button, as shown
in the screenshot alongside, to remove them
cleanly from the update form.

2. In Design view, select the first_name field, click
the plus button in the Server Behaviors panel,
and select Sticky Edit Field.

Since getUser is the only recordset on this page, it’s selected automatically in the
Sticky Edit Field dialog box, but make sure you choose the right one if you use this
server behavior on a page that has two or more recordsets. Select the field’s name
from the FieldName drop-down menu, as shown here:

3. Apply the Sticky Edit Field server behavior in the same way to the family_name and
username fields. In Design view, the form should end up looking like the following
screenshot, with dynamic text placeholders in the first three fields.

Completing the update form

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

668

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The dynamic text placeholders in the three fields look the same as before in Design
view, but if you inspect the underlying code in Split view, you’ll see that Dreamweaver
has inserted the code you used to build the Sticky Edit Field server behavior.

4. The radio buttons present an interesting challenge. When the page first loads, you
want the value stored in the database for admin_priv to be selected; but if the
form is submitted with errors and the value of admin_priv has been changed, you
want the new value to be shown.

Select one of the radio buttons in Design view to help locate the code for the radio
group; then switch to Code view to actually see it. The code looks like this:

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

669

15

Let’s first map out in terms of pseudocode what needs to happen inside the Yes
radio button’s <input> tag. The logic goes like this:

if (the form has NOT been submitted
AND the value of admin_priv in the database is "y") {
mark the button "checked"

} elseif (the form has been submitted
AND the form value of admin_priv is "y") {

mark the button "checked"
}

You can create this code by copying and pasting the existing conditional statements
and making a few changes. It’s not difficult, but you need to follow the next steps
carefully.

5. When the page first loads, the form hasn’t been submitted, so the $_POST array will
have zero elements (and therefore equate to false). This means the first check can
be performed by inserting !$_POST into the conditional statement like this:

if (!$_POST && !(strcmp(htmlentities($row_getUser['admin_priv'], ➥

ENT_COMPAT, 'utf-8'),"y"))) {echo "checked=\"checked\"";}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. You now need to deal with the alternative scenario. Begin by copying the amended
conditional statement and pasting it immediately after the closing curly brace. So,
now you have two identical conditional statements.

7. You want the second statement to run only if the first one fails, so change the sec-
ond if to elseif.

8. In the alternative scenario, you want $_POST to be true, so remove the negative
operator from in front of $_POST.

9. You also want the value of admin_priv to come from the form input, rather than
the database, so change $row_getUser['admin_priv'] to $_POST['admin_priv'].

10. Repeat steps 5–9 for the No button. The completed radio button code looks like
this:

<td><input type="radio" name="admin_priv" value="y"
<?php if (!$_POST && !(strcmp(htmlentities($row_getUser['admin_priv'], ➥

ENT_COMPAT, 'utf-8'),"y"))) {echo "checked=\"checked\"";}
elseif ($_POST && !(strcmp(htmlentities($_POST['admin_priv'], ➥

ENT_COMPAT, 'utf-8'),"y"))) {echo "checked=\"checked\"";} ?> />
Yes</td>
</tr>
<tr>
<td><input type="radio" name="admin_priv" value="n"

<?php if (!$_POST && !(strcmp(htmlentities($row_getUser['admin_priv'], ➥

ENT_COMPAT, 'utf-8'),"n"))) {echo "checked=\"checked\"";}
elseif ($_POST && !(strcmp(htmlentities($_POST['admin_priv'], ➥

ENT_COMPAT, 'utf-8'),"n"))) {echo "checked=\"checked\"";} ?> />
No</td>

11. One more thing, and you’re done. Copy the code that displays the error messages
from register_user.php (shown on lines 107–123 of the following screenshot),
and paste it just above the update form in update_user.php.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

670

12. Save update_user.php. Compare your code with update_user_02.php in
examples/ch15 if you have any problems.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can now update existing records by loading list_users.php into a browser and click-
ing the EDIT link alongside the username of the account you want to change. Adapting the
update form has also required considerable effort. It’s a pity that Dreamweaver doesn’t
offer more help in the way of server-side validation, but if you value your data, you need
to customize the code that Dreamweaver creates for you.

You might want to take a break at this stage, but now that you have a simple user regis-
tration system, you can use it to password protect various parts of your website. You’ll be
relieved to know that Dreamweaver’s user authentication server behaviors don’t need any-
where near the same level of customization. They rely on the use of PHP sessions, so
before showing you how to build a login system, let’s take a quick look at sessions and
what they’re for.

What sessions are and how they work
The Web is a brilliant illusion. When you visit a well-designed website, you get a great feel-
ing of continuity, as though flipping through the pages of a book or a magazine. Everything
fits together as a coherent entity. The reality is quite different. Each part of an individual
page is stored and handled separately by the web server. Apart from needing to know
where to send the relevant files, the server has no interest in who you are, nor is it inter-
ested in the PHP script it has just executed. PHP garbage collection (yes, that’s what it’s
actually called) destroys variables and other resources used by a script as soon as they’re
no longer required. But it’s not like garbage collection at your home, where it’s taken
away, say, once a week. With PHP, it’s instant: the server memory is freed up for the next
task. Even variables in the $_POST and $_GET arrays persist only while being passed from
one page to the next. Unless the information is stored in some other way, such as a hidden
form field, it’s lost.

To get around these problems, PHP (in common with other server-side languages) uses
sessions. A session ensures continuity by storing a random identifier on the web server
and on the visitor’s computer (as a cookie). Because the identifier is unique to each visitor,
all the information stored in session variables is directly related to that visitor and cannot
be seen by anyone else.

The security offered by sessions is adequate for most user authentica-
tion, but it is not 100-percent foolproof. For credit card and other
financial transactions, you should use an SSL connection verified by a
digital certificate. To learn more about this and other aspects of build-
ing security into your PHP sites, Pro PHP Security by Chris Snyder and
Michael Southwell (Apress, ISBN: 978-1-59059-508-4) is essential read-
ing. Although aimed at readers with an intermediate to advanced
knowledge of PHP, it contains a lot of practical advice of value to all
skill levels.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

671

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating PHP sessions

Creating a session is easy. Just put this command in every PHP page that you want to use in
a session:

session_start();

Once you call that command, the page has access to the visitor’s session variables. This
command should be called only once in each page, and it must be called before the PHP
script generates any output, so the ideal position is immediately after the opening PHP tag.
If any output is generated before the call to session_start(), the command fails, and the
session won’t be activated for that page. Even a single blank space, newline character, or
byte-order mark is considered output. This is the same issue that affects the header()
function, if any output is generated before you call the function. The solution is the same
and was described in “Avoiding the ‘Headers already sent’ error” in Chapter 12.

Creating and destroying session variables

You create a session variable by adding it to the $_SESSION superglobal array in the same
way you would assign an ordinary variable. Say you want to store a visitor’s name and dis-
play a greeting. If the name is submitted in a login form as $_POST['name'], you assign it
like this:

$_SESSION['name'] = $_POST['name'];

$_SESSION['name'] can now be used in any page that begins with session_start().
Because session variables are stored on the server, you should get rid of them as soon as
they are no longer required by your script or application. Unset a session variable like this:

unset($_SESSION['name']);

To unset all session variables—for instance, when you’re logging someone out—set the
$_SESSION superglobal array to an empty array, like this:

$_SESSION = array();

Destroying a session

By itself, unsetting all the session variables effectively prevents any of the information
from being reused, but you should also destroy the session with the following command:

session_destroy();

Do not be tempted to try unset($_SESSION). It not only clears the current session but
also prevents any further sessions from being stored.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

672

http://lib.ommolketab.ir
http//lib.ommolketab.ir

By destroying a session like this, there is no risk of an unauthorized person gaining access
either to a restricted part of the site or to any information exchanged during the session.
However, a visitor may forget to log out, so it’s not always possible to guarantee that the
session_destroy() command will be triggered, which is why it’s so important not to store
sensitive information in a session variable.

Checking that sessions are enabled

Sessions should be enabled by default in PHP. A quick way to check is to load
session1.php in examples/ch15 into a browser. Type your name in the text field, and click
the Submit button. When session2.php loads, you should see your name and a link to the
next page. Click the link. If session3.php displays your name and a confirmation that ses-
sions are working, your setup is fine. Click the link to page 2 to destroy the session.

If you don’t see the confirmation on the third page, create a PHP page containing the sin-
gle line of code <?php phpinfo(); ?> to display details of your PHP configuration. Make
sure that session.save_path points to a valid folder that the web server can write to. Also
make sure that a software firewall or other security system is not blocking access to the
folder specified in session.save_path.

Registering and authenticating users
As you have just seen, session variables enable you to keep track of a visitor. If you can
identify visitors, you can also determine whether they have the right to view certain pages.
Dreamweaver has four user authentication server behaviors, as follows:

Log In User: This queries a database to check whether a user is registered and has
provided the correct password. You can also check whether a user belongs to a
particular group to distinguish between, say, administrators and ordinary users.

Restrict Access to Page: This prevents visitors from viewing a page unless they
have logged in and (optionally) have the correct group privileges. Anyone not
logged in is sent to the login page but can be automatically redirected to the orig-
inally selected page after login.

Log Out User: This brings the current session to an end and prevents the user
from returning to any restricted page without first logging back in again.

Check New Username: This checks whether a particular username is already in
use. I don’t recommend using it, because it’s rather badly designed. Using a unique
index and testing for MySQL error 1062, as described earlier in this chapter, is more
user-friendly.

You may find the deprecated functions session_register() and
session_unregister() in old scripts. Use $_SESSION['variable_name']
and unset($_SESSION['variable_name']) instead.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

673

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a login system

Now that you have a way of registering users, you need to create a way for them to log in
to restricted areas of your site. Building the login system is a lot simpler than building the
registration system.

The first element of a login system is the form where registered users enter their username
and password. To keep things simple, the following instructions use a dedicated login
page, but you can embed the login form on any public page of a site.

1. Create a PHP page called login.php in workfiles/ch15. Lay out the page with a
form, two text fields, and a submit button, as shown here. Since you’ll be apply-
ing a server behavior, there is no need to set the action or method attributes of
the form.

2. The Log In User server behavior expects you to designate two pages: one that the
user will be taken to if the login is successful and another if it fails. Create one page
called success.php, and enter some content to indicate that the login was success-
ful. Call the other page loginfail.php, and insert a message telling the user that
the login failed, together with a link back to login.php.

3. Make sure login.php is the active page in the Dreamweaver workspace. Click the
plus button in the Server Behaviors panel, and select User Authentication ➤ Log In
User. (You can also apply the server behavior from the Data tab of the Insert bar or
from the Data Objects submenu of the Insert menu.)

Creating the login page

The login system uses encrypted passwords. You must encrypt the pass-
words of records that were created with the forms from the previous
chapter before server-side validation was added. Do this by clicking
the EDIT link in list_users.php and reentering the password in the
update form.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

674

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. The Log In User dialog box has a lot of options,
but their meaning should be obvious, at least for
the first two sections. Select the connAdmin con-
nection, the users table, and the username and
password columns, using the settings shown
alongside.

The third section asks you to specify which pages
to send the user to, depending on whether the
login succeeds or fails. Between the text fields for
the filenames is a check box labeled Go to previ-
ous URL (if it exists). This works in conjunction with
the Restrict Access to Page server behavior that
you will use shortly. If someone tries to access a
restricted page without first logging in, the user is
redirected to the login page. If you select this
option, after a successful login, the user will be
taken directly to the page that originally refused
access. Unless you always want users to view a
specific page when first logging in, this is quite a user-friendly option.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

675

15

The final section of the dialog box allows you to specify whether access should be
restricted on the basis of username and password (the default) or whether you also
want to specify an access level. The access level must be stored in one of your data-
base columns. For this login page, set Get level from to admin_priv. Click OK to apply
the server behavior.

5. A drawback with the Dreamweaver Log In User server behavior is that it has no
option for handling encrypted passwords, so you need to make a minor adjustment
by hand. Open Code view, and place your cursor immediately to the right of the
opening PHP tag on line 2. Press Enter/Return to insert a new line, and type the fol-
lowing code:

if (isset($_POST['pwd'])) { $_POST['pwd'] = sha1($_POST['pwd']); }

This checks whether the form has been submitted, and it uses sha1() to encrypt
the password. I have reassigned the value back to $_POST['pwd'] so that
Dreamweaver continues to recognize the server behavior; this way, you can still
edit it through the Server Behaviors panel. Although Dreamweaver doesn’t object
to you placing the line of code here, it will automatically remove it if you ever
decide to remove the server behavior.

6. Save login.php. You can check your code against login.php in examples/ch15.

It’s important to realize that you’re not decrypting the version of the password
stored in the database. You can’t—the sha1() function performs one-way
encryption. You verify the user’s password by encrypting it again and comparing
the two encrypted versions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that you have a means of logging in registered users, you can protect sensitive pages
in your site. When working with PHP sessions, there is no way of protecting an entire folder.
Sessions work on a page-by-page basis, so you need to protect each page individually.

1. Open success.php. Click the plus button in the Server Behaviors panel, and select
User Authentication ➤ Restrict Access to Page.

2. In the Restrict Access to Page dialog box, select the radio button to restrict access
based on Username, password, and access level. Then click the Define button.

3. The Define Access Levels dialog box lets you specify acceptable values. What may
come as a bit of a surprise is that it’s not the column name that Dreamweaver is
interested in but the value retrieved from the column. Consequently, it’s not
admin_priv that you enter here but y or n.

As you might have noticed, although Dreamweaver gives you the option to specify
different access levels, the Log In User server behavior sends all successful logins to
the same page. If you have different login pages for each type of user, this is fine;
you select the appropriate value. So, for an administrator’s login page, just enter y
in the Name field, and click the plus button to register it in the Access levels area.

However, if you want to use the same login form for everyone, you need to regis-
ter all access levels for the first page and then use PHP conditional logic to distin-
guish between different types of users. So, for success.php, also enter n in the
Name field, and click the plus button to register it. Then click OK.

4. After defining the access levels, hold down the Shift key, and select them all in the
Select level(s) field. Then, either browse to login.php, or type the filename directly
in the field labeled If access denied, go to. The dialog box should look like this:

5. Click OK to apply the server behavior, and save success.php.

6. Try to view the page in a browser. Instead of success.php, you should see
login.php. You have been denied access and taken to the login page instead.

7. Enter a username and password that you registered earlier, and click Log in. You
should be taken to success.php. You can check your code against success_01.php
in examples/ch15.

Restricting access to individual pages

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

676

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When developing pages that will be part of a restricted area, I find it best to leave the
application of this server behavior to the very last. Testing pages becomes an exercise in
frustration if you need to be constantly logging in and out.

I’ll come back to the question of how to deal with different access levels, but first, let’s
look at logging out.

The Dreamweaver Log Out User server behavior is quick and easy to apply. It automatically
inserts a logout link in your page, so you need to position your cursor at the point you
want the link to be created.

1. Press Enter/Return to create a new paragraph in success.php.

2. Click the plus button in the Server Behaviors panel, and select User Authentication ➤
Log Out User.

3. The Log Out User dialog box gives you the option to log out when a link is clicked
or when the page loads. In this case, you want the default option, which is to log
out when a link is clicked and to create a new logout link. Browse to login.php, or
type the filename directly into the field labeled When done, go to. Click OK.

4. Save success.php, and load the page into a browser. Click the Log out link, and you
will be taken back to the login page. Type the URL of success.php in the browser
address bar, and you will be taken back to the login page until you log in again. You
can check your code against success_02.php in examples/ch15.

Displaying different content depending on access levels

As I mentioned earlier, PHP sessions are the technology that lies behind the user authenti-
cation server behaviors. The Log In User server behavior creates the following two session
variables that control access to restricted pages:

$_SESSION['MM_Username']: This stores the user’s username.

$_SESSION['MM_UserGroup']: This stores the user’s access level.

You can use these in a variety of ways. The simplest, and perhaps most important, use is to
present different content on the first page after logging in. The following exercises are
based on success.php but can be used with any page that begins with session_start()
after a user has logged in.

1. In success.php, insert two paragraphs: one indicating that it’s for administrators, the
other indicating that it’s for non-administrators. The actual content is unimportant.

The following instructions assume you have created at least one administrator and an
ordinary user in the users table.

Logging out users

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

677

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Switch to Code view, and add the PHP code highlighted in bold around the two
paragraphs like this:

<?php if ($_SESSION['MM_UserGroup'] == 'y') { ?>
<p>Content and links for administators</p>
<?php } else { ?>
<p>Content and links for non-administrators</p>
<?php } ?>

This is simple PHP conditional logic. If the value of $_SESSION['MM_UserGroup'] is
y, display the HTML inside the first set of curly braces. If it’s not, show the other
material. There’s only one paragraph in each conditional block, but you can put as
much as you want.

3. Save the page, and log in as an administrator. You’ll see only the first paragraph.
Log out and log back in as an ordinary user. This time you’ll see the second para-
graph. You can compare your code with success_03.php in examples/ch15.

Any content that you want to be seen by both groups should go outside this PHP condi-
tional statement. (In success_03.php, you’ll see that the page heading and the log out link
are common to both groups.) By using this sort of branching logic in the first page, you
can restrict access to subsequent pages according to the specific access level. So, the links
in the first section would point to pages that only administrators are permitted to see.

Greeting users by name

Since the user’s username is stored in $_SESSION['MM_Username'], you could use that to
display a greeting, but it’s much friendlier to use the person’s real name. All that’s needed
is a simple recordset.

1. In success.php, create a recordset using the following settings in Simple mode:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

678

http://lib.ommolketab.ir
http//lib.ommolketab.ir

By setting Filter to username = Session Variable MM_Username, the recordset
retrieves the values of the first_name and family_name columns for the currently
logged in user.

2. Open the Bindings panel, and drag the first_name and family_name dynamic text
placeholders into the page like this:

When the page loads, the dynamic text placeholders will be replaced by the values
drawn from the recordset. You can check your code against success_04.php.

Of course, if you want other details about the user, such as user_id, amend the settings in
the Recordset dialog box to retrieve all the columns you need.

Creating your own $_SESSION variables from user details
To avoid the need to create a recordset on every page, store these details as $_SESSION
variables. The code needs to be inserted after the recordset code, which Dreamweaver
places immediately above the DOCTYPE declaration. The pattern Dreamweaver uses for
recordset results looks like this:

$row_recordsetName['fieldName']

So, to create $_SESSION variables from first_name and family_name in session.php, you
would add the following code immediately before the closing PHP tag above the DOCTYPE
declaration:

$_SESSION['first_name'] = $row_getName['first_name'];
$_SESSION['family_name'] = $row_getName['family_name'];

You’re not restricted to using the same element names for the variables. You could do this
instead:

$_SESSION['full_name'] = $row_getName['first_name'].' '. ➥

$row_getName['family_name'];

You can see this code in action in success_05.php in examples/ch15.

Redirecting to a personal page after login
You might want to provide users with their own personal page or folder after logging in.
This is very easy to do, particularly if you base the name of the personal name or folder on
the username. Before the Log In User server behavior creates the session variables, it
stores the submitted username as $loginUsername, so you can use this variable to redirect
users to pages or folders based on their username.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

679

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If the name of the personal page is in the form username.php, enter the following in the
Log In User dialog box in the field labeled If login succeeds, go to (see step 4 of “Creating
the login page”):

$loginUsername.php

If the personal page is in a folder named after the username, use the following:

$loginUsername/index.php

This assumes that the folder is a subfolder of the folder where the login page is located.
If the username is dpowers, these values would redirect the user to dpowers.php and
dpowers/index.php, respectively.

Encrypting and decrypting passwords

These are common questions: What happens when a user forgets his or her password?
How can I send a reminder? If you encrypt passwords using sha1(), as described in this
chapter, you can’t. The sha1() algorithm is one-way; you can’t decrypt it. Although
this sounds like a disadvantage, it actually ensures a considerable level of security. Since
the password cannot be decrypted, even a corrupt system administrator has no way of
discovering another person’s password. The downside is that you can’t send out password
reminders.

If a password is forgotten, you need to verify the user’s identity and issue a new password.
You can also create a form for users to change their own passwords after logging in. It’s
simply a question of using $_SESSION['MM_Username'] as the filter for the Update Record
server behavior. Don’t worry if you feel that’s currently beyond your capability. In the next
chapter, you’ll learn about the four basic SQL commands that are the key to database
management.

However, it is possible to store passwords using two-way encryption. For more informa-
tion, see my book PHP Solutions: Dynamic Web Design Made Easy (friends of ED, ISBN:
978-1-59059-731-6) and the MySQL documentation at http://dev.mysql.com/doc/
refman/5.0/en/encryption-functions.html.

Chapter review
If you’re beginning to wobble because of the constant need to dive into Code view, take
heart. This has been a tough chapter. The danger with Dreamweaver server behaviors is
they make it very easy to create record insertion and update forms, giving you a false
sense of achievement. If you’re just creating a dynamic website as a hobby, you might be
happy with minimum checks on what’s inserted into your database. But even if it’s a
hobby, do you really want to waste your time on a database that gets filled with unusable
data? And if you’re doing it professionally, you simply can’t afford to.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

680

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PHP is like the electricity or kitchen knives in your home: handled properly, it’s very safe;
handled irresponsibly, it can do a lot of damage. Get to know what the code you’re putting
into your pages is doing. The more hands-on experience you get, the easier it becomes. A
lot of PHP coding is simple logic: if this, do one thing; else do something different.

Take a well-earned rest. In the next chapter, we’ll delve into the mysteries of SQL, the lan-
guage used to communicate with most databases, and joining records from two or more
tables.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

681

15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 WORKING WITH CUSTOM FORMS
AND MULTIPLE TABLES

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The wizards you used in Chapter 14 offer a quick way to create, insert, and update forms,
but they suffer from inflexibility. You need to make all your decisions about what to
include in the form at the time of launching the wizard; and if you change your mind, it’s
often quicker to delete everything and start again. There’s also the problem of fitting the
forms into the overall design of your site. For these reasons, I prefer to design my own
forms and apply the Insert Record and Update Record server behaviors separately. The
dialog boxes used by the independent server behaviors are very similar to the wizards, so
they’re easy to use. You’ll see how to use them in this chapter, at the same time as learn-
ing how to work with multiple tables.

As I explained in Chapter 14, an important principle of working with a relational database
is the need to break larger units, such as addresses or names, into their component ele-
ments and store them in separate columns. Another equally important principle is to get
rid of columns that contain repetitive data and move them to a separate table. The advan-
tages of doing this are that it eliminates inconsistency and improves efficiency. Let’s say
you’re creating a product catalog and store everything in a single table; you might spell a
company name in different ways. For instance, friends of ED might sometimes be entered
as foED, freinds of ED, or—heaven forbid—fiends of ED. Run a search for friends of ED,
and anything spelled a different way will not turn up in the results. Consequently, vital data
could be lost forever. Even if you never make a spelling mistake, storing frequently
repeated information in a separate table means you change it only once instead of updat-
ing every instance in the database.

In this chapter, you’ll learn about the following:

Applying the rules of normalization to decide what to store in a table

Linking related information in different tables

Applying insert and update server behaviors to custom forms

Building SQL queries with SELECT, INSERT, UPDATE, and DELETE

Using MySQL functions and aliases

Creating a navigation bar to page through database results

As long as each record has a primary key to identify it, records in separate tables can be
linked by storing the primary key from one table as a reference in the other. This is known
as creating a foreign key. The disadvantage of using multiple tables is that it’s conceptu-
ally more difficult than a single table. Also, you need to make sure that deleting a record
doesn’t leave references to its primary key in dependent tables. This chapter shows you
how to overcome these difficulties.

Storing related information in separate tables
The example in this chapter uses two tables to store a selection of famous—and not so
famous—quotations. The same principles apply to most multiple-table databases, so once
you have mastered this chapter, you’ll be equipped to create a wide variety of practical
applications, such as a product catalog, contacts list, or content management system.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

684

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deciding on the best structure

Each database is different, so there is no single “right” way to design one. However, a
process known as normalization lays down the principles of good design. The main rules
can be summarized as follows:

Give each data record a primary key as a unique means of identification (I covered
this in Chapter 14).

Put each group of associated data in a table of its own.

Cross-reference related information by using the primary key from one table as a
foreign key in other tables.

Store only one item of information in each field.

These principles are sometimes summed up as “Stay DRY”—don’t repeat yourself.

You can find more detailed advice in Beginning MySQL Database Design and Optimization:
From Novice to Professional by Jon Stephens and Chad Russell (Apress, ISBN: 978-1-59059-
332-5).

Using foreign keys to link records

Figure 16-1 shows how most beginners would construct a database table to store their
favorite quotations. Everything is held in one table, resulting in the need to enter the
author’s first name and family name for each individual record. It’s not only tedious to
retype the names every time; it has resulted in inconsistency. The five quotations from
Shakespeare list him in three different ways. In records 25 and 34, he’s William Shakespeare;
in record 33, he’s W Shakespeare; and in records 31 and 32, he’s just plain Shakespeare.

Figure 16-1. Storing repetitive information in a single table leads to redundancy
and inconsistency.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

685

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It’s more logical to create a separate table for names—I’ve called it authors—and store
each name just once. So instead of storing the name with each quotation, you can store
the appropriate primary key from the authors table (on the right of Figure 16-2) as a for-
eign key in the quotations table (on the left).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

686

Figure 16-2. Shakespeare’s primary key in the authors table (right) identifies him in the quotations table (left).

The primary key of the authors table is author_id. Because primary keys must be
unique, each number is used only once.

The author_id for William Shakespeare is 32.

All quotations attributed to William Shakespeare are identified in the quotations
table by the same author_id (32). Because author_id is being used as a foreign key
in this table, there can be multiple references to the same number.

I’ve drawn arrows in Figure 16-2 linking only Shakespeare with his quotations, but you can
see that quote_id 26 comes from the poet Shelley (author_id 33) and that quote_id 27
comes from Tennyson (author_id 34). Before any sense of panic sets in about how you
are going to remember all these numbers, relax. When you communicate with the data-
base, you tell it to find the appropriate number for you. In other words, if you want to
conduct a search for all quotations by Shakespeare, you issue a command that tells the
database to do something like this (in pseudo-code):

As long as author_id remains unique in the authors table—where it’s the primary
key—you know that it always refers to the same person.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SELECT all records in the quotation column
FROM the quotations table
WHERE the author_id in the quotations table is the same as
the author_id for "William Shakespeare" in the authors table

This type of structure creates what’s known as a one-to-many relationship: one record in
one table refers to one or more records in another. In this example, it allows you to asso-
ciate one author with many quotations. However, it’s not suitable for a database of books,
where an author is likely to be associated with multiple books and each book might have
several authors. This is known as a many-to-many relationship and needs to be resolved
through the creation of a lookup table (sometimes called a linking table). In the case of
a book database, each record in the lookup table stores a single pair of foreign keys link-
ing an individual author with a particular book. To learn more about lookup tables, see my
book PHP Solutions: Dynamic Web Design Made Easy (friends of ED, ISBN: 978-1-59059-
731-6).

Avoiding orphaned records

The relationship between the two tables in Figure 16-2 isn’t an equal one. If William
Shakespeare is deleted from the authors table, author_id 32 will no longer have a value
attached to it, orphaning the five Shakespeare quotations in the quotations table.
However, even if you delete all five quotations from the quotations table, the authors
table is unaffected. Sure, there won’t be any quotations by Shakespeare (at least not in the
section shown in Figure 16-2), but nothing in the authors table actually depends on the
quotations table. The primary key author_id 32 continues to identify Shakespeare and
can be reused if you decide to add new quotations attributed to him.

Because the foreign keys in the quotations table depend on the authors table, authors is
considered to be the parent table, and quotations is the child table. Although deleting
records from a child table doesn’t affect the parent, the opposite is not true. Before delet-
ing records from a parent table, you need to check whether there are any dependent
records in the child table. If there are, you need to do one of the following:

Prevent the deletion of the record(s) in the parent table.

Delete all dependent records in the child table as well.

Set the foreign key value of dependent records in the child table to NULL.

Making sure that the foreign key relationship between parent and child tables remains
intact is known as maintaining referential integrity. In simple terms, it maintains the
integrity of records that reference each other and means that you don’t end up with
incomplete records.

There are two ways to maintain referential integrity. The best way is to use foreign key
constraints. These establish a foreign key relationship in the table definition and specify
what should happen when a record in a parent table is deleted. If your hosting company
supports the InnoDB storage engine in MySQL, you can use foreign key constraints to
automate referential integrity.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

687

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Unfortunately, most hosting companies offer only the default MyISAM storage engine,
which doesn’t support foreign key constraints (support on all storage engines is now
planned for MySQL 6.1, so is still some way off). However, you can reproduce the same
effect with PHP. All that’s required is a little conditional logic like this (in pseudo-code):

if (no dependent records) {
delete;

} else {
don't delete;

}

I’ll show you both approaches in this chapter. First of all, let’s define the authors and quo-
tations tables.

Defining the database tables

The basic table definition is the same for MyISAM and InnoDB tables. Since I gave step-by-
step instructions for defining tables in phpMyAdmin in Chapter 14, I won’t go through the
process in great detail again. Create two new tables in the dwcs4 database, call them
authors and quotations, and give them each three columns (fields) using the settings in
Table 16-1. You don’t need to set any values for the Default or Collation fields.

When you create a table with only a few columns, phpMyAdmin displays the table defini-
tion matrix vertically, rather than horizontally, as shown in Figure 16-3. Both Table 16-1
and Figure 16-3 show the settings in phpMyAdmin 3. If you are using phpMyAdmin 2, refer
to Figure 14-9 in Chapter 14 for the radio buttons that set a column’s index and
auto_increment (called A_I in phpMyAdmin 3).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

688

Table 16-1. Settings for the authors and quotations tables

Length/
Table Field Type Values Attributes Null Index A_I

authors

author_id INT UNSIGNED No PRIMARY Yes

first_name VARCHAR 30 Yes No

family_name VARCHAR 30 No No

quotations

quote_id INT UNSIGNED No PRIMARY Yes

author_id INT UNSIGNED Yes INDEX No

quotation VARCHAR 255 No No

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If your remote server supports InnoDB, set Storage Engine to InnoDB when defining the
tables in phpMyAdmin. On older versions of phpMyAdmin, Storage Engine is called
Table type.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

689

16

Figure 16-3. When a table has only a few columns, the definition matrix in phpMyAdmin is displayed vertically.

Some records in the authors table don’t have a value for first_name, so I have specified
null in the table definition (select the Null checkbox in phpMyAdmin 3 or null from the
drop-down menu in phpMyAdmin 2). I have done this because Dreamweaver treats not
null as meaning “required,” so the Insert Record and Update Record server behaviors
reject a blank field.

The other thing to note is the different settings for author_id in two tables. In the authors
table, it is the primary key and uses auto_increment. However, in the quotations table, it’s
a foreign key, so it has an ordinary index and does not use auto_increment. A foreign key
must not be automatically incremented. I have also set author_id to null in the
quotations table because you might not always be able to assign author_id as a foreign
key—for instance, when inserting a new quotation for someone not yet registered in the
authors table.

You can use a foreign key as a primary key in some circumstances (for example, in a
lookup table where two foreign keys form a joint primary key), but on this occasion it’s
not appropriate.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

After defining the quotations table, check the Indexes section at the bottom of the screen
that displays the table structure (in phpMyAdmin 3, you might need to click the Details link
at the bottom left of the screen). It should look similar to this (the output looks slightly
different in phpMyAdmin 2):

This confirms that quote_id remains the table’s primary key but that author_id is also
indexed. If author_id isn’t listed in the Indexes section, you can alter the table structure,
as described in the next section.

Adding an index to a column
It’s easy to change a table definition to add an index to a column. Select the table in the
phpMyAdmin navigation frame on the left to display its structure grid, and click the light-
ning bolt icon in the row that describes the column you want to index. Figure 16-4 shows
how to add an index to author_id in the quotations table if you forgot to do so in the
original table definition.

Figure 16-4. You can add an index to a column by clicking the Index icon in the table’s structure
grid in phpMyAdmin.

Although adding an index to a column can speed up searches, don’t apply them indiscrim-
inately. Indexing has drawbacks, the main one being that it increases the size of a table.
The most important index is always the primary key. At this stage, index only foreign key
columns, or use a unique index on columns that shouldn’t have duplicate entries.

Defining the foreign key relationship in InnoDB
The default MyISAM storage engine in MySQL doesn’t support foreign key constraints. If
your remote server doesn’t support InnoDB, skip ahead to “Populating the tables.”

The normal way to define a foreign key relationship in MySQL is in the initial table defini-
tion. However, you can alter the structure of a table at any time, and this is the approach

This section applies only if you are using InnoDB tables. If you have converted your
tables to InnoDB by mistake, refer to “Converting a table’s storage engine.”

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

690

http://lib.ommolketab.ir
http//lib.ommolketab.ir

that phpMyAdmin takes. Defining a foreign key relationship in phpMyAdmin involves the
following steps:

1. Define both parent and child tables, and set Storage Engine (Table type in older ver-
sions of phpMyAdmin) to InnoDB.

2. Confirm that the foreign key column in the child table is indexed.

3. Use Relation view to add the foreign key constraint to the child table.

Steps 1 and 2 have already been covered in the preceding sections, but you might want to
convert MyISAM tables to InnoDB at a later stage, so I’ll briefly describe the process.

Checking the storage engine of a table

To find out whether a table uses the MyISAM or InnoDB storage engine, click the database
name at the top of the main frame in phpMyAdmin or in the navigation frame on the left
to display the database structure. The value for Type shows the current storage engine for
each table. Figure 16-5 shows that the authors and quotations tables use InnoDB, while
the users table uses MyISAM.

Figure 16-5. Check the storage engine used by each table by viewing the database structure in
phpMyAdmin.

It’s perfectly acceptable to mix different types of storage engines in MySQL. In fact, it’s rec-
ommended that you use the most appropriate type for each table. MyISAM has the advan-
tage of speed, but it currently lacks support for foreign key constraints and transactions.

Converting a table’s storage engine

You can change a table’s storage engine at any time, even if it already contains data. The
following instructions explain how:

1. Select the table name in the list of links in the phpMyAdmin navigation frame (or
click the Structure icon alongside the table name under Action in the main frame).

2. With the table structure displayed in the main frame, click the Operations tab.

In database terminology, a transaction is a linked series of SQL queries, in
which every query must succeed. If any part of the series fails, the whole
series is abandoned, and the database remains unchanged. Transactions are
an advanced subject beyond the scope of this book. For details, see
http://dev.mysql.com/doc/refman/5.0/en/transactional-commands.html.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

691

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Select InnoDB or MyISAM from the Storage Engine drop-down menu in the Table
options section, as shown in the following screenshot (you might see different
options, but Storage Engine is the only one you’re interested in here), and click Go:

Converting a table from MyISAM to InnoDB shouldn’t cause any problems. However, if for-
eign key constraints have been defined in an InnoDB table relationship, you must first
remove them before converting from InnoDB to MyISAM. Removing a foreign key rela-
tionship simply involves reversing the process described in the next section.

Setting foreign key constraints in phpMyAdmin

When a table uses the InnoDB storage engine, phpMyAdmin adds a new option called
Relation view beneath the table structure (see Figure 16-6). This is where you define for-
eign key constraints.

Figure 16-6. The Relation view option lets you define foreign key constraints with InnoDB tables.

The foreign key constraint must always be defined in the child table. In the case of
authors and quotations, this is quotations, because it uses the authors primary key
(author_id) as a foreign key. The following instructions show you how to establish the
relationship:

1. Select the child table (quotations) in phpMyAdmin, and click the Structure tab to
display the table grid, as shown in Figure 16-6.

2. Click the Relation view link beneath the structure grid (it’s circled in Figure 16-6).
This displays the screen shown in Figure 16-7.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

692

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 16-7. Relation view lets you specify what happens when a record in a parent table is deleted
or updated.

Foreign key relationships can be established only on indexed columns. The quotations
table has two indexed columns: quote_id is the table’s primary key, and author_id is the
foreign key. As you can see in Figure 16-7, phpMyAdmin displays three drop-down menus
alongside both indexed columns. These are for you to set the foreign key constraint
options, so the ones you are interested in are alongside author_id. The first drop-down is
where you specify which indexed column you want to reference. (The underlying SQL com-
mand uses the keyword REFERENCES to establish the foreign key relationship.)

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

693

16

3. Click the down arrow on the right of the first drop-down menu.
This lists all indexed columns in InnoDB tables in the database. As
you can see from the screenshot alongside, they are listed in the
format databaseName.tableName.columnName (phpMyAdmin 2
omits the name of the database, and uses -> as a separator).
Since there are only two InnoDB tables in the database, the list is
very short, but in a larger database, it would be considerably
longer, so you need to make sure you select the right one.

4. You need to establish a reference between the author_id columns in the child
(quotations) and parent (authors) tables. Select dwcs4.authors.author_id in the
first drop-down menu alongside author_id.

5. Activate the ON DELETE drop-down menu alongside author_id. It displays the
options shown here:

This is what each option means:

CASCADE: If you delete a record in the parent table, MySQL cascades the delete
operation to the child table. So if you delete the record for Shakespeare in the
authors table, all records in the quotations table with an author_id of 32 are
automatically deleted (see Figure 16-2 earlier in the chapter). This is a silent

http://lib.ommolketab.ir
http//lib.ommolketab.ir

operation, and you have no way of restoring the records once they have been
deleted.

SET NULL: If you delete a record in the parent table, the foreign key of related
records in the child table is set to NULL. For this to work, the foreign key column
in the child table must accept NULL values. Taking the Shakespeare example
again from Figure 16-2, if Shakespeare is deleted from the authors table, the
value of author_id is set to NULL in all records that currently have a value of 32.
This leaves the quotations intact, but they are no longer related to Shakespeare.
If you subscribe to literary conspiracy theories, you could now reassign those
quotations to Christopher Marlowe.

NO ACTION: This doesn’t mean what you might expect. Some database systems
allow you to delay foreign constraint checks. NO ACTION means a delayed check,
but this is not supported in MySQL. If you select this option, MySQL treats it the
same as RESTRICT.

RESTRICT: This rejects any attempt to delete records in the parent table if
related records still exist in the child table. So, attempting to delete Shakespeare
from the authors table would fail unless all records with an author_id of 32 in
the quotations table have already been deleted.

The fifth option is to select nothing. This applies the default action, which is the
same as RESTRICT. The same options are available for ON UPDATE, although they
are less useful, especially if the foreign key is the primary key in the parent table. In
normal circumstances, you should never change the primary key of a record.
However, in the rare cases where this might be appropriate, the most useful
options are RESTRICT and CASCADE. The former prevents changes if there are
dependent records in the child table; the latter propagates the changes automati-
cally to all dependent records.

6. Set both ON DELETE and ON UPDATE to RESTRICT, and click Save.

7. When it confirms the creation of the foreign key constraint, phpMyAdmin displays
the SQL query that it used to change the table definition. It looks like this:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

694

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although the field at the top of the page shows that phpMyAdmin used ON DELETE
RESTRICT ON UPDATE RESTRICT, the Links to section gives the impression that your
instructions were ignored. This isn’t the case, because RESTRICT is the same as the default
action. In other words, the only time you need to set values for ON DELETE or ON UPDATE
is if you want to set them to either CASCADE or SET NULL.

If you need to remove a foreign key constraint (for example, when converting an InnoDB
table to MyISAM), set all drop-down menus to the default value, and click Save.

Populating the tables

Later in the chapter, I’ll show you how to build a content management system to insert,
update, and delete records from the authors and quotations tables. First, though, I’d like
to show you how to display the contents of tables linked through a foreign key. So, to save
you the trouble of typing out lots of quotations and authors’ names, I have created SQL
scripts to populate the tables automatically.

The extras folder of the download files contains four different scripts. They all contain the
same data but are designed to work with different versions of MySQL and storage engines.
If your server is running MySQL 4.1 or 5.0, use ch16_MyISAM.sql or ch16_InnoDB.sql,
depending on the storage engine that is supported. The versions of files that end in 40.sql
are for MySQL 4.0. The following instructions show you how to load them into your
database:

1. Launch phpMyAdmin, if it’s not open, and select the dwcs4 database.

2. If you are using InnoDB, to prevent errors when loading from the SQL file, select
the quotations table, and click the Drop tab. Confirm that you want to delete the
table. Do the same with the authors table. The SQL file will rebuild them for you.

You don’t need to delete the tables if you’re using MyISAM.

3. Click the Import tab at the top of the main frame (on versions of phpMyAdmin
prior to 2.7.0, click the SQL tab instead).

4. Click the Browse button alongside the File to import field, navigate to the appropri-
ate SQL file for your version of MySQL and the storage engine, and select it.

5. Click Go. That’s it!

Restoring the content of the tables
When learning, it’s a good strategy to experiment. From time to time, you may need to
restore the authors and quotations tables to their original states. To do so, select each
table in turn in phpMyAdmin, and click the Empty tab. Click OK when phpMyAdmin asks
you to confirm that you want to TRUNCATE the table. This removes all existing records in
the table. After removing all records from the authors and quotations tables, you can use
the SQL script to populate them again with the original records. With InnoDB tables,

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

695

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

use the Drop tab to delete the tables if you encounter errors when trying to reload the
contents from the SQL file.

Selecting records from more than one table
To select records from multiple tables, you need to join them—not in the literal sense but
by using SQL commands that tell the database you want to retrieve results from more than
one table. We’ll look in more detail at the basic SQL commands shortly, but first let’s try it
out for real by displaying quotations and their associated authors from the authors and
quotations tables.

The “Stroll Along the Thames” page you’ve used in several chapters has a pull quote with
a quotation from Samuel Johnson. In this exercise, you’ll replace that static quotation
with one drawn at random from the authors and quotations tables. This demonstrates
three useful techniques: how to join multiple tables, randomize the order of recordset
results, and limit the number of results. You can use an existing version of the page, as
long as it has a .php extension. However, you will probably find it easier to use the ver-
sion in examples/ch16, because it contains no other PHP script, so you can see the new
code in isolation.

1. Copy stroll_quote_start.php from examples/ch16, and save it as stroll_quote.php
in workfiles/ch16. Click Update if Dreamweaver prompts you to update links in
the page.

2. Click the plus button in the Server Behaviors panel, and select Recordset from
the menu. Because you’ll be selecting columns from more than one table, you
need to use the Recordset dialog box in Advanced mode (see Figure 16-7). If
necessary, click the Advanced button on the right of the dialog box to switch
from Simple mode.

3. Your recordset should have a meaningful name, so type getQuote in the Name field.

4. The recordset will be used in a public page, so choose the nonadministrative user
account for Connection. If you’re using the same connections as me, select
connQuery. If you have only one user account, use connAdmin as before.

If Dreamweaver inserted a SELECT query in the SQL field when you switched from
Simple mode, clear the field by selecting any code and pressing Delete. The
Recordset dialog box should now look like Figure 16-8.

The SQL field in the top half of the dialog box is where you build the query that
will be sent to the database. If you’re familiar with SQL, you can type your query
here manually, but the Database items field takes a lot of the hard work out of typ-
ing. It also reduces the likelihood of spelling mistakes.

Displaying a random quotation

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

696

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 16-8. The Advanced mode of the Recordset dialog box lets you create more complex
SQL queries.

5. In the Database items field, expand Tables. You should now see the authors,
quotations, and users tables listed. Expand quotations, highlight quotation, and
click the SELECT button, as shown here:

This starts building the SQL query. You should now see this code in the SQL field:

SELECT quotations.quotation
FROM quotations

6. Expand authors in the Database items area, and highlight first_name. Click SELECT.

7. Highlight family_name, and click SELECT. The SQL query should now look like this:

SELECT quotations.quotation, authors.first_name, authors.family_name
FROM quotations, authors

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

697

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. If you click Test now, you will see the first quotation attributed everyone listed in
the authors table, starting with Woody Allen, Matsuo Basho, and so on. Then the
second quotation attributed to each author. The Dreamweaver test shows only the
first 100 results, but if you run the same query in phpMyAdmin, you’ll see there are
2,000 results altogether—every record in the quotations table has been matched
with every record in the authors table. In other words, it produces every possible
combination.

You have just joined two tables but not in a very practical way.

9. To get the result you want, you need to add a WHERE clause that matches the for-
eign key in the quotations table to the primary key in the authors table. Highlight
author_id in the quotations tree in Database items, and click the WHERE button. This
adds WHERE quotations.author_id to the end of the SQL.

10. Expand the authors tree in Database items, and highlight the other author_id. Click
WHERE again. Each time you click WHERE, Dreamweaver always adds whichever
column is highlighted using AND, so the final line of the SQL query will now look
like this:

WHERE quotations.author_id AND authors.author_id

Although AND is often what you want in a WHERE expression, it’s not always the right
choice, so you have to replace it manually. Click inside the SQL field, and replace
AND with =. The SQL should now look like this:

11. Click the Test button now, and you’ll see that each quotation has now been cor-
rectly matched with the right name. Adding the WHERE clause uses the foreign key
to select only those records where author_id matches in both tables. Click OK to
close the Test SQL Statement panel.

12. If you click Test again, the recordset appears in exactly the same order, which is the
order the quotations were entered into the table. To change the order, select
family_name in the authors tree in Database items, and click the ORDER BY button.

The SQL query should now look like this:

SELECT quotations.quotation, authors.first_name, authors.family_name
FROM quotations, authors
WHERE quotations.author_id = authors.author_id
ORDER BY authors.family_name

13. Click the Test button again. The quotations should be ordered according to
family name.

14. Close the test panel, and add DESC at the end of the final line of the SQL query
like this:

ORDER BY authors.family_name DESC

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

698

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you test the query this time, a quotation from Wordsworth will be at the top
of the list, with the authors listed in reverse alphabetical order (DESC stands for
“descending”).

15. You want to display a random quotation in the page, so edit the last line of the SQL
query like this:

ORDER BY RAND()

This uses the MySQL function RAND() to generate a random order. Make sure there
is no space between RAND and the parentheses.

16. Since you need only one quotation to display in the page, it’s inefficient to create a
full recordset, so let’s limit the result to just one record. How do you do that?
Easy—change the final line of the SQL query like this:

ORDER BY RAND() LIMIT 1

17. Use the test panel several times to make sure you’re getting just one random quo-
tation and the associated names. Once you’re happy that everything is as expected,
click OK to close the Recordset dialog box.

18. In Design view, highlight the quotation from Samuel Johnson, open the Bindings
panel, select quotation from Recordset (getQuote), and click Insert. Then replace
Samuel Johnson’s name and the date with dynamic text for first_name, family_name,
and a space in between.

19. Save stroll_quote.php, and load it into a browser. Each time you click the
browser’s reload button, you should see a quotation picked at random from the 50
in the quotations table (see Figure 16-9). Occasionally, you’ll see the same quota-
tion twice in succession, but that’s no different from rolling two 6s twice in succes-
sion from a pair of dice.

You can check your code against stroll_quote.php in examples/ch16.

Figure 16-9. The quotations and authors’ names are drawn
seamlessly from separate tables.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

699

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The four essential SQL commands
As you have just seen, Advanced mode of the Recordset dialog box helps build SQL queries
that work with multiple tables. Using the SELECT, WHERE, and ORDER BY buttons in con-
junction with the table trees in the Database items field helps avoid spelling mistakes and
always creates unambiguous references to columns. However, it cannot do everything. Not
only do you need to hand-code some parts of SQL queries, you also need to have a rea-
sonable understanding of the basic syntax. Fortunately, you don’t need to be a SQL genius.

The Recordset dialog box handles only SELECT queries, but it’s important to know about
the four essential commands: SELECT, INSERT, UPDATE, and DELETE. The following sections
provide a brief overview of how each command is structured. Read through them to get a
basic understanding of how SQL works, and use them later as a reference. This is not an
exhaustive listing of every available option, but it concentrates on the most important
ones. I have used the same typographic conventions as the MySQL online manual at
http://dev.mysql.com/doc/refman/5.0/en (which you may also want to consult):

Anything in uppercase is a SQL command.

Expressions in square brackets are optional.

Lowercase italics represent variable input.

A vertical pipe (|) separates alternatives.

When working with SQL, you should follow these simple rules:

Keywords in SQL commands are case-insensitive. Although the convention is to use
uppercase, SELECT, select, and SeLeCt are all acceptable.

Whitespace is ignored. This means you can split queries over several lines for
increased readability.

The one exception where whitespace is not ignored concerns MySQL functions,
such as RAND(). There must be no whitespace between the function name and the
opening parenthesis.

Each section of a query must be in the same order as presented here. For instance,
in a SELECT query, LIMIT cannot come before ORDER BY.

Pay particular attention to punctuation. A missing or superfluous comma will cause
a query to fail; so will missing quotes around a string used in a WHERE expression.
However, you should read carefully “Using variables in a SQL query” later in this
chapter. Since version 8.0.2, Dreamweaver automatically adds quotes where neces-
sary around runtime variables. This subject is also discussed in depth in Chapter 17.

SELECT

SELECT is used for retrieving records from one or more tables. Its basic syntax is as follows:

SELECT [DISTINCT] select_list
FROM table_list
[WHERE where_expression]

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

700

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[ORDER BY col_name | formula] [ASC | DESC]
[LIMIT [skip_count,] show_count]

The DISTINCT option tells the database you want to eliminate duplicate rows from the
results.

select_list is a comma-separated list of columns that you want included in the result.
table_list is a comma-separated list of tables from which the results are to be drawn.
For example, the following selects the first_name and family_name columns from the
users table:

SELECT first_name, family_name
FROM users

The shorthand to retrieve all columns is an asterisk (*) like this:

SELECT * FROM users

The preceding example selects all columns from the users table. Although this can be use-
ful, particularly when dealing with small tables, it’s inefficient. Inexperienced developers
frequently create tables with a large number of columns and records and use * to select
everything even when they need only one or two items. If you have ten fields but need the
data from only five of them, your query takes twice as long to execute. It’s better to be
explicit when formulating SELECT queries: get only the data you actually need.

When working with multiple tables, you must use unambiguous references if the same col-
umn name is used in more than one table. The syntax for unambiguous references is to
use the table name followed by a period separating it from the column name like this:

quotations.family_name

In Advanced mode, the Dreamweaver Recordset dialog box always uses this syntax.
Unambiguous references are not required unless there’s a conflict, but it’s considered
good practice to use them.

When the query draws data from more than one table, all tables you want to be included
in the results must be listed.

The WHERE clause specifies search criteria, for example:

SELECT first_name, family_name
FROM users
WHERE user_id = 2

SELECT quotations.quotation, authors.first_name, authors.family_name
FROM quotations, authors
WHERE quotations.author_id = authors.author_id

WHERE expressions can use comparison, arithmetic, logical, and pattern-matching opera-
tors. The most important ones are listed in Table 16-2.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

701

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 16-2. The main operators used in MySQL WHERE expressions

Comparison Arithmetic

< Less than + Addition

<= Less than or equal to - Subtraction

= Equal to * Multiplication

<> Not equal to / Division

!= Not equal to DIV Integer division

> Greater than % Modulo

>= Greater than or equal to

IN() Included in list

BETWEEN min AND max Between (and including) two values

Logical Pattern matching

AND Logical and LIKE Case-insensitive match

&& Logical and NOT LIKE Case-insensitive nonmatch

OR Logical or LIKE BINARY Case-sensitive match

|| Logical or (best avoided) NOT LIKE BINARY Case-sensitive nonmatch

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

702

Table 16-2 contains two operators that are not part of standard SQL: != (not equal to) and
|| (logical or). The first of these is widely used in other major database systems, but I sug-
gest you avoid using || instead of OR because it has a completely different meaning in
standard SQL.

DIV is the counterpart of the modulo operator. It produces the result of division as an inte-
ger with no fractional part, whereas modulo produces only the remainder.

5 / 2 /* result 2.5 */
5 DIV 2 /* result 2 */
5 % 2 /* result 1 */

IN() evaluates a comma-separated list of values inside the parentheses and returns true if
one or more of the values is found. Although BETWEEN is normally used with numbers, it
also applies to strings. For instance, BETWEEN 'a' AND 'd' returns true for a, b, c, and d

http://lib.ommolketab.ir
http//lib.ommolketab.ir

(but not their uppercase equivalents). Both IN() and BETWEEN can be preceded by NOT to
perform the opposite comparison.

LIKE, NOT LIKE, and the related BINARY operators are used for text searches in combina-
tion with the following two wildcard characters:

% matches any sequence of characters or none.

_ (an underscore) matches exactly one character.

So, the following WHERE clause matches Dennis, Denise, and so on, but not Aiden:

WHERE first_name LIKE 'den%'

To match Aiden, put % at the front of the search pattern. Because % matches any sequence
of characters or none, '%den%' still matches Dennis and Denise. To search for a literal per-
centage sign or underscore, precede it with a backslash (\% or _). The next chapter cov-
ers the use of wildcard characters in more detail.

Conditions are evaluated from left to right but can be grouped in parentheses if you want
a particular set of conditions to be considered together. For example, let’s say you want to
find all the Smiths whose first name begins with “Den” or “Dan.” The following WHERE
clause would produce the wrong results:

WHERE first_name LIKE 'den%' OR first_name LIKE 'dan%'
AND family_name = 'Smith'

The OR takes precedence, so the WHERE clause succeeds as soon as first_name matches
“Den” or “Dan.” As a result, you not only get Dennis Smith but Daniel Short as well. Dan
may be a nice guy, but

To ensure that the AND part of the WHERE clause is also evaluated, you need to group the
first two conditions in parentheses like this:

WHERE (first_name LIKE 'den%' OR first_name LIKE 'dan%')
AND family_name = 'Smith'

ORDER BY specifies the sort order of the results. This can be specified as a single column, a
comma-separated list of columns, or an expression such as RAND(), which randomizes the
order. The default sort order is ascending (a–z, 0–9), but you can specify DESC (descending)
to reverse the order.

LIMIT followed by one number stipulates the maximum number of records to return. If
two numbers are given separated by a comma, the first tells the database how many rows
to skip. For instance, LIMIT 10, 10 produces results 11–20. If fewer results exist than the
limit specified, you get however many fall within the specified range. You don’t get a series
of empty or undefined results to make up the number.

