

•
Table of

Contents

• Index

• Reviews

• Examples

•
Reader

Reviews

• Errata

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Publisher: O'Reilly

Pub Date: September 1999

ISBN: 1-56592-687-0

Pages: 256

Slots: 1

This book is an easy-to-understand guide to building Oracle8i (Oracle's "Internet
database") Web applications using a variety of tools -- PL/SQL, HTML, XML,
WebDB, and Oracle Application Server (OAS). It also covers the packages in the
PL/SQL toolkit and demonstrates several fully realized Web applications. This book
provides the jump-start you need to extend relational concepts to Web content and to
make the transition from traditional programming to the development of useful Web
applications for Oracle8i. Also covers Web development for Oracle8 and Oracle7.

URL 1565926870

http://lib.ommolketab.ir

•
Table of

Contents

• Index

• Reviews

• Examples

•
Reader

Reviews

• Errata

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Publisher: O'Reilly

Pub Date: September 1999

ISBN: 1-56592-687-0

Pages: 256

Slots: 1

 Copyright

 Preface

 Goal of This Book

 Structure of This Book

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction

 Section 1.1. The Internet Grows Up

 Section 1.2. Current Web Techniques Are Inadequate

 Section 1.3. Oracle's SolutionOracle8i

 Section 1.4. A Roadmap to Oracle8i

 Chapter 2. Foundations

 Section 2.1. Resources

 Section 2.2. Server-to-Client Communication

 Section 2.3. Content Delivery Model

 Section 2.4. Database Integration

 Section 2.5. Database Security Review

 Chapter 3. WebDB

 Section 3.1. Overview of WebDB

 Section 3.2. WebDB Architecture

 Chapter 4. Oracle Application Server (OAS)

 Section 4.1. How OAS Returns Web Resources

 Section 4.2. Creating Dynamic Resources

http://lib.ommolketab.ir

 Chapter 5. HTML

 Section 5.1. Programming in HTML

 Section 5.2. A Whirlwind Tour

 Chapter 6. PL/SQL

 Section 6.1. Structured Programming in PL/SQL

 Section 6.2. Programming Constructs

 Section 6.3. Packages

 Section 6.4. PL/SQL Tools

 Chapter 7. The PL/SQL Toolkit

 Section 7.1. Communicating with the Outside World

 Section 7.2. Text Processing

 Section 7.3. Maintaining State

 Section 7.4. Improving Productivity

 Chapter 8. Developing Applications

 Section 8.1. Designing a Web Application

 Section 8.2. Example 1: An Anonymous Survey

 Section 8.3. Example 2: A Discussion Forum

 Chapter 9. XML

 Section 9.1. Motivations for XML

 Section 9.2. XML Syntax

 Section 9.3. The Document Type Definition (DTD)

 Section 9.4. The XML Parser

 Section 9.5. Example: Generating an XML Invoice from Oracle

 Section 9.6. PLSXML Utilities and Demos

 Section 9.7. XML and iFS

 Appendix A. Appendix: Resources for the Oracle Web Developer

 Section A.1. Books

 Section A.2. Other Publications

 Section A.3. Organizations

 Section A.4. Web Sites

 Section A.5. Discussion Groups

 Colophon

 Index

Top

URL 1565926870

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Copyright © 1999 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of Oracle Corporation,
Inc., in the United States and other countries. O'Reilly & Associates, Inc. is independent of Oracle Corporation.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. O'Reilly & Associates, Inc. is independent of Sun Microsystems.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in
this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps. The use of the boll weevil image in association with Oracle web applications is a trademark of O'Reilly
& Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for
errors or omissions, or for damages resulting from the use of the information contained herein.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Preface

Although the philosopher who gave us the phrase "May you be cursed to live in interesting times" probably
didn't have Oracle application development in mind, there's no doubt that the saying is as applicable to us
today as it was to the ancients.

Since the World Wide Web exploded on the corporate landscape, it's been an exciting time for information
technology professionals of all stripes: our skills are in demand, there are lots of exciting new things to learn,
and people at dinner parties are actually interested in what we do and no longer recoil in horror at the mere
mention of the word "computer."

For most of us, though, the advent of the Web has been a mixed blessing. While there are many ways it can
make life better, the steep learning curve has made it hard to take advantage of this potential. Even worse,
we're expected to deal with all these issues while keeping existing systems running smoothly. What most of us
need is an evolutionary, not a revolutionary, approach to the Web: one that allows us to use our existing skills
to solve immediate problems, yet gives us the breathing room to adapt to new concepts and tools.

Oracle Corporation's latest database, Oracle8i (the i stands for Internet), provides just such a framework.
Oracle8i allows you to use all your hard-won Oracle skillsdata analysis and design, performance tuning, and
SQLto manage web content, develop web applications, and integrate those applications with your existing
production systems. In an Oracle8i application, Internet skills are almost as important as SQL, normalization,
data design, and the host of other database skills. This book will help you start learning these Internet skills and
give you a foundation for entry into the new world of Internet computing.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Preface

Goal of This Book

The goal of Oracle Web Applications is to help Oracle SQL and PL/SQL developers who have little or no web
programming experience to learn to develop useful web applications, using technologies most IS developers can
grasp fairly quickly: WebDB, Oracle Application Server (OAS), PL/SQL, HTML, and XML.

In addition, the book introduces several other Oracle8i technologiesAdvanced Queuing (AQ), the Internet File
System (iFS), interMedia, InternetLite, and Java™and shows how they form a cohesive development framework that
addresses the pressing issues of web content management, application development, and application integration.
While there have been many changes in Oracle8i, it's still just a database, and there's no need to panic: data is data,
whether it comes from the accounts payable system or from the Internet.

This book acknowledges that you're a busy person. Since most of us simply don't have time to read and digest an 800-
page book on each individual technology, I've tried to present fundamental elements of the topics you'll use most
often in your daily development efforts. This book will get you started and solidly on your way, but it's not,
obviously, the ultimate reference. Rather, it is a "Cliff Notes" of Oracle web developmentenough to help you pass the
test, but not enough to help you appreciate the finer points. Once you've read the book, however, you'll be ready to
delve into the various areas (WebDB, PL/SQL, Java, etc.) more deeply. Your first step on that journey should be to
consult the appendix for information on further resources.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Preface

Structure of This Book

This book is divided into nine chapters and one appendix, as follows:

Chapter 1, provides some motivations for using the Oracle database as a web platform, introduces Oracle8i and its
major products, then lays out a strategy to help you get ready for Oracle8i.

Chapter 2, provides some background information necessary for the discussion of web technologies. It describes
TCP/IP, HTTP, and web browsers, explains the content delivery model used by Oracle's web tools, and presents the
basics of database/web integration and security issues.

Chapter 3, describes Oracle's WebDB product, which you can use to develop database-driven web applications and
sites.

Chapter 4, describes Oracle's OAS product, which uses plug-in "cartridges" to allow you to develop database-driven
web sites in a variety of languages, including Java, Perl, and PL/SQL.

Chapter 5, describes the basics of HTML (HyperText Markup Language), the standard language used to create web
pages.

Chapter 6, describes Oracle's PL/SQL, a procedural language built on SQL that supports a wide variety of language
constructs, including packages.

Chapter 7, describes the set of PL/SQL packages supplied by Oracle specifically for use in developing PL/SQL web
applications.

Chapter 8, describes two real-world web applications that demonstrate how you can use the tools described in this
book to do actual web development.

Chapter 9, describes the basics of XML, an emerging standard for creating structured documents.

Finally, the appendix, Appendix A, provides a list of online and offline resources for further information on Oracle
and the Web.

http://lib.ommolketab.ir

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Preface

Conventions Used in This Book

The following conventions are used in this book:

Italic

Used for script, file, and directory names
Constant width

Used for code examples, HTML tags and attributes, and XML tags and elements
Constant width italic

In code examples, indicates an element (e.g., a parameter) that you supply
UPPERCASE

Generally indicates Oracle keywords, including package names
lowercase

In code examples, generally indicates user-defined items such as variables and procedure names
|

In code examples, a vertical bar indicates that you must choose only one from the list (e.g., IN | OUT | IN
OUT)

This icon indicates a tip, suggestion, or general note. For example, we'll tell you if you need
to use a particular Oracle version or if an operation requires certain privileges.

This icon indicates a warning or caution. For example, we'll tell you if Oracle does not
behave as you'd expect or if a particular operation has a negative impact on performance.

http://lib.ommolketab.ir

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Preface

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may find that features have
changed (or even that we have made mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

booktech@oreilly.com

For corrections and amplifications to this book, as well as for copies of the examples found in the book, check out
O'Reilly & Associates' online catalog at:

http://www.oreilly.com/catalog/oracleweb

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Team-Fly

http://www.oreilly.com/catalog/oracleweb
http://www.oreilly.com
http://lib.ommolketab.ir

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Preface

Acknowledgments

In reviewing the "Acknowledgments" section of other O'Reilly Oracle books, I was really not surprised to almost
invariably find Debby Russell at the top of the list. In addition to being a great editor who has a careful (if not
downright hawk-like) eye for both style and substance, she's also a warm and funny human being. During the final
editing phase of this book, my wife and I were in the midst of a 2000+ mile hike on the Appalachian Trail. Debby
was wonderfully patient and understanding during our hike, and kept her sense of humor even during my frantic calls
from places like the Nolichucky Campground. Many thanks also to Michael Blanding for greatly improving both the
style and organization of the book, Lorrie LeJeune for creating a special order boll weevil, Gigi Estabrook for
providing editorial support during the production process, Madeleine Newell for her careful edits and comments, and
Jim Cupan for providing much needed NT support. Finally, thanks to all the many other people at O'Reilly who
transformed this book from a rough draft into the book you're holding now.

I'm deeply indebted to everyone who has provided invaluable technical feedback. Thanks to those who read this book
in its earliest stages: Chris Albee for commenting on the very roughest drafts, Sandy Bickford for being my technical
mentor, Steven Feuerstein for his sage PL/SQL advice and for introducing me to Debby at ECO'98, and Steve
Muench and Victor Oppenheimer for their feedback on XML. I'm also especially grateful to everyone who reviewed
the book and provided excellent suggestions for improvement: Rick Greenwald for his help navigating the sometimes
treacherous Oracle waters, Dave Kreines for the feedback on the foundations of Oracle technology, Steven Leung for
his advice on WebDB, and Bill Pribyl for his careful analysis of almost everything in the book. (Bill even caught
typos in the code commentsnow that's dedication!) Thanks to everyone at Oracle who answered questions and
provided many excellent materials: Martin Graf for his help with Oracle Lite, Tom Grant for iFS, Steven Leung for
WebDB, Joe Mauro for interMedia, Mahdu Reddy for AQ, and Thomas Kurian and Ashok Swaminathan for
explaining how it all fits together. Thanks also to Steve Hilker at RevealNet for letting me use PL/Formatter to format
the book's code examples. Despite the hard work of all these people, any errors, omissions, and oversights in the book
are solely my own.

Many others have provided help without even knowing it: thanks to the people at Someday Café in Davis Square for
the strong coffee, the folks at Burdick's Chocolates in Cambridge for the delicious chocolate mice, and the chefs at
Blue Fin for the fresh sushi. Also, my deep appreciation to everyone who has been so amazingly nice to us while
we've been on our hike, especially Dennis and Mary Hutchins at the Laurel Creek Lodge in Hampton, Tennessee.
Thanks to the people in my life who have provided encouragement and support: my parents Joyce Odewahn and
Charles Odewahn, my brother Steve and sisters Anne and Cathy, my in-laws Ben and Maxine McManus (who gladly
chauffeured us throughout the most obscure corners of Appalachia), and especially my sister-in-law Stacy McManus,
who in addition to just being great is also mailing us our food while we're on the trail!

http://lib.ommolketab.ir

Finally, last but not least, I thank Amy McManus, my wife, friend, confidant, and traveling companion on the trail of
life. Without her emotional, spiritual, and financial support none of this would have been possible. In the words of
singer and poet Jerry Jeff Walker, "without you there'd be no light in the window, nobody to laugh with late at night .
. . there'd be no reason to write"

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 1. Introduction

Since it burst on the scene in the early 1990s, the World Wide Web has transformed from a way (to quote
Homer Simpson) to "let us know some nerd's opinion on Star Trek" to a whole new way of doing business.
Hardly an area in the information technology industry has been unaffected. Developers who only yesterday
were using COBOL to write accounts payable systems are now being asked to create a broad range of new
Internet-based applications, including electronic commerce (e-commerce) web sites, internal data warehouses,
and enterprise resource planning (ERP) systems.

Unfortunately, the filesystem architecture of most web systems is beginning to show its age. The new breed of
web application, which is quickly becoming critical to companies' survival, demands a platform that provides
production-quality tools for content management, application development, and application integration.

The new release of the Oracle database, Oracle8i, attempts to meet these and other objectives by building web
technology on top of a relational database system, rather than on a filesystem. This type of development
enables companies to apply well-understood, reliable, production-quality database methodologies to web
content management. Oracle8i also supports a wide variety of application development platforms and tools that
are tightly integrated to the core database. Finally, Oracle8i supports technologies that help you tie your web-
based systems to legacy applications.

In this chapter, I'll examine these issues in more detail. I'll start with a look at the new web applications and
why current web technology isn't an ideal platform for building them. Next, I'll look at how Oracle8i and its
related products attempt to address the failings of previous web technologies. Finally, I'll lay out a roadmap
you can use to get started with Oracle8i web development, so you can take full advantage of the Web.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 1. Introduction

1.1 The Internet Grows Up

Flush with both the successes of the World Wide Web and its potential to generate new revenues, companies are
scrambling madly to exploit Internet technologies. Internet technology is now commonly required for at least four
different types of projects: internal application projects, like data warehousing; mobile application projects, like sales-
force automation; electronic commerce, like Internet storefronts; and enterprise resource planning (ERP) systems for
automating business operations.

Internal applications are critical resources for a variety of users within a company. For example, developers must
build web interfaces for data warehouses that often contain several terabytes of data. In addition to responding
quickly, these systems must often meld several different kinds of datatable data, images, and even videosinto an
attractive page.

Once these systems are in place and successful, developers are asked to create new systems called mobile applications
that can extract subsets of the data warehouse for use on portable devices like laptops, PalmPilots, or other Personal
Data Assistants (PDAs). These systems, often used by salesman or technical support personnel, allow users to work
even when not connected to a network. The data these users enter is synchronized with production systems when the
users reconnect to the main network.

Internet storefronts and other e-commerce applications let customers buy things over the Web. Increasingly, these
applications are expected to integrate with existing order entry systems, provide continuous availability, and protect
both the customer and the business from attacks by malicious hackers.

The most ambitious companies use Internet technologies to reduce costs through business-to-business enterprise
resource planning systems, which let systems in one company communicate directly with systems in another company
over the Internet. For example, an ERP system might let the purchasing system in company A place an order directly
with the order entry system in company B. The goal is to automate everything from paying invoices to ordering
paperclips. These hybrid sites must integrate many different application systems, from accounts receivable, to
accounts payable, to order entry, into a single, cohesive unit that performs a complex series of transactions quickly,
accurately, and securely.

Despite the diversity of these application systems, they share several characteristics:

Each system may deal with a variety of data: traditional relational data, multimedia data such as video or audio
clips, structured files like spreadsheets, unstructured documents like emails or text, and web documents like

http://lib.ommolketab.ir

HTML and, increasingly, XML.

The information in each system must be available to many types of clients: a workstation connected through a
LAN or WAN, a web browser connected through the Internet or an intranet, a PalmPilot connected through a
modem, or even an email client connected through a POP server.

Each system must understand and be compatible with multiple communications protocols, from Internet
standards like HTTP, FTP, and CORBA, to proprietary protocols like Microsoft's SMB.

Most application systems are built by developers who are overworked and overstressed from keeping
production systems running, maintaining legacy systems, and fighting the daily fires caused by hardware,
software, and user problems.

It's tempting to keep trying to extend current web technologies to meet the additional demands of the new generation
of Internet web sites and applications. Unfortunately, this effort is probably doomed to failure. While today's web
servers comply with the requisite protocols, they are simply not designed to manage complex information, because
they are, at heart, little more than networked extensions of traditional filesystems.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 1. Introduction

1.2 Current Web Techniques Are Inadequate

Sure, anyone with Microsoft FrontPage can put a human resources policy manual on the Web, but creating
production web sites with existing web technology is simply too much work. Three broad problem areas in current
web technology make it hard to build these new applications:

Content management

Although web servers are good at presenting content, they are bad at managing it. This is partially due to their
filesystem-based architecture, which often does not include the ability to build searchable, maintainable, and
auditable information systems.

Application development

A production setting requires tools that can scale both up and down, fit the needs of a specific user base, and
are part of a complete developmental framework. Few, if any, current development techniques meet these
criteria.

Application integration and electronic data exchange

It's too hard to integrate different systems. To make e-commerce and ERP a reality, a platform must provide a
simple method to link different applications, whether they all reside in one site or are spread across multiple
sites. Current web servers are only just beginning to address this issue.

Let's look at these problems in detail.

1.2.1 Content Management

Web servers are great for making information available to a wide audience. Unfortunately, they do very little to help
web site developers manage all this information. An ideal platform would help us develop sites that make it easy for
users to find what they are looking for, are easy to keep up to date, and allow easy tracking of site content changes.

1.2.1.1 Finding what you need

There's universal agreement that good web sites make it easy to find what you need. Unfortunately, the filesystem

http://lib.ommolketab.ir

architecture of most web servers makes it difficult to put searches into specific, meaningful contexts.

Filesystems are used to manage files on the operating system level. To make it easier for users to find their files, the
system automatically keeps various attributes, such as the file's name, size, creation date, and owner. When we create
a spreadsheet, for instance, the system saves it and its attributes within the file structure. Later, if we forget the
particular name of the file, we can search for it based on its attributes. For example, in DOS we can enter dir *.xls /s
to find all Excel spreadsheets within the various subdirectories, then look at the name or date to find the file we want.

This works great when you are sitting at a command line looking for a file that you created. The model breaks down,
however, when you attempt to extend it to the Web. When people are searching for files on the Web, they don't care
about the file's name or size (unless they're using a 14.4 modem!). Since they care about the file's contents, not its
properties, the attributes maintained by the filesystem are largely irrelevant.

Some sites use search engines to overcome this shortfall. When a user enters a search term, the engine churns through
an index of all the documents and returns a list of links to the files containing the search terms. Some of the most
popular sites on the Web, like Yahoo! or AltaVista, attempt to do this for all files on the Internet.

You only have to look for the term "sexual reproduction" on a web search engine to see how laughable this effort
really is. While keyword searches can be helpful, they almost always fail to put the search into a meaningful context.
For example, suppose I want a list of all works by Harper Lee. I should be able to enter something like "Give me a list
of all works where Harper Lee is the author." With a keyword search, however, in addition to her only book, To Kill a
Mockingbird, I'm likely to get dozens or hundreds of additional documents ranging from a brochure about Harper's
Ferry, West Virginia, to a retrospective of Bruce Lee movies.

The simple fact of the matter is that effective searches on the Web require a broader, more flexible set of attributes
than filesystems maintain. In addition to simply describing a file, a web server should automatically keep meaningful
metadata [1] about the file's contents that puts a search into a specific context. This metadata should extend to all files,
regardless of format. What if a document isn't ASCII at all or doesn't even represent a spoken language? For
executable binaries, for example, it would be nice to be able to directly assign searchable attributes like "purpose" or
"platform."

[1] Metadata is data about other data. For example, a file's size is metadata because it is data about the file, not part

of the file itself.

1.2.1.2 Keeping sites up to date

A second problem with the current web server technologies' lack of integrated content management features is that it
is too hard to keep a complex site up to date. Hyperlinks on the Web act as a mapping function between a logical
name, like "Andrew's Homepage," to a literal file that resides on a specific machine, like C:\andrew\web_stuff
\default.htm. These links, created through URLs, let us navigate from one page to another. The problem with this dual
mapping system is that we have to make every update in two places, in the filesystem and in the URL. If someone
deletes or moves a file, but forgets to change the corresponding URL on every page on which it appears, we are
guaranteed to have broken links. It's probably impossible to manage this process manually on a large site.

This two-step process also creates extra work for the webmaster. Publishing a new document, for example, requires
the webmaster to manipulate various files by hand: she must use FTP to copy the new document to the web server
and must then edit an existing document (such as the home page) to add a link to the new file. While this process is
fine for dozens, maybe even hundreds, of individual documents, it is unrealistic to expect to keep a site completely up
to date when there are thousands, or even millions, of individual documents. Consequently, sites contain inaccurate
information, broken links, and pages perennially under construction.

http://lib.ommolketab.ir

1.2.1.3 Tracking changes

Finally, current web servers don't have a way to automatically track all changes to a document. While some operating
systems, like VMS, have automatic versioning systems web developers can exploit, most do not. Since the ability to
audit changes is a fundamental requirement for any production information system, an ideal web system would handle
it automatically.

Suppose a webmaster or an end user updates a file, and it turns out later that he or she made a mistake. How do we
track down exactly what was changed and fix it? Most filesystems don't automatically maintain logs that let us
reconstruct a complex sequence of changes. Instead, we must either rely on the webmaster's memory or reconstruct
the sequence of events from backups. Filesystems are simply not designed to handle complex audit tracking.

1.2.2 Application Development

The Internet has also blurred the traditional line between applications and data to the point where it's unclear how to
classify many sites. While a static HTML document is "content" and a Java applet is a "program," how do we classify
hybrid systems that are a little bit of each? For example, a data warehouse might have a web interface that seems like
a normal web site, but behind the scenes each page is generated dynamically by running a database query. Is this
really a web site as we normally think of it, or is it closer to an application acting on underlying data? Although there
is no clear agreement, the term content-driven web site, implying equal parts of data and application, is one of the
best names for these sorts of sites.

In web parlance, the applications and programs that create content-driven web sites are called dynamic resources.
Dynamic resources are unlike documents created with an HTML editor such as Microsoft FrontPage, although both
types of documents are accessed over the Web using a URL, and both return an HTML document. A dynamic
resource is a program that creates a page upon a user's request, not a static file that exists beforehand. While such a
program traditionally generates HTML, it can create any type of content; for example, you could write a system to
create a graph in GIF or JPEG format, using sales data stored in a database table.

As technology has progressed, it has become possible to create more and more complex dynamic resources. Once
limited to simple operating system scripts, developers can now choose from a host of viable languages for creating
content-driven sites: Perl, Visual Basic, C, C++, Javaeven COBOL or FORTRAN! In addition, web servers now
support more sophisticated invocation methods. The list of technologies is growing longer every day: CGI,
application servers, cartridges, Java servlets, Object Request Brokers (ORBs), and on and on.

The explosive growth of these different technologies and techniques has made it difficult, if not impossible, to select
a single platform that can meet all of your current and future needs. Ironically, the overwhelming number of
development options is one of the most unsatisfactory things about web development. How do you know which one
to pick? Will that technology exist in five years? Is it a viable commercial product or someone's Ph.D. thesis?

The profusion of options has led to two related problems. First, no single platform can meet the needs of every type of
application and user group. Second, developers have to use a variety of platforms, depending on the type of
application they are building, which stretches their ability to become proficient with any particular technology.

1.2.2.1 No single platform is scalable enough

Current development platforms rarely scale in both directions. For example, suppose you develop a really slick web
application for your department using Active Server Pages on Windows NT. Word gets out around the company
about how great it is and hundreds of people want to start using it. Suddenly, your application, which was designed
for use by 10 or 20 people, has to accommodate hundreds. What can you do to scale it up? Conversely, suppose you

http://lib.ommolketab.ir

need to build a small, specialized system that is to reside on its own server. You know it will never have more than a
few users. Will you really use a Sun Ultraserver to build it? No, you'll go with something smaller and more
affordable. As developers, it's hard for us to remember that technology decisions should scale in price as well as
performance.

1.2.2.2 Developers must know too many platforms

Ideally, developers should be proficient on just one development platform that can scale across different hardware
platforms, from Intel to Alpha to Sparc, and operating system platforms, from NT to Unix to VMS. Unfortunately,
this is not the case with current web server application development. Developers wander from one platform to the
next, worrying, like Goldilocks, that "This one's too small" or "This one's too big," when they need one that's just
right.

You must factor in the skill levels required by each option. One of the worst situations is that each platform requires
its own specific skill set, so you wind up with a development team that is split along platforms. For example, you may
have one group of programmers that uses Perl, one that uses Java, one that uses Oracle Forms, and one that uses
PL/SQL. Since it's impossible to master all the techniques available on each platform, you wind up with systems that
only a small group can support.