For more details on SELECT, see http://dev.mysql.com/doc/refman/5.0/en/select.html.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

703

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

INSERT

The INSERT command is used to add new records to a database. The general syntax is as
follows:

INSERT [INTO] table_name (column_names)
VALUES (values)

In MySQL, the word INTO is optional; it simply makes the command read a little more like
human language. The column names and values are comma-delimited lists, and both must
be in the same order. So, to insert the forecast for New York (blizzard), Detroit (smog), and
Honolulu (sunny) into a weather database, this is how you would do it:

INSERT INTO forecast (new_york, detroit, honolulu)
VALUES ('blizzard', 'smog', 'sunny')

The reason for this rather strange syntax is to allow you to insert more than one record at
a time. Each subsequent record is in a separate set of parentheses, with each set separated
by a comma:

INSERT INTO numbers (x,y)
VALUES (10,20),(20,30),(30,40),(40,50)

You’ll use this multiple insert syntax in the next chapter. Any columns omitted from an
INSERT query are set to their default values. Never set an explicit value for the primary key
where the column is set to auto_increment; leave the column name out of the INSERT state-
ment. For more details, see http://dev.mysql.com/doc/refman/5.0/en/insert.html.

UPDATE

This command is used to change existing records. The basic syntax looks like this:

UPDATE table_name
SET col_name = value [, col_name = value]
[WHERE where_expression]

The WHERE expression tells MySQL which record or records you want to update (or perhaps
in the case of the following example, dream about):

UPDATE sales SET q1_2009 = 25000
WHERE title = 'Essential Guide to Dreamweaver CS4'

For more details on UPDATE, see http://dev.mysql.com/doc/refman/5.0/en/update.html.

DELETE

DELETE can be used to delete single records, multiple records, or the entire contents of a
table. The general syntax for deleting from a single table is as follows:

DELETE FROM table_name [WHERE where_expression]

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

704

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although phpMyAdmin prompts you for confirmation before deleting a record, MySQL
itself takes you at your word and performs the deletion immediately. DELETE is totally
unforgiving—once the data is deleted, it is gone forever. The following query will delete all
records from a table called subscribers where the date in expiry_date has already
passed (as you can probably guess, NOW() is a MySQL function that returns the current
date and time):

DELETE FROM subscribers WHERE expiry_date < NOW()

For more details, see http://dev.mysql.com/doc/refman/5.0/en/delete.html.

Managing content with multiple tables
Now that you’ve seen how to use a foreign key to join tables and retrieve related records,
the great mystery in life remains: “How do I insert the right foreign key in the first place?”
The answer is disarmingly simple: you look it up in the database. Before I describe how to
do it, let me anticipate another question: “What happens if the record I want to use as a
foreign key doesn’t yet exist?”

Rather than talk in abstract terms, let’s use the authors and quotations tables as concrete
examples. The authors table is the parent, and quotations is the child.

You can add a new record to authors or update an existing one at any time, because it isn’t
dependent on any other table. Deleting, however, is a different matter, because you shouldn’t
delete a record from authors if it has any dependent records in the child table (quotations).
If you’re using InnoDB tables, you can’t anyway, but we’ll come back to that issue later.

Adding a new record to the quotations table presents us with a chicken-and-egg situa-
tion. If the author has already been registered in the authors table, it’s easy to look up the
author’s primary key and insert it in the foreign key column. What happens, though, when
you want to insert a new quotation and a new author at the same time? The SQL INSERT
command works with only one table, so the record in the parent table must exist before
you can use its primary key as a foreign key in a child table. However, there’s a simple way
around this. The author_id column in the quotations table (where author_id is the for-
eign key) accepts NULL values. This means you can insert a new quotation without assign-
ing the foreign key. After registering the new author, you simply update the record in the
quotations table to add the foreign key.

With PHP conditional logic, it is possible to build an insert form with the option to add a
new author at the same time as a quotation. I have chosen this simpler approach so that
you can concentrate on the basic technique of inserting the foreign key in a child table.
You need four management pages for each table—insert, list, update, and delete—so you
have plenty on your hands without adding further complications.

Although the WHERE clause is optional in both UPDATE and DELETE, you should be aware
that if you leave WHERE out, the entire table is affected. This means that a careless slip with
either of these commands could result in every single record being identical—or wiped out.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

705

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inserting new quotations

So, what’s the magic secret of looking up the primary key from the authors table so you
can use it as a foreign key? In the insert form for a new quotation, you have a drop-down
menu that’s dynamically populated by a recordset containing the names of all the authors.
The drop-down menu displays the name of each author, and the value attribute contains
the author’s primary key. Simple, really. If you’re still confused, I promise that all will come
clear once you see the insert form in action.

First, you need to design the insert form for a new quotation. It contains a text area for the
quotation, a select menu for the authors’ names, and a submit button.

1. Create a new PHP page, and save it in workfiles/ch16 as quote_insert.php.

2. Attach the form.css style sheet from examples/ch16 to give the page some mini-
mal styling. Give the page a suitable title and heading, insert a form, and lay it out
using the following illustration as a guide:

Creating the quotation insert form

From now on, I will assume you are familiar with all the basics of building web pages
and forms in Dreamweaver and will concentrate my instructions mainly on the server
behaviors that interact with the database. I’ll also assume you know how to access the
Recordset dialog box from the Server Behaviors panel, the Data tab of the Insert bar, or
the Data Objects submenu of the Insert menu. I’ll just tell you to open it in Advanced or
Simple mode.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

706

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When inserting the form, set Method to POST, and leave Action empty.

Note that the names I’ve chosen for the text area and the list/menu are the same
as the column names in the database. This makes working with the Insert Record
server behavior much simpler.

The link to quote_list.php will display a list of all quotations (you’ll create this page
later). You can check your code against quote_insert_01.php in examples/ch16.

Before you can add the Insert Record server behavior, you need to populate the
author_id select menu with each author’s name and primary key.

When building drop-down menus in a static web page, you have to go through the tedious
process of typing in all the values and labels manually. With a dynamic site, all this is done
automatically. First, you create a recordset containing the details you want displayed in the
menu. Dreamweaver then does the rest by creating a PHP loop that runs through the
recordset filling in the details for you.

1. Continue working in the same page. Open the Recordset dialog box in Advanced
mode. In the Name field, type listAuthors, and select connAdmin from the
Connection drop-down menu. The recordset doesn’t require administrative privi-
leges, but the rest of the form does, so it makes more sense to use the same
MySQL connection throughout.

2. Build the SQL query by expanding Tables and then authors in the Database items
area at the bottom of the dialog box. Highlight author_id in the authors table tree,
and click the SELECT button. Do the same with first_name and family_name.

3. With family_name still highlighted, click ORDER BY. Do the same with first_name.
The top half of the Recordset dialog box should now look like this:

This selects all columns from the authors table and orders them first by
family_name and then by first_name. Click Test to make sure you get the right
results. Close the test panel, and click OK to save the recordset.

4. To populate the author_id drop-down menu with the recordset results, you need
to open the Dynamic List/Menu dialog box. There are at least four ways to do this:
from Insert ➤ Data Objects ➤ Dynamic Data ➤ Dynamic Select List, from the Dynamic
Data submenu on the Data tab of the Insert bar, from the Server Behaviors panel
(choose Dynamic Form Elements ➤ Dynamic List/Menu), and the quickest way of

Populating a drop-down menu from a database

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

707

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Whichever method you use, the Dynamic List/Menu dialog box automatically selects
the author_id menu because it’s the only one on the page.

5. In addition to the results from the database, you need a default option for the
drop-down menu. Click the plus button alongside Static options. Make sure the
Value field is blank, and insert Not registered in the Label field. This ensures that the
foreign key will be set to NULL if Not registered is selected when inserting a new
record.

6. Activate the Options from recordset drop-down menu, and select listAuthors. This
will automatically populate the Values and Labels drop-down menus with the
names of the available columns in your recordset. Set Values to author_id and
Labels to family_name. Leave the final field (Select value equal to) blank. This is used
when you want a dynamic value to be displayed automatically. You’ll use it later
when building the update form. The settings in the Dynamic List/Menu dialog box
should be the same as in Figure 16-10. Click OK.

7. Save quote_insert.php, and test it in a browser. Activate the drop-down menu,
and you will see that it has been populated with all family names from the authors
table. If you view the underlying code in your browser, you will also see that the
author_id has been used as the value of each <option> tag. If necessary, check
your code against quote_insert_02.php.

Give yourself a bonus point if you spotted an apparent inconsistency with what I said in
Chapter 9. The value attribute of the <option> tag is optional in a drop-down menu. If
it’s omitted, the label is submitted instead. So, how does “Not registered” become NULL?
The Insert Record server behavior knows that the author_id column uses the INT
datatype, and it converts any value that’s not a whole number to NULL to protect the
integrity of your data.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

708

all—through the Property inspector. Highlight the author_id menu in Design view,
and click the Dynamic button, as shown here:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 16-10. The Dynamic List/Menu dialog box allows you to use only
one field as the label for each item.

This is impressive, but it’s far from ideal. The Dynamic List/Menu dialog box won’t let you
choose more than a single field to populate the labels of the drop-down menu. A simple
way to get around this is to dive into Code view, find the dynamic text object for
family_name, and use the Bindings panel to insert first_name and a space alongside it.
However, there’s a much cooler way to do it—and that’s to get MySQL to manipulate the
data for you. All it requires is a function and an alias.

Using a MySQL function and alias to manipulate data
Many beginners use SQL to extract raw data and then rely on PHP or another server-side
language to reformat it, whereas SQL is actually capable of doing most of the transforma-
tion itself. MySQL has an extensive range of functions (http://dev.mysql.com/doc/
refman/5.0/en/functions.html) that allow you to manipulate the data in your tables in
many ways. The data stored in the table remains unchanged, but you can use functions to
perform calculations, format text and dates, and much, much more.

MySQL has two functions that concatenate (join together) strings, namely:

CONCAT(): The arguments passed to CONCAT() can be literal strings (in quotes) or
column names (without quotes). When a column name is used, the value of the
current record is inserted into the string. CONCAT() returns NULL if any argument
is NULL.

CONCAT_WS(): This stands for “concatenate with separator.” The first argument is a
separator that you want inserted between the remaining arguments, which can be
literal strings or column names. If the separator argument is NULL, CONCAT_WS()
returns NULL, but it skips any NULL values in the remaining arguments.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

709

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Since some of the first_name fields contain NULL, you can’t use CONCAT() to join the
first_name and family_name columns, but CONCAT_WS() is ideal. To add a space between
the two columns, you pass a pair of quotes with a space between them as the first argu-
ment like this:

CONCAT_WS(' ', first_name, family_name)

When manipulating data as part of a SQL query, you need a convenient way of referring to
the result of the calculation or function. You do this by creating an alias. An alias is simply
a temporary name that becomes part of the recordset. You assign an alias using the AS
keyword. The basic syntax looks like this:

FUNCTION_NAME(column_name, other_arguments) AS alias_name

In this section, you’ll use CONCAT_WS() to join the first_name and family_name columns
and assign the result to an alias called author.

1. Highlight Recordset (listAuthors) in the Server Behaviors panel, and double-click to
edit the recordset.

2. Click inside the SQL field, and amend the SQL query like this (new code in bold):

SELECT authors.author_id,
CONCAT_WS(' ', authors.first_name, authors.family_name) AS author
FROM authors
ORDER BY authors.family_name, authors.first_name

Make sure there is no space before the opening parenthesis of CONCAT_WS()—
leaving a space before the opening parenthesis of a MySQL function generates a
SQL error.

3. Click the Test button. You should now see the authors’ names correctly formatted
as a single field called author, as shown in Figure 16-11. You can now use this to
populate the Labels field in the Dynamic List/Menu dialog box.

Figure 16-11. The results are displayed using the alias instead of the original column names.

Combining the contents of two columns as a single field

Don’t attempt to use + to concatenate strings. In MySQL, + is exclusively an arithmetic
operator.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

710

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Close the test panel, and click OK to save the revised recordset. If you look at the
Server Behaviors panel, you’ll notice there’s a red exclamation mark next to
Dynamic List/Menu (author_id). This is because the recordset no longer produces a
result called family_name.

5. Highlight Dynamic List/Menu (author_id) in the Server Behaviors panel, and double-
click to edit it. You will be presented with a warning that the column family_name
was not found. Click OK, and select author as the value for the Labels field. Click OK
to close the Dynamic List/Menu dialog box.

6. Save the page, and preview it in a browser again. This time, the authors’ names should
be correctly displayed. You can check your code against quote_insert_03.php.

All that remains to complete the quotation insert form is to apply the Insert Record server
behavior.

Applying the Insert Record server behavior to a custom form
The Insert Record dialog box analyzes both your form and your database table, matching
form fields with table columns of the same name. So if you adopt the practice of giving
each form field the same name as its respective column, Dreamweaver does almost every-
thing automatically for you. Even if there is a discrepancy between form and table names,
it’s easy to fix inside the dialog box.

These instructions take you through the process of applying an Insert Record server
behavior to quote_insert.php. Continue working with the same file as in the preceding
section.

1. With quote_insert.php open in the Document window, click the plus button in
the Server Behaviors panel, and select Insert Record from the menu that appears.
Alternatively, use the menu option, Insert ➤ Data Objects ➤ Insert Record ➤ Insert
Record, or click the Insert Record button on the Data tab of the Insert bar.

2. This opens the Insert Record dialog box (see Figure 16-12). Since there’s only one
form on the page, the dialog box automatically selects form1 as the value for
Submit values from.

3. The next field asks you to select the database connection. Since inserting records
requires administrative privileges, choose connAdmin from the Connection drop-
down menu.

4. As soon as you select the database connection, the Insert table drop-down menu is
populated with a list of all tables for which the connection has INSERT privileges.
Dreamweaver lists them in alphabetical order, so you need to select quotations
from the drop-down menu.

Applying the Insert Record server behavior to the quotations table

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

711

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Dreamweaver automatically populates the Columns field, matching the form fields
with their respective columns, as shown in Figure 16-12.

Figure 16-12. The Insert Record dialog box matches form fields with table columns.

The first entry might come as a bit of a surprise, because it describes quote_id as
an Unused Primary Key. This is nothing to worry about. When you defined the table,
you set the primary key column to increment automatically, so MySQL simply
assigns the next available number.

As long as the remaining form fields have the same name as their respective
columns, you don’t need to make any changes to the Columns field. However, if any
columns are listed as Does Not Get a Value (as shown in Figure 16-13), read the next
section before proceeding to step 6.

6. After the record has been inserted into the database, you’ll display a list of all
records in quote_list.php, so enter the file name into the field labeled After
inserting, go to, and click OK to apply the Insert Record server behavior.

You can check your code against quote_insert_04.php in examples/ch16.

Applying the Insert Record server behavior is so simple, I think it offers a much better
solution than the Record Insertion Form Wizard, because it gives you greater control over
the look of your site. A potential hazard with creating your own forms is that
Dreamweaver might fail to match fields automatically with their respective table columns.
However, it’s easy to fix, as described in the next section.

Setting values manually in the Columns field
As you have just seen, Dreamweaver normally matches the names of form fields automat-
ically with their respective columns in the Insert Record dialog box. However, you might
need to set the value manually for one or more columns in two scenarios, namely:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

712

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The names of the form fields and columns don’t match—either through mis-
spelling or the need to use an existing form that wasn’t designed with the database
table in mind.

You want Dreamweaver to insert Y, N, –1, 0, or 1 into the database instead of the
text of the value attribute of a checkbox.

Figure 16-13 shows what happened when I misnamed the Author drop-down menu in
quote_insert.php. Dreamweaver was looking for a field named author_id to match the
column name, but the name I had used was authorID—close enough for a human to rec-
ognize but sufficiently different to confuse a computer.

Figure 16-13. If the field name doesn’t match a table column, you need to set the value
manually.

Changing the value manually is very easy. Just select the column you want to change in the
Columns field, and open the Value drop-down menu immediately below to display a list of
available form fields. Select the appropriate one, as shown in the following screenshot:

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

713

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you select the field that contains the value you want to insert into the column,
Dreamweaver automatically uses the column’s data type to set the value of the Submit as
drop-down menu.

The only time you should ever need to change the value
of the Submit as drop-down menu is if you want
Dreamweaver to insert abbreviated values for a check-
box. As you can see from the screenshot alongside, the
Submit as drop-down menu has three options for
Checkbox. Select one of them if you want the first value
to be inserted when the checkbox is selected and the
second value to be inserted for an unselected checkbox.

This option works only for single checkboxes, not for checkbox groups. I’ll show you how
to handle checkbox groups in the next chapter.

Inserting new authors in the parent table

Since the authors’ names are in a separate table, it’s vital to ensure you don’t insert the
same name twice. Nothing is stopping you from inserting duplicate quotations either, but
it won’t really matter unless you decide to use quote_id as a foreign key in another table.
Adding a unique index to the quotation column, as you did with the username column in
the previous chapter, is not a good idea, because the spelling and punctuation would
need to be identical to prevent duplicates. More importantly, attempting to index a col-
umn that contains a lot of text is wasteful of resources. If you end up with the same quo-
tation more than once, you can delete duplicate entries in a child table without
destroying the referential integrity of your database. The same cannot be said for the par-
ent table.

So, what about using a unique index for authors? That won’t work, because you need to
check the values of two fields. Instead, I’ll show you how to build the PHP logic yourself. In
the process, you’ll learn how to pass PHP variables to a SQL query, which forms the basis
of all search operations.

First you need to create the form to insert new authors. It requires two text fields and a
submit button.

1. Create a new PHP page, save it in workfiles/ch16 as author_insert.php, attach
the form.css style sheet, and lay out the form as shown in the following
screenshot:

Building the basic insert form

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

714

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

715

16

2. Apply an Insert Record server behavior in the same way as you did for
quote_insert.php, this time using the following values in the Insert Record dia-
log box:

Submit values from: form1

Connection: connAdmin

Insert table: authors

After inserting, go to: author_list.php

Compare your code, if necessary, with author_insert_01.php in examples/ch16.

As it stands, author_insert.php is now ready to insert new records into the authors table.
However, it doesn’t validate the input in any way. You can use the Spry validation widgets
described in Chapter 9 to make sure that required fields are filled in, but this won’t pre-
vent the insertion of duplicate records. For that, you need to roll up your sleeves and dive
into Code view.

Using variables in a SQL query
To find out whether an author has already been registered, you need to check the authors
table to see whether any record matches the values submitted in the first_name and
family_name fields. In other words, you need to search the database (or in this case, a sin-
gle table). If there’s a match, you need to stop the Insert Record server behavior from exe-
cuting. Otherwise, the insert operation can go ahead. Since you don’t know what will be
entered in the form fields, you need to pass their values as variables to the query that cre-
ates the recordset.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you are upgrading from a version of Dreamweaver earlier than Dreamweaver 8.0.2, pay
careful attention to the instructions in this section, because the way you do this changed
in a subtle but important way. Continue working with author_insert.php.

1. Open the Recordset dialog box in Advanced mode. Name the recordset
checkAuthor, and select connAdmin in the Connection field.

2. Expand Tables in the Database items area, expand the authors table, select each of
the columns in turn, and click SELECT. Highlight first_name, and click WHERE. Then
do the same with family_name. You should now have a SQL query that looks like this:

SELECT authors.author_id, authors.first_name, authors.family_name
FROM authors
WHERE authors.first_name AND authors.family_name

The WHERE expression needs to search for the names entered in the first_name
and family_name fields. Although you don’t know what the names will be, they will
be stored in the $_POST array when the Insert author button is clicked. Instead of
entering the PHP variables directly in the SQL query, you need to define runtime
variables in the Variables area in the center of the Recordset dialog box.
Dreamweaver replaces these variables with PHP format specifiers (normally %s or
%d) and uses the GetSQLValueString() function (see “Inspecting the server behav-
ior code” in Chapter 15) to handle quotes and other characters that might cause
problems with the SQL query. It also automatically adds quotes around text values.
This is an important difference from standard SQL.

The runtime variables are not PHP variables, so they shouldn’t begin with a dollar
sign. You can use any alphanumeric characters to create the variables, as long as
they don’t clash with the names of columns or any other part of the SQL query. I
normally call the runtime variables var1, var2, and so on, but another common
convention is to use col1, col2, and so on.

3. I’m going to use var1 and var2 as my runtime variables, so change the last line of
the SQL query like this:

WHERE authors.first_name = var1 AND authors.family_name = var2

Dreamweaver uses these variables to prevent SQL injection, which exploits
poorly written scripts to inject spurious code into SQL queries. SQL injection can
be used to gain unauthorized access to a database and even wipe out all the
stored data. In 2007, Adobe made significant changes to the way runtime vari-
ables are handled. If you have pages created in Dreamweaver 8.0.1 or earlier
that have SQL queries with runtime variables, you need to remove the PHP code
completely and apply the server behavior again. The code is incompatible with
Dreamweaver CS4.

Passing form values to a SQL query

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

716

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. You now need to define the runtime variables. Click the plus button alongside the
Variables label in the Recordset dialog box. This opens the Add Variable dialog box,
which has the following four fields:

Name: This is the name of the runtime variable you want to define.

Type: This is a drop-down menu with four options: Integer, Text, Date, and
Floating point number. Integer and Text are self-explanatory. The Date option
doesn’t have any practical use in PHP, so you can ignore it. Floating point number
accepts numbers with or without a decimal fraction. (In Dreamweaver 8.0.2 and
CS3, Integer and Floating point number were called Numeric and Double, respec-
tively. The change in names is for clarity only; it doesn’t affect the code gener-
ated by Dreamweaver.)

Default value: As you’ll see in the next chapter, Dreamweaver handles this value
in an unexpected way. The only time it’s used is when you click the Test button
in the Recordset dialog box or when the page first loads. You must enter a value
in this field, because Dreamweaver uses it to prevent a MySQL error if the vari-
able defined as Runtime value doesn’t exist. Unless you want to display a default
recordset result when a page first loads, set this to -1 or anything that produces
no results.

Runtime value: This is the value you want the runtime variable to represent when
the SQL query is submitted.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

717

16

5. When the form is submitted, you want var1
to use the value in the first_name field, so
set Runtime value to $_POST['first_name'].
Unless you want to check the SQL with the
Test button, enter anything in the Default value
field. Here are the settings that I used:

PHP is case-sensitive, so make sure $_POST is
all uppercase. Click OK.

6. Define var2 in the same way, using
$_POST['family_name'] as Runtime value. The
central section of the Recordset dialog box should look like this:

7. Click OK to close the Recordset dialog box, and save author_insert.php. You can
check your code against author_insert_02.php.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The recordset you created in the preceding section checks whether there’s already an
author of the same name registered in the table. Unfortunately, Dreamweaver puts the
code for a recordset immediately above the DOCTYPE declaration, so it’s after the Insert
Record server behavior. I know what you’re thinking, but it doesn’t matter which order you
enter them. Dreamweaver always puts recordsets beneath Insert Record and Update
Record server behaviors, so you need to move it manually.

1. Open Code view. Locate the section of code in the following screenshot:

Preventing duplicate entries

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

718

This is the code for the checkAuthor recordset. You can easily identify it, because
the first line begins with $var1_checkAuthor, which is the way Dreamweaver
defines var1, which you created in step 5 of the previous section. The part of the
code that interacts with the database begins with mysql_select_db on line 63 and
continues to the end of the line that reads as follows:

$totalRows_checkAuthor = mysql_num_rows($checkAuthor);

As I explained in the previous chapter, $totalRows_recordsetName tells you how many
records were retrieved by the recordset. So, you can use $totalRows_checkAuthor to
determine whether a record already exists for the same author. If the number of rows
is zero, there are no matching records, and you can safely insert the new author. But
if any matching records are found, you know it’s a duplicate, so you need to skip the
insert operation and display a warning.

2. Highlight the code shown on lines 55–67 in the screenshot, and cut them to the
clipboard.

3. Scroll up about 17 lines, and paste the recordset in the position indicated here:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Make sure your cursor is at the end of the code you have just pasted, and press
Enter/Return to make room to insert the following code highlighted in bold:

$totalRows_checkAuthor = mysql_num_rows($checkAuthor);
// assume that no match has been found
$alreadyRegistered = false;

// check whether recordset found any matches
if ($totalRows_checkAuthor > 0) {
// if found, reset $alreadyRegistered
$alreadyRegistered = true;

} else {
// go ahead with server behavior

if ((isset($_POST["MM_insert"])) && ($_POST["MM_insert"] == "form1")) {

5. Position your cursor right at the end of the code shown on line 39 in the previous
screenshot (it should now be around line 61). This is the beginning of the Insert
Record server behavior. Click the Balance Braces button on the Coding toolbar (or
press Ctrl+’/Cmd+’) to find the end of the server behavior, and insert a closing
brace (}) to match the opening one of the else block at the end of the code in
step 4.

This prevents the Insert Record server behavior from running if a matching record
is found in the authors table.

6. All that remains now is to display a warning message if the insert is abandoned.
Scroll down until you find the following code (around line 87):

<h1>Insert new author</h1>

7. Add the following code immediately after it:

<?php
if ($_POST && $alreadyRegistered) {
echo '<p class="warning">'.$_POST['first_name'].' '. ➥

$_POST['family_name'].' is already registered</p>';
}
?>

This section of code will run only if the $_POST array contains any values (in other
words, the insert form has been submitted) and if $alreadyRegistered has been
set to true.

8. Save the page, and preview it in a browser. Try inserting a name that you know
already exists in the table, such as William Shakespeare. You should see a warning
that William Shakespeare is already registered.

Note that false and true in this code block are keywords. They must not be
enclosed in quotes.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

719

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Then try a name you know hasn’t been registered. You’ll see a warning that
author_list.php wasn’t found (you haven’t created it yet), but when you reload
quote_insert.php, the new name should be listed in the drop-down menu of
authors’ names. Check your code against author_insert_03.php if you have any
problems.

Paging through a long list of database results

As you have already seen, the way to update and delete records is to create a list of all
records with EDIT and DELETE links that pass the record’s primary key to the update or
delete form through a query string appended to the URL. The authors table has a lot of
records in it, so we’ll improve the basic technique by adding a recordset navigation bar,
which lets you page through a long set of search results a specified number of records at
a time.

To save space and time, I have created the basic code for the page to display a list of
authors. Refer to Chapter 14 if you need to refresh your memory on how to build this sort
of page.

1. Copy author_list_01.php from examples/ch16, and save it as author_list.php in
workfiles/ch16. The page has a recordset called listAuthors, which retrieves
everything from the authors table, and the EDIT and DELETE links point to
author_update.php and author_delete.php with the author_id primary key
appended as a query string.

2. The page doesn’t yet have a repeat region, so insert your cursor anywhere in the
second row of the table, and click the <tr> tag in the Tag selector at the bottom of
the Document window to select the entire row. Choose Repeat Region from the
Server Behaviors panel. Alternatively, use the Data tab of the Insert bar or the Data
Objects submenu of the Insert menu. Set the repeat region to show 15 records at
a time.

3. Before inserting the recordset navigation bar, you need to make sure your insertion
point is in the right place. Select <table> in the Tag selector, and press your right
arrow key once to move the insertion point outside the table. Then select
Recordset Navigation Bar from the Data tab of the Insert bar, as shown in the fol-
lowing screenshot (or select Insert ➤ Data Objects ➤ Recordset Paging ➤ Recordset
Navigation Bar):

Inserting a recordset navigation bar

Although this is an adequate safeguard for a basic content management sys-
tem, it won’t prevent you from entering similar names or misspelled ones.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

720

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

721

16

4. The Recordset Navigation Bar dialog box has two settings. The first lets you choose
which recordset you want to use. There’s only one on the current page, so
listAuthors is selected automatically. The other setting lets you choose whether to
use text or images. Select Images, and click OK.

5. The recordset navigation bar is inserted beneath the table that displays the record-
set. As you can see from the following screenshot, it’s a rather enigmatic jumble of
images with gray tabs on top:

The HTML markup of the recordset navigation bar is a simple table. It’s up to you
to style it with CSS.

6. Click anywhere in the recordset navigation bar, and click the <table> tag in the Tag
selector to select the whole table. Give the navigation bar an ID by typing recNav in
the Table Id field in the Property inspector. Now, click the New CSS Rule icon at the
bottom right of the CSS Styles panel, and create a rule for #recNav (the New CSS
Rule dialog box automatically suggests the selector name if the navigation bar table
is still selected).

For the purposes of this exercise, select This document only to embed the rule in the
<head> of the page. In the Box category, set Width to 400 px, and click OK. This is
50 pixels narrower than the table that contains the recordset results, but it seems
to fit better.

7. A simple way of formatting the recordset navigation bar is to click inside the first
cell to the right of the double arrow image and insert a space. Next, hold down the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

mouse button and drag-select the first two table cells. Merge the two cells by click-
ing the Merge selected cells icon in the Property inspector:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

722

8. Do the same with the third and fourth cells by inserting a space to the right of the
arrow in the third cell and merging the two cells. Finally, create a style rule (I used
a class called textRight with the rule text-align: right) to move the right
arrows to the right edge of the table.

A quick way to create and apply the textRight class to the merged cells is to select
the CSS button in the Property inspector with the cells still selected. In the Targeted
Rule drop-down menu, select <New CSS Rule>, and click the Align Right button, as
shown in the following screenshot:

In the New CSS Rule dialog box, choose Class (can apply to any HTML element) as
the Type Selector, and type textRight in the Selector Name field. When you click OK,
the class is created and automatically applied to the current selection.

9. Save author_list.php, and test it in a browser. You should see two arrows at the
bottom right of the list of authors, as shown here:

Click the single arrow, and you’ll see the continuation of the list of authors,
together with arrows at the bottom left of the table for you to navigate back. The
double arrows take you to the beginning and end of the list—pagination for a long
list of records made easy!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. There’s just one thing—the images are surrounded by ugly blue lines because
they’re links. To get rid of the lines, create a new CSS style rule. The quickest way
do this is to go into Code view and add the following rule to the <style> block in
the <head> of the page:

a img {
border: none;

}

When you view the page again, the ugly blue border around the images is gone.

You can check your code against author_list_02.php in examples/ch16.

Now that you have a list of all authors registered in the database, you can adapt the insert
form to handle updates. It’s quicker to base the update page on author_insert.php,
instead of building the whole page from scratch.

Adapting the insert form involves removing the Insert Record server behavior—a simple,
clean operation that involves just two clicks. You then create a recordset to retrieve the
details of the record you want to update and bind the results to the fields in the form. This
displays the existing contents of the record ready for editing. Finally, you apply the Update
Record server behavior and move the code into the space originally occupied by the Insert
Record server behavior.

1. Open author_insert.php, and save it (File ➤ Save As or Ctrl+Shift+S/Shift+Cmd+S)
as author_update.php.

2. You now have an exact copy of author_insert.php. Change the title and heading
to Update Author. Use the Property inspector to change the Button name and Value
of the submit button to update and Update author, respectively.

3. In the Server Behaviors panel, highlight Insert Record, and click the minus button to
delete it. Make sure you delete only the Insert Record server behavior, because you
still need the checkAuthor recordset.

If you alter the code of a Dreamweaver server behavior, its name disappears
from the Server Behaviors panel, or a red exclamation mark appears alongside,
indicating the code is no longer editable through the server behavior’s dialog
box. However, when building the insert form, you simply moved the recordset
code and wrapped the Insert Record server behavior in an else clause, without
altering the actual code. Consequently, they still remain fully accessible through
the Server Behaviors panel. When you remove the Insert Record server behavior
in this way, the conditional statement you added to the insert form remains
intact, ready for reuse in this page.

Adapting the author insert form for updates

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

723

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. An update form always needs a recordset for the Update Record server behavior to
work with. Open the Recordset dialog box in Simple mode, and use the settings
shown in the following screenshot. Click OK to create the getAuthor recordset.
This selects just one author identified by author_id passed in the URL query string.

5. Open the Bindings panel. You should now have
two recordsets listed there: checkAuthor and
getAuthor. The second one will be used to set
the initial values for the text fields in the
updateAuthor form. Expand the getAuthor
recordset in the Bindings panel, and highlight
the first_name text field in the form, followed
by first_name in the recordset, as shown along-
side. The label on the Insert button at the bot-
tom of the Bindings panel changes to Bind, and
the drop-down menu alongside should display
input.value. Click Bind, and a dynamic place-
holder will appear inside the first_name text
field. The Bind button changes to Unbind. Click
this if you ever want to remove dynamic text
bound in this way.

6. Repeat step 5 with the family_name text field and family_name in the recordset.

7. The Update Record server behavior also needs to know the author_id. Click any
blank space inside the form, and insert a hidden field (see Chapter 9). In the
Property inspector, change the name of the hidden field to author_id, and click the
lightning bolt icon alongside the Value field.

8. In the Dynamic Data dialog box that opens, select author_id from Recordset
(getAuthor), and click OK. Make sure you use the correct recordset.

9. Apply the Update Record server behavior by clicking the plus button in the Server
Behaviors panel, and select Update Record. Alternatively, use the Update Record

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

724

http://lib.ommolketab.ir
http//lib.ommolketab.ir

button on the Data tab of the Insert bar, or select the menu option, Insert ➤ Data
Objects ➤ Update Record ➤ Update Record.

If you have followed all the steps correctly, the Update Record dialog box will auto-
matically apply the correct values as soon as you select connAdmin in the
Connection field. As you can see in Figure 16-14, the Update Record dialog box is
almost identical to the Insert Record one. The difference is that the first item in the
Columns field identifies the record to be updated by its primary key. Dreamweaver
automatically selects the Primary key checkbox for the first item, taking its value
from the hidden form field you created in step 7. If this value isn’t set, click Cancel,
and retrace your steps.

Figure 16-14. The Update Record dialog box uses the primary key to identify the record
being updated.

Assuming everything is OK, set the final field to go to author_list.php after
updating. Check your settings against those in Figure 16-14, and click OK.

10. As I explained in the previous chapter, Dreamweaver inserts server behavior code
in a predetermined order. It works fine for basic pages, but it doesn’t take into
account any server-side validation that you might want to do. So, you need to
move the Update Record server behavior code that has just been created.

Switch to Code view, and locate the following code:

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

725

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This is the Update Record server behavior code. Highlight it, making sure you don’t
miss the closing curly brace shown on line 54 in the screenshot, and cut it to your
clipboard.

11. Scroll down until you find the empty else clause just above the DOCTYPE declara-
tion, and paste the Update Record server behavior between the braces.

You can check your code against author_update.php in examples/ch16 if necessary.

Returning to the same page in a long list of results
The recordset navigation bar does a nice job of paging through a long list of database
results, but there’s an annoying problem when you link to another page and return to the
list. Let’s say you’re updating several records. You page through the list and find the first
record you want to update on the third page. Clicking the EDIT link takes you directly to
the update form, but as soon as you click the update button, you’re taken back to the first
page of the list, and you need to navigate all the way back to where you were. When this
happens once, it’s annoying, but you can live with it. When it happens all the time, you
begin to get rather exasperated.

This is an issue that doesn’t affect only update forms. It happens whenever you link to
another page and then link back to the list. If you haven’t already realized, linking from a
list of records to an update form is the way you link from any list to a page that contains
the details of a record stored in a database. So, you use this technique for product cata-
logs, search results, and so on.

The way that the recordset navigation bar works is by sending the page number through
the query string at the end of the URL. So, all you need to do is add the page number to
the query string that links to the update form. Because the Update Record server behavior
preserves the query string and appends it to the return URL, you get back to where you
started. Here’s how it’s done:

1. Load author_list.php into a browser, and click the navigation arrow at the bot-
tom of the list of authors to display the next 15 names. Now, look at the URL in the
browser address bar. As you can see in Figure 16-15, a long query string has been
added.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

726

http://lib.ommolketab.ir
http//lib.ommolketab.ir

What should strike you is that the name of the listAuthors recordset is incorpo-
rated into the query string. The code generated by Dreamweaver uses a combina-
tion of pageNum_recordsetName and totalRows_recordsetName to identify its
current position within a recordset and determine which navigation links to display.

It’s the value of pageNum_recordsetName that’s of interest. Incorporate it into the
EDIT link, and you’ll be returned to the correct page after finishing the update.

2. Open author_list.php in Dreamweaver, insert your cursor in the EDIT link, and
select <a> in the Tag selector at the bottom of the Document window. This selects
the underlying code, which looks like this in Code view:

<a href="author_update.php?author_id=<?php echo ➥

$row_listAuthors['author_id']; ?>">EDIT

3. Amend the code like this:

<a href="author_update.php?author_id=<?php echo ➥

$row_listAuthors['author_id'];
if ($pageNum_listAuthors) {
echo '&pageNum_listAuthors='.$pageNum_listAuthors;

} ?>">EDIT

Dreamweaver uses the PHP convention of beginning a series of numbers at zero
and initializes the value of $pageNum_listAuthors as 0. If the first set of results is
being displayed, the value of $pageNum_listAuthors is 0, which equates to false,
so the code inside the conditional statement is ignored. However, on subsequent
pages, the value is greater than 0, which equates to true, so the conditional state-
ment adds the variable and its value to the query string.

4. Save author_list.php, and load it into a browser. Click one of the navigation bar
links, and select one of the authors to update. You don’t need to make any changes
in the update form. Just click Update record, and you’ll be taken back to the previ-
ous page, rather than back to the beginning of the list.

Check your code, if necessary, against author_list_03.php in examples/ch16. I
have made this enhancement only to the EDIT link, but you can also add it to the
DELETE link if you want it to work the same way.

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

727

16

Figure 16-15. The Record Navigation Bar uses the recordset name in the query string to identify its current position.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This works with the update form because the Update Record server behavior automati-
cally preserves the query string. In detail pages that you create yourself, you need to cap-
ture pageNum_recordsetName from the $_GET array and insert it in the link back to the
recordset list page like this:

<a href="list.php<?php if (isset($_GET['pageNum_recordsetName'])) {
echo '?pageNum_recordsetName='.$ _GET['pageNum_recordsetName'];

} ?>">Back to the list

Deleting authors from the parent table

In “Avoiding orphaned records” earlier in the chapter, I told you that using foreign key
constraints in InnoDB tables automates the preservation of referential integrity. It does—
in the sense that it prevents you from deleting records in a parent table if there are still
dependent records in a child table. Figure 16-16 shows what happened when I tried to
delete William Shakespeare from the authors table using InnoDB with a foreign key con-
straint defined.

Figure 16-16. A foreign key constraint prevents the deletion of a record while it still has dependent
records in a child table.

When I did the same thing with MyISAM tables, William Shakespeare vanished into cyber-
oblivion without so much as a by-your-leave to his children. So, foreign key constraints are
a good security measure, but you don’t want an ugly MySQL error message like that in
Figure 16-16 on your website. Consequently, even if you’re using InnoDB tables, you need
to incorporate the same sort of checks into a delete page as with MyISAM tables. In other
words, when deleting a record from a parent table, you need to do the following:

1. Search the child table to see whether the record’s primary key has any matches in
the foreign key column. In the example in Figure 16-2 earlier in the chapter,
Shakespeare’s primary key is 32. So before you can delete his record, you need to
check whether any records in the quotations table have the same value as the for-
eign key (author_id).

2. If there are any matches, display a message saying that the deletion cannot go
ahead, and hide the delete button.

If there are no matching records, display the delete button, asking for confirmation.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

728

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The conditional logic that you used in the insert and update forms checked whether an
author was already registered in the authors table. For the delete form, you need to
perform a similar check, only this time in the quotations table. Although you’re check-
ing a different table, the script flow is exactly the same. If there are any matching
records, you stop the server behavior from being executed. Otherwise, you let it go
ahead. Consequently, you can adapt the existing script quite easily.

1. Open author_update.php, and save it as author_delete.php.

2. Change the title and heading to Delete Author. Use the Property inspector to
change the Button name and Value of the submit button to delete and Delete author,
respectively.

3. In the Server Behaviors panel, highlight Recordset (checkAuthor), and delete it by
clicking the minus button.

4. Do the same with Update Record.

5. Click the plus button in the Server Behaviors panel, and select Delete Record. As in
the previous chapter, you get the value of the record to be deleted from a hidden
field, so make sure you choose Form Variable for Primary key value. Check that your
settings are the same as shown in the screenshot, and click OK.

6. Before deleting a record from the authors table, you must check whether its pri-
mary key is still in use in the quotations table. Create a new recordset called
checkForeign. Use the Recordset dialog box in Advanced mode with the settings
shown in the following screenshot:

Adapting the author update page to handle deletes

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

729

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The WHERE clause selects records where quotations.author_id is equal to a vari-
able (we’ll define that in a moment) and where quotations.author_id is the same
as authors.author_id. As explained in the “The four essential SQL commands”
earlier in the chapter, the dot notation tableName.columnName eliminates ambigu-
ity in a SQL query when columns in different tables have the same name. What this
SQL query is looking for is any record where author_id matches the runtime vari-
able var1.

7. The value of author_id is passed through the query string from author_list.php,
so var1 needs to be defined in the Variables field. Click the plus button alongside
Variables, and use the following settings:

The primary key, author_id, is a number, so Type needs to be set to Integer. I have
set Default Value to -1 because I don’t want the variable to default to a genuine
value. Runtime value is set to $_GET['author_id'] because the value is passed through
a query string in the URL. Remember, $_GET is used for URL variables and $_POST
for form variables submitted using the POST method. Click OK to close the Add
Variable dialog box, and click OK again to save the recordset.

8. Now it’s time to move the Delete Record server behavior from its current position
so that it’s inside the else clause previously occupied by both the Insert Record
and Update Record server behaviors. Locate the following code, and cut it to your
clipboard:

9. Paste the code from your clipboard to the position indicated here:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

730

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. Next, amend the code shown on lines 54–59 of the preceding screenshot to match
the name of the checkForeign recordset like this:

// assume that no match has been found
$recordsExist = false;

//check whether recordset found any matches
if ($totalRows_checkForeign > 0) {
// if found, reset $recordsExist
$recordsExist = true;
}

else {

11. Scroll down until you find this line (it should be around line 90):

if ($_POST && $alreadyRegistered) {

The check for $_POST is not needed this time, because the checkForeign recordset
will be created as soon as the page loads. You also need to change the variable to
$recordsExist. Change the line to look like this:

if ($recordsExist) {

12. In the next line, $_POST['first_name'] and $_POST['family_name'] need to be
replaced with dynamic data from the checkForeign recordset. Highlight
$_POST['first_name'], and open the Bindings panel. Expand Recordset
(checkForeign), select first_name, and click the Insert button. This will replace
$_POST['first_name'] with $row_checkForeign['first_name']. Do the same
with $_POST['family_name'], selecting family_name from the Bindings panel.

13. Change the remaining text in the warning paragraph, and add the opening part of
an else clause so that the entire PHP code block now looks like this:

<?php
if ($recordsExist) {
echo '<p class="warning">'.$row_checkForeign['first_name'].' '. ➥

$row_checkForeign['family_name'].' has dependent records. Cannot ➥

be deleted.</p>';
} else {
?>

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

731

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14. Scroll all the way down to just after the closing </form> tag (around line 107), and
insert a closing curly brace inside a pair of PHP tags like this:

<?php } ?>

What you have done is enclose the entire form in an else clause, so it will be dis-
played only if there are no dependent records in the quotations table.

15. Switch back to Design view, click immediately to the right of the first PHP shield at
the top of the page, and press Enter/Return to create a new paragraph. Type a
warning that the delete operation cannot be undone, and apply the warning class
to the paragraph.

16. Save author_delete.php, and load author_list.php into your browser. Select an
author that you know has dependent records in the quotations table, and click
DELETE. You should see a message like this:

17. Now insert a new author. When the name appears in the list, click DELETE. This
time you should see a screen like the following one. Click Delete author. You will be
taken back to the list of authors, and the new entry will have disappeared without
a trace. You can check your code against author_delete.php in examples/ch16.

Improving the delete form
As the screenshot in step 16 shows, the warning message simply tells you that the author
has dependent records. A simple improvement would be to display a list of the dependent
records so that you can delete them, if required. All that’s needed is to add quotation to
the checkForeign recordset. You can then use a repeat region to display the dependent
records if any are found. Sample code showing how this is done can be found in

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

732

http://lib.ommolketab.ir
http//lib.ommolketab.ir

author_delete_display.php in examples/ch16. The code is fully commented, explaining
how to incorporate the display of dependent records.

Another improvement would be to remove the text fields that display the name of the
author to be deleted and just display the first_name and family_name values in the same
way as with delete_user.php in Chapter 14. However, it doesn’t matter that the names are
displayed in editable text fields. Even if you edit the names, it has no effect on the database.

Performing a cascading delete with InnoDB tables
Although you still need to use PHP logic in the delete form for a parent table, one advan-
tage that InnoDB tables have over MyISAM is the ability to perform a cascading delete.
This means that when you delete a record in the parent table, all dependent records are
automatically deleted from the child table. To enable this behavior, you need to change
the foreign key constraint to ON DELETE CASCADE.

The following instructions show you how to adapt author_delete.php to perform a cas-
cading delete with InnoDB tables. You can use author_delete.php in examples/ch16 as
the starting point. The completed code is in author_delete_cascade.php.

1. In phpMyAdmin, select the quotations table in the dwcs4 database. Click the
Structure tab to display the table structure, and select Relation view.

2. In the Links to area, change the value of ON DELETE for author_id to CASCADE, as
shown in the following screenshot, and click Save:

3. Open author_delete.php, and double-click Recordset (checkForeign) in the Server
Behaviors panel to edit it.

4. Expand the Tables tree in the Database items area at the bottom of the Recordset
dialog box, highlight quotation in the quotations table, and click the SELECT button
to add it to the SQL query. This will enable you to display the dependent records
about to be deleted.

These instructions apply only to InnoDB tables. They do not work with the default
MyISAM tables.

Deleting dependent records simultaneously

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

733

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Save the edited recordset, and locate the following section in Code view:

6. Delete the PHP code block shown on lines 88–92 of the preceding screenshot.

7. Delete the PHP code block immediately after the closing </form> tag. It contains
only a closing curly brace to match the opening one on line 91 of the preceding
screenshot.

8. Inside the form, delete the first_name and family_name text fields, leaving only
the submit button and hidden field. The <body> section of the page should now
look like this:

9. Select the words the following record (shown on line 88 of the preceding screen-
shot), and replace them with dynamic text from the getAuthor recordset to display
the author’s first name and family name. Add another sentence warning that all
dependent records will also be deleted at the same time.

10. You could use the page like this, but it’s much better to display the dependent
records that are about to be deleted. Switch to Design view, position your cursor at
the end of the warning paragraph, and press Enter/Return to insert a new para-
graph. Type The following dependent records will also be deleted:.

11. Press Enter/Return, and click the Unordered List button in the HTML view of the
Property inspector (or use Format ➤ List ➤ Unordered List).

12. Open the Bindings panel, select quotation in Recordset (checkForeign), and click
Insert. Then click in the Tag selector at the bottom of the Document window to
select the whole element, and apply a repeat region to show all records. This
will display all dependent records from the quotations table.

13. Not every record in the parent table will have dependent records, so you need to
say if no records were found. Click in the Tag selector to select the whole
unordered list, and press the right arrow key once to move the insertion point after
the closing tag. Press Enter/Return to insert a new paragraph, and type No
dependent records.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

734

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14. You now have contradictory displays in the page. You want to show the unordered
list only if there are dependent records, and the paragraph you have just typed if
there are none. This is a case for using the Show Region server behavior, as
described in Chapter 14.

Click the <p> tag in the Tag selector to select the paragraph you have just typed.
Then, click the plus button in the Server Behaviors panel, and select Show Region ➤
Show If Recordset Is Empty. Unlike Chapter 14, this time the page has two record-
sets, so you must choose the right one in the dialog box that opens. Select
checkForeign, and click OK.

15. Position your cursor anywhere in the unordered list, and click the tag in the
Tag selector to select the whole list. Select the Show Region submenu again, and
choose Show If Recordset Is Not Empty. Again, select checkForeign for Recordset.

You now have a user-friendly cascading delete form for use with InnoDB tables. Check
your code, if necessary, against author_delete_cascade.php in examples/ch16.

Updating quotations in the child table

Now that you’ve dealt with all the issues involved with the parent table, authors, you can
return to the child table and finish the content management system for quotations. You’ll
be relieved to know that building the update and delete forms doesn’t involve a great deal
of work. However, the presence of the foreign key in a child table does add a slight compli-
cation to creating the page that displays a list of all records. Let’s start by building
quote_list.php to display a list of all quotations with links to the update and delete forms.

The layout of the page follows the same pattern as all other lists of records. The main dif-
ference lies in the SQL query that you build in the Recordset dialog box, because you need
to draw records from the child and parent tables, using the foreign key to match records
in both tables.

1. Create a PHP page called quote_list.php in workfiles/ch16, and lay it out like this:

Displaying a list of quotations

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

735

16

2. Open the Recordset dialog box in Advanced
mode, and build the query shown alongside:

This selects the quotation and its primary
key, as well as the author’s first name and
family name by matching the author_id in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

both tables. The results are ordered by family name, first name, and quotation, in
that order.

3. Use the Bindings panel to add the dynamic text objects to the page, building the
EDIT and DELETE links in the same way as before (linking to quote_update.php and
quote_delete.php and passing quote_id as a parameter through the query string).

4. Apply a repeat region and a recordset navigation bar. I won’t give step-by-step
instructions, because you’ve done this before. Check your code, if necessary,
against quote_list_01.php in examples/ch16.

That was easy, wasn’t it? Unfortunately, it was too easy, because there’s a hidden flaw in
the SQL.

Load quote_insert.php into a browser, and insert a new quotation. It doesn’t matter what
it is, as long as you don’t select an author. Leave the author drop-down menu on Not
registered. Now load quote_list.php into a browser, and look for the quotation you have
just inserted. It’s not listed. Double-check in phpMyAdmin— the new quotation should be
at the end of the quotations table. What’s going on?

Solving the mystery of missing records with a left join
The reason for the failure of quote_list.php to display quotations without an associated
author lies in the WHERE expression:

WHERE quotations.author_id = authors.author_id

This works fine when there are matching records in both tables, but if the author_id for-
eign key hasn’t been set in the quotations table, there’s nothing to match it in the
authors table. You need a way to find all records, even if there isn’t a corresponding
match for the foreign key. This is achieved in SQL by what is known as a left join.

The SQL queries generated by Dreamweaver are known as inner joins—there must be a
complete match in both tables of all conditions in a WHERE expression. The difference with
a left join is that when there’s no match for a record in the table(s) to the “left” of the join,
the result is still included in the recordset, but all the columns in the table to the “right” of
the join are set to NULL. “Left” and “right” are used in the sense of which side of the key-
words LEFT JOIN they appear in the SQL query. The syntax looks like this:

SELECT column_name(s) FROM first_table
LEFT JOIN second_table ON condition

If the condition is matching two columns of the same name (such as author_id), an alter-
native syntax can be used:

SELECT column_name(s) FROM first_table
LEFT JOIN second_table USING (column_name)

Passing the primary key through a query string is something a lot of people seem
to get wrong. Refer to “Updating and deleting records” in Chapter 14 if you need
a reminder of how to do it.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

736

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can now amend the SQL query in quote_list.php to use a left join. Dreamweaver
doesn’t have an automatic way of generating a left join, so you need to adjust the query
manually. Continue working with quote_list.php from the preceding section.

1. Highlight Recordset (quoteList) in the Server Behaviors panel, and double-click it to
open the Recordset dialog box.

2. Edit the SQL query by hand like this:

SELECT quotations.quote_id, quotations.quotation, authors.first_name,
authors.family_name
FROM quotations LEFT JOIN authors USING (author_id)
ORDER BY authors.family_name, authors.first_name, quotations.quotation

3. Click the Test button to make sure you haven’t made any mistakes in the query. I
find that I frequently forget to remove the comma after the first table name when
replacing an inner join with a left join.

4. Click OK to save the recordset. Save the page, and refresh your browser. Any quo-
tations without an author_id will now appear at the top of the list with the Name
column blank, as shown in Figure 16-17.

Figure 16-17. Using a left join finds records that don’t have a match in both tables.

Compare your code, if necessary, with quote_list_02.php in examples/ch16.

Rather than build the update form from scratch, you can easily adapt the insert page
again. Because you don’t need to check for duplicate entries, this is simpler than the
update page for authors. After removing the Insert Record server behavior, you create a
recordset for the record being updated, bind the existing values to the quotation text
area and author drop-down menu, and apply an Update Record server behavior.

1. Save quote_insert.php as quote_update.php. Change the title and heading to
Update quotation. Also change the Button name and Value of the submit button to
update and Update quotation, respectively.

2. Select the Insert Record server behavior in the Server Behaviors panel, and click the
minus button to remove it.

Adapting the insert page for updates

Using a left join to find incomplete records

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

737

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. When the EDIT link in quote_list.php is clicked, you need to display the details of
the record. Open the Recordset dialog box in Simple mode, and create a recordset
called getQuote using the following settings:

4. Expand Recordset (getQuote) in the Bindings panel. Select the quotation text area in
the form, and then select quotation in the recordset. Click Bind.

5. You also need the author_id drop-down menu to display the correct value. Select
the menu object in the form, and click the Dynamic button in the Property inspec-
tor. All the existing values are fine, but to display the selected value dynamically,
click the lightning bolt icon to the right of the Select value equal to field at the bot-
tom of the dialog box.

In the Dynamic Data dialog box, select author_id from Recordset (getQuote), as
shown in the following screenshot. Make sure you choose the correct recordset—
both of them include author_id. The other recordset contains all author_id
numbers; you want only the specific one associated with the quotation identified
by the URL query string.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

738

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Click OK twice to close both dialog boxes. What you have just done creates the
code to dynamically insert selected="selected" in the appropriate <option> tag
to display the correct name from the authors table.

6. Before adding the Update Record server behavior, you need to create a hidden
form field to store the correct quote_id. Click in a blank area of the form, and
insert a hidden field. In the Property inspector, name the hidden field quote_id, and
click the lightning bolt icon to insert dynamic data in the Value field. Choose
quote_id from Recordset (getQuote), and click OK.

7. Click the plus button on the Server Behaviors panel, and choose Update Record. Use
the following settings:

Submit values from: updateQuote

Connection: connAdmin

Update table: quotations

After updating, go to: quote_list.php

8. Save the page, and test it. Compare your code, if necessary, with quote_update.php
in examples/ch16.

Deleting quotations

Nearly there! Just one more page to go—the page for deleting quotations is relatively sim-
ple to make, because there’s no need to check for dependent records. It’s only when a for-
eign key refers to a deleted record that you have a problem. Delete Shakespeare’s records
in the quotations table, and the integrity of your database remains intact. The only loss is
some of the greatest sayings in the English language.

This is much simpler than the delete form for authors, because no dependent records are
involved. It’s a quick and easy adaptation of the update page.

1. Save quote_update.php as quote_delete.php. Change the title and heading to
Delete quotation. Change the Button name and Value of the submit button to delete
and Confirm deletion, respectively.

2. Insert a new paragraph between the heading and form asking for confirmation of
the deletion and warning that it’s not undoable. Apply the warning class to the
paragraph.

3. Highlight Update Record in the Server Behaviors panel, and click the minus button
to delete it.

4. Click the plus button in the Server Behaviors panel, and select Delete Record. Use
the settings shown in the following screenshot. Make sure you choose the correct
table and set Primary key value to Form Variable. The default value is URL Parameter,

Adapting the update page for deletes

WORKING WITH CUSTOM FORMS AND MULTIPLE TABLES

739

16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

which deletes the record without confirmation. Click OK to apply the server
behavior.

5. Save the page, and compare your code, if necessary, against quote_delete.php in
examples/ch16.

You now have a complete management system for a parent and child set of tables.

Chapter review
Creating the content management system for two tables in a parent-child relationship
requires a much more complex back-end than for a single table. You may be wondering
whether it’s really worth the effort. The answer is yes. Creating a database and its related
content management system is a time-consuming process, but the time spent on building
a solid foundation for your database will be well rewarded.

Although this chapter has involved a lot of steps and you’ve needed to dive into Code view
from time to time, it’s important to realize that the Dreamweaver server behaviors have
taken an enormous coding burden off your shoulders. Remembering how to fill in the dif-
ferent dialog boxes takes time and practice, but this chapter has taken you much further
by showing you how to join tables and maintain referential integrity when deleting
records. This has been a relatively simple example, using just two tables. Databases fre-
quently contain many tables with complex relationships, but the underlying principles
remain the same.

In the next chapter, we’ll take a more in-depth look at searching for records, as well as for-
matting dates.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

740

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17 HANDLING CHECKBOX GROUPS,
SEARCHES, AND DATES

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The previous three chapters have covered the basic knowledge you need to work with a
database: inserting records, updating them, and deleting them. Where you go now
depends on your needs and your willingness to learn more about SQL and PHP. The reason
both are so powerful lies in their flexibility. I’m constantly finding new ways of handling
situations that previously puzzled me. The key to doing this lies not only in learning the
features available in both languages but also in thinking about issues using the same con-
ditional logic as PHP. As human beings we make decisions instinctively. Computers need to
go through a lengthier process of making comparisons—at least, it seems lengthier to us
as developers. It takes us far longer to type the code than it takes the computer to execute
it. I find that, rather than beginning by writing code, it’s often more productive to sketch
how I think something will work by writing a series of comments. Once the logic is there,
the code comes much more easily.

This chapter addresses several common issues you are likely to encounter when develop-
ing a website with PHP and MySQL. To start, I’ll address the problem of storing input from
multiple-choice form elements, such as checkbox groups and multiple-choice lists. Then,
I’ll turn to showing you some basic search techniques. Finally, I’ll demonstrate how to han-
dle dates in PHP and MySQL.

As you saw in Chapter 14, MySQL stores dates in the ISO format of YYYY-MM-DD. PHP takes
a completely different approach, calculating dates by counting the number of seconds
elapsed since January 1, 1970 (I explain why later in the chapter). It’s not as complicated as
it sounds, but you need to ensure that dates submitted to MySQL are in the correct format
and—equally important—that you can display dates in a human-friendly way.

In this chapter, you’ll learn about the following:

Using SET columns to store multiple choices

Displaying the number of results from a search

Creating striped table rows

Troubleshooting MySQL errors

Searching for records based on full and partial matches

Using FULLTEXT indexing

Reusing a recordset after a repeat region

Formatting dates with MySQL and PHP

This is a long chapter, but it ties up a lot of loose ends. Don’t feel obliged to read through
everything at one sitting. Everything follows a logical sequence, but the chapter is also
designed for you to be able to dip in to find answers to issues you might encounter. To
work with most of the examples in this chapter, you need to have created the authors and
quotations tables and populated them with data, as described in Chapter 16.

Storing multiple values in a SET column
In the previous chapter, I told you that a process called normalization lays down the
principles of good database design, and one of its main rules is to store only one item of

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

744

http://lib.ommolketab.ir
http//lib.ommolketab.ir

information in the same field. The feedback form that you worked with in Chapters 9, 11,
and 12 has a checkbox group, from which the user can choose up to five options, and a
multiple-choice list with a choice of up to six options. If you follow the rule of only one
item of information in the same field, you need to decide how to store each option. The
beginner’s answer is either to ignore the single-item rule and put everything in the same
field or to create a separate column for each option.

Neither choice works well. Putting everything in the same column makes it difficult to
search and retrieve information. Creating separate columns for each option might seem
like a good idea to start with, but it rapidly becomes unwieldy. In the feedback form, there
are 11 options, but many users will choose fewer than half of them, so you end up with a
lot of wasted space in the database. Even worse, when you add new options, you need to
add new columns. After a year or so, you could end up with dozens, or even hundreds, of
columns.

The alternative solutions are to put the options in a separate table and use the record’s
primary key to identify which options are selected by each user or to use a SET column. As
I explained in Chapter 14, SET is a MySQL column type that stores zero or more choices
from a predefined list. The maximum number of items you can define is 64. This can be
useful for storing multiple choices, where the range of options is fixed or unlikely to
change frequently.

Although a SET column appears to break the rule of storing only one item of information
in a field, it’s actually a shorthand form of normalization. Instead of storing the actual text
each time a record is created, MySQL stores a reference to each selection as a number. In
other words, it creates an internal foreign key to look up the stored values. This not only
saves space, but it speeds up searches. Databases search through numbers much faster
than through text.

The values in the predefined list can contain any characters except a comma, because
commas are used to separate values.

The following sections show you how to store data in a SET column and retrieve it.

Defining a SET column

Rather than build a complex table to demonstrate working with SET columns, I’m going to
keep the structure as simple as possible by creating an online poll that asks visitors which
operating systems they use. An online poll simply records results, so the database table
doesn’t really need a primary key. However, I’m going to use one because it makes it pos-
sible to get the most recent record.

To store the results of the poll, you need to create a table with a column that stores the
visitors’ choices in a SET column with four options: Windows, Mac, Linux, and none. The
insert form will contain only the first three options. Adding none to the predefined list in
the SET column avoids the problem of dealing with invalid submissions. If the form is

Creating the table for the poll

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

745

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

submitted without any of the checkboxes selected, a conditional statement will set the
value to none.

1. Launch phpMyAdmin, select the dwcs4 database, and create a new table called
os_poll with just two fields like this:

2. In the matrix where you define the table columns, use the following values for the
primary key:

Field: vote_id

Type: INT

Attributes: UNSIGNED

Index: PRIMARY

A_I: Yes

Use the following values for the second column:

Field: operating_system

Type: SET

Length/Values: 'Windows', 'Mac', 'Linux', 'none'

The Length/Values field takes a comma-separated list of strings containing the
options you want to store in the SET column. Searches of SET columns are case-
insensitive, but when values retrieved from a SET column are displayed, the original
combination of uppercase and lowercase is preserved. Because the field where you
enter the options is rather narrow, I find it can be helpful to type the values in a
text editor or Dreamweaver Code view first. This ensures that the spelling is correct
and that the commas and quotes are in the right places. Then cut and paste the
entire string into the Length/Values field.

Leave the other fields at their default values, and click Save when you have
finished.

3. The structure of the os_poll table should look like Figure 17-1 in phpMyAdmin.

Figure 17-1. The os_poll table consists of a primary key and a SET column listing four
options.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

746

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inserting data into a SET column

To save time and space, I have created a simple form with a checkbox group called
operating_system[]. As you should recall from Chapter 9, the square brackets at the end
of the name tell PHP to treat the values of selected checkboxes as an array. The check-
boxes have their value attributes set to Windows, Mac, and Linux to match those specified
in the table definition.

You can store any combination of these in the operating_system column for each record
in the database. However, if you decide to change the form to add SunOS to the checkbox
group, you cannot store SunOS in the operating_system column without first updating the
table definition. Illegal values—and that includes misspellings—are ignored.

The values from a checkbox group or multiple-choice list need to be inserted into a SET
column as a comma-separated string. However, the Dreamweaver Insert Record server
behavior doesn’t recognize SET columns, so you need to tweak the code manually. You do
this by passing the array that contains the form values to implode() and then inserting the
values into the database as text. The following exercise uses only a checkbox group, but
the same technique applies to multiple-choice lists.

1. Copy set_insert_start.php from examples/ch17 to workfiles/ch17, and save it
as set_insert.php. The page contains a simple form with three checkboxes and a
submit button, as shown in Figure 17-2.

Inserting poll responses into the table

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

747

17

Figure 17-2. The values of a checkbox group can be stored efficiently in a SET column.

2. Open the Server Behaviors panel, click the plus button, and select Insert Record
from the menu that appears (or use the Insert menu or Data tab of the Insert bar).

3. In the Insert Record dialog box, select connAdmin as the connection and os_poll as
the table. Because the checkbox names end in square brackets, the server behavior
cannot match them to the operating_system column in the table. So, it displays
‘operating_system’ Does Not Get a Value in the Columns field.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Select operating_system in the Columns field, and activate the Value drop-down
menu. As Figure 17-3 shows, Dreamweaver lists the three checkboxes as
FORM.operating_system[].

Figure 17-3. The square brackets prevent Dreamweaver from matching the checkbox group
with the SET column.

5. Select one of the instances of FORM.operating_system[].

6. Dreamweaver automatically selects Checkbox 1,0 in the Submit as drop-down
menu. You need to change this to Text.

7. You don’t need to enter anything in the field labeled After inserting, go to, so just
click OK to close the Insert Record dialog box.

8. Switch to Code view; the section that builds the SQL query looks like this:

If you open the dialog box again for any reason, Dreamweaver sets
operating_system back to Does Not Get a Value. However, you’re about to edit
the server behavior in Code view, after which it ceases to be editable through the
dialog box. Once you feel at home with editing server behaviors, you can leave
Dreamweaver to do all the tedious coding, while you tidy up details, such as
adjusting the code for SET columns.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

748

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Remove the square brackets after operating_system in $_POST['operating_
system[]'] (line 41 in the preceding screenshot) so that it looks like this:

GetSQLValueString($_POST['operating_system'], "text"),

This inserts the value of $_POST['operating_system'] into the table as a string,
but the values being sent from the checkbox group are an array. So, they need to
be reformatted before they can be inserted into the database.

10. To convert the array in $_POST['operating system'] into a comma-separated
string, add the following code block highlighted in bold immediately after the code
shown on line 39 in the preceding screenshot:

if ((isset($_POST["MM_insert"])) && ($_POST["MM_insert"] == "form1")) {
// convert the checkbox group subarray to a string
if (isset($_POST['operating_system'])) {
$_POST['operating_system'] = implode(',', $_POST['operating_system']);

} else {
$_POST['operating_system'] = 'none';

}
$insertSQL = sprintf("INSERT INTO os_poll (operating_system) ➥

VALUES (%s)",

The block is enclosed in the server behavior’s conditional statement that executes
the code only if the form has been submitted. Because checkboxes and multiple-
choice lists don’t appear in the $_POST array if nothing has been selected, the new
code first checks whether any values have been selected for operating_system. If
they have, they are converted to a comma-separated string with implode().
Otherwise, none is assigned as the value. This is needed to prevent the SQL query
from throwing an error.

The first argument to the implode() function is the string you want to act as a sep-
arator between array elements. It’s vital to use a comma with no space on either
side like this:

$_POST['operating_system'] = implode(',', $_POST['operating_system']);

If you add a space after the comma inside the first argument, only the first value is
inserted in the SET column. This is because the space is treated as part of the string.
The extra space after the first comma in the following line of code will result in
incomplete data being inserted into the SET column:

$_POST['operating_system'] = implode(', ', $_POST['operating_system']);

11. Save set_insert.php, and load it in a browser. Test the form by selecting at least
two checkboxes and clicking Submit.

12. Check the results by clicking the Browse tab in
phpMyAdmin. Confirm that you can see the selected
values inserted in the table, as shown here:

Check your code, if necessary, against set_insert_01.php in examples/ch17.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

749

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Retrieving data stored in a SET column

The MySQL documentation (http://dev.mysql.com/doc/refman/5.0/en/set.html) clas-
sifies the SET data type as a string, so that’s what it expects you to insert, and that’s what
it returns when you retrieve data with a SELECT query. However, as I explained earlier, the
values are stored numerically, rather than as text. This has the following important effects
on the data that you get back from a SET column:

Values are returned as a comma-separated list.

Trailing spaces are automatically deleted.

Even if the INSERT query contains duplicate values, each value is stored only once.
This means you can’t adapt the form in set_insert.php to record how many com-
puters of a different type a person owns.

Values are returned in the same order as the original table specification. The results
from a search of the os_poll table will always be in the order Windows, Mac, Linux.
You can’t use a SET column to store items in order of preference. It’s purely a yes
or no choice.

The values stored for each record in a SET column can be accessed in the normal way
through a recordset, as the following exercise shows.

This exercise shows different ways of displaying values retrieved from a SET column.
Continue working with set_insert.php and the os_poll table from the previous exercise.

1. With set_insert.php open in the Document window, open the Recordset dialog box
in Simple mode, and use the following settings to create a recordset called getVote:

Even though this uses only a SELECT query, I’m using the administrative user
account because it makes more sense to use the same connection as the INSERT
query on the same page.

Displaying the user’s vote

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

750

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting Sort to vote_id Descending uses the primary key to sort the recordset in
reverse order, so the most recent record will always be the first.

2. Underneath the insert form, add a paragraph with the text You selected:, and use
the Bindings panel to insert a dynamic text placeholder for operating_system from
the getVote recordset. The bottom of the page should look like this:

3. Save set_insert.php, and click the Live View button.
Click Yes when asked about updating the copy on the
testing server. The bottom of the page should look
similar to this:
Hang on a moment . . . You can’t submit the form in Live
view, yet the dynamic text is displaying a result. It is, of
course, the result from the previous vote. You want to display it only after the visitor
has voted. So, the recordset code needs to go inside the conditional statement that
controls the INSERT query, but it must come after the vote has been registered.

4. Open Code view, and locate the code shown in Figure 17-4. Study the code care-
fully. In Chapter 15, I told you that Dreamweaver always puts the code for record-
sets immediately above the DOCTYPE declaration. On this occasion, though, the
getVote recordset code is on lines 34–38, more than 20 lines above the DOCTYPE
declaration, with the Insert Record server behavior in between.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

751

17

Figure 17-4.
Because the Insert Record
server behavior has been
edited, the recordset has
been inserted above it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This has happened because you edited the Insert Record behavior in the previous
exercise, so Dreamweaver no longer recognizes it. However, it recognizes the
GetSQLValueString() function declaration as part of its own code, so it puts the
recordset with it. Because you’re moving the recordset code anyway, it doesn’t
really matter where Dreamweaver put it. However, this illustrates the importance
of understanding what each block of code does and where it’s located. PHP code is
processed in the same order as it appears in the script. If you left the code in its
current location and surrounded it with a conditional statement to run only after
the form has been submitted, it would work, but it would always show the previous
result rather than the current one because it’s executed before the INSERT query.

5. Cut the getVote recordset code (lines 34–38 in Figure 17-4) to your clipboard, and
paste it in front of the closing curly brace shown on line 57 of Figure 17-4. This
ensures that the recordset is created only when the form is submitted and that it
gets the most recent result.

6. Also, you want to show the result only when the recordset has been created. You
can do this by surrounding the paragraph that displays it with a conditional state-
ment that checks whether the recordset has been created like this:

<?php if (isset($getVote)) { ?>
<p>You selected: <?php echo $row_getVote['operating_system']; ?></p>
<?php } ?>

The $getVote variable contains the recordset result, so it must exist if the record-
set does. (See why it’s a good idea to give recordsets meaningful names?)

7. Since the recordset is created only when the form is submitted, you also need a
conditional statement around the code that clears the recordset result at the end
of the script like this:

</html>
<?php
if (isset($getVote)) {
mysql_free_result($getVote);

}
?>

8. Save set_insert.php, and load it into a browser. When the page first loads, the
form looks the same as before, but when you submit the form, it displays your
choice immediately below as a comma-separated string, as shown in Figure 17-5.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

752

Figure 17-5.
The values stored in a

SET column are
returned as a comma-

separated string.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you select just one value, there is no comma, but when more than one value is
returned, they are separated by commas with no space in between.

9. How you handle the comma-separated string depends on what you want to do with
the results of a recordset that contains a SET column. If you simply want to add a
space after each comma, you can use the str_replace() function like this:

<?php echo str_replace(',', ', ', $row_getVote['operating_system']); ?>

The str_replace() function takes three arguments: the string you want to replace,
what you want to replace it with, and the string you want to perform the replace-
ment on. So, the first argument here is a comma on its own, the second argument
is a comma followed by a space, and the final argument is the value from the
recordset.

10. To format the comma-separated string in more complex ways, pass the value from
the recordset to the explode() function, and store it in a variable like this:

$selected = explode(',', $row_getVote['operating_system']);

The explode() function converts a string into an array. It normally takes two argu-
ments: a string containing the character(s) that mark(s) the boundary between
each array element, and the string you want to split. The boundary characters are
discarded, so this converts a comma-separated string into an array, which you can
then manipulate however you like. For example, you could display the results as a
bulleted list like this:

<p>You selected: <?php $selected = explode(',', ➥

$row_getVote['operating_system']); ?></p>

<?php foreach ($selected as $item) {
echo "$item";

}
?>

You can check your code against set_insert_02.php in examples/ch17.

The purpose of this exercise is to demonstrate the use of SET columns, not to build a real-
istic online poll. To prevent multiple submissions by the same person, an online poll also
needs a column that records a value that can be used to identify someone who has already
voted. One way of doing this is to create a session variable that contains a randomly gen-
erated value like this:

session_start();
if (!isset($_SESSION['random_id'])) {
$_SESSION['random_id'] = md5(uniqid(rand(), true));

}

This uses the PHP function uniqid() (http://docs.php.net/manual/en/function.
uniqid.php) in combination with md5(), an encryption function, and rand(), which gener-
ates a random value, to create a 32-character string. Store the session variable in a hidden

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

753

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

form field, and check that it doesn’t already exist in the database before inserting it with
the poll data.

I’ll come back later to showing you how to find records that contain specific values in a
SET column.

Getting the information you want from a
database

As you have probably realized by now, a recordset is the result of a database search.
Controlling the search is a SQL query using the SELECT command. Dreamweaver builds the
PHP code that passes the SQL query to the database and processes the result. It can also
build the SQL query for very simple searches. For anything more sophisticated, it’s up to
you to build the query yourself. Over the next few pages, I’ll show you how to tackle some
common search problems. However, writing SELECT queries is a massive subject, about
which whole books have been written (one of my favorite writers on MySQL is Paul
DuBois). So, treat the following pages as an introduction to a fascinating and rewarding
subject, rather than a definitive guide to search queries.

Books and online forums can provide a lot of help in formulating the appropriate SELECT
query to extract the information that you want from a database. But to use that informa-
tion successfully with Dreamweaver, you need to understand how the Recordset dialog
box builds a SELECT statement.

Understanding how Dreamweaver builds a SQL query

The file find_author_01.php in examples/ch17 contains a form with a single text field
called first_name and a submit button. Beneath the form is a table with a single row in a
repeat region, which displays the results of the search. Load the page into a browser, type
William in the text field, and click Search. You should see a list of authors whose first name
is William, as shown here:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

754

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Try some other names, such as John, Dorothy, and Mae, and a list of matching records is
displayed. By default, text searches in MySQL are case-insensitive, so it doesn’t matter
what combination of uppercase and lowercase you use. We’ll get to case-sensitive and par-
tial-word searches later, but let’s look at the code that Dreamweaver uses to submit the
query to the database.

I created the getAuthors recordset in find_author_01.php using the following settings in
the Recordset dialog box in Simple mode:

The same query looks like this in Advanced mode:

The first thing to note is that Dreamweaver doesn’t add the table name in front of each
column name when you use the Recordset dialog box in Simple mode. As explained in the
previous chapter, adding the table name is necessary only when the same column name is
used in more than one table (like author_id in the authors and quotations tables).
Simple mode is capable of handling only single tables, so there’s never any danger of
ambiguity. However, Dreamweaver automatically adds the table names to all columns

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

755

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

when you build a query in Advanced mode. It does so as a precautionary measure, even if
there’s no likelihood of ambiguity.

The other thing to note is that the Filter settings from Simple mode have been converted
to this:

WHERE first_name = colname

Dreamweaver uses colname to represent the unknown value that will be passed to the SQL
query through the text field in find_author_01.php. The properties of colname are
defined in the Variables area below, with Type set to Text, Default value to -1, and Run-time
Value to $_GET[‘first_name’].

It’s important to realize that colname is not part of SQL. Dreamweaver uses the concept of
replacement when dealing with unknown values in SQL queries. When you close the
Recordset dialog box, Dreamweaver replaces colname with PHP code that inserts the run-
time value into the query. The choice of colname is purely arbitrary. It can be anything that
doesn’t clash with the rest of the query. In the previous chapter, you used var1 and var2
as the names for runtime variables.

The other important thing to know about Dreamweaver’s use of runtime variables is that
the PHP code automatically encloses the value in quotes unless you specify Type as Integer
or Floating point number. Because strings must be enclosed in quotes, the correct way to
write this query in SQL is as follows (assuming that you’re searching for “William”):

SELECT first_name, family_name
FROM authors
WHERE first_name = 'William'
ORDER BY family_name ASC

Because Dreamweaver handles the quotes automatically, you need to adapt SQL from
other sources accordingly.

Now, look at the PHP code generated by these settings (see Figure 17-6).

Figure 17-6. The code Dreamweaver generates for a recordset that uses a variable passed through a
query string

You have seen the recordset code on many occasions, and I described the meaning of the
variables in Chapter 15. What I would like you to focus on here is the way Dreamweaver

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

756

http://lib.ommolketab.ir
http//lib.ommolketab.ir

handles colname and uses it to insert the runtime variable into the SQL query. The follow-
ing sequence of events takes place:

1. The name of the variable defined in the Recordset dialog box (in this case,
colname) is combined with the recordset name on line 34 to create a PHP variable
($colname_getAuthors), which is assigned a default value of -1.

2. The conditional statement on lines 35–37 replaces the default value with the sub-
mitted value from the form. In this case, it uses $_GET['first_name']. So if a
variable called first_name is passed through a query string at the end of the
URL, $colname_getAuthors takes its value. Otherwise, $colname_getAuthors
remains -1.

3. The code shown on line 39 of Figure 17-6 builds the SQL query using a PHP func-
tion called sprintf().

The sprintf() function can be difficult to get your head around, but it takes a minimum
of two arguments. The first of these is a string that contains one or more predefined place-
holders; the number of remaining arguments matches the number of placeholders in the
first argument. When the script runs, sprintf() replaces each placeholder with its corre-
sponding argument.

Why use such a convoluted way of inserting something into the SQL query? It’s a short-
hand way of passing the runtime variables to another function without the need to assign
the result to a variable. Dreamweaver passes all runtime variables to a custom-built func-
tion called GetSQLValueString(), which is shown in Figure 15-1. As explained in Chapter
15, this function protects your database from malicious attacks known as SQL injection. If
Dreamweaver didn’t use sprintf(), it would need to store the result of passing each run-
time variable to GetSQLValueString() before building the query. It also avoids complex
problems with escaping quotes with a lot of variables.

The most commonly used predefined placeholder used with sprintf() is %s, which stands
for “string.” So, the colname that you saw in the Recordset dialog box becomes %s, and
when the script runs, it is replaced by the result of GetSQLValueString($colname_
getAuthors, "text").

When there’s more than one runtime variable in a SQL query, Dreamweaver replaces each
one with %s and passes it to GetSQLValueString() when listing the variable as an argu-
ment to sprintf().

Dreamweaver uses sprintf() to build all SQL queries, not just for recordsets. The impor-
tant things to remember about editing SQL queries in Dreamweaver or adapting queries
that you read about elsewhere are as follows:

The number of arguments following the first one passed to sprintf() must be the
same as the number of %s placeholders in the query.

GetSQLValueString() automatically handles quotes around text values, so you
should never add quotes around the %s placeholder in sprintf().

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

757

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Troubleshooting SQL queries

At the end of line 40 in Figure 17-6 is this rather doom-laden command:

or die(mysql_error());

This tells the script to stop running if there’s a problem with the SQL query and to display
the error message returned by MySQL. Figure 17-7 shows what happens if you add single
quotes around the %s placeholder in the SQL query in find_author_01.php.

Figure 17-7. MySQL error messages look cryptic but are very useful.

The error is reported as being on line 1, because the message comes from MySQL, not
PHP. MySQL sees only the query, so the error is always on line 1. The important informa-
tion is the reference to the error being “near” a particular part of the query. The error is
always immediately preceding the segment quoted in the message, but the only way to
diagnose the problem is to study the contents of the query.

Don’t waste time trying to analyze the code. As I explained in Chapter 15, the SQL query is
stored in a variable called $query_recordsetName. Dive into Code view, and use echo to
display the query onscreen, as shown in the following illustration (use line breaks to sepa-
rate the query from the error message):

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

758

You can then load the page into a browser and see exactly what is being sent to the data-
base. In the case of find_author_01.php, the query is displayed as soon as you load the
page (see Figure 17-8). In some cases, you need to pass the necessary values to the query
through the form or as part of a query string in the browser address bar. You might see a
lot of error messages onscreen, but that’s not important. As long as you can see what the
SQL query contains, you can get to the root of the problem.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 17-8. Displaying the contents of a SQL query onscreen is the best way to analyze MySQL
errors.

At first glance, the output in Figure 17-8 seems OK, but on closer inspection, what looks
like a pair of double quotes around -1 is, in fact, four single quotes (if you try this yourself,
use the browser’s View Source option to see the output in monospaced type). This is what
MySQL actually sees:

SELECT first_name, family_name
FROM authors
WHERE first_name =''
-1'' ORDER BY family_name ASC

The extra pair of quotes around -1 results in the value of first_name being an empty
string. This is followed by -1 and another pair of quotes, none of which makes any sense,
so MySQL gives up.

Even if you can’t spot the problem yourself, you can copy the output and paste it into a
question in an online forum. You’re much more likely to get a helpful response by show-
ing what’s being passed to the database and giving details of the MySQL error message.

You can use this technique with all SQL queries, not just SELECT ones.

Let’s take a look at various search operations, beginning with the choice of method for
search forms.

Choosing GET or POST for search forms

All the forms you have built so far in this book have used the POST method. This has been
the appropriate choice for several reasons. First, the POST method is more secure than GET,
because the values are not sent through a query string at the end of the URL. Moreover,
the maximum length of 2,083 characters in a URL imposed by Internet Explorer makes the
GET method impractical for many database insert forms.

So, if the POST method is more secure, why not use it for everything? The answer is con-
venience. Passing the search criteria as variables through a query string at the end of the
URL makes it easy to save search results as bookmarks in a browser. So, it’s usual to use the
GET method when creating search forms.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

759

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When choosing between POST and GET, use the following as a general guide:

If sending an email or modifying a database, use POST.

If searching a database, use GET.

You might think there’s a contradiction inherent in this advice. After all, when updating or
deleting a record from a database, its primary key is sent through a query string and
retrieved from the $_GET array. However, the primary key sent through the query string is
used only to search for details of the record. The actual updating or deletion is done by a
form that uses the POST method. That’s why it’s important to build a confirmation page for
deleting records. Using GET for any operation that directly modifies database records is an
invitation to disaster. That’s why I also recommend setting up a user account that has only
SELECT privileges to prevent an attacker from modifying your data.

Using numerical comparisons

As you’ve already seen, a single equal sign in a SQL query looks for an exact match. You
can also use comparison operators, such as > (greater than) and < (less than). This would
be of more practical value in a price list, where you’re looking for something cheaper or
more expensive than a particular amount, but you can see it in action using the primary
key column of the authors table, which uses numbers.

In find_author_02.php, I changed the text input field in the form to author_id. Then
I changed the Filter setting in the Recordset
dialog box in Simple mode like this:

This changes the WHERE clause to this:

WHERE author_id < colname

The Type of colname is changed to Integer, and its Runtime Value is changed to
$_GET['author_id']. Because the default is left at -1, nothing is displayed when the page first
loads, but if you enter a number and click the Search button, you see a list of all authors
with a primary key less than the figure entered.

This is a rather trivial example, but if you go through the various Filter options in Simple
mode and examine the SQL in Advanced mode, you’ll quickly learn how the operators are
used in a SQL query. Dreamweaver uses <> as the “not equal to” operator instead of !=.
Either is perfectly acceptable.

At the bottom of the Filter drop-down menu are three options: begins with, ends with, and
contains. These perform wildcard searches, where the user enters only part of the search
term. In previous versions of Dreamweaver, this type of filter failed when you used any of
these options with a numeric column. However, this problem has been fixed in
Dreamweaver CS4. If you switch to Advanced mode, you’ll see that the Type of colname is

For a greater-than comparison, the default needs to be higher than any existing value
in the column. If you leave it at -1, all records are displayed when the page first loads.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

760

http://lib.ommolketab.ir
http//lib.ommolketab.ir

changed to Text. Although this might appear to be a bug, it is, in fact, the correct way to
perform a wildcard search. The SQL generated by Dreamweaver uses LIKE, which must be
followed by a string, not a number. I’ll come back to wildcards when discussing text
searches later in the chapter.

Although the Filter options in Simple mode have their uses, they’re not very practical in a
real-world situation. Normally, you want a search form to offer the user a variety of options.
That’s where an understanding of the code generated by Dreamweaver becomes invaluable.

Roll up your sleeves to create something a little more practical.

This exercise enhances find_author_02.php by adding a drop-down menu that gives the
user the option to choose how the comparison should be performed—greater than, less
than, equal to, or not equal to. The selection is passed to the SQL query as a form variable.
Since Dreamweaver has options only for numbers and text, you need to do some elemen-
tary hand-coding.

1. Copy find_author_02.php from examples/ch17, and save it as find_author_
03.php in workfiles/ch17.

2. Click inside the Author_id label to the left of the text field, select the <label> tag in
the Tag selector at the bottom of the Document window, and press the right arrow
key once to position the insertion point correctly between the label and text field.

3. Select List/Menu from the Forms tab of the Insert bar (or use the Form submenu of
the Insert menu). In the Input Tag Accessibility Attributes dialog box, enter operator in
the ID field, leave Label blank, select No label tag, and click OK.

4. Click the List Values button in the Property inspector, and enter the following oper-
ators in both the Item Label and Value fields: =, !=, <, <=, >, and >=. Although you
don’t normally need to set the Value field if it’s the same as Item Label, you need to
do it on this occasion, because Dreamweaver replaces the less-than and greater-
than operators with HTML entities.

5. Select the equal sign as Initially Selected.

6. Open Split view, and edit the value properties of the <option> tags to change the
HTML entities to the less-than and greater-than operators. Leave the HTML entities
intact between the opening and closing <option> tags. The page should look like this:

Performing user-controlled comparisons

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

761

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. In Code view, scroll up to locate the following section of code:

8. You need to replace the < in the WHERE clause (shown on line 39 of the preceding
screenshot) with a variable and define it in the same way as Dreamweaver has done
with colname. Begin by positioning your cursor on the blank line shown on line 33
and inserting the following code:

// define the operator variable and give it a default value
$operator = '=';
// define an array of acceptable operators
$permittedOperators = array('=', '!=', '<', '<=', '>', '>=');
// get operator value from form, if submitted
if (isset($_GET['operator']) && in_array($_GET['operator'], ➥

$permittedOperators)) {
$operator = $_GET['operator'];

}

This sets $operator to a default value of an equal sign, defines an array of accept-
able operators, and reassigns the value submitted from the form, if it exists and is
one of the permitted operators. Using the $permittedOperators array and
in_array() like this performs a similar security check to the $expected array that
you used with the feedback form in Chapter 11. Any variable that’s passed to a SQL
query should be scrutinized to prevent SQL injection.

9. Now edit the SQL query (shown on line 39 of the preceding screenshot) like this
(new code is highlighted in bold):

$query_getAuthors = sprintf(“SELECT first_name, family_name ➥

FROM authors WHERE author_id %s %s ORDER BY family_name ASC", ➥

$operator, GetSQLValueString($colname_getAuthors, "int"));

As explained earlier in “Understanding how Dreamweaver builds a SQL query,”
sprintf() uses %s as a placeholder and replaces each one in order by the sub-
sequent arguments passed to the function. So, the form values are both passed to
the SQL query in a secure manner; the first %s is replaced by the operator, and the
second one is replaced by the value entered in the text field.

10. Save the page, and test it in a browser. Enter 32 in the text field, and click Search.
William Shakespeare should be displayed. Change the operator to !=, and perform
the same search. All authors except Shakespeare are displayed, and so on.

You can check your code against find_author_03.php in examples/ch17.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

762

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The value of the drop-down menu in the preceding exercise always resets to the equal
sign. If you want the previous selection to be redisplayed, you need to add conditional
statements to each <option> tag. The following code shows the first two tags:

<option value="=" <?php if (isset($_GET['operator']) && ➥

$_GET['operator'] == '=' || !isset($_GET['operator'])) {
echo 'selected="selected"';

} ?>>=</option>
<option value="!=" <?php if (isset($_GET['operator']) && ➥

$_GET['operator'] == '!=') {
echo 'selected="selected"';

} ?>>!=</option>

Searching within a numerical range

There are two ways to specify a range in SQL. One is to use >= (greater than or equal to)
for the bottom end of the range and <= (less than or equal to) for the top end. The alter-
native is BETWEEN . . . AND. Both require two input fields. This means setting two vari-
ables, so you’re obliged to use the Recordset dialog box in Advanced mode. The files
find_author_04.php and find_author_05.php in examples/ch17 have been modified by
adding a second text input field and naming the two fields min and max. The recordset set-
tings in find_author_04.php look like this:

I have used var1 and var2 as the runtime variables and given them both the same settings,
as shown in the preceding screenshot (Run-time Value for var1 is $_GET['min']).

The only difference in find_author_05.php is the WHERE clause in the SQL query, which
looks like this:

WHERE authors.author_id BETWEEN var1 AND var2

If you test both pages in a browser, they produce identical results. As long as you enter a
number in both fields, you should see a list of authors’ names (unless, of course, the min-
imum is greater than the highest number in the table).

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

763

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now try entering a value in just the minimum field. As you might expect, there are no
results. This is hardly surprising, because the default value of var2 (which controls the
maximum) is set to -1. So, try just the maximum field. Again, no results. This is more puz-
zling, because the default for the minimum field is also -1, so you would expect to get a
list of authors whose primary keys belong in the range from 1 (since primary keys can’t be
negative) to whatever you entered in the maximum field.

You need to look at the code to understand what’s happening.

This exercise helps explain how the default value of a runtime variable is used in a SQL
query. It also shows how to tweak the Dreamweaver code to influence the way default val-
ues are used. You can use either find_author_04.php or find_author_05.php, because
the PHP code is identical.

1. In the Server Behaviors panel, double-click Recordset (getAuthors) to open the
Recordset dialog box. Select var2 in the Variables field, click the Edit button, and
change Default value to 10. Since var2 is the runtime variable for max, this resets the
default maximum.

2. Save the changes, and load the page into a browser. The names of the first ten
authors are displayed after the form.

3. Enter a number between 1 and 9 in the Minimum field, but leave the Maximum field
empty. Click Search. It doesn’t matter what number you choose; nothing is dis-
played. So, what’s happened to the default you set in step 1?

4. To find out, open Code view, and locate the code that sets the default values. It
looks like this:

The code shown on line 38 sets the default value of $var2_getAuthors to 10.
However, the conditional statement on lines 39–41 resets it if the value of
$_GET['max'] has been defined. I imagine that many of you will be scratching your
head at this point. Surely, if the field is left blank, the value isn’t defined? Wrong. It
is defined—as an empty string. As a result, if you enter 5 in the Minimum field, the
WHERE clause in find_author_04.php is converted to this:

WHERE authors.author_id >= 5 AND authors.author_id <=

Similarly, the WHERE clause in find_author_05.php has no maximum. Without it,
the SQL query returns no results. It doesn’t trigger any error messages either,

Experimenting with the default value

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

764

http://lib.ommolketab.ir
http//lib.ommolketab.ir

because a valid value is passed to the query. The problem is that it’s a number you
want, not an empty string.

5. To preserve the default number when a blank field is submitted, change the code
shown on line 39 like this:

if (isset($_GET['max']) && !empty($_GET['max'])) {

6. Test the page again. This time, if you leave the Maximum field blank, the script uses
10 as its default value. Of course, you can override this by entering a different num-
ber in the field. But if you leave the Minimum field blank, you still get no results. It
needs to be changed in the same way if you always want a default value to be used
when the form is submitted.

Is this a bug in Dreamweaver? It depends on your point of view. When creating runtime
variables in Simple mode, Dreamweaver always uses -1 as its default value. This ensures
that a search form displays no results when the page first loads. This is usually what you
want, but you should ask, “Why bother to run the SQL query when the page first loads?”
It’s inefficient to submit a query to the database when no search criteria have been
defined.

The more efficient way to prevent the display of recordset results when a search form first
loads is to wrap the recordset code in a conditional statement and execute the SQL query
only when the search form has been submitted. If you name the submit button search,
you can use the following code:

if (array_key_exists('search', $_GET)) {
// recordset code goes here

}

This is the same technique as used in Chapter 11 to make sure that the client-side valida-
tion of the feedback form is run only after the form has been submitted. Since the record-
set isn’t created when the page first loads, you need to wrap the table that displays the
recordset results in a similar conditional statement. You also need to amend this block of
code below the closing </html> tag:

<?php
mysql_free_result($recordsetName);
?>

Change it like this:

<?php
if (isset($recordsetName)) mysql_free_result($recordsetName);
?>

A fully commented version of this code is in find_author_06.php in examples/ch17. Only
the form is displayed when the page first loads. If nothing is entered in either or both of
the text fields when the form is submitted, the default values are used. Otherwise, the
search is based on the values entered into each field. This results in a much more efficient
way of searching through a numerical range.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

765

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Searching for text

Searching for text follows the same basic principles, but there are more options, because
you frequently need to base text searches on partial information. For example, you might
want to find all authors whose family name begins with “S,” or you might want to search
for quotations that contain the word “winter.” In some cases, you might also want the
search to be case-sensitive.

Making a search case-sensitive
As explained earlier, text searches in MySQL are, by default, case-insensitive. To enforce
case sensitivity, you simply add the keyword BINARY in front of the runtime variable.

In find_author_01.php (see “Understanding how Dreamweaver builds a SQL query” ear-
lier in the chapter), the SQL query looks like this:

SELECT first_name, family_name
FROM authors
WHERE first_name = colname
ORDER BY family_name ASC

When the form is submitted, colname is replaced by the value in the first_name field. To
make the search case-sensitive, change the WHERE clause like this:

WHERE first_name = BINARY colname

The SQL query in find_author_07.php performs a case-sensitive search. Enter John in the
search field, and you get three results. Enter john, JOHN, or any other combination of
uppercase and lowercase letters, and you’ll see no results.

Displaying a message when no results are found
It’s not very user-friendly to leave users wondering whether a search is still being per-
formed or whether it simply produced no results. The Show Region server behavior, which
was introduced in Chapter 14, makes it easy to display a special message if nothing is
found, but it’s inappropriate to show the message until a search has been executed.

This brief exercise shows you how to add a message to find_author_07.php to tell a user
that no results were found. The default code generated by Dreamweaver needs to be
edited slightly if you don’t want the message to appear when the page first loads.

1. Copy find_author_07.php from examples/ch17, and save it in workfiles/ch17 as
find_author_08.php.

2. Click inside the search form, select <form#form1> in the Tag selector at the bottom
of the Document window, and press your right arrow key once to place the inser-
tion point outside the closing </form> tag.

Using the Show Region server behavior

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

766

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Press Enter/Return to insert a new paragraph, click the Bold button in the HTML
view of the Property inspector, and type No results found.

4. Click the <p> tag in the Tag selector to highlight the paragraph that you have just
inserted, and select Show Region ➤ Show If Recordset Is Empty from the Server
Behaviors panel menu (the same options are also available on the Data tab of the
Insert bar and the Data Objects submenu of the Insert menu).

5. The dialog box that opens has only one option: for you to select the recordset.
Since there’s only one on this page, it automatically selects the correct one, so just
click OK. This surrounds the selected paragraph with a gray border and a Show If
tab at the top-left corner, indicating that it’s controlled by a conditional statement.

6. Save the page, and load it into a browser. As the following screenshot shows, the
No results found message is automatically displayed:

This is because of the way Dreamweaver handles runtime variables (see “Searching
within a numerical range” earlier in the chapter). Unless you wrap the recordset
code in a conditional statement, as described earlier, the SQL query is submitted to
the database when the page first loads. The default value of -1 deliberately pre-
vents any results from being found, so the message is displayed.

There are two ways to get around this. One is to wrap the code in conditional state-
ments as described earlier (the Show Region server behavior code needs to go
inside the conditional statement that controls the display of results). The other,
simpler solution is to edit the Show Region server behavior code. This time, we’ll
take the second option.

7. Select Show If Recordset is Empty (getAuthors) in the Server Behaviors panel to select
the server behavior code, and switch to Code view. The code should be highlighted
like this:

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

767

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. You want the code in this conditional statement to be executed only if the form
has been submitted, so amend the code shown on line 62 like this:

<?php if (array_key_exists('search', $_GET) && $totalRows_getAuthors➥

== 0) { // Show if form submitted and recordset empty ?>

Changing the code like this prevents you from editing the Show Record server
behavior in the Server Behaviors panel, but it tidies up the display of your search
form. When you reload the page into a browser, the message is hidden until you
conduct a search that genuinely produces no results.

Check your code, if necessary, against find_author_08.php in examples/ch17.

Searching multiple columns
Frequently, text searches are based on matching multiple criteria or alternatives. SQL uses
AND and OR to build such queries. The meaning is self-explanatory. To search for an author
by both first name and family name, create a second runtime variable, such as colname2,
and change the WHERE clause to this:

WHERE first_name = colname AND family_name = colname2

To search on the basis of either first name or family name, change the WHERE clause to this:

WHERE first_name = colname OR family_name = colname2

Examples of this are in find_author_09.php and find_author_10.php, respectively, in
examples/ch17. The file find_author_11.php shows an example of passing AND or OR as a
runtime variable to the SQL query using the same technique as described earlier in
“Performing user-controlled comparisons.”

Using wildcard characters in a search
In SQL, the equal sign looks only for an exact match. All the examples so far have used the
authors table, where each column normally contains only a single word. A search for
“William” produces two results: William Shakespeare and William Wordsworth. However, a
search for “Will” produces no results. You might also want to search for all family names
beginning with “S” or search the quotations table for all entries that include “winter.”

When searching through columns that contain short text entries or numbers, you can use
wildcard characters in your search. For longer sections of text, you should consider creat-
ing a FULLTEXT index, which I’ll describe later in this chapter.

MySQL has two wildcard characters: the underscore (_) matches a single character, and the
percentage sign (%) matches any number of characters. A particularly useful feature about
% is that it also matches nothing. This means that a search for “Will%” matches both
William and Will on its own. Consequently, most wildcard searches use %.

To use a wildcard character in a SQL query in Dreamweaver, add it to the beginning, end,
or both ends of the runtime variable. Also, replace the equal sign with the keyword LIKE.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

768

http://lib.ommolketab.ir
http//lib.ommolketab.ir

So, to search for authors based on the first part of their name, change the WHERE clause in
find_author_09.php like this:

WHERE first_name LIKE colname% AND family_name LIKE colname2%

You can test this in find_author_12.php. Start by entering the first part of a name in both
fields. For example, if you type W in the First name field and S in the Family name field, the
result is William Shakespeare. Try it again, just typing W in the First name field. You should
see four results.

Pause a moment to think about this. The SQL query uses AND, so shouldn’t there be
something in both fields? To understand what’s happened, repeat the test with
find_author_13.php. The SQL query is identical, but the page displays the query along
with the results, as shown in Figure 17-9.

Figure 17-9. Using AND with a wildcard character search allows a field to be left blank.

Although nothing is entered in the second field, the wildcard character % is added to the
end of the runtime variable. This results in the second condition matching the
family_name column with %—in other words, anything.

Now try it with find_author_14.php, where the only difference is that AND has been
changed to OR.

If you enter values in both fields, you’ll get the results that you expect. However, if you
leave one of the fields blank, you’ll always get a full list of all records. This is because the
query tells the database to match anything in one of the fields.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

769

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding % at the front of a runtime variable lets you search for words that end with a par-
ticular letter or series of characters. Putting % at both ends of a runtime variable finds the
search expression in the middle of a string; and since % can also match nothing, it means
the search term can be anywhere—at the beginning, in the middle, at the end—or it can
even be the full string itself.

So, let’s bring the quotations table into our search.

This exercise adapts the SQL query used in quote_list.php in the previous chapter.
Instead of displaying a list of all quotations and their authors, it uses a runtime variable
with % at both ends to search for quotations that contain a specific word or phrase. To save
you time, I have created find_quote_01.php in examples/ch17 for you to use as a starting
point. The finished code is in find_quote_02.php.

1. Copy find_quote_01.php to workfiles/ch17, and open it in the Document win-
dow. The page contains a form with a single text input field called searchTerm, a
submit button, and code to display the results of the search.

2. Double-click Recordset (getQuote) in the Server Behaviors panel to open the
Recordset dialog box. The SQL query looks like this:

SELECT authors.first_name, authors.family_name, quotations.quotation
FROM quotations LEFT JOIN authors USING (author_id)
ORDER BY authors.family_name

It’s based on the query in quote_list.php in Chapter 16 (it doesn’t get quote_id
and uses a simpler ORDER BY clause). Click the Test button, and you’ll see every
quotation listed with its author’s name.

3. To search for quotations containing a particular word or phrase, you need to add
the quotation column to the WHERE clause. In the Database items section at the bot-
tom of the Recordset dialog box, expand Tables, and highlight quotation in the
quotations tree menu. Click the WHERE button to add it to the SQL query. The query
should now look like this:

SELECT authors.first_name, authors.family_name, quotations.quotation
FROM quotations LEFT JOIN authors USING (author_id)
WHERE quotations.quotation
ORDER BY authors.family_name

Searching for quotations that contain a word or phrase

This illustrates an important difference between SQL and PHP. When it encounters OR,
the PHP engine doesn’t bother to evaluate the second half of the condition if the first
half is true. In a SQL query, however, both sides are evaluated. So, in the first case, the
SQL query finds authors whose first name begins with “W” AND whose family name is
anything. In the second case, it finds authors whose first name begins with “W” OR
whose family name is anything. Creating searches with wildcards can be confusing, so
it’s a good idea to display the SQL query onscreen while testing to understand why you
get the results you do.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

770

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Add LIKE %var1% to the end of the WHERE clause, click the plus button alongside
Variables, and define the runtime variable var1 using the following settings:

Name: var1

Type: Text

Default value: -1

Runtime value: $_GET['searchTerm']

The settings in the SQL and Variables fields should now look like this:

5. Click OK to close the Recordset dialog box, save the page, and load it into a
browser. The quotations contain a lot of seasonal references, so enter summer or
winter in the Search for field. You should see a list of quotations that contain the
search term.

6. Searches with the % wildcard aren’t limited to single words. Try entering just x in the
Search for field. You should see a quotation from Winston Churchill that contains
the word “except.”

7. You can also search for a phrase. Enter red, red rose, and click the Search button.
You should see the following result:

Note that the phrase must be exact and must not be enclosed in quotes.

Check your code, if necessary, against find_quote_02.php in examples/ch17.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

771

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This type of wildcard search works fine for even quite large databases. I use it on a data-
base that contains more than 14,000 records, and the search results are normally displayed
in one or two seconds. If you need to do a lot of text searches, you might consider FULL-
TEXT indexing, which offers a more sophisticated range of text search options.

Using a FULLTEXT index
Creating a FULLTEXT index on the column(s) you want to search does away with the need
for wildcard characters. You can use FULLTEXT searches in a number of ways, but the fol-
lowing are the most useful:

Natural language searching: This finds all words passed to the query as a runtime
variable. So, a search for “winter discontent” (without the quotes) in the
quotations table returns all records that contain either “winter” or “discontent.”

Searching in Boolean mode: This lets the user refine the search by preceding
required words with a plus sign (+) and words to be excluded by a minus sign (–).
So, a search for “+winter +discontent” (without the quotes) in the quotations
table would find the Shakespeare quotation about “the winter of our discontent”
but exclude all other records. Boolean mode also permits the use of double quotes
to specify exact phrases and the asterisk (*) as a wildcard character.

These are significant advantages to FULLTEXT, but it does have the following limitations:

Only MyISAM tables support FULLTEXT indexes. You cannot add a FULLTEXT index
to InnoDB tables. So, you need to choose between maintaining referential integrity
with foreign key constraints and FULLTEXT searching.

Only CHAR, VARCHAR, and TEXT columns can be included in a FULLTEXT index.

Words that occur in more than 50 percent of the records are ignored.

Words that contain fewer than four characters are ignored.

More than 500 common words, such as “the,” “also,” and “always,” are designated
as stopwords that are always ignored, even if preceded with a plus sign in Boolean
mode. See http://dev.mysql.com/doc/refman/5.0/en/fulltext-stopwords.html
for the full list of stopwords.

Only full words are matched unless the wildcard asterisk is used in a Boolean
search.

Boolean mode does not work in MySQL 3.23.

A FULLTEXT index can be created to search multiple columns simultaneously.
However, all columns must be in the same table.

The syntax for a FULLTEXT search is different from a wildcard search with LIKE. The WHERE
clause for a natural language search looks like this:

WHERE MATCH (columnName) AGAINST ('searchTerm')

For a Boolean search, it looks like this:

WHERE MATCH (columnName) AGAINST ('searchTerm' IN BOOLEAN MODE)

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

772

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can test FULLTEXT searching with find_quote_03.php and find_quote_04.php in
examples/ch17. The SQL query in find_quote_03.php performs a natural language search
and looks like this:

SELECT authors.first_name, authors.family_name, quotations.quotation
FROM quotations LEFT JOIN authors USING (author_id)
WHERE MATCH (quotations.quotation) AGAINST (var1)
ORDER BY authors.family_name

The query in find_quote_04.php searches in Boolean mode and looks like this:

SELECT authors.first_name, authors.family_name, quotations.quotation
FROM quotations LEFT JOIN authors USING (author_id)
WHERE MATCH (quotations.quotation) AGAINST (var1 IN BOOLEAN MODE)
ORDER BY authors.family_name

Since these are text searches, it goes without saying that the Type of the runtime variable
must always be set to Text.

Before you can use the example files, you need to add a FULLTEXT index to the
quotations table. If you used the InnoDB version of the quotations table, you also need
to remove the foreign key constraints and convert it to MyISAM first. Detailed instructions
on how to do this were given in Chapter 16.

Adding a FULLTEXT index to a MyISAM table in phpMyAdmin is as simple as clicking a button.

1. If it’s not already open, launch phpMyAdmin, and display the quotations table
structure in the main frame.

2. Click the Fulltext icon in the quotation row, as shown in Figure 17-10.

Adding a FULLTEXT index

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

773

17

Figure 17-10. You can apply a FULLTEXT index easily in phpMyAdmin.

As you can see from Figure 17-10, the Fulltext icon is grayed out for quote_id and
author_id, because they’re not capable of taking a FULLTEXT index. If the icon is also
grayed out for quotation, it probably means that the table is still using the InnoDB
storage engine. You must convert the table to MyISAM first.

That’s all there is to adding a FULLTEXT index.

A FULLTEXT index is best suited to very large text databases. When building the database,
it’s recommended that you add the index after the data has been imported.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with multiple-column indexes

A multiple-column FULLTEXT index allows you to search several columns simultaneously. To
create a multiple-column index in phpMyAdmin, select the checkbox alongside each col-
umn name in the table structure grid, and click the Fulltext icon at the bottom of the grid.

To create a SQL query for a multiple-column FULLTEXT index, list the column names sepa-
rated by commas in the parentheses after MATCH like this:

WHERE MATCH (column1, column2, column3) AGAINST ('searchTerm')

The index must include all columns listed. You cannot create a FULLTEXT index for each col-
umn and list them in a MATCH definition. You need to create a separate index for each com-
bination of columns that you want to use in searches.

See http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html to learn more
about FULLTEXT searches.

Searching for values stored in a SET column

You can search for values in a SET column in two ways: you can use a wildcard character
search or use the MySQL function, FIND_IN_SET().

The FIND_IN_SET() function takes two arguments: a string containing the value you’re
searching for and the SET you want to search. Use the following query to find all records
containing “Windows” in the os_poll table used at the beginning of this chapter:

SELECT os_poll.operating_system
FROM os_poll
WHERE FIND_IN_SET('Windows', os_poll.operating_system)

The difference between using FIND_IN_SET() and a wildcard search is that the former
finds only an exact match. Using “Win%” in a wildcard search finds everything beginning
with “Win.” Wildcards are not accepted in FIND_IN_SET().

Counting records

In Chapter 14, I warned you to resist the temptation to renumber primary keys to keep
track of how many records you have in a table. To count the number of records, just use
this simple query:

SELECT COUNT(*) FROM tableName

There must be no gap between COUNT and the opening parenthesis.

You can also combine this with a WHERE clause like this:

SELECT COUNT(*) FROM tableName WHERE price > 10
SELECT COUNT(*) FROM tableName WHERE first_name = 'John'

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

774

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With SELECT COUNT(*), it’s a good idea to use an alias (see Chapter 16) like this:

SELECT COUNT(*) AS num_authors FROM authors

You can then access the result as num_authors from the Bindings panel. If you don’t use an
alias, Dreamweaver displays COUNT(*) in the Bindings panel, but when you insert the value
in Design view, you see a gold PHP shield instead of a dynamic text object. It works, but the
ability to see dynamic text objects makes it easier to understand what’s in your page.

The code for this example is in Recordset (countAuthors) in count.php in examples/ch17.
There are gaps in the author_id sequence, so the result is 39.

Counting records in a SET column

To count the number of times a value is recorded in a SET column, you can use COUNT(*)
with a WHERE clause and FIND_IN_SET() like this:

SELECT COUNT(*) AS windows
FROM os_poll
WHERE FIND_IN_SET('Windows', operating_system)

However, the problem with this is that you need to create a separate recordset for each
value. The way to count all values with a single query involves using the MySQL IF() func-
tion. The function works in a similar way to the PHP conditional (ternary) operator. It takes
three arguments: the condition you want to test, the value to assign if the test equates to
true, and the value to assign if the test equates to false. Unlike the PHP operator, the
arguments are separated by commas, so the basic syntax looks like this:

IF(condition, true, false)

The expression to check whether a particular record contains “Windows” in a SET column
looks like this:

IF(FIND_IN_SET('Windows', operating_system), 1, NULL)

If the record contains “Windows,” the IF() function returns 1, which can be interpreted as
true. If it doesn’t contain “Windows,” the value returned is NULL.