1.2.3 Application Integration and Electronic Data Interchange (EDI)

As if content management and application development aren't enough of a challenge, the new breed of application
must seamlessly interact with internal applications and electronically exchange data with external systems. Data
entered by remote users must synchronize with the production systems. Orders placed on your web site must flow into
an order entry system, which must then send the customers email notifying them that their orders have been received.
Purchase orders must flow from your system into the order entry systems of your business partners.

These types of tasks are well beyond the scope of almost all the web servers currently available. While it's possible to
build this functionality, it is usually a kludgey process performed with uploads or downloads or, God forbid, rekeying
the information by hand.

Web server vendors are attempting to address this problem by defining universal standards for interoperability and
object-to-object communication; some of the most promising solutions, such as CORBA and COM, are already
available. However, the battle over what will be the general standard is already brewing and promises to make the
browser wars look like a game of touch football at a retirement home.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 1. Introduction

1.3 Oracle's SolutionOracle8i

To steal a phrase from James Carville, consultant to Bill Clinton's 1992 presidential campaign, "It's the data, stupid."
Large companies have realized for years that filesystems are unsuited for sophisticated data management, and have
instead relied on relational database management systems (RDBMSs).

These databases have quietly provided scalable, secure, and manageable access to the most critical corporate
information for over a decade. Companies understand how to plan for auditing, disaster recovery, capacity,
maintenance, and application development. There are well-understood tools and proven techniques, and developers
know how to build database systems. Given that content will be king for the new generation of web sites and
applications, doesn't it make sense to graft web server capabilities onto a database, rather than a filesystem?

Oracle has had over 20 years of experience designing information systems that manage the most important corporate
data. As the largest database vendor in the world, they have (arguably) the world's most sophisticated and powerful
database. Over the past several years, Oracle has moved diligently to apply professional data management concepts
like scalability, security, auditability, disaster planning, and so on to an unruly world of Internet content management.
With Oracle8i, the "Internet database," these plans have come to fruition.

Oracle8i is a soup-to-nuts platform for web site and web application development that addresses the pressing issues of
content management, application development, and application integration by extending traditional database concepts
to web content. Oracle8i replaces the traditional filesystem used by most web servers with a database management
system, and it supportseither directly or through various add-on productsa mind-boggling variety of technologies.
Table 1.1 summarizes the most important of these; asterisked items must be separately licensed from Oracle.

Table 1.1. Major Web Technologies Supported in Oracle8 i

http://lib.ommolketab.ir

Technology Description

Internet File
System (iFS)

An Oracle extension[2] that allows Oracle8i to store files inside the database. It combines this
capability with a wide variety of networking protocols to let various clients use iFS as a native
data store. These clients can include email products like Qualcomm Eudora, productivity
products like Microsoft Excel or Word, and HTTP clients like Netscape Navigator. In addition,
iFS supports sophisticated version control features, such as check-in and check-out for
documents shared by multiple users.

HTML
An ASCII-based markup language used to create web pages. HTML is a non-proprietary
specification.

XML

An emerging standard for creating documents that contain structured information. XML,
syntactically similar to HTML, allows you to define your own markup tags. XML is expected to
be a key technology in electronic commerce systems because it simplifies data interchange
among various systems.

PL/SQL

A structured programming language similar to Ada that combines procedural constructs with
standard SQL. PL/SQL also supports reusable components called packages; you can write your
own packages and use those built into Oracle8i. Like Java, PL/SQL is executed directly in the
database. Unlike Java, it's supported in Oracle8 and Oracle7.

WebDB*
An Oracle development environment for building and monitoring content-driven web sites and
data-driven applications. WebDB allows users to use a web browser to access and store
information in the Oracle8i database. It's also compatible with Oracle8 and Oracle7.

Oracle
Application
Server (OAS)*

An extensible web server that uses plug-in programs called cartridges. OAS allows you to
develop database-integrated web systems in a variety of languages, including Java, Perl, and
PL/SQL. It's also compatible with Oracle8 and Oracle7.

Java
An object-oriented language similar to C++. Oracle8i includes a built-in Java™ Virtual Machine
(JVM) to allow Java programs to execute directly inside the database. Java is probably the single
most important new technology in Oracle8i.

InternetLite*

The collective name of a set of Oracle products for developing mobile Internet applications.
These products are: Oracle Lite, a small footprint version of Oracle8i; EnterpriseSync Lite (ESL),
a set of replication technologies that includes AQ Lite, a disconnected version of AQ; and the
InternetLite (IL) server and API, a set of software products for replicating both data and
applications to mobile applications.

Oracle
interMedia*

The collective name of a set of Oracle cartridges for storing multimedia content inside Oracle8i.
The cartridges include interMedia Text for storing text information, Visual Information Retrieval
(VIR) for storing image and audio files, and Oracle Spatial for storing geographic data.

Advanced
Queuing (AQ)

A queue-based messaging system that allows programs to communicate asynchronously. While
Oracle8i is built on the AQ system available in Oracle8 and Oracle7, it supports a
"publish/subscribe" model not available in the earlier versions.

[2] Available in Oracle8 i Release 8.1.5.

As you can see, Oracle8i supports an extensive number of products and technologies for developing web sites and
Internet systems. We'll look at each product in a little more depth in the next several sections.

http://lib.ommolketab.ir

1.3.1 The Internet File System

The Internet File System (iFS) allows Oracle8i to masquerade as different types of data servers, including a file
server, an FTP server, and an email server. This makes data accessible to almost any type of client, whether it's a
Windows 95 workstation, a web browser, or an email client. i FS supports several networking protocols to
accomplish this sleight of hand:

SMB

Allows Windows 95, NT, and 98 clients to treat files stored in Oracle8i as if they resided on a normal
Windows file server

FTP and HTTP

Allow FTP clients and web browsers to treat data stored in Oracle8i as if it resided on an FTP or web site
SMTP, IMAP4, and POP3

Allow email clients like Eudora and Microsoft Outlook to treat data stored in an Oracle8i database as if it
resided on an email server

For example, a user on a Windows workstation can define a network drive like E:, F:, or O: that points to an Oracle8i
database instead of to a file server. The user sees no discernible difference between an Oracle8i volume and a file
server, and she can open, update, or save Word and Excel files in the usual way.

Although i FS is not available at the time of writing, Oracle has laid out the following basic model for its use in
conjunction with XML:

You create a TYP file (an XML document) to describe the structure of each type of document that can be
stored in the iFS repository. Each element in the TYP file is mapped to a corresponding column in a database
table.

1.

Users can use almost any client to access the iFS repository, including FTP and HTTP clients, email clients,
and Windows (SMB) clients. The client treats the iFS repository as it would a native data server. For example,
an email client can see Oracle8i as an email server, and a Windows client can see the same information as a
network volume.

2.

iFS executes a server-based event, a chunk of code analogous to a database trigger, whenever a user inserts,
deletes, updates, or views a document in the iFS repository. You can develop your own event servers, using
Java and CORBA, to override basic iFS functionality. For example, you might want to send an email when a
certain type of document, such as a purchase order, is saved to the repository. iFS also has a built-in XML
parser to process XML documents.

3.

Using iFS, you could define a purchase order document and associate it with various events. A customer could place
an order electronically by emailing a purchase order document to the Oracle8i iFS repository. This could trigger a
"Send Thank You" event that would send an email thanking the customer for the order and a "Process Order" event
that would move the document into an order entry system.

1.3.2 HTML

HyperText Markup Language (HTML), the language used to create web pages, is a specification for marking up text
documents using a fixed set of tags that control how the document is displayed in a web browser. For example, text
enclosed between the and tags is displayed in bold, and text enclosed within <i> and </i> is displayed in

http://lib.ommolketab.ir

italics. Tags can also have attributes, parameters that act like instructions. For example, the <a> tag, which is used to
create a hyperlink within a document, has an attribute named href that specifies the location (the uniform resource
locator, or URL) of the page the user visits when he clicks on the link.

HTML is also used to create simple data entry forms you can use to store information inside an Oracle database.
Here, for example, is the HTML code needed to produce a guest book screen that asks for a web user's name, email
address, and comments:

<html>
 <title>Sign the guest book</title>
 <body>
 <form action="guestbook.insert_entry" method="post">
 Name: <input name=i_name> <p>
 E-mail: <input name=i_email> <p>
 comments:
 <textarea name="i_comments" rows=5 cols=40>
 </textarea>
 <p>
 <input type=submit>
 </form>
 </body>
</html>

Figure 1.1 shows how the form is displayed in a web browser. You can learn more about HTML in Chapter 5.

Figure 1.1. An HTML form

1.3.3 XML

Extensible Markup Language (XML) is an emerging standard for creating structured documents using an HTML-like

http://lib.ommolketab.ir

syntax. Although much of the current enthusiasm for XML is focused on its ability to create complex user interfaces
for web systems, XML has much broader applications in the following areas:

Creating complex, browser-based user interfaces. At the time of this writing, though, few browsers support
XML (Microsoft's Internet Explorer version 5.0 supports most of the new XML specification).

Defining a universal data format for use in productivity tools like spreadsheets and word processors.

Applying complex, hierarchical relationships to unstructured data.

Providing a platform-independent specification for exchanging information among a variety of electronic
systems, including different database systems.

Surprisingly, XML is also fairly easy to learn and use. The following example shows how you could use XML to
create an electronic invoice:

<?xml version="1.0"?>
<!DOCTYPE INVOICE SYSTEM "invoice.dtd">
<INVOICE>
 <INVOICE_NUMBER>876514234</INVOICE_NUMBER>
 <DATE>05/21/1999</DATE>
 <CUSTOMER>Megaplex Industries</CUSTOMER>
 <INVOICE_ITEMS>
 <ITEM>
 <ITEM_NAME ITEM_NUM="PN-5342">Widget 1</ITEM_NAME>
 <QUANTITY>5</QUANTITY>
 <PRICE>19.99</PRICE>
 </ITEM>
 <ITEM>
 <ITEM_NAME ITEM_NUM="PN-6354">Widget 2</ITEM_NAME>
 <QUANTITY>2</QUANTITY>
 <PRICE>9.99</PRICE>
 </ITEM>
 </INVOICE_ITEMS>
 <TOTAL>119.93</TOTAL>
</INVOICE>

XML allows you to define your own tags and attributes, then set up rules that these tags must follow. An XML parser
program reads each document to make sure that it follows these rules and, if it does, moves it into a hierarchical data
structure called a document tree. You can then manipulate the structured information using Java or PL/SQL. You can
learn more about XML in Chapter 9.

1.3.4 PL/SQL

PL/SQL is Oracle's procedural language extension to the SQL language. PL/SQL is a structured language that has
been extended in Oracle8 and Oracle8i to handle object types and support other object-like features. PL/SQL is
especially well suited to modular programming since it allows you to build stored procedures, functions, and
packages to perform database operations. PL/SQL provides a rich set of datatypes and supports conditional
processing, loops, cursors (for row-at-a-time processing), and collections (PL/SQL's version of arrays, formerly called
PL/SQL tables).

http://lib.ommolketab.ir

Packages are an especially powerful PL/SQL construct. A package is a container for other PL/SQL elements, such as
variables, constants, procedures, functions, and datatype definitions. Packages let you build standard code libraries
with well-defined APIs. In the web environment, for example, you might create standard libraries to handle security,
formatting, and other reusable functionality.

You can learn more about PL/SQL in Chapter 6.

1.3.5 WebDB

WebDB is an excellent tool for developing database-driven web applications and sites. WebDB lets you perform
everything from database administration to application development using only a web browser. Your applications and
content area are stored inside the database. WebDB's capabilities are divided into these broad categories:

Database administration

WebDB lets you use a web browser, rather than a "fat" client like Oracle Enterprise Manager (OEM), to
perform routine database administration tasks. These tasks might include viewing the definitions of database
objects, administering WebDB and database security, and monitoring database and application performance.

Application development

WebDB provides wizards that simplify the development of database objects (e.g., tables and views) and user
interface components (e.g., forms and reports).

Content-driven web management

WebDB lets you use a browser to build and edit complex sites, add content (e.g., PDF, presentations, papers),
and integrate other WebDB applications. You, and better yet, your end users, can add web content directly
from a browser and can manage it like any other information.

You can learn more about WebDB in Chapter 3.

1.3.6 Oracle Application Server

Oracle Application Server (OAS) is another good tool for building web applications. Whereas WebDB may be the
most appropriate tool for quickly building and deploying Internet applications, OAS is probably best for electronic
commerce and enterprise resource planning applications. OAS performs all the functions of a traditional web server,
but in addition, it provides tight integration to an Oracle database.

OAS is built on a system of plug-in cartridges used to execute certain kinds of resources. Several language cartridges
come with OAS: PL/SQL, used to execute PL/SQL stored procedures; Java, used to execute server-side Java
programs; and Perl, used to execute Perl scripts. Other cartridges are also available; for example, the ODBC cartridge
executes ODBC (Open Database Connectivity) statements and returns the results directly to your browser.

You can learn more about OAS in Chapter 4.

1.3.7 Java

Java, a popular object-oriented language, is becoming a good choice for developing and deploying Oracle-based web
applications. Oracle8i is completely integrated with Java, and supports a wide range of data access and development
models. These include:

http://lib.ommolketab.ir

JDBC™

The standard specification for interaction between Java and relational databases, as defined by Sun
Microsystems. JDBC is the Java version of ODBC. Programmers can take advantage of Oracle's extensions to
JDBC, such as convenient access to Oracle-specific datatypes like ROWID.

SQLJ

A precompiler technology (similar to Pro*C or Pro*COBOL) that allows the programmer to embed static SQL
statements directly into Java code. The SQLJ translator and runtime libraries are available both inside and
outside the Oracle8i server. SQLJ also provides access to Oracle-specific datatypes.

Java stored procedures (JSPs)

Stored programs that let you invoke static Java methods from Oracle's SQL or PL/SQL languages. The
mechanism for publishing Java methods in this fashion is proprietary to Oracle.

CORBA server objects

Objects that are developed according to Object Management Group (OMG) specifications and that can be
distributed. They can communicate with other objects regardless of location. Using CORBA, you can integrate
both Java and non-Java applications. CORBA server objects in Oracle8 i can both call and be called by
CORBA objects outside the server. CORBA is supported by a variety of languages and environments.

Enterprise Java Beans™ (EJBs)

An approach especially helpful in large distributed systems. EJBs are coarse-grained, reusable components
that comply with Sun's EJB specification; they rely on the Oracle8i EJB "execution container" for services
such as component location, activation, security, and transaction support. EJBs can be used with non-Java
applications.

Java servlets

Java programs that generate HTML for presentation in a web browser. The Oracle8i server provides HTTP
service and a servlet execution environment by incorporating a special version of Sun's Java™ Web
Server™.[3] Servlets can read and write database data using any convenient database access model (JDBC,
SQLJ, etc.) and generate any form of HTML.

[3] This capability is in beta form in Oracle8 i's initial release.

Consult the appendix for a list of references concerning Java development.

1.3.8 InternetLite

InternetLite is a toolkit for building mobile applications that allow users to work while disconnected from a network.
A mobile application has two basic parts: a master site and a snapshot site. The master site is usually a complete,
production Oracle database. When a user needs to disconnect from the network and use the database on the road, he
copies a subset of the production data from the master site to his own local database, the snapshot site. The user
makes various changes to the snapshot site, each of which is recorded in a log, until he is ready to reconnect to the
master site. At this point, the snapshot site and master site must be synchronized so that changes on the snapshot site
are applied to the master site, and vice versa. The logs are reset once the master site and snapshot site are in synch.

As you can imagine, handcoding the mechanics for each of these steps can be a tedious, difficult process. The various
InternetLite products act as a sort of operating system for distributed computing that provides these services
automatically; it handles data and application replication issues, allowing you to concentrate on designing your
application without worrying about lower-level details. There are four individual products in the InternetLite product

http://lib.ommolketab.ir

suite: Oracle Lite, EnterpriseSync Lite, AQ Lite, and the InternetLite server and API.

Since it's helpful to look at each product in the context of a specific example, let's suppose you want to create a
mobile expense sheet application. The system should allow users to record their expenses while they're on the road
and, when they return to the office, automatically upload these expense items into the production database.

1.3.8.1 Oracle Lite

Oracle Lite functions as a miniature version of the full Oracle8i database, which runs in just under one megabyte of
memory and supports the major database application objects, such as tables, indexes, and sequences. The Oracle Lite
database is used to maintain the snapshot site in a mobile application.

Oracle Lite supports two modes for application development: client/server and Internet. Client/server mode allows
developers to use the Oracle Call Interface (OCI) to write C programs, Open Client Adapter (OCA) to write
Developer/2000 applications, and ODBC to write applications using Visual Basic, Access, PowerBuilder, etc.
Internet mode supports two access methods: JDBC or the Java Access Classes (JAC), an API for creating data-aware
Java servlets.

To return to our expense report example: Oracle Lite is the application data store that contains the expense items. Our
first step in developing the application is to define the various tables, such as the different types of expenses (lodging,
mileage, food) and the actual expense items (person submitting the item, date, expense type, dollar amount). We can
use Oracle Forms, Java, and an ODBC client such as Microsoft Access to write the application and then use
EnterpriseSync Lite to develop a replication strategy to move data between the master and snapshot sites.

1.3.8.2 EnterpriseSync Lite

EnterpriseSync Lite (ESL) is the second product in the InternetLite suite. As its name implies, ESL is used to handle
the synchronization phase of a mobile application. ESL provides a replication API, called REPAPI, that defines how
the table data is moved between the master and snapshot sites.

ESL is based on Oracle's database table snapshot technology. A snapshot is basically a copy of a table that's based on
a SQL query. For example, to create a snapshot of the expense item table, I could use the command:

CREATE SNAPSHOT expense_item_snap AS
 SELECT * FROM EXPENSE_ITEMS;

Periodically, the snapshot must be refreshed to reload the information from its base query. There are two refresh
options: complete and fast. A complete refresh will reload the entire table. A fast refresh will reload only the rows
that have been changed or added since the last refresh.

As a rule of thumb, the fast refresh is faster only when fewer than 10% of the rows in the
underlying master table have been changed. Otherwise, the complete refresh is faster.

ESL automates the process of creating the snapshot site by allowing you to define how and when the application
loads and refreshes the snapshot data. Hooking your program into the REPAPI provides a behind the scenes way to
move data from the snapshot site into the master site and vice versa. ESL supports two replication modes:
synchronous and asynchronous. In synchronous mode, the user must be connected directly to the database over a
standard SQL*Net (Net8) connection; data is transmitted using the standard Oracle protocol. In asynchronous mode,

http://lib.ommolketab.ir

the user uses a file transfer process, such as email or FTP, to send an export file of her snapshot log and receive an
import file of snapshot refresh data. The advantage of this approach is that users can synchronize their systems off-
site using standard products like Qualcomm Eudora or Microsoft Outlook.

1.3.8.3 AQ Lite

EnterpriseSync Lite also includes AQ Lite, a scaled-down version of Advanced Queuing (AQ, covered later in this
chapter), that's used to create distributed messaging services. Messages are queued to the snapshot site's local data
store and sent to the production queues when the user synchronizes.

1.3.8.4 InternetLite server and API

The InternetLite server allows you to synchronize both data and applications on mobile clients, eliminating the
problem of installing the correct version of an application on mobile clients. The advantages of this approach should
be clear to anyone who has ever tried to provide phone support to an irate user (usually calling from the client's site!)
who has a corrupted database or a Dynamic Link Library (DLL) conflict.

The catch is that the applications must follow the Internet development model; the client/server model isn't supported.
The development process works something like this:

The developer defines the master and snapshot sites using Oracle Lite as a local data store.1.

She then writes the application using Java servlets. Typically, these applications use an HTML user interface to
access the underlying database tables.

2.

Next, she sets up a replication profile for each mobile client that defines the snapshot tables and application
components that are replicated.

3.

When the user connects to the IL server, it receives the data in the master site as well as all the Java servlets
required for the application. IL replicates everything the user needs to run the application in disconnected
mode, including the Oracle Lite database engine and the necessary Java classes.

4.

The InternetLite server, which performs these operations, is a plug-in cartridge for OAS version 4.0. Figure 1.2 shows
the architecture of an IL-based system.

Figure 1.2. Architecture of an InternetLite-based mobile application

http://lib.ommolketab.ir

Consult the appendix for a list of resources that will help you learn more about the InternetLite product suite and
building distributed systems in general.

1.3.9 Oracle interMedia

Oracle8i has three plug-in cartridges that can manage multimedia data: the interMedia Text cartridge, the Video
Information Retrieval (VIR) cartridge, and the Oracle Spatial cartridge. These three products are collectively called
Oracle interMedia, and allow Oracle to manage text, multimedia, and spatial data.

1.3.9.1 Text data

The Oracle interMedia Text cartridge is used to manage documents (either inside or outside the database) by
automatically indexing them with smart attributes. You can then use SQL to perform a variety of complex searches,
such as searching for an exact phrase or performing a fuzzy search to find the closest matches for the search criteria.
Text can index nontext documents, such as Word, Excel, PowerPoint, WordPerfect, Adobe PDF, HTML, and XML,
using a filter that converts the document from its native format into one the database can understand. Currently, there
are more than 100 such filters.

1.3.9.2 Multimedia data

interMedia can manage traditional multimedia files, such as video or audio clips, as well as static image files. Video
Information Retrieval (VIR) can store video clips in a variety of formats, including AVI, QuickTime, and MPEG. It
can store audio clips in AUF, AIFF, AIFF-C, and WAV formats. These clips are accessible through any streaming
server, such as RealNetworks or Oracle Audio/Video Server. interMedia can also store image files in a variety of
popular formats, including TIFF, GIF, and JPEG. Audio, video, and image data are all compatible with popular
authoring tools like Symantec Visual Page or FrontPage, via the interMedia clipboard.

1.3.9.3 Spatial data

interMedia's Spatial cartridge provides support for a range of geocoding systems that specify a latitude and longitude
with a specific piece of information, such as a zip code or an address. This information can be used to calculate

http://lib.ommolketab.ir

distances between locations or to represent information in geographic information systems (GIS). For example, using
this information, you could create a query system for a bank that returned the ATM locations closest to a specific
address.

1.3.10 Advanced Queuing

Advanced Queuing (AQ), first introduced in Oracle8, is a message-based queuing system you can use to bind a
variety of different systems together. A universally accessible API used to send complex messages from one system
to another, AQ is built on procedures and functions stored directly in the database. This architecture allows
applications in any language or platform, from COBOL to PL/SQL to Java, to communicate through a system of
queues maintained in the database.

For example, an OAS storefront could use AQ to send an order from its order entry system. This system, perhaps
written in C, could use the AQ API to retrieve and process the request. This universal application-to-application
communication eliminates the need for clunky import and export routines.

As an example of AQ in action, suppose you want to write a simple web site that lets registered customers buy or sell
stocks over the Internet. The customer can use a variety of clients, such as a Java applet, an HTML browser, or an
Oracle Forms application, to place an order to buy or sell stock. Another program, perhaps written in Pro*COBOL,
periodically processes and fulfills the orders placed so far. The next sections illustrate how to design an AQ-based
solution. Figure 1.3 illustrates its basic architecture.

Figure 1.3. Basic architecture of an AQ-based stock system

1.3.10.1 Define the message payload

The first step is to define the structure of the message contained in the queue, which is done with the SQL command,
CREATE TYPE. Here, for example, is how we might define a simple payload for the stock example:

CREATE TYPE aq.customer_order AS OBJECT (
 customer_id NUMBER,
 stock_symbol VARCHAR2(20),
 num_shares NUMBER);

http://lib.ommolketab.ir

1.3.10.2 Create and start the queue tables

The next step is to use the AQ administrative API to create the queues inside the Oracle database. Each queue is
associated with a payload definition and (by default) follows the first-in-first-out protocol. In our example, we want to
create two message queues: one for "buy" messages and one for "sell" orders. After you create the queues, you can
start and stop them to control when they can receive messages. The following code snippet illustrates these steps for
our example:

-- Create BUY and SELL Queues
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
 queue_table => 'aq.BUY_QUEUE',
 queue_payload_type => 'aq.customer_order');

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
 queue_table => 'aq.SELL_QUEUE',
 queue_payload_type => 'aq.customer_order');

-- Start the Queues
EXECUTE DBMS_AQADM.START_QUEUE (
 queue_name => 'BUY_QUEUE');

EXECUTE DBMS_AQADM.START_QUEUE (
 queue_name => 'SELL_QUEUE');

1.3.10.3 Enqueue and dequeue messages to/from a queue

Once you've created and defined the queues, you can begin enqueuing (inserting) and dequeuing (retrieving)
messages. To create a message, you create an object based on the queue payload, set the values you want to insert,
and call AQ's ENQUEUE procedure. For example, a browser-based client could enqueue an order at any time by
calling the following PL/SQL procedure:

PROCEDURE buy_stock (
 i_customer_id IN VARCHAR2 DEFAULT NULL,
 i_stock_symbol IN VARCHAR2 DEFAULT NULL,
 i_num_shares IN VARCHAR2 DEFAULT NULL
)
IS

 the_order aq.customer_order;
 queueopts dbms_aq.enqueue_options_t;
 msgprops dbms_aq.enqueue_properties_t;
 msg_id RAW(16);

BEGIN
 the_order :=
 message_type (
 i_customer_id,
 i_stock_symbol,
 i_num_shares
);
 DBMS_AQ.ENQUEUE (

http://lib.ommolketab.ir

 queue_name => 'BUY_QUEUE',
 payload => the_order,
 enqueue_options => queueopts,
 message_properties => msgprops,
 msg_id => msg_handle
);
END;

Dequeuing reverses the process by extracting the item from the queue. To dequeue a message, you create a payload
variable and then use the AQ's DEQUEUE procedure to extract the first item off the queue. In our example, we could
fairly easily retrofit our legacy system (for example, a Pro*COBOL program) to loop through each item on the BUY
and SELL queue.