So, to get the results of the online poll in os_poll from the beginning of this chapter, you
need to build a SQL query that looks like this:

SELECT COUNT(IF(FIND_IN_SET('Windows', operating_system), 1, NULL)) ➥

AS windows,
COUNT(IF(FIND_IN_SET('Mac', operating_system), 1, NULL)) AS mac,
COUNT(IF(FIND_IN_SET('Linux', operating_system), 1, NULL)) AS linux
FROM os_poll

It looks complicated, but once you break it down into individual sections, it’s quite
straightforward. You can see the code in count_set.php in examples/ch17.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

775

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Eliminating duplicates from a recordset

SQL uses the keyword DISTINCT to eliminate duplicates from a SELECT query. You simply
insert DISTINCT immediately after SELECT. The authors table has three Johns and two
Williams. The following query results in John and William being listed only once:

SELECT DISTINCT first_name FROM authors

You can combine this with the COUNT() function to find out the number of distinct
records. The query looks like this:

SELECT COUNT(DISTINCT first_name) AS num_names FROM authors

The code for this example is in Recordset (countUnique) in count.php in examples/ch17.
The result for Recordset (countAuthors) is 39 and for Recordset (countUnique) is 33.

Hang on a moment . . . If you eliminate the two duplicate Johns and one duplicate William,
the result should be 36. The discrepancy comes from the fact that the first_name column
permits NULL values. Three records are NULL. COUNT(DISTINCT) ignores NULL values, mak-
ing 33 the correct result.

Building complex searches

Often, I get asked how to build more complex searches, for example with a form that has
four input fields, all of which are optional. The answer lies in building the SQL query
through PHP conditional logic. You begin by creating a recordset without WHERE or ORDER
BY clauses and then add the conditions, building up the query piece by piece. The first part
can be created in the Recordset dialog box, but the rest needs to be constructed manually.

The file, find_quote_05.php in examples/ch17, has three text input fields: first_name,
family_name, and quotation, all of which are optional. The first two fields are designed to
search for an exact match, but the final field uses a wildcard match. The following code
shows how the query has been built using conditional statements:

// default value for runtime variable
$var1_getQuote = "-1";
if (isset($_GET['quotation'])) {
$var1_getQuote = $_GET['quotation'];

}
// select database
mysql_select_db($database_connQuery, $connQuery);
// This is the basic query without WHERE or ORDER BY
$query_getQuote = sprintf("SELECT quotations.quotation, ➥

authors.first_name, authors.family_name FROM quotations ➥

LEFT JOIN authors USING (author_id)");
// Set a variable for the WHERE clause
$where = false;

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

776

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// If the first field contains a value, add a WHERE clause
if (isset($_GET['first_name']) && !empty($_GET['first_name'])) {
$query_getQuote .= sprintf(" WHERE authors.first_name = %s", ➥

GetSQLValueString($_GET['first_name'], "text"));
// A WHERE clause exists, so set the variable to true
$where = true;

}
// If the second field contains a value, add it to the query
if (isset($_GET['family_name']) && !empty($_GET['family_name'])) {
// Add WHERE or AND depending on value of $where
if ($where) {
$query_getQuote .= ' AND ';

} else {
$query_getQuote .= ' WHERE ';
$where = true;

}
$query_getQuote .= sprintf(" authors.family_name = %s", ➥

GetSQLValueString($_GET['family_name'], "text"));
}
// If the third field contains a value, add it to the query
if (isset($_GET['quotation']) && !empty($_GET['quotation'])) {
if ($where) {
$query_getQuote .= ' AND ';

} else {
$query_getQuote .= ' WHERE ';
$where = true;

}
$query_getQuote .= sprintf(" quotations.quotation LIKE %s", ➥

GetSQLValueString("%" . $var1_getQuote . "%", "text"));
}
// Finally, add the ORDER BY clause
$query_getQuote .= " ORDER BY authors.family_name";
$getQuote = mysql_query($query_getQuote, $connQuery) or ➥

die(mysql_error());

It looks like a lot of code, but the structure is very simple. It begins with the basic query
and then uses a series of conditional statements and the combined concatenation opera-
tor (.=) to add the WHERE clause. Because all fields are optional, you need a Boolean vari-
able to track whether the WHERE keyword has already been added. If $where is false, you
add WHERE to the existing query and set $where to true, so any further additions will use
AND instead. Finally, you add the ORDER BY clause.

Each part of the WHERE clause uses sprintf() and GetSQLValueString() to prepare the
$_GET variables to be inserted safely into the query. Because GetSQLValueString() is a
Dreamweaver function, and not part of core PHP, you must remember to include its defi-
nition in your script. The easiest way to do this is to build the first part of the query using
the Recordset dialog box, which inserts it automatically into the page. Alternatively, just
save a copy of the function in your Snippets panel (see “Saving frequently used code as a

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

777

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

snippet” in Chapter 11). Remember to use %s as the placeholder for each variable in the
first argument passed to sprintf(). Study the code for the third field carefully to see how
to add the wildcard characters for a search based on partial text input.

Enhancing the display of search results
Let’s turn now to a couple of techniques that can improve the look and usability of search
results: displaying the number of results and, if there are a lot of them, where you are in
the list; and giving table rows alternating colors to make the results easier to read.

Displaying the number of search results

The big search engines, such as Google or Yahoo!, always tell you how many records
matched your criteria. You could use COUNT() to do the same, but Dreamweaver’s
Recordset Navigation Status data object makes it child’s play.

You can do this with any page that contains a recordset, but I’ll use quote_list.php from
the previous chapter because it contains 50 results displayed over several pages. You can use
your own file from workfiles/ch16 or copy quote_list_start.php from examples/ch17.

1. Open the page in the Document window, position the insertion point at the end of
the page heading, and press Enter/Return to insert a new paragraph above the
table that displays the recordset.

2. Select Recordset Navigation Status on the Data tab of the Insert bar, as shown in
Figure 17-11. Alternatively, select Insert ➤ Data Objects ➤ Display Record Count ➤
Recordset Navigation Status.

Figure 17-11. Inserting a Recordset Navigation Status data object is done in a couple of clicks.

Using the Recordset Navigation Status data object

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

778

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. The dialog box has only one option: to choose the recordset you want to use.
There’s only one on this page, so just click OK. Dreamweaver inserts a mixture of
static and dynamic text to display the numbers of the first and last records cur-
rently being displayed, plus the total number of records in the recordset.

4. Save the page, and test it in a browser. As you move back and forth through the
recordset, the numbers of the currently displayed records change dynamically, as
shown in Figure 17-12.

Figure 17-12. Displaying the current position within a long list of database results makes
your site more user-friendly.

Check your code, if necessary, against quote_list_stats.php in examples/ch17.

You can edit the static text surrounding the dynamic text object to customize the display.
As you can see in Figure 17-11, the starting record, ending record, and total records num-
bers can be inserted independently. These independent options can also be accessed from
the Display Record Count submenu of the Server Behaviors panel.

Creating striped table rows

Viewing a long list of similar items on a computer screen can be tiring on the eyes, so it’s
often useful to give alternate rows a background color. This is very easy with a little bit of
simple math and PHP. If you divide any number by 2, the remainder is always 1 or 0. Since
PHP treats 1 as true and 0 as false (see “The truth according to PHP” in Chapter 10), all
you need is a counter; increment it by 1 each time a new table row is added, and use the
modulo operator (%) to divide it by 2. The modulo operator returns the remainder of a
division, so this produces 1 (true) or 0 (false) every alternate row, which you can use to
control the CSS class for a different background color.

This exercise uses the same page as in the preceding exercise. It involves locating the code
for the repeat region and adding two short blocks of PHP to add the counter and insert
the class in every alternate row. You also need to define the class that controls the back-
ground color.

Using modulo to create stripes in alternate rows

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

779

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. In the Server Behaviors panel, select Repeat Region (quoteList). This highlights the
repeat region, making it easy to find in Code view. The first section looks like this:

The code shown on line 108 is the start of a do . . . while loop that iterates
through the quoteList recordset to display the list of quotations (see Chapter 10
for details of loops).

2. Amend the code like this (new code is shown in bold):

</tr>
<?php $counter = 0; // initialize counter outside loop ?>
<?php do { ?>
<tr <?php if ($counter++ % 2) {echo 'class="hilite"';} ?>>
<td><?php echo $row_quoteList['first_name']; ?>

The first new block of code initializes the counter outside the loop, while the sec-
ond increments the counter by 1 inside the loop and uses modulo to create a
Boolean (true/false) test to insert the hilite class in alternate rows. I have used
separate blocks to avoid breaking Dreamweaver’s Repeat Region server behavior
code.

The increment operator (++) performs the current calculation and then adds 1 to
the variable. So, the first time through the loop $counter is 0. This leaves a remain-
der of 0 (false), so the hilite class isn’t inserted into the <tr> tag. The next time,
the calculation produces a remainder of 1 (true), and so on, until the loop comes
to an end.

3. Define the hilite class with the background color of your choice. Save the page,
and view it in a browser. Voilà, stripes (see Figure 17-13). You can check your code
against quote_list_stripes.php in examples/ch17.

Figure 17-13. Alternately colored rows improve the readability of search results.

Some developers use slightly more complex code to insert a different class in odd-
numbered rows, too. This isn’t necessary. By utilizing the cascade in your CSS, you can set
a default background color for the table and override it with the hilite class like this:

#striped tr, #striped td {background-color: #EEE;}
#striped tr.hilite, #striped tr.hilite td {background-color: #E8F2F8;}

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

780

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These rules will produce alternate pale gray and pale blue stripes in a table with an ID
called striped. If you want to use the same effect in more than one table, change striped
from an ID to a class.

To get rid of the vertical gaps between cells, set cellpadding to 0, or use border-
collapse: collapse in a style rule that applies to the table.

Displaying line breaks in text

HTML ignores whitespace in code, collapsing multiple spaces and newline characters to a
single space. As a result, text retrieved from a database is displayed onscreen as a continu-
ous solid block, even if it contains newline characters. To get around this problem, PHP has
a handy function called nl2br(), which converts newline characters to HTML
 tags.

To display line breaks in text retrieved from a recordset, double-click the dynamic text
object in the Server Behaviors panel—it’s listed as Dynamic Text (recordsetName.fieldName)—
to open the Dynamic Text dialog box, and select Convert – New Lines to BRs from the Format
menu. This wraps the dynamic text object in nl2br(). Alternatively, add the function man-
ually in Code view like this:

<?php echo nl2br($row_recordsetName['fieldName']); ?>

Reusing a recordset
It’s sometimes useful to use the same recordset more than once on a page, but you might
get a bit of a shock if you try to do so. A practical example will help explain the problem—
and the solution.

The following exercise shows what happens when you attempt to reuse a recordset after
displaying its contents in a repeat region. To gain access to the data, you need to reset the
MySQL result resource. If you just want to look at the finished code, it’s in rewind_04.php
in examples/ch17.

1. Copy rewind_01.php from examples/ch17 to workfiles/ch17, and open it in the
Document window. The page has been laid out like this:

Rewinding a recordset for reuse

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

781

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The getAuthors recordset retrieves the first five authors alphabetically by family
name and displays them in a repeat region as an unordered list.

2. Test the page by clicking the Live View button in the Document toolbar or by load-
ing the page into a browser. You should see the first five names displayed in the
unordered list. Nothing will be displayed after the paragraph that reads “Let’s dis-
play the first one again:” because there’s no dynamic text object there yet.

3. Open the Bindings panel, and insert dynamic text objects for first_name and
family_name at the bottom of the page, as shown here:

4. Test the page again. There should be no difference from what you saw in step 2.
Check your code against rewind_02.php in examples/ch17, if you need to make
sure.

So, why do the dynamic text objects no longer work? The answer, as always, lies in the
code. A repeat region is simply a PHP do . . . while loop. In Code view, the repeat
region that creates the unordered list to display the recordset looks like this:

In pseudo-code, the PHP code is doing this:

do {
display the first_name and family_name fields in an element

} while (records are still left in the recordset)

As the loop progresses, the recordset (or to be more precise, the MySQL result resource)
keeps track of its current position by moving an internal pointer. With each iteration, the
pointer moves to the next record, and when it gets to the last record, the do . . . while
loop comes to a halt. That’s why you can’t display anything else from the recordset. You
have reached the end of the line. But a recordset is just like a fishing line. You can rewind
it and use it again.

To rewind a MySQL result resource, you use the mysql_data_seek() function like this:

mysql_data_seek(resultResource, 0);

This resets the pointer and moves it back to the first record.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

782

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In Dreamweaver, the MySQL result resource is stored in a variable that has the same name
as your recordset. To reuse a recordset, you also need to prime the variable that holds the
current record. The name of this variable is made up of $row_ followed by the recordset
name. You prime the variable with the first record like this:

$row_recordsetName = mysql_fetch_assoc($recordsetName);

Unfortunately, Dreamweaver doesn’t let you apply a repeat region to the same record
more than once, so you need to code it manually. Let’s fix the code in our example page.

5. Insert the code highlighted in bold after the do . . . while loop:

<?php } while ($row_getAuthors = mysql_fetch_assoc($getAuthors)); ?>

<?php mysql_data_seek($getAuthors, 0);
$row_getAuthors = mysql_fetch_assoc($getAuthors); ?>
<p>Let's see the first one again . . .

The name of the recordset is getAuthors, so the variables for the recordset and the
current record become $getAuthors and $row_getAuthors, respectively.

6. Test the page again. This time, the name of the first author should be displayed
again at the bottom of the page (you can check your code against rewind_03.php).

7. You rarely want to use a recordset in exactly the same way, so let’s use a table this
time and see how to insert the repeat region code manually.

In Design view, position your cursor at the end of the paragraph that displays the
name of the first author again. Insert a table with two columns and two rows, and
put some column headings in the first row and dynamic text objects for
first_name and family_name in the second row, so the page now looks like this:

8. Click inside the second table row, and select the entire row by clicking the <tr> tag
in the Tag selector at the bottom of the Document window. Although you can’t use
the Repeat Region server behavior again, this highlights the section of code that you
want to repeat. This makes it easier to see where to insert the repeat region code.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

783

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Switch to Code view, copy the highlighted sections of code from the original repeat
region, and paste them into the positions indicated in Figure 17-14.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

784

Figure 17-14. Creating a repeat region manually involves copying two short PHP code blocks.

10. Save the page, and test it again. The table should now display the names of the
first five authors. Check your code, if necessary, against rewind_04.php in
examples/ch17.

Understanding how a repeat region works

Note that the first name (Woody Allen) is displayed three times: in the original repeat
region, in the paragraph after the rewind code, and in the manually coded repeat region.
This is because the do . . . while loop doesn’t move to the next row of the recordset
until the end of the loop.

The code that controls the repeat region is highlighted on lines 51 and 53 of Figure 17-14.
In effect, what it does is this:

<?php do { // start the repeat region ?>
Display the contents of the current record

<?php } while (retrieve and store the next record); ?>

The code inside the parentheses following while looks like this:

$row_getAuthors = mysql_fetch_assoc($getAuthors)

It’s exactly the same as the code on line 54 of Figure 17-6, which is used to prime the vari-
able that holds the current record. The mysql_fetch_assoc() function retrieves the next
available record from a MySQL query result as an associative array (see Chapter 10 for an
explanation of associative arrays) and moves the internal pointer to the next record. The
array is stored in $row_getAuthors. The name of each column is used as the array key, so
$row_getAuthors['first_name'] contains the first_name field of the current record and
$row_getAuthors['family_name'] contains the family_name field. You can use these

http://lib.ommolketab.ir
http//lib.ommolketab.ir

values as often as you like until the next iteration of the loop, when the next record
replaces all the values in the array.

Many books and online tutorials use a for or a while loop and place this code at the
beginning of the loop. Dreamweaver takes a slightly different approach by retrieving the
first record outside the loop and getting each subsequent record at the end of the loop.
Either approach is perfectly acceptable. The only reason you need to be aware of this is in
case you want to incorporate code from another source. Mixing two styles of coding with-
out understanding how they work might result in records being skipped as the conflicting
styles iterate through a set of database results.

Formatting dates and time
Let’s turn now to the thorny subject of dates. The calendars of most countries now agree
on the current year, month, and date (at least for international purposes—some countries
have different calendars for domestic use). What they don’t agree on is the order of the
component parts. In the United States, it’s month, date, year. In Europe, it’s date, month,
year. And in China and Japan, it’s year, month, date.

To avoid this confusion, MySQL stores dates and time in the ISO-approved order of largest
unit (year) first, followed by the next largest (month), and so on, down to the smallest
(second). In all versions of MySQL, dates are stored in the format YYYY-MM-DD, and times as
HH:MM:SS. This inevitably leads to the question, “But how can I store dates in the American
(or European) style?” The simple answer is, “You can’t. Or as Star Trek fans might put it:
resistance is futile.”

PHP, on the other hand, takes a completely different approach. It calculates dates as the
number of seconds elapsed since 00:00 UTC (Coordinated Universal Time, previously
known as GMT or Greenwich mean time) on January 1, 1970—a point in time commonly
referred to as the Unix epoch (http://en.wikipedia.org/wiki/Unix_epoch) and used as
the basis for date and time calculations in many computing languages.

As a result, you need to deal with at least three systems for handling dates: the human sys-
tem, MySQL, and PHP. The remaining sections of this chapter offer advice on how to navi-
gate through this labyrinth.

Storing the current date and time in MySQL

As I explained in Chapter 14, MySQL has several column types that store dates and times,
the most important of which are DATE, DATETIME, and TIMESTAMP. As the name suggests,
DATE stores only the year, month, and date; the other two store both the date and the
time. Since it’s easy to extract just the date part, this might narrow down your choices to
just DATETIME and TIMESTAMP. In MySQL 4.1 and above, both store the date and time in the
same format. For example, 10:08 a.m. on September 2, 2008, is stored like this:

2008-09-02 10:08:00

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

785

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Versions prior to MySQL 4.1 use the same format for a DATETIME column but store the same
date and time in a TIMESTAMP column without any punctuation—in other words, like this:

20080902100800

Although this is less human-readable than the current format, it makes no difference,
because the functions used for formatting dates and times work identically with either
format.

So, what’s the difference between DATETIME and TIMESTAMP? It can be summarized as
follows:

DATETIME: This stores any combination of date and time between New Year’s Day in
the year 1000 to New Year’s Eve in the year 9999. The date must be inserted explic-
itly. If no time is specified, MySQL automatically sets the time element to 00:00:00.
If an invalid date is specified, MySQL silently changes it to 0000-00-00 00:00:00.

TIMESTAMP: The main purpose of this column type is to store the current date and
time automatically. However, only one TIMESTAMP column in a table can have this
automatic behavior. By default, the first TIMESTAMP column in a table records the
current date and time when a record is inserted and updates the date and time
whenever the value of at least one other column is changed.

To simplify it even further: use DATETIME when you want to record a specific date, and use
TIMESTAMP when you want to record the current date and time.

The problem with simple rules is that life is rarely simple. Sometimes, you might want to
store specific dates but have the ability to use the current date and time. The answer is
to use the MySQL function NOW(). Unfortunately, Dreamweaver doesn’t have the ability to
incorporate MySQL functions as values for Insert Record and Update Record server behav-
iors. You need to adjust the code manually.

Another scenario is where you want to keep track of when a record is updated without
losing the time of its original creation. In this case, the answer is to use two TIMESTAMP
columns. Since only one TIMESTAMP column can have automatic properties, use the first
one to keep track of when the record is updated, and prime the second column with
NOW(). If nothing is entered in either column when a record is updated, the first TIMESTAMP
column automatically updates to the new date and time, and the second one retains the
time of original creation.

Both scenarios involve using NOW() to insert the value in a MySQL column, so let’s see how
it’s done.

Since the second TIMESTAMP column is being used to store a static date and
time, you might wonder why not use a DATETIME column instead. It’s simply a
question of efficiency. A TIMESTAMP column requires only half the storage
space of a DATETIME one.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

786

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following exercise shows you how to adapt the code generated by a Dreamweaver
Insert Record server behavior to pass a MySQL function, such as NOW(), as the value to be
inserted in a column. It takes advantage of an undocumented aspect of Dreamweaver’s
GetSQLValueString() function.

1. Open phpMyAdmin, and select the dwcs4 database.

2. Create a new table called date_test with five columns (fields). Use the settings in
Table 17-1 to define the table.

Table 17-1. Settings for the date_test table

Field Type Length/Values Attributes Index A_I

pk INT UNSIGNED PRIMARY Yes

updated TIMESTAMP

created TIMESTAMP

fixed_date DATETIME

message VARCHAR 100

When you save the table definition, the structure should look like this in
phpMyAdmin:

Using NOW() with the Insert Record server behavior

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

787

17

Note that MySQL 5.0 and higher displays the automatic properties of the updated
column, because it’s the first TIMESTAMP column in the table. The same automatic
properties apply even if you’re using an older version of MySQL, but they’re not
displayed in phpMyAdmin.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Copy current_date_start.php from examples/ch17 to workfiles/ch17, and save
it as current_date.php. The page contains a form with two text fields, one for a
message and the other to enter a date, as shown in the following screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

788

4. Click anywhere inside the form, and insert a hidden field. In the Property inspector,
name the hidden field created, and give it the value NOW(), as shown here:

5. Apply an Insert Record server behavior. When you select the date_test table, the
settings should look like this:

Let’s examine these values. Unused Primary Key is fine, because the pk column was
set to increment automatically. Does Not Get a Value is also fine for the updated col-
umn, because the first TIMESTAMP column is initialized automatically with the cur-
rent date and time.

The created and fixed_date columns are listed as getting dates. This looks quite
promising, but don’t be lulled into a false sense of security. Dreamweaver handles
a date in the same way as text, surrounding it with quotes, but NOW() is a function

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and must not be enclosed in quotes. So, these two columns will need to be fixed
manually once the server behavior has been applied.

Finally, the message column looks OK, because it’s getting its value from the form
as text.

6. Click OK to apply the Insert Record server behavior, and then switch to Code view
to locate the code generated by Dreamweaver. The section that builds the INSERT
query is shown in Figure 17-15.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

789

17

Figure 17-15. You need to edit the Insert Record server behavior code to use NOW() as the value
for a date column.

7. The created column gets its value from the hidden field that you created in step 4.
However, passing that value to the GetSQLValueString() function as a date data
type results in MySQL attempting to insert NOW() as a string. This is invalid for a
date column, so you end up with 0000-00-00 00:00:00 instead of the current date
and time.

Fortunately, the GetSQLValueString() function accepts two optional arguments
for you to incorporate user-defined values in a SQL query. Amend the code shown
on line 41 of Figure 17-15 like this:

GetSQLValueString($_POST['created'], "defined", 'NOW()'),

This tells GetSQLValueString() to incorporate NOW() into the query without any
quotes, so it is used correctly as a function. Don’t be confused by the quotes
around NOW() when you pass it as an argument to GetSQLValueString(). It’s what
happens inside the function that matters. GetSQLValueString() prepares values
for incorporation into a SQL query by removing magic quotes, escaping characters
that cause problems with database queries, and adding quotes where required.
Using "defined" as the second argument lets you pass a MySQL function safely as
the third argument.

8. The code created by Dreamweaver for the fixed_date column is OK as long as
the user inserts a date. However, the form in current_date.php instructs the
user to leave the field blank to insert the current date. This suggests that you
need a conditional statement. Indeed, you do, but that’s taken care of inside
GetSQLValueString().

As I said earlier, the function accepts two optional arguments. The first optional
argument sets the value if the submitted variable contains a value. The second
optional argument is used if the submitted variable is empty. So, this is how you
edit the code shown on line 42 of Figure 17-15:

GetSQLValueString($_POST['fixed_date'], "defined", ➥

GetSQLValueString($_POST['fixed_date'], "date"), 'NOW()'),

At first glance, this looks bizarre, but let’s analyze what’s happening here. The first
argument to GetSQLValueString() is $_POST['fixed_date']. This is the value

http://lib.ommolketab.ir
http//lib.ommolketab.ir

submitted from the form field. The second argument is "defined". This tells
GetSQLValueString() to use the third argument if the form field contains a value
or to use the fourth argument if the form field is empty. Let’s deal with the fourth
argument first, because it’s straightforward. The fourth argument is 'NOW()', so the
SQL query will use NOW() as a function if the form field is left blank.

Now, let’s return to the third argument, which is used if the form field isn’t blank.
If you look at it on its own, it’s exactly the same as the original code on line 42 of
Figure 17-15. In other words, if the form field contains a value, it’s passed to
GetSQLValueString() and treated as a date.

9. Save current_date.php, and load it into a browser.

10. The only purpose of the message field is to give you something to update and iden-
tify each record. Enter some text, and leave the fixed_date field empty. Click the
Insert button. If nothing is wrong with your code, the form should submit the val-
ues and remain onscreen with empty fields.

11. Submit the form twice more, once with a date in MySQL format (YYYY-MM-DD) and
the other time with a date in American (MM/DD/YYYY) or European (DD/MM/YYYY)
format.

12. Click the Browse tab in phpMyAdmin to view the contents of the date_test table.
You should see something similar to Figure 17-16.

Figure 17-16. The fields are correctly populated with the date and time, except when an
invalid format is used.

As Figure 17-16 shows, the date and time are the same in all three columns in the
first record. The first two columns are the same in the second record, but the
fixed_date column has recorded the date (2008-08-08) I entered in MySQL for-
mat. However, when I entered 12/25/2008 in the final record, fixed_date was set
to 0000-00-00 00:00:00. By the way, this has nothing to do with using forward
slashes—MySQL accepts a wide range of separators, which it converts silently to
dashes. The problem lies with year, month, and date being in the wrong order. The
only solution is to format dates correctly before attempting to store them in
MySQL. We’ll look at that next.

You can check your code, if necessary, against current_date.php in examples/ch17.

Storing other dates in MySQL

A very simple way to handle dates in user input is to use the YUI Calendar widget (see
Chapter 8) or the Spry validation text field widget (see Chapter 9) to enforce a particular
format. So if you’re in an enclosed environment, such as an intranet, where you can guar-
antee compliance—and that JavaScript won’t be disabled—this might be your solution.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

790

http://lib.ommolketab.ir
http//lib.ommolketab.ir

However, getting Internet users to adhere to rules is rather like herding cats. It’s far safer
to ensure accurate date input by providing separate fields for month, day of the month,
and year, and then to use PHP to verify and format the input.

In the examples/ch17 folder of the download files, you will find a page called
fixed_date_start.php. When you load it into a browser, it displays a drop-down menu
preset to the current month, together with two text fields for the date and year, as shown
in Figure 17-17. The Max Chars settings for the text fields have been set to 2 and 4, respec-
tively, to limit the range of mistakes that can be made.

Figure 17-17. Providing separate fields for the date parts is the most reliable way
of inserting dates accurately.

The drop-down menu for the month is created in two parts. The first section of code goes
in a PHP block above the DOCTYPE declaration and consists of an array of the names of the
months, plus the PHP getdate() function. This is how it looks:

$months = array('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', ➥

'Sep', 'Oct', 'Nov', 'Dec');
$now = getdate();

The getdate() function produces an associative array that contains a number of useful
date parts, such as the year, weekday name, and so on. When used without an argu-
ment like this, getdate() returns information about the current date, so you can find
the number of the current month in $now['mon'] and use it to preset the drop-down
menu. You can find a full list of the array elements returned by getdate() at http://
docs.php.net/manual/en/function.getdate.php.

The code for the drop-down menu looks like this:

<label for="select">Month:</label>
<select name="month" id="month">
<?php for ($i=1;$i<=12;$i++) { ?>
<option value="<?php echo $i < 10 ? '0'.$i : $i; ?>"
<?php if ($i == $now['mon']) {
echo ' selected="selected"'; } ?>><?php echo $months[$i-1]; ?>

</option>
<?php } ?>

</select>

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

791

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This uses a for loop to populate the menu’s <option> tags. Although counters normally
begin at 0, I have set the initial value of $i to 1, because I want to use it for the value of
the month.

The second line highlighted in bold uses the conditional operator (see Chapter 10) to test
whether $i is less than 10. If it is, a leading zero is added to the number; otherwise, it is left
alone. Another way of writing it would be to use this:

if ($i < 10) {
echo '0'.$i;

} else {
echo $i;

}

The third line of PHP checks whether the value of $i is the same as $now['mon']. If it is,
the following line inserts selected="selected" into the opening <option> tag. The final
part of the script displays the name of the month by drawing it from the $months array.
Because indexed arrays begin at 0, you need to subtract 1 from the value of $i to get the
right month.

To validate the input from the month, date, and year input fields and format them ready
for MySQL, I have created the following function:

function formatMySQLDate($month, $day, $year, &$error) {
$mysqlFormat = null;
$m = $month;
$d = trim($day);
$y = trim($year);
if (empty($d) || empty($y)) {
$error = 'Please fill in all fields';

} elseif (!is_numeric($d) || !is_numeric($y)) {
$error = 'Please use numbers only';

} elseif (($d <1 || $d > 31) || ($y < 1000 || $y > 9999)) {
$error = 'Please use numbers within the correct range';

} elseif (!checkdate($m,$d,$y)) {
$error = 'You have used an invalid date';

} else {
$d = $d < 10 ? '0'.$d : $d;
$mysqlFormat = "'$y-$m-$d'";

}
return $mysqlFormat;

}

I have not created similar drop-down menus for the day and year because PHP is a
server-side language. Although you could create a script to display the correct number
of days for the month, you would have to reload the page every time the month was
changed. You could create an intelligent date input system with JavaScript, but that
makes the dangerous assumption that all users will have JavaScript enabled.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

792

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The formatMySQLDate() function is one of the snippets you installed in the PHP-DWCS4
folder of the Snippets panel in Chapter 11. It takes four arguments: the month, date, and
year values submitted by the form, and a variable to hold any error messages. The fourth
argument should be an empty string ready to capture any error message.

In the function definition, the fourth argument is preceded by an ampersand (&). This is
the same technique I used in the isSuspect() function in Chapter 11. Normally, passing a
variable to a function simply uses a copy of its value; anything that happens in the function
has no effect on the variable’s original value. However, preceding the argument by & in the
function definition passes the actual value to the function, so any changes inside the func-
tion are reflected in the main script. This is a technique known as passing by reference
because it passes a reference to the actual value, rather than a copy.

Let’s take a quick look at what happens inside the formatMySQLDate() function. It begins
by setting a variable called $mysqlFormat to null. This will be used as the value the func-
tion returns, so it will remain null if any errors are found. You don’t need to perform any
checks on the value of the month, because the drop-down menu has generated it. So,
after trimming any whitespace from around the date and year, they are subjected to the
first three checks: to see whether they are empty, not numeric, or out of range. You have
met the empty() function before. The second check uses is_numeric(), which is basically
self-explanatory. It takes advantage of PHP’s loose typing. In strict terms of datatypes, the
content of a text field is always a string, but is_numeric() also returns true if a string con-
tains a number, such as '5'. (No, it’s not clever enough to recognize 'five' as a number.)
The third test looks for numbers within acceptable ranges. It looks like this:

elseif (($d <1 || $d > 31) || ($y < 1000 || $y > 9999)) {

The values set for the day (1–31) are immediately understandable, even though they don’t
apply to every month. The range for years (1000–9999) is dictated by the legal range for
MySQL. I suggest that you use a narrower range, more in line with the requirements of the
application you’re building. In the unlikely event that you need a year out of that range,
you must choose a different column type to store the data. MySQL was not designed to
handle stardates from Star Trek: The Next Generation!

By using a series of elseif clauses, this code stops testing as soon as it meets the first mis-
take. If the input has survived the first three tests, it’s then subjected to the PHP function
checkdate(), which really puts a date through the mill. It’s smart enough to know the dif-
ference between February 29 in a leap year and an ordinary year.

Finally, if the input has passed all these tests, it’s rebuilt in the correct format for insertion
into MySQL. The first line of the final else clause uses the ternary operator, as described
earlier, to add a leading zero to the day of the month if necessary. The function returns the
date wrapped in single quotes, so it can be inserted directly into a SQL query. If an error is
found, the function returns null, and the error message can be retrieved from the vari-
able passed as the fourth argument to formatMySQLDate().

Now that you have seen what the formatMySQLDate() function does, let’s incorporate it
into a page to insert a user-defined date into MySQL.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

793

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following exercise uses the formatMySQLDate() function to validate and format a date
ready for insertion into MySQL. It uses the date_test table that was created for the pre-
ceding exercise.

1. Copy fixed_date_start.php from examples/ch17, and save it in workfiles/ch17
as fixed_date.php. The file is based on current_date.php from the previous exer-
cise, so it contains a hidden field called created to set the current date for the
second TIMESTAMP column.

2. Apply an Insert Record server behavior. The names of the fields for the date parts
no longer match the fixed_date column in the date_test table, so you need to
select fixed_date in the Insert Record dialog box, and select one of the date part
fields from the Value drop-down menu, as shown in Figure 17-18.

Figure 17-18. You need to select one of the date part fields to match the database column.

3. The other settings should be fine, so click OK to apply the Insert Record server
behavior.

4. Locate the Insert Record server behavior code in Code view, and insert the follow-
ing code at the point indicated in Figure 17-19:

// initialize string for error message
$error = '';
if (array_key_exists('insert', $_POST)) {
// formatMySQLDate definition goes here

// format the date parts
$mysqlDate = formatMySQLDate($_POST['month'], $_POST['date'], ➥

$_POST['year'], $error);
}
if (!$error) {

Inserting a user-defined date into MySQL

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

794

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 17-19. The code to format the date needs to go before the INSERT query.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

795

17

The new code begins by initializing an empty string to hold any error message gen-
erated by the formatMySQLDate() function. A conditional statement then checks
whether the insert form has been submitted. If it has, you need to define the
formatMySQLDate() function and then pass the date parts and the $error variable
to it.

If the date parts constitute a valid date, $error will remain an empty string, so the
second conditional statement will equate to false, letting the Insert Record server
behavior go ahead.

5. Tidy up the code you have just inserted by inserting the formatMySQLDate() func-
tion definition from the PHP-DWCS4 folder of the Snippets panel (it’s called Format
date for MySQL). Also add a closing curly brace for the second conditional state-
ment just after the Insert Record server behavior code (line 48 in Figure 17-19,
although the line number will have increased to about 74).

6. The next task is to edit the code that inserts the values into the SQL query. The
code shown on line 41 of Figure 17-19 should look like this:

GetSQLValueString($_POST['created'], "defined", 'NOW()'),

This is the same edit as in the previous exercise, so it needs no explanation.

7. The line that inserts the user-defined date is on line 42 of Figure 17-19. It needs to
be edited like this:

GetSQLValueString($_POST['month'], "defined", $mysqlDate),

The insert code won’t run if an error has been detected by formatMySQLDate(), so
you know that $mysqlDate must contain a valid date in MySQL format. The date is
already formatted with quotes, so it can be inserted directly into the SQL query.

8. The final change you need to make is to add a warning if the INSERT query didn’t
run. Add the following code between the page heading and insert form:

<?php
if (isset($error)) {
echo "<p>$error</p>";

}
?>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Save fixed_date.php, and load it into a browser. Test it by adding a message and
selecting a date. Then check that it has been inserted correctly into the date_test
table. Also try an invalid date, such as Feb 29, 2007. You should see an error mes-
sage, and nothing will be inserted into the database.

You can check your code, if necessary, against fixed_date.php in examples/ch17.

These exercises have dealt only with the Insert Record server behavior, but you use the
same techniques to handle dates in the Update Record server behavior.

Now that you have stored dates correctly in MySQL, how do you make them look accept-
able to visitors to your site? Many developers who have already dabbled with PHP attempt
to use the PHP date() function (covered later in the chapter) to format the date. However,
the date() function expects a timestamp based on the number of seconds since the
beginning of 1970; a MySQL timestamp is incompatible. Although it’s perfectly possible to
use PHP to format the date, it’s much more efficient to get MySQL to do all the work for
you, as explained in the next section.

Using DATE_FORMAT() to output user-friendly dates

MySQL has a wide range of date and time functions. The one that concerns us here is
DATE_FORMAT(), which does exactly what its name suggests. The syntax for DATE_FORMAT()
is as follows:

DATE_FORMAT(date, format)

Normally, date is the name of the table column that you want to format, and format is a
string that tells MySQL which format to use. You build the format string from specifiers.
Table 17-2 lists those most commonly used.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

796

Table 17-2. Frequently used MySQL date format specifiers

Period Specifier Description Example

Year %Y Four-digit format 2007

%y Two-digit format 07

Month %M Full name January, September

%b Abbreviated name, three letters Jan, Sep

%m Number, with leading zero 01, 09

%c Number, no leading zero 1, 9

Day of month %d With leading zero 01, 25

%e No leading zero 1, 25

%D With English text suffix 1st, 25th

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Period Specifier Description Example

Weekday name %W Full text Monday, Thursday

%a Abbreviated name, three letters Mon, Thu

Hour %H 24-hour clock, with leading zero 01, 23

%k 24-hour clock, no leading zero 1, 23

%h 12-hour clock, with leading zero 01, 11

%l (lowercase “L”) 12-hour clock, no leading zero 1, 11

Minute %i With leading zero 05, 25

Second %S With leading zero 08, 45

AM/PM %p

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

797

17

The specifiers can be combined with ordinary text or punctuation in the format string. As
always, when using a function in a SQL query, there must be no space between the func-
tion name and the opening parenthesis. It’s also a good idea to assign the result to an alias
using the AS keyword (see Chapter 16). Referring to Table 17-2, you can now format the
date in the submitted column of the feedback table in a variety of ways. To present the
date in a common U.S. style and retain the name of the original column, use the following:

DATE_FORMAT(created, '%c/%e/%Y') AS created

To format the same date in European style, reverse the first two specifiers like this:

DATE_FORMAT(created, '%e/%c/%Y') AS created

You can now format the dates in the date_test table in a way that’s easier to read.

The following exercise shows you how to use DATE_FORMAT() to transform the dates stored
in the date_test table. The same technique applies to any date or time column. By using
different aliases, you can extract different parts of the date or time to use in a variety of
ways in your web pages.

1. Create a PHP page called display_dates.php in workfiles/ch17.

2. Open the Recordset dialog box in Advanced mode. Call the recordset getDates,
and expand the date_test table in the Database items field at the bottom of the
dialog box.

Formatting the date and time in the feedback table

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Select fixed_date, and click the SELECT button. This creates a query in the SQL field
like this:

SELECT date_test.fixed_date
FROM date_test

4. To keep things simple, I’m going to work with this one column. Amend the query
to this:

SELECT date_test.fixed_date,
DATE_FORMAT(date_test.fixed_date, '%b %e, %Y') AS us_format,
DATE_FORMAT(date_test.fixed_date, '%e %b %Y') AS eu_format
FROM date_test

5. Click the Test button to make sure everything is working correctly. The dates should
now be formatted as shown in Figure 17-20.

Figure 17-20. A combination of DATE_FORMAT() and aliases gives you the same
data in three formats.

If Dreamweaver displays a MySQL error message instead, check that you have not
left any space between DATE_FORMAT and the opening parenthesis of the function.
Although some computer languages allow you to leave a space, MySQL doesn’t.
Also, make sure that the format string is enclosed in matching single quotes.
Although single and double quotes are equally acceptable in SQL (and in the test
panel), double quotes cause a parse error in Dreamweaver’s PHP code when you
run the page normally.

6. Close the test panel. I’ll leave you to experiment with DATE_FORMAT(). The version
of display_dates.php in examples/ch17 displays the three formats in a table.

This gives you just a brief glimpse of MySQL date functions. Others allow you to perform
useful calculations, such as working out people’s ages from their birthdates, calculating the
difference between two dates, and adding to or subtracting from dates. You can find
details of all MySQL date and time functions, together with examples at
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html.

Working with dates in PHP

PHP handles dates in a very different way from MySQL that’s not as easy to visualize in
everyday terms. Whereas MySQL timestamps are based on the human calendar, it’s impos-
sible for anyone—except, perhaps, a mathematical genius—to read the date from a PHP
timestamp, as this example shows:

1220350080 // Unix timestamp for 10:08:00 UTC on September 2, 2008

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

798

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As mentioned earlier, this seemingly arbitrary figure is the number of seconds since the
beginning of 1970. Except when referring to the current time, all dates in PHP need to be
converted to a Unix timestamp. After performing any calculations, you format the result in
a more human-readable way by using the date() or strftime() function, which I’ll
describe shortly. But first, let’s take a look at time zones and Unix timestamps.

Setting the correct time zone
The internal workings of the PHP date and time functions were revised in PHP 5.1 and
require a time zone to be defined. Normally, this should be done by setting the value of
date.timezone in php.ini; but if your hosting company forgets to do so, or you want to use
a different time zone, you need to set it yourself. You can do this in three different ways.

The simplest way is to add the following at the beginning of any script that uses date or
time functions:

ini_set('date.timezone', 'timezone');

You can find a full list of valid time zones at http://docs.php.net/manual/en/
timezones.php. The correct setting for where I live is this:

ini_set('date.timezone', 'Europe/London');

ini_set() fails silently if your server doesn’t support the date.timezone setting. As long
as you use a valid PHP time zone, your scripts will automatically use this setting whenever
your server is upgraded.

A slightly longer way is to add this (with the appropriate time zone) before using date and
time functions:

if (function_exists('date_default_timezone_set')) {
date_default_timezone_set('Europe/London');

}

If your remote server runs Apache, you may be able to set a default time zone for your
entire site by putting the following in an .htaccess file in the site root (use the correct
time zone for your location):

php_value date.timezone 'Europe/London'

This works only if Apache has been set up to allow .htaccess to override default settings.

Creating a Unix timestamp
PHP offers two main ways of creating a Unix timestamp. The first uses mktime() and is
based on the actual date and time; the other attempts to parse any English date or time
expression with strtotime().

The mktime() function takes six arguments as follows:

mktime(hour, minutes, seconds, month, date, year)

All arguments are optional. If a value is omitted, it is set to the current date and time.
However, you can’t skip arguments; as soon as you leave one out, all remaining ones must

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

799

17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

also be omitted. Consequently, if you are interested only in the date, you need to set the
first three arguments to 0 (midnight) like this:

$Xmas2008 = mktime(0, 0, 0, 12, 25, 2008);

The strtotime() function attempts to parse dates from American English but holds some
unpleasant surprises. The following expressions produce the correct timestamp for
Christmas day 2008:

$Xmas2008 = strtotime('12/25/2008');
$Xmas2008 = strtotime('2008-12-25');

However, replacing the slashes with hyphens in the first example, as follows, produces a
false result:

$notXmas = strtotime('12-25-2008'); // produces Jan 1, 1970 timestamp

To avoid such problems, it’s best to use the name of the month, either spelled out in full
or just the first three letters, and to place the year at the end of the string.

The real value of strtotime(), however, lies in its ability to add or subtract from dates by
parsing simple time-related expressions. For instance, strtotime() understands all these
expressions:

strtotime('tomorrow');
strtotime('yesterday');
strtotime('last Monday');
strtotime('next Thursday');
strtotime('-3 weeks');
strtotime('+1 week 2 days');

The previous examples calculate the timestamp based on the current date and time.
However, you can supply a specific timestamp as a second, optional argument to
strtotime(). This means you can add or subtract from a particular date. The following
example calculates the timestamp for January 6, 2009:

$Xmas2008 = mktime(0, 0, 0, 12, 25, 2008);
$twelfthNight = strtotime('+12 days', $Xmas2008);

If you ever need to generate a Unix timestamp from a date-type column in MySQL, you
can use the UNIX_TIMESTAMP() function in a SELECT statement like this:

SELECT UNIX_TIMESTAMP(submitted) AS PHPtimestamp FROM feedback

Formatting dates in PHP
PHP offers two functions that format dates: date(), which displays the names of weekdays
and months in English only, and strftime(), which uses the server’s locale. So, if the

Be careful when using next in a strtotime() expression. In versions prior to PHP 4.4, it
is incorrectly interpreted as +2, instead of +1.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

800

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server’s locale is set to Spanish, date() displays Saturday, but strftime() displays sábado.
Both functions take as their first, required argument a string that indicates the format in
which you want to display the date. A second, optional argument specifies the timestamp,
but if it’s omitted, the current date and time are assumed.

There are a lot of format characters. Some are easy to remember, but many seem to have no
obvious reasoning behind them. You can find a full list at http://docs.php.net/manual/
en/function.date.php and http://docs.php.net/manual/en/function.strftime.php.
Table 17-3 lists the most useful.

HANDLING CHECKBOX GROUPS, SEARCHES, AND DATES

801

17

Table 17-3. The main format characters used in the date() and strftime() functions

Unit date() strftime() Description Example

Day d %d Day of the month with leading zero 01 through 31

j %e* Day of the month without leading zero 1 through 31

S English ordinal suffix for day of the month st, nd, rd, or th

D %a First three letters of day name Sun, Tue

l (lowercase “L”) %A Full name of day Sunday, Tuesday

Month m %m Number of month with leading zero 01 through 12

n Number of month without leading zero 1 through 12

M %b First three letters of month name Jan, Jul

F %B Full name of month January, July

Year Y %Y Year displayed as four digits 2007

y %y Year displayed as two digits 07

Hour g Hour in 12-hour format without leading zero 1 through 12

h %I Hour in 12-hour format with leading zero 01 through 12

G Hour in 24-hour format without leading zero 0 through 23

H %H Hour in 24-hour format with leading zero 01 through 23

Minutes i %M Minutes with leading zero if necessary 00 through 59

Seconds s %S Seconds with leading zero if necessary 00 through 59

AM/PM a %p Lowercase am

AM/PM A Uppercase PM

* Note: %e is not supported on Windows.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can combine these format characters with punctuation to display the current date in
your web pages according to your own preferences. For instance, the following code (in
dates.php in examples/ch17) produces output similar to that shown in Figure 17-21.

<p>American style: <?php echo date('l, F jS, Y'); ?></p>
<p>European style: <?php echo date('l, jS F Y'); ?></p>

Figure 17-21. The PHP date() function formats the current date or a Unix timestamp in
various styles.

Chapter review
As I said at the outset of this chapter, building SQL queries is a vast subject. The more you
learn, the more you realize just how much more there is to know. Even when working with
a single table, you can fine-tune your searches by using MySQL functions and aliases. So,
it’s important to break out of the confines of the Recordset dialog box in Simple mode and
learn how to build queries that extract the information that you want—and in the format
you want. When you have a moment to spare, visit http://dev.mysql.com/doc/refman/
5.0/en/functions.html, and take a look at the impressive range of functions that you can
use in MySQL queries. The most useful categories are the string and date and time func-
tions. This chapter has shown you how to format the date with MySQL functions, but there
are many more, including functions that calculate the difference between two dates and
functions that add or subtract any time period to or from a date. The online documenta-
tion has lots of examples showing how to use the functions. Experiment with them and
take your SQL skills to a new level.

The next chapter takes a break from working with MySQL and shows you how to use the
Dreamweaver XSL Transformation server behavior to extract information from online
news feeds and other XML documents.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

802

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18 USING XSLT TO DISPLAY LIVE
NEWS FEEDS AND XML

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Extensible Markup Language (XML) is probably one of the most hyped and least under-
stood aspects of web development. XML has the simple objective of storing data in a for-
mat that both humans and computers can easily understand. It’s not a database, and it’s
not a programming language. It’s a highly structured way of presenting data. Because it
uses tags like HTML, XML looks very familiar to web developers. However, there is no mas-
ter list of tags or attributes, and although XML frequently contains data intended for dis-
play on the Web, it provides no way of displaying it.

That’s where programs like Dreamweaver come in. The XSL Transformation server behav-
ior processes raw XML and incorporates it in a web page, using a combination of PHP and
Extensible Stylesheet Language Transformations (XSLT), a language for transforming XML
into HTML.

In this chapter, you’ll learn about the following:

What XML and XSLT do

Determining whether your host supports XSLT within PHP

Drawing data from a live news feed into your site

Experimenting with the XPath Expression Builder

A quick guide to XML and XSLT
XML became a W3C standard in February 1998, and XSLT followed almost two years later,
in November 1999. Because of the “Stylesheet” in its name, the role of XSLT is often
described as being to format XML documents in a similar way to CSS. However, there is no
real similarity. The real strength of XSLT lies in its ability to manipulate data, sorting and fil-
tering it in much the same way as SQL does with a database. Unfortunately, it’s not an easy
language to learn, but the XSL Transformation server behavior in Dreamweaver eases the
process considerably.

Before delving into the mysteries of XSLT, let’s take a look at the structure of an XML
document.

What an XML document looks like

XML is closely related to HTML, so it looks reassuringly familiar, but there are two funda-
mental differences between them:

HTML has a fixed range of tags and attributes. In XML, you create your own.

HTML tags are concerned with the structure of a page (<head>, <body>, <p>,
<table>, and so on), whereas XML tags normally describe the data they contain
(for instance, the following example uses <Book> to store details of individual
books).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

806

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following is a simple example of an XML document:

<?xml version="1.0" ?>
<BookList>
<Book ISBN="978-1-4302-1610-0">
<Title>The Essential Guide to Dreamweaver CS4 with CSS, Ajax, ➥

and PHP</Title>
<Authors>
<Author>David Powers</Author>

</Authors>
<Publisher>friends of ED</Publisher>
<ListPrice>49.99</ListPrice>

</Book>
<Book ISBN="978-1-4302-1606-3">
<Title>HTML and CSS Web Standards Solutions: A Web Standardista's ➥

Approach</Title>
<Authors>
<Author>Christopher Murphy</Author>
<Author>Nicklas Persson</Author>

</Authors>
<Publisher>friends of ED</Publisher>
<ListPrice>39.99</ListPrice>

</Book>
</BookList>

The first line is the XML declaration, often also referred to as the XML prolog, which
tells browsers and processors that it’s an XML document. The XML declaration is recom-
mended but not required. However, if you do include it, the XML declaration must be the
first thing in the document. The W3C recommends using XML 1.0 unless you need the
highly specialized features of XML 1.1 (http://www.w3.org/TR/2004/REC-xml11-20040204/
#sec-xml11). The XML declaration can also contain an encoding attribute. If this attribute
is omitted, as in the previous example, XML parsers automatically use Unicode (UTF-8 or
UTF-16).

As you can see from the example document, the tags give no indication as to how the doc-
ument is intended to look. In fact, it’s normally recommended that they shouldn’t,
because XML is intended primarily to store data in a hierarchical structure according to
meaning and without any reference to presentation. Unless you are working in a large col-
laborative project, which needs to use a standardized vocabulary, you can make up your
own tags, as I have done here. They can be made up not only of alphanumeric characters
but also accented characters, Greek, Cyrillic, Chinese, and Japanese—in fact, any valid
Unicode character. However, they cannot include any whitespace or punctuation other
than the hyphen (-), underscore (_), and period (.), and they cannot begin with xml in any
combination of uppercase or lowercase letters.

The goals of XML include being human-legible, and terseness is considered of minimal
importance. So, instead of using <Pub>, which could mean publisher, publication date, or
somewhere to get a drink, I have been specific and used <Publisher>. The most important

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

807

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

thing about an XML document is that it must be well formed. The main rules of what con-
stitutes a well-formed document are as follows:

There can be only one root element.

Every start tag must have a matching closing tag.

Empty elements can omit the closing tag, but, if they do so, must have a forward
slash before the closing angle bracket (/>).

Elements must be properly nested.

Attribute values must be in quotes.

In the content of an element or attribute value, < and & must be replaced by <
and &, respectively.

An empty element is one that doesn’t have any content, although it can have attributes
that point to content stored elsewhere. To borrow a couple of examples from XHTML,
which is HTML 4.01 reformulated to adhere to XML rules, and
 are empty ele-
ments. The src attribute of the tag points to the location of the image, but the tag
itself is empty. The
 tag simply creates a line break, so never has any content. To com-
ply with XML rules, they can be written as and
</br> or use the short-
hand and
. To avoid problems with older browsers, a space is normally
inserted before the closing forward slash in XHTML, but this is not a requirement of XML.

Since XML is concerned only with the storage of data, and not its presentation, it’s also
possible to have empty elements that contain all their data in the tag’s attributes. For
example, this is a perfectly valid way to store details of movies in XML:

<?xml version="1.0" ?>
<movies>
<movie title="Atonement" duration="123"/>
<movie title="La Vie en Rose" duration="140"/>

</movies>

If you look at both examples, you will see they have only one root element: <BookList>
or <movies>. All other elements are nested inside the root element, and the nesting fol-
lows an orderly pattern. In the first example, even when a book has only one author, the
<Author> tag is still nested inside <Authors>, and the value of the ISBN attribute is
always in quotes. While these strict rules make XML more time-consuming to write, the
predictability of a well-formed document makes it a lot easier to process. As you will see
shortly, when you define an XML source, Dreamweaver instantly builds a diagrammatic
representation of the document structure that enables you to manipulate its content
with XSLT.

Using HTML entities in XML
Among the conditions of being well-formed is the need to replace < and & with the HTML
entities < and & in the content of an element or attribute value. This often leads to
the misconception that XML supports the full range of HTML entities, such as é

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

808

http://lib.ommolketab.ir
http//lib.ommolketab.ir

(for é). It doesn’t. XML understands only the following five entities: < (<), & (&),
> (>), " ("), and ' (').

When creating an XML document in an accented language, such as Spanish, French, or
German, you should use accented characters in the same way as in ordinary text. A key
principle of XML is that it should be human-readable. You can use other HTML entities in
XML, but they will not be automatically rendered as their text equivalent. The XSL
Transformation server behavior defines the most frequently used HTML entities so they
render correctly. If your XML source contains other HTML entities, you can add your own
definitions to the XSL page, as described in “Understanding how XSLT is structured” later
in the chapter.

Using XSLT to display XML

There are two ways of using XSLT: client-side and server-side. With client-side XSLT, you
create an XSL page and link it to the XML document just like linking a CSS style sheet to an
ordinary web page. The job of interpreting the XSLT instructions is then left up to the vis-
itor’s browser. Most modern browsers are now capable of handling client-side XSLT, but
support is by no means universal. This lack of universal support means you can use it only
in controlled environments, such as an intranet, where you know that everyone is using a
compatible browser.

Another drawback of client-side XSLT is that the XSL and XML documents must both reside
in the same folder on the web server. So, if you want to display the contents of a news
feed from another site, you must first download the XML feed and store it locally.

To get round these problems, you can use PHP to process the XSLT on the server. This con-
verts the XML into HTML before it’s sent from the server, providing your visitors with
exactly the same page regardless of which browser they’re using. Moreover, with server-
side transformation, you can pull the XML feed from any publicly available source on the
Internet.

As I mentioned earlier, XSLT is a difficult language, but Dreamweaver automatically builds
the XSL page for you. All you need to do is embed the XSL fragment in a PHP page. We’ll
take a look at XSLT code in “Understanding how XSLT is structured” later in the chapter,
but first let’s see it in action.

Checking your server’s support for XSLT
PHP 4 and PHP 5 handle XSLT completely differently, but Dreamweaver’s XSL
Transformation server behavior has been designed to work seamlessly with both by auto-
matically detecting the version of PHP running on your server. However, XSLT isn’t enabled
by default, so you need to check that it is supported.

A good starting place to learn more about XML is the XML FAQ, edited by Peter Flynn,
at http://xml.silmaril.ie.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

809

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Create a page containing the following single-line script, and upload it to your remote
server to display details of the server’s PHP configuration:

<?php phpinfo(); ?>

Check for the value of allow_url_fopen in the PHP Core section close to the top of the page.
It must be set to On, as shown in the following screenshot:

Scroll almost to the bottom of the page, and look for a section similar to that shown in the
following screenshot:

This shows what you are likely to see on a server running PHP 5 if it has been configured
to handle XSLT. The configuration details will look slightly different on a PHP 4 installation.
Instead of xsl, it should say xslt, but it should be in the same position just above the
Additional Modules section, close to the bottom of the page. The difference in name
reflects the functions they use. Although the XSL Transformation server behavior works
with PHP 4, you should seriously consider moving to a PHP 5 server as soon as possible. All
support for PHP 4 ended in August 2008.

If you can’t find either xsl or xslt, contact your host, and ask for the server to be upgraded.
If hosts realize there is a genuine demand for new features, they are likely to respond, or
risk losing business. If your host doesn’t support XSLT, you can build the pages in the rest
of this chapter and test them on your local computer, but you won’t be able to upload
them to your website.

The XSL Transformation server behavior requires both settings to be enabled.
Unfortunately, many hosting companies turn off allow_url_fopen. With older versions of

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

810

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PHP, this was an understandable security measure. Improved security in PHP 5 makes this
no longer necessary—another reason to move to PHP 5 if you’re still stuck with PHP 4.

Pulling in an RSS news feed
You can use the XSL Transformation server behavior with any XML file, but one of its most
useful applications is working with a live news feed. For this book, I have chosen one of the
feeds from BBC Online primarily because it offers very good news coverage. The feed is
also very easy to work with, and the BBC welcomes its use on websites, subject to certain
simple terms and conditions. You can find the full details at http://news.bbc.co.uk/
2/hi/help/rss/4498287.stm, but the main conditions are as follows:

You cannot use the BBC logo on your site.

You must provide a link back to the original story on the BBC website.

You must attribute the source, using a specified formula, such as “From BBC News.”

You are not allowed to edit or alter the content in any way.

You cannot use the content on sites that promote pornography, hatred, terrorism,
or any illegal activity.

Of course, another reason for choosing the BBC is sentimental. I worked in BBC News for
nearly 30 years, both as a correspondent and as an editor. I remember sitting in a base-
ment in Marylebone High Street more than a decade ago talking to Mike Smartt about the
Internet’s potential for news. In spite of skepticism all around, he was convinced it was the
way of the future. I knew he was right, but without Mike’s vision and drive as the first edi-
tor of BBC Online, it wouldn’t have become the force that it is today.

To see all RSS feeds available from BBC News, go to
http://news.bbc.co.uk/2/hi/help/3223484.stm. There are
nearly 20 specialist news feeds, ranging from world news, health,
science, and business to British news and entertainment. If you prefer news with an
American flavor, try the New York Times (http://www.nytimes.com/services/xml/
rss/index.html) or CNN (http://www.cnn.com/services/rss). In fact, you can get RSS
feeds wherever you see the orange RSS or XML logos shown alongside. Much RSS content
is copyright protected, so always make sure you study the terms of use carefully.

RSS is one of those sets of initials that no one can agree on what they really stand for.
Some say it means Really Simple Syndication. Others say it’s Rich Site Summary. Yet others
insist that it stands for RDF Site Summary, and that RDF is the Resource Description
Framework. They’re all equally valid; the important thing is that RSS feeds all conform to
the rules of XML, so they’re ideal for handling with the Dreamweaver XSL Transformation
server behavior.

Figure 18-1 shows what the news feed looks like when it’s incorporated into the sidebar
of the “Stroll Along the Thames” page that has been used in several chapters throughout
this book.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

811

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 18-1.
Live news headlines

from an external
news feed can add

constantly changing
interest to a site.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

812

How Dreamweaver handles server-side XSLT

When a visitor requests the page shown in Figure 18-1, it looks and works in exactly the
same way as any other web page. However, what goes on in the background is consider-
ably more complex.

The XSL Transformation server behavior relies on two external files, as follows:

MM_XSLTransform.class.php: Dreamweaver creates this file automatically and
stores it in the MM_XSLTransform subfolder of the includes folder. If you don’t
already have an includes folder, Dreamweaver creates it. This file is similar to the
Spry JavaScript libraries in that it contains all the PHP code needed to process XSLT
and XML. It’s also responsible for importing the XML source. All you need to do is
remember to upload this file to your remote server when deploying your site.

An XSL file that contains details of the XML source and how you want to display the
data it contains. Dreamweaver calls this an XSLT fragment.

You create the XSLT fragment using the same drag-and-drop interface as for all dynamic
data. Instead of PHP code, everything in the XSLT fragment uses XSLT syntax. The great
thing from the developer’s point of view is that you don’t need to know any XSLT syntax
for it to work. Of course, if you do know XSLT syntax, you can get the XSL Transformation
server behavior to do a great deal more.

Figure 18-2 shows a simplified outline of what happens when a visitor to a site requests a
page that includes code generated by the XSL Transformation server behavior.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 18-2.
How the XSL
Transformation
server behavior
communicates with
an XML data source

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

813

18

Using XSLT to access the XML source data

Using the XSL Transformation server behavior is a two-stage process, as follows:

1. Create an XSLT fragment to access the XML source, and extract the data that
you want.

2. Embed the XSLT fragment in a PHP page.

The following instructions use the BBC Online world news feed. The principles behind dis-
playing any XML source are the same, but I suggest you use the same feed until you are
comfortable with the process, because some of the concepts might be unfamiliar.

Because you are working with a live feed, you need to be connected to the Internet for
several steps during the following section.

1. From the Dreamweaver File menu, choose New. In the New Document dialog box,
select Blank Page, and XSLT (Fragment) as Page Type. Click Create.

2. Dreamweaver immediately presents you with the Locate XML Source dialog box
shown here. It offers two options: to work with a local XML file or to work with
a remote one on the Internet. Select the radio button labeled Attach a remote file
on the Internet, and insert the following URL: http://newsrss.bbc.co.uk/rss/
newsonline_world_edition/front_page/rss.xml. Click OK.

You must use XSLT (Fragment) in the New Document dialog box. Do not use XSLT
(Entire page) in the Dreamweaver welcome screen or the New Document dialog
box. The option for XSLT (Entire page) is used only for client-side XSLT. For a tuto-
rial on client-side XSLT, visit http://www.adobe.com/devnet/dreamweaver/
articles/display_xml_data.html.

Creating the XSLT fragment

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. If you don’t know the URL of the XML file, clicking Cancel doesn’t stop
Dreamweaver from creating a page for the XSLT fragment. You can reopen the
Locate XML Source dialog box by clicking either Source or XML in the Bindings
panel, as shown here:

4. As long as you are connected to the Internet, Dreamweaver will contact the BBC
Online site and populate the Bindings panel with a document tree like that shown
in Figure 18-3. This shows you the structure (Dreamweaver uses the technical term,
schema) of the XML document sent by the RSS feed.

5. Before working with the XML data, save the page as bbc_feed.xsl in workfiles/
ch18. On Windows, Dreamweaver will automatically add the .xsl on the end of the
file name, even if you delete it in the Save As dialog box.

Figure 18-3.
Dreamweaver builds a

tree (or schema) of
the XML source in the

Bindings panel.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

814

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Take a good look at Figure 18-3 or the actual schema in your own Bindings panel. You’ll see
that it’s like a family tree. The angle brackets (<>) represent the different element nodes
of the source document, with the name shown alongside. The top level or root element
of the XML document is rss. As you go up and down the structure, nodes share a parent-
child relationship. Go up a level to reach the parent; go down a level to reach the child
or children. This genealogical terminology also extends to nodes on the same level, which
are called siblings. So, item is a child of channel and a sibling to image. Dreamweaver
builds this diagrammatic hierarchy to make it easier for you to identify the elements you
want to manipulate, and XSLT uses it as a sort of road map to perform the transformation.

Attributes that appear within XML tags are designated by @. So at the top of Figure 18-3,
you can see that rss has two attributes: version and xmlns:media. The channel and image
nodes contain child nodes that describe the feed. The news comes further down: in the
eighth element node from the bottom labeled item.

The important thing to note about item is that it has a tiny plus sign to the upper right of
the angle brackets. This indicates that it’s a repeating element.

Branching off item are seven child nodes: title, description, link, guid (with an attribute
isPermaLink), pubDate, category, and media:thumbnail The ones we are interested in are title,
which contains the headline; description, which contains a summary of the news story; and
link, the URL to the full story.

6. Make sure you’re in Design view, select title from the item node in the Bindings
panel, and drag it into the page.

7. You should now see a dynamic placeholder inside
the page. The placeholder indicates the path to title
within the hierarchy of the XML document. Select
the placeholder and select Heading 3 from the
Format drop-down menu in the HTML view of the
Property inspector. The page should now look like
the screenshot alongside.

8. Click to the right of the dynamic placeholder, and press Enter/Return to insert a
new paragraph. Highlight description in the item node, and drag it into the para-
graph that you have just created. You should now have a similar dynamic place-
holder for {rss/channel/item/description}.

9. The news feed contains a large number of news items, so you need to apply a
repeat region to it. The simplest way to do this would have been to put the news
feed into a table or surround each item with a <div>, but either solution results in
unnecessary code. Open Split view, and click inside Code view to highlight all the

It’s very easy to go wrong when selecting nodes, because several share the same
name. There are three nodes each called title and link, and there are two
called description. All the nodes that you need to select are children of the
item repeating node.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

815

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

code from the opening <h3> tag to the closing </p> tag, as shown in the following
screenshot:

Don’t worry about the meaning of the code. It’s simply the XSLT way of inserting
dynamic data in the same way as PHP does with echo and a variable. Just make sure
that the opening and closing HTML tags are properly selected.

10. Look at the Insert bar. You’ll see a new XSLT tab has appeared. It’s displayed only
when the current document is an XSL file. Select the XSLT tab, and click the Repeat
Region button as shown here. Alternatively, use the menu option: Insert ➤ XSLT
Objects ➤ Repeat Region.

11. This brings up a completely different dialog box from the one you used with the
PHP server behavior. It’s the XPath Expression Builder.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

816

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XPath is the W3C standard that describes how to identify parts of an XML docu-
ment. In many ways, it’s very similar to ordinary file paths and URLs, but it has many
more options (http://www.w3.org/TR/xpath), including functions. The XPath
Expression Builder incorporates a lot of these functions and builds an XPath with
the correct syntax for you.

All you need to do is highlight the parent node of the elements that you want to
repeat—in other words, item. In the XPath Expression Builder (Repeat Region) dialog
box, scroll down to the bottom of the section labeled Select node to repeat over,
and select item. Dreamweaver inserts rss/channel/item into the Expression field at
the bottom. Click OK.

12. When the XPath Expression Builder closes, the dynamic
placeholders will have changed to just the node names. This is
because the XPath expression created in the previous step tells
the underlying XSLT code where to find them. There will also
be a gray border around the placeholders with a tab labeled
xsl:for-each at the top-left corner, as shown alongside, indicat-
ing that this is now a repeat region.

13. Save bbc_feed.xsl, and press F12/Opt+F12 to view the page in a browser. If you
are connected to the Internet, you should see something like Figure 18-4, except
with the very latest headlines, not something from all those months ago when I was
writing this book.

Look in the browser address bar, and you’ll see that Dreamweaver is using a
temporary file, even if you have set your preferences not to use temporary files.
You can’t use an XSLT fragment in a browser on its own, and you can’t use Live
view, but Dreamweaver processes it internally so you can check that everything is
working as expected before embedding it into a PHP file.

You can check your code against bbc_feed_01.xsl in examples/ch18.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

817

18

Figure 18-4. Dreamweaver uses a temporary file to confirm that the XSLT fragment is working as expected.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As part of the BBC conditions of use, you must either provide a link back to the complete
story or insert a link to the part of the BBC site from which the feed was drawn. Since the
XML source contains a link node (see the schema in Figure 18-3), it’s easy to provide a link
to each story by converting its headline into a link.

Continue working with the XSLT fragment from the previous exercise. Alternatively, use
bbc_feed_01.xsl in examples/ch18.

1. In Design view, select the title dynamic placeholder, and click the Browse for File
icon to the right of the Link field in the HTML view of the Property inspector.

2. When the Select File dialog box opens, choose Data sources as the option for Select
file from. (It’s a radio button at the top of the dialog box in Windows but an ordinary
button at the bottom of the dialog box in the Mac version.) Scroll down inside the
area labeled Select node to display, and select link, as shown in the following screen-
shot. Leave the other options at their default settings, and click OK.

Converting the headlines into links

When testing XSLT fragments, you might see the temporary files listed in the
Dreamweaver Files panel. This is nothing to worry about. Dreamweaver automatically
clears them up.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

818

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Look in the Link field in the Property inspector. It should contain {link}, indicating
that it will draw its value from the link node in the XML source.

4. Save bbc_feed.xsl, and press F12/Opt+F12 to test it again. This time, the headlines
should have been converted to links. Click one of them to check that it takes you
to the relevant story on the BBC website.

You can check your code against bbc_feed_02.xsl in examples/ch18.

The BBC news feed normally contains 20 or more items. Unlike the Repeat Region server
behavior, the XPath Expression Builder (Repeat Region) dialog box has no option to limit the
number of items displayed. Instead, you need to use an XSLT conditional region, as shown
in the following exercise.

Continue working with the XSLT fragment from the previous exercise. Alternatively, use
bbc_feed_02.xsl in examples/ch18. The following instructions show you how to limit the
page to displaying the first five items.

1. Open Split view, and click in Code view to select all the code from the opening
<h3> tag to the closing </p> tag in the same way as in step 10 in “Creating an XSLT
fragment.” Then click the Conditional Region button in the XSLT tab of the Insert
bar, as shown in the following screenshot (or select Insert ➤ XSLT Objects ➤

Conditional Region):

2. The Conditional Region dialog box contains just one field, Test. Enter the following
code, and click OK:

position() <= 5

XSLT uses the position() function to determine a node’s position in the XML hier-
archy. Unlike PHP or JavaScript, it begins counting at 1, so you need to use <= 5 to
display the first five items.

3. Save bbc_feed.xsl, and press F12/Opt+F12 to test it again. This time, just the first
five items should be displayed. You can check your code against bbc_feed_03.xsl.

Dreamweaver places another gray border around the dynamic placeholders in Design
view, with an xsl:if tab at the top-left corner. Confusingly, Dreamweaver positions the xsl:if
tab above the repeat region’s xsl:for-each tab, giving the incorrect impression that the

Restricting the number of items in an XSLT repeat region

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

819

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

repeat region is nested inside the conditional one. In Figure 18-5, the conditional region
has been selected by clicking the xsl:if gray tab. As you can see, lines 18–21 are highlighted
in the underlying code. The code that controls the repeat region is on line 17, and the
closing tag of the repeat region is on line 22. If in doubt about the order of code, check
the Tag selector at the bottom of the Document window, because it always displays the
correct hierarchy of parent and child tags.

Figure 18-5. XSLT uses <xsl:if> tags to create a simple conditional region.

As you can see on line 18 of Figure 18-5, Dreamweaver has converted the less-than oper-
ator from < to <. XSLT follows the rules of XML and cannot use < within the test
attribute value. Although it looks strange, it’s the way that XSLT expects it. More impor-
tant, it works!

Displaying the news feed in a web page

Now that you have got the XSLT fragment to display the items that you want, it’s time to
embed the XSLT into a PHP page. To save time, I have created a copy of the “Stroll Along
the Thames” page with a <div> called news in the sidebar. The style sheet contains a small
number of extra rules to adjust the font size, margins, padding, and colors of the news
<div>. The rules use basic CSS, so I’ll leave you to study the style sheet yourself and just
concentrate on the mechanics of embedding the XSLT fragment into the page.

You can’t use the XSLT fragment on its own; you need to serve it through a dynamic page
so that the PHP server behavior can perform the necessary server-side transformation.

1. Copy stroll_xsl_start.php and stroll_xsl.css from examples/ch18 to
workfiles/ch18, and rename stroll_xsl_start.php as stroll_xsl.php.

2. Open Split view, and highlight the placeholder text in the news <div>. Make sure
that only the placeholder text is selected, and press Delete. The insertion point
should be between the opening and closing <div> tags.

3. Click the XSL Transform button in the Data tab of the Insert bar, as shown in the
next screenshot. Alternatively, select Insert ➤ Data Objects ➤ XSL Transformation.

Embedding the XSLT fragment in a dynamic page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

820

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. In the XSL Transformation dialog box that opens, click the top Browse button, and
navigate to bbc_feed.xsl. When you click OK in the Select XSLT File dialog box,
Dreamweaver automatically populates the XML URI field. This is the address of the
BBC RSS feed, which Dreamweaver gets from the XSLT fragment. You don’t need to
bother with XSLT parameters, so click OK. XSLT parameters are explained later in
the chapter.

5. Your page should now look like Figure 18-6. Although it looks as though the XSLT
fragment has just been included in the page in the same way as a PHP include file,
the underlying code is completely different. Notice that the embedded version dis-
plays the repeat region and conditional region tabs superimposed on each other.

Figure 18-6. The XSLT fragment embedded in a PHP page

6. Save stroll_xsl.php, and test the page by clicking the Live View button in the
Document toolbar. (Although it won’t work with an XSLT fragment on its own, you
can use it after embedding the fragment in a dynamic page.) It should now look
like Figure 18-1.

Compare your code, if necessary, with stroll_xsl.php in examples/ch18.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

821

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When deploying on the Internet a page that contains an embedded XSLT fragment, don’t
forget to upload the XSL page and the PHP class that does all the hard work:
MM_XSLTransform.class.php, which is located in includes/MM_XSLTransform.

If instead of the latest news headlines, you see an MM_XSL Transform error message, it
means that your remote server doesn’t have the necessary support for XSLT. Pressure your
hosting company to provide support, or move to one that does. As noted earlier, another
problem might be that your hosting company has turned off allow_url_fopen. In that
case, urge Adobe to upgrade the XSL Transformation server behavior by submitting a fea-
ture request to http://www.adobe.com/cfusion/mmform/index.cfm?name=wishform. You
can use the same address to submit bug reports to Adobe.

Talking of bugs, there’s one in the XSL Transformation server behavior, but it’s easy to fix.

Fixing a bug in the XSL Transformation server behavior

When you use the XSL Transformation server behavior in a page deployed on a PHP 5
server, the server behavior precedes the generated output with an XML declaration. As I
mentioned at the beginning of the chapter, the XML declaration is not required, but if it
is used, it must be the first thing in the page. However, if you run stroll_xsl.php on a
PHP 5 server and view the source code in the browser, you’ll see that the XML declaration
is embedded at the point you applied the server behavior, as shown in the following
screenshot:

This creates invalid code. Fortunately, it’s very easy to fix. The code that does all the hard
work in the XSL Transformation server behavior is stored in an external file called
MM_XSLTransform.class.php, which is located in the includes/MM_XSLTransform folder
of your site. By changing just two lines of code in this file, you can eliminate the bug not
just on the current page but on any page in the site that uses this server behavior. The fol-
lowing instructions show you how.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

822

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Open MM_XSLTransform.class.php in the includes/MM_XSLTransform folder.
Check that the version number on line 2 is 0.6.3. If the number is different, check
this book’s page on the friends of ED website (http://friendsofed.com/
book.html?isbn=9781430216100) to see whether any updates or corrections have
been issued.

2. Save a copy of MM_XSLTransform.class.php as MM_XSLTransform.class_orig.php.
This is your backup in case anything goes wrong. Close the backup file.

3. Switch to Code view, right-click, and select Functions from the context menu. As
shown in Figure 18-7, this displays a list of all functions in the page. The one you
want is called transformDocument_domxml5 right at the bottom of the list. Click this
to be taken to the first line of the function definition.

These instructions apply only to using the XSL Transformation server behavior
on a PHP 5 server. I have not done any testing on PHP 4, because PHP 4 reached
the end of official support in August 2008.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

823

18

Figure 18-7. The Functions menu on the Code view context menu makes it easy to find functions in
a long file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. The full listing of the transformDocument_domxml5() function looks like this:

The code on line 400 looks like this:

$result = $proc->transformToDoc($xmlDom);

Change it to this:

$output = $proc->transformToXML($xmlDom);

5. Delete the following code (it’s line 412):

$output = $result->saveXML();

6. Save MM_XSLTransform.class.php. That’s all there is to it! Test stroll_xsl.php
again to make sure everything is still working correctly. If you check the source
code in your browser, you’ll see that the XML declaration is no longer there, and
your page will now validate.

Being a bit more adventurous with XSLT
Up to now, I have deliberately avoided discussing most of the code that’s being generated.
There’s actually very little of it in the XSLT fragment and PHP page, because all the pro-
cessing is done by an external PHP class. What’s more, the code in the XSLT fragment is
very different from what you’ve been working with in previous chapters. In the remaining
pages of this chapter, I’d like to show you just a few of the things you can do if you decide
to experiment with XSLT and XPath. Instead of using a live news feed as the XML source,

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

824

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I’ve prepared an XML document that contains details of the friends of ED and Apress cat-
alog. (The appendix shows you how to generate XML from your own data in MySQL.)

Setting up a local XML source

Getting XML data from a local source involves nothing more complicated than telling
Dreamweaver where to find it. You will find a copy of booklist.xml in the examples/ch18
folder, and you can access it directly from there. Open it, and take a look at its structure.
The root element is called BookList, and it contains ten elements each called Book, which
look like this:

<Book ISBN="978-1-4302-1610-0">
<Title>The Essential Guide to Dreamweaver CS4 with CSS, Ajax, ➥

and PHP</Title>
<Authors>
<Author>David Powers</Author>

</Authors>
<Publisher>friends of ED</Publisher>
<ListPrice>49.99</ListPrice>

</Book>

Each Book element or node has an attribute called ISBN and four child elements: Title,
Authors, Publisher, and ListPrice. In turn, Authors can have one or more child ele-
ments called Author.

The following series of exercises shows you how to access the XML structure for use in a
web page.

Before you can do anything with the XML data, you need to create an XSLT fragment and
display the node tree or schema.

1. Choose File ➤ New ➤ Blank Page ➤ XSLT (Fragment).

2. In the Locate XML Source dialog box, choose the default option (Attach a local file on
my computer or local area network), and click the Browse button to navigate to
booklist.xml in examples/ch18.

Notice that the dialog box you use to locate the XML file is called Locate Source
XML for XSL Template. Although XSL templates are very different from
Dreamweaver templates, the idea is the same: an XSL template defines the basic
pattern that will be applied to all the data passed to it.

After locating booklist.xml, click OK (or Choose on a Mac). Click OK to close the
Locate XML Source dialog box.

Displaying the node tree (schema) of booklist.xml

Each exercise builds upon the previous one. The finished code for each exercise is in
examples/ch18.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

825

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. This attaches booklist.xml to the XSLT fragment and displays the structure of the
document in the Bindings panel, as shown in Figure 18-8. Although the document
tree is much shorter than the BBC RSS feed, it contains two repeating nodes: Book
and Author. Moreover, Author is a grandchild of Book. In other words, you have a
repeating region within a repeating region. Each book can have more than one
author, so this makes handling this XML document more complex than the BBC feed.

4. Save the XSLT fragment as books1.xsl in workfiles/ch18.

Since the purpose is to show you a few of the things you can do with XSLT in
Dreamweaver, I don’t plan on styling the content. The data in the book list is best dis-
played in a table, so that’s what I’ll use.

1. Switch to Design view, and insert a table in books1.xsl. The table should have two
rows and five columns. Set Table width to 90 percent and Cell padding to 4, leaving
both Border thickness and Cell spacing blank. Set Header to Top, and click OK.

2. Give the first row the following headings: Title, Author(s), Publisher, ISBN, and Price.

3. Drag the Title node from the Bindings panel, and drop it in the second row so that
the dynamic placeholder sits beneath the Title heading in the first row. Do the same
for Publisher, ISBN, and ListPrice, dropping them in the appropriate cells in the sec-
ond row. What should you do about the Author(s) cell? You want to show the names
of all the authors, so you probably think you should use the Author node. Illogical
though it may seem, drag the parent node, Authors, not the child node.

4. Click anywhere in the second row, and then select <tr> in the Tag selector to high-
light the entire table row.

5. In the XSLT tab of the Insert bar, click the Repeat Region button, and select the
Book node in the XPath Expression Builder (Repeat Region) dialog box. Click OK.
Your page should now look like this:

Displaying the book list in a table

Figure 18-8.
The node tree (schema)

of booklist.xml

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

826

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Save books1.xsl, and press F12/Opt+F12 to view the XSLT fragment in a browser.
Surprise, surprise . . . all the authors’ names are listed. To understand why, you need
to dive into the mysteries of XSLT syntax.

Understanding how XSLT is structured

Now’s the time to look at an XSLT fragment in detail in Code view. The first line of
books1.xsl looks like this:

<?xml version="1.0" encoding="utf-8"?> ➥

<!-- DWXMLSource="../../examples/ch18/booklist.xml" -->

The first part is the XML declaration. As I mentioned earlier, using the XML declaration is
not mandatory, but if used, it must always be the first thing in the document. By default,
Dreamweaver inserts the encoding attribute using the same value as in your Dreamweaver
preferences. If your XML source uses a different encoding, you should change the setting
for your XSLT fragment and any dynamic page that you intend to embed it in. Do this by
choosing Page Properties from the Modify menu. In the Page Properties dialog box, select
the Title/Encoding category, and set Encoding to the appropriate value.

The second part of the first line is an XML comment (the same format as HTML is used),
where Dreamweaver stores the location of the XML source.

The next ten lines define common HTML entities. As mentioned earlier, only five entities
are predefined in XML, so Dreamweaver anticipates the need for others that are likely to
occur in XML feeds. You can also define others, if necessary.

Defining new entities
If you discover that your XSLT fragments are having problems with unrecognized entities,
add a new definition on a new line within this section, using the same format. For exam-
ple, if you want to add the entity for lowercase e acute (é), add this line:

<!ENTITY eacute "é">

In other words, remove the leading & and trailing semicolon from the HTML entity, and put
the character entity equivalent in quotes. You can find a full list of HTML entities and their
character entity equivalents at http://www.w3.org/TR/html4/sgml/entities.html.

Embedding HTML in XSLT
The rest of the code in the page is a mixture of XSLT and HTML. The two fit together in a
very similar way to PHP and HTML. The XSLT processor handles anything in an XSLT tag
(they all begin with <xsl:), and it treats anything outside as literal text. I have reproduced
here the main XSLT code from books1.xsl and highlighted some key points in bold:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/ ➥

XSL/Transform">
<xsl:output method="html" encoding="utf-8"/>

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

827

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<xsl:template match="/">
<table width="80%" cellpadding="4">
<tr>
<th scope="col">Title</th>
<th scope="col">Author(s)</th>
<th scope="col">Publisher</th>
<th scope="col">ISBN</th>
<th scope="col">Price</th>

</tr>
<xsl:for-each select="BookList/Book">
<tr>
<td><xsl:value-of select="Title"/></td>
<td><xsl:value-of select="Authors"/></td>
<td><xsl:value-of select="Publisher"/></td>
<td><xsl:value-of select="@ISBN"/></td>
<td><xsl:value-of select="ListPrice"/></td>

</tr>
</xsl:for-each>

</table>
</xsl:template>
</xsl:stylesheet>

The first line that I have highlighted creates an XSLT template. XSLT templates match a cer-
tain part of the XML source (which is why the attribute is called match). The closing
</xsl:template> tag is on the second line from the bottom, so all the code in between is
part of the template. The value of match is /, which is the XPath way of indicating the doc-
ument root. In other words, this set of XSLT instructions will be applied to the whole of the
XML source, rather than just a specific part of it.

The next highlighted line uses <xsl:for-each>. As you can probably guess, this is the way
that XSLT creates a loop or repeat region. The value of select is BookList/Book, so the
loop applies to every Book node or element in the XML document. As the loop goes
through each Book node, the <xsl:value-of> instruction gets the selected value. When it
gets to the Authors node, it also loops through the child nodes. That’s why you see all the
author’s names displayed in the table, even though you haven’t selected the Author node
in your XSLT fragment.

Accessing nested repeating elements

In some respects, the way that XSLT loops through the child nodes is quite useful, but
there are no commas between the authors’ names. You need a way of getting to the
Author nodes and manipulating them. This is where things get interesting or fiendishly
complicated, depending on your point of view. I’ll try to keep things as simple as possible.
Once you understand what’s happening, it’s a lot simpler than it may seem on your first
attempt.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

828

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This uses the same XSLT fragment as in the previous exercise. Save books1.xsl as
books2.xsl before continuing, and then work with the new version.

1. Switch back to Design view, if necessary, and select the {Authors} placeholder in the
second row of the table; then press Delete. The second cell of the second row
should now be empty.

2. Select the Author repeating node in the Bindings panel, and drag and drop it into
the empty cell. Instead of inserting an Author dynamic placeholder, as you might
expect, Dreamweaver inserts an XSLT repeat region with a text placeholder, as
shown here:

3. Highlight the words Content goes here, and press Delete. Make sure you remove
only the text and not the gray tab labeled xsl:for-each. Don’t click anywhere in the
document, because the cursor must remain inside the repeat region.

4. In the XSLT tab of the Insert bar, click the Dynamic Text button (or choose Insert ➤

XSLT Objects ➤ Dynamic Text). This opens the XPath Expression Builder. Select
Author. It may appear as though Dreamweaver hasn’t created anything in the
Expression field, but look a bit closer. There’s a single period (.) there, which is the
XPath way of saying “current node.” Click OK.

Accessing the Author elements directly

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

829

18

5. You should now have a current-node dynamic placeholder inside the repeat region.

6. Save books2.xsl, and press F12/Opt+F12 to view the output in a browser. The
authors’ names are there, but the result looks worse—there’s no space between
them any more. Switch back to Dreamweaver, where you’ll put it right.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. Select the current-node dynamic placeholder that you created in step 5. Open Split
view. You will see the following line highlighted in the underlying code:

<xsl:value-of select="."/>

8. Click inside Code view, and add the following code on a new line underneath. I’ve
shown the preceding and following lines to help you get the right location.

<xsl:value-of select="."/>
<xsl:text>, </xsl:text>

</xsl:for-each></td>

When you start typing, Dreamweaver code hints will display the available XSLT tags.
To save typing, you can scroll down to xsl:text and press Enter/Return. Automatic
code completion will also insert the correct closing tag after you type </.

This inserts a comma followed by a space after the name of each author. You
could just type the comma, but to get the space, you need to wrap it in the
<xsl:text> tags.

9. Save books2.xsl, and view it in a browser. This is progress, but you don’t want a
comma after the last name. To deal with that, you need to use a conditional region.

Creating conditional regions

When working with an XSLT fragment, there are two options on the XSLT tab of the Insert
bar (and XSLT Objects submenu of the Insert menu) for creating a conditional region—
Conditional Region and Multiple Conditional Region. We’ll take a closer look at both of them.
First, a simple conditional expression.

Testing a single condition
You used a simple conditional expression in “Restricting the number of items in an XSLT
repeat region” earlier in the chapter. As Figure 18-5 shows, the code inserted by
Dreamweaver is very similar in structure to a PHP if statement. In the same way as a pair
of curly braces, the <xsl:if> tags surround the code you want to display only if the con-
dition is met. The condition is specified as the test attribute in the opening <xsl:if> tag.

This builds on the XSLT fragment from the previous exercise and shows you how to get rid
of the comma following the name of the last author. Save books2.xsl as books3.xsl, and
work on the new document.

1. Open Split view, and highlight the line that you inserted in step 8 of the previous
exercise. Alternatively, click the xsl:text tab in Design view. Click the Conditional
Region button in the XSLT tab of the Insert bar.

2. Earlier in the chapter, you used the position() function to select the first five ele-
ments in the item node. Another intuitively named function, last(), determines
whether an element is the last one in the current node. You don’t want the comma

Removing the final comma from authors’ names

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

830

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to be displayed if the author’s name is the last one, so type position() != last() in the
Test field of the Conditional Region dialog box. != has the same meaning as in PHP.

3. Save books3.xsl, and view it in a browser. The final comma is no longer displayed,
so single author’s names appear on their own, but the names of multiple authors
are nicely formatted as a comma-separated list.

If you look in Code view, you’ll see that the <xsl:text> tags that insert the comma and
space have been surrounded by <xsl:if> tags like this:

<xsl:if test="position() != last()">
<xsl:text>, </xsl:text>

</xsl:if>

Testing alternative conditions
Although there’s a comma between each of the author’s names when there are more than
one, it would be more natural to replace the comma with “and” or “&” before the last
name. The logic behind how you do this is simple. Instead of placing the comma after each
author’s name, create a conditional statement that decides whether to put a comma or
“and” before the name. In pseudo-code this becomes:

if (position is greater than 1 AND position is not last) {
insert a comma before the name

} else if (position is greater than 1 AND position is last) {
insert "and" before the name

}

The if . . . else structure is exactly what you would use in PHP, but the XSLT syntax is
a little more complex. XSLT wraps the whole conditional block in <xsl:choose> tags;
<xsl:when> equates to if; and <xsl:otherwise> equates to else. Dreamweaver takes
care of inserting the correct tags when you select Multiple Conditional Region from the XSLT
tab of the Insert bar or from the XSLT Objects submenu of the Insert menu.

Save books3.xsl as books4.xsl, and continue working with the new file. In this exercise,
you’ll use a multiple conditional region to replace the final comma in a list of authors’
names with “and.”

Inserting “and” before the final author’s name

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

831

18

1. Things are beginning to look rather crowded in the table cell that contains
the dynamic placeholders for the authors’ names. You need to click the xsl:if
tab indicated by the arrow in the screenshot alongside.

You will know that you have selected it correctly if the Property inspector dis-
plays the test expression for the conditional region as shown here (this is also
how you would edit it).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Open Split view. The conditional region that you inserted in the preceding exercise
should be highlighted. Since the syntax for a multiple conditional region is com-
pletely different, press Delete to remove the highlighted code.

3. In Code view, your cursor will be just below <xsl:value-of select="."/>. This is
what XSLT uses to display the name of each author. This time, the comma needs to
go in front of the author’s name, so insert it as <xsl:text> on a new line above,
like this:

<td><xsl:for-each select="Authors/Author">
<xsl:text>, </xsl:text>
<xsl:value-of select="."/>

4. Highlight the line you have just inserted, and click the Multiple Conditional Region
button on the XSLT tab of the Insert bar, as shown in the following screenshot:

5. Type the following in the Test field of the Multiple Conditional Region dialog box:

position() > 1 and position() != last()

This will show the comma and space if the element is neither first nor last. Click OK.

6. If you thought the table cell was crowded before, just look at it now! Dreamweaver
inserts Content goes here as a placeholder inside <xsl:otherwise>. This is where
you are expected to create a default value if all tests fail. However, you don’t want
a default for this conditional region, so highlight Content goes here, and delete it.
Keep Split view open to make sure you don’t delete any XSLT tags.

7. To create the second condition, you need to position your cursor inside Code view
immediately before the opening <xsl:otherwise> tag. Then click the Conditional
Region button on the XSLT tab of the Insert bar. Make sure you click the one for a
single condition (marked with IF), and not the icon for a multiple condition.

8. Type the following in the Test field of the Conditional Region dialog box, and then
click OK:

position() > 1 and position() = last()

If you have difficulty selecting the tab, use the Zoom tool (it looks like a magni-
fying glass) at the bottom right of the Document window. When you select the
Zoom tool, click on the area that you want to magnify until it’s big enough to
work with. Then choose the Select tool (an arrow). To zoom out, select the Zoom
tool again and hold down Alt/Opt while clicking.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

832

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You’ll use this test to insert “and” surrounded by a space on either side before the
last author’s name. It’s necessary to check that the position is greater than 1,
because you don’t want “and” to appear before the names of single authors. Also
notice that XSLT uses a single equal sign to test for equality.

9. There’s now a severe overcrowding problem in the table cell, as Dreamweaver
inserts another Content goes here to indicate where to insert what will be displayed
when the test evaluates to true. It’s easier to work in Code view at this stage, so
click inside Code view, and replace Content goes here with the following:

<xsl:text> and </xsl:text>

10. Save books4.xsl, and view it in a browser. You should see commas between names,
with “and” separating the final two.

11. Change <xsl:text> and </xsl:text> to <xsl:text> & </xsl:text>, and view the
page again. It won’t work. You get the following error:

SAXParseException: Expected entity name for reference (books4.xsl, line 34, column 27)

This is because & is used by XML-related languages, such as XSLT, to designate an
entity. Replace & with &, and all will be well.

Sorting elements

XSLT has many powerful features, including the ability to sort nodes, so they appear in a
different order from the original XML source. Dreamweaver doesn’t generate the code for
you automatically, but it’s very easy to do by hand.

Save books4.xsl as books5.xsl, and continue working with the new document. This exer-
cise shows you how to sort the books first by title and then by publisher and title.

1. In Code view, locate the following line (it should be around line 25):

<xsl:for-each select="BookList/Book">

2. Insert a new line immediately below, and add the code shown in bold:

<xsl:for-each select="BookList/Book">
<xsl:sort select="Title"/>

Sorting the book list by title and publisher

As you’re typing, you’ll notice that the greater-than sign you added in step 8 has
been replaced by >. This is because > indicates the end of a tag, so XSLT con-
ditional expressions use the HTML entity instead. XSLT also requires quotes in
expressions. Dreamweaver handles all the necessary conversions automatically
if you use the appropriate dialog boxes.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

833

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Save the page, and view it in a browser. The value of select determines which
node is used to sort the document. The list is now sorted by the books’ titles.

You can use multiple sort conditions by adding similar tags in the order of priority
that you want to give each element.

4. To sort by publisher and then by title, use the following:

<xsl:for-each select="BookList/Book">
<xsl:sort select="Publisher"/>
<xsl:sort select="Title"/>

5. Test the page again. All the Apress books appear first, sorted in alphabetical order
according to title, followed by the friends of ED books similarly sorted.

6. But, hey, this is a friends of ED book. Surely the order should be reversed. No prob-
lem. Just add an order attribute to the <xsl:sort> tag like this:

<xsl:sort select="Publisher" order="descending"/>

Note that, as you type the code, Dreamweaver displays code hints for XSLT, show-
ing you the available options.

7. All is now right with the world: the friends of ED books are listed first. Like PHP,
XSLT is case-sensitive, so make sure you use the correct case for the node names.

Formatting elements

You may have noticed that there’s a drop-down menu labeled Format in the middle of the
XPath Expression Builder. This allows you to apply 22 preset formats to the content of a
node. Most of them deal with formatting numbers or currency.

Save books5.xsl as books6.xsl, and continue working with the new file. This exercise
shows you how to format the book prices using the dollar and other currency symbols.

1. In Design view, select the ListPrice dynamic placeholder in the second row of the
table, and click the Dynamic Text button in the XSLT tab of the Insert bar. This opens
the XPath Expression Builder.

2. Make sure that ListPrice is selected in the field labeled Select node to display, acti-
vate the Format drop-down menu, and select Currency – Leading 0, 2 Decimal
Places. The Expression field displays the XPath function that will be inserted in the
underlying code: format-number(ListPrice, '$#0.00'). Click OK.

3. Save books6.xsl, and view it in a browser. Nothing is different—the prices don’t
have any currency symbol. This is because the parser used by Dreamweaver can’t
process all XSLT functions.

Formatting the book prices

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

834

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Create a PHP page called books.php. The only reason you need this page is to
embed the XSLT fragment, but it’s best to insert some ordinary text. Otherwise,
you won’t be able to click inside the Document window after the fragment has
been embedded. Type a heading, such as Good Books. Move the cursor out of the
heading, and select the XSL Transformation button on the Data tab of the Insert bar.

5. In the XSL Transformation dialog box, click the top Browse button, and select
books6.xsl as the XSLT file. Click OK (or Choose on a Mac) to close both dialog
boxes.

6. Save books.php, and test it in Live view or a browser. The currency symbols now
appear correctly.

At the bottom of the Format drop-down menu in the XPath Expression Builder is an option
to edit the format list. Ideally, this should be the place to create a custom currency format
for sterling or euros. Unfortunately, Dreamweaver converts both the £ and € symbols to
their HTML equivalents, which not only prevents them being displayed in the final page
but also prevents you from using the XPath Expression Builder to edit any element to
which you apply the format. The solution, fortunately, is very simple: apply one of the
standard currency formats and edit it manually in Code view.

Change this:

format-number(ListPrice, '$#0.00')

to this (for pounds sterling):

format-number(ListPrice, '£#0.00')

or this (for euros):

format-number(ListPrice, '€#0.00')

You may wonder why the actual symbol is used instead of an entity. It’s because the sec-
ond argument to format-number() is a string literal. If you use an entity, it will be
ignored.

Displaying output selectively

There are two ways of displaying output that meets certain criteria. One is to use an XPath
filter. The other is to use a parameter. Let’s take a quick look at both of them.

Filtering nodes with XPath
The XPath Expression Builder has an option that lets you build filters to display XML data
selectively. The filters work in a very similar way to a WHERE clause in a SQL query, so you
should have little difficulty understanding how they work.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

835

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Save books6.xsl as books7.xsl, and continue working with the new file. This exercise
shows you how to select books cheaper than or equal to a specified price.

1. Select the repeat region for the second table row by clicking the xsl:for-each tab
above the {Title} dynamic placeholder. You can tell that you have selected it cor-
rectly by checking the Property inspector, which should look like this:

2. Click the lightning bolt icon to the right of the Select field in the Property inspec-
tor to open the XPath Expression Builder (Repeat Region) dialog box.

3. Click the triangle to the side of Build Filter in the middle of the XPath Expression
Builder to expand the filter builder.

4. Click the plus button at the top of the Build Filter area. Click in the Where field to
activate the drop-down menu that contains a list of all nodes. Select ListPrice.

5. Click in the Operator field, and choose <= (less than or equal to).

6. Click in the Value field, and type 40. Click anywhere inside the dialog box to remove
the focus from the Value field. The Build Filter area should now look like this:

The Expression field below the Build Filter area shows you the XPath expression that
Dreamweaver will insert into the XSLT code.

7. Click OK. Save books7.xsl, and view the page in a browser. Wow, computer books
are getting expensive! Instead of the previous ten books, you should now see just
four—all priced $40 or less. One of them is my PHP Object-Oriented Solutions. Grab
it—it’s a bargain.

As you can see from the preceding screenshot, the Build Filter area has an and/or option.
This exercise shows you how to filter XML data using more than one condition. Save
books7.xsl as books8.xsl, and continue working with the new file.

Selecting books by price and publisher

Selecting books by price

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

836

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Repeat steps 1 and 2 of the previous exercise to open the XPath Expression Builder.
Expand the Build Filter area if it’s not already open.

2. Click in the and/or field, and select and from the drop-down menu.

3. Click the plus button at the top left of the Build Filter area to add another filter.

4. Click the Where field and select Publisher.

5. Leave Operator at the default =.

6. Click the Value field and type 'Apress'—it must be in quotes (single or double: it
doesn’t matter). The Build Filter area should now look like this.

7. Click OK, save the page, and view it in a browser. You will now see just one title
listed.

Look at the Expression field and the underlying code, and you will see that Dreamweaver
has converted the quotes and the less-than operator to HTML entities, saving you a lot of
effort with building XPath expressions. Remember to use the normal characters in the dia-
log boxes so that Dreamweaver can convert them correctly. It’s also vital to remember that
strings entered in the Value field must always be in quotes.

Using XSLT parameters to filter data
The other way of selecting output is by passing one or more parameters from the PHP
page to the XSLT fragment. This is much more interactive, because the decision about
what to display is dynamically generated, unlike filters, which are hard-coded into the XSLT
instructions.

Before using a parameter to change the content dynamically, you need to create a default
parameter inside the XSLT fragment. Save books8.xsl as books9.xsl, and continue work-
ing with the new page.

1. Insert an XSLT parameter after the opening <xsl:output> tag (around line 15)
like this:

<xsl:output method="html" encoding="utf-8"/>
<xsl:param name="pub" select="'friends of ED'"/>
<xsl:template match="/">

Creating a default parameter to select the publisher

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

837

18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The <xsl:param> tag takes two attributes: name, which is self-explanatory, and
select, which sets the parameter value. Note that there are two sets of quotes
around friends of ED. The double quotes surround the value of select, which is
a string and must itself be enclosed in quotes. To avoid a clash, single quotes are
used for the inner pair.

By declaring the parameter immediately after the <xsl:output> tag, you make it
global in scope—in other words, available throughout the XSLT script.

2. Switch to Design view, select the xsl:for-each tab that controls the repeat region for
the entire table row, and click the lighting bolt icon in the Property inspector to
open the XPath Expression Builder. You should see the same two filters as in step 6
of the last exercise.

3. Highlight the first filter (based on ListPrice), and click the minus button to
remove it.

4. Click inside the Value field of the remaining filter to reveal a drop-down menu. You
should now see your XSLT parameter listed with a dollar sign in front of it. Select
$pub in place of 'Apress', as shown in the following screenshot:

The Expression field should now read BookList/Book[Publisher = $pub]. Click OK.

5. Save books9.xsl, and view it in a browser. Only friends of ED books should be
listed.

Once you have defined a default parameter, you can use it to change the content of an
XSLT fragment dynamically when it’s embedded in a PHP page.

This simple exercise demonstrates how you can toggle between displaying books pub-
lished by Apress and friends of ED, using a jump menu to send the parameter to the XSLT
fragment through a URL query string.

1. Create a new PHP page called books_param.php.

2. From the Insert menu, select Form ➤ Jump Menu.

3. In the Insert Jump Menu dialog box, insert Apress in the Text field, and insert
?pub=Apress in the field labeled When selected, go to URL. This will add the name
and value of the parameter to a query string that will be added to the URL when
the page reloads.

4. Click the plus button to add a second menu item. Insert friends of ED in the Text
field and ?pub=friends of ED for When selected, go to URL. Leave the other options
in the dialog box unchanged. When you have finished, it should look like this:

Sending a parameter from a PHP page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

838

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Click OK to insert the jump menu, and then select the menu object in Design view.
In the Property inspector, change the name of the menu to pub. You also need the
menu to display the currently selected value. Apart from the first time the page
loads, this comes from the value of pub in the URL query string. Before clicking the
Dynamic button in the Property inspector, you need to create a URL variable for
Dreamweaver to use.

6. Open the Bindings panel, click the plus button, and select URL variable. Type pub in
the Name field, and click OK.

7. Make sure the menu item is still selected in Design view, and click the Dynamic but-
ton in the Property inspector. When the Dynamic List/Menu dialog box opens, click
the lightning bolt icon alongside the field labeled Select value equal to.

8. Expand the URL tree in the Dynamic Data dialog box, select pub, and click OK. Also
click OK in the Dynamic List/Menu dialog box to close it.

9. Unfortunately, the code created by Dreamweaver needs tweaking slightly. Open
Code view or Split view. The jump menu code should look like this:

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

839

18

10. Delete the two sections indicated in the preceding screenshot by removing ?pub=
from the PHP code. This is necessary because $_GET['pub'] contains just the value
of the pub variable, not the whole query string. Be careful to remove the correct

http://lib.ommolketab.ir
http//lib.ommolketab.ir

sections—you still want the full query string in the value attribute of each
<option> tag.

11. $_GET['pub'] won’t be set when the page first loads, so add the following code
immediately above the opening <form> tag:

<?php if (!isset($_GET['pub'])) {$_GET['pub'] = 'Apress';} ?>

This sets the default value of pub to Apress and prevents any error from being gen-
erated if the query string is missing. I’ve deliberately chosen the opposite default
from the one in the XSLT fragment to show how passing a parameter from outside
takes precedence over the value of select in <xsl:param>.

12. Position your cursor just after the closing </form> tag, and switch back to
Design view.

13. Embed the XSLT fragment by clicking the XSL Transformation button in the Data tab
of the Insert bar. In the XSL Transformation dialog box, click the top Browse button,
and select books9.xsl as the XSLT file. Then click the plus button alongside XSLT
parameters. Type pub in the Name field of the Add Parameter dialog box, and click
the lightning bolt icon to the right of the Value field. This opens the Dynamic Data
dialog box, where you should select pub from the URL tree.

14. When you click OK to close the Dynamic Data dialog box, the Default value field is
no longer grayed out in the Add Parameter dialog box. This is where you can insert
a default value to be passed to the XSLT fragment. However, it’s not necessary
because you created a default value in the <xsl:param> tag in the previous
exercise.

15. When you click OK to close the Add Parameter dialog box, you’ll see the pub param-
eter listed, as shown in the following screenshot. An Edit button has been added in
case you need to make any changes. Click OK to close the XSL Transformation dia-
log box.

16. Save books_param.php, and press F12/Opt+F12 to view it in a browser. It should
look like Figure 18-9 (I have added a few minimal style rules to make it look a little
more presentable). Even though the default parameter in the XSLT fragment was
set to friends of ED, the parameter sent from the PHP page takes precedence.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

840

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17. Select friends of ED from the jump menu, and the display will change, showing only
foED books.

Chapter review
This has been only a brief introduction to working with XSLT. It’s a massive and complex
subject, but I think Dreamweaver has done a good job of making it more accessible to
nonexperts. However, in spite of its power, XSLT has failed to take the web development
community by storm. Although lack of browser support for client-side XSLT has played
some part in holding it back, I think the main reason probably lies in the fact that XSLT on
its own doesn’t style the output. It manipulates data in a similar way to PHP, and since
most XML is generated dynamically from a database, developers prefer to go straight to
the source and use more familiar server-side technologies. The nonintuitive syntax is also
a major put off for many developers.

In the next chapter, we’ll look at handling XML with Spry, Adobe’s implementation of Ajax.
The Dreamweaver interface for handling Spry data sets has changed considerably since it
was first introduced in Dreamweaver CS3. In addition to XML, Spry data sets can now be
generated from an HTML source.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

841

18
Figure 18-9. The contents of the XML document have been sorted, formatted, and displayed selectively through a
combination of XSLT and PHP.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

19 USING SPRY DATA SETS TO
REFRESH CONTENT

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The ability to manipulate data without the need to reload the web page lies at the very
heart of Ajax. Done well, it can greatly improve the user experience: pages updated seam-
lessly without the need to wait for all content to reload. However, the reality often leaves
much to be desired. The biggest failing lies in pages that rely wholly on Ajax to load their
content, leaving nothing for search engines to index. The implementation of Spry data sets
in the previous version of Dreamweaver fell down badly on this score. If you disabled
JavaScript in your browser and visited a photo gallery that drew its content from a Spry data
set, you were greeted by a page of meaningless code. In Dreamweaver CS3, Spry was capa-
ble of consuming data only from XML documents, so it was impractical to point visitors and
search engines to alternative content without building two completely separate pages.

In response to criticism, Adobe has radically changed how you work with Spry data sets.
Spry can now extract data from tables and other HTML structures, in addition to XML. Of
course, you still need to create the HTML page that the data set uses, but this can be done
very quickly if the content is drawn from a database with a recordset and repeat region.
The advantages of using an HTML page as the data source are twofold: you’re using a
familiar technology, so development should be faster; moreover, the HTML data source
remains in the underlying code, thereby providing content for search engines to index, as
well as for anyone visiting your site with JavaScript disabled. Building the Spry data set and
a lot of its associated HTML is now handled by a sophisticated wizard.

So, what is a Spry data set? Basically, it’s the same as a recordset. However, instead of dis-
playing all the results in the page when it loads, Spry retains most of the data in the
browser’s memory. When you click a link or activate a menu, it uses DOM manipulation to
replace the existing content with the relevant data stored in memory. It’s a useful tech-
nique for displaying details of upcoming events, product information, or a photo gallery.
The data is loaded at the same time as the page is created, but you can set a timer mech-
anism to update the data set periodically. However, sending asynchronous requests for
new data is not supported through the Dreamweaver interface.

In this chapter, you’ll learn about the following:

Displaying images using details drawn from a database or a Spry data set

Creating a Spry data set from HTML and XML data sources

Displaying data in a sortable table

Using a Spry detail region to display related information

Distinguishing the different types of Spry repeat regions

Building a Spry online photo gallery

You don’t need a deep knowledge of JavaScript to use Spry data sets. In fact, you don’t
need any knowledge at all. Nevertheless, you’ll get more out of working with Spry if you
know what the code looks like and what it’s for. So, this chapter also invites you to dive
into Code view to see what’s going on under the hood.

For security reasons, browsers do not permit Spry and other Ajax frameworks to create
data sets from a data source located on a different domain. To get around this restriction,
use the XSLT server behavior, as described in the previous chapter, or access the data
source through a proxy script (see the appendix for details of how to create a proxy script).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

844

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a Spry data set from HTML
To create a Spry data set, you need a data source that presents information in a structured
manner. One obvious place to find such a data source is a database. However, you can’t
create a Spry data set directly from a recordset; you first need to lay out the data in an
HTML structure, such as a table. Although this sounds like a disadvantage, it’s actually a
good thing, because the underlying data structure remains in the page for the benefit of
search engines and anyone browsing with JavaScript disabled. However, if JavaScript is
enabled in the visitor’s browser, Spry manipulates the DOM, hiding the original HTML
structure and presenting the contents of the data set dynamically, for example, as a
sortable table or master-detail set.

For the exercises in this chapter, I have created a database table called ch19_gallery,
which contains details of a series of photos of England and Japan. The photos are included
in images/gallery in the download files for this book. You’ll use this database table and
photos to experiment with Spry data sets and eventually build the photo gallery shown in
Figure 19-1.

USING SPRY DATA SETS TO REFRESH CONTENT

845

19

Figure 19-1. The gallery uses a combination of JavaScript and PHP to change images without reloading the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Generating the HTML source

You can use any HTML structure to populate a Spry data set, as long as it presents data in
a predictable manner. An existing table or list created in a static web page will do, but it’s
far more efficient to use a recordset. Not only is the data in an organized structure, but
also the HTML structure is automatically updated whenever changes are made to the data-
base table. To speed things up, I have created a SQL file to create the ch19_gallery table
and populate it with data. So, let’s create the table and generate the HTML source for the
Spry data sets that will be used for the gallery.