You can learn more about AQ in Oracle Built-in Packages, by Steven Feuerstein, Charles Dye, and John
Beresniewicz (O'Reilly & Associates).

1.3.11 Functional Summary of Oracle8i Web Products

Table 1.2 illustrates the role each Oracle8i web product plays in fulfilling the requirements for the new generation of
systems laid out at the beginning of this chapter.

Table 1.2. Uses for Oracle8i Web Technology

 AQ HTML i FS interMedia IL Java OAS PL/SQL WebDB XML

Content management X X X

Application development X X X X X X X X X X

Application integration X X X X

Electronic data exchange X

In addition to supporting a range of tools for content management, application development, and application
integration, Oracle8i (as well as Oracle7 and Oracle8) scales across three related dimensions: performance, platform,
and price. Oracle8i's multithreaded architecture ensures high performance through clustering, connection pooling, and
multiplexing; it also has a resource management system to precisely control the CPU time given to a user or a group
of users. Oracle8i runs on an enormous number of hardware and software platforms, which can range from a palmtop
(via Oracle Lite), to a workgroup server, to a mainframe; porting an application from one platform to another is often
as simple as exporting and importing the schema. Finally, since Oracle8i is supported on so many different systems,
you can decide how much you're willing to spend on an application without locking yourself into a platform that can't,
if necessary, scale up.

Finally, Oracle8i addresses the pressing problem of development fragmentation by allowing developers to master a
single platform that can meet most foreseeable future demands. Of course, there's just one little problem.

http://lib.ommolketab.ir

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 1. Introduction

1.4 A Roadmap to Oracle8i

There's way too much new stuff to learn! You could spend the rest of your lifeincluding the additional 100 years
you'll get because of Y2Klearning the technologies listed in Table 1.2 and still not master them all. Oracle
Corporation is far ahead of most of us; we're lucky if we can keep our existing production systems running, much less
learn dozens of new tools and methodologies.

Given the increasing importance of the Internet, though, we need development skills that we can use right now, not in
the distant future. Additionally, some sites, for one reason or another, haven't even moved from Oracle version 7.3 (or
even 7.0) to Oracle8, much less Oracle8i. What are they supposed to do?

In this section I'll suggest an approach to building web applications for Oracle8i that you can learn in just a week or
two, even if you currently know nothing about the Web and even if you're still using Oracle7. Everything I'll cover
will migrate smoothly to Oracle8i. In this way, you'll have time to start learning the other technologies even as you
develop new systems. The approach I suggest here uses a subset of the technologies listed in Table 1.2: OAS,
WebDB, HTML, PL/SQL, and XML. I'll also tell you why I think Java should be your second step.

1.4.1 Connect the Database to the Web Using OAS or WebDB

The first thing you'll need to do is connect the Oracle database to the Web. The simplest way to do this is to use either
OAS or WebDB. Both products work with Oracle 7.3 or above. I'll cover each in its own chapter, focusing on what
you, as an application developer, need to know to use and understand the technology.

1.4.2 Develop Web Applications with HTML and PL/SQL

Once you've seen how to connect the database and the Web, you can start learning how to write web applications by
combining HTML, the language used to create web pages, with PL/SQL, the SQL-like language used to develop
Oracle stored procedures. The next three sections explore the reasons for choosing these tools.

1.4.2.1 Why HTML?

http://lib.ommolketab.ir

HTML is based on a simple principle: a limited syntax composed of tags and attributes can define almost any
document, from a quarterly report to an online catalog. Each tag affects the text between the start tag and the end tag.
Tag attributes act like parameters that refine the tag's behavior. There are several reasons why HTML is an appealing
user interface:

HTML is easy to learn

HTML uses a simple, forgiving syntax to create documents. These documents can range from a text-only
listing of all employees in a particular table to a complete data entry form that inserts or updates a record in a
table. This simplicity is in stark contrast to the host of proprietary languages that try to be all things to all
people.

HTML is platform-neutral

A browser running on a PC, a Macintosh, or a Unix system will display a document in roughly the same way.
Because virtually all browsers support HTML, you can concentrate on developing the contents of a page
without worrying about how it will be distributed. If you build an online employee directory, anyone with a
browser can access it through an HTML interface, regardless of the type of machine they have.

HTML is simple to deploy

With a browser and a TCP/IP connection, a user can access any application on your network by simply typing
in the appropriate URL. Imagine trying to coordinate a similar system based on Oracle Forms. Use of HTML
eliminates the version conflicts, SQL*Net conflicts, and configuration headaches that make being an
application developer a real drag.

HTML provides some protection from constant change

HTML is a non-proprietary, standards-based language. If a browser supports the base HTML language, it can
display any HTML document, even if the document is 10 years old. This gives considerable freedom to you as
a developer, because as long as browsers support HTML, a user can modify or change his machine however
he wants, and your application will still work.

Despite all these advantages, HTML is not a panacea. There are some limitations that affect the way you design an
application:

HTML is not a programming language

HTML is a specification for marking up a document's content, not a programming language. It doesn't support
variables, loops, conditionals, or have a robust event model, so you are forced to put all your program logic on
the server. Scripting languages like JavaScript can help mitigate this problem (WebDB can even generate this
type of scripting code for you automatically).

HTML applications are stateless

HTTP, the underlying protocol of HTML, is a stateless protocol, meaning that it doesn't preserve information
between connections. This seriously affects the way you must design web applications. We'll discuss this in
later chapters.

HTML interfaces are not as sophisticated as client/server interfaces

HTML is, at heart, a layout tool. Consequently, it doesn't support all the GUI widgets found in client/server
development tools like Oracle Forms or PowerBuilder. Again, JavaScript can help mitigate this problem.

1.4.2.2 Why PL/SQL?

Combining HTML with PL/SQL gives us all we need to develop useful web systems that are powerful, easy to

http://lib.ommolketab.ir

design, and easy to develop. The language offers several benefits to overworked developers:

PL/SQL is easy to learn and use

PL/SQL is an evolutionary, not revolutionary, step for most IS developers because it's a straightforward
extension of standard SQL that's ideally suited for database processing.

PL/SQL fosters code reuse

Packages (groups of procedures and functions) provide many of the benefits of object-oriented languages
without the hassle of learning a brand new programming methodology.

PL/SQL integrates with other Oracle tools

PL/SQL stored procedures are accessible from any SQL*Net or ODBC product, from Oracle Forms to Pro*C
to Microsoft Access to Java. As a result, you can implement a business rule in the database as a PL/SQL
procedure and use it in any frontend tool, rather than writing the same logic again and again for each
development environment.

PL/SQL is portable

PL/SQL is included with Oracle version 7 and above and is supported on all Oracle platforms.
PL/SQL is fast

Oracle8 introduced, and Oracle8i refined, a host of performance improvements to PL/SQL. Additionally,
packages are parsed, stored, and executed inside the database, providing superfast data access. Once loaded,
these packages may be shared across multiple sessions, resulting in even better performance.

PL/SQL is proven

Millions of lines of production PL/SQL code are quietly humming away in companies across the world. While
it may not have the sex appeal of some other technologies, PL/SQL has proven itself a scalable, robust
solution in thousands of mission-critical applications.

The major downside of PL/SQL is that it's a proprietary language supported only on Oracle systems. If you are
concerned about locking yourself into an Oracle-only solution, you should consider using Java.

1.4.2.3 So why not Java?

You're probably wondering why, if Java is the future of Oracle, you should bother with PL/SQL at all. The answer is
pretty simple: almost all IS developers are prepared to take advantage of PL/SQL and its many capabilities without a
great deal of new training. Java, on the other hand, demands a solid understanding of object-oriented design and
programming (a technique substantially different from the structured programming model used by languages like
COBOL or C) before you can begin using it effectively. If you're worried that PL/SQL is doomed to go the way of
Latin, consider the following:

The millions of lines of production PL/SQL code provide a wonderful disincentive against the wild-eyed
radicalism of Java zealots.

Oracle's strategy acknowledges that there is no "one-size-fits-all" solution for every problem, and has
repeatedly emphasized that Java and PL/SQL will coexist in the database and play off one another in the future.

The performance improvements for PL/SQL in Oracle8i, combined with the fact that WebDB is a PL/SQL
application, bode well for Oracle's commitment to the language.

http://lib.ommolketab.ir

Finally, and most importantly, Oracle has publicly committed that it will support PL/SQL forever!

By the way, I'm not advocating Ludditism. Java is a very important and interesting language that you need to learn. In
the interim, though, you can use PL/SQL to develop hundreds of useful web applications that will make your users
very happy. Additionally, you won't have wasted any effort; these programs will continue to work even after you've
mastered Java and fully adopted Oracle8i. Finally, Oracle allows you to call PL/SQL procedures from inside a Java
program and vice versa, allowing you to use the language most appropriate for the task at hand.

1.4.3 Start Learning XML

Other than Java, XML is probably one of the most important technological advances to hit the Web in a long time,
especially in the arena of electronic commerce, electronic data exchange, and integrating the various parts of ERP
systems. In the last chapter of this book you'll learn how to create XML documents from inside the Oracle database,
using PL/SQL.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 2. Foundations

The ease with which you can develop applications on a PC has caused developers to pay far too little attention
to the basic infrastructure in which the systems run. Developers often slap together a form, test it on a PC, and
then roll it out to unsuspecting users. They fail to take into account that although they have tested the system
on a LAN connection, users will use the system over a WAN connection. What seems fine in one setting is bad
in another, and even the world's greatest application really stinks if it's deployed on an inappropriate
infrastructure.

Understanding the implications of the infrastructure is even more important in web development, and your
designs must account for differences between the major Internet networking protocols (especially statelessness,
which we'll look at shortly) and their client/server counterparts. Web systems are centered on a network, so you
must account for network traffic in your designs. Even the way you connect your database to the Web has an
important impact. You haven't yet written a line of code and you've already got dozens of problems to work
out.

This chapter lays the foundations for a WebDB or an OAS application. I'll talk about these applications more
specifically in Chapter 3, and Chapter 4.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 2. Foundations

2.1 Resources

An individual piece of content, whether it's a human resources manual or a phone list, is a resource in web parlance.
There are two broad classes of resources: static and dynamic. Static resources are files in a certain format: HTML
documents (HTML) created through a text or HTML editor, ASCII reports (TXT) created through a batch process,
images (GIF, JPEG) created through an image editor, and even movies (AVI, MPEG) or sound (WAV, AU) created
through a video or audio capture system. Almost any type of file becomes a static resource when placed in the proper
directory on a machine running OAS or WebDB.

The second, much more interesting type of resource is a dynamic resource, a program that creates web content as it
runs. For example, you could write a program to dynamically create a list of employee phone numbers from a human
resources database. When a user visits this page, your program queries the database and builds the page as it runs.
These sites are always up to date because they are built directly from the data's source, so they aren't subject to the
vagaries of manual updating. OAS allows developers to use a number of languages, including PL/SQL, Java, Perl,
and VRML (Virtual Reality Modeling Language), to develop dynamic resources; WebDB uses only PL/SQL. This
book concentrates on developing dynamic resources using PL/SQL.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 2. Foundations

2.2 Server-to-Client Communication

The Internet (or an intranet) is a network that links different computers together. Before we can start writing web
applications, we must understand how the output from these systems actually gets from the server to the browser,
which means that we have to learn a little about how the Internet and the Web work.

OAS and WebDB use standard Internet conventions and protocols to send resources to a client. The most important
parts of this interchange are:

A TCP/IP network to connect the server to the client

A software communication port to serve as a collection point for incoming requests

A transfer protocol called HTTP to govern how server and client communicate

A client program called a web browser to allow users to request and receive resources from the OAS or
WebDB server

A uniform resource locator (URL) to allow the browser to find a particular resource

A MIME type to tell the browser what to do with resources once received from the OAS or WebDB server

The following sections briefly describe each of these parts.

2.2.1 The TCP/IP Network

Browsers connect to an OAS or WebDB server using the TCP/IP networking protocol. Although there are a number
of different types of networking protocols, such as DECNet or IPX, web systems only work with TCP/IP.
Fortunately, more and more operating systems have this functionality built in, including Unix, Windows 95, Windows
98, Windows NT, OS/2, and Linux.

Every machine on a TCP/IP network is identified by a four-part IP address. Each number in the address can range
from 0 to 255, and the four numbers are separated by periods. For example, 253.4.99.17 might be the address for the
machine running the human resources department's web server. Every machine on a TCP/IP network has a unique IP

http://lib.ommolketab.ir

address.

Most TCP/IP networks have a special class of servers called Domain Name Servers (DNSs). Their job is to translate
IP addresses into meaningful hostnames that are easy to remember. For example, assigning the address 253.4.99.17 to
the name "HR" in the DNS allows users to refer to the human resources server as "HR," rather than its actual IP
address.

2.2.2 The Communication Port

A software port (as opposed to a physical hardware port) is a common reference point on the server that is used to
exchange messages. Each TCP/IP-based networking application, like OAS or WebDB, is assigned a specific port that
it monitors for incoming requests. Client programs that need to communicate with the server connect to the server's
assigned port. Once connected, the two systems exchange information according to a standard protocol (HTTP, FTP,
etc.). Each port is identified by a port number, its ordinal position in the range of all ports. On Unix systems, for
example, there are 64,536 different ports.

As a security precaution, a user with root privilege must start programs that use the first
1024 ports. Less privileged users can use ports higher than 1024.

2.2.3 The HyperText Transfer Protocol (HTTP)

A transfer protocol is a convention that governs how systems exchange information. Take, for example, a phone
conversation. When you call someone, you (hopefully!) don't start blurting out whatever comes to mind as soon as
they pick up the receiver. Instead, your conversation follows a set pattern that civilized society has agreed upon to
make communication more efficient:

I initiate a conversation by calling you.1.

You say "Hello."2.

I identify myself.3.

We exchange a message.4.

We say "Goodbye."5.

We hang up.6.

This sort of formalized exchange is the idea behind a protocol: it lets the sender and receiver know the order in which
communications will occur. While computers use much more formalized systems than humans, the idea is basically
the same.[1] OAS and WebDB follow a standard Internet protocol called HyperText Transfer Protocol (HTTP) to
communicate with client web browsers. OAS supports HTTP 1.0 and HTTP 1.1, while WebDB supports only HTTP
1.0.

[1] Sometimes it's almost identical; SMTP communications begin when the client says "HELLO" to the server!

By convention, several special TCP ports are associated with specific protocols. For example, port 21 is usually used
for FTP, port 25 is used for SMTP (a common email protocol), and port 80 is used for HTTP.

http://lib.ommolketab.ir

Protocols vary in complexity. Unlike client/server protocols, such as SQL*Net or Net8, HTTP is relatively simple
because it is stateless, meaning that the client and server terminate their connection once their conversation is
complete. Unlike client/server systems, which maintain state by keeping open a continuous connection to the
database, HTTP systems are connected only in bursts and not for the duration of the session.

Because the client and server forget everything that happened during previous connections, developers must take
explicit steps to maintain information, or state, from page to page. In other words, there are no global variables in a
web application; they are all local. Anything you want to retain from screen to screen has to be stored and retrieved in
every page. For example, if you're building a web-based threaded discussion list that begins with a login screen, you
must manually program it to remember the login information. We'll discuss strategies for doing this in Chapter 7, and
Chapter 8.

2.2.4 The Web Browser

Users request information from a WebDB or OAS server using a web browser such as Microsoft Internet Explorer or
Netscape Communicator. The browser is responsible for presenting web content on these servers to the user. In the
early days of the Web, a browser could handle only basic HTML and text documents, but the explosion of web
content has turned the browser into an information kiosk, multimedia center, and minicomputer all rolled into one.
For example, most modern browsers can display an HTML document filled with pictures, sounds, and even movies.
With the advent of Java, the browser has become a virtual machine, a computer within a computer capable of running
Java programs.

There are a number of browsers on the market, and each one behaves slightly differently. For example, the
appearance of any given HTML document often varies from browser to browser. To differentiate their product from
the competition, browser vendors add features that work only with their browser. You should test your content on a
number of different browsers, even if your company has adopted a standard, since many users refuse to give up
browsers to which they are fanatically attached. Additionally, more and more people are dialing in from home, and
they will often have older (or, depending on your company, newer) software than your company standard.

2.2.5 The Uniform Resource Locator

Uniform Resource Locators (URLs) are used to request a resource from an OAS or WebDB server independently of
the operating system used on the machine. A URL abstracts the machine name, resource path, and resource name into
a string with the following syntax:

protocol://server:port/path/resource?query_string
protocol

Specifies the network protocol that the browser and the server use to communicate. The most common values
are HTTP and FTP.

server

Identifies the name of the machine that hosts the resource. Although you can use the machine's IP address, it's
better to use the name defined in the DNS since it helps isolate the URL from the network reconfiguration.

port

Specifies the TCP port used by the OAS or WebDB server. If the port is omitted, then port 80 is used by
default.

path

http://lib.ommolketab.ir

Specifies the virtual directory or schema containing the resource. The path usually maps to either a virtual
directory mapping on the web server or, in Oracle web servers, to a Database Access Descriptor (DAD), a
logical name used to map a procedure call in a URL to the database schema in which it resides.

resource name

Typically specifies the actual name of the file to return. If the name is omitted, the listener returns a default
file, if one is available. The name of the default file varies: index.html is used on many Unix systems, and
default.htm is usually used on Windows NT systems. On Oracle web servers, the resource can also correspond
to a PL/SQL procedure.

query string (optional)

Optionally passes parameters to dynamic resources. The string begins with a question mark (?) and is followed
by ampersand (&)-delimited sets of name/value pairs. Each name/value pair consists of a parameter name
followed by an equals sign (=) and a value for the parameter. The parameter name must match a name in the
procedure's formal parameter list. The parameter value must be encoded by converting its nonalphanumeric
characters to their hexadecimal equivalents; converted characters are preceded with a percent sign (%). The
exceptions to this rule are the underscore character, which is left alone, and the space, which can be converted
to either a plus (+) sign or %20. For example, "w/in second(s)" converts to "w%2Fin+second%28s%29".

You can omit the server, port, and path sections from hyperlinks (links the user clicks to go to other locations) inside
other documents, which allows you to create relative, rather than absolute, URLs. Relative URLs are like relative
directories in a filesystem: they let you describe the location of one resource in relation to the current resource. Most
resources don't stand on their own; they are part of a larger hierarchical site that usually begins with a "home" and
branches out from there. There are practical as well as aesthetic reasons to define a site's structure using relative
rather than absolute URLs. For example, if a site is moved to a new host, the server section on all the links in the site
must be changed to the new hostname. This is very tedious work. If the site is defined using relative URLs, however,
the relative structure of its pages is unaffected by the move.

You create a relative URL by omitting the server, port, and path section from the URLs for hyperlinks and for
ACTION attributes in HTML forms. The omitted information is filled in with the server and path information for the
current resource, just as the file path information in an operating system command can be assumed from the current
directory. The "current directory" of a URL is called the base URL.

For example, if a page's URL is http://betty/somepage.html, links on that page to other resources on the site do not
have to explicitly include "betty" in the URL. Instead, they can simply begin with the path and name of other
resources. The server part, "betty," is implied by the base URL. You can even include new subdirectories off the base
URL.

2.2.6 The Resource MIME Type

Every resource is associated with a MIME type that tells the browser what to do with the resource once the transfer is
complete (e.g., display it in the main window, launch a file viewer, and so on). MIME, which stands for Multipurpose
Internet Mail Extensions, is a standard for exchanging various types of files (such as images, text, and video) over the
Internet so that each computer platform, whether NT, Unix, or VMS, will interpret and correctly handle the resource's
contents.

MIME types describe the data format using two parts. The first part, the type, identifies the resource's general format,
such as text, image, or audio. The second part, the subtype, identifies the resource's specific data format. For example,
the subtypes for the image type include gif and jpeg. The type and subtype are delimited with a slash (/); for example,
a picture's full MIME type could be image/gif or image/jpeg. The default for WebDB and OAS is text/html.

http://betty/somepage.html
http://lib.ommolketab.ir

Browsers must be configured to handle each MIME type. Almost all browsers can display text/plain, text/html, and
image/jpeg documents without any extra configuration. When a browser receives a document with a MIME type it
doesn't recognize, it asks the user to select a helper program to display the document. This is similar to selecting a file
association based on a file extension in Windows (i.e., mapping the .doc extension to the Microsoft Word
application). Once the user makes an association, subsequent requests for that MIME type are opened using the
associated application.

2.2.7 A Helpful Analogy

I've covered a lot of important material in this section. It might be useful to summarize it by making an analogy to the
telephone system network, as shown in Table 2.1.

Table 2.1. An Analogy Between the Web and the Phone System

Term Analogy

Resources
A resource is like the message you want to transmit during the call. It's the actual information you
want to send or receive.

TCP/IP
network

The TCP/IP network is like the standards used by the phone company to route your call from your
phone to the person that you're calling.

Port
The port is like the circuit that's opened across the network. It is the conduit through which the
message is sent.

HTTP
HTTP is like the "hello" and "goodbye" parts of your conversation, the agreed-upon convention that
governs how the conversation takes place.

Web
browser

The web browser is like the telephone, the component that allows you to place the call.

URL
The URL is like the phone number, the convention that associates a particular resource with an
abstract location.

MIME type
The MIME type is like the "nature" of the conversation (i.e., business, pleasure, etc.). It is the
specific classification of the message; additionally, it implies a specific action that must be taken
based on the message.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 2. Foundations

2.3 Content Delivery Model

In this section I'll explain how the OAS and WebDB servers apply the ideas introduced in the previous section to
deliver content from the server to the client (e.g., URLs, virtual directories, ports, etc.).

Although the specific details vary, OAS and WebDB follow the same basic process model to deliver web content and
rely on a virtual schema mapping called a Database Access Descriptor (DAD) to access the database. A DAD is
similar to a virtual directory mapping; it creates a name, used within a URL, that links the request to a specific
schema in the database.

Figure 2.1 illustrates the basic parts of the model.

Figure 2.1. Basic components of OAS and WebDB systems

A request begins when a user submits a URL or an HTML form to an OAS or WebDB server. A server component
called the HTTP listener intercepts the request and extracts its path section. This step, called URL resolution,
determines what type of resource the request is for and how it will be processed. If the URL's path section matches a
virtual directory mapping, then the request is for a static resource and the HTTP listener returns the requested
resource (if found) to the user's browser. If the path section matches a DAD stored in the server's configuration files,
the request is for a dynamic resource and the HTTP listener forwards, or dispatches, the request to the PL/SQL
gateway.

http://lib.ommolketab.ir

The PL/SQL gateway reparses the URL (or HTML form action attribute), extracting the DAD name and the name of
the procedure to execute, which is found in the resource name section of the URL. The gateway also extracts any
parameters that might have been passed as part of the request. If the request was made with a URL, the parameters are
stored in the query string. If the request was made with a form, the parameters are stored in the form's named data
entry fields.

The gateway uses the DAD configuration information to connect to the appropriate database schema, then executes
the specified procedure, passing any parameters included in the call. The procedure, which executes directly inside
the database, usually calls procedures in a set of packages called the PL/SQL toolkit. These calls create the page's
contents by "printing" HTML tags into a temporary buffer. When the procedure completes, the gateway signals the
HTTP listener to send the contents of the buffernow populated with the HTML output from the procedureback to the
user's browser. The user's browser displays the page, just as it would any other static resource.

Let's look at this procedure in more detail, especially the functions of the HTTP listener and the PL/SQL gateway.

2.3.1 The HTTP Listener

The HTTP listener is what we normally think of as the web server. Its job is to receive the requests users make with
their browsers, determine how to process them, then return the requested resources (along with their MIME types) to
the client machines that made the request. Most of the listener's life is spent monitoring a TCP port for requests made
from a web browser. Although OAS and WebDB use port 80 by default, they can be configured to use other ports.