The following instructions show you how to load the ch19_gallery table into the dwcs4
database:

1. Load phpMyAdmin into your browser, and select the dwcs4 database.

2. Select the Import tab, and click the Browse button to navigate to ch19_gallery.sql
in the extras folder of the download files for this book. If you’re using MySQL 4.0,
choose ch19_gallery40.sql instead.

3. Click Go to import the SQL, which will create the ch19_gallery table and populate
it with data.

4. Select the ch19_gallery table in the navigation frame on the left side of
phpMyAdmin. The first few records should look like Figure 19-2.

Figure 19-2. The ch19_gallery table contains details of photos of England and Japan.

Each record contains the file name, dimensions, caption, and description of a pho-
tograph, plus the category to which it belongs: JPN for Japan and ENG for England.

The HTML data source that will be used for the Spry data sets will display the gallery
images and thumbnails in plain tables. This exercise shows you how to bind the file names
and dimensions of the images to tags through the Bindings panel.

1. In Dreamweaver, create a new PHP page, and save it as gallery_eng.php in
workfiles/ch19. Give the page the title Photo gallery: England.

Generating the HTML tables

Creating the database table

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

846

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Open the Recordset dialog box in Simple mode. Name the first recordset
getENGphotos, use connQuery as the connection, and select the ch19_gallery table.

3. In the Columns field, select the Selected radio button, hold down the Ctrl/Cmd key,
and select all the columns except photo_id and category.

4. You want the recordset to contain only those records that belong to the ENG cate-
gory, so select category from the Filter drop-down menu. Leave the drop-down
menu alongside on the default equal sign. Then select Entered Value from the left
drop-down menu in the next row. This lets you specify the desired value in the field
alongside. So, type ENG in that field. The values entered in the Recordset dialog
box should look like this:

5. Insert a table with two rows and four columns. Make the table 100-percent wide,
and insert table headers in the first row like this:

USING SPRY DATA SETS TO REFRESH CONTENT

847

19

6. The recordset contains the file names of photos in the images/gallery folder.
Smaller thumbnail images have the same names as their larger equivalents and are
stored in images/gallery/thumbs. To display the images, you need to bind the
data in the recordsets to tags. This is done through a combination of the
Select Image Source dialog box and the Bindings panel.

Position your cursor inside the first cell of the second row, and click the Image button
on the Insert bar. Alternatively, select Insert ➤ Image, or press Ctrl+Alt+I/Opt+Cmd+I.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. In the Select Image Source dialog box, navigate to the images/gallery/thumbs
folder, select the value in the URL field, and cut it to your clipboard. Then select
the Data sources radio button at the top of the dialog box, as shown in the follow-
ing illustration. (In the Mac version of Dreamweaver, Data sources is a regular but-
ton located at the bottom of the dialog box.)

8. When you select Data sources, the Select Image Source dialog box displays the
recordsets and any other dynamic data sources available to the page. Expand the
getENGphotos recordset, and select filename. This inserts the necessary PHP code in
the URL field. However, you need to add the path to the thumbs folder, so position
your cursor in front of the PHP code, and paste the value from your clipboard, as
shown in the following illustration. Then click OK (Choose on a Mac) to close the
dialog box.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

848

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. In the Image Tag Accessibility Attributes dialog box, activate the Alternate text drop-
down menu to select <empty>, and click OK.

10. You now have a dynamic image placeholder in the first cell of the table. With the
placeholder still selected, enter 80 in the field labeled W and 54 in the field labeled
H in the Property inspector. This sets the width and height of the image. All the
thumbnails are the same size, so you can insert explicit values.

11. Next, you need to create dynamic placeholders for the main images. Since the
main images and thumbnails use the same file names, repeat steps 6–9, only this
time your cursor should be in the second cell, and in step 7, navigate to the
images/gallery folder.

12. The main images are different sizes, so you need to bind the width and height from
the recordset. You can also use the caption as the alternate text.

To do this, open the Bindings panel, and expand Recordset (getENGphotos). With
the dynamic image placeholder still selected in the second cell, select width from
the getENGphotos recordset. Then activate the Bind to drop-down menu at the bot-
tom of the Bindings panel, select img.width, and click the Bind button, as shown in
Figure 19-3. This inserts PHP code in the image’s width attribute so that it uses the
correct value from the recordset.

13. Repeat step 12, binding height from the recordset to img.height, and caption to
img.alt.

14. Insert dynamic text placeholders for the caption and description columns in the
third and fourth cells. Your page should now look like this:

Figure 19-3.
Use the Bindings panel to
apply dynamic values to
attributes of the selected tag.

USING SPRY DATA SETS TO REFRESH CONTENT

849

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

15. Save gallery_eng.php, and click the Live View button to check that the data is
being displayed correctly, as shown in Figure 19-4.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

850

Figure 19-4. The raw data is contained in an unstyled table.

16. If everything is OK, deactivate Live view, click inside the second row of the table,
and select <tr> in the Tag selector at the bottom of the Document window. Apply a
Repeat Region server behavior to display all records.

17. Select the whole table, and give it an ID by typing ENGdata into the field on the left
side of the Property inspector.

18. Save gallery_eng.php, and test it in a browser. You should see a table with eight
records displaying similar content to that shown in Figure 19-4.

19. Create another page called gallery_jpn.php. It should be identical to
gallery_eng.php, except it should display the Japanese photos. In step 4, call the
recordset getJPNphotos, and enter JPN in the field alongside Entered Value. In
step 17, use JPNdata as the ID for the table.

20. Check your code, if necessary, against gallery_eng.php and gallery_jpn.php in
examples/ch19.

Now that your data is in a predictable structure, you can use the Spry Data Set wizard.

Using the Spry Data Set wizard

The way you create a Spry data set has been completely rethought in Dreamweaver CS4.
The Spry XML Data Set and Spry Table buttons and menu commands have been replaced
by a single option, Spry Data Set, which launches a wizard that takes you through the
process of creating the data set in a visual and intuitive manner. It also creates the basic
HTML and CSS to display the data set in a variety of formats.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To use the Spry Data Set wizard, the data source must be in one of the following formats:

HTML table: The table must have an ID. Data can be stored in either rows or
columns. The wizard regards each table as a data container.

HTML elements: The wizard can extract data stored in any HTML elements. The
parent element (or data container) must have an ID, and the category or column
that each child element belongs to needs to be clearly identifiable. This is usually
done by assigning a class. For example, instead of building the tables in
gallery_eng.php and gallery_jpn.php, you could put the same information
in paragraphs and identify the thumbnails, images, captions, and descriptions
with class names. This is probably the most cumbersome way of creating a data
container.

XML: You can use a static XML document or one generated dynamically from a
database.

The wizard takes you through three steps, as follows:

1. Selection of the data source

2. Data configuration

3. HTML layout

You can omit the final step if you don’t want Dreamweaver to create HTML to display the
data set. The first two steps are identical for every data set. The final step offers a number
of different options. Let’s start by walking through the wizard to create a Spry data set and
display it in a table.

Displaying a data set in a Spry table
The final step of the Spry Data Set wizard has options for setting classes on alternate rows
of a Spry table. So, before diving into creating a Spry table, you need to do a little planning
and decide how you want the table to look. The following options are available for setting
CSS classes:

Odd row class: This sets the styles for odd-numbered rows.

Even row class: This sets the styles for even-numbered rows.

Hover class: This determines how you want a row to look when the mouse hovers
over it.

Select class: This styles the currently selected row.

All these classes are optional, and you can set them later in Code view, but it’s easier to
create skeleton style rules first. I have created some simple styles in spry_table.css,
which you can find in examples/ch19. The rules look like this:

body {
color:#000;
background-color:#FFF;
font-family:Verdana, Arial, Helvetica, sans-serif;

}

USING SPRY DATA SETS TO REFRESH CONTENT

851

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

th, td {
padding:3px 10px;

}
th {
cursor:pointer;

}
.odd {
background-color:#EEE;

}
.even {
background-color:#E8F2F8;

}
.hover {
cursor:pointer;
background-color:#B4C6DB;

}
.selected {
color:#FFF;
background-color:#999;

}
#details, #spryTable {
float:left;
font-size:85%;

}
#spryTable {
width:350px;

}
#details {
width:450px;
margin:15px 0 0 30px;

}
dl {
width:600px;
font-size:85%;

}

The odd rows will have a light gray background, and the even rows will have a light blue
one. Spry tables are interactive but don’t use <a> tags, so you need to change the cursor
explicitly to look like a hand when the mouse pointer passes over a table row. Spry applies
the setting for Hover class only over table rows, so you must create a separate rule to
change the cursor for table headers. The color I have chosen for table rows when the
mouse passes over them is dark blue, with white text on a dark gray background for the
selected row.

Figure 19-5 shows the simple Spry table and detail region that you’ll build in the next cou-
ple of exercises. Clicking the Thumbnail or Caption column header reorders the rows
according to which column you clicked. The main image and description are displayed in a
Spry detail region floating alongside the table and are automatically updated depending
on the currently selected row—all without the need to refresh the page.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

852

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-5. A Spry table can be sorted and display related information in a detail region without
reloading the page.

This exercise shows you how to create a Spry sortable table to display selected columns
from a data set. The instructions form the basis for creating any Spry data set. They assume
you created the ch19_gallery table and gallery_eng.php in the previous exercises. If you
don’t have a copy of gallery_eng.php, use gallery_eng.php in examples/ch19.

1. Save gallery_eng.php as spry_table.php in workfiles/ch19, and attach
spry_table.css in the examples/ch19 folder (attaching a style sheet was covered
in Chapter 4).

2. Click the Spry Data Set button in the Spry tab of the Insert bar, as shown in the fol-
lowing screenshot, or choose Insert ➤ Spry ➤ Spry Data Set.

Creating a sortable table

USING SPRY DATA SETS TO REFRESH CONTENT

853

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As shown in the preceding screenshot, there are five options:

Select Data Type: The drop-down menu offers a choice of HTML and XML. This
always defaults to HTML.

Data Set Name: Dreamweaver automatically populates this with ds1, ds2, and so
on. As with recordsets, it’s better to choose a more descriptive name. The value
inserted here is used as a JavaScript variable, so it must not begin with a num-
ber, and it cannot contain any spaces, hyphens, or other punctuation apart from
the underscore(_).

Detect: This is displayed only when Select Data Type is set to HTML. It determines
the HTML structures that the wizard uses to detect the data source. The default
is Tables. The other options are Divs, Lists, and Custom.

Specify Data File: Use the Browse button to navigate to the file that contains the
data source. This can be either an external file or the current file.

Design time feed: This option caters for the situation where the actual data file is
generated dynamically and not available on the development computer.
Clicking this link displays a dialog box where you can specify a static file that
contains dummy data in the same format as the actual data file.

Enter dsPhotos in the Data Set Name field, and use the Browse button to select the
current file, spry_table.php. The Data Selection field of the wizard should display
the image of Buckingham Palace and St James’s Park, together with its thumbnail,
caption, and description.

4. To select the data to be used in the data set, you need to select a data container, in
other words, the table you created earlier. There are two ways of doing this. Either
you can click the yellow right-facing arrow at the top-left of the data container in
the Data Selection field or you can select its name from the Data Containers drop-
down menu at the top-right of the Data Selection field. Use either method to select
the ENGdata table.

The wizard should now look like Figure 9-6. The Data Selection field shows
a visual representation of the data set, while the Data Preview field shows the
raw data.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

854

3. This launches the Spry Data Set wizard (see Figure 19-6). When it first loads, the
wizard looks like a vast empty space. For it to spring to life, you need to specify the
data source in the fields at the top of the dialog box.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-6. The first step of the Data Set Wizard selects data from the original source.

USING SPRY DATA SETS TO REFRESH CONTENT

855

19

5. Click Next to move to the next step in the wizard (see Figure 19-7). This is where
you configure the data.

The Advanced data selection checkbox at the bottom left of the wizard is
used only when you use other HTML structures to define the data con-
tainer. Selecting the checkbox enables the Row Selectors and Column
Selectors fields, where you list the HTML elements and class names that
identify the rows and columns of the data set.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Column Name field at the top of the dialog box displays the name of the col-
umn currently selected in the Data Preview field. By default, Dreamweaver uses the
names in the first table row. However, if the first row contains data instead of
header names, deselect the checkbox labeled Use first row as header at the bottom
left of the dialog box. This changes the column names to column0, column1, and so
on. You can edit these generic names in the Column Name field. Names taken from
the data table itself cannot be edited.

The Type drop-down menu alongside the Column Name field sets the data type. By
default, everything is treated as a string. To change the data type, select the column
by clicking it in the Data Preview field, or use the left and right arrows to the left of
the Column Name field. The available options are string, number, date, and html. The
first three affect the sort order of the column. The final one, html, should be used
for data that includes HTML tags. If you fail to do so, the HTML tags will be dis-
played in the web page rather than be used to structure the data.

Most of the options in the Other Options section are self-explanatory. You can select
one of the columns to sort the data in ascending or descending order, change the
orientation of the data by selecting Use columns as rows, and filter out any dupli-
cate rows.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

856

Figure 19-7. The second step of the Spry Data Set wizard configures the data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The final option, Disable Data caching, makes the web page more responsive to
changes in the original data. By default, the data set remains in the browser’s cache
and isn’t updated when changes are made to the data source. If you select this
checkbox, you need to enter in the Autorefresh data field how frequently the web
page should check the original data source. The value needs to be expressed in mil-
liseconds, so entering 60000 in this field would check the original data source once
a minute.

There is no option to exclude specific columns from the final data set, although it’s up
to you which columns to display in the web page. However, it’s inefficient to include
large amounts of redundant data in a data set, so you should take this into account
when designing the original data container and include only data that you want to use.

6. Select the Description column by clicking it in the Data Preview field, set the Type
drop-down menu to html, and then click Next to move to the final step of the wiz-
ard, which is shown in Figure 19-8.

USING SPRY DATA SETS TO REFRESH CONTENT

857

19

Figure 19-8. The final step of the Spry Data Set wizard lets you display the data in a variety of formats.

7. The final step has four display options, as well as the option not to insert any HTML.
For this exercise, select the Insert table radio button, and then click the Set Up but-
ton alongside the illustration of a table.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. This opens the Spry Data Set – Insert Table dialog box, as shown here:

The layout and functionality of the dialog box should be immediately familiar from
other parts of Dreamweaver. You can remove a column by selecting it and clicking
the minus button; and if you change your mind, restore it using the plus button.

By default, each column is sortable when its header is clicked. If you don’t want a
column to be sortable, select the column name and deselect the checkbox at the
bottom of the Columns area.

The remaining options set the CSS classes discussed earlier and let you update one
or more detail regions when a row is clicked.

The table in Figure 19-5 displays just the Thumbnail and Caption columns, so high-
light the other two and delete them. Set the class drop-down menus to match the
classes in spry_table.css (you might need to select the class name twice, because
the menus appear to be temperamental), and select the checkbox labeled Update
detail regions when row is clicked. This will be used to display the main image and
description for each row in the table. The dialog box should now look like this:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

858

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Click OK to close the dialog box. This takes you back to the Spry Data Set wizard. If
you’re unsure about any of the settings, click Previous to return to the earlier steps
of the wizard, and make any changes. Otherwise, click Done to close the wizard and
create the Spry data set and its associated Spry table.

10. Save spry_table.php, and click OK to copy the Spry dependent files to your Spry
assets folder. The page should now look like Figure 19-9. As you can see, a new
table has been added, similar to the one built from the PHP recordset.

USING SPRY DATA SETS TO REFRESH CONTENT

859

19

Figure 19-9. In Design view, a Spry table gives no real indication of what it will look like in a browser.

11. Click the Live View button to see what the page will look like in a browser. It should
look similar to Figure 19-5 minus the image and description. We’ll add them in a
moment, but first test the page by running the mouse over the rows and clicking
the column headers to sort the data. The important thing to notice is that only the
thumbnails and captions are displayed; the unstyled HTML table being used as the
data source has been removed from the DOM.

12. Deactivate Live view, and press F12/Opt+F12 to view the page in a browser. As long
as JavaScript is enabled, it should look the same. Right-click to select the option to
view the page’s source code. The original HTML data source is still there, so the
page remains accessible to search engines and anyone viewing it with JavaScript
disabled. The code generated by Dreamweaver uses the data in the HTML table to
populate the Spry table, and then hides the HTML table.

Check your code, if necessary, against spry_table_01.php in examples/ch19.

Displaying related data in a Spry detail region
A Spry table is basically a repeat region applied to a single table row. However, instead of
using PHP to generate the other rows on the web server, it uses JavaScript to manipulate
the DOM inside the browser. An advantage of doing this is that Spry can respond to mouse
events, such as moving over an element or clicking a table cell. By creating a Spry detail
region, you can change its contents in response to such events. Adding a detail region is
very easy, as you’ll see in the following exercise.

Live view processes only the current page through the testing server, so you can use it to
view the output of a Spry data set only if the data source is in the same page. If you want
to use Live view to test a Spry data set that uses a dynamically generated data source in
an external page, load the page that generates the data source into a browser, and save
it as a static HTML file. Use the static file for testing, and then switch back to the dynamic
data source when deploying the site on the Internet.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise builds on the preceding one by adding a Spry detail region to display the
main image and description when you click the related table row. Continue using the same
page, or copy spry_table_01.php from examples/ch19, and save it in workfiles/ch19 as
spry_table.php.

1. In spry_table.php, click anywhere in the second row of the table. The <div> and
<tr> tags in the Tag selector at the bottom of the Document window are high-
lighted in orange, indicating that they contain Spry data set code.

2. Select the <div> tag, right-click, and select Set ID from the context menu. Set the ID
to spryTable. This is one of the style rules defined in spry_table.css. It floats the
<div> left and sets its width to 350 pixels.

3. With the <div> still selected, press the right arrow key once to move the insertion
point outside the <div>.

4. To display the description, you need to create a Spry detail region. Click the Spry
Region button on the Spry tab of the Insert bar, as shown in the following screen-
shot, or select Insert ➤ Spry ➤ Spry Region.

5. This opens the Insert Spry Region dialog box, as shown here:

The options let you choose a <div> or as the container. Most of the time,
you’ll want to use a <div>, unless you want the region to appear inline. You also
have the choice of Region or Detail Region. The link at the bottom of the dialog box
opens the Dreamweaver help files to explain the difference. Basically, a Spry region
is used to display multiple elements from a data set, such as a table. A Spry detail
region gives you access to the currently selected element within the data set. In this
case, you’re going to display the main image and description of whichever thumb-
nail or caption the user clicks in the table.

The remaining options in the dialog box let you choose the data set if there’s more
than one on the page and whether to wrap the region around the current selection

Adding an updatable detail region

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

860

http://lib.ommolketab.ir
http//lib.ommolketab.ir

or to replace it. Since nothing is currently selected in spry_table.php, the Wrap
selection and Replace selection options are grayed out.

Use the settings shown in the preceding screenshot, and click OK.

6. Dreamweaver inserts the Spry region with placeholder text, as shown here:

USING SPRY DATA SETS TO REFRESH CONTENT

861

19

7. Open the Bindings panel. As you can see from the preceding screenshot, dynamic
objects for Spry data set values are listed in the same way as for a recordset or in
an XSLT fragment. At the bottom of the list are three Spry data objects that can be
used to get access to the row ID, current row ID, and row count.

The data objects that you’re interested in at the moment are Image and Description.
Select Image, and use it to replace the placeholder text in the Spry detail region.
You can either drag and drop it or use the Insert button at the bottom of the
Bindings panel.

8. With the Image dynamic placeholder still selected, select Paragraph from the
Format drop-down menu in the HTML view of the Property inspector.

9. The data in the Description column is already formatted in paragraphs, so you need
to move the insertion point outside the closing </p> tag but remain inside the Spry
detail region <div>. So, select <p> in the Tag selector, and press your right arrow
key once. Then insert Description from the Bindings panel.

10. You now need to apply an ID to the Spry detail region <div>. Select <div> in the Tag
selector, right-click, and select details from Set ID in the context menu.

11. The page should now look like this (if you have a small monitor, the details <div>
might be forced down below the <div> that contains the Spry table):

In Design view, it still looks very unimpressive, but when you save the page and test
it in a browser, it should look like Figure 19-5 and be fully interactive.

You can check your code against spry_table_02.php in examples/ch19.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a master-detail set in a single operation
Adding a Spry detail region to a table, as you have just done, creates a master-detail set.
However, one of the other options in the final step of the Spry Data Set wizard also cre-
ates a master-detail set in a single operation. What’s more, it comes with its own style
sheet, speeding up development and deployment considerably. The following exercise
describes how to set up the options for a master-detail set. Since you already have a data
set in spry_table.php, you could delete the Spry table and detail region, and double-
click dsPhotos in the Bindings panel to relaunch the data set wizard and skip to the final
step. However, let's build the master-detail set from scratch to practice all three steps of
the wizard.

This exercise guides you through the Spry Data Set wizard to create a master-detail set in
a single operation. Since the first two steps of the wizard were described in detail in the
“Creating a sortable table” exercise, I’ll keep the instructions for defining the data source
brief and concentrate on the final step. This exercise assumes you have created the
ch19_gallery table and gallery_jpn.php, as described earlier in the chapter.

1. Save gallery_jpn.php as master_detail.php in workfiles/ch19.

2. In master_detail.php, launch the Spry Data Set wizard from the Spry tab of the
Insert bar or the Insert menu.

3. In the first step of the wizard dialog box, use the following settings:

Select Data Type: HTML

Data Set Name: dsPhotos

Detect: Tables

Specify Data File: master_detail.php

Data Containers: JPNdata

Just to introduce a little variety, I have chosen JPNdata as the source for the data
set. The fact that I have used the same name as before for the data set, dsPhotos,
doesn’t matter. The data set is being used in a different page, so there is no con-
flict. As you’ll see later in this chapter, you can use Spry to change the data source
dynamically.

4. Click Next to move to the second step of the data set wizard.

5. Select the Description column, and set the value of Type to html. Leave the other
options at their default settings, and click Next to move to the final step of the
wizard.

6. Select the Insert master/detail layout radio button, and click the Set Up button along-
side to open the following dialog box:

Setting the options for a master-detail set

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

862

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Master Columns field determines which columns you want to display as a click-
able list on the left of the page. For this exercise, you’re going to use the Caption
column. However, at least one column must always be selected in the Master
Columns field, so you can’t delete Thumbnail without first adding Caption.

7. Click the plus button above the Master Columns field, select Caption from the Add
Columns dialog box that opens, and click OK. This adds Caption to the Master
Columns field.

8. You can now safely select Thumbnail in the Master Columns field, and click the
minus button to remove it.

9. The Detail Columns field determines what to display in a box on the right side of the
page when one of the items is clicked in the list on the left of the page. Since
Caption is used in the Master Columns list, select Caption in the Detail Columns field,
and click the minus button to remove it.

10. This leaves Image and Description in the Detail Columns field. You can select how the
content will be displayed by selecting a value from the Container Type drop-down
menu at the bottom of the dialog box. The available options are <DIV>, <P>,
, and <H1> through <H6>.

Select Image, and set the value of Container Type to <P>.

11. The Description column is already formatted as HTML, so set its Container Type to
<DIV>.

12. Click OK to close the Spry Data Set – Insert Master/Detail Layout dialog box, and then
click Done to close the wizard.

13. Save master_detail.php, and click OK when prompted to copy the dependent
files to your Spry assets folder.

USING SPRY DATA SETS TO REFRESH CONTENT

863

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14. Press F12/Opt+F12 to test the page in a browser. There you have a simple, but ele-
gantly designed master-detail set, as shown in Figure 19-10. As before, Spry
removes the original HTML table from the DOM, but it remains in the underlying
HTML code for search engines and anyone with JavaScript disabled to access.

You can check your code, if necessary, against master_detail.php in examples/ch19.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

864

Figure 19-10. The Spry Data Set wizard creates a master-detail set in just a few minutes.

Displaying a data set as a list

Dreamweaver can create four types of lists from a Spry data set: unordered (),
ordered (), definition (<dl>), and drop-down menus (<select>). The way you create
them is similar to a detail region by selecting a button in the Spry tab of the Insert bar or
using an option on the Insert ➤ Spry menu. In other words, the data set must already exist.
A list must be inside a Spry region, which either you can create first or you can leave it up
to Dreamweaver to wrap the list in a Spry region when you have finished.

Unordered and ordered lists have only two options: the data set and the name of the col-
umn that you want to display. Definition lists and drop-down menus have an extra option
because both have a label and value for each item in the list. I’ll show you how to create a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

drop-down menu when building the photo gallery later, but let’s look briefly at creating a
Spry definition list. To avoid the need to go through the Spry Data Set wizard again, let’s
adapt spry_table.php from earlier in the chapter.

This exercise shows you how to display the Caption and Description columns of the
dsPhotos data set as a Spry definition list. The result won’t look very elegant, but the pur-
pose is simply to demonstrate how to create a list with Spry. Use spry_table_02.php in
examples/ch19 if you don’t have your own copy of the file.

1. In spry_table.php, delete the Spry table and detail region, but leave the original
HTML table intact. This leaves you with the Spry data set definition and all the
external files still attached.

2. Save the page as spry_list.php.

3. Click the Spry Repeat List button in the Spry tab of the Insert bar, as shown in the
following screenshot, or select Insert ➤ Spry ➤ Spry Repeat List.

4. This opens the Spry Repeat List dialog box, as shown here:

The Container tag drop-down menu contains the following four options:

UL (Unordered List): This creates an unordered list using tags and populates
the tags with the values stored in the column selected as Display column.
Only one column can be selected.

OL (Ordered List): This creates an ordered (numbered) list using tags. In
other respects, it’s identical to the previous option.

DL (Definition List): This creates a definition list using <dl> tags. When you select
this option, the Display column option is replaced by DT Column and DD Column,
which let you choose what to display in the <dt> and <dd> tags.

Creating a Spry definition list

USING SPRY DATA SETS TO REFRESH CONTENT

865

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SELECT (Drop-down List): This creates a drop-down menu using <select> tags.
When you select this option, a Value column option is added at the bottom of
the dialog box. Display column determines the value displayed in the drop-down,
and Value column sets the value attribute of each <option> tag. You’ll see this in
operation when building the Spry gallery later in the chapter.

Whichever option you choose for Container tag, the Spry Data Set option selects the
data set to be used. There’s only one data set on the current page, so it’s selected
by default.

5. Select DL (Definition List) for Container tag, set DT column to Caption, and set DD
column to Description. This will display the information as a definition list. Click OK
to save the settings, and click Yes when Dreamweaver asks whether you want to
insert a Spry region. The page should now look like this in Split view:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

866

As you can see from the preceding screenshot, Dreamweaver has inserted a <div>
on lines 57–62, and set the spry:region property to dsPhotos, the name of the
data set to use.

The opening tag of the definition list on line 58 contains the spry:repeatchildren
property, which is also set to dsPhotos. This tells the browser to loop through the
dsPhotos data set for each child element of the <dl> tag—in other words, the <dt>
and <dd> tags.

Lines 59–60 insert {Caption} and {Description} data objects in the <dt> and <dd>
tags, respectively.

Dreamweaver does all this coding for you automatically, so you don’t need to
bother about it unless you want to start using Spry in more sophisticated ways.

Sometimes, Dreamweaver fails to prompt you to add a Spry region when you
click OK to close the Insert Spry Repeat List dialog box. If this happens, select the
definition list, and click the Spry Region button on the Insert bar, or select Insert
➤ Spry ➤ Spry Region. Set Container to DIV, Type to Region, Spry Data Set to the
same data set as the definition list uses, and select the option to wrap the cur-
rent selection.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Save spry_list.php, and press F12/Opt+F12 to view the page in a browser. It
should look like Figure 19-11.

You can check your code, if necessary, against spry_list.php in examples/ch19.

Figure 19-11. The contents of the Spry data set are now displayed as a definition list.

Understanding the Spry data code
I don’t intend to go into great detail about how the code works. The whole idea of the Spry
Data Set wizard is to make it easy to use Ajax without needing to become a JavaScript guru,
but it does help to recognize the code and have a basic understanding of what it’s for.

The table and detail region in spry_table.php use remarkably little code, as you can see
from the following listing (all the Spry code is highlighted in bold):

<div id="spryTable" spry:region="dsPhotos">
<table>
<tr>

<th spry:sort="Thumbnail">Thumbnail</th>
<th spry:sort="Caption">Caption</th>

</tr>
<tr spry:repeat="dsPhotos" spry:setrow="dsPhotos" spry:odd= ➥

"odd" spry:even="even" spry:hover="hover" spry:select="selected">
<td>{Thumbnail}</td>
<td>{Caption}</td>

</tr>
</table>

</div>
<div id="details" spry:detailregion="dsPhotos">
<p>{Image}</p>{Description}
</div>

USING SPRY DATA SETS TO REFRESH CONTENT

867

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Even if you don’t know how it works, the Spry syntax is easy to follow. Everything begins
with spry: followed by the name of a property and its value. The property names are all
very intuitive: region, sort, repeat, and so on.

Take the code in the second table row. It begins with spry:repeat="dsPhotos". This turns
the row into a repeat region that draws data from the dsPhotos data set. The spry:setrow
property controls the display in the detail region. When the row is clicked, Spry sets it as
the current row, which sends a message—or triggers an event, to use the correct termi-
nology—that tells any dsPhotos detail region to update its contents.

The data objects that hold the contents are in curly braces. So, {Description} tells the
browser to display the current description.

What’s the difference between repeat and
repeatchildren?

If you’re interested in taking Spry further, look more closely at the code in the Spry table
and the Spry definition list. Both use Spry repeat regions, but there’s a subtle difference
between them.

The repeat region in the table is defined in the <tr> tag of the second row like this:

<tr spry:repeat="dsPhotos" spry:setrow="dsPhotos" spry:odd="odd" ➥

spry:even="even" spry:hover="hover" spry:select="selected">
<td>{file}</td>
<td>{caption}</td>

</tr>

The repeat region in the definition list is defined like this:

<dl spry:repeatchildren="dsPhotos">
<dt>{Caption}</dt>
<dd>{Description}</dd>

</dl>

In the table, the spry:repeat property repeats an element and all of its content for each
row in the data set. In other words, it repeats the table row (<tr>) and its two cells (<td>)
for each row in the dsPhotos data set. This results in the creation of eight table rows.

In the definition list, on the other hand, spry:repeatchildren repeats all the children of
a given element for each row in a data set. The property is defined in the <dl> tag, which

If you forget to set one of the classes in a Spry table, you can easily edit the repeat row
by adding spry:odd, spry:even, spry:hover, or spry:select and the name of the
class. Dreamweaver code hints speed up the process by displaying the available options
after you type spry: in Code view.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

868

http://lib.ommolketab.ir
http//lib.ommolketab.ir

has two children: <dt> and <dd>. As a result, Spry creates one definition list with a <dt>
and <dd> pair for every row in the dsPhoto data set.

So, the difference can be summarized as follows:

spry:repeat repeats the element in which it is declared.

spry:repeatchildren doesn’t repeat the element itself but does repeat its chil-
dren.

Because Spry manipulates the content in the browser window without creating any under-
lying source code for you to inspect, it can sometimes be difficult to grasp the difference
between what’s happening. For example, if you change the code in the <dl> tag from
spry:repeatchildren to spry:repeat, the output seems to be identical. However, if you
create a style rule to add a visible border around a definition list, the difference becomes
obvious. With spry:repeatchildren, there’s a single border around the list, but with
spry:repeat, you get a border around each list item (see Figure 19-12). In other words,
the <dl> element is also repeated, so you end up with eight definition lists instead of one.

Figure 19-12. Using spry:repeat with the <dl> tag creates a separate definition
list for each row of the data set.

This might tempt you to remove the Spry property from the <dl> tag and use spry:repeat
directly on the <dt> and <dd> elements like this:

<dl>
<dt spry:repeat="dsPhotos">{file}</dt>
<dd spry:repeat="dsPhotos">{caption}</dd>

</dl>

Figure 19-13 shows what happens—all the <dt> elements are repeated first, followed by
all the <dd> elements.

USING SPRY DATA SETS TO REFRESH CONTENT

869

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-13. Using the wrong type of Spry repeat region brings unwanted results.

You get equally undesirable results if you use spry:repeatchildren in the <tr> tag of the
table. Instead of eight table rows with two table cells each, you get one table row with
16 table cells.

Switching data sets dynamically
The pages you have built so far in this chapter use two data sources, ENGdata and JPNdata.
Rather than display them in separate pages, let’s switch between them using a Spry select
list. This uses an HTML <select> element to create a drop-down menu. The <option> tags
are populated automatically by a Spry data set, in the same way as the definition list that
you built in the “Displaying a data set as a list” section earlier in the chapter. However, it
has the added advantage that you can use it to dispatch information that other Spry com-
ponents can respond to. As a result, you’ll not only be able to display the main images and
descriptions without needing to reload the page, but you’ll also be able to switch between
the two sets of photos without reloading, making a smooth user experience.

To save time, I have created a page (gallery_select_start.php in examples/ch19) that
builds an HTML data source containing both sets of photographs in a single table, with an
extra column for the category to which each photo belongs. The page is laid out the same
way as spry_table.php earlier in the chapter with the thumbnails and captions in a Spry
table on the left and the image and description in a Spry detail region on the right. Below
that are two tables that act as the HTML data containers. The first one has an ID called
photos; it acts as the data container for the gallery. The second table is called galleries.
This will be used as the data container for the drop-down menu; the left column identifies
the categories, and the right one shows the values that will be displayed in the menu.

Filtering a Spry data set

Spry data sets support two types of filters: destructive and nondestructive. A destructive filter
removes elements permanently from a data set. For example, if you use a destructive filter to

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

870

http://lib.ommolketab.ir
http//lib.ommolketab.ir

remove the Japanese photos from the data set, the only way to gain access to the Japanese
photos is to rebuild the data set. A nondestructive filter, on the other hand, removes the ele-
ments temporarily, so this is the type of filter you need to switch between the two sets.

You create both types of filters the same way by defining a function that determines
whether to reject or include a row in the filtered set. The function takes three arguments:
the data set, the current row, and the row number. If the data in the row conforms to your
filter criteria, the function must return the row. Otherwise, it must return null.

To apply the filter, you pass the name of the filter function to the data set’s filterData()
method for a destructive filter or to its filter() method for a nondestructive filter.

The following exercise shows you how to apply a nondestructive filter to the dsPhotos
data set in gallery_select_start.php.

1. Open gallery_select_start.php in examples/ch19, and save it as
gallery_select.php in workfiles/ch19. When Dreamweaver asks whether you
want to update the links, click No. You can close gallery_select_start.php,
because you don’t need it any more.

2. Press F12/Opt+F12 to launch gallery_select.php in a browser to make sure that
it’s working correctly.

If the browser displays a message saying it failed to retrieve the data set, locate the
following line of code (it should be on or around line 50):

var dsPhotos = new Spry.Data.HTMLDataSet(../../examples/ch19/null, ➥

"photos");

Change it to this:

var dsPhotos = new Spry.Data.HTMLDataSet(null, "photos");

When the data container is in the same page as the data set, the first argument to
HTMLDataSet() should be null. Dreamweaver tries to add the path in front of null
if you tell it to update links or if you move the file within the Files panel.

3. Once you have confirmed that gallery_select.php is working correctly, you can
build the filter. The code that creates the dsPhotos data set looks like this (it begins
around line 50):

var dsPhotos = new Spry.Data.HTMLDataSet(null, "photos");
dsPhotos.setColumnType("Description", "html");

JavaScript lets you define your own properties for objects, so let’s give dsPhotos a
gallery property with a default value of 'JPN'. Add the following code to the
existing script block:

var dsPhotos = new Spry.Data.HTMLDataSet(null, "photos");
dsPhotos.setColumnType("Description", "html");
dsPhotos.gallery = 'JPN';

Filtering the photo data set

USING SPRY DATA SETS TO REFRESH CONTENT

871

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Now define the filter function. Add the following code immediately after the line in
the preceding step:

function chooseSet(dataSet, row, rowNumber)
{
if (row['Category'] == dsPhotos.gallery) {
return row;

}
return null;

}

As explained earlier, the filter function takes three arguments; it returns rows that
match the filter criteria, and it returns null for nonmatching rows. The conditional
statement checks whether the value of Category in the current row is the same as
dsPhotos.gallery. If it is, the row is returned. Otherwise, the filter function returns
null. You don’t need an else clause because return immediately brings the function
to an end. The function never reaches return null if the condition equates to true.

5. Finally, apply the filter nondestructively by passing the name of the function to the
data set’s filter() method. The full code looks like this:

var dsPhotos = new Spry.Data.HTMLDataSet(null, "photos");
dsPhotos.setColumnType("Description", "html");
dsPhotos.gallery = 'JPN';
function chooseSet(dataSet, row, rowNumber)
{
if (row['Category'] == dsPhotos.gallery) {
return row;

}
return null;

}
dsPhotos.filter(chooseSet);

6. Save gallery_select.php, and test it in a browser. Only the photos of Japan should
be displayed. The photos of England have been filtered out of the data set, but
they’re not displayed in the data container either.

7. Change the default value of dsPhotos.gallery in the third line of code to 'ENG'.
Save the page, and view it again. This time, only the photos of England should be
displayed. The next task is to make the switch dynamic with a Spry select list, which
you’ll build in the next section.

Check your code, if necessary, with gallery_select_01.php in examples/ch19.

Creating a Spry select list

Creating a Spry select list uses the same technique as described earlier in the chapter in
“Displaying a data set as a list.” It involves the following three steps:

1. Create the data set that will be used in the Spry select list.

2. Insert a Spry region bound to the data set.

3. Insert a Spry repeat list, and set the options for a Spry select list.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

872

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The data container for the Spry select list already exists in gallery_select.php, so you’re
ready to start.

Because you’re going to use the data set to populate a select list, you don’t want the Spry
Data Set wizard to create any HTML. However, the galleries table in gallery_select.php
doesn’t have any headings, so you need to assign your own. Continue working with
gallery_select.php from the preceding exercise. Alternatively, use gallery_select_01.php
in examples/ch19 (do not update the links when prompted by Dreamweaver).

1. Open gallery_select.php, and launch the Spry Data Set wizard.

2. In the first step of the wizard, use the following settings:

Select Data Type: HTML

Data Set Name: dsGalleries

Detect: Tables

Specify Data File: gallery_select.php

Data Containers: galleries

The Data Preview field should look like this:

Creating the Spry data set for the select list

USING SPRY DATA SETS TO REFRESH CONTENT

873

19

3. Click Next to move to the second step of the wizard.

4. Currently, the first row of the table in gallery_select.php is being used as headers for
the data set columns, so deselect the checkbox labeled Use first row as header. This
changes the display in the Data Preview field by adding column0 and column1 at the
head of the two columns. You can leave the generic names, but it makes the data
set a lot easier to use if you assign more meaningful names.

5. Select column0, and type source in the Column Name field.

6. Select column1, type label in the Column Name field, and press Enter/Return to
effect the change. The Data Preview field should now look like this:

7. You don’t need any HTML created, so just click Done to close the wizard.

You can check your code, if necessary, against gallery_select_02.php in
examples/ch19.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You won’t see any change in gallery_select.php in Design view, but the dsGalleries
data set is now listed in the Bindings panel, and the data set definition has been added to
the <head> of the page.

Now that the data set has been created, you can insert the Spry select list.

Using a Spry select list to change page content

Unlike a normal <select> element, when you insert a Spry select list into a page,
Dreamweaver doesn’t prompt you to insert <form> tags at the same time. This is because
you can use Spry to respond to changes in the selected option without the need to submit
a form. All that’s necessary is to add an onchange event handler to the select list. This dis-
patches details of the selected item to other Spry elements, updating the page in the same
way as clicking a row in a Spry table. I’ll explain how it works in more detail when you add
the onchange event handler. But first, let’s insert the Spry select list.

These instructions show you how to add a Spry select list to gallery_select.php to dis-
play the details of the available photo galleries. It draws its data from the dsGalleries
data set that you created in the preceding exercise. Continue working with the same page
as before. Alternatively, use gallery_select_02.php in examples/ch19.

1. In Design view, select the spryTable <div>, and press your left arrow key to move
the insertion point to the top of the page. If you check in Split view, the insertion
point should be between the opening <body> tag and the opening tag of the <div>.

2. Click the Spry Region button on the Insert bar, or select Insert ➤ Spry ➤ Spry Region.

3. In the Insert Spry Region dialog box, use the following settings, and then click OK:

Container: DIV

Type: Region

Spry Data Set: dsGalleries

This creates a Spry region and primes it to use the correct data set for the select list.

4. The <div> created by the Insert Spry Region dialog box contains placeholder text.
Leave this selected, and insert the Spry select list by clicking the Spry Repeat List
button on the Spry tab of the Insert bar or by selecting Insert ➤ Spry ➤ Spry
Repeat List.

5. In the Insert Spry Repeat List dialog box, use the following settings, and then click OK:

Inserting a Spry select list to display the photo galleries

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

874

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This draws the data from the dsGalleries data set and uses the label column to
determine the text shown by each option and the source column to set the
option’s value attribute.

6. The placeholder text should have been replaced by a select menu element. Change
the name of the menu element in the Property inspector from the default value,
select, to selectGallery.

7. Let’s add a label to the select menu. Press your left arrow key to move the insertion
point in front of the menu element. Then click the Label button in the Forms tab of
the Insert bar, as shown in the following screenshot. Alternatively, select Insert ➤

Form ➤ Label.

This opens Split view with the insertion point between two <label> tags. Type
Select gallery followed by a colon and a space. Then edit the opening <label> tag
to add the for attribute, and set its value to selectGallery. Click back in Design view,
or press F5 to view the change. The page should now look like this:

8. Save gallery_select.php, and test it in a browser. In most browsers, the drop-
down menu should display England by default. However, Internet Explorer doesn’t
play ball and displays the last item instead—in other words, Japan.

9. To fix the problem in Internet Explorer, you need to use the Spry equivalent of a
conditional statement. You indicate a condition by adding the spry:choose attrib-
ute to the parent element—in this case, the <select> tag, which you need to
amend like this:

<select name="selectGallery" id="selectGallery" ➥

spry:repeatchildren="dsGalleries" spry:choose="spry:choose">

10. Internally, a Spry data set is like a database recordset, and each row has an ID
called ds_RowID, rather like a database primary key. Spry keeps track of the cur-
rently selected row through another property called ds_CurrentRowID. When the
data set is first created, ds_CurrentRowID is set to the first row. So, to display the
first <option> element correctly, you need to check whether ds_RowID and

USING SPRY DATA SETS TO REFRESH CONTENT

875

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ds_CurrentRowID are the same. If they are, you want to add selected="selected"
to the <option> tag.

To create a condition in Spry, you use the spry:when attribute. Amend the
<option> tag like this:

<option value="{source}" spry:when="{ds_CurrentRowID} == {ds_RowID}" ➥

selected="selected">{label}</option>

11. Although this adds selected="selected" to the <option> tag when the two IDs
are equal, it has the undesired side effect of preventing any other <option> tags
from displaying. So, you need to add another <option> tag to display the remain-
ing values. This uses the spry:default attribute like this:

<option value="{source}" spry:default="spry:default">{label}</option>

12. The completed <select> list looks like this:

<select name="selectGallery" id="selectGallery" ➥

spry:repeatchildren="dsGalleries" spry:choose="spry:choose">
<option value="{source}" spry:when="{ds_CurrentRowID} == {ds_RowID}" ➥

selected="selected">{label}</option>
<option value="{source}" spry:default="spry:default">{label}</option>

</select>

13. If you test the page in Internet Explorer, the correct item should now display when
the page first loads. It also works correctly in other modern browsers. However,
nothing happens yet if you select Japan. You’ll fix that next. But first, check your
code, if necessary against gallery_select_03.php in examples/ch19.

The Spry select list works like a normal <select> element. The value of label in the each
row of the data set is displayed as text in a drop-down menu, and the value of source is
stored in the value attribute of the corresponding <option> tag. To display the correct set
of photos, you need to change the value of dsPhotos.gallery whenever an option is
selected in the drop-down menu. You do this by creating a function that resets and
refilters the dsPhotos data set and by attaching the function to the onchange attribute of
the <select> menu, as shown in the next exercise.

The following instructions show you how to reset the data set that contains details of the
photos to be displayed. Continue working with gallery_select.php. Alternatively, use
gallery_select_03.php in examples/ch19. All the work needs to be done in the underly-
ing code, so roll up your sleeves and switch to Code view.

1. Amend the <select> tag to pass the value of the currently selected item in the
drop-down menu to an event handler called changeSet() like this:

<select name="selectGallery" id="selectGallery" ➥

spry:repeatchildren="dsGalleries" spry:choose="spry:choose" ➥

onchange="changeSet(this.value)">

Wiring up the Spry select list

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

876

http://lib.ommolketab.ir
http//lib.ommolketab.ir

USING SPRY DATA SETS TO REFRESH CONTENT

877

19

3. It’s not important where you define changeSet() within this code block, but to
keep things grouped together logically, insert some space after the code shown on
line 60 of the preceding screenshot, and enter the following code:

function changeSet(set)
{
dsPhotos.gallery = set;
dsPhotos.filter(chooseSet);

}

This takes the value passed to the function and assigns it to dsPhotos.gallery. So,
if Japan is chosen from the drop-down menu, dsPhotos.gallery is reset to 'JPN'.
The next line applies chooseSet() as a nondestructive filter in the same way as
when the page first loads. Since chooseSet() filters the data set according to the
value of dsPhotos.gallery, this refilters dsPhotos and selects only the Japanese
photos.

4. Save gallery_select.php, and test the page in a browser. When you select Japan
from the drop-down menu, the thumbnails and their associated captions should
change. However, the image and description in the Spry detail region don’t update
until you click one of the thumbnails or captions. This is because the changeSet()
event handler doesn’t broadcast the change to the detail region. You need to reset
the data set’s current row number to 0 and then loop through each row until you
find the first one that belongs to the filtered set.

5. Amend changeSet() like this:

function changeSet(set)
{
dsPhotos.gallery = set;
dsPhotos.filter(chooseSet);
dsPhotos.setCurrentRowNumber(0);
var rows = dsPhotos.getData();
for (var i = 0; i < rows.length; i++) {
if (rows[i]['Category'] == set) {

By passing this.value as the argument, changeSet() obtains ENG or JPN from the
<option> tag. You now need to define changeSet().

2. Scroll up to the section in the <head> of the page where the two Spry data sets are
defined. It looks like this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dsPhotos.setCurrentRowNumber(i);
break;

}
}

}

The first line of new code resets the current row number of the dsPhotos data set
to 0. The next line uses the getData() method to store the data set temporarily in
a variable called rows. The loop then iterates through each row, checking the value
of the Category column and incrementing i by one each time. As soon as it finds a
value that equals the value passed to changeSet(), it sets the data set’s current row
number to i and brings the loop to an end with break.

6. Save gallery_select.php, and load it into a browser. Select Japan from the drop-
down menu, and the new gallery is displayed without needing to reload the page, as
shown in Figure 19-14. Check your code, if necessary, against gallery_select_04.php
in examples/ch19.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

878

Figure 19-14. The drop-down menu displays a new gallery without reloading the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a Spry data set from XML
As I mentioned at the beginning of the chapter, originally Spry data sets could be created
only from XML. Although Adobe now encourages the use of an HTML data source in pref-
erence to XML, you can still use an XML source. You build a data set from XML through the
Spry Data Set wizard in very much the same way as with an HTML data source, but there
are some important differences, so this section gives a brief outline of the process. It uses
an XML document called england.xml, which contains details of the eight photos of
England used in the preceding exercises.

The structure of england.xml looks like this:

<?xml version="1.0" encoding="utf-8"?>
<gallery>
<photo>
<file width="400" height="300">buck_palace.jpg</file>
<caption>Buckingham Palace and St James's Park</caption>
<description><![CDATA[<p>St James's Park . . .

</p>]]></description>
</photo>
<photo>
<file width="374" height="283">countrygarden.jpg</file>
<caption>A typical English country garden in Oxford</caption>
<description><![CDATA[<p>The . . .</p>]]></description>

</photo>
</gallery>

In other words, the details of each photo are in a top-level repeating node called <photo>.
The file name is in a child node called <file>, which stores the image dimensions as attrib-
utes. Two other child nodes, called <caption> and <description>, contain the remaining
details of the photo. The <description> node uses a CDATA section, which permits the use
of HTML tags inside an XML text node.

Using the Spry Data Set wizard with an XML document

The structure of england.xml is similar to the HTML table you created as a data source in
gallery_eng.php, but it contains no image tags, so the resulting Spry data set will need to
store the file name and the image dimensions separately.

The following instructions show you how to create a Spry data set from an XML document
and then incorporate it in a master-detail set to display images by binding data to the
attributes of HTML tags. Since the Spry Data Set wizard was covered in detail earlier in the
chapter, I’ll concentrate on the differences of working with an XML data source.

1. Create a new page called spry_xml.php in workfiles/ch19. (You can also use an
.html file name extension, because no PHP is involved in this process.)

2. Launch the Spry Data Set wizard from the Spry tab of the Insert bar or the
Insert menu.

USING SPRY DATA SETS TO REFRESH CONTENT

879

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-15. With an XML source, the first step of the data set wizard closely resembles working with an XSLT
fragment.

3. In the first step of the wizard, select XML from the Select Data Type drop-down
menu. As soon as you do so, the Detect drop-down menu disappears, and the Data
Selection field changes to Row element.

4. Change Data Set Name to dsPhotos, and use the Browse button to set the Specify
Data File field to use examples/ch19/england.xml. This populates the Row element
field with a diagrammatic representation of the XML hierarchy in the same way as
the Bindings panel does when you create an XSLT fragment (see Chapter 18).

5. In the same way as with an XSLT fragment, you need to select the repeating node,
which is indicated by a small plus icon alongside a pair of angle brackets. Select
photo in the Row element field. This now populates the Data Preview field with rows
and columns representing the data set. The first step of the wizard should now look
like Figure 19-15.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

880

http://lib.ommolketab.ir
http//lib.ommolketab.ir

USING SPRY DATA SETS TO REFRESH CONTENT

881

19

Notice that the dimensions of the image are displayed as file/@height and
file/@width, indicating that they are attributes of the <file> node. Only the file
names are shown, not the actual images, because the XML data source is text only.

6. Click Next to move to the second step of the wizard. As you can see in Figure 19-16,
it’s almost identical to the second step for an HTML source. You can’t change the
column names, and the options not to use the first row as headers and switch rows
to columns are not relevant to XML. The other options are the same.

7. Set Type to number for file/@height and file/@width; and for description, set Type to
html. Then click Next to move to the final step of the wizard.

8. The final step is identical to when you use an HTML data source. Select the Insert
master/detail layout radio button, and then click the Set Up button alongside.

Figure 19-16. With XML, you cannot rename the column names.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

882

9. I explained how the Spry Data Set – Insert Master/Detail Layout dialog box works in
the “Setting the options for a master-detail set” exercise earlier in the chapter, so I
won’t go into the details again. Use the following settings, and then click OK.

10. Click Done to close the wizard.

11. Save spry_xml.php, and click OK when prompted to copy dependent files to your
Spry assets folder.

12. Because the XML data source is a static file, you can use Live view to see the out-
put. It should look similar to Figure 19-10, only the file name is displayed instead of
an image. You need to insert the image yourself and bind the Spry data to it.

13. Turn off Live view. It’s best to work in Split view so you can see what’s happening in
the underlying code.

14. Select the {file} dynamic placeholder in Design view, and press Delete to remove it.
This leaves the insertion point between the <p> tags, which is where you want to
insert the image.

15. Click the Images button in the Insert bar, or select Insert ➤ Image to open the Select
Image Source dialog box.

16. To get the correct path for the dynamic image, you need to use the same technique
as when you created the HTML data source at the beginning of this chapter.
Navigate to the images/gallery folder, cut the value in the URL field to your clip-
board, and then select Data sources in the Select Image Source dialog box.

17. Select file from the dsPhotos data set, and paste the path back in front of the
dynamic placeholder, as shown here:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18. Click OK to close the Select Image Source dialog box, and set the alternate text to
<empty> when prompted.

Notice that the code inserted in Code view uses {file} instead of
{dsPhotos::file}. This is because it’s in a dsPhotos detail region. The prefix isn’t
required when the data set is the same as that for the detail region.

19. Finally, you need to bind file/@height to img.height, file/@width to img.width, and
caption to img.alt through the Bindings panel in the same way as you did for the
HTML image at the beginning of the chapter. The code for the image tag should
end up looking like this in Split view:

USING SPRY DATA SETS TO REFRESH CONTENT

883

19

20. Save spry_xml.php, and test it in Live view or a browser. It should look the same as
Figure 19-10, except it uses the photos of England.

You can check your code, if necessary, against spry_xml.php in examples/ch19.

This example uses a static XML document. However, you can also generate the XML data
source dynamically with PHP. Details of how to do so are in the appendix.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Validating pages that use Spry
If you submit a page that uses Spry to the W3C validator at http://validator.w3.org/,
you get a series of errors saying, for example, that there is no attribute spry:region or
spry:repeatchildren. This happens even though Dreamweaver amends the <html> tag at
the top of the page like this:

<html xmlns="http://www.w3.org/1999/xhtml" ➥

xmlns:spry="http://ns.adobe.com/spry">

The code highlighted in bold declares spry as a namespace. This tells the browser not to
confuse anything prefixed with spry: with standard HTML attributes or custom attributes
from other namespaces, such as other Ajax frameworks. While this prevents conflicts, it’s
not sufficient for W3C validation. You need to tell the validator where to find the Spry
document type definition (DTD) by inserting an ENTITY declararation into the DOCTYPE
declaration at the top of each page like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
[
<!ENTITY % SPRY SYSTEM "http://www.adobe.com/dtd/spry.dtd">
%SPRY;

]>
<html xmlns="http://www.w3.org/1999/xhtml" ➥

xmlns:spry="http://ns.adobe.com/spry">

So, why doesn’t Dreamweaver add the necessary code? Figure 19-17 shows why. Internet
Explorer, Firefox, and Safari all fail to understand the <!ENTITY> declaration and display
%SPRY;]> at the top of the page if you include it (see http://labs.adobe.com/
technologies/spry/articles/validation/validating_spry.html).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

884

Figure 19-17. Most leading browsers can’t cope with the code needed to ensure that Spry validates.