Only one application at time can listen on a port. To run OAS and WebDB on the same
machine, you must configure them to listen on different ports. For example, if OAS is
listening on port 80, you could configure WebDB to listen on port 81.

The HTTP listener makes static resources available by mapping physical directories on the OAS or WebDB server to
a virtual alias. These aliases are used in the URL to request a static resource that resides in the corresponding
directory. The goal is to give clients a uniform way to locate a resource that is independent from the operating system
of the OAS or WebDB server. For example, on an NT server, you can map the directory c:\files\public\web_stuff to a
virtual directory called web. URLs that need to access resources in the directory must use the alias "web", rather than
the actual directory name, to retrieve static resources.

You can configure OAS to make subdirectories beneath a mapped directory accessible from the Web; WebDB maps
subdirectories by default. The subdirectory name, as defined on the server's operating system, is appended to the
"root" alias of the URL. For example, if c:\files\public\web_stuff had two subdirectories named bob and sue, the
virtual mapping to them would be /web/bob and /web/sue.[2]

[2] Since the Web originated mostly on Unix systems, URLs use the forward slash ("/") to denote directories, much to

the chagrin of the DOS world, which uses the backslash ("\").

Since they include operating system specific names, subdirectory mappings are not completely platform independent.
On Unix systems, for example, directory names are case sensitive, so the directories Junk and junk are not the same.
Consequently, a URL that accesses a subdirectory on a Unix server must be case sensitive as well. Other platforms
have similar caveats. The spaces in Win9x directory names cause all sorts of headaches, and the 3.x version has an
eight-character limit. The best advice on any platform is to keep subdirectory names simple.

2.3.2 The PL/SQL Gateway

http://lib.ommolketab.ir

The PL/SQL gateway is to the database what the HTTP listener is to the filesystem:

Just as static resources are accessed with a URL, PL/SQL dynamic resources are accessed with a URL.

Just as physical directories are mapped to virtual directories, physical database schemas are mapped to virtual
schemas. These virtual mappings are used in a URL to select the database schema in which a particular
dynamic resource resides.

Just as static resources are identified by filenames, PL/SQL dynamic resources are identified by procedure
names (packaged procedures are identified with both a package and a procedure name). These names are used
in a URL to select the procedure to execute.

Both OAS and WebDB use the Database Access Descriptors to connect to a specific schema, which includes all the
information necessary to establish a database connection, such as a username, password, and connect string. In either
case, the DAD is mapped to a virtual alias that is used within a URL to select a schema.

OAS schema mappings have two parts: a DAD, which maps a schema, and agents, which map to a DAD. The agent
name, not the DAD, appears in the URL to make the connection between the Web and the database. Both the URL
and the ACTION attribute of a form that requests a dynamic resource have the following general format (optional
sections are bracketed):

http://server[:port]/agent_name/plsql/[package.]procedure[?parm1=foo...]

Here are a few examples:

http://gandalf/agent_webtest/plsql/print_all_emps
http://gandalf/agent_webtest/plsql/show_emps?i_name=BOB
http://207.25.98.87:8181/secure_agent/plsql/show_users
http://betty/agent_webtest/plsql/forum.current_forum_list

WebDB has a slightly simpler mapping system that uses just the DAD in the URL; WebDB does not use agents. The
URL's format is as follows (optional sections are bracketed):

http://server[:port]/dad_name/[package.]procedure[?parm1=foo...]

Here are some examples:

http://pcandrew.ora.com/WebDB/WEBDB.home
http://gandalf:8181/WebDB/show_emps?I_name=FRED+FLINTSTONE
http://www.travel.com/travelers_site/flights.show_list?country=FR

Team-Fly

Top

http://gandalf/agent_webtest/plsql/print_all_emps
http://gandalf/agent_webtest/plsql/show_emps?i_name=BOB
http://207.25.98.87:8181/secure_agent/plsql/show_users
http://betty/agent_webtest/plsql/forum.current_forum_list
http://pcandrew.ora.com/WebDB/WEBDB.home
http://gandalf:8181/WebDB/show_emps?I_name=FRED+FLINTSTONE
http://www.travel.com/travelers_site/flights.show_list?country=FR
http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 2. Foundations

2.4 Database Integration

The HTTP listener and PL/SQL gateway are used to build web-enabled systems that provide tight integration with a
backend Oracle database. PL/SQL-based OAS and WebDB applications are developed using a set of packages called
the PL/SQL toolkit. In this section, we'll take a quick look at the toolkit and see an example procedure. The last
section covers how to pass parameters.

2.4.1 The PL/SQL Toolkit

WebDB and OAS both include the PL/SQL toolkit. The toolkit contains a variety of PL/SQL packages written and
supplied by Oracle that perform a range of tasks, including generating HTML tags, manipulating cookies (name/value
pairs used to save information throughout an entire session), and creating complex HTML structures based on
information in a database table. In general, procedures built with the toolkit will work in either product, although you
may run into minor database privilege issues that the DBA can help you resolve.

The packages in the toolkit (described in detail in Chapter 7) are:

HTP and HTF

HTP is a set of procedures that print syntactically correct HTML tags, which are returned to the user's web
browser. HTF is an equivalent set of functions that return HTML strings whose output is returned to the
program that called the function. In either package, procedures and functions correspond to specific HTML
tags; their parameters correspond to tag attributes.

OWA_COOKIE

A set of data structures, procedures, and functions used to create and manipulate cookies.
OWA_IMAGE

A set of data structures, procedures, and functions used to manipulate image maps.
OWA_OPT_LOCK

A set of data structures, procedures, and functions used to perform optimistic record locking. The package can
either compute a checksum that's used to test for differences or compare each field of the old and new records
(we'll look at this in detail in Chapter 7).

http://lib.ommolketab.ir

OWA_PATTERN

A set of data structures, procedures, and functions that perform advanced search and replace operations on text
strings using regular expressions.

OWA_SEC

A set of data structures, procedures, and functions used to develop customized security and authentication
procedures, such as GET_USER_ID (to return the user executing the procedure) or GET_CLIENT_IP (to
return the IP address of the machine making the request).

OWA_TEXT

A set of data structures, procedures, and functions used to perform operations on large strings. Also used as
the basis of many of the procedures in OWA_PATTERN.

OWA_UTIL

A set of data structures, procedures, and functions used to create advanced HTML structures, such as
calendars or tables. Many of the WebDB components, such as forms or calendars, are based directly on this
package.

2.4.2 A PL/SQL Example

The following example gives the flavor of how the toolkit creates web content. The example is a relatively simple
PL/SQL procedure that displays rows in an employee table. The output is formatted into HTML using the procedures
in the toolkit's HTP package:

/* Formatted by PL/Formatter v.1.1.13 */
PROCEDURE show_emps (
 i_job IN VARCHAR2 DEFAULT 'SALESMAN'
)
AS

 CURSOR emp_cur
 IS
 SELECT *
 FROM scott.emp
 WHERE job LIKE i_job
 ORDER BY ename;
 emp_rec emp_cur%ROWTYPE;
BEGIN
 HTP.title ('Employees in the EMP table');
 HTP.tableopen (cattributes => 'border=1 width=100%');
 OPEN emp_cur;
 LOOP
 FETCH emp_cur INTO emp_rec;
 EXIT WHEN emp_cur%notfound;
 HTP.tablerowopen;
 HTP.tabledata (emp_rec.ename);
 HTP.tabledata (emp_rec.job);
 HTP.tabledata (emp_rec.hiredate);
 HTP.tabledata (emp_rec.sal);
 HTP.tablerowclose;

http://lib.ommolketab.ir

 END LOOP;
 CLOSE emp_cur;
 HTP.tableclose;
END;

Figure 2.2 shows the output from the procedure. For a more advanced discussion of the PL/SQL toolkit, see Chapter
7.

Figure 2.2. Output of the show_emps procedure

2.4.3 Calling the Example

You can pass parameters to a WebDB or an OAS PL/SQL procedure by including them either in the query string of a
URL or as named elements on an HTML form. These parameters are mapped to the procedure's formal argument list
using named notation. For example, let's suppose we want to develop a web page that inserts a new user into a table.
The procedure we want to call is defined as:

/* Formatted by PL/Formatter v.1.1.13 */
PROCEDURE add (
 lname IN VARCHAR2 DEFAULT NULL,
 fname IN VARCHAR2 DEFAULT NULL,
 dpt_code IN VARCHAR2 DEFAULT NULL
)
IS
BEGIN
 INSERT INTO emp_table (last_name,first_name,dept)
 VALUES (lname, fname, dpt_code);
 COMMIT;
 HTP.print ('User was inserted');
EXCEPTION
 WHEN OTHERS
 THEN
 HTP.print ('Sorry, could not insert user.');
END;

http://lib.ommolketab.ir

2.4.3.1 Using a query string

The first way to call the procedure is to embed the parameter values in the URL's query string. Recall that the query
string is made up of sets of name/value pairs. When we call a PL/SQL procedure, the "name" part of the pair selects
the formal parameter to which we are assigning a value. The "value" part specifies the actual value to pass. The URL
to call the procedure is:

http://server/DAD/add?lname=odewahn&fname=andrew&dpt_code=MIS

2.4.3.2 Using an HTML form

We can call the same procedure with an HTML form. In this case, the form's action field specifies the procedure to
execute, and the named input elements on the HTML form pass parameters. The name of an input element must
match the name of a parameter to the procedure. Here are the HTML tags needed to create a form to call the add
procedure:

<form action=http://wilma/hr/plsql/add>
 First Name: <input type=text name=fname>

 Last Name: <input type=text name=lname>

 Department: <select name=dpt_code>
 <option value=HR>Human Resources
 <option value=MIS>Computer department
 <option value=ACCT>Accounting
 </select>
</form>

The PL/SQL gateway translates the information in the query string or on the form to a
named notation procedure call:

add (lname => 'odewahn', fname => 'andrew',
 dpt_code => 'MIS');

2.4.3.3 Parameter arrays

Sometimes it is desirable to process multiple values for the same parameter, such as when you want to allow a user to
enter multiple rows of data in a single form. In a query string, this is accomplished by giving the same name to
multiple name/value pairs. In a form, it is accomplished by using the same name for multiple input elements. On the
PL/SQL side, the corresponding parameter for the procedure must be declared as an array datatype. We'll see an
example of this in Chapter 8.

2.4.3.4 Parameter gotchas

Calling a procedure from the Web circumvents the compiler safeguards that occur in normal procedure calls. When
the gateway receives a URL to execute, it will try to do so whether the URL represents a syntactically correct call or
not. If the call contains even the slightest error, the listener bombs out and presents an ugly error page to the user.
Some of the most common sources of errors are:

Misspelling a formal parameter

http://lib.ommolketab.ir

The named notation calling method uses the formal parameter name to match the corresponding actual
parameter. The gateway generates an error if, for any reason, an actual parameter doesn't match one of the
procedure's formal parameters.

Omitting a required actual parameter

All procedure calls, regardless of notation, must provide an actual parameter for a formal parameter that does
not have a default value. Failing to do so results in an exception.

Passing the wrong datatype as a parameter value

An actual parameter value must match the declared type of its corresponding formal parameter. Unfortunately,
users can create an exception by passing garbage data.

The following guidelines help minimize these and other errors:

Follow a convention for naming formal parameters to reduce the chance of misspelling or misnaming a
parameter.

Provide default values for every formal parameter, even if it's only DEFAULT NULL, to reduce the chance that
a required parameter is omitted.

Declare parameters as a VARCHAR2 to protect against garbage data. Converting this value into the required
type (i.e., VARCHAR2 to NUMBER) inside the procedure allows you to trap exceptions. You can also use the
WebDB form wizard to automatically create JavaScript code to perform these checks (you can write your own
JavaScript programs, but that's beyond the scope of this book).

Don't give a parameter the same name as a column in a table, as this can totally confuse the
compiler. For example, in the add procedure presented in the previous section, naming the
last name parameter last_name instead of lname would cause a subtle error in the INSERT
statement because last_name has two different meanings: it's both a parameter and a table
column. You can spend hours trying to track down this relatively simple problem.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction
By Andrew Odewahn

Table of Contents

Chapter 2. Foundations

2.5 Database Security Review

Even though security policies are developed and enforced by the DBA, you should still understand how
database security issues can impact application design. For example, you should have a clear grasp of schemas
and object privileges if you're going to secure your systems by allowing access only through a minimally
privileged account.

Depending on the application, you might need to create an application-specific
security scheme (unless you create a DAD for every account, which is a maintenance
nightmare) to differentiate between users. For example, in Chapter 8, we'll look at a
threaded discussion list application in which we create our own username and
password list to allow users to post messages.

This section is a security refresher, covering security relationships among database users, database objects,
object privileges, and roles. If these terms are new to you, or you need to dust off a few cobwebs, read on.
Otherwise, feel free to skip to the next chapter.

2.5.1 Database Users

A user account is the first line of defense in an Oracle database. Similar to an account on a Unix or NT system,
each user account has an associated username and password. A user must log in to a particular account by
providing the correct password before running scripts, inputting data, executing PL/SQL programs, or
performing any other meaningful activity.

The term schema is often used synonymously with "user" or "account." Although the concepts are closely
related, schema is slightly more specific and refers not only to the account itself, but also to the collection of
objects (tables, indexes, packages, etc.) owned by the account.

2.5.2 Database Objects

http://lib.ommolketab.ir

The word object is one of the most overused in the computer world. Languages like Java and C++ create
objects with wonderful properties like polymorphism, inheritance, and a slew of other four-syllable words.
Object-relational databases like Oracle8i give us pseudo-objects that mimic the important properties of the
objects in Java. Finally, life itself gives us everyday objects like buses, rutabagas, and human resources
managers.

In Oracle, a database object is a general term for anything created and stored in an Oracle database, including
tables, indexes, views, synonyms, and stored procedures. Each object is owned by the account in which it was
created. To follow our Unix example, database objects are sort of like files; they belong to the user that created
them and to no one else.

Each object has a unique name. A table may be named emp, a procedure may be named give_raise, and an
index may be named emp_pk1. Once a name is given to an object, no other object within the schemaeven if it
is a different kind of objectcan use the same name. Attempting to create an object with an existing name results
in the error "ORA-00955: name is already used by an existing object."

2.5.3 Privileges

Just as every Unix account shouldn't have system administrator authority, every Oracle account shouldn't have
DBA power. For example, Bob in accounting shouldn't be able to issue the DROP TABLE command just to
see what will happen. Privileges allow us to control how much power a particular account can have.

There are two types of privileges: system and object. As a rule of thumb, system privileges let an account
execute SQL Data Definition Language (DDL) commands, while object privileges let an account execute SQL
Data Manipulation Language (DML) commands.

A privilege is granted to or revoked from a specific user account with the SQL commands GRANT and
REVOKE. For example, the following two commands give the scott account the right to create a table and
select from the emp table in the HR schema:

GRANT CREATE TABLE TO scott;
GRANT SELECT ON hr.emp TO scott;

The next two commands show how to remove a privilege using the REVOKE statement:

REVOKE CREATE TABLE FROM scott;
REVOKE SELECT ON hr.emp FROM scott;

2.5.3.1 System privileges

System privileges give an account the right to perform specific actions. For example, an account must be given
permission, usually by the DBA, to create, alter, drop, or execute various database objects. An account can
also be given permission to perform these actions in other schemas by including the ANY option.

There are a number of system privileges,[3] including:

[3] The SYSTEM_PRIVILEGE_MAP data dictionary table lists all the system privileges.

http://lib.ommolketab.ir

CREATE TABLE
CREATE PROCEDURE
ALTER USER
EXECUTE ANY PROCEDURE
GRANT ANY PRIVILEGE

The most minimal system privilege is the CREATE SESSION privilege, which allows the account only to log
in to the database. Unless granted other privileges, these accounts cannot do much damage. For this reason,
they are often used as gateways to more privileged accounts, which selectively grant the account access to a
limited number of objects.

2.5.3.2 Object privileges

Object privileges allow an account to make its objects available to other accounts. Each type of object has its
own set of applicable privileges. After a privilege on an object is granted to another account, that account can
perform a variety of operations that fall within the limits of the granted privileges. In WebDB, some of the
most commonly used privileges (by object) include:

Tables and views

SELECT: Select rows from the table.

INSERT: Insert rows into the table.

UPDATE: Update rows in the table.

DELETE: Delete rows from the table.

Procedures, functions, and packages

EXECUTE: Execute a stored program.

Sequences

SELECT: Select the sequence value.

A stored procedure or function executes with the privileges of its owner, not those of
the account that is executing it, unless overridden with the Oracle8i "invoker's rights"
option.

An account may access an object once it has been granted the necessary privilege. If it tries to perform an
action for which it does not have the necessary privilege, the RDBMS generates an error. The account
references the object using its fully qualified object name, which is simply the object's name prepended with its
owning schema. The two names are separated with a period. For example, suppose the accounts bob, sue, and
cato each own a table named emp. Assuming we have the right privileges, we can use the fully qualified object
name in the following SQL statement to get an aggregate list:

http://lib.ommolketab.ir

SELECT * FROM bob.emp
UNION
SELECT * FROM sue.emp
UNION
SELECT * FROM cato.emp;

For example, suppose Alice in accounting wants to dump some of her work on Bob, who was recently
demoted to clerk for destroying a production database. She can use the SQL GRANT command to give Bob's
account (bob) privileges on tables she owns so that Bob can run various scripts:

GRANT SELECT ON employees TO bob;
GRANT INSERT ON employees TO bob;

Once Bob has the proper privilege, he can execute SELECT commands on Alice's table by using the table's
fully qualified name:

SELECT * FROM alice.employees

Notice that Alice has withheld the DELETE privilege; Bob will get an error if he tries the DELETE statement.

Using Synonyms to Achieve Location Transparency

Occasionally, an object must be moved from one schema to another to accommodate new
circumstances. For example, what happens if Alice is promoted and wants Cato (the new upstart in
accounting) to own and maintain the employees table? Boband anyone else using the tablemust
update his scripts to reflect the table's new location. For this reason, it's a bad idea to embed an
object's owner directly into a SQL or a PL/SQL statement.

Synonyms eliminate this problem. A synonym is simply an alias, or pointer, for another object.
Used in place of a fully qualified object name, the synonym allows us to design systems that
achieve location transparency. This is just a fancy way of saying that our programs do not depend
on a particular account's owning a particular object. If an object is moved to a new owner, we can
simply change the synonym in one place and everything will continue to work.

In the previous example, Bob could achieve location transparency by creating a synonym for the
employees table:

CREATE SYNONYM employees_syn FOR
 alice.employees

He could then use the synonym name instead of making an explicit reference to the owning
schema:

SELECT * FROM employees_syn;

When Alice moves the table to Cato, Bob can simply change the synonym to reflect the new
location.

http://lib.ommolketab.ir

2.5.4 Roles

It would be a strange site indeed that let accountants control critical database objects. Instead, these objects are
usually owned by a highly privileged account that is accessible to only the database administrator and a few
trusted developers. The DBA creates less privileged accounts for average users and selectively grants them
privileges based on their needs.

For example, an account named HR might own all the objects for the company's human resource management
system. The DBA might create a view of the employees table and grant Bob's or Alice's account permission to
query it. She might also create a separate account for data entry clerks with INSERT privileges on a few
important tables. Finally, she might create an account for a web application that displays employee information
stored in database snapshots. Ideally, each account has the minimum privileges it needs to fulfill its goal.

Managing these privileges by hand is a daunting task. Even a small company can have dozens of applications,
hundreds of tables, and zillions of users. It is simply impossible for the DBA to manually grant the correct
privileges to every user in a way that is convenient and safe. Remember, lurking in the back of every DBA's
mind is the secret (and sometimes not so secret) fear that his or her users and developers are idiots who will
drop critical tables just for kicks. It is crucial for both security and the DBA's sanity that each user have access
to only what he or she needs.

This is where the concept of a database role comes to the rescue. A role is a collection of privileges grouped
under a single name. Instead of granting privileges to individual users, the DBA grants them to a role. This
role, in turn, is granted to the users that need the corresponding privileges. The DBA can add or revoke
privileges from a role at any time, and these changes automatically flow to the users assigned to the role.

For example, the DBA might create a role called ACCOUNTANT and grant it selected privileges on tables
and views owned by the HR account. The role reduces the maintenance on Alice's, Bob's, Cato's, and Xena's
accounts to a single grant. Figure 2.3 shows a typical scenario in which roles are used to create access rights
for various classes of users, such as pay clerks, managers, and receivables clerks.

Figure 2.3. A common use for roles

http://lib.ommolketab.ir

When writing stored PL/SQL program units, such as packages, note that the compiler
ignores the privileges granted through roles. To work around this problem you must
either create the program in the account that owns the object or explicitly grant the
necessary privilege to the account that owns the stored procedure. However, users can
still execute procedures granted through roles.

A role is a database object just like any other. Assuming you have the CREATE ROLE privilege, you create a
role with the following syntax:

CREATE ROLE role_name;

You then grant privileges on various objects to the new role, just as you would to a normal user. For example:

GRANT SELECT ON customers TO accts_pay_role;
GRANT SELECT ON cust_orders TO accts_pay_role;

Finally, you grant the role to individual users, treating the role as though it were a new privilege. For example:

GRANT ACCTS_PAY_ROLE TO bob;
GRANT ACCTS_PAY_ROLE TO cato;

Revoking a privilege from the role automatically revokes it from all the users assigned to the role.

2.5.5 Additional Security Precautions

In addition to database security features, there are three other security precautions worth noting, although we
won't cover them in any detail. These include:

Secure Sockets Layer (SSL)

http://lib.ommolketab.ir

A standard for securing a web session by encrypting the traffic between a browser and a web server.
The method relies on a digital certificate, a special file assigned to a site by a trusted source called a
certification authority (CA). The CA generates the certificate and sends it to the web site. Browsers
wishing to connect to the site must first download and accept the certificate, which is used in an
encryption scheme to secure the subsequent traffic.

Firewall

A machine placed between two networks that controls what traffic can cross the boundary. Companies
almost always have a firewall between their internal network and, for instance, the Internet. The firewall
can be configured to block traffic originating from certain areas, let through certain types of traffic (for
instance, HTTP) and reject others (Telnet traffic), and force users to supply a username and password
before they can go through the firewall.

Advanced Networking Option (ANO)

A security server used to encrypt SQL*Net and Net8 traffic. This is useful in a web setting because
(depending on the configuration of the firewall), users can establish a SQL*Net or Net8 connection
over the Internet, allowing them to use tools like SQL*Plus. ANO secures the conversation.

Web security (and computer security in general) is a complex and broad subject that encompasses many
different areas handled by different individuals. The DBA sets database security policies, system
administrators check on operating system security, application developers build security features into their
applications, and the network administrator designs hardware and software configurations to secure the
network. Even the security guard at the front door has an important role in maintaining the physical security of
your site.

No matter how you secure your system, you are still vulnerable to an attack. One of
the simplest and most effective hacking techniques, social engineering, simply tricks
people into revealing otherwise secure information through deception. For example,
it's much easier to call an internal help desk and sweet-talk someone out of a password
than to penetrate a secured system.

As an application developer, your main security duty is to make sure that your applications do as little as
possible to compromise the system (for example, writing a web system that reveals a password list). In general,
though, you'll have very little direct involvement in the other areas. While you'll certainly work with the DBA
to gain privileges to various objects, you will probably not work with the network administrator (other than to
listen to complaints about how the administrator doesn't have enough bandwidth for your application).

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 3. WebDB

WebDB is a user-friendly tool for developing database-driven web applications and sites. You perform every
WebDB task, from database administration to application development, using just a browser; everything in a
WebDB site, from applications to content, can be stored inside a backend database.[1]

[1] Oracle calls this concept "100% in the browser, 100% in the database," meaning that everything is

accessed with just a browser and stored in just a database.

Every WebDB component, from development tools to the database administrator toolkit, has an HTML user
interface, eliminating the need for complex tools like Oracle Forms or Oracle Enterprise Manager (OEM).
Because browsers are equipped with standard Internet protocols, WebDB client machines do not need
SQL*Net or Net8; this allows WebDB sites to be run or administered from "thin-client" machines. WebDB
can also take advantage of JavaScript-enabled browsers.

Everything in a WebDB site can be stored directly inside an Oracle database. This allows the site to be
professionally administered and maintained using the same tools and techniques as for any other production
Oracle database. As an added benefit, the site's performance can be monitored and improved through well-
understood database tuning techniques. WebDB's "database-centric" approach helps application developers
and DBAs leverage their current skills, rather than acquiring an entirely new and unfamiliar skill set.