If W3C validation is a mandatory requirement for your website, you have two options:
don’t use Spry, or remove the Spry markup from the page with Dreamweaver CS4’s new
JavaScript Extractor.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The JavaScript Extractor was covered in Chapter 8, but let’s put it to practical use convert-
ing the gallery you have worked on throughout this chapter.

This brief exercise shows you how to extract the Spry markup from gallery_select.php
so that the page validates against W3C standards. Continue using the same file as in previ-
ous exercises. Alternatively, use gallery_select_04.php in exercises/ch19 as your start-
ing point.

1. With gallery_select.php open in the Document window, select Commands ➤

Externalize JavaScript.

2. Because the page has a .php file name extension, Dreamweaver displays a warning
that it’s not recommended to run the command on pages with server-side code
and asks whether you want to proceed anyway. The warning is there because the
JavaScript Extractor might not be able to identify the right elements to extract if
server-side code, such as PHP, and HTML are mixed within the body of the page.
That’s not the case here, so it’s safe to go ahead. Click Yes.

3. In the Externalize JavaScript dialog box, select Externalize JavaScript and attach
unobtrusively. As shown in Figure 19-18, Dreamweaver displays a list of all the
JavaScript elements that will be removed. You want to remove all of them, so leave
everything selected, and click OK.

Figure 19-18. The JavaScript Extractor identifies all the JavaScript elements and Spry markup
in the page.

Converting the Spry gallery to use unobtrusive JavaScript

USING SPRY DATA SETS TO REFRESH CONTENT

885

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Dreamweaver displays a report
of what it has done, as shown in
the screenshot alongside.

The important information is at
the bottom of the report: the
names of two external JavaScript
files that need to be uploaded
with the page. The first one,
SpryDOMUtils.js, will be saved
to your Spry assets folder. The
second one, gallery_select.js,
contains the unobtrusive Java-
Script code, and it will be cre-
ated in the same folder as the
original page.

5. Click OK to dismiss the report, and save the page. If this is the first time you have
used the JavaScript Extractor in a site, you will see a message telling you that
SpryDOMUtils.js is being copied to your Spry assets folder. Click OK to dismiss the
message.

6. Test the page in a browser to make sure it still works as before. You can check your
code, if necessary, against gallery_select_05.php and gallery_select.js in
examples/ch19.

7. Upload the page, together with all its dependent files, to your remote server, and
submit its URL to the W3C validator at http://validator.w3.org/. As Figure 19-19
shows, you now have a Spry gallery that passes validation with flying colors.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

886

Figure 19-19. Attaching the Spry markup with unobtrusive JavaScript produces a valid page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter review
The changes to the way Dreamweaver CS4 handles Spry data sets make them much eas-
ier to use, particularly with an HTML data source. By locating the data source in the same
page and manipulating the DOM to redisplay it, Spry data sets now provide indexable
content for search engines, as well as maintaining accessibility for the small minority of
people who browse the Web with JavaScript disabled.

The pages used in the examples in this chapter contain only Spry data sets. In a real-world
application, this is likely to be impractical, except perhaps for an image gallery. Important
content should always be embedded in the main part of the page, where it’s immediately
accessible to everyone. Spry and other JavaScript techniques should be used to enhance
user experience, but they shouldn’t be used as the sole means of delivering content. So, if
you use an XML data source for a Spry data set, you should always remember to provide a
link to an alternative page that contains the same basic information.

Your journey through Dreamweaver CS4, CSS, JavaScript, and PHP is almost at an end. In
the final chapter, I’ll deal with important maintenance issues concerned with MySQL back-
ups and how to deploy your web masterpieces on a live website.

USING SPRY DATA SETS TO REFRESH CONTENT

887

19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20 DEPLOYING YOUR SITE
ON THE INTERNET

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You’ve built your site and created your database, and now it’s time to go live. If you have
structured your Dreamweaver site as an exact copy of the site you intend to deploy on the
Internet, going live is a pretty straightforward process. Assuming you have defined your
remote server as described in Chapter 2, you can deploy your web pages a number of ways
through the Dreamweaver interface. Probably the most common way to do so is through
the Files panel. Select the file(s) you want to upload, and click the Put button. You can also
upload the current page by pressing Ctrl+Shift+U/Shift+Cmd+U, or selecting Put from the
File management menu on the Document toolbar (see Figure 1-25 in Chapter 1). You can
even right-click files in the Results panel and select Put from the context menu. However,
Dreamweaver is not capable of uploading the content of a MySQL database; and there are
several other issues with deploying a site that sometimes cause confusion, so this chapter
tries to clear up any doubts you might have.

In this chapter, you’ll learn about the following:

Deciding which files to upload

Preventing development assets from being uploaded

Exporting a MySQL database to a SQL file

Using a SQL file to transfer a MySQL database to another server

Adapting connection files to work with your live MySQL server

Uploading your web pages
The key to uploading your website successfully lies in registering the details of your remote
server correctly in the Dreamweaver Site Definition dialog box, as described in Chapter 2.
Dreamweaver considers the site root to be whatever value you entered in the Host directory
field of the Remote Info category (see Figure 2-6); and it uploads files using the same folder
hierarchy as in the Files panel. Usually, there is no need to create new folders on the remote
site; Dreamweaver does it automatically when you upload the contents of the folder.

The following sections describe how to upload files to a remote server. However, apart
from designating individual files and folders to be excluded from batch uploading—a
technique Dreamweaver calls cloaking, the same techniques apply equally to download-
ing files. To download, use the Get button instead of the Put button.

Uploading a whole site

The easiest way to upload a whole site is to select the site’s root folder in the Files panel,
and click the Put button, as shown in the following screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

890

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Before it goes ahead, Dreamweaver displays an alert asking you to confirm this operation.
If you click OK, it takes you at your word and uploads everything within the site. However,
be warned that Dreamweaver’s FTP engine is unlikely to win any Olympic gold medals. I
find it adequate for most site maintenance, but it can be excruciatingly slow if you have a
lot of files. For example, a typical WordPress blog (http://wordpress.org/) contains
more than 750 files in 175 folders. Although Dreamweaver uploads the files in the back-
ground, you cannot switch the Files panel to work on a different site until the upload
process has completed. There’s also no way to resume the upload if the connection is
dropped. When uploading a site of this size, I find it much faster to use a third-party FTP
program, such as FileZilla, a free open source program for Windows, Mac, and Linux
(http://filezilla-project.org), or CuteFTP, a commercial program for Windows and
Mac (http://www.cuteftp.com/products/ftp_clients.aspx).

For a few dozen files, uploading the whole site through Dreamweaver is no problem, but
you should still restrict the files that are transferred by cloaking anything that’s not
required on the remote server.

Cloaking files not required on the remote server

Cloaking prevents files from being uploaded to your remote server when uploading the
entire site or using Dreamweaver’s site synchronization feature (described later in this
chapter). You can cloak files in two ways: you can apply cloaking automatically to all files
that have a particular file name extension, or you can designate individual files or folders.

To enable automatic cloaking for specific file name extensions, open the Site Definition dia-
log box, and select the Cloaking category (see Figure 20-1). The quick and easy way to do
this is by right-clicking any file or folder in the Files panel and then selecting Cloaking ➤

Settings from the context menu.

DEPLOYING YOUR SITE ON THE INTERNET

891

20

Figure 20-1.
You can enable automatic
cloaking of specified file
types through the Site
Definition dialog box.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To designate the types of files to be cloaked, select the checkbox labeled Cloak files
ending with. This enables the text field below, where you enter all the file name extensions
that you want to exclude when uploading or synchronizing the site. As you can see in
Figure 20-1, .fla and .psd are already listed. These are Flash and Photoshop work files
that store all the layers, symbols, and other information about a Flash movie or image.
Neither should ever be deployed on a website.

Sites created with earlier versions of Dreamweaver and migrated to Dreamweaver CS4 list
.png instead of .psd. This is the file name extension for work files created by Fireworks.
However, it is also the file name extension for images stored in the Portable Networks
Graphic (http://www.libpng.org/pub/png/) format supported by all modern browsers.
So if your site uses .png images, you might want to remove .png from the list.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

892

There should be a single space between each file name extension, and
the extension itself should begin with a period. So, for example, if you
want to exclude saved queries for Find and Replace (.dwr files) and
Dreamweaver extensions (.mxp files), you need to edit the list as shown
in the screenshot alongside:

Templates (as distinct from child pages created from a template)
should never be uploaded to the remote server. If you use templates,
add .dwt and .dwt.php to this list.

When you click OK to save the changes, Dreamweaver displays an alert telling you that it
needs to rebuild the site cache. Click OK again, and after the site cache has been rebuilt,
files belonging to the specified types are displayed in the Files panel with a red diagonal
stripe through the icon alongside the file name, as shown in Figure 20-2. Rebuilding the
cache can take a long time on a large site, so this is not an option you should change fre-
quently. It’s best done when you first define the site.

Figure 20-2.
A red diagonal stripe

through the icon alongside
a file or folder indicates it

has been cloaked.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To cloak individual files or folders, right-click the file or folder in the Files panel, and select
Cloaking ➤ Cloak from the context menu.

Cloaking excludes files and folders when you select the entire site to be uploaded or when
synchronizing the site. However, you can override cloaking temporarily by selecting
cloaked files or folders and clicking the Put button.

To turn off cloaking for individual files and folders, right-click the file(s) or folder(s) in the
Files panel, and select Cloaking ➤ Uncloak. However, you cannot use this method to
uncloak files that have been cloaked automatically through their file name extension.
Automatic cloaking is an all-or-nothing option: all files that use the same extension are
affected. Equally, selecting Cloaking ➤ Uncloak All from the context menu in the Files panel
is a blanket operation; it uncloaks every file in the site.

Synchronizing a site

By default, Dreamweaver maintains information about the local and remote versions of
the site to enable them to be synchronized. To synchronize a site, select Site ➤ Synchronize
Sitewide. Alternatively, select Synchronize from the context menu in the Files panel. This
opens the Synchronize Files dialog box, as shown here:

The Synchronize drop-down menu has the following two options, both of which are self-
explanatory:

Entire ‘Sitename’ Site

Selected Local Files Only

The Direction drop-down menu has the following three options:

Put newer files to remote: This updates the remote site with files that have been
changed in Dreamweaver.

Get newer files from remote: This updates your local version with files that have been
updated on the remote server. Normally, this applies only if more than one person
is responsible for managing the site or if you use more than one computer to main-
tain a site.

Get and Put newer files: This looks for the latest versions on both the remote server
and your local version and transfers them accordingly.

DEPLOYING YOUR SITE ON THE INTERNET

893

20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The options offered by the checkbox at the bottom of the Synchronize Files dialog box
depend on your choice for Direction. When putting newer files to the remote server,
select the checkbox to delete files that don’t exist in your local version. When getting
newer files from the remote server, select the checkbox to delete local files that don’t
exist on the remote server. The checkbox is grayed out if you set Direction to Get and Put
newer files. Although deleting files sounds potentially dangerous, you get a chance to
review Dreamweaver’s decision for each file before committing yourself.

After making your selections in the Synchronize Files dialog box, click the Preview button.
Dreamweaver connects to the remote server and checks the status of the remote files. This
can take some time, depending on the size of the site. When Dreamweaver has gathered
the synchronization information, it displays the Synchronize dialog box (see Figure 20-3).
This lists all the files that are out of sync. The buttons at the bottom left of the dialog box
give you the opportunity to override Dreamweaver’s proposed actions or resolve issues that
Dreamweaver can’t handle. The dialog box is resizable to make it easier to read messages in
the Status field. The Compare button requires a third-party file comparison utility to be set
up in the File Compare category of the Preferences panel, as described in Chapter 2.

Figure 20-3. The Synchronize dialog box gives you the opportunity to override Dreamweaver’s decisions.

After making any changes to the proposed operations, click OK, and sit back while
Dreamweaver carries out your instructions. You can click the Hide button on the
Background File Activity dialog box and continue working in Dreamweaver. However, you
cannot switch to another site until the transfer has completed.

The file synchronization feature creates a file called dwsync.xml for each folder in your
site. This XML file contains details of the local and remote timestamps of each file in the
folder, and it is stored in a hidden folder called _notes (see http://www.adobe.com/go/
kb400972 for a detailed explanation). For the system to work accurately, both your local
computer and remote server need to create accurate timestamps. Problems inevitably
arise if your computer clock is out of sync with the one on the remote server.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

894

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can find synchronization information about an individual file by right-clicking the file
name in the Files panel and selecting Display Synchronize Information from the context
menu. This displays a panel of information similar to that shown in Figure 20-4.

Figure 20-4. You can display synchronization information for an
individual file.

Selecting recently modified files

If you find synchronization unreliable or too time-consuming, the Files panel has a little
known feature that selects recently modified files. To access this feature, open the Files
panel options menu by clicking the top-right of the panel, as shown in the following
screenshot:

The greatest weakness of file synchronization affects everyone in countries that observe
daylight saving time. Twice a year, when the clocks change, Dreamweaver displays inac-
curate warnings that you’re about to replace a newer file on the remote server. This
happens even when you use normal Put operations, because Dreamweaver checks the
information in dwsync.xml each time a file is transferred. If in doubt, use File Compare,
as described in Chapter 2.

DEPLOYING YOUR SITE ON THE INTERNET

895

20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the panel options menu, select Edit ➤ Select Recently Modified. Alternatively, right-click
any file or folder in the Files panel, and select Select ➤ Recently Modified from the context
menu. This opens the dialog box shown in Figure 20-5. After setting your selection criteria,
click OK. Dreamweaver selects all matching files in the Files panel, which are then ready for
you to upload by clicking the Put button, or for you to perform any other batch operation.
To select all files created or modified during the current day, select the second radio but-
ton, and set both dates to today’s date.

Figure 20-5. You can select files that have been created or modified
in recent days or within a specific range of dates.

The Results panel also lets you upload files that have just been modified by a Find and
Replace operation. Right-click the file name in the Results panel, and select Put from the
context menu.

Viewing the local and remote sites side by side

The drop-down menu at the top right of the Files panel lets you select only one view of
your site at a time: Local view, Remote view, Testing server, or Repository view (this last
option requires a Subversion repository to be set up in your site definition, as described in
Chapter 2). However, it can be useful to display two views side by side. To do so, click the
Expand/Collapse button at the top right of the Files panel, as shown here:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

896

http://lib.ommolketab.ir
http//lib.ommolketab.ir

By default, this expands the Files panel to fill the application window, as shown in
Figure 20-6. However, if you have converted the Files panel to a floating panel, it remains
floating and resizable. In both cases, the local view remains on the right side of the panel,
while the left side opens to display the remote view. If no files are displayed in the left
panel, Dreamweaver prompts you to connect to the remote server. If you prefer to show
the local files on the left, you can reverse the default positions in the Site category of the
Preferences panel (Edit ➤ Preferences, or Dreamweaver ➤ Preferences on a Mac).

DEPLOYING YOUR SITE ON THE INTERNET

897

20

Figure 20-6. When expanded, the Files panel shows details of the remote files alongside the local ones.

You can use this expanded view to drag and drop local files into the remote site, and vice
versa, but it’s a tricky process because you need to drop the files on the target folder icon.
It’s easy to miss the correct icon, destroying the file hierarchy of your site. Instead of drag-
ging and dropping, expand the folders to highlight the files you want to transfer, and use
the Put and Get buttons to perform the actual transfer.

You can also inspect the testing server and repository view in the expanded Files panel by
clicking the buttons to the left of the Get button.

To collapse the Files panel to its normal size, click the same button you used to expand it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Uploading dependent files

Most web pages have a number of dependent files: style sheets, external JavaScript files,
images, and so on. Dreamweaver presents you with the following dialog box whenever you
click the Put or Get button, asking whether you want to transfer dependent files at the
same time.

It’s important to realize that the default button on this dialog box is No. If you press
Enter/Return or do nothing for 30 seconds, the dialog box closes and transfers only the
selected file(s). To transfer dependent files, you must click the Yes button before the dia-
log box closes automatically. If you don’t want to be asked each time you perform a trans-
fer operation, select the checkbox labeled Don’t show me this message again.

You can change the dependent file options in the Site category in the Preferences panel
(Edit ➤ Preferences; Dreamweaver ➤ Preferences on a Mac). Dreamweaver treats depend-
ent files separately for put and get operations, so you can reenable the automatic prompt
by selecting the appropriate checkbox in the Preferences panel. You can also change the
number of seconds the prompt remains on the screen or prevent it from closing automat-
ically. If you uncheck Select default action after n seconds, the Dependent Files dialog box
remains onscreen until you click one of the buttons. More importantly, the default button
changes from No to Yes.

Deciding whether to let Dreamweaver transfer dependent files automatically is a matter of
preference. Experienced developers usually want to know exactly what is being trans-
ferred, so they disable the Dependent Files dialog box. If you do likewise, don’t forget to
upload the following categories of files:

Images

External style sheets

External JavaScript files

Assets for Spry and other web widgets

SWF (Flash and Flex) support files in the Scripts folder

One of the most frequently asked questions in Dreamweaver online forums is “Why does
my Flash movie, Spry accordion, or some other feature work fine locally but not on my
remote server?” The answer is almost invariably that a dependent file hasn’t been uploaded.
Another explanation is that the file path to the dependent file is incorrect. That’s usually
because the site has been incorrectly defined.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

898

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Transferring database tables
MySQL doesn’t store your database in a single file that you can simply upload to your web-
site. Even if you find the right files, you’re likely to damage them unless the MySQL server
is turned off. Anyway, most hosting companies won’t permit you to upload the raw files,
because it would also involve shutting down their server, causing a great deal of inconven-
ience for everyone.

Nevertheless, moving a database from one server to another is very easy with a graphic
front end to MySQL. I’ll show you how to do it with phpMyAdmin, since most hosting
companies provide phpMyAdmin as part of their package. If you want to use a different
front end, consult the program’s documentation. However, for security reasons, most
hosting companies do not permit direct connection to the MySQL server, so you normally
need to use the host’s installation of phpMyAdmin to import the data. Navicat (http://
www.navicat.com/) gets around this issue by transferring the data through the web
server on port 80.

Transferring a database or database table with phpMyAdmin involves creating a backup
dump of the data and loading it into the other database. The dump is a text file that con-
tains all the necessary Structured Query Language (SQL) commands to populate an indi-
vidual table or even an entire database elsewhere.

These instructions show you how to back up an entire database. You can also back up indi-
vidual tables in the same way by selecting the tables in step 4.

1. Launch phpMyAdmin, and select the database you want to back up from the list or
drop-down menu in the navigation frame.

2. When the database details have loaded into the main frame, select Export from the
tabs along the top of the screen, as shown here:

Creating a backup with phpMyAdmin

Dreamweaver cannot detect dependent files that are linked dynamically
through JavaScript or PHP. You must upload these independently.

DEPLOYING YOUR SITE ON THE INTERNET

899

20

3. The rather fearsome-looking screen shown in Figure 20-7 opens. In spite of all the
options, you need to concern yourself with only a few.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 20-7. phpMyAdmin offers a wide range of choices when exporting data from MySQL.

4. The Export section on the left of the screen lists all the tables in your database.
Click Select All, and leave the radio buttons on the default SQL. Alternatively,
Ctrl-click/Cmd-click to select the tables you want to export.

5. If the database has never been transferred to the other server before, the only
option that you need to set on the right side of the screen is the drop-down
menu labeled SQL compatibility mode. The setting depends on the version of

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

900

http://lib.ommolketab.ir
http//lib.ommolketab.ir

MySQL on the other server (only the first two numbers, such as 4.0, 4.1, or 5.0,
are important):

If the other server is running the same version of MySQL, choose NONE.

If you are transferring between MySQL 4.1 and MySQL 5.0 (in either direction),
choose NONE.

If the other server is running MySQL 4.0, choose MYSQL40.

6. If the database has already been transferred on a previous occasion, select Add
DROP TABLE / VIEW / PROCEDURE / FUNCTION in the Structure section. The exist-
ing contents of each table are dropped and are replaced with the data in the
backup file.

7. Put a check mark in the box alongside Save as file at the bottom of the screen. The
default setting in File name template is __DB__, which automatically gives the
backup file the same name as your database. So, in this case, it will become
dwcs4.sql. If you add anything after the final double underscore, phpMyAdmin will
add this to the name. For instance, you might want to indicate the date of the
backup, so you could add 20090704 for a backup made on July 4, 2009. The file
would then be named dwcs420090704.sql.

Once you have created a .sql file containing the data exported from a database, you can
transfer it to another MySQL server using the version of phpMyAdmin on the remote
server.

1. If a database of the same name doesn’t already exist on the target server, create
the database, but don’t create any tables.

2. Launch the version of phpMyAdmin used by the target server, and select the data-
base you plan to transfer the data to. Click the Import tab in the main frame (on
versions of phpMyAdmin earlier than 2.7.0, click the SQL tab instead).

3. Use the Browse button to locate the SQL file on your local computer, and click Go.
That’s it!

Configuring the remote MySQL connection

Many hosting companies locate MySQL and the web server on the same computer.
Consequently, the host name PHP uses to connect to the database remains localhost. If
you set up your local testing environment to use the same database name, user account,

Because phpMyAdmin uses PHP to upload the file, the maximum size of any backup is
normally limited to 2MB, which is the default maximum size for any file upload. If you
are transferring a very large database, use the phpMyAdmin Export and Import tabs to
back up and transfer individual tables. Alternatively, contact your hosting company for
advice on transferring your database.

Loading data from a backup file

DEPLOYING YOUR SITE ON THE INTERNET

901

20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and password as your remote server, all you need to do is upload the Connections folder
and its contents, and everything should work the same as on your local computer.

However, some hosting companies locate MySQL on a separate computer and give you an
IP address or domain name that must be used instead of localhost. Unfortunately,
Dreamweaver does not have the option to specify different connection details for local
testing and remote deployment. The simplest way to get around this problem is to create
different copies of the connection files for the local and remote connection. Once you
have uploaded the connection file(s) to your remote server, cloak the local connection
file(s) in your Dreamweaver site to prevent accidentally overwriting the remote versions
(cloaking was described earlier in this chapter).

Figure 20-8 shows the contents of the connection file for the connAdmin user account
used in the examples for this book. As you can see, the file name and the variables used
in the file are all based on the name of the user account. The variable names are all self-
explanatory.

Figure 20-8. The MySQL connection file contains the login details for the MySQL user account.

To create a connection file for your remote server, use the following instructions:

1. Save a copy of the connection file as filename_local.php.

2. Close the copy, and edit the original connection file, replacing localhost (shown
on line 5 of Figure 20-8) with the IP address or domain name of the server where
your MySQL account is located (use the MySQL domain name, not your own
domain name).

3. Make any other changes necessary to the database, username, and password.

4. Save the page, and upload it to your remote server.

5. Delete the local copy of the page you have just uploaded.

6. Rename filename_local.php to restore its original name.

7. Right-click the renamed local file, and select Cloaking ➤ Cloak from the context menu.

You now have different versions of the connection file on your local computer and remote
server. This enables you to continue testing locally with your local MySQL settings, and the
files should work seamlessly with the remote settings when they’re uploaded. However, it’s
important not to select the option to upload dependent files, because this will overwrite

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

902

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the remote connection file, even though it has been cloaked. Cloaking excludes files only
when using file synchronization.

Chapter review
This brief look at deploying your website on the Internet brings to an end this marathon
journey through working with Dreamweaver CS4. I hope you have found it enjoyable and
instructive. In spite of the length of this book, I have not been able to cover every aspect
of Dreamweaver, CSS, Ajax, and PHP. In the short history of the Internet, the technology of
website design has grown at a breathtaking pace—almost as rapid as that of the Internet
itself. Dreamweaver will do a lot of the hard work for you, but your success in creating
websites that stand out from among the crowd depends on mastering a range of skills, or
perhaps combining your own strengths with those of experts in other aspects of web
development.

Good luck, but above all have fun.

When editing connection files, make sure you don’t add any whitespace or newline
characters outside the PHP tags, because this will prevent sessions from being created
and server behaviors from redirecting to other pages. Also, make sure you don’t select
Include Unicode Signature (BOM) in the page properties (see “Avoiding the ‘headers
already sent’ error” in Chapter 12).

DEPLOYING YOUR SITE ON THE INTERNET

903

20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

APPENDIX
GENERATING XML WITH PHP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Some of the exercises in Chapters 18 and 19 use static XML documents as a data source.
This was done to enable you to concentrate on working with the XML data, without the
added complication of generating the XML document. Typing out XML documents is both
tedious and usually unnecessary, because XML is principally used as a platform-neutral way
of sharing data that is stored in a database. It’s much more efficient to generate the XML
dynamically using a server-side language, such as PHP. Unfortunately, Dreamweaver doesn’t
have a server behavior to automate this process. However, it’s not difficult to adapt a
recordset to generate XML output, which you can serve dynamically or save to a static file.

As mentioned in Chapter 19, security restrictions in browsers prevent Spry and other Ajax
frameworks from using XML documents that are hosted on a different domain. However,
you can get around this problem by using a proxy script to retrieve the remote XML doc-
ument.

This appendix extends your ability to work with XML by showing you how to do the
following:

Customize a recordset to generate XML on the fly

Use a PHP proxy script to retrieve XML from a different domain

Generate and save a static XML document

Converting a recordset to generate XML
Generating XML from a recordset is very similar to creating any other web page that dis-
plays content drawn from a database. The main difference is that you replace all the HTML
tags with XML tags. Before getting down to the detail, here’s a brief outline of the steps
involved:

1. Create a recordset.

2. Build a skeleton of XML tags for the repeating element and its child nodes.

3. Populate the child nodes with dynamic text objects from the recordset.

4. Apply a Repeat Region server behavior to the repeating element.

5. Remove the HTML code from the page.

6. Add the root node tags.

7. Add headers and the XML declaration to tell Dreamweaver and browsers to treat
the output as XML.

You build everything like an ordinary web page and remove the DOCTYPE declaration and
HTML tags, leaving behind just the code to create the XML feed. However, it’s important to
leave all the HTML code in the page until you have applied the Repeat Region server
behavior. Otherwise, Dreamweaver cannot recognize where to insert the code and refuses
to apply the server behavior.

The following instructions show you how to create an XML feed of details of the Japanese
images in the ch19_gallery table:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

906

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Create a new PHP page called japan_xml.php in workfiles/appendix.

2. Open the Recordset dialog box in Simple mode, and create a recordset called
getPhotos. This doesn’t need administrative privileges, so use connQuery for
Connection, and select ch19_gallery in the Table field.

You don’t need the photo_id and category columns for the XML output, so select
all other columns except those two.

However, you do want to retrieve only those
records where category is set to JPN. Set
Filter to category, and leave the second drop-
down set to =. Since JPN is a fixed value,
select Entered Value from the third drop-
down, and type JPN in the field alongside.

When you have finished, the settings should
look like this:

GENERATING XML WITH PHP

907

A

3. Use the Test button to make sure the record-
set works, and then click OK to save it.

4. Now build a skeleton for the repeating ele-
ment, <photo>, and its child nodes. You need
just one set of tags, because the repeat
region generates the rest. Switch to Code
view, and insert the following code between the <body> tags:

<body>
<photo>
<filename></filename>
<width></width>
<height></height>
<caption></caption>
<description><![CDATA[]]></description>

</photo>
</body>

The <description> node contains HTML, so I have added opening and closing
CDATA tags inside the node tags (CDATA sections instruct XML parsers to treat their
content as plain character data). When building your own XML, create a similar
skeleton using the node names of your choice.

As you’re typing, you’ll notice that Dreamweaver code hints recognize your custom
XML tags, making it easier to complete the closing tags.

5. Now populate the child nodes with dynamic text objects from the recordset.
Position the insertion point between the opening and closing <filename> tags.

You need to insert the XML skeleton between the <body> tags in order to use the
Repeat Region server behavior.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Open the Bindings panel, expand the recordset, select filename, and click the Insert
button. This inserts a dynamic text object inside the <filename> child node.

7. Repeat steps 5 and 6 with the other child node tags, positioning the insertion point
between the CDATA tags for the <description> node. The XML skeleton should
now look like this:

<photo>
<filename><?php echo $row_getPhotos['filename']; ?></filename>
<width><?php echo $row_getPhotos['width']; ?></width>
<height><?php echo $row_getPhotos['height']; ?></height>
<caption><?php echo $row_getPhotos['caption']; ?></caption>
<description><![CDATA[<?php echo $row_getPhotos['description']; ?> ➥

]]></description>
</photo>

8. Select the XML skeleton from the opening <photo> tag to the closing </photo>
one, and apply a Repeat Region server behavior (use the Server Behaviors panel, the
Data tab of the Insert bar, or the Insert ➤ Data Objects submenu). In the Repeat
Region dialog box, select Show All Records.

9. Once the Repeat Region server behavior has been applied, you can get rid of the
unwanted HTML. Select everything from the opening tag of the DOCTYPE declara-
tion to the opening PHP tag at the start of the repeat region that you have just cre-
ated, as shown in the following screenshot:

10. Delete the selected code, and replace it with the opening tag of the XML root node
like this:

$totalRows_getPhotos = mysql_num_rows($getPhotos);
?>
<gallery>
<?php do { ?>

11. Scroll down and replace the closing </body> and </html> tags with the closing tag
of the XML root node (</gallery>).

12. The last change you need to make is to insert headers and the XML declaration to
tell Dreamweaver and browsers to treat the output as XML. Without them, they
treat it as plain text. The headers go just before the closing PHP tag shown on line
39 of the preceding screenshot, like this:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

908

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$totalRows_getPhotos = mysql_num_rows($getPhotos);
// Send the headers
header('Content-type: text/xml');
header('Pragma: public');
header('Cache-control: private');
header('Expires: -1');
// Add the XML declaration
echo '<?xml version="1.0" encoding="utf-8"?>';
?>
<gallery>

13. Save japan_xml.php, and test the page in a browser. It should look the same as
Figure A-1. You can compare your code with japan_xml.php in examples/appendix.

Forgetting the headers is a common cause of problems when generating XML
on the fly. Since you’re using a file with a .php extension, the web server doesn’t
know that it’s meant to treat the output as XML without sending the Content-
type header. The remaining three headers are optional but are designed to pre-
vent the XML output from being cached. The XML declaration isn’t strictly
necessary, but it’s usual to include it. I have used echo to insert the XML decla-
ration to avoid conflicts with servers that permit the short opening PHP tag (<?).

GENERATING XML WITH PHP

909

A

Figure A-1. You can use a PHP page to generate XML on the fly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Not only is generating XML dynamically like this a lot easier than typing out everything
laboriously in an XML document, but it also has the advantage that the XML data source is
automatically updated each time you make any changes to the records in the database.

Using a proxy script to fetch a remote feed
Security restrictions in browsers prevent Spry and other Ajax frameworks from accessing
an XML source that’s hosted on a different domain from the web page. To get around this
restriction, you need to use a proxy script. This retrieves the data from the remote server
and mirrors it locally, making it appear that the data and the web page come from the
same domain.

How you do this depends on the configuration of your server. Display the server’s config-
uration details by uploading a page that contains the single command <?php phpinfo();
?> and then displaying it in a browser. Check the value of allow_url_fopen in the PHP Core
section at the top of the page. If it’s On, this allows you to open remote files directly, so a
few lines of code will do the trick. The following example, which you can find in proxy.php
in examples/appendix, acts as a proxy for the friends of ED RSS feed:

<?php
$url = 'http://friendsofed.com/news.php';
// Get remote headers
$headers = get_headers($url);
// Make sure the first header includes 'OK'
if (stripos($headers[0], 'OK')) {
$remote = file_get_contents($url);
// Send an XML header and display the feed
header('Content-Type: text/xml');
echo $remote;

} else {
echo "Cannot open remote file at $url";

}?>

This script checks that the remote feed is available and stores it in a variable called
$remote. The two lines highlighted in bold create an XML header and output the content
of $remote. If the feed can’t be found, an error message is displayed instead.

If your hosting company doesn’t allow you to open remote files directly, it might have pro-
vided an alternative through the cURL (Client URL Library) extension. You can tell whether
cURL is available by displaying the output of phpinfo(). If you can see a listing similar to
the following screenshot, cURL is enabled:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

910

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The cURL extension lets you communicate with many different types of servers with a large
number of protocols. The following script, which is in curl.php in examples/appendix,
does the same as proxy.php, using a cURL session to retrieve the friends of ED RSS feed:

<?php
$url = 'http://friendsofed.com/news.php';
// Open the cURL session
if ($session = curl_init($url)) {
// Block HTTP headers, and get XML only
curl_setopt($session, CURLOPT_HEADER, false);
curl_setopt($session, CURLOPT_RETURNTRANSFER, true);
// Get the remote feed
$remote = curl_exec($session);
// Close the cURL session
curl_close($session);
// Check that the feed was retrieved successfully
if ($remote) {
// Send an XML header and display the feed
header('Content-Type: text/xml');
echo $remote;

} else {
echo "No content found at $url";

}
} else {
echo "Cannot initialize session";

}
?>

Again, the content of the feed is stored in a variable called $remote. If the cURL session
succeeds, the lines highlighted in bold output an XML header and the content of $remote.
For more details about cURL, visit http://docs.php.net/manual/en/ref.curl.php.

In both files, all you need to do to fetch a different feed is replace the value of $url with
a different address.

If you’re using PHP 5.2 or higher, there’s a custom PHP class in my book PHP Object-
Oriented Solutions (friends of ED, ISBN: 978-1-4302-1011-5) that automatically selects the
most efficient method of retrieving a remote file so you don’t need to worry about arbi-
trary changes in your hosting company’s security settings.

When using a remote XML or RSS feed, remember to check ownership of
copyright and any restrictions on reuse of material contained in the feed.
Using copyrighted material without permission could land you a hefty
legal bill.

GENERATING XML WITH PHP

911

A

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using a static XML document as a cache
A potential problem with XML generated on the fly from a database or through a proxy
script is that slow network connections will slow down the response. Even worse, the
dynamic source may be unavailable. So, you might want to consider generating a static
XML document and using that instead. This is particularly appropriate if the XML content
is unlikely to change very often or if you have a site with very heavy traffic. Instead of put-
ting repeated strain on the database server, for example, the static document acts as a
cache, which is faster and more efficient.

The principle behind creating a static document from a dynamic source is very simple:
capture the XML output in a PHP variable and use PHP file system functions to write the
document to your site or local hard disk. Before you can do this, you need to make sure
that the web server has permission to write to the target folder.

Setting permission for PHP to write files

Most hosting companies use Linux servers, which impose strict rules about the ownership of
files and directories. Writing a file creates a new version of the file on the server, so the user
needs all three privileges—read, write, and execute. However, in most cases, PHP doesn’t run
in your name, but as the web server—usually nobody or apache. Unless your hosting com-
pany has configured PHP to run in your own name, you need to give global access (chmod
777) to every directory to which you want to be able to write files. Since 777 is the least
secure setting, you need to adopt a cautious approach. Begin by testing the scripts in this
section with a setting of 700. If that doesn’t work, try 770, and use 777 only as a last resort.

Windows servers use a different system of setting permissions. Consult your hosting com-
pany if you have problems writing files.

When testing locally, there are usually no permissions issues on Windows.

However, on Mac OS X, you need to change the permissions of any folder that you want
PHP to be able to write to like this:

1. Select the folder in Finder, and press Cmd+I or choose File ➤ Get Info.

2. In the Ownership & Permissions section at the bottom of the Info window, click the
triangle alongside Details to reveal the permissions for all users.

3. Change the setting for Others from Read only to Read & Write, and close the Info
window. The folder is now writable.

Using PHP to write to a file

Writing to a file with PHP isn’t difficult, but it involves three steps, as follows:

1. Create a resource handler to open the file.

2. Write the contents to the file.

3. Close the file.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

912

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Each step uses an intuitively named function: fopen(), fwrite(), and fclose().
Unfortunately, fopen() has a bewildering range of options that prepare the file for read-
ing and writing in different ways. If you’re interested in the details, study the PHP online
manual at http://docs.php.net/manual/en/function.fopen.php or read Chapter 7 of
my book PHP Solutions: Dynamic Web Design Made Easy (friends of ED, ISBN-13: 978-1-
59059-731-6).

The option that I’m going to use overwrites any existing content in the file. This is ideal for
creating a static XML document from a dynamic source. All you need to do is run the
script each time you update the contents of your database, and the XML document is
automatically updated. I have wrapped the script in a custom function, so you can use it in
conjunction with any script that you want to write the contents of a variable to an exter-
nal file.

The function, complete with inline comments, follows (if you installed the snippets exten-
sion in Chapter 11, it’s in Write to file in the PHP-DWCS4 folder of the Snippets panel):

// function to overwrite content in a file
function writeToFile($content, $targetFile) {
// open the file ready for writing
if (!$file = fopen($targetFile, 'w')) {
echo "Cannot create $targetFile";
exit;

}
// write the content to the file
if (fwrite($file,$content) === false) {
echo "Cannot write to $targetFile";
exit;

}
echo "Success: content updated in $targetFile";
// close the file
fclose($file);

}

The writeToFile() function takes two arguments, as follows:

The content that you want to write to the file

The name of the target file

To create an XML document from a remote source, include the writeToFile() definition.
Then delete the following lines from proxy.php or curl.php in the previous section (they
are highlighted in bold in the full listings):

header('Content-Type: text/xml');
echo $remote;

Replace them with a call to the writeToFile() function like this:

$xmlfile = 'foed.xml';
writeToFile($remote, $xmlfile);

GENERATING XML WITH PHP

913

A

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This creates a file called foed.xml that contains the latest version of the friends of ED RSS
feed. If there’s any problem with creating the file, an appropriate error message is dis-
played instead.

To create a static XML document from an XML source generated dynamically using the
technique described in the “Converting a recordset to generate XML” section, you need to
adapt proxy.php.

The script in proxy.php uses the file_get_contents() function to retrieve the XML from
a remote source. If you try to use this on a local file, such as japan_xml.php, instead of the
XML, you get the PHP script that generates the XML. So, instead of using the file name, you
need to use the full URL so that the file is processed by the web server.

The script looks like this (it’s in local_proxy_write.php in examples/appendix):

<?php
$url = 'http://dwcs4/workfiles/appendix/japan_xml.php';
// Get remote headers
$headers = get_headers($url);
// Make sure the first header includes 'OK'
if (stripos($headers[0], 'OK')) {
$xml = file_get_contents($url);
// Set the name of the file to write the XML to
$xmlfile = 'japan_proxy.xml';
// function to overwrite content in a file
function writeToFile($content, $targetFile) {
// open the file ready for writing
if (!$file = fopen($targetFile, 'w')) {
echo "Cannot create $targetFile";
exit;

}
// write the content to the file
if (fwrite($file,$content) === false) {
echo "Cannot write to $targetFile";
exit;

}
echo "Success: content updated in $targetFile";
// close the file
fclose($file);
}
// Write to the file
writeToFile($xml, $xmlfile);

} else {
echo "Cannot open file at $url";

}
?>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

914

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This gets the XML generated by japan_xml.php (the file that created XML from a record-
set earlier in this appendix) and writes it to a file called japan_proxy.xml. To use this
script with another page that generates XML on the fly, just change the values of $url and
$xmlfile.

To find the correct value for $url, open in the Document window the page that generates
the XML source, and press F12/Opt+F12 to view the XML output in the browser. Select the
URL in the browser address bar, and paste it into local_proxy_write.php. This won’t work
if you have set your Dreamweaver preferences to use a temporary file for Preview in
Browser (see Chapter 2 for details of how to change the setting).

Although I designed the writeToFile() function to write an XML source to file, it is
completely generic. It writes any string stored in the first argument to the file named in
the second argument.

GENERATING XML WITH PHP

915

A

http://lib.ommolketab.ir
http//lib.ommolketab.ir

INDEX

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Numbers and symbols
@ symbol, 815
%s placeholder, 757, 762, 777–778
& (ampersand), 793
‘ (apostrophe), 434
= (assignment operator), 311, 430, 440
* (asterisk), 438
\ (backslash), 434–435
` (backtick character), 599
.= (combined concatenation operator), 469
|| (concatenation operator), 436, 777
?: (conditional operator), 338, 449–450
{} curly braces, 311, 435, 444–444
. decimal point, 601
-- (decrement operator), 439
$ (dollar sign), 435
“” (double quotes), 317–318, 432–435, 437
= (equal sign), 8
(==) equals/equality operator, 430, 445–446
/ (forward slash), 438
> (greater than operator), 446, 760–763, 833
>= (greater than or equal to operator), 446, 763–765
(hash sign), 71, 149
++ (increment) operator, 439
!= (inequality operator), 446
< (less than operator), 446, 760–763
<= (less than or equal to operator), 446, 763–765
% (modulo operator), 439, 703, 768–772, 779–781
. (period), 436, 829
; (semicolons), 428–429, 444, 467
[] square brackets, 435
_ (underscore) character, 768–772

A
<a> tag, 146
absolute positioning, 53, 129, 217, 206
accented characters, 592
access levels, 677–678
Access (Microsoft), 584
Access options, 80–81
access restrictions, 676–677
accessibility

alternate text, 115–116
forms, options for, 377–378
of Spry menu bar, 239

accordion widget, 258
changing defaults, 311–315
converting to flexible height, 313–315
editing and styling, 291–295
opening from another page, 336–340
opening from link on same page, 318–320
structure of, 289–291
style rules, 290
using, 289–295

INDEX

918

action attribute, 373, 465, 467
Action field, 375
addClassName() method, 345
addEventListener() method, 345
addNextEffect() method, 327, 334
addParallelEffect() method, 327
Adobe Community Help website, 6
Adobe ConnectNow, 45
Adobe Contribute, 560
Adobe Device Central CS4, 192–193
Adobe ID, 44
Adobe InContext Editing, 540
Adobe Labs, 335–336
Adobe TV, 4
Ajax, Live view and, 32–33
alias, using for data manipulation, 710
All mode, CSS Styles panel, 177–179
allow_url_fopen, 810, 822
alt attribute, 226, 115
alternate text, for images, 115–116
Amazon, 427
ampersand (&), 793
AND operator, 447, 703, 768
AP Divs, 129
AP Elements, 9, 53
Apache, creating virtual hosts on, 69–76
Apache server root, 66, 68–69
apostrophe ('), 434
App Developer layout, 8
App Developer Plus layout, 8
Appear Fade effect, 260, 263–267
Appearance category, 158, 160–161
Application bar, 5

hiding, 13
Layout control, 31

arguments, 309
arithmetic operators, 438–440, 702
array elements, 441–442
arrays, 309

associative, 442, 784–785
defined, 441
foreach loop, 452–453
indexed, 441
inspecting contents of, 443
using, to store multiple values, 441
See also specific arrays

array_key_exists() function, 467
array_push() function, 477
AS keyword, 797
ASP.NET, 52
ASP, 60
Assets panel

dragging and dropping images from, 112–113
updating Smart Objects from, 124

http://lib.ommolketab.ir
http//lib.ommolketab.ir

assignment operator (=), 311, 430, 440
associative arrays, 442, 784–785
asterisk (*), 438
attr() method, 364
author_id, 689
auto_increment, 689
auto incrementing columns, 605
Auto-Collapse Iconic Panels, 10
Auto-Show Hidden Panels, 13

B
background images, 204–208, 217
background property, 203
backslash (\), 434–435
backslashes, getting rid of unwanted, 474–475
backtick character (`), 599
backups, creating database, 899–901
Balance Braces tool, 472
banding, 121
BBC Online news feed, 811
behaviors, 258

removing, 272–273
restoring, 273

BETWEEN … AND, 763
binary data, storing in columns, 602
BINARY keyword, 766
Bindings panel, 617–619
Blank value option, 421
Blind effect, 266, 268
BLOB column type, 602
Block extra characters option, 415
block quotes, 136–137
block-level elements, 143
<blockquote> tag, 212–215
<body> tags, duplicate, 514
Bold button, 132, 389
BOM (byte-order mark), 535
Boolean mode searching, 772
Boolean values, 445
border colors, for menu bar, 252–253
break keyword, 453–454
Bridge, 2
Browse icon, 506
browser, previewing site in, 98–99
browser wars, 258
Build Filter area, 836
bullet lists, 135

C
cache, 80, 912–915
call() method, 327
CAPTCHA (Completely Automated Turing Test to Tell

Computers and Humans Apart), 499–500

INDEX

919

carriage return, 435
Cartweaver, 354
cascade, impact of, 208–210
CASCADE option, 693
Cascading Style Sheets (CSS), 129, 144, 156–193

absolute positioning, 53
adding images, 174–177
CSS Styles panel, 156, 177–181, 201–204, 208–210
<div> tags, 143–146, 164–169
editing, with Code Navigator, 27–29
inheritance, 173
paragraph margins, 173–174
reusing, 216–218
setting preferences, 188–191
type selectors, 162, 163
visual aids, 167–168
See also CSS classes; CSS layouts; CSS style rules; CSS

selectors; style sheets
case keyword, 449
case-sensitive links, 79–80
case sensitivity, 310, 462, 599–600
Cc header, 492
CDATA section, 879
cells

merging and splitting, 140
selecting, 141

cgi-bin directory, 373
CHAR column type, 601, 600
Char width option, 381
character counter, Spry, 415–416
charset rule, 200
Check New User server behavior, 650
Check New Username server behavior, 673
Checkbox Group dialog box, 388–392
checkbox groups, 388–392

Spry validation, 416, 419
storing multiple values in SET columns, 744–754

checkbox validation widget, 404, 416, 418–419
checkboxes, 387–389, 393–394

displaying in columns, 393–394
getting data from, 493–494
individual, 388
inserting group of, 389–392

$checkEmail, 490–491
checkForeign recordset, 731–732
child tables, 687

defining foreign key constraints in, 692
deleting records from, 687, 739–740
displaying list of records, 735–736
inserting records in, 706–710
updating records in, 735–739

chkRad class, 395
chmod 777, 912
class names, 170, 389
class selectors, 169

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Classic layout, 8
clearIt class, 395
click() method, 364
client-side technology, 426
client-side validation, 372, 404–422, 465

Spry validation widgets, 404, 407–422
checkbox, 404, 416, 418–419
custom patterns, 413–414
drop-down menu validation, 420
inserting, 406
limitations of, 405
passwords, 421–422
radio button group, 419–420
removing, 406
text area validation, 414–416
text field validation, 406–412

client-side XSLT, 809
clients, 426
cloaking files, 50, 87, 891–893
close() method, 321
closeAllPanels() method, 325
Cluster object

Dissolve effect, 327–333
highlight transitions, 333–335
using, to combine effects, 327–335

code
analyzing generated, 639–645
auto completion, 42–43
collapsing, 40
coloring, 53
dynamic

adding to includes, 519–523
inspecting, with Live Code, 35–36

including from other files, 504–514, 518–530, 533–535
inspecting dynamically generated, with Live Code, 35–36
printing in color, 43–44
reusing, with includes, 523–525
saving frequently used, as snippet, 483–486
understanding Spry, 867–870

code format, 53
code hints, 42–43, 353–353

Dreamweaver, 462, 470
JavaScript, 43

Code Inspector, 37
code introspection, 43
Code Navigator, 27–29, 37
Code view, 37–44, 107

auto completion, 42–43
code hints, 42–43
Coding toolbar, 37–40
inserting form in, 376
options, 41
switching views, 29–31

Coder Files, Assets, Snippets layout, 8

INDEX

920

Coder Plus layout, 8
Coding toolbar, 37–40
ColdFusion, 60
collapsible panels, 258

background colors for, 298
editing and styling, 297–298
opening and closing all simultaneously, 324–327
opening from another page, 340
opening from link on same page, 320–321
structure of, 296–297
style rules, 296
toggling open and closed from remote link, 321–323
using, 295–298

CollapsiblePanelGroup object, 324–326
collation, 592
colname, 756
color icons, 7
colors

background, 204–208
hexadecimal, 160
for tabbed panels, 281

columns, 597
adding indexes to, 690
auto incrementing, 605
combing contents of, in single field, 710–711
indexed, 693
inserting/deleting, 140–141
making optional, 604
manual values in, setting, 712–714
names, 599
NOT NULL, 602, 605
NULL, 604, 602
number of, 600
selecting, 141
settings, 605–606
SET, 744–754
types, 600–602
widths, types of, 197

combined concatenation operator (.=), 469
comma-separated values, 142
commas, removing, 830
comments

conditional, 198–199
CSS, 201, 229
in PHP, 432
removing, using stored queries, 229

Community MX, 354
comparison operators, 446, 702, 760–763
complex searches, 776–778
compound selectors, 169
compressed files, 350
CONCAT() function, 709
concatenation operator, 777, 436
CONCAT_WS() function, 709–711

http://lib.ommolketab.ir
http//lib.ommolketab.ir

conditional comments, 198–199
conditional expressions, testing, 830–833
conditional (ternary) operator, 338, 449–450
conditional regions

creating, 830–833
multiple, 831–833

conditional statements, 443–450
Boolean values, 445
complex queries using, 776–778
if statements, 468
if ... else statements, 461
true/false test, 486
wrapping recordset code in, 767

configuration files, 53–54
connection files, configuring remote, 901–903
Connections panel, 49–50
ConnectNow window, 45–49
constants, defining for site-relevant paths, 509
contact.css, 465
Container tag, 865
container, 200
content

changing, using Spry select lists, 874–878
displaying different, based on access levels, 677–678
refreshing, with Spry data sets, 844–887
updating, with InContext Editing, 559–579

content management, with multiple tables, 705–709,
714–724, 728–740

content management system (CMS), 560
content structure, 128–146

absolute positioning, 129
block quotes, 136–137
horizontal rule, 146
lists, 134–136
logical, 142–146
tables, 128–129, 137–142
text formatting, 131–133
with <div> tags, 143–146

Content-Type header, 489, 909
continue keyword, 454
Contribute, 88
cookies, 671
Coordinated Universal Time (UTC), 785
copyright

automatically updating, 520–523
with remote feeds, 911

COUNT(*), 774–775
Counter option, 415
Creative Suites Extended Services (CSXS)

managing, 49–50
screen sharing, 44–50

Crop tool, 121
<csl:choose> tags, 831
<csl:when> tags, 831

INDEX

921

CSS. See Cascading Style Sheets
CSS 3, 340–341
CSS classes

enabling, with InContext Editing, 569–570
setting, 851

CSS comments, 201, 229
CSS layouts

adapting, 199–215
adding background images, 204–208
adding pull quotes, 212–215
adjusting fonts, 210–212
choosing, 197
inserting images, 210–212
styling pages with, 199–208
using built-in, 196–218

CSS properties
displaying alphabetically, 179–180
displaying by category, 179
displaying only set, 180
editing, 202–204

CSS Rule definition dialog box, 166–167, 171–177
CSS style rules

adding, editing, deleting, 181
basic style rule creation, 157–169
cascade of, 208–210
creating, 157–177, 189–190, 210–212, 722–723
customizing, for menu bar, 240–243
default format for, 190–191
defining properties, 172–177
<div> tags and, 164–169
editing, 189–190, 201–204
exporting to style sheet, 181–184
inline, 186
inspecting, 163–164
location for, 197–199
moving, 181–188

between external style sheets, 184–186
within style sheet, 184

naming, 202
preferences for, 189–190
specificity, 209–210

CSS selectors, 340–344
defining, 169–171
naming, 170, 202
refining, in New CSS Rule dialog box, 210–215
types of, 169

CSS signature, 202
CSS Styles panel, 156, 177–184

adding, editing, deleting style rules, 181
All mode, 177–179
Attach External Style Sheet dialog box, 180–181
Current mode, 177–179, 201–204, 208–210
moving styles to external style sheet, 181–184
opening, 177
Properties pane, 178–181

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CSS view, 20–22, 130–131
CSS visual aids, 200
css() method, 364
CSV files, importing data from, 142
CSXS. See Creative Suites Extended Services, 56
cURL (Client URL Library) extension, 910–911
curly braces, 311, 435, 444, 472
currency, 601
Current mode, CSS Styles panel, 177–179, 201–204,

208–210
current-node dynamic placeholder, 829
custom forms, applying Insert Record server behavior to,

711–712
custom patterns, in Spry, 413–414
custom server behaviors, building, 654–657
Customize Favorite Objects dialog box, 19–20
cuurent node, 829

D
data

binary, 602
filtering, with XSLT parameters, 837–839, 841
inserting into SET column, 747–749
loading from backup file, 901
manipulation, using MySQL function, 709–710
retrieving

stored in SET column, 750–754
with superglobals, 461–462

sent with GET method, 385
storing related, in separate tables, 684–695

avoiding orphaned records, 687–688
defining database tables, 688–695
linking with foreign keys, 685–687
structure for, 685

submission, GET vs. POST methods, 384–385
data dump, 899
data sets. See Spry data sets
data source

HTML, 845–867
XML, 825–827, 879–883

data tables. See tables
database files, in MySQL, 585
database records. See records
database searches, 754–781

Boolean mode, 772
building SQL queries, 754–757
complex, 776–778
enhancing display of search results, 778–781
FULLTEXT index, 772–774
GET or POST methods for, 759–760
multiple columns, 768
natural language searching, 772
no results message, 766–768

INDEX

922

partial matches, 768–774
results from

paging through, 720–723
returning to same page in long list of, 726–727

of SET columns, 774
text searches, 766–774
using numerical comparisons, 760–763
using wildcard characters, 768–772
within numerical range, 763–765

database tables. See tables
databases

adding records to, 609–614
backing up, 899–901
collation, 592
connecting to, 607–609, 639–640
creating test, 591–592
deleting records from, 629–633
design, normalization, 685
information storage in, 597–602
inserting records into, 640–641
retreiving information from, 614–617
setting up, in MySQL, 591–596
structure of, 598–602
updating and deleting records, 621–624
See also MySQL

DATE column type, 601, 785
DATE_FORMAT() function, 796–798
date format specifiers, 796–797
date() function, 796, 800–802
dates

formatting, 785–802
inserting user-defined, into MySQL, 794–796
storing

in columns, 601
current, in MySQL, 785–790
in MySQL, 790–796

working with, in PHP, 798–802
DATETIME column type, 601, 785–786
DBTools Manager, 586
debugging tools, 36
DECIMAL column type, 601
decimal point (.), 601
decrement (--) operator, 439
default document type, choosing, 97–98
Default option, 375
default page type, 107
default settings, changing, 52–53
default value, of runtime variable, 764–765
default workspace, 3–7
definition lists, 135–136, 864–867
DELETE command, 704
delete form, adding check for dependent records to, 732
delete page, 629–633
DELETE privileges, 594