How you use WebDB depends on your job. Database administrators can use WebDB to manage database
objects, check database logs, and perform other DBA tasks. Application developers can use WebDB to create
HTML-based web applications using a set of wizards that automatically build application components, like
forms or reports. End users can use the WebDB components you create to view reports, fill out data entry
forms, or view the content published by other users. Additionally, almost any user can use WebDB to publish
web content on their own personal home page, as well as view content made available by other WebDB users.

Given the nature of the Web, these tasks are rarely mutually exclusive. For example, a DBA might want to
upload "tips and tricks" to a page of her personal WebDB site. An application developer might want to monitor
application performance or create database objects such as tables. An end user might want to create a report
based on a SQL query (stranger things have been known to happen!).

In this chapter, I'll give you an overview of the different things you can do with WebDB, then look at the

http://lib.ommolketab.ir

architecture that makes this all possible. As you read this chapter, keep in mind that WebDB itself is written
entirely in PL/SQL. In many ways, it's the ultimate example of the power of combining HTML and PL/SQL
into a web application.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 3. WebDB

3.1 Overview of WebDB

WebDB is divided into three broad categories: database administration, application development, and content-driven
web site management. In the next three sections, we'll briefly look at each area with an eye towards seeing what the
product does, though not necessarily how you perform each task.[2]

[2] The appendix, Resources for the Oracle Web Developer , contains a list of resources that provide complete, step-

by-step instructions.

3.1.1 Database Administration

You can use WebDB to perform many routine database administration tasks using just a web browser, rather than a
"fat client" like the Oracle Enterprise Manager suite of database management tools. For example, suppose you've
gotten a call from Bob in accounting insisting that "my Internet doesn't work." Befuddled by your patient explanation
that his statement makes absolutely no sense, he demands that you walk over to his desk and help him fix his
problem. Since customer service has been added to your list of job performance metrics, you comply. When you
arrive at Bob's desk, you realize that he has simply forgotten his password.

Since no one in his right mind would install SQL*Plus (much less OEM) on Bob's machine, you would normally have
to trek back to your desk to reset his password, confirming Bob's darkest suspicions that you really don't know what
you're doing. Fortunately, you can use WebDB's security management options to save yourself the trip. While you
can't do everything from WebDB, you can perform many routine tasks, such as creating database objects, managing
user accounts and security roles, and monitoring database performance. Since everything is accessible with just a
browser, you can perform these tasks from almost any client, whether you're on-site or not.

The following sections briefly describe how you'd use WebDB to perform typical database administration tasks.

3.1.1.1 Browse database objects

You can use WebDB to view, or browse, the definitions for database objects. The browse capability of WebDB
applies to all objects in a particular schema. Once you select the schema, WebDB displays a list of all the object types
in the schema, such as tables, indexes, and views. Figure 3.1 shows the WebDB "Browse Database Objects" option.

http://lib.ommolketab.ir

Figure 3.1. Browsing database objects with WebDB

Selecting a specific object type (for example, Tables) presents you with a list of all objects of that type owned by the
specified schema (for example, EMP and DEPT). Selecting a particular object either displays its definition or takes
you to the "Edit Objects" option.

3.1.1.2 Administer WebDB and database security

WebDB security is built with Oracle's standard security model. There are three security components:

Users

WebDB users, whether they are created in WebDB or exist in the database beforehand, are simply Oracle
schemas. For example, the SCOTT (assuming it exists) and SYS accounts appear as WebDB users, even
though they have nothing to do with WebDB. Consequently, WebDB users are like any other Oracle account:
you can log into them with SQL*Plus, manage them with Oracle Enterprise Manager, and access their schema
objects with third-party tools like ODBC.

Privileges

WebDB object privileges are Oracle object privileges. In addition to the native system and object privileges,
WebDB introduces two additional, non-native privileges, build-in and browse-in privileges, that allow
multiple users to access WebDB components. The build-in privilege, which is like the ANY option in a system
privilege, allows a WebDB user or role to create user interface components in another user's schema. The
browse-in privilege allows a user or role to access the user interface components owned by another schema.
These privileges are implemented as rows in WebDB's data dictionary tables.

Roles

http://lib.ommolketab.ir

WebDB roles are database roles. These roles are used in conjunction with the build-in and browse-in
privileges; when you assign a WebDB user a role, you not only assign a corresponding database role but also a
WebDB-specific privilege. For this reason, you should assign roles using the WebDB interface, and not
through OEM or SQL*Plus.

Figure 3.2 shows WebDB's "Create a New User" section of the "User Manager" option.

Figure 3.2. Creating a user with WebDB

3.1.1.3 Monitor database and application performance

WebDB maintains both application and database logs to help you tune performance. The application logs contain
information about the frequency with which WebDB is used. The database logs contain traditional database metrics,
such as memory usage and the status of the redo logs.

Each kind of log is used to create a number of reports. Reports generated by the application log include application
component response times, user requests per component, and user requests by hour. Reports generated by the
database log include database parameters, redo logs, and rollback segments. Most of these reports can have several
different formats, such as a chart or a table; you can even download them directly into a spreadsheet and create your
own graphs! Figure 3.3 shows a chart of the size of a database's datafiles.

Figure 3.3. A WebDB chart

http://lib.ommolketab.ir

3.1.2 Application Development

WebDB applications consist of database objects, like tables and views, and user interface components, like forms and
reports. For example, a simple application might consist of a database table, a data entry form to populate the table,
and a report that queries the table and displays the results. Users use a web browser to access the form or report.

To simplify the development process, WebDB has a number of wizards that are analogous to the wizards in Microsoft
Office. A wizard is a series of screens that create an application component based on information you provide. There
are three kinds of wizards: database object wizards, user interface (UI) component wizards, and shared component
wizards. In addition, since WebDB includes the PL/SQL toolkit, you can build your own custom components and
applications. The following sections describe these wizard types.

3.1.2.1 Building database objects

WebDB's "Object Wizards" option guides you through the steps needed to create a database object. For example, the
Table wizard option takes you through four screens. On the first screen, you select the schema in which to create the
table and table name. On the second screen, which is reminiscent of Oracle Schema Manager (a GUI management
tool included with Oracle Enterprise Manager that simplifies schema administration), you define each of the table's
columns, providing such information as a column name and datatype. On the third screen, you define the table's
storage parameters, such as its tablespace and number of initial extents. The final screen allows you to confirm the
table definition; clicking the "Ok" button creates the table.

WebDB has the following database object wizards:

Function wizard

Template for the CREATE FUNCTION statement. A function is a group of instructions stored directly in the
database. It returns a single value to the program that calls it. The function definition can contain parameters.

Index wizard

http://lib.ommolketab.ir

Template for the CREATE INDEX statement. An index is used to improve performance in SQL queries.
Package wizard

Template for the CREATE PACKAGE statement. A package is a group of variables, procedures, and
functions stored directly in the database. A package has two parts: a specification and a body. The
specification lists the package's public variables, procedures, and functions. The body contains the actual
program code for each procedure. Packages are used to mimic many of the design concepts found in object-
oriented languages, such as overloading and encapsulation.

The database objects you create in WebDB are normal database objects; the wizard is
simply filling in the different pieces of a SQL statement for you. If you're developing an
application you can bypass the wizard entirely and create objects in SQL*Plus, Enterprise
Manager, or any other tool. The "Object Wizards" option comes in handy, though, when
you're off-site and can't get a SQL*Net connection.

Procedure wizard

Template for the CREATE PROCEDURE statement. A procedure is a group of instructions stored directly in
the database that performs a specific task. The procedure definition can include parameters.

Sequence wizard

Template for the CREATE SEQUENCE statement. A sequence is a counter that is often used to provide
primary key values.

Synonym wizard

Template for the CREATE SYNONYM statement. A synonym is used to provide an alias to another database
object, usually to provide location transparency.

Table wizard

Template for the CREATE TABLE statement. A table is a collection of columns and rows that store data in
the database.

Trigger wizard

Template for the CREATE TRIGGER statement. A trigger is a group of instructions that execute in response
to a specific table event, such as an insert or a delete. Triggers are often used to set a row's primary key (based
on a sequence) or update its timestamp.

Type wizard

Template for the CREATE TYPE statement. A type is a data structure much like a record stored directly in the
Oracle database that provides object-like capabilities inside the database.

View wizard

Template for the CREATE VIEW statement. A view is a stored SQL query that acts like a table. Views are
used to simplify complex queries for end user reporting tools. They are also used for security purposes to
restrict access to a subset of columns in an important table.

Figure 3.4 shows the table wizard.

Figure 3.4. Creating a table with WebDB

http://lib.ommolketab.ir

3.1.2.2 Building user interface components

Once you've created a database object, you can use WebDB's user interface (UI) wizards to create user interface
components such as data entry forms or reports. After you've stepped through a series of screens in which you define
the components' properties, the wizard creates a PL/SQL stored package to implement the user interface.

There are eight user interface wizards:

Calendar wizard

Creates an HTML-based calendar using information stored in a table. You could use the calendar wizard to
create an HTML-based "to-do" list displayed in a format that looks like a monthly calendar.

Chart wizard

Creates a bar chart based on information in either a database table or a SQL query.
Dynamic page wizard

Allows you to create standard HTML pages that can contain SQL and PL/SQL commands embedded inside a
special <ORACLE> tag, as in:

<ORACLE>SELECT * FROM emp</ORACLE>
Form wizard

Creates several different kinds of HTML forms, such as forms that execute stored procedures, forms that
perform standard table operations like inserts or updates, master detail forms, and Query by Example (QBE)
forms.

Frame driver wizard

Creates a split screen containing two HTML frames. The first frame (the "navigation" frame) contains a list of
hyperlinks based on a query you provide. Clicking one of these links will display the page in the second frame
(the "target").

http://lib.ommolketab.ir

Hierarchy wizard

Creates a drill-down based on information on the parent-child relationships in a recursively defined table.
Menu wizard

Allows you to create parent-child menu structures. The menu wizard is very similar to the hierarchy wizard.
Report wizard

Creates a report based on a table or SQL query. You can display reports as HTML pages or ASCII files, or
you can download them directly into an Excel spreadsheet. Figure 3.5 shows the report wizard in action.

Figure 3.5. Formatting the columns of a WebDB report

3.1.2.3 Building shared components

After you've created your interfaces, you can use the shared component wizards to create a library of reusable
components that ensure a consistent design across the application. A cardinal rule of interface design is that there
should be a consistent look and feel across an application's screens and reports. Unfortunately, this goal is often very
difficult to reach, especially for systems that have many developers. For example, suppose you and several other
programmers are building a document management system. Each screen in the system must have a Search option that
the user activates by clicking an icon. You, as an avid outdoors person, would like to use a pair of binoculars as the
icon. Another person wants to use a magnifying glass, and yet another wants to use a picture of a blue-tick hound
dog. How do you make sure everyone does the same thing?

Rather than leaving these sorts of choices to the vagaries of each developer, many companies use a library of
standardized components. Each component has a name, such as SEARCH_BUTTON, that represents a real item,
such as a picture of bloodhound. When a developer needs to put a search button on a form, she uses the named
component, rather than a real icon. This guarantees a reasonable degree of consistency across a wide range of
applications.

http://lib.ommolketab.ir

To simplify the often tedious process of standardization, WebDB allows you to create reusable application elements
called shared component libraries. The basic idea of a shared component is that it associates a logical name with a
physical object. Developers can include these shared components in their UI components. There are seven shared
component libraries:

Colors library

A named Red, Green, Blue (RGB; a common way to specify a color) color combination. For example, you can
associate the RGB color #9F9F5F with the name Khaki.

Fonts library

A named font. For example, you might want to associate the Arial font with the name INVOICE_FONT to
enforce a consistent look across reports in an invoicing system.

Images library

A named image.
JavaScripts library

A named JavaScript script. You can use this component to build a library of client-side scripts that developers
can reuse in their applications. For example, you might create a library of field validation scripts.

Links library

A named hyperlink. You can use this component to make sure that hyperlinks leading to the same location all
use a consistent name. For example, you might want to create a named hyperlink to an online help system to
guarantee that every application uses a consistent link name. Additionally, you use links to bind various
WebDB components together into a single system. For example, in an employee data entry component of a
human resources system, you might want to create links to employee educational history, salary history, and
W2 information. Finally, you can use links to create hooks to PL/SQL procedures you develop with the
PL/SQL toolkit.

Lists of Values library

A named List of Values (LOV). You can use this component to create a variety of styles of lists (such as radio
buttons, select lists, and pop-up windows) based on an underlying database table, view, or SQL query. For
example, you might want to create a list called ACTIVE_EMPLOYEES to allow a user to select from a
predefined list of valid employees.

UI templates library

A named page layout template. You can use this component to create a standard page format for each page in
an application.

Figure 3.6 shows the LOV wizard being used to create a pop-up List of Values.

Figure 3.6. Creating a list of values in WebDB

http://lib.ommolketab.ir

3.1.2.4 Building custom components

While application generators are wonderful time savers, they almost always get just the first 80% of an application's
requirements, leaving you to code the remaining 20% by hand. And what if you want to write an application for
which WebDB doesn't have an associated wizard? For example, there is no shopping cart wizard, so if you want to
create an electronic storefront application, you must write it from scratch.

WebDB includes the PL/SQL toolkit software development kit (SDK) to allow you to write your own web
applications. This is the same set of packages that comes with OAS, so anything you develop in WebDB will also
work in OAS, and vice versa. Subsequent chapters detail how to use these systems to develop your own applications.

3.1.3 Content-Driven Web Site Management

WebDB's third major function is creating content-driven web sites. The advantage of content-driven sites deriving
from database information is that you can completely change and rearrange the sites and their content with a few
mouse clicks. Filesystem-based sites, on the other hand, are much more difficult to modify because they have a more
rigid structure. The most interesting thing about WebDB sites is that they not only allow users to view information
already in the database, but also let users add their own content to the site. For example, a user could upload an Excel
spreadsheet to his personal site and make it available without the webmaster's help.

Consistent with WebDB's "100% in the browser, 100% in the database" philosophy, every feature is accessed with a
browser and all content is stored in an Oracle database (with a few exceptions, such as images, which can also be
stored as files). WebDB uses this information to create a hierarchical view of the entire site, making user uploads
available to users with the appropriate privileges. In this section, we'll look at three of WebDB's features for creating
content-driven web sites: its options allowing users to publish their own content, its features for organizing and
managing the content, and its methods for controlling who can access the content.

3.1.3.1 User-uploaded content

http://lib.ommolketab.ir

WebDB's most unique and innovative feature is that it allows users to add their own web content directly from their
browsers, effectively eliminating the bottleneck of requiring the webmaster to manually add new content. Each user is
assigned his or her own personal web folder to which he or she can add various kinds of content (depending on the
privileges granted by the site administrator). Additionally, if given the proper privilege, users can contribute content
to folders owned by other users.

Users add content from the WebDB dashboard. The dashboard is a set of options available at the top of every page
that allows users to (among other things) add an item, create a new subfolder, change a folder's properties (such as its
name and description), and allow other WebDB users to access a folder's content. Users can contribute the following
items:

File

A standard file, such as a Word or Excel document, that is uploaded to a database table. WebDB is integrated
into the interMedia Text cartridge, which automatically indexes it for later searching.

Folderlink

A hyperlink to another WebDB folder.
Imagemap

A standard imagemap.
PL/SQL call

A call to a PL/SQL procedure; for example, a call to one of the custom PL/SQL applications we'll develop
later in this book.

Text item

A plain text message that displays on the page. A user can use this item to quickly and easily post messages
for the site.

URL

A generic hyperlink to another site. For example, a user could enter a list of favorite sites on the Web.
WebDB component

Creates a hyperlink to a WebDB user interface component. For example, a user could create a link to a report.
Optionally, you can also configure WebDB to place the component on the page, rather than just a hyperlink.

Figure 3.7 shows the screen used to upload a file to a WebDB site.

Figure 3.7. Uploading a file to a WebDB site

http://lib.ommolketab.ir

3.1.3.2 Managing content

Once users have added content to their site, you can manage it as you would any other information stored in an
Oracle database. For example, you can create a backup schedule, see how much space each user consumes, and audit
changes to the site's content. In short, you can apply all your organization's hard-won data management skill to
Internet content.

In addition, you can organize site content so that it's easy for users to find. WebDB has three basic ways to do this:

Folders

As we've already seen, users can have individual folders to which they can upload content. You can also create
project- or application-specific folders. For example, WebDB includes a demo application called "The
Traveler," an example of a database-driven travel site. Behind the scenes, WebDB's folders are really just rows
in a table; uploaded items include the primary key for the row in the folder table. The folder table is defined
recursively (i.e., parent/child rows) to represent subfolders.

Categories

Each item is assigned to a single category that identifies its general type. For example, the "The Traveler"
demo uses travel-related categories, such as Flights, Lodging, Restaurants, and Travel packages. These
categories let users search for specific kinds of items, such as "Restaurants that serve seafood."

Perspectives

Users can also assign multiple perspectives to further categorize an item. Unlike a category, which defines
what an item is, a perspective defines who might be interested in it. For example, "The Traveler" demo might
have the perspectives Food Connoisseurs, Outdoor Enthusiasts, or History Buffs. Users can then search for
items of interest to them, for example, "Restaurants that serve seafood of gourmet quality."

A user can rearrange a site on the fly by changing each item's categories and perspectives. Figure 3.8 shows WebDB's
Site Map, a hierarchical list of all folders.

http://lib.ommolketab.ir

Figure 3.8. The Site Map, a list of all folders in WebDB

3.1.3.3 Controlling access to content

The WebDB site administrator assigns access privileges to information in the site. The administrator can manipulate
the following WebDB settings:

Group

Allows the site administrator to define named groups of users, analogous to roles, that are used to easily assign
web content to multiple users. Groups, however, are modeled in database tables and are not actual database
roles.

Privilege

Allows the site administrator to add and manage WebDB site users. This is pretty much the same set of
privileges used in the Oracle database, with some additional privileges for managing content. These include
the ability to administer a site, add news items, and change the site's look and feel.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 3. WebDB

3.2 WebDB Architecture

Because WebDB uses the database's native components, it is a scalable, powerful development tool for building
content-driven sites on Oracle. Since it's essentially written in the database's native language, it eliminates the need
for cumbersome layers like ODBC or JDBC.

WebDB's dirty little secret is that its wizards are really just PL/SQL code generators that act on normal database
objects. When you create a user with WebDB, you are really creating a corresponding database schema, just as you
would for any other Oracle user. When you use the table wizard, you are really just filling in the pieces of a CREATE
TABLE command. When you build a form, you are really creating a PL/SQL package. The options you enter into
these wizards tell WebDB how to create the corresponding database objects.

WebDB is a standalone product that contains everything you need to create a complete application. Two built-in
componentsthe PL/SQL gateway and the HTTP listenermake this possible. Figure 3.9 illustrates the relationships
among the database objects, UI components, shared components, roles, users, the PL/SQL gateway, and the HTTP
listener.

Figure 3.9. The components of WebDB

http://lib.ommolketab.ir

In the following sections, we'll look at WebDB's PL/SQL gateway and its integrated HTTP listener.

3.2.1 The PL/SQL Gateway

Once we've created our WebDB user interface components, we can use the PL/SQL gateway to execute them from
the Web. The gateway is situated between the database and the HTTP listener. The HTTP listener forwards a request
for a component to the PL/SQL gateway, which executes the procedure and stores its output in a buffer. The HTTP
listener then sends the contents of this buffer, which now contains the HTML instructions that create the component,
back to the user's browser.

Users call a procedure using a URL that specifies the name of the package (which has the same name as the
component), the procedure to execute, and any parameters required by the procedure. The PL/SQL gateway uses this
information to call the correct procedure. Each procedure begins with a security check to make sure the user
attempting to access the component has the required permissions.

The gateway uses DADs to authenticate web users. A DAD is a unique name included as part of a URL. The
appearance of a DAD name in the URL signals the HTTP listener that the URL is requesting a WebDB component.
The PL/SQL gateway combines the DAD configuration information with the other parts of the URLthe package
name, procedure name, and parametersto execute the requested procedure. The URL syntax is:

http://webDB_server:port/dad_name/package.procedure?parm1=foo

3.2.2 Configuring a Database Access Descriptor (DAD)

The DAD configuration information specifies a unique name for the DAD and various other configuration
information. Again, the name of the DAD is used in the URL to map to the database schema specified in the DAD.
Figure 3.10 shows the WebDB interface used to manage these settings (in this case, WebDB appears in the path
section of the URL to the WebDB server).

Figure 3.10. DAD administration in WebDB

http://lib.ommolketab.ir

3.2.2.1 DAD parameters

The DAD parameters are:

Database Access Descriptor Name

The unique DAD name. When it appears in a URL, the DAD name signals the HTTP listener to forward the
request to the PL/SQL gateway. This parameter is always required.

Oracle User Name

The Oracle schema that will execute the procedure. If this name is blank, the user is prompted for a username
and password.

Oracle Password

The password for the Oracle schema. If this is blank, the user is prompted for authentication information.
Oracle Connect String

The connect string of the database running WebDB. The local database (ORA_SID) is used as the default if
the field is left blank.

Maximum Number of Worker Threads

The maximum number of threads the WebDB server will use to process requests.
Keep Database Connection Open between Requests?

If this parameter is set to "yes," the listener keeps the database connection open after the request is finished.
The next time the user makes a request from the DAD, the listener can open the connection rather than
establishing a new one. This improves performance dramatically, since establishing the initial connection is
usually quite time consuming. However, this is not the same as a persistent connection; state information such
as the values of PL/SQL variables is lost after the request. If the parameter is set to "No," the connection is
closed after each request, resulting in poorer performance.

Default (Home) Page

http://lib.ommolketab.ir

The default procedure to execute when the URL omits a procedure name.
Document Table

The table used to store files uploaded to WebDB.
Document Access Path

The path element used to retrieve an uploaded file.
Document Access Procedure

The procedure to execute immediately after an uploaded file is retrieved.

WebDB uses basic authentication, a standard HTTP mechanism in which the user must
supply a username and password before accessing the site. The password is transmitted as
plain text (unencrypted) across the Web, making it fairly insecure. A second method, digest
authentication, is more secure because it encrypts the password before transmission.
Unfortunately, while this method is supported in OAS, it is not (at least at the time of this
writing) supported in WebDB.

3.2.2.2 Configuration file

The configuration information for the PL/SQL gateway is stored in the file
%ORACLE_HOME%/listener/wdbsvr.app. Here's an example configuration file that underlies the entries in Figure
3.10:

[DAD_WebDB]
;connect_string =
;password =
;username =
default_page = WEBDB.home
document_table = WEBDB.wwv_document
document_path = docs
document_proc = WEBDB.wwv_testdoc.process_download
;name_prefix =
;always_describe =
;after_proc =
reuse = Yes
connmax = 4
;

3.2.3 The HTTP Listener

The HTTP listener, the last major component of WebDB, is basically a miniature web server. It has the following
characteristics:

It supports HTTP 1.0.

It can serve static files residing in mapped directories.

It supports application-specific MIME type mapping.

http://lib.ommolketab.ir

It is multithreaded to provide increased performance.

It is specifically designed to integrate with the Oracle database via PL/SQL applications. Although the listener
was added to make WebDB a standalone product, it can be used to develop any PL/SQL toolkit application.

It does not currently (as of WebDB version 2.0.5) support HTTP 1.1, SSL, or CGI; Oracle is considering
adding support for SSL, CGI, Java™ Servlets, Java Server Pages, and XML.

The HTTP listener configuration parameters fall into three general categories: server settings, virtual directory
mappings, and MIME type mappings.

3.2.3.1 Server settings

The server settings govern the listener's general behavior. Parameters of note include:

Server Port

The port setting determines the communications port on which WebDB "listens" for incoming requests. The
default is 80. If you choose another value, URLs referencing the site must specify this value.

Default Mime Type

The default MIME type returned for types that are not explicitly mapped.
Logging Level

The listener maintains a number of logs that can track requests and errors. There are separate log files for the
listener and PL/SQL gateway, as well as for each thread. Log files all end with a .LOG extension; log files for
individual threads include the thread number as an index. Values for the logging level include:

None

No logging
Standard

Log requests using standard NCSA format
Extended

Log requests using extended NCSA format
Error

Log requests using NCSA format, including extended error information

3.2.3.2 Virtual directory mappings

The virtual directory mappings allow the listener to return static files by mapping physical directories to aliases used
as part of a URL. Mappings are made using multiple name/value pairs consisting of:

Physical directory

The physical directory on the machine running WebDB. Once mapped, all files and subdirectories are
accessible from the Web.

Virtual directory

http://lib.ommolketab.ir

The corresponding alias for the physical directory. This alias is used as part of the URL to refer to a physical
directory.

3.2.3.3 MIME type mappings

The MIME type mappings map a specific type of file to a MIME type. The listener is preconfigured with most of the
standard mappings (e.g., image/jpeg to files with the .JPG extension). You can extend these defaults with your own
mappings (e.g., application/rpt to files with the .RPT extension). Mappings are made using multiple name/value pairs
consisting of:

MIME type

The MIME type returned for the specified set of corresponding file extensions.
File extension

The file extensions mapped to the MIME type. These mappings are case sensitive, so you will often find the
same extension listed in various ways (e.g., .jpg, .JPG, .jpeg, .JPEG).

3.2.3.4 Configuration file

The configuration information for the HTTP listener is stored in the file %ORACLE_HOME%/listener/wdbsvr.cfg.
The following listing is an example configuration file:

;
[SERVER]
;HomePage =
DefaultMimeType = application/octet-stream
LoggingLevel = Extended
;MaxFileCache =
MaxFileThreads = 3
MaxDispatcherThreads = 7
;
[DirMaps]
D:\ORANT\webdb\images\ /images/
;
[MIMETypes]
text/html htm html
image/jpeg jpg jpeg JPG
text/plain txt ksh lst
application/pdf pdf
application/powerpoint ppt PPT
application/msword doc dot DOC DOT
application/x-tar tar TAR
application/zip zip
text/edi edi
application/excel xls XLS
text/xml xml
;

WebDB is a big product with a huge set of features, and this overview has just scratched the surface of its many

http://lib.ommolketab.ir

capabilities. WebDB comes with several manuals providing step-by-step instructions on configuring and using the
product. Additionally, you can consult Rick Greenwald's Oracle WebDB Bible (IDG Books Worldwide) for a
thorough treatment of the subject.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 4. Oracle Application Server (OAS)

Oracle Application Server (OAS) is Oracle's enterprise web platform. While OAS performs all the functions of
a normal web server, its main advantage is its tight integration with a backend Oracle database. After starting
life with the name Oracle Webserver at version 1, then becoming Oracle Web Application Server at version 3,
the Oracle Application Server, now at version 4, has steadily grown in size and features.

The resources required to run OAS have increased along with the new features. For
example, the memory requirements (on NT, at least) went from 48 MB in version 3 to
128 MB in version 4.

In this chapter, we'll look at the architectural components of OAS as they relate to PL/SQL application
development. Be sure that you've read Chapter 2, which introduces the basic concepts behind the web
infrastructure on which OAS is built. We'll start with a discussion of how OAS returns web resources to a
user's browser. Then we'll look at the PL/SQL cartridge, an OAS component we can use to develop PL/SQL
applications.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 4. Oracle Application Server (OAS)

4.1 How OAS Returns Web Resources

OAS has three methods to return resources. The first simply uses a directory mapping system to send static files to the
client's browser. The next two methods return dynamic resources: one executes resources using the standard CGI
interface, and the other, the Web Request Broker (WRB), executes resources using a program called a cartridge.

As we saw in the previous chapter, the HTTP listener (renamed the Web listener in OAS) receives incoming requests
either as URLs or as action attributes in an HTML form. If the virtual path maps to a CGI directory, the CGI interface
is used. If it maps to a cartridge, the WRB method is used. Figure 4.1 shows the relationship between these
components.

Figure 4.1. Overview of OAS components

http://lib.ommolketab.ir

In the next three sections, we'll look at how OAS handles requests for static files, CGI dynamic resources, and WRB
dynamic resources.

4.1.1 Static Resources Mapped to a Virtual Directory

A static file is the simplest type of resource the OAS can deliver. A static resource is just a file that resides in a
directory on the filesystem. To make the files accessible from the Web, OAS maintains a list of mappings between
physical directories and symbolic aliases called virtual directories. A URL uses these aliases, along with the resource
name, to retrieve the requested file. Figure 4.2 shows the virtual directory mapping screen for the OAS administration
system.

Figure 4.2. Virtual directory mappings

http://lib.ommolketab.ir

4.1.2 Dynamic Resources Mapped to the CGI Gateway

The common gateway interface (CGI), the earliest web technology for developing dynamic resources, allows you to
execute any kind of server-side program, whether it's written in a third-generation language like C, a scripting
language like Perl, or a database language like PL/SQL. One of the advantages of CGI is that you can use it to do
almost anything: create gateways between the Web and an email system, build a help system based on Unix's
manpages, or execute scripting programs to play tic-tac-toe. The execution of a CGI program follows these steps:

The web server spawns a new process under a separate user ID.1.

The program is started in the new execution space.2.

The program executes, sending its output to standard output. The listener sends this output back to the user's
browser.

3.

The program terminates, and the process is destroyed.4.

There are a number of uses for even simple CGI programs. Suppose, for example, you have a table that holds user
complaints about your systems. Here is a technique that saves you valuable web-surfing time, allowing you to purge
old complaints by clicking on a hyperlink. The system requires two parts. The first is a SQL*Plus script called
msg_maint.sql that clears the table. The length of time new messages are kept is passed as a command-line argument:

set feedback off;
delete from tbl_user_complaints where
 date_created < (sysdate - &1);
commit;

The second part is a script named clear_msg that executes the SQL*Plus script and returns a status. The operating
system script is necessary because you cannot directly execute a SQL script without SQL*Plus:

#!/bin/ksh
#
Print mandatory header info
#

http://lib.ommolketab.ir

print "Content-type: text/html\n\n"
print "<html>"
print "<title>All work and no play...</title>"
print "<body>"
print "<h1>Evaluating User Complaints</h1><p>"
#
Execute sqlplus script msg_maint.sql
#
sqlplus scott/tiger @msg_maint.sql 2
#
Print results
#
print "<h2>User Complaints Resolved</h2>"
print "</body>"
print "</html>"

The script is saved in a directory that is marked as containing CGI scripts and mapped to a virtual directory, typically
named cgi-bin. Once these steps are completed, the user can execute the script with a URL. For example:

http://barney/cgi-bin/clear_msg

This extremely simplified example reveals some important limitations of the CGI interface:

CGI involves significant overhead

Before CGI programs can do any real work, the system must create and maintain processes, allocate resources,
and perform a host of other housekeeping activities. Even worse, a CGI program must establish a new
connection to the database every time it is executed. This severely affects performance, especially when a
series of CGIs is linked together to form an entire application.

CGI programs can be very insecure

The previous example, which embeds a username and password directly into the script, is guaranteed to
infuriate almost any DBA. Unless you have a set of library routines you can use in every program, securely
connecting a program to the correct account is a thorny problem. In addition to username/password problems,
many scripting languages have a complex and subtle syntax that makes it far too easy to unwittingly create
insecure programs. A single misplaced character in a Perl program, for instance, can potentially compromise
the entire system.

It is hard to process parameters passed to CGI programs

As we've seen, parameters are passed to a CGI program using either the query string of a URL or input
elements on a form. Additionally, any non-alphanumeric characters (in a query string, at least) must be
encoded before they can be safely transmitted across the Web. Once they arrive at their destination, it is up to
the CGI program to manually read and decode all of them before they can be used.

In the next section, we'll look at how OAS's Web Request Broker architecture alleviates the problems of CGI by
using cartridges.

4.1.3 Dynamic Resources Mapped to the Web Request Broker

The Web Request Broker (WRB) is another way that OAS can return a dynamic resource, and it is a significant
advance over CGI. The WRB architecture maintains a pool of processes that are already running and connected to the
appropriate database, and WRB is therefore much faster than CGI. When a request to run a particular program comes

http://barney/cgi-bin/clear_msg
http://lib.ommolketab.ir

in, the OAS simply hands it off to one of these processes, which executes it and returns the results.

Each process handles a specific type of dynamic resource, whether it's created with Perl, PL/SQL, or Java, or even
less traditional languages like VRML. OAS plug-in cartridges allow developers to use these different development
languages. The WRB consists of the cartridges themselves, the executable engines that run the cartridges, and the
dispatcher that selects a particular cartridge to execute a request.

4.1.3.1 Cartridges

OAS uses cartridges to execute, or cause to be executed, specific kinds of resources. When OAS receives a request
for a resource, it simply passes it to the appropriate cartridge. Several cartridges come with OAS, including the
PL/SQL cartridge for executing PL/SQL stored procedures, the Java cartridge for executing server-side Java
programs, and the Perl cartridge for executing Perl scripts. However, cartridges are not limited to serving as gateways
to development languages. The ODBC cartridge, for example, executes OBDC statements and returns the results
directly to a user's browser.

Each cartridge is installed on the web server and mapped to a virtual alias. When the web listener receives a URL that
includes one of these virtual mappings, it knows that it must use that cartridge to execute the specified resource. As
always, the path section of the URL specifies the virtual mapping, and the resource name section specifies the
resource the cartridge is to execute. These two sections must be consistent: the PL/SQL cartridge cannot execute a
Java program. Figure 4.3 shows how virtual directory names are mapped to the PL/SQL cartridge in the WRB
configuration screen.

Figure 4.3. Virtual directory mappings for the PL/SQL cartridge

The number of commercially available cartridges is growing every day. Additionally, because cartridges are based on
an open interface, you can develop your own custom cartridges if you cannot buy one from a vendor. For example,
you could write a cartridge to Web-enable a backend COBOL system.

4.1.3.2 WRB Executable Engines

When OAS initializes, it starts a number of WRB Executable Engines (WRBXs), processes that run particular
cartridges. OAS starts a relatively large number of each kind of process (which ones depends on a configuration
setting) to make sure that individual WRBXs don't become bottlenecks.

http://lib.ommolketab.ir

For example, the pool of WRBX processes might consist of 20 PL/SQL cartridges, 10 Java cartridges, and 5 Perl
cartridges. This way, if one cartridge is busy when a request comes in, another WRBX is ready to handle it. This pool
of running processes accounts for most of the performance gains of the WRB architecture over CGI. However, a
cartridge does not make your dynamic resource itself run any faster. It simply minimizes the time it takes for the
resource to begin executing.

4.1.3.3 WRB dispatcher

The WRB dispatcher is the final element in the WRB architecture. It has two jobs: the first is to receive incoming
requests from the web listener and assign them to free processes in the WRBX pool; the second is to manage the
WRBX pool.

Like a dispatcher at a police station, the WRB dispatcher assigns incoming tasks to specific agents from a pool of
available agents. Its main goal is to fill as many of these requests as possible in the shortest amount of time by
managing the various WRBX processes. To do this efficiently, the dispatcher must maintain a list of available agents,
what they are currently doing, and when they will finish their assigned tasks.

Additionally, the dispatcher conserves system resources by maintaining a proper mix among the different processes.
For example, the dispatcher can create new processes or destroy existing ones based on the number and types of
requests received by the web listener.

Figure 4.4 shows the relationship between the parts of the WRB architecture. The diagram illustrates how the
dispatcher passes a request to just one of the many available WRBX processes.

Figure 4.4. Overview of the WRB architecture

OAS has a tendency to lose track of some of these cartridges over time, resulting in dead
processes. You can work around this problem by periodically stopping and restarting the
listener process using a command like at (in NT or Unix) or cron (Unix).

Team-Fly

http://lib.ommolketab.ir

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 4. Oracle Application Server (OAS)

4.2 Creating Dynamic Resources

Now that we have a basic understanding of how the WRB uses cartridges to execute different kinds of resources, let's
look at the PL/SQL cartridge in more detail.

The PL/SQL cartridge allows us to use PL/SQL procedures to create dynamic resources. As with the CGI interface,
these resources are called with a URL. Unlike CGI, a PL/SQL cartridge maintains a persistent connection to a
database, so it executes almost instantaneously. In addition to producing lightning-fast performance, the cartridge
resolves the two thorny problems with the CGI interface: connection management and parameter passing.

Following our discussion of the advantage of this cartridge, we'll bring up a few security caveats to keep in mind
when using cartridges.

4.2.1 Connection Management

WRBX processes connect to one particular account within a database upon initialization. The configuration for the
connection is divided into two parts: the Database Access Descriptor and the PL/SQL agent.

4.2.1.1 Database Access Descriptor

A Database Access Descriptor (DAD) creates a unique alias for a database that is to be accessed over the Web. The
DAD contains all the information needed to connect to the database, including the database name, its
ORACLE_HOME directory, and its SQL*Net V2 service name. Figure 4.5 shows OAS's DAD configuration page.

Figure 4.5. Configuration screen for a DAD

http://lib.ommolketab.ir

4.2.1.2 PL/SQL agent

The PL/SQL agent is a unique alias for a database account owned by a particular DAD that makes the account's
procedures and packages accessible over the Web. This includes procedures and packages owned directly by the
account, as well as those owned by other accounts that have granted EXECUTE permission to the schema.

The agent consists of:

A unique name

Account login information, including:

The DAD name for the database that owns the account

The account name and password

Web-specific configuration information, including:

The URL for the error page that is displayed if the agent cannot execute a request

Authorized ports on which the agent accepts requests

Figure 4.6 shows OAS's agent configuration page.

Figure 4.6. Configuration screen for a PL/SQL agent

http://lib.ommolketab.ir

Figure 4.7 illustrates the relationship between a database, a DAD, and a PL/SQL agent.

Figure 4.7. The relationship between the DAD and PL/SQL agent

4.2.2 Parameter Passing

In addition to simplifying connection management, the PL/SQL agent also simplifies parameter passing by
automatically associating each parameter with one of the procedure's formal parameters. As noted in the previous
chapter, you can pass values in a query string of a hyperlink or as a named field in a form. In either case, the PL/SQL
agent makes sure that these values are used to execute the PL/SQL procedure specified in the resource name section.

4.2.3 Security Issues with the PL/SQL Cartridge

http://lib.ommolketab.ir

For all its benefits, the PL/SQL cartridge can open a major security hole. When you create an agent for an account,
every procedure in the account is fair game for web execution. For example, if you create a DAD and agent on your
HR schema so that you can write a phone list, you are also exposing procedures like give_raise or fire_employee.
Savvy (or downright evil!) users who understand how to execute these procedures can do so with impunity.

You can use database privileges to prevent this sort of abuse. The scheme is very similar to using database roles to
limit access to privileged tables. Basically, you assign the DAD and PL/SQL agent to a minimally privileged account
(maybe it only has CONNECT privilege). You then use a combination of the GRANT EXECUTE and CREATE
SYNONYM commands to allow the schema to execute procedures owned by privileged accounts. Figure 4.8
illustrates how this works.

Figure 4.8. A minimally privileged PL/SQL agent

There are several advantages to this approach. First, it guarantees that the only code you have explicitly made
available is accessible from a web browser. Second, the use of grants increases security because, as any DBA will tell
you, the fewer publicly available privileges the better, especially if the schema contains sensitive information or is
highly privileged. Finally, it reduces a lot of administrative overhead necessary to get an application up and running
because you don't have dozens of agents to maintain.

To use the grant method, follow these steps:

Log into the account that owns the application code you want to execute.1.

Use the GRANT EXECUTE command to make the procedure or package available to the agent account.2.

Log into the agent account.3.

Create a synonym that points to the procedure in the other schema; the synonym does not have to have the same
name as the original procedure or package.

4.

Use the synonym name in the URL to execute the procedure.5.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 5. HTML

Now that we've discussed WebDB and OAS, we're ready to begin building applications. As you learned in
Computer Science 101, user applications have a user interface, whether it's a simple command line, like the
one in DOS or Unix, or a full windowing system, like Windows or X. In this chapter you'll learn how to use
HTML (HyperText Markup Language) to create an interface that's somewhere in between these two extremes.

This chapter, while by no means comprehensive, provides enough of an introduction to HTML to get you
started building useful systems. We'll begin with the basics of HTML programming, covering how to best start
learning the language (if you don't know it already) and how to use its tag- and attribute-based syntax. We'll
then take a whirlwind tour of HTML, examining most of the major tags you'll use every day. You can find a
listing of more complete reference works in Appendix A.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 5. HTML

5.1 Programming in HTML

Your company's human resources department may have its personnel policy on an internal web site. You can go to a
main page and click on policies that cover various things HR types find important: dress codes, organization charts,
inter-employee dating rules, and so on. Almost invariably, these documents have been converted from existing
documents, such as Word or WordPerfect documents, using an editor like Microsoft FrontPage, Adobe PageMill, or
Netscape Composer. While these tools are certainly useful, we must understand the actual HTML they generate
before we can create a user interface for our web systems.

5.1.1 Learning the Language

The first thing you need to know about HTML is that you don't need a fancy editor to create an HTML document.
HTML is a text file format, so you can use any editor you want to create a document. The second thing to know is
that, unlike many other Internet standards, HTML is fairly simple. You can learn much of what you'll need to know
about HTML in an afternoon.

The best way to learn HTML is to create a skeleton document in your favorite editor, save it to a file, and view the
results with a browser. You don't even have to be on the Web to see your creation; almost all browsers can open a file
directly from your system. Once you get bored tinkering with the basic tags, you can justify hours of web surfing as
an educational expense by using the "View Source" option to see the underlying HTML code (but not the source code
of the dynamic resource that created the document) for the pages you visit. Of course, like any other language, HTML
has a syntax you must master before you can use it. This is subject of the next section.

5.1.2 Syntax

HTML consists of plain ASCII text that is marked up using special instructions called tags that define the document's
structure and format. It's a very forgiving language: errors that in other languages would be devastating (like
misspelling a reserved word) are usually ignored. It's not case sensitive, the instructions can appear in practically any
order or combination, and most browsers are now smart enough to fill in anything you might mistakenly omit.

The tradeoff for this simplicity is that HTML doesn't give you absolute control over the placement of each element,
which makes it significantly different from a tool like Oracle Reports or Oracle Forms. For instance, rather than

http://lib.ommolketab.ir

specify the exact X and Y coordinates for an input box, you simply tell the browser that you want a text field. The
browser decides the best location for the box, based on the rules you've specified. You will constantly face the
temptation to mangle the HTML syntax to bend the browser to your will. You should resist this urge. Letting the
browser do the grunt work is well worth losing absolute control of the GUI interface, and is actually one of the most
liberating aspects of this type of design.

The basic building blocks of HTML, tags and attributes, are described in the following sections.

5.1.2.1 Tags

Tags are instructions that look a lot like the formatting controls of older, pre- WYSIWYG word processors. A tag is
descriptive: for example, the tag makes a section of text appear in bold, and the <big> tag increases the size of
the text. In addition to simply controlling the appearance and format of text, tags can create structural elements such
as tables or data entry forms, as well as hyperlinks that create links between documents.

Each tag has a complementary end tag that ends the action it is performing. For the tags just cited, stops the text
from appearing in bold, and </big> returns the text to normal size. In an HTML list, individual items are denoted by
enclosing them between and tags. Some tags don't require a corresponding end tag. For example, the <p>
tag, which is used to create a line break in a string of text, doesn't require a corresponding </p>.

Because one item ends where the next one begins, some browsers allow you to omit some end tags. For example, in
Microsoft Internet Explorer, you can leave off the tag; its presence is assumed by the which starts the next
item. In Netscape, on the other hand, you must explicitly include the tag. This is one reason why it's always a
good idea to test your systems on at least the two major browsers, and stick to HTML standards as much as possible.

Tags are often nested to create effects. For example, the nested tags in the HTML sequence <i>HTML</i> is
great cause the text to appear as "HTML is great". You can also nest tags to create more complex structures,
such as an input form formatted using an HTML table, or a list of hyperlinks.

5.1.2.2 Attributes

Most tags have optional parameters, called attributes, that provide more information about how they are to function.
The tag has two attributes, color and size. Not surprisingly, in this example the color
attribute makes the text red, and the size attribute makes it appear as size 3. Attributes can appear in any order, so
 has the same effect as the previous example.

Attributes usually begin with the name of the attribute, followed by an equal sign, and then the desired value. If the
value is not a single word or number, it must be enclosed in double quotes. Sometimes an attribute does not have any
values. For example, the <checkbox> tag, used to create a checkbox in an HTML form, has a checked attribute. This
attribute, unlike the color attribute, for example, has no associated values. Including the checked attribute is all that is
necessary for the box to show up on the form with a check in it.

An end tag never has attributes.

5.1.2.3 A sample document

Here is a typical HTML document your company's human resources department might want you to develop. It asks
users to enter their names and select whether they would like a raise.

http://lib.ommolketab.ir

<html>
 <head>
 <title>HR Salary Survey</title>
 </head>
 <body>
 <h1>Salary Survey</h1>
 <hr>
 <form action=/hr_dcd/plsql/survey>
 1. What is your name?
 <input type=text name=employee_name value="Enter Name">
 <p>
 2. Do you want a raise?
 <input name=answer type=radio> Yes
 <input name=answer type=radio checked> No
 <p>
 <input type=submit>
 </form>
 </body>
</html>

The survey begins with the <html> tag, which announces that the document is in HTML format. HTML documents
have two parts: a head and a body. The header section, which begins with the <head> tag, contains descriptive
information about the document, sometimes referred to as metainformation. In this document, the only descriptive
information in the head is the title (denoted with the <title> tag) that appears in the browser's titlebar.

The body section comes after the head. The first item in the body is an instruction to the user. The <h1> tag (heading
level 1) increases the size of the message to make it more noticeable. The <p> tag starts a new paragraph on the page.
The <p> tag is needed because browsers ignore extra whitespace and line breaks. All the text in a document appears
as one long string unless you explicitly use tags to insert breaks where you want them.

The next set of tags creates an input form. The form has three items: a text box in which the user can enter his name,
a Yes/No radio button to answer the question "Do you want a raise?" (conveniently defaulted to "No"), and a button
to submit the form.

The information on the form is processed when the user presses the Submit button. Submitting the form invokes the
PL/SQL procedure specified in the action attribute declared in the <form> tag. This program might insert the
information into a table, write it to a file, or call the fire_employee procedure if a user fails to give a satisfactory
answer to the survey.

Figure 5.1 shows how a browser displays the document.

Figure 5.1. An HTML salary survey

http://lib.ommolketab.ir

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 5. HTML

5.2 A Whirlwind Tour

Although somewhat artificial, it's useful to draw a distinction between text and content when talking about HTML
documents. For example, in HTML, you can create a list of items. These items might be simple text, but they can also
be HTML tags, such as hyperlinks.

The following sections present some common tags you will need to build the content of your user interfaces. They are
listed here with their functions:

Structural tags

Delineate the part of an HTML document (head, body, comments) to which the content belongs.
Text formatting tags

Change the size and appearance of the text within a document.
Content flow tags

Delineate line and paragraph breaks within a document.
Anchor tags

Create links within a document to other documents on the Web.
List tags

Create a variety of useful formats for listing content more effectively.
Table tags

Break the normal vertical flow of a document to present content information in a grid of columns and rows.
Form tags

Create various types of input structures to facilitate user interaction with the site.

5.2.1 Structural Tags

All useful documents, whether large or small, have structures that organize the information they contain. For
example, a book begins with a table of contents that provides an overview of the topics covered. These topics are

http://lib.ommolketab.ir

divided into self-contained chapters, each with its own structure, including headings and subheadings. Finally, a book
ends with an index that provides a much more granular view of the book's content.

An ASCII report has a simpler structure. Each page begins with a header, is followed by some sort of structured data,
and ends with a footer. An HTML document, which falls somewhere between these extremes, has three major
structural elements, described in the following list: head, body, and comment. The job of the structural tag is to bring
order to the otherwise unruly world of HTML.

Head

Specifies general information about the document, such as its title, the default font size (basefont), and
information about its contents. Unlike the Hydra of Greek mythology, each document can have only one head,
which must come at the beginning. If a user prints out a web page that spans multiple printed pages (e.g., a
table with a large number of rows), the head appears only on the first page.

Body

What the user sees when viewing your document with a browser. It includes all text, forms, and images that
make up the document. You set all aspects of the document appearance in the body, such as background color
and background image.

Comment

Allows HTML authors to include notes to themselves, such as the last revision date or document version; these
comments are not displayed by the browser. Unlike their third-generation language (3GL) counterparts,
HTML comments are not ignored completely, and often contain (somewhat ironically, given that these are
comments) the source code for scripting language functions.

The following list gives the main structural tags:

<html>...</html>

Marks the beginning and end of an HTML document.
<head>...</head>

Defines the head section of a document.
<body>...</body>

Begins and ends the body of an HTML document; accepts the following attributes:

background = URL of background image
bgcolor = red, green, blue, etc.

<title>...</title>

Specifies the browser's titlebar.
<!-- ... --!>

Delineates a comment; information not displayed by the browser.

The following example is a skeleton HTML document that shows the structural tags in action. Note that each section
is delimited by the corresponding start and end tags, including the <html> tags that enclose the entire document.

<html>
<head>
<title>You knew it was coming...</title>
</head>

http://lib.ommolketab.ir

<!--
This phrase is in every computer book on any subject.
--!>
<body bgcolor=blue>
 And here it is...Hello, World!
</body>
</html>

5.2.2 Text Formatting Tags

The text markup tags modify the appearance of the text in a document, between the start tag and the corresponding
end tag. There is a wide variety of effects, ranging from the traditional to the bizarre and practically useless. Nesting
the tags combines their effects; for example, you can create a bold, italicized word by nesting and <i>. A list of
text formatting tags follows:

...