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Delete Record server behavior, 603, 631–633, 642–643, 730
delimiters, 226
dependent files, uploading, 898–899
dependent records, deleting simulataneoulsy, 733–735
deprecated errors, 456
descendant selectors, 169
design notes, 87
Design view, 107

creating includes in, 513
inserting text in, 108
switching views, 29–31

design-time style sheets, 191, 518–519
Design-time Style Sheets dialog box, 191
Designer layout, 8
Designer workspace, 5–6
detail regions, 852

adding, 860–861
display control, 868
displaying related data in, 859–861

Device Central CS4, 2, 192–193
dialog() method, 364
dialog widget, 360–365
die() function, 650
Disabled option, 381
Dissolve effect, 327–333
Dissolve() function, 329
DISTINCT keyword, 776
DIV, 702
<div> tags, 143–146, 164–169
DMXZONE, 354
do … while loops, 450–451, 782–785
DOCTYPE declaration (DTD), 97, 105, 158, 514, 644, 884
Document Object Model (DOM), 35, 259–262
Document toolbar, 6, 29–37

Live Code, 35–36
Live view, 31–35
options, 36–37
switching between views, 29–31

Document window, 24–44
Code Navigator, 27–29
Document toolbar, 29–37
Related Files toolbar, 26–27
tabbed windows, 25–26

document-relative links, 64–66, 505, 509, 614
documents

closing, 25
creating new, 104–107
default type, 97–98
displaying, outside the tabbed interface, 25–26
file paths, 25
Microsoft Word, importing, 111–112
new document preferences, 96–97
opening new, 5

dollar sign ($), 435

INDEX

923

DOM (Document Object Model), 35, 259–262
double quotes (""), 317–318, 432–435, 437
download times, reducing, 350
Dreamweaver CS3 pages, containing SWF movies, 128
Dreamweaver CS4

analyzing generated code, 639–645
building SQL queries, 754–757
changes in, 2–3, 44–52
changing settings, 52–53
code hints, 462, 470
configuration files, 53–54
deleted features, 51–52
new features in, 6, 50–51
server-side XSLT handling by, 812–813
use of runtime variables in, 756, 764–765
user interface, 3–24

Dreamweaver extensions
installing, 354–358
migrating from previous version, 355–356
removing, 357

Dreamweaver Site Definition dialog box, 890
Dreamweaver templates. See templates
drop-down menus, 372, 387, 397–399, 864–878

getting data from, 496–497
populating from a database, 707–710
Spry validation, 420

DTD. See DOCTYPE declaration
Dual Screen layout, 8
dump, 899
duplicate usernames, 650–651
duplicates, eliminating from recordset, 776
dynamic code

adding to includes, 519–523
inspecting, with Live Code, 35–36

Dynamic Data dialog box, 623
dynamic features, 426
Dynamic List/Menu dialog box, 707–708
dynamic pages, embedding XSLT Fragment in, 820–822
dynamic placeholders, 618–620, 829, 849, 861
dynamic values, applying to radio group, 658–661
dynamic web pages, 427–428

E
echo, 431
editable regions

adding, to templates, 542–545
controlling options for, 564–566
converting, 553
creating, for InContext Editing, 562–564
removing, 568
updating, with InContext Editing, 573–577

effects, chaining, 333–335

http://lib.ommolketab.ir
http//lib.ommolketab.ir

elements
formatting, 834–835
sorting, 833–834

elseif clause, 444
em, 161
 tag, 132
email

blocking spam bots, 499–501
filtering out attacks, 486–488
getting rid of unwanted backslashes in, 474–475
improving security of, 473–480, 482–498
sending, with PHP, 462–483, 486–498
testing and troubleshooting, 473

email addresses, 462–463, 490–491
email header injection, 486–488
email headers, including user address in, 489–492
empty() function, 476, 496, 646
encoding attribute, 827
encryption, password, 648–649, 674, 680
Enctype option, 375
Enforce pattern checkbox, 413
ENTITY declaration, 884
ENUM column type, 602
Eolas, 124
equal sign (=), 8
equality comparisons, 445–446
ereg functions, 491
$error array, 652–653, 653
error messages

displaying, 652–654
for duplicate usernames, 650–651
MySQL, 758–759
PHP, 455–456

errors, troubleshooting, 55
escape sequences, in strings, 434–435
event handlers, 309
events, 309
Excel (Microsoft), 142
Exclusive OP operator, 447
Expanded Tables mode, 622
$expected array, 476–477, 492–493, 762
explode() function, 753
Extensible Markup Language. See XML
Extensible Stylesheet Language Transformations. See XSLT
Extension Manager, 2, 355–358
extensions, Dreamweaver, 354–358
external files

code hints and, 353
Code Navigator, 27–29
converting to includes, 511–513
include_path for, 504–508
including text and code from, 504–514, 518–535
moving JavaScript to, 350–352
Related Files toolbar, 26–27

INDEX

924

external style sheets, 164
advantages of, 181
attaching, 180–181, 199
creating new page from, 216–218
linking to, 198
moving inline styles to, 186–187
moving rules between, 184–186
moving rules to, 181–188
undoing changes to, 204

extras folder, 695

F
false, 437
fatal errors, 456
favorites, transferring, 55
Favorites category, customizing, 19–20
fclose() function, 913
feedback forms. See forms
feedback.php, converting to use generic script, 529–530,

533–534
fields, 597

combining contents of two columns in single, 710–711
creating sticky, 485–486
hidden, 386–387
required, 475–480, 602

<fieldset> tag, 402
fieldsets, 402–403
file comparisons, 99–100
file_get_contents() function, 914
file name extensions

choosing, 62–64
for include files, 510

file names, rules for, 64
file paths, 25
file permissions, setting for PHP, 912
file size, 350
file storage, 66–77
File View Columns, 87
files

accessing related, 26–29
adding to Subversion repository, 91–92
cloaking, 50, 87, 891–893
configuration, 53–54
dependent, uploading, 898–899
selecting recently modified, 895–896
synchronizing, 893–895
uploading, 890–899
using PHP to write to, 912–915
viewing local and remote, 896–897

$_FILES array, 461
Find and Replace feature, 218–229

advanced text searches, 222–224
saving queries, 228–229

http://lib.ommolketab.ir
http//lib.ommolketab.ir

searching source code, 221–222
Specific Tag option, 224–225
text searches, 220
using regular expressions, 225–228
using stored queries, 229

FIND_IN_SET() function, 774, 775
FireBug, 36
Flash movies, 50–51, 124–128
Flex movies, 50–51, 124–128
FLOAT column type, 601
floating panels, closing and restoring, 11–12
floating toolbar, converting iconic mode panels to, 11
floating-point numbers, 601
fonts, 53

adjusting, 210–212
size, 160

footers, automatically updating, 520–523
fopen() function, 913
for loops, 451–452
foreach loops, 452–453, 476, 528
forEach() method, 345
foreign key constraints, 687

options for, 693
referential integrity and, 728
removing, 695
setting, in phpMyAdmin, 692

foreign keys
creating, 684
inserting, 706–710
linking records with, 685–687
NULL values for, 705
primary keys and, 686
referential integrity and, 687
relationships, defining in InnoDB tables, 690–693, 695
using as primary key, 689

form elements, 597
creating sticky, 485–486
inserting, 375
mismatched with column fields, 712
multiple choice, 493–498

checkboxes, 493–494
drop-down menus, 496–497
multiple-choice lists, 497–498
radio button groups, 495–496

organizing, 402–403
required, 475–480, 602

form tags, 379, 874
Form Variable, 643, 659
format characters, for dates, 800–802
Format menu, 131–133
Format option, 407
format-number() function, 835
formatMySQLDate() function, 792–796

INDEX

925

formats, recognized by text field validation widget,
408–409

FormMail, 373
forms

activating, 461–462, 465–499
adding fieldsets, 402–403
adding text input elements, 376–379
building simple feedback, 372–387
checking required fields, 475–480, 646–648
client-side validation, 465
custom, applying Insert Record server behavior to,

711–712
event processing in, 460–461
filtering out potential attacks, 486–488
GET vs. POST methods, 384–385
hidden fields, 386–387
improving security of, 473–498
input validation, 372, 404–422
inserting in Code view, 376
inserting into PHP page, 374–376
for inserting records into database, 609–614
introduction to, 372
login, 674–675
multiple-choice elements, 387–401, 493–498

checkboxes, 388–389, 393–394, 493–494
drop-down menus, 397–399, 496–497
multiple-choice lists, 497–498
radio buttons, 394–397, 495–496
scrollable lists, 399–402

names, 375
page types for, 372
preserving user input on incomplete, 480–481
processing and acknowledging messages from, 465–471
processing submitted, 372
redirections to different pages, 498
redisplaying text fields after submission, 654–656
reset buttons, 379
scripting, 463–471
sending email, 462–498
server-side validation, 645–654, 661–671
testing, 473
text input elements, setting properties for, 380–381
troubleshooting, 473
styling, 382–383
update, 626–629, 661–671

forward slash (/), 438
fragment identifiers, 336–340
frameworks, 258
From header, 489–492
FTP, for remote server access, 81–83
FULLTEXT index

adding, 773–774
limitations of, 772
search syntax, 772

http://lib.ommolketab.ir
http//lib.ommolketab.ir

functions, 309
defined, 454
in PHP, 454–455
passing an argument to, 454
See also specific functions

fwrite() function, 913

G
garbage collection, 671
$_GET array, 461, 643, 658, 659
GET method, 384–385, 759–760
GET option, 375
$_GET variables, 777–778
getdate() function, 791
getElementWidget() method, 326
getLocationParamsAsObject() method, 336–338
GetSQLValueString() function, 449, 716, 757, 777–778, 787,

789
GIGO (garbage in garbage out) principle, 638
global preferences, setting, 96–99
gold shields, 471
graphic interface, using MySQL with, 586–591
grayscale icons, 7
greater than operator (>), 446, 760–763
greater than or equal to operator (>=), 446, 763–765
group selectors, 169
Grow Shrink effect, 266, 268

H
hash sign (#), 71, 149
<head> tags, duplicate, 514
header() function, 499, 534–535, 642
headers

Content-Type, 489, 909
From, 489–492
forgetting, when generating XML, 909

“headers already sent” error, 534–535
headings, 131, 161
Headings (CSS) category, 161
help

Online, 51
searching for, 6

hexdecimal colors, 160
hidden fields, in forms, 386–387
Highlight effect, 266, 270
highlight transitions, 333–335
Hint option, 407
honeypots, 500–501
horizontal rule, 146
hotlinking, 117
hotspots, 150–152
htdocs, 66
.htm extension, 62

INDEX

926

HTML
embedding in XSLT, 827–828
vs. XML, 806

HTML data source, 844
creating Spry data set from, 845–867
generating, 846

HTML document type, 98
HTML elements, 851
HTML email, creating inline styles for, 187–188
HTML entities

defining, 827
in XML, 808

.html extension, 62
HTML output, displaying, 510–513
HTML pages

as data source, 844
mixing with PHP pages, 374

HTML tables, 846, 851
HTML tags, default style of, 162
HTML view, 20–22, 130–131
htmlentities() function, 481–483, 654–655, 657
HTTP address, 79
Hyperlink dialog box, 148
hyperlinks. See links

I
iconic mode panels, 9–12
icons

switching between grayscale and color, 7
switching between panels and, 12

id attribute, 144, 261–262, 401
ID selectors, 169
identical operator, 446
IDs, 149–150
if ... else statements, 461
if statements, 443–444, 468
IF() function, 775
IIS. See Internet Information Services
image maps, 150–152
Image Preview dialog box, 120–121
Image Tag Accessibility Attributes dialog box, 116–117
images

adding, 174–177
alignment with text, 116
alternate text for, 115–116
applying tooltips to, 301–304
as links, 150–152
automatically adding title attribute to, 226–227
background, 204–208, 217
displaying

larger, with dialog widget, 360–365
using Spry data sets, 845–867
using Spry select list, 874

dissolving into another, 327–333

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dragging and dropping, 112–113
fading, 263–266
inserting, 112–124, 210–212
optimization of, 121
placeholder, 117–119
remote, 116–117
Select Image Source dialog box, 113–115
Smart Objects as, 119–124
stored on computer, 112
tracing, 158
wrapping text around, 174

images folder, default, 79
implode() function, 494, 498
Import Tabular Data icon, 142
IN() function, 702
.inc file extension, 510
.inc.php file extension, 510
include commands, 504–508
Include Unicode Signature (BOM), 535
includes. See PHP includes
includes_minified, 350
includes_packed, 350
include_once() command, 504
include_path, 504–508
InContext Editing, 51, 559–579

adding markup to page, 562–571
copying files to site, 566–567
editable regions

controlling options for, 564–566
creating, 562–564
removing, 568
updating, 573–577

editing page with, 571–578
enabling CSS classes, 569–570
introduction to, 540
logging into, 572–573
minimum requirements for, 562
preparing page for, 570–571
pros and cons of, 579
repeating regions

creating, 567–568
editing, 577–578
removing, 568

saving drafts and publishing, 578
workings of, 561–562

increment (++) operator, 439
indexed arrays, 441
indexed columns, 693
indexes

adding to columns, 690
multi-column, 773

inequality operator, 446
information_schema database, 591

INDEX

927

inheritance, 173
Init val option, 381
ini_set() function, 492, 799
injection attacks, 603
inline linking, 117
inline styles

creating for HTML email, 187–188
moving to style sheet, 186–187

inline tags, 132–134, 143
inner joins, 736
InnoDB storage engine, 687, 689
InnoDB tables

converting to MyISAM tables, 691, 773
defining foreign key relationship in, 690–695
performing cascade delete in, 733–735

<input> tag, 372, 480, 485
Input Tag Accessibility Attributes dialog box, 377–378, 397,

400
input validation. See validation
Insert bar

Layout tab, 140–141
Text tab, 131

INSERT command, 704
Insert Div Tag dialog box, 144–146
insert form

adapting for updates, 723–726, 737–739
building, 714–715
creating, 706

Insert panel, 6
categories, 15–16
converting to tabbed toolbar, 18–19
customizing Favorites category, 19–20
Hide Labels, 17–18
submenus, 16
switching between tabs and menu, 19
using and configuring, 15–20

INSERT privileges, 594
Insert Record server behavior, 603, 609–610, 640–641, 708

adding server-side validation to, 645–654
applying, 711–712, 715
duplicate username error message for, 650–651
else clause with, 719
inserting data into SET column, 747–749
NOW() function with, 787–790
removing, 723–724

Insert Spry Region dialog box, 860, 874
INT column type, 601
$interests array, 494
Internet, deploying site on, 890–903
Internet Explorer, 198–199, 258
Internet Information Services (IIS), 62

registering virtual directories on, 76–77
server root, 68

http://lib.ommolketab.ir
http//lib.ommolketab.ir

INTO option, INSERT command, 704
Invalid value option, 421
in_array() function, 477, 495, 762
is_array() function, 476
isOpen() function, 321–323
isSet() function, 478, 493
isSuspect() function, 487–489
Italic button, 132

J
JavaScript, 35, 426

code hints, 43
dynamic effect generation by, 308
unobtrusive, 350–352

JavaScript Extractor, 50, 350–352, 885–886
JavaScript files, 26–27
JavaScript frameworks, 258, 308
JavaScript libraries, 352–354
JavaScript Object Notation (JSON) objects, 43
JavaScript validation, 638
JavaScript widgets, 50
JavaServer Pages (JSP), 52
jQuery web widget, 358–365
jQuery() function, 32, 358, 362
jQuery UI dialog widget, 360–365
JScript, 258

K
Kaosweaver, 354
key, array, 441

L
layers, 53, 129, 143
layouts

choosing preset, 7–8
default, 3–7
logical structure for, 142–146
table-based, 142–143
transferring, 55
using <div> tags, 143–146, 164–169
See also CSS layouts

Layout control, 31
Layout CSS menu, 197
Layout mode, 129
Layout tab, 140–141
left join, 736–737
<legend> tag, 402
Less Specific button, 211
less than operator (<), 446, 760–763

INDEX

928

less than or equal to operator (<=), 446, 763–765
LIKE keyword, 703, 768–769
LIMIT clause, 703
line spacing, 110
linking tables, 687
links

borders, removing, 150
case-sensitive, 79–80
creating, 146–152
default style of, 79
document-relative, 64–66, 505, 509, 614
images as, 150–152
opening in new window, 149
root-relative, 64–66, 508–509, 516–518
setting options for, 160
to specific parts of page, 149–150
text, 146–147

Links (CSS) category, 160
lists

bullet, 135
creating, 134–136
definition, 135–136, 864–867
displaying data sets as, 864–867
numbered, 135
ordered, 135, 864
predefined, 602
select, 870–878
unordered, 134–135, 864

Live Code, 35–36
Live Data, 34–35
Live view, 31–35, 98, 156
local files, locating, 78–80
local root folder, 78–79
local site, viewing, 896–897
local testing options, 83–85
Log In User server behavior, 673–679
Log Out User server behavior, 673, 677
logical operators, 447–448
login

greeting users by name at, 678–679
redirecting to personal page after, 679–680
system, creating, 674–677

LONGBLOB column type, 602
lookup tables, 687
loops

breaking out of, 453–454
defined, 450
do while, 450–451, 782–785
for, 451–452
foreach, 452–453, 476, 528
in PHP, 450–454
while, 450–451

http://lib.ommolketab.ir
http//lib.ommolketab.ir

M
Mac OS X

default workspace, 3, 4
hiding Application bar, 13
MAMP on, 68–69
registering virtual hosts on, 72–76
server root, 68

MacFileCache-******.dat, 55
magic quotes, 474–475, 481, 660–661
main transport agent (MTA), 463
mail() function, 462–463, 465–481, 483, 486–498

email headers, 489–492
fifth argument for, 473, 492
testing and troubleshooting, 473

mail-processing script
adapting as include, 525–534
improving security of, 473–498

$mailSent, 471, 479
MAMP for MAC OS X, 62
MAMP, server root, 68–69
Manage Sites dialog box, 78, 94–95
many-to-many relationships, 687
margins, adding, 173–174
master-detail set, creating

in single operation, 862–864
from XML, 879–883

MATCH keyword, 774
Max chars option, 381
MEDIUMBLOB column type, 602
menu bars

updating links in, 514–518
See also Spry menu bars

menus. See drop-down menus
message body, 463
metacharacters, 225
method attribute, GET vs. POST, 384–385
Method menu, 375
methods, 309–310

using object’s, 315–327
See also specific methods

Microsoft Access, 584
Microsoft Excel, importing data from, 142
Microsoft Word, importing document from, 111–112,

158–159
Min/Max chars option, 408
$missing array, 476–479
missing records, 736
mixed datatype, 467
mktime() function, 799
MMHTTPDB.php, 609
mmServerScripts folder, 609
MM_XSLTransform.class.php, 812, 822

INDEX

929

MM_XSL Transform error message, 822
modal windows, 360
modeless windows, 360
modulo operator, 439, 768–772, 779–781
mouse events, 859
Muck, Tom, 354
Multi line option, 380
multi-column indexes, 773
multiline text area, 372
multiple attribute, 399–400
multiple columns, searching, 768
multiple tables

disadvantages of, 684
inserting records in child table, 706–710
managing content with, 705–709, 714–724, 728–740
selecting records from, 696–699
storing related data in, 684–695

avoiding orphaned records, 687–688
defining database tables, 688–695
linking with foreign keys, 685–687
structure for, 685

multiple-choice form elements, 387–389, 393–401
checkboxes, 387–389, 393–394
drop-down menus, 397–399
radio buttons, 387, 394–397
scrollable lists, 399–402

multiple-choice lists, 387, 497–498
MyISAM storage engine, 688–690
MyISAM tables

advantages and disadvantages of, 691
converting to InnoDB tables, 691
FULLTEXT indexes and, 772–774

mysql, 586, 591
MySQL Administrator, 586
MySQL databases

adding records to, 609–614
connections

configuring remote, 901–903
creating, 607–609
troubleshooting, 609

error messages, 758–759
files, 585
formatting dates in, 785–802
formatting time in, 785–802
granting user privileges, 594–596
graphic interface, 586–591
introduction to, 584–591
naming rules, 599
retrieving information from, 614–617
root password, 593–594
setup in, 591–596
storing current date and time in, 785–790

http://lib.ommolketab.ir
http//lib.ommolketab.ir

MySQL databases (continued)
storing dates in, 790–796
tables, 597–606
terminology, 585–586
user account creation, 593–596
user interface, 584–585
user registration system, 603–635
using with phpMyAdmin, 586–591

MySQL functions
CONCAT(), 709
CONCAT_WS(), 709–711
data manipulation with, 709–710
whitespace in, 700

mysql.php, 609
MySQL Query Browser, 586
MySQL server, 69
mysql_error() function, 650–651
mysql_fetch_assoc() function, 784–785

N
name attribute, 379–380, 401
named anchors, 149
names

column, 599
table, 599–600

namespace, 884
natural language searching, 772
navigation, with Spry menu bar, 234–254
navigation menu, converting to include file, 511–513
Navocat, 586
negation, 447
negative numbers, 438
negative operator, 601
Netscape, 258
New CSS Rule dialog box, 165, 169–170, 722

options, 171
refining selectors in, 210–215

New Document dialog box, 105–107
New icon, 107
new keyword, 311
New Style Rule dialog box, 156
newline, 435
newline characters, converting to line breaks, 781
news feeds. See RSS news feed
nl2br() function, 781
NO ACTION option, 694
node tree schema, displaying, 825–826
nodes, 815

current, 829
determining position of, in XML hierarchy, 819
filtering, with XPath, 835–837

INDEX

930

formatting, 834–835
selecting, 815
sorting, 833–834

nonbreaking spaces, 109
normalization, 685, 744–745
not identical operator, 446
NOT LIKE operator, 703
not null, 689
NOT NULL columns, 602–604
_notes folder, 519
notices, 456
NOW() function, 787–790
nukeMagicQuotes(), 524
null, 437, 689
NULL columns, 602–604
NULL option, 694
Num lines option, 381
numbered lists, 135
numbers

calculations, 438–441
punctuation in, 438
storing, in columns, 601
working with, in PHP, 438–441

numerical comparisons, 760–763
numerical range, 763–765

O
object literals, 311, 337–338
objects, 309
ON DELETE CASCADE, 733
onchange event handler, 874
one-to-many relationships, 687
online forms. See forms
Online help, 51
Opacity object, 329
open() method, 320–321
openAllPanels() method, 325
opening tag, PHP, 428
openPanel() method, 319–320
operator precedence, 448
option tags, 397, 708, 870
optional regions

advanced options with, 552
creating and controlling, in template, 548–552
editable, 552

Options from recordset drop-down menu, 708
OR keyword, 447, 703, 768–770
ORDER BY clause, 703
ordered lists, 135, 864
orphaned records, avoiding, 687–688
output, displaying selectively, 835–839, 841
OWL 2.0, 3–24

http://lib.ommolketab.ir
http//lib.ommolketab.ir

P
page elements

animating, with Spry effects, 259–263
selecting and manipulating with Spry, 340–349

page properties, modifying, 157–163
Page Properties dialog box

creating basic style rules with, 157–163
inspecting rules created by, 163–164

page validation, Spry and, 884–886
pageNum_recordsetName, 727
Panel groups, 6
panels

Auto-Show Hidden Panels, 13
collapsible, 295–298
expanding and collapsing, 9
floating, 11–12
iconic mode, 9–12
moving and regrouping, 13–15
opening from link on same page, 315–327
resizing, 9
switching between icons and, 12
tabbed, 274–289
temporarily hiding, 12

paragraph margins, adding, 173–174
paragraph tags, 129
paragraphs, 109, 131
parameters, 309
Parameters dialog box, 623
params object, 337–338
parent tables, 687

deleting records from, 687, 728, 733–735
inserting records in, 714–720
updating records in, 720–726

parent-child relationships, 815
parse error, 456
partial matches, 772–774
partial searches, 768
passing an argument, 454
passing by reference, 793
Password option, 380, 382
passwords

encrypting/decrypting, 648–649, 674, 680
root user, 593–594
validating, with Spry, 421–422
verifying, 648–649

$pattern, 487
pattern-matching functions, 491
Pattern option, 407
PCRE functions, 491
percentage sign (%), 768–772
period (.), 436, 829
Perl-compatible regular expressions (PCRE), 226, 487

INDEX

931

permissions, setting for PHP, 912
$permittedOperators array, 762
personal configuration file, 53–54
Photoshop Smart Objects. See Smart Objects
PHP, 60

arrays, 441–456
code, 638
commands, 428–428
commenting scripts, 432
conditional statements, 443–450
decision-making in, 443–450
displaying output, 431
embedding in web page, 428–429
error messages, 455–456
escape sequences, 434–435
formatting dates in, 785, 800–802
functions, 454–455
genrating XML with, 906–915
Live Code and, 35
Live view and, 33
loops, 450–454
numbers, 438–441
opening tag, 428
processing forms with, 372
processing XSLT with, 809
purpose of, 426–428
quotation marks, 432–434, 437
reusing code, with includes, 523–525
scripting feedback forms, 463–471
sending email with, 462, 465–481, 486–498
setting permission for, to write files, 912
strings, 432–438
superglobal arrays, 461–462
writing to a file with, 912–915
variables, 429–431
working with dates in, 798–802

.php extension, 62
PHP format specifiers, 716
PHP includes, 504

adapting mail processing script as, 525–534
adding dynamic code to, 519–523
broken links in, 514
commands, 504–508
converting navigation menu to, 511–513
creating, 504–508
displaying HTML output, 510–513
filename extensions for, 510
for footers, 520–523
“headers already sent” error, 534–535
path for, 505–508
problems with, 514
reusing PHP code with, 523–525
root-relative links in, 514–518

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PHP includes (continued)
site-root-relative links with, 508–509
storage of, 510
styling, 518–519
templates with, 556–558
uses of, 510

PHP pages
creating, 373–374
elements of, 428–429
embedding XSLT Fragment in, 820–822
inserting form into, 374–376
mixing with HTML pages, 374
testing environment for, 61–63

PHP scripts, adapting as includes, 525–534
PHP sessions, 671–673
PHP snippets

installing, 464–465
POST stripslashes, 474–475

<php> tag, 428
phpinfo() function, 910
phpMyAdmin, 2–3, 584–586

defining database table in, 603–606
downloading and installing, 587–589
interface, 604
launching, 589–591
logging out, 591
setting foreign key constraints in, 692
setting up, 587–589
table definition layout, 604
troubleshooting, 590

placeholder images, 117–119
Point to File tool, 119, 119
pop-up windows, 360
Portable Operating System Interface (POSIX), 226
position() function, 819
$_POST array, 384–385, 441, 461–462, 467–468, 471, 643,

654, 658–659, 716
checkboxes and, 493–494
drop-down menus and, 497
multiple-choice lists, 495, 497–498
radio buttons and, 495–496

POST method, 375, 384–385, 759–760
$_POST variables, 476
posterization, 121
PostgreSQL, 584
predefined lists, storing in columns, 602
Preferences panel, 52–53

File Compare feature, 99–100
New Document category, 96–97
paste options, 110–111
setting CSS preferences, 188–191
setting options for all sites, 96–99

INDEX

932

preformatted text, 131
preset layouts, 7–8
Preview in Browser, 98–99
Preview states option, 407
primary keys, 606, 635

adding, to query string, 622–624
foreign keys and, 686
passing through query string, 736
retrieving records using, 624–625
uniqueness of, 686
updating and deleting records using, 621–624
workings of, 597–598

print_r() array, 443
print_r($POST) array, 461
procedural code, 534
programming terminology, 309
Project Seven, 354
Properties pane, CSS Styles panel, 178–181
properties, 309–310
Property inspector, 6

configuring, 22–23
CSS view, 20–22, 130–131
editing menu bar in, 238–239
editing tables in, 138–140
Flash and Flex movies in, 125–127
HTML view, 20–22, 130–131
for text field, 380–381
text input elements, 380–381
using, 20–23

Prototype, 32, 258
proxy scripts, 844, 910–911
pseudo-classes, 169
pseudo-elements, 169
pull quotes, adding, 212–215

Q
$query_recordsetName variable, 758
query strings, 336–340

adding to URL, 624
passing primary key through, 736
using recordset name in, 726–727

quotation marks, 432–434, 437
quotations, 317–318

block, 136–137
deleting, 739–740
displaying random, 696–699
inserting new, 706–709
pull, 212–215
runtime variables and, 716
within user input, 480–481

http://lib.ommolketab.ir
http//lib.ommolketab.ir

R
radio button groups

applying dynamic value to, 658–661
creating, with individual buttons, 395–397
getting data from, 495–496
validating, with Spry, 419–420

radio buttons, 387, 394–397
making sticky, 659–661
with update form, 669–670

Radio Group dialog box, 394
RAND() function, 699
Read-only option, 381
Record Insertion Form Wizard, 609–614
record management, with multiple tables, 705–709,

714–724, 728–740
Record Update Form Wizard, 626–629, 644
records, 597

adding to database, 609–614
adding to tables, 705
avoiding orphaned, 687–688
cascading, 733–735
counting, 774–775
deleting, 621–624, 629–633, 642–643, 704, 728, 733–735

from child tables, 739–740
displaying list of, 735–736
duplicate

checking for, 715–717
preventing, 718–720

finding incomplete, with left join, 737
inserting

in child tables, 706–710
new, 704
in parent table, 714–720

linking with foreign keys, 685–687
many-to-many relationships, 687
missing, 736
one-to-many relationships, 687
paging through list of, 720–721, 723
retrieving

with primary keys, 624–625
with recordset, 643–645
with SELECT command, 701, 703

selecting from mutiple table, 696, 698–699
sort order of, 592
updating, 621–624, 642, 704, 720–726

in child tables, 735–737, 739
recordset code, wrapping in conditional statement, 767
Recordset dialog box, 615–617

Advanced mode, 696–699, 755, 763
Simple mode, 755–756
Variables area, 716

INDEX

933

Recordset Navigation Bar, 720–723, 726–727
Recordset Navigation Status data object, 778–779
recordsets, 451, 614

creating, 615–617
displaying multiple results with repeat region, 620–621
displaying results of, 617–619
eliminating duplicates from, 776
empty, message display, 633–635
generating XML from, 906–910
results of, 666
retrieving database records with, 643–645
reusing, 781–785
using primary key to filter, 624–625

redirects, nonworking, 642
REFERENCES keyword, 693
referential integrity, 687, 728
register_globals setting, 462
Registry Editor, 36
regular expressions (regexes), 486–487

commonly used character sequences in, 225
Perl-compatible, 226
POSIX, 226
using in searches, 225–228

Related Files toolbar, 26–27, 203–204, 513
relational database management system (RDBMS), 591. See

also MySQL databases
$remote, 910–911
remote feeds, fetching using proxy script, 910–911
remote images, 116–117
remote server

accessing, 80–83
FTP access, 81–83
registering, 890
for testing, 85–87
uploading files to, 890–899

remote site, viewing, 896–897
remote testing options, 85–87
Remove Tag, 133–134
removeAttribute() method, 345
removeClassName() method, 345
removeEventListener() method, 345
repeat property, 868–870
Repeat Region server behavior, 141, 451, 620–621
repeatchildren property, 868–870
repeating elements, 815
repeating regions, 782

accessing nested, 828–830
changing page content using, 874–878
controlling actions within, 568
creating, 644–645

for InContext Editing, 567–568
manually, 783–784
in template, 553

http://lib.ommolketab.ir
http//lib.ommolketab.ir

repeating regions (continued)
displaying multiple results with, 620–621
editing, with InContext Editing, 577–578
removing, 568
Spry, 868–870, 874–878
understanding workings of, 784–785

repeating regions group, 568
replacement, 756
Reply-To header, 489–492
$_REQUEST array, 462
Request For Comments (RFC) 282, 469
require() command, 504
$required array, 476
require_once() command, 504, 614
reserved words, MySQL, 599
Reset form, 379
Restrict Access to Page server behavior, 673, 676–677
RESTRICT option, 694
Results panel group, 23
root element, 815
root user, 593–594
root-relative links, 64–66, 514–518
rows, 597

inserting/deleting, 140–141
selecting, 141
striped, 779–781

RSS news feeds
converting headlines to links, 818–819
displaying in Web page, 820–822
limiting number of items displayed, 819–820
pulling in, 811–822
sources of, 811

runtime variables, 716
BINARY keyword with, 766
default value, 764–765
defining, 717
in Dreamweaver, 756, 764–765
passing, 757
quotes and, 716

S
sample style sheets, 106
schema, 814
scientific notation, 438
screen sharing, 44–50
script.aculo.us, 32
scripts

adapting as includes, 525–534
commenting, 432
externalizing, with JavaScript Extractor, 350–352

scrollable lists, 372, 399–402

INDEX

934

search criteria
numerical comparisons, 760–763
numerical range, 763–765
text searches, 766–774

Search for help, 51
search forms, GET or POST methods for, 759–760
search results

displaying line breaks, 781
displaying number of, 778–779
eliminating duplicates from, 776
enhancing display of, 778–781
message for empty, 766–768
partial matches, 768–774
striped rows in, 779–781

security
access restrictions, 676–677
improving, of mail processing script, 473–498
sessions variables, 671

SELECT command, 614–617, 700–703, 754, 776
DISTINCT option, 701
LIMIT clause, 703
ORDER BY clause, 703
WHERE clause, 701–703

SELECT COUNT(*), 774–775
select element, 870, 874
Select File dialog box, 147–148
Select Image Source dialog box, 113–115, 121, 848
SELECT privileges, 594
<select> tag, 372, 397, 399, 496
select widget, 404
select_list, 701
selectors. See CSS selectors
semicolons (;), 428–429, 444, 467
sendmail_from, 492
$_SERVER array, 461, 466
Server Behavior Builder, 654–657
server behaviors

code, inspecting, 639–645
custom, 654–657
editing and removing, 617
with site-root-relative links, 614
with templates, 559
user authentication, 673
See also specific server behaviors

Server Behaviors panel, 263
editing and removing behaviors in, 617
editing code blocks in, 639

$_SERVER[‘DOCUMENT_ROOT’], 509
server root, testing, 66–69
server-side includes, 26–27
server-side pages, 33, 60
server-side technology, 426–428

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server-side validation, 372, 404, 463
adding, 645–654
applying to the update form, 661–671
verifying required fields have been filled in, 646–648

server-side XSLT, 809
servers, 426

checking XSLT support on, 809–810
retrieving information from, with superglobals, 461–462

$_SESSION array, 461, 672
session variables, 672, 679
sessions

for access levels, 677–678
checking for enabled, 673
creating, 672
destroying, 672–673
overview, 671

SET columns, 602
counting records in, 775
defining, 745–746
inserting data into, 747–749
retrieving data stored in, 750–754
searching for values stored in, 774
storing multiple values in, 744–754

SET NULL option, 694
setAttribute() method, 346
setProperty() method, 346
setrow property, 868
setStyle() method, 346
settings

changing default, 52–53
migrating personal, 53

sha1() function, 649
Shake effect, 267, 270
Share My Screen, 44
Show Code Navigator, 38
Show Region server behavior, 634–635, 735, 766–768
showPanel() method, 315
siblings, 815
simple mail transfer protocol (SMTP), 463
Single line option, 380
single quotes, 317–318, 432–434, 437
site definition

creating, 77–88
exporting/importing, 95
file name extension, 62–64
local files, 78–80
local testing options, 83–85
remote server access, 80–83
remote testing options, 85–87
site options, 87–88
steps in, 60–61
testing environment, 61–63, 83

INDEX

935

Site Definition dialog box, 77–78
Access options, 80–81
Cloaking category, 87
Local Info, 78–80
Remote Info, 80–83
Testing Server category, 83–87

site name, 78
site navigation, with Spry menu bar, 234–254
site root, 890
site-root-relative links, 64–66, 508–509, 514–518, 614
size attribute, 399–400
size comparisons, 446
Slide effect, 267, 271
Smart Objects, 50

inserting, 120–122
resizing, 122
updating, 122–124
using as images, 119–124

snippets
migrating, 53–55
saving frequently used code as, 483–486

Snippets panel, 484
source code, searching, 221–222
spam, 463, 473, 486–488
spam bots, blocking, 499–501
 tags, 144, 407, 416
special pattern characters, 413
Specific Tag option, of Find and Replace feature, 224–225
specificity, caclulating, 209–210
Split Code view, 26–27, 29–31, 107
sprintf() function, 757, 762, 777–778
Spry, 88, 258, 335–336

DOM and, 259–262
Live view and, 32–33
markup, extracting, 885–886
panels, 258

Spry character counter, 415–416
Spry data code, 867–870
Spry Data Set wizard, 850–864

creating master-detail set, 862–864
displaying data set in Spry table, 851–859
displaying related data in Spry detail region, 859–861
with XML document, 879–883

Spry data sets, 50
creating

from HTML, 845–867
for select list, 873–874
from XML, 879–883

displaying, as lists, 864–867
dynamically switching, 870–878
filtering, 871–872
generating HTML source, 846
using, to refresh content, 844–887

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Spry detail regions, 852
adding, 860–861
display control, 868
displaying related data in, 859–861

Spry effects, 259–263
Appear Fade effect, 266, 267
applying, 262–266
applying multiple events, 271–272
Blind effect, 266, 268
chaining, 333–335
Grow Shrink effect, 266, 268
Highlight effect, 266, 270
removing, 272–273
restoring, 273
settings, 267
Shake effect, 267, 270
Slide effect, 267, 271
Squish effect, 267, 271
transition options for, 334
types of, 266–267

Spry menu bar
accessibility with, 239
adding borders, 241–242
border colors, 252–253
changing width, 240
color changes, 241, 251–252
customizing, 248–252
customizing styles, 240–243
editing, 238–239
editing default selectors, 248–249
font changes, 242–243, 251–252
inserting horizontal, 235–237, 243–247
removing, 253
setting widths, 249–251
site navigation with, 234–254
structure of, 235–243
styling, 243–253
wrappers for, 243

Spry objects
changing defaults, 311–315
Cluster object, 327–335
initializing, 310–315
understanding, 310–335
using methods of, 315–327

Spry pages, validating, 884–886
Spry radio button group validation widget, 419–420
Spry repeat regions, 868–870, 874–878
Spry select lists, 870–878
Spry selector utility, 341–349
Spry syntax, 868
Spry tables, displaying data set in, 851–859
Spry tooltips, 299–304

INDEX

936

Spry UI components, 50, 273–304
accordions, 289–295, 311–315, 318–320, 336–340
collapsible panels, 295–298, 320–327
passing information to, through a URL, 336–340
removing, 304
tabbed panels, 274–289, 310–311, 336–340
tooltips, 299–304

Spry utilities
selector utility, 341–349
using, 335–350

Spry validation widgets, 404–422, 645–646
checkbox, 416, 418–419
custom patterns, 413–414
drop-down menu validation, 420
inserting, 406
limitations of, 405
passwords, 421–422
removing, 406
text area, 414–416
text field validation, 406–410, 412, 790

Spry widgets. See Spry UI components
Spry.$$ selector, 340–349
SpryDOMUtils.js, 336, 337
SQL (Structured Query Language), 585–586, 598
SQL commands/queries

building, 754–757
case-sensitivity of, 700
common problems with, 781–785
for complex searches, 776–778
conditional statements with, 776–778
counting records, 774–775
default values in, 764–765
DELETE command, 704
eliminating duplicates from, 776
inner joins, 736
INSERT command, 704
left join, 736
numerical comparisons, 760–763
partial matches, 772–774
passing form values to, 716–717
rules for, 700
runtime variables with, 757
searching within numerical range, 763–765
SELECT, 614–617, 700–703, 754, 776
text searches, 766–774
troubleshooting, 758–759
UPDATE command, 704
using variables in, 715–720
whitespace and, 700
wildcard characters with, 768–772

SQL injection, 603, 640, 716, 762
SQLite, 584

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SQLyog, 586
square brackets [], 435
Squish effect, 267, 271
Standard toolbar, New icon, 107
start() method, 327
statements, 429

conditional, 443–450
static web pages, 426–427
static XML documents, using as cache, 912–915
Status bar, 6
.ste files, 95
Sticky Edit Field server behavior

applying, 668–671
creating, 666–667

sticky form fields, 485–486
Sticky Text Field server behavior, 657

adapting, for update form, 666–667
applying, 657–658
creating, 654–656

storage engines
checking, of table, 691
converting between, 691

stored queries, 228–229
strcmp() function, 660
strftime() function, 800–802
strict errors, 456
strings, 309, 431

adding to existing, 436
escape sequences, 434–435
joining, 436
quotation marks with, 432–434

stripslashes_deep() function, 524
strlen() function, 646–647
 tag, 132
strpos() function, 454–453
str_replace() function, 753
structure. See content structure
strtotime() function, 799, 800
Style Rendering toolbar, 191
style rules. See CSS style rules
style sheets

applying conditional comments, 198–199
attaching, 180–181, 383
checking look of, in other media, 191–193
design-time, 191, 518–519
editing, with Code Navigator, 27–29
exporting rules to, 181–184
external, 164

advantages of, 181
attaching, 180–181, 199
creating new page from, 216–218
linking to, 198

INDEX

937

moving inline styles to, 186–187
moving rules between, 184–186
moving rules to, 181–188
undoing changes to, 204

linking to existing, 198
moving inline styles to, 186–187
moving rules between, 184–186
moving rules within, 184
Related Files toolbar, 26–27
reusing, 216–218
sample, 106
See also Cascading Style Sheets

Style submenu, 132–133
subject line (email), 463
Subversion, 87–94

checking/out files, 94
committing new files and changes to, 91–92
locking files, 94
registering site with repository, 89–91
resolving conflicts, 93–94
viewing revisions, 93–94

subversion integration, 50
superglobal arrays, 461–462
superglobal variables, 466, 658
$suspect, 487
SWF files

deleting, 128
editing Dreamweaver CS3 pages containing, 128
inserting in web pages, 124–128

switch statement, 448–449
Synchronize dialog box, 893–895
Syntax Error Alerts, 38

T
tabbed panels, 258, 274–289, 310–311

opening from another page, 336–340
avoiding design problems, 288–289
colors for, 281
converting to vertical tabs, 284–288
editing, 277–280
inserting, 278
opening from link on same page, 315–318
structure of, 275–277
styling, 281–284

tabbed windows, 25–26
tabindex attribute, 277
table definition

defining foreign key relationship in, 690–695
not null in, 689
null in, 689

Table dialog box, 137–138

http://lib.ommolketab.ir
http//lib.ommolketab.ir

tables, 128–129
adding records to, 609–614, 705
checking storage engine of, 691
child, 687, 706–710
columns. See columns
counting number of records in, 774–775
data stored in, 597–602
defining, 688–695
deleting records from, 621–624, 629–633, 728, 733–735,

739–740
designing structure, 598–602
displaying list of records in, 735–736
editing, 138–140
fields, 597
for layout, 142–143
hiding, when recordset is empty, 634–635
importing data

from CSV file, 142
from Excel, 142

inconsistency in, 685
inserting, 137–138

records in child, 706–710
records into parent, 714–720
rows and columns, 140–141

lookup, 687
managing content with multiple, 705–709, 714–724,

728–740
names, 599–600
parent, 687, 714–720
populating, 695
primary keys, 597–598, 606
records. See records
redundancy in, 685
restoring content of, 695
rows, 597, 779–781
selecting cells, rows, and columns, 141
selecting records from multiple, 696–699
storage engine of, converting, 691
storing related information in separate, 684–695

avoiding orphaned records, 687–688
defining database tables, 688–695
linking with foreign keys, 685–687
structure for, 685

transferring, 899–903
updating records in, 621–624, 735–737, 739
for user registration system, 603–606
using, 137–142

table_list, 701
tabs, 25, 435
Tag Editor, inserting form using, 376
Tag Inspector panel, 262–263, 401–402
Tag selector, 6

INDEX

938

target elements, 262, 267
Target option, 375
Targeted Rule field, 173
team environments, version control in, 88–94
templates, 88, 106

adding editable regions to master, 542–545
breaking link between pages and, 559
child pages, creating from, 545–548
converting existing page into, 541–542
creating, 541–542
creating and controlling optional regions, 548–552
introduction to, 540
locked and unlocked regions, 542–543
locking code outside html tags, 559
with PHP includes, 556–558
removing or changing regions, 553–556
repeating regions, creating from, 553
using, 540–559

temporary files, 817
ternary operator, 449–450
test database, 591–592
testing

local options, 83–85
remote options, 85–87

testing environment, 61–63
defining testing server, 83–87
local, 61, 83–85
remote, 85–87

Testing server folder, 84–85
testing server root, 66–69
text

alignment with images, 116
applying tooltips to, 301–304
bold, 132
copying and pasting, 110–111
formatting, 131–133
importing, from Word document, 111–112
including from other files, 504–514, 518–530, 533–535
inserting, 108–112
italic, 132
line breaks in, 781
preformatted, 131
searching for, 220
storing, in columns, 600
structuring, 129–130, 131
wrapping around images, 174

<textarea> tag, 372
text area validation, 414–416
text area widget, 404
text areas

converting to text fields, 382
properties of, 380–381

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server behavior for sticky, 656–657
setting properties for, 380–381

TEXT column type, 600
text field widget, 404–412
text fields, 668–671

adding to forms, 378–379
binding, to update form, 668–671
converting to text area, 382
properties of, 380–381
server behavior for sticky, 654–656
setting properties for, 380–381
Spry validation, 406–410, 412
validation, 407

.textfieldFlashText input, input.textfieldFlashText selector,
412

.textfieldFocusState input, input.textfieldFocusState
selector, 412

Text Indent button, 212
text input elements

adding to forms, 376–379
setting properties for, 381

text links, 146–147
text searches, 222–224, 766–774

case-sensitive, 766
multiple columns, 768
partial matches, 768–772
using FULLTEXT index, 772–774
using wildcard characters, 768–772

Text tab, 131
TextWrangler, 99
third-party extensions, 353
time

formatting, 785–802
storing current, in MySQL, 785–790
storing, in columns, 601

time zone, setting correct, 799
TIMESTAMP column type, 601, 785–786
timestamps, Unix, 799–800
TINYBLOB column type, 602
TINYINT column type, 601
title attributes

automatically adding, to images, 226–227
preventing overwrite of, 227–228

Title/Encoding settings, 158
toggleClassName() method, 346
toggleGroupPanel() method, 326
Tooltip widget, 299–304
tooltips

applying to text and images, 301–304
creating, 299–304
structure of, 299–300

Top Features links, 4

INDEX

939

$totalRows_recordsetName, 718, 727
Tracing Image settings, 158
trailing space, 600
transactions, 691
trigger element, applying multiple events to, 271–272
trim() function, 476, 646, 649
true, 437
TRUNCATE keyword, 695
type attribute, 372
Type option, 380, 382, 407
type selectors, 162–163, 169

U
UTC (Coordinated Universal Time), 785
underscore (_) character, 768–772
undoing edits, 203
uniqid() function, 753–754
Unix epoch, 785
Unix timestamp, creating, 799–800
unobtrusive JavaScript, 350–352
unordered lists, 134–135, 864
unsent() function, 478
UPDATE command, 704
update forms, 626–629

adapting Sticky Text server behavior for, 666–667
applying server-side validation to, 661–671
binding field values to, 668–671

update page, adapting for deletes, 739–740
UPDATE privileges, 594
Update Record server behavior, 603, 642, 737–739

applying, 724–726
preservation of query string by, 728

URL Parameter, 643
URL Variable, 659
URLs, passing information to Spry widgets from,

336–340
user access restrictions, 676–677
user accounts

creating, in MySQL, 593–596
root, 593

user address, including in email header, 489–492
user authentication, 673–680
user input

preservation of,
after form submission, 654–656
on feedback forms, 480–481
in text fields, 657–658

quotes in, 480–481
server-side validation, 645–654
validating, 372, 404–422

user interactivity, server-side technology and, 427–428

http://lib.ommolketab.ir
http//lib.ommolketab.ir

user interface (UI), 3–24
Auto-Show Hidden Panels, 13
default workspace, 3–7
iconic mode panels, 9–12
Insert panel, 15–20
managing workspaces, 23–24
moving and regrouping panels, 13–15
preset layouts, 7–8
Property inspector, 20–23
Results panel group, 23
switching between grayscale and color icons, 7

user interface (UI) components. See Spry UI
components

user privileges, granting, 594–596
user registration forms

completing, 657–661
creating, in MySQL, 609–614
preserving user input, in text fields, 657–658

user registration systems
creating, in MySQL, 603–635
defining database table, 603–606

user-controlled comparisons, 761–763
user-defined date, inserting into MySQL, 794–796
usernames, duplicate, 650–651
users

access levels, 677–678
greeting by name, 678–679
logging out, 677

user_id variable, 624
UTF-8 (Unicode), 535, 592

V
Validate Form behavior, 404, 406
Validate on option, 408
validation, 638

analyzing generated code, 639–645
before form submission, 404–422
client-side, 372, 404–422, 465
duplicate usernames, 650–651
error messages, 652–654
JavaScript, 638
password, 648–649
server-side, 372, 645–654, 661–671
with update form, 661–671
validation alerts, 410–412
See also Spry validation widgets

value attribute, <option> tag, 708
VARCHAR column type, 600
variables, 309

assigning values to, 430–431
calculations on, 440
for form fields, 461–462

INDEX

940

naming, 430
passing by reference, 793
PHP, 429–431
runtime, 716
session, 671–673
using, 429–431

var, 311
version control, 87, 88–94
Vertical Split view, 30–31
vertical tabs, converting tabbed panel to, 284–288
View menu, 387
views, switching between, 29–31
virtual directories, registering on IIS, 76–77
virtual hosts, creating on Apache, 69–76
virtual() function, 509, 614, 640
Visual Aids submenu, 387

W
W3C (World Wide Web Consortium), 258
W3C validator, 884–886
warnings, 456
web pages

adding structure to, 128–146
converting existing, into template, 541–542
creating links in, 146–152
creating new, 104–107

from existing styles, 216–218
CSS layouts for, 196–218
displaying news feed in, 820–822
dynamic, 427–428
embedding PHP in, 428–429
file name extension, 62–64
inserting Flash and Flex movies in, 124–128
inserting images in, 112–124
inserting text in, 108–112
static, 426, 427
styling, with built-in layouts, 199–208
testing, with Live view, 31–34
updating, with InContext Editing, 559–579
uploading, 890–899

Web Widget Software Development Kit, 353
web widgets

installing, 358
jQuery, 358–365
YUI, 358–360, 365–368

WebKit browser engine, 156, 31
websites

adding to Subversion repository, 89–91
creating site definition, 77–88
deploying, 890–903
document- or root-relative links, 64–66
file comparisons, 99–100

http://lib.ommolketab.ir
http//lib.ommolketab.ir

file name extension, 62–64
file storage, 66–77
managing, 94–95
preview in browser options, 98–99
setting options for, 96–99
site organization, 60–77
synchronizing, 893–895
testing environment for, 61–63
transferring database tables, 899–903
uploading, 890–899
version control, 88–94
virtual hosting, 69–76

Welcome screen, 4, 105
well-formed documents, components of, 808
WHERE clause, 701–703

AND keyword, 768
BINARY keyword with, 766
Boolean search, 772
COUNT(*), 775
DELETE command, 705
foreign keys and, 698
LIKE keyword, 768–769
missing records and, 736
natural language searching, 772
operators, 702
OR keyword, 768
searching within numerical range, 763–765
SELECT statement, 716
UPDATE commmand, 704
using numerical comparisons, 760–763
wildcard characters with, 768–772
with conditional statements, 776–778

while loops, 450–451
whitespace, 534, 642, 700
widgets

JavaScript, 50
See also Spry UI components; Spry validation widgets

wildcard characters
to search SET columns, 774
using in search, 760–761, 768–772

windows
opening links in new, 149
tabbed, 25–26

Windows
default workspace, 3
registering virtual hosts on, 70–72
server root, 68

Windows Registry, 36
Windows Vista, virtual hosts, 76–77
Windows XP, virtual directories, 76–77
WinFileCache-******.dat, 55
WinMerge, 99

INDEX

941

Word (Microsoft), 111–112, 158–159
wordwrap() function, 469
Workspace switcher, 5, 7, 23–24
workspaces

choosing preset layout, 7–8
default, 3–7
layouts, transferring, 55
main elements of, 5–6
managing, 23–24

World Wide Web Consortium (W3C), 258
Wrap option, 381
Wrap Tag, 133–134
wrapper tags. See <div> tags
writeToFile() function, 913–915

X
XAMPP for Windows, 62, 68
XHTML 1.0 Transitional, 97
XML (Extensible Markup Language), 851

converting recordset to generate, 906–910
creating Spry data set from, 879–883
fetching remote feed using proxy script, 910–911
generating, with PHP, 906–915
vs. HTML, 806
HTML entities in, 808
introduction to, 806
objective of, 806
retrieving from different domain, using proxy script,

910–911
using static XML document as cache, 912–915
using XSLT to display, 809–810

XML comments, 827
XML data

filtering selectively, 835–837
getting from local source, 825–827

XML data source, accessing using XSLT, 813–820
XML declaration, 807, 822, 827, 909
XML documents

root element, 815
structure of, 806–809
XPath and, 817

XML prolog, 807
XML source schema, 814–815
XML tags, 807, 815
XPath Expression Builder, 816–817, 819, 829, 835–837
<xsl:for-each> tag, 828
<xsl:if> tag, 819–820, 831
<xsl:otherwise> tag, 831–832
<xsl:param> tag, 838
<xsl:text> tag, 831
XSL Transformation dialog box, 821

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XSL Transformation server behavior, 806, 809–810
communication with XML data source, 813
fixing bug in, 822–824
using, 813, 815–820
working with RSS news feeds, 811–822

XSLT (Extensible Stylesheet Language Transformations)
accessing nested repeating elements, 828–830
accessing XML data source with, 813–820
checking server support of, 809–810
client-side, 809
conditional regions, 819–820
displaying output selectively, 835–841
embedding HTML in, 827–828
formatting elements, 834–835
introduction to, 806
processing with PHP, 809
server-side, 809, 812–813
sorting elements, 833–834
structure of, 827–828
using to display XML, 809–810

XSLT Fragments, 812
code details, 827–828
conditional regions, creating, 830–833
creating, 813–818, 825–826
creating parameters for, 837

INDEX

942

defining new entities for, 827
embedding in dynamic page, 820–822
encoding attribute, 827
temporary files and, 817
using, 818–819

XSLT parameters
creating default, 837–838
filtering data with, 837–841
sending, from PHP page, 838, 841

XSLT repeat regions, 819–820
XSLT server behavior, 844
XSLT syntax, 831
XSLT tags, 827
XSLT templates, 828

Y
YUI Calendar widget, 365–368, 790
YUI web widget, 358–360, 365–368

Z
Zend Framework, 437
Zoom tool, 121, 832

http://lib.ommolketab.ir
http//lib.ommolketab.ir