Sets the text between the tags to bold.
...

Changes the font properties for the text between the start and end tags; accepts the following attributes:

size = 8, 10, 12 . . .
color = red, green, blue, etc.

<hn>...</hn>

Specifies font heading size n, which can range from 1 to 6, with <h1> the largest and <h6> the smallest.
<i>...</i>

Sets the text between the tags to italic.
<small>...</small>

Makes the intervening text smaller than the default font.
^{...}

Superscripts the text; useful for creating footnotes.
<tt>...</tt>

Teletype; formats text using monospace font.

5.2.3 Content Flow Tags

HTML completely ignores whitespace and line breaks within a document. For example, the following document
displays one line, even though the author obviously intends that each word appear on its own line:

<body bgcolor=white>
The
quick
brown
fox
</body>

http://lib.ommolketab.ir

The flow tags prevent a document from becoming one long, uninterrupted jumble of words. To fix the document
above, the author would put a paragraph tag, <p>, at the end of each line. This is one of the few tags where the
corresponding end tag is not required. The flow tags are summarized in the following list:

Break; creates a line break.
<center>...</center>

Center; centers the content between the tags.
<hr>

Horizontal rule; breaks content flow with a horizontal bar.
<p>

Paragraph; same as
, but with more space between the lines.
<pre>...</pre>

Preformatted; treat text as unformatted ASCII. The <pre> tag is most often used to force the browser to
present the text exactly as written because it preserves whitespace and pagebreaks.

As mentioned earlier, the author of the previous example would have to include the <p> tag at the end of each line to
create line breaks. The same effect can be achieved with the following line:

<p>The<p>quick<p>brown<p>fox

5.2.4 Anchor Tags

Anchor tags are used to create links within a document to other documents on the Web. When a user clicks an anchor
tag, he or she is transported to the page specified in the underlying hyperlink. The anchor tag initially appears as blue,
underlined text unless users have overridden its default appearance in their browsers' preferences. Following is a
summary of the anchor tag:

<a>...

Anchor; creates a hyperlink labeled with the text between the tags. This tag accepts the following attribute:

href = URL

5.2.5 List Tags

Almost any type of content, from plain text to hyperlinks, can be put into list format. A list begins with a tag that
indicates if it is ordered or unordered, followed by a number of items enclosed between the list item tags. Though few
in number, these tags can create a wide variety of useful formats. The following list summarizes the list tags and their
common attributes:

...

Unordered list; all entries between the tags are bulleted.

type = disc, circle, square
...

http://lib.ommolketab.ir

Ordered list; all entries between the tags are lettered or numbered, depending on the settings of the type and
start attributes:

type = 1, A, a, I, i
start = 1, 2, . . . , N

...

List item; this tag is always nested between either the tags or the tags. It puts each item in the list on
a separate line.

The unordered list tag, , begins a list where the order of each item doesn't matter, such as a list of favorite web
sites. Each element in the list is preceded by a specified bullet character. The bullet's shape is determined by the type
attribute. Here's an example snippet of the HTML for an unordered list; the HTML code on the left produces the
output on the right. Clicking on the underlined link will bring you to the URL:

Cities in MA<p>

 Boston

 Cambridge
 Somerville

Cities in MA

Boston

Cambridge

Somerville

The ordered list tag, , creates lists in which each item is preceded by one in a sequence of numbers or letters
indicating its position in the list. A series of instructions, a "to do" list, and a top ten list are all ordered lists. The
tag has two attributes to control the appearance of the sequence indicator. The value of the type attribute sets the type
of sequence. The value "A" begins the sequence "A, B, C, . . .," while "a" begins "a, b, c," "I" or "i" starts a list
of Roman numerals based on the case of the value. Not specifying a value for type, or setting it to "1", will begin a
numeric sequence. The start attribute sets the initial value of the sequence. Here's an example of an ordered list; the
HTML code on the left produces the output on the right:

<i>SEC</i> Football Teams
<p>

 <!-- The end tag is implied --!>
 Alabama Crimson Tide
 Tennesse Volunteers
 Auburn Tigers

SEC Football Teams

Alabama Crimson Tide1.

Tennessee Volunteers2.

Auburn Tigers3.

The next example uses nesting to create a standard outline by creating a list within the and tags; the HTML
code on the left produces the output on the right:

http://lib.ommolketab.ir

Introduction
 <ol type=a>
 CGI
 HTML
 PL/SQL

OAS

Introduction

CGIa.

HTMLb.

PL/SQLc.

1.

OAS2.

5.2.6 Table Tags

We can use an HTML table to break the normally vertical flow of a document into a grid of columns and rows. The
cell at the intersection of the column and row can contain any type of content, including text, lists, forms, and even
other tables. You can create almost any layout by breaking a complex document into smaller, simpler pieces that you
place within the cell of a table. Following is a list of the four main table tags and some of their most commonly used
attributes:

<table>...</table>

Begins and ends an HTML table.

align = right, left, center
bgcolor = red, green, blue, etc.
border = 1, 2, . . .
width = 10%, 20%, . . .

<tr>...</tr>

Creates a new row; used between <table> and </table>.

align = right, left, center
bgcolor = red, green, blue, etc.

<th>...</th> and <td>...</td>

Create a header cell (<th>) or data cell (<td>); used between <tr> and </tr>.

align = right, left, center
bgcolor = red, green, blue, etc.
colspan = 1, 2, 3, . . .
rowspan = 1, 2, 3, . . .
width = 10%, 20%, . . .

A table begins with the <table> tag, which always breaks the flow of the document by inserting a new line. If the
border attribute is used, then the cells in the table are enclosed within a grid. The table stops at the </table> tag. The
<tr> begins a new row within the table, so a table with a row for each state in the United States has 50 <tr> tags. The
<th> and <td> tags divide each row into columns (cells): <th> indicates header cells and <td> indicates data cells.
While any number of these tags can appear within a row, the total number of columns in the table is always equal to
the maximum number of columns within any row.

A number of attributes are shared hierarchically by the table, row, and cell tags. The align attribute sets the text
alignment for all the cells, and bgcolor sets their background color. The width attribute specifies the element's

http://lib.ommolketab.ir

horizontal width as a percentage of the total width. For example, when used in the <table> tag, a width of 100%
makes the table use the full width of the screen. The colspan and rowspan attributes, which are used only in the cell
tags, allow you to create cells that span multiple columns. For example, you could use the line <th colspan=5>Here's
some data</th> to put a heading row on a table with five columns.

Here is a simple table with five columns and four rows:

<title>Sales Data</title>
<center>
<table border=1 width=70%>
 <th colspan=6 align=center>Sales Data</th>
 <tr>
 <!-- Column Headers --!>
 <th>Office</th>
 <th>Q1</th>
 <th>Q2</th>
 <th>Q3</th>
 <th>Q4</th>
 <tr align=right>
 <!-- Row for the Boston office --!>
 <th>Boston</th>
 <td>1000</td>
 <td>1500</td>
 <td>1750</td>
 <td>1800</td>
 <tr align=right>
 <!-- Row for the New York office --!>
 <th>New York</th>
 <td>2900</td>
 <td>2000</td>
 <td>2300</td>
 <td>2475</td>
</table>
</center>

The first row uses the <th> tag to create headers for each of the five columns. The next two rows contain sales data
by office, and have an identical structure. The first column, created using the <tr> tag, creates a hyperlinked row
header. The <td> tag is then used to format the quarterly information by office into cells. Figure 5.2 shows how a
browser displays the page.

Figure 5.2. A simple table

http://lib.ommolketab.ir

5.2.7 Form Tags

Up to this point, we've looked at the output side of our HTML to format text, create lists of items, and put other
HTML elements into tables. Now we're ready to use HTML form tags to create documents that can be used to put
information into a database.

A form encompasses a set of tags, exactly like those we've been using, that create various types of input widgets that
are displayed by the browser. These tags can be text boxes, radio buttons, and checkboxes that accept input from
users. Once users have filled out the form, they submit it to the server for processing. A backend program, which in
this book will be a PL/SQL routine, parses their input and performs some type of processing.

When building HTML form applications, it's important to remember there is absolutely no communication with the
database until the form is submitted. HTML forms are no replacement for traditional tools like Oracle Forms, and you
should not treat them as such.[1] However, their portability and simplicity offer compelling advantages in many
circumstances.

[1] This is because HTTP is a stateless protocol. Chapter 7, and Chapter 8, will suggest some ways to mitigate this

problem.

With HTML forms, as long as end users have a browser, they can enter data into your application without having any
special configuration or software. Additionally, all the processing for your input form occurs at the server, allowing
you to consolidate the business rules of your application into one place. Best of all, because these forms reside on a
central server, any update you make is instantly distributed to all your users, eliminating the need for client-side
upgrades or new installs. The form tags are displayed in the following list with their associated attributes, followed by
a more detailed discussion of their properties. At the end of this section, I will offer some advice on how to improve
the layout of a form or any other HTML document.

<form>...</form>

Begins and ends a form.

action = URL of PL/SQL procedure to execute
method = GET, POST

<input>

Creates an input element based on the type attribute. This tag has other attributes that are not listed here
because they only apply for certain types.

name = name of element
type = text, password, checkbox, radio, submit, hidden

http://lib.ommolketab.ir

<select>...</select>

Creates a drop-down list.

name = name of element
size = number of visible items

<option>...</option>

Creates an item in a <select> list; the string in the selected item's value field is passed as the parameter when
the form is submitted.

value = string
<textarea>...</textarea>

Creates a free-form text entry box.

name = name of element
cols = number of columns (characters in a line)
rows = number of rows (number of lines)

5.2.7.1 The < form> tag

The most important parameter in the <form> tag is the action attribute, which specifies the program that will execute
on the server when the form is submitted. In our case, this program is a PL/SQL procedure whose arguments
correspond in name and number to each named input element in the form. When the user presses the Submit button,
the values in the form are passed as parameters to the procedure, which then processes the user's input.

The method attribute determines how those values are passed. If GET is used, the names and encoded values of each
element are appended and sent as one long string that is parsed and decoded at the server. Because the entire length of
the string must be under 256 characters for some operating systems, this method should be used only for simple
forms, but it is useful when you want to allow the user to include the values entered into a form as part of a
bookmark. The POST method, on the other hand, is not limited in character length, but it does not allow for the
bookmarking feature. Each element is processed individually by the server. In either case, OAS parses the parameters
and passes them to the procedure.

5.2.7.2 The <input> tag

Form input elements are created with the <input> tag. The name attribute links the element to a parameter in the
procedure specified by the <form> tag's action attribute. When the form is submitted, the value of the element is
passed as the value of its corresponding parameter.

The type attribute determines what kind of input element appears on the screen. The following list displays the
attributes for the <input> tag:

type=text

Single-line text input box.

maxlength = maximum number of characters that can be entered
size = character width of the field: 5, 8, 15, . . .
value = string (default value for the field)

type=hidden

http://lib.ommolketab.ir

Placeholder for a value; while it does not show up on the screen, it is passed as a parameter when the form is
submitted. Hidden fields are often used to help pass information between multiple forms in a web application.
Maxlength, size, and value are the same as type=text, but characters are masked using an asterisk.

type=checkbox

Checkbox for on/off values; the string in the value field is passed as the parameter value when the form is
submitted.

value = string
checked

type=radio

Radio button; radio buttons with the same name form a single group in which the user can select one value.
The string in the selected item's value field is passed as the parameter when the form is submitted.

value = string
checked

type=submit

Submit button; for named buttons, the string in the value field is passed as the parameter when the form is
submitted.

name = action to take when the form is submitted
value = string (appears as the button's label)

The next example shows an HTML form with an input box, a set of a radio buttons, a checkbox, and a Submit button
that, when pressed, executes a PL/SQL procedure called update_employee. This procedure has three parameters:
emp_name, emp_office, and kissup_flag:

<html>
<head><title>Employee Info</title></head>
<body>
<form action=/hr/plsql/update_employee>
 Employee Name:
 <input type=text name=emp_name size=20 maxlength=10>
 <p>
 Office:
 <input type=radio name=emp_office checked value=BOS>Boston
 <input type=radio name=emp_office value=NYC>New York
 <input type=radio name=emp_office value=CHI>Chicago
 <p>
 <input type=checkbox name=kissup_flag value="Yes">
 Loves Job?
 <p>
 <input type=submit>
</form>
</body>
</html>

Figure 5.3 shows how a browser displays the form.

Figure 5.3. A simple HTML form

http://lib.ommolketab.ir

The employee text field passes the employee name as the emp_name parameter. The maxlength attribute limits the
number of characters that can be entered to 10. The size attribute sets the name field's width to 20, so the size of the
field is twice the size of the number of characters that can be entered. This prevents user input from scrolling within
the field as text is entered.

A radio button allows the user to select one office from a list of three. The options in a set of radio buttons, related to
one another by the name attribute, correspond to just one server-side parameter. In the previous example, there are
three radio buttons named "office" that correspond to Boston, New York, and Chicago. If the user's gender were
required, then the form would require two more radio buttons, named "gender," for male and female.

When the form is submitted, the string in the value attribute is used as the parameter when the user makes a selection.
For example, "CHI" is passed when "Chicago" is the selected option.

A check in the kissup_flag checkbox indicates that the user loves his job. The default checked attribute here gives the
user a subtle hint as to what the answer should be. If the box is checked, kissup_flag's value is "Yes" when the form is
submitted.

The last input tag creates a Submit button that, when pressed, sends the information on the form to the server for
processing. Each form must have at least one Submit button. Otherwise, you risk (perhaps purposefully) damning
your users to a Kafkaesque hell of entering data that never gets processed. You can use the value attribute if you want
to take an action based on what button the user presses. For example, if you want the user to click a button labeled
"Add" to insert a record and "Delete" to remove a record, you can create two Submit buttons, both named "action."
The value for one is "Add," and the value for the second is "Delete." When the user presses either button, its value is
sent to the server as the "action" parameter. You can use this parameter to decide what to do with the information.

5.2.7.3 The <select> tag

You can use the <select> tag to create drop-down lists of items. The name of the <select> list, as specified in the
name attribute, corresponds to the input parameter of the server process. The items in the list, which must be enclosed
with the <option> tag, supply the value of that parameter. In the previous example, you can create a cleaner interface
by replacing the three radio buttons with a single list of offices, as shown in the following example. The HTML code
on the left produces the output on the right:

http://lib.ommolketab.ir

<select name=office>
 <option value=BOS>Boston
 <option value=NYC>New York
 <option value=CHI>Chicago
</select>

The size attribute transforms the drop-down list into a scrollable list. In this example, the number of items visible is
equal to the size. The following example shows the effect of using the size attribute; the HTML code on the left
produces the output on the right:

<select name=office size=3>
 <option value=BOS>Boston
 <option value=NYC>New York
 <option value=CHI>Chicago
 <option value=LA>Los Angeles
</select>

5.2.7.4 The <textarea> tag

The standard text input box is limited to a single line of input; to create multiline input areas to hold user comments,
complaints, and the like, you must use the <textarea> and the </textarea> tags. Like all the other input tags, each text
area must be named using the name attribute. The other main attributes, rows and cols, determine a field's character
height and width. Unlike the other input fields, however, the textarea tag does not use the value attribute to set default
values. Instead, any plain text between the start and end textarea tags appears as the default value for the field. The
following snippet shows how to create a comment field that lets the user enter up to four lines of 40 characters each:

<textarea name=comments cols=40 rows=4></textarea>

5.2.7.5 Cleaning up the form

One of the best and worst aspects of HTML is its inability to precisely format a page. For example, when you are
laying out an input screen in Oracle Forms, you have exact control, down to the X and Y coordinates, of the
placement of each text box, label, and button. However, forcing the browser to display a document in such a highly
specific way runs counter to the HTML philosophy. Remember, the browser's built-in rendering engine is meant to
eliminate this grunt work. Standard HTML in a browser automatically compensates for changes in both window size
and overall resolution.

This problem is especially noticeable in HTML forms. Input elements are either crammed up on one row, making the
form look sloppy, or lined up one on top of the other, making the form scroll on and on forever. However, there are a
few tricks that help overcome some of the inherent HTML limitations.

You can use any HTML constructs to improve a form's layout. This includes using flow tags to break the form into
logical sections, formatting tags to emphasize labels, lists to create attractive radio buttons, and tables to align each
item. The following example combines all these elements to create a nice-looking form:

<form action=/hr/plsql/update_employee>
 <table>
 <tr>
 <th align=right>Name:</th>

http://lib.ommolketab.ir

 <td><input type=text name=emp_name></td>
 <tr>
 <th align=right>Office:</th>
 <td>
 <select name=office size=3>
 <option value=BOS>Boston
 <option value=NYC>New York
 <option value=CHI>Chicago
 </select>
 <tr>
 <th align=right><i>Loves</i> Job?</th>
 <td><input type=checkbox name=kissup_flag value=Y></td>
 </table>
 <input type=submit value="Save Responses">
</form>

Figure 5.4 shows how this form is displayed in a browser.

Figure 5.4. A form formatted with a table

5.2.8 Beware Browser-Specific Extensions

Browser vendors have created many browser-specific additions to the base HTML language. Some of these, like
tables, are extremely useful and have been incorporated into nearly every major graphical browser. However, many
"innovations" are simply pawns in the battle between Microsoft and Netscape to control the future of the web
browser. You will find that your worst enemies are often browser vendors themselves; web technology is changing at
a feverish pitch as each side tries to one-up the other with a new feature.

Although vendors are adding new extensions and features every day, it's probably safest to focus on the basic
language and consider very carefully whether you should use a vendor-specific extension. If you are unwilling to
constantly tweak your application to keep it compatible with the extensions as they change, you should probably
avoid extensions altogether.

http://lib.ommolketab.ir

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 6. PL/SQL

With HTML safely out of the way, we can turn our attention to the second half of our web development
platform: PL/SQL, Oracle's proprietary extension to structured query language (SQL). The PL stands for
Procedural Language, since PL/SQL is used to create procedural constructs (loops, variables, etc.) on top of
the relational constructs of SQL.

Although it has some object-oriented features, PL/SQL is based largely on Ada, a structured programming
language used heavily by the Department of Defense. As such, PL/SQL has more in common with languages
like C, Pascal, or COBOL than it does with C++ or Java. Although it follows an older design model
(structured versus object), PL/SQL has the advantages of being easy to learn, tightly integrated to the Oracle
database, and extensible. If you know how to write a SQL script and know at least one 3GL language, you can
learn to develop useful PL/SQL programs in just a few hours.

In the next three sections we'll cover what you need to know to start developing in PL/SQL: how to structure a
PL/SQL program, how to fill in its major programming constructs, and how to create reusable modules called
packages. In the last section we'll look at two third-party tools, TOAD and PL/Formatter, that make PL/SQL
development much more enjoyable and productive.

There is much more to say about the PL/SQL language. For complete information, see Steven Feuerstein and
Bill Pribyl's Oracle PL/SQL Programming (O'Reilly & Associates).

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 6. PL/SQL

6.1 Structured Programming in PL/SQL

The idea behind structured, or modular, programming is that complex problems can be broken down into smaller,
more manageable pieces. For example, I can break the daunting task of driving from Boston to New York into four
simpler steps: find I-95 south in Boston, drive four hours, exit in New York, and find a parking space. I repeat this
process on each of the previous steps, breaking each one into even smaller units until I eventually reach a level of
complexity that I can reasonably handle. For example, I can break "find a parking spot" into the steps: drive around
aimlessly, yell at somebody, honk my horn, and then turn around and go home.[1] Once I have identified all these
simpler steps, I can solve the original problem.

[1] Sometimes these problems are maddeningly recursive. For example, "Turn around and go home" breaks into "Find

I-95 north in New York, drive four hours, exit in Boston, and find a parking space."

The structure of a PL/SQL program reflects this underlying philosophy. A complex program is made up of units
called blocks (as in building blocks) that can contain variables, SQL and PL/SQL instructions, error handling
routines, and even other blocks. Each block may have four distinct parts: an optional header, optional variable
declarations, executable instructions, and optional error handling code. These parts are described in the following list:

Header section

This section, also known as the specification, comes at the beginning of a block. It defines the block's name,
its type, and any parameters it requires. If the header is omitted, the block is called an anonymous block
because it does not have a name. The header is required for procedures and functions, but is replaced with a
simple DECLARE keyword for anonymous blocks. Anonymous blocks typically include just an executable
section, and are often found as the executable portions of a conditional statement.

Declaration section

This section contains declarations for all local variables and structures used in the block. Variables can include
simple numbers and strings, as well as more complex structures, like cursors and arrays. The declaration
section is optional; your program does not have to use any variables. However, PL/SQL is strongly typed,
which means that you must declare every variable you plan to use (the one exception to this rule is the implicit
loop index, which we'll discuss later).

Executable section

This section, also known as the body, contains your actual code. This is the only required section; all blocks

http://lib.ommolketab.ir

must have at least one executable instruction.[2] Sometimes you may want to just use the NULL instruction,
which doesn't perform any action, as the entire executable portion of a block. This technique stems from the
two approaches to modular design. The first approach, bottom-up design, begins by coding the simplest pieces
and works up to more complex structures. The second approach, top-down design, begins at the highest level
and works down. With the second method, you may know a particular module is necessary, but not yet know
(or care) how it will be implemented, so you create a stub that serves as a placeholder until you are ready to fill
in the details.

[2] The exceptions to this rule are external procedures or specifications for Java methods (a way to call Java

from PL/SQL). These, however, are beyond the scope of this book.

Exception section

This section handles problems (exceptions) that arise while the program is running. When an exception occurs
(for instance, an attempt to insert a duplicate primary key into a table), the RDBMS immediately transfers
control to the exception section, if it exists. Each error is associated, either by the system or the programmer,
with a name like DUP_VAL_ON_INDEX or NO_DATA_FOUND.

The exception section is a CASE statement that associates an error name with a handler that executes when the
error occurs. Of course, it would be inconvenient to explicitly test for all the possible things that could go
wrong with a particular program (how often do you test whether you have enough memory to execute a SQL
statement?). The catch-all exception OTHERS traps exceptions not explicitly listed in the CASE statement.

If there is no handler at all for an exception, the block terminates and the error is passed back to the calling
block to be resolved. If there is no handler for the error in any block, then the entire program terminates
immediately, leaving the user staring at an ugly error message. Although the use of the exception section is
optional, well-designed programs should always minimize the occurrence of unhandled exceptions.

Blocks allow you to build modularized programs. While anything between BEGIN and END is considered a block,
the two most important blocks are procedures and functions.

6.1.1 Procedures

A procedure is a modular block of code with the following general structure:

PROCEDURE name (
 parameter1 IN | OUT | IN OUT AS datatype,
 parameter2 IN | OUT | IN OUT AS datatype,
 ...)
IS
 Local variable declarations
BEGIN
 Program instructions
EXCEPTION
 WHEN exception1 THEN
 Handler 1
 WHEN exception2 THEN
 Handler 2
 WHEN OTHERS THEN
 Default error handler
END;

http://lib.ommolketab.ir

The name of the procedure should reflect the task it performs. The task should be fairly simple; a procedure shouldn't
be more than a few hundred lines long. If it is, you probably haven't broken your problem down sufficiently. Here's a
fairly simple procedure:[3]

[3] This listing, and the others throughout this chapter, begin with the line "CREATE OR REPLACE...," which is a SQL

command and not part of the actual procedure. Since procedures (as well as functions and packages) are database

objects, you must use SQL to CREATE and compile them. The REPLACE option allows you to run these scripts over

and over without having to first drop the procedure.

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PROCEDURE give_raise (
 emp_id IN VARCHAR2 DEFAULT NULL,
 raise_pct IN VARCHAR2 DEFAULT NULL
)
IS

 monthly_salary NUMBER DEFAULT 0;

BEGIN
 -- Fetch current salary using a SELECT...INTO;
 SELECT sal
 INTO monthly_salary
 FROM emp
 WHERE id = emp_id;
 -- Decide what to do
 IF monthly_salary > 10000
 THEN
 HTP.print ('You are rich enough already!');
 ELSE
 UPDATE emp
 SET sal = sal * (1 + raise_pct)
 WHERE id = emp_id;
 COMMIT ;
 HTP.print ('Your wish is my command');
 END IF;
 HTP.print ('All done.');
EXCEPTION
 WHEN OTHERS
 THEN
 HTP.print ('Sorry, no raise for now.');
END;

6.1.2 Functions

A function, the second kind of modular block has the following general structure:

FUNCTION name (
 parameter1 IN | OUT | IN OUT AS datatype,
 parameter2 IN | OUT | IN OUT AS datatype)

RETURN return_datatype IS
 Local variable declarations

http://lib.ommolketab.ir

BEGIN
 Function instructions
 RETURN return_value
EXCEPTION
 WHEN exception1 THEN
 Handler1
 WHEN exception2 THEN
 Handler2
 WHEN OTHERS THEN
 Default error handler
END;

A function computes and returns a single value (its return value) of the datatype defined in its header section. The
RETURN command, which can appear in the executable or exception section (or both), sends the return value back
to the program that called the function. The RETURN command terminates the function immediately.

You can use functions to perform common computations or return special values. For example, you might want to
include some descriptive information at the end of each page, like your company's name and the date the page was
created. You can write a simple function that you can call inside each program to avoid hard-coding. Here, for
example, is such a function:

CREATE OR REPLACE FUNCTION get_web_tag_line
 RETURN VARCHAR2

 Ret_val VARCHAR2(500);

IS
BEGIN
 ret_val := 'Copyright ACME Incorporated, ';
 RETURN ret_val || TO_CHAR (SYSDATE, 'DD-MON-YY');
END;

Even this trivial example points out one of the main advantages of modularizing your code: it helps you avoid
problems down the road. For example, what if a big German conglomerate buys your company? You certainly don't
want to have to insert a bunch of umlauts into your programs. You probably also noticed that the date format shows
only the last two digits of the year. Had you hardcoded the date format into each program, millennium fever would
force you to change every occurrence to display the full four-digit year. Calling a function lets you change the code in
just one place.

6.1.3 Parameters

You can include parameters in a procedure or function header to better control how it works. A parameter is similar
to a local variable, but it acts more like a placeholder for a value that will be passed to the procedure by some future
program. This allows a procedure to handle general situations, rather than specific instances of a given problem.
These symbols are called formal parameters. The values provided by the calling program are called actual parameters
because they represent actual, concrete values.

A procedure or function can accept any number of parameters, or even omit them entirely. For example, the
give_raise procedure needed two parameters: one to pass the employee ID and one to pass the amount of the raise.

Parameter declarations follow this general format:

http://lib.ommolketab.ir

PROCEDURE/FUNCTION name (
 Name1 mode datatype DEFAULT defaul_val,
 Name2 mode datatype DEFAULT default_val,
 ...
 Name3 mode datatype DEFAULT default_val) IS

Each parameter must have a name, a mode, a datatype, and (optionally) a default value, as defined in the following
list:

Parameter name

The name for the parameter as it is used in the body of the block. Each name must be unique. Parameter names
should be reasonably meaningful.

Mode

There are three modes: IN, OUT, and IN OUT. The IN mode means that the parameter is read only; the block
can see the value (i.e., reference) of the parameter but cannot change it. The OUT mode is write only; the
block can set, but not reference, the value of the parameter. This mode is used to return values from the
procedure back to the calling program. The IN OUT mode means the parameter can be both referenced and
updated.

Datatype

The datatype specifies the parameter's type. These types are unrestrained; the size of the formal parameter is
determined by the size of the corresponding actual parameter.

Default value

The default value specifies the value of the parameter if no corresponding actual parameter is provided.

Here are some sample declarations:

PROCEDURE give_raise (
 emp_id IN NUMBER,
 job_code IN VARCHAR2 DEFAULT 'CEO'
);

PROCEDURE print_emp_info (
 dpt_name_parm IN VARCHAR2 DEFAULT 'HUMAN RESOURCES'
);

FUNCTION get_emp_name (emp_id IN NUMBER)
 RETURN VARCHAR2;

The last example is worth commenting on. It's a function that, given a primary key, returns an employee's name. What
if you wanted to modify the function to return more information, like the employee's job code and department? Since
a function can return only one value, we can't modify the get_emp_name function to return several different things.
Instead, we can convert it into a procedure and use OUT parameters to pass the new values back. Here's an example:

PROCEDURE get_emp_info (
 emp_id IN NUMBER,
 emp_number OUT VARCHAR2,
 emp_name OUT VARCHAR2,
 emp_dept_id OUT NUMBER
)

http://lib.ommolketab.ir

6.1.4 Calling Procedures and Functions

You call a procedure or function by name. You must also pass actual parameters for its formal parameters (if a
module does not have any parameters, then the name alone is sufficient). Here are some examples of how to call a
procedure or function from inside another PL/SQL program:

delete_all_customers;

dbms_sql.put_line (todays_date);

today_string := todays_date;

The first example calls the delete_all_customers procedure. This is the simplest type of call, since no parameters are
passed to the procedure. As you can see, the ability to represent a complex sequence of actions with a single
command makes for much more readable programs. The second example prints the results returned by the
todays_date function. You can use a function call anywhere you can use a literal or a variable, as long as its return
type is appropriate. The third example assigns a local variable to the value returned by todays_date.

You must supply actual parameters to procedures or functions that have a formal parameter list. There are two
notations for doing this: positional notation and named notation.

6.1.4.1 Positional notation

Positional notation uses an actual parameter's ordinal position to map it to a corresponding formal parameter. This is
the notation used most frequently in languages like C or Pascal. The following examples show positional notation in
action:

give_raise (101,'PROGRAMMER');

give_raise (105);

print_emp_info('ACCOUNTING');

emp_name := get_emp_name (current_emp_id);

get_emp_info (101, enum, ename, edpt);

The first call passes two literal values to the two formal parameters (emp_id and job_code) of the give_raise
procedure. The values are assigned to the formal parameters based on their order in the list, so emp_id is assigned the
value "101" and job_code is assigned "PROGRAMMER." The second example seems to violate these rules because
it only provides one parameter. Remember, however, that we have assigned a default value ("CEO") to the job_code.
You can omit an actual value for a formal parameter if it has a default value. The RDBMS generates an error if you
omit a value for a parameter that does not have a default value.

The third example has only one parameter, dpt_name_parm, which is assigned the value "ACCOUNTING." The
fourth assigns the result of the get_emp_name function to a local variable called emp_name. The fifth sample calls
get_emp_info. As we would expect, the emp_id formal parameter is assigned the value procedure, and each of the
OUT formal parameters is associated with a corresponding local variable: emp_number with enum, emp_name with
ename, and emp_dept_id with edpt. When the procedure finishes, the values of the local variables will have the
values assigned to formal parameters in the procedure.

http://lib.ommolketab.ir

6.1.4.2 Named notation

The second way to supply parameters to a function or procedure is named notation, which eliminates the call's
reliance on parameter position by explicitly mapping formal parameters to actual parameters. This is done by using
the formal parameter name to which an actual parameter corresponds directly in the call. The syntax of a named
notation call is:

procedure_name (
 formal_parameter1 => actual_parameter1,
 formal_parameter2 => actual_parameter2,
 formal_parameter3 => actual_parameter3,
 ...)

Here are two of the positional notation examples we looked at in the previous section rewritten in this format:

give_raise (job_code => 'PROGRAMMER', emp_id => 101);

get_emp_info (emp_dpt_id => edpt,
 emp_name => ename,
 emp_number => enum,
 emp_id = > 101);

While named notation requires more typing, there are many situations in which this notation is preferable to
positional notation. Let's take as an example a procedure that performs a logic test based on a large set of flags.
Suppose you had a procedure called complex_test with 10 parameters and that each parameter governed the execution
of a distinct step. If a parameter value is 'Y', then the step executes. Otherwise, it does not. Here is the specification:

PROCEDURE complex_test (
 step1_ctl IN VARCHAR2 DEFAULT 'N',
 step2_ctl IN VARCHAR2 DEFAULT 'N',
 ...
 step9_ctl IN VARCHAR2 DEFAULT 'N',
 step10_ctl IN VARCHAR2 DEFAULT 'N'
);

Now suppose that you want to execute just the tenth step. The positional syntax requires a value for the parameter
based on its ordinal position. Executing just the tenth step in complex_test requires this ugly command:

complex_test ('N','N','N','N','N','N','N','N','N','Y');

Using the named notation, we can replace the complex with a simple substitute:

complex_test (step10_ctl => 'Y');

6.1.5 Overloading

Overloading allows you to create multiple versions of a procedure or function. Each version has the same name but a
different signature, the technical term for the full set of declarations in a parameter list. The compiler uses a procedure
or function call's name and signature to find a corresponding overloaded function.

Overloading is a powerful technique that makes procedures and functions easier to use. Say you want to create a

http://lib.ommolketab.ir

generic function that returns any passed date in DD-MON-YYYY format. The input should allow the caller to pass a
date in a variety of formats. For example, he could pass a DATE variable, a VARCHAR2 string that represents a
date, or even numbers that represent the month, day, and year of the date. Here is the example without overloading:

FUNCTION get_nice_date_date (dt IN DATE)
 RETURN VARCHAR2;

FUNCTION get_nice_date_vchar (dt IN VARCHAR2)
 RETURN VARCHAR2;

FUNCTION get_nice_date_month (
 m IN NUMBER,
 d IN NUMBER,
 y IN NUMBER
)
 RETURN VARCHAR2;

With overloading, however, you can use the same function name over and over as long as each version has a unique
signature. All the programmer has to do to call the function is supply the data in one of the overloaded formats; the
compiler automatically does the dirty work of mapping the call to the correct signature. Here are the three
specifications required by the get_nice_date function:

FUNCTION get_nice_date (dt IN DATE)
 RETURN VARCHAR2;

FUNCTION get_nice_date (dt IN VARCHAR2)
 RETURN VARCHAR2;

FUNCTION get_nice_date (
 m IN NUMBER,
 d IN NUMBER,
 y IN NUMBER
)
 RETURN VARCHAR2;

Without overloading, you had to create three different versions of the same function and leave the programmer to call
the correct version. This is a real nuisance because the programmer must know (or, more likely, look up) the
applicable name. This flexibility helps ensure that the procedure and functions you develop are easy to use and
understand.

6.1.6 Permissions

In this section we'll look at how to share procedures and functions among a number of different schemas. Like all
database objects, procedures and functions (as well as packages, which are covered later in this chapter) are owned by
a single schema. Consequently, only that schema can execute them unless other database schemas are explicitly
granted EXECUTE permission. When you want to write generic modules that can be used by a large number of
developers, you can use the GRANT EXECUTE command. This command should be executed within the owner's
account, and it has the following syntax:

SQL> GRANT EXECUTE ON program_or_package_name TO schema;

http://lib.ommolketab.ir

This grant highlights an extremely important aspect of Oracle's security rules. By default, procedures and functions
execute with all the permissions of their owner, and not those of the account in which they are executed. For example,
you can execute a complex procedure that hits sensitive tables from a minimally privileged account by selectively
using GRANT EXECUTE. Oracle8 i has a second model, called invoker's rights, which requires that the user (the
invoker) has the necessary underlying privileges.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 6. PL/SQL

6.2 Programming Constructs

Most programs are built out of a fairly standard set of programming constructs. For example, to write a useful
program, I need to be able to store values in variables, test these values against a condition, or loop through a set of
instructions a certain number of times. In this section, we'll see how to use these and other constructs in PL/SQL.
Specifically, we'll cover comments, variables, conditionals, loops, cursors, and index-by tables (PL/SQL's version of
an array).

6.2.1 Comments

Comments allow you to document your PL/SQL programs. These comments are stored in the database along with the
rest of the PL/SQL code. PL/SQL has two types of comments: multiline and single-line.

Multiline comments are enclosed between the delimiters /* and */. Here's an example:

/*
|| The following procedure unconditionally deletes all
|| rows from the customer's table.
*/
PROCEDURE delete_all_customers is
...

Single-line comments are denoted by two consecutive dashes. The comment can appear either on its own line or after
a PL/SQL instruction, as illustrated in the following example:

CREATE OR REPLACE PROCEDURE delete_all_customers
IS
BEGIN
 -- The delete statement blows away all customers
 DELETE
 FROM customers;
 COMMIT; -- Confirm changes
END;

http://lib.ommolketab.ir

6.2.2 Variables

The second construct, variables, allows you to save values in memory. For example, you may want to keep a counter
inside a loop, or store a string value for processing. In this section, we'll see how to declare a variable and assign it a
value. We'll also look at how to turn a variable into a constant by permanently fixing its value.

6.2.2.1 Declaring a variable

The syntax for a variable declaration is:

name datatype(size) DEFAULT default_value;

You can also assign the default value using the := operator. In this case, the syntax is:

name datatype(size) := default_value;

The next three sections describe the name, datatype, and default value.

6.2.2.1.1 Name

The name may be up to 30 characters long, and may include letters, numbers, or underscores. Variable names must
start with a letter. A good variable is descriptive; many programmers like to use one- or two-letter variable names like
X or A1 because they are easy to type,[4] but this does not make for very readable code. If a variable represents an
employee's monthly pay rate, then call it "monthly_pay_rate," not "mpr" or, even worse, "r." Let's face itmost of our
time as developers is spent either fixing our old programs or helping someone else fix theirs, not writing new ones.
You have only one chance to develop a program. You have the rest of your working life to support it. The few
seconds you save by using a short, meaningless name are not worth the future maintenance hassle for either you or
the poor sap who'll take your place when you become a consultant.

[4] I once saw a program in which the variables were named after the developer's coworkers.

6.2.2.1.2 Datatype

The datatype specifies the type and amount of data a variable can hold. While there are a variety of different
datatypes, in this section we'll look at the two most common: NUMBER and VARCHAR2.

The NUMBER type holds general numbers, such as 1, -457, or 3.14. You can assign a number variable a precision
and scale to set its maximum size. The precision is the maximum number of digits allowed. The scale controls
rounding. A positive number indicates the number of places to the right of the decimal place to round, and a negative
number indicates the number of units to the left of the decimal. The size used in the declaration is written as a
combination of the precision and the scale. For example, the number 1523.567 is rounded to 1523.6 if the datatype is
NUMBER(4,1); it would be 1500 if the datatype is NUMBER(4, -2).

The VARCHAR2 datatype holds character strings, like `Hello, world!', `Saturday', or `Buster Keaton'. In PL/SQL, the
value of a string is enclosed by single quotation marks (ticks), not double quotes. The compiler can get very confused
if you mistakenly use double quotes. Also, the declaration of the VARCHAR2 type must include the maximum size
of the string, which can range from 1 to 32,767 characters.[5] For example, a string of 50 characters is declared as a
VARCHAR2(50).

http://lib.ommolketab.ir

[5] Be careful if you plan to use a PL/SQL variable to populate a VARCHAR2 column in a database table. The

maximum size in the RDBMS is just 2000 characters.

In addition to explicitly declaring a variable's type, you can implicitly declare it using an anchored declaration. The
anchored declaration directly associates a variable's type with the type of a column in a database table. For example,
suppose you want to use a PL/SQL variable to hold an employee's last name from an employee table. Rather than
hardcoding the column definition in the program, you can simply anchor the variable to the last-name column in the
employee table.

Anchored declarations have other benefits besides ease of use. They simplify long-term maintenance in two ways:
first, they improve readability, because the relationship between a variable and a column is explicit; second, they
minimize problems caused by changes in the database schema. How many times have you had to fix a program
because a column was redefined? The syntax for an anchored declaration is:

variable_name table_name.column_name%TYPE;

Here are a few examples that help reduce the chance of "overflowing" a VARCHAR2 variable with too many
characters:

Emp_name EMP.ENAME%TYPE;
Emp_Dept_code EMP.DEPT%TYPE;
Dept_name DEPT.DNAME%TYPE;

6.2.2.1.3 Default value

A variable default value is the value a variable contains when it's referenced for the first time. If you don't know what
this value is, then you're asking for trouble; it can be very difficult to track down bugs caused by uninitialized
variables. Here are some sample variable declarations:

rec_count NUMBER default 0;

yearly_interest_rate NUMBER(5,4) := 0.08;

account_status_code VARCHAR2(10) default 'OPEN';

emp_last_name emp.lname%TYPE;

6.2.2.2 Assigning values

Once we've declared the variable, we can assign it a value in the body of our program. PL/SQL uses the := operator to
assign a value to a variable.

Here are a few sample assignments:

count := 0;

emp_count := emp_count + 1;

annual_salary := hourly_rate * 2000;

You should make sure you declare the variables large enough to hold the full range of potential values. If the value
you assign exceeds the maximum size declared for the variable, the RDBMS generates the VALUE_ERROR

http://lib.ommolketab.ir

exception. For example, assigning the last name `Pantanizoupolos' to a VARCHAR2(10) raises an exception.

6.2.2.3 Constants

A constant is a fixed variable, which means you can't change its assigned value inside your program. To turn a
variable into a constant, you simply include the CONSTANT keyword in the variable's declaration. Note that, by
convention, constant variable names are usually uppercase. Here are some examples:

PI CONSTANT NUMBER := 3.14159;

YEARLY_WORK_HOURS CONSTANT NUMBER := 2000;

LINES_PER_PAGE CONSTANT NUMBER := 60;

OPEN_STATUS CONSTANT VARCHAR(1) := 'O';

The main use for constants is to replace a program's magic valuesnumbers or strings meaningful only to the
programmer or businesswith more easily understood names. For instance, the last example in the previous section
used the number 2000 to calculate an annual salary. While we can often deduce the meaning of a magic value (in this
case, the number of hours in the work year), it's just bad coding practice to randomly sprinkle your program with
literals.

The problem with sticking these values directly into the code is thatbelieve it or notconstants can change. Your
employer might decide to adopt a six-hour workday (perhaps a German conglomerate buys your company) and
reduce the number of hours in the work year to 1500. Using literals, you would have to go through your code line by
line and replace all the 2000s with 1500s. Constants eliminate this tedious make-work. We can simply create a
constant called YEARLY_WORK_HOURS, assign it a value of 2000, or 1500, or whatever value we want, and use it
to clarify our calculations. This is shown in the following example:

annual_salary := hourly_rate * YEARLY_WORK_HOURS;

6.2.3 Conditionals

In this section, we'll look at how to create conditional statements. A conditional statement executes a code segment
based on a condition, such as an equality test (a = b), a comparison test (a > b), or a Boolean test. PL/SQL has three
conditional structures: IF-THEN, IF-THEN-ELSE, and IF-THEN-ELSIF-THEN-...-ELSE.

The IF-THEN format executes a code block if the condition is TRUE. For example:

IF line_count > LINES_PER_PAGE
THEN
 line_count := 0;
 DBMS_SQL.PUT_LINE ('--------');
END IF;

The IF-THEN-ELSE format has two code blocks. If the condition is TRUE, the first block is executed; otherwise, the
second block is executed. For example:

IF items_sold > get_employee_target (emp_id)
THEN
 over_quota_count := over_quota_count + 1;

http://lib.ommolketab.ir

 give_raise (emp_id);
ELSE
 give_talking_to (emp_id);
END IF;

The IF-THEN-ELSIF-THEN-...-ELSE, PL/SQL's equivalent of the CASE or SWITCH statement, can contain
multiple conditions. The statement executes the code block associated with the first TRUE condition. Here's an
example:

IF is_number (current_char)
 OR is_letter (current_char)
THEN
 new_char := current_char;
ELSIF current_char = ' '
THEN
 new_char := '+';
ELSE
 new_char := convert_to_hex (current_char);
END IF;

Be careful with conditional syntax. Every PL/SQL programmer has made at least one of the
following two mistakes: using END instead of END IF, or adding an "E" in the "ELSIF"
keyword. In either case, the compiler gets confused and generates an error.

6.2.4 Loops

Looping, or iteration, causes the block between the keywords LOOP and END LOOP to be repeatedly executed. The
loop ends, or terminates, when an exit condition is met. Once a loop terminates, program control is returned to the
first line after the END LOOP keyword. There are three looping structures: simple, WHILE, and FOR.

In the simple loop, the exit condition is embedded inside the loop body. The EXIT command terminates the loop
immediately, and is usually embedded inside an IF...THEN statement. EXIT WHEN combines EXIT with a
conditional to form a more compact syntax. Here are two constructions of a simple loop. The first example uses
EXIT:

LOOP
 COUNT := COUNT + 1;
 IF COUNT > 10
 THEN
 EXIT;
 END IF;
END LOOP;

The second example uses EXIT WHEN:

LOOP
 COUNT := COUNT + 1;
 EXIT WHEN COUNT > 10;
END LOOP;

In the second kind of loop, the WHILE loop, the exit condition is outside the body of the loop. The code within the
body of the loop iterates while the loop condition is true. The loop terminates when the condition is false, for

http://lib.ommolketab.ir

example:

WHILE (COUNT <= 10)
LOOP
 COUNT := COUNT + 1;
END LOOP;

The last kind of loop, the FOR loop, iterates a predetermined number of times. For example, the number of loops
needed to process each month in the year does not depend on a complex condition; it always requires 12 passes
through the loop. A FOR loop is controlled by an index variable that ranges from a lower bound to an upper bound.
The index variable begins at the lower bound. Each pass through the loop increments it. The loop terminates when the
index reaches the upper bound, for example:

FOR month_index IN 1 .. 12
LOOP
 process_month_sales (month_index);
END LOOP;

There are a few things to be aware of when using FOR loops:

The lower bound and upper bound are evaluated only once, on the first pass through the loop. Changes made to
the bounds inside the body, assuming they are local variables, are ignored.

It's generally considered bad practice to use the EXIT command to short circuit the fixed nature of the FOR
loop. If the number of loops depends on a condition, then a simple loop or WHILE loop is a clearer construct
than a FOR loop.

6.2.5 Cursors

A cursor is a PL/SQL construct used to process a SQL statement one row at a time. Each cursor is associated with a
SELECT statement and a number of attributes. The SELECT statement defines a virtual table called the result set that
contains all the rows of the underlying SELECT statement. The cursor's attributes provide information about the
cursor's structure and current status.

The first step in the life of most cursors is a two-part declaration. The first part of the declaration names the cursor
and binds it to a SELECT statement. The second part uses this name and a cursor attribute to create a PL/SQL data
structure that holds the rows of the result set. Once these two elements are declared, the cursor is ready for
processing, which requires three steps:

The cursor is opened by executing the query and building the result set.1.

Each row in the result is processed inside the body of a loop by fetching the current row of the result set into
the PL/SQL data structure. Each fetch advances the current row pointer.

2.

The cursor is closed and the memory taken by the result set is freed.3.

Let's look at declaring and processing a cursor in more detail.

6.2.5.1 Declaring a cursor

http://lib.ommolketab.ir

The declaration of a cursor binds a name to a SQL SELECT statement. In addition to the cursor declaration itself,
you'll also need to declare a variable that will hold the information read from the cursor, since the cursor is only a
pointer to a row, not the row itself. This variable, declared as a record, holds data from the current row of the cursor.

A record is similar to a row in a table; it is a single entity made up of named fields, exactly as a row is composed of
columns. Each field has its own datatype. The syntax for referencing a field is similar to the syntax used for
referencing a table column; it requires the name of the record, a period, and the name of the field.

The simplest way to create a record is to anchor it to the cursor's structure using the %ROWTYPE attribute. The
following example shows the declaration for a cursor and a record variable to hold its results:

CURSOR emp_cur
IS
 SELECT *
 FROM emp
 ORDER BY lname;

emp_rec emp_cur%ROWTYPE;

You can limit the rows returned in a cursor by using variables in the statement's WHERE clause. You can also
include parameters as part of the declaration of a cursor itself. The syntax for declaring a parameter is the same as for
procedures and functions. This is useful when you want to create a modular cursor declaration shared by a number of
modules. For instance, to limit the previous example to a single individual, we could pass a primary key as a
parameter (the record is still required, even if there is just one row in the result set):

CURSOR emp_cur (id IN NUMBER)
IS
 SELECT *
 FROM emp
 WHERE emp.emp_id = id;

emp_rec emp_cur%ROWTYPE;

6.2.5.2 Processing a cursor

You can process the rows of a cursor after you declare it. The first step in the process is the OPEN command, which
executes the query and builds the result set. The OPEN command takes the name of the cursor to open, and must also
provide values for any of the cursor's parameters. The syntax for passing cursor parameters is the same as that for
procedures and functions:

OPEN emp_cur;

OPEN emp_cur(102);

Once the cursor is open, its individual rows can be processed. Usually, this happens within a loop. The FETCH
statement pulls the current row from the result set into the PL/SQL record and advances the current pointer to the next
record. The values of the FOUND and NOTFOUND cursor attributes indicate whether the most recent fetch returned
a row and can be used as the exit condition for the loop. The cursor is positioned immediately before the first row
when it is opened. Once the row is fetched into a record data structure, its individual columns can be used just like
local variables. Once the records are processed, the cursor must be closed using the CLOSE command. For example:

/* Formatted by PL/Formatter v.1.1.13 */

http://lib.ommolketab.ir

CREATE OR REPLACE PROCEDURE print_emps
IS

 CURSOR emp_cur
 IS
 SELECT *
 FROM emp
 ORDER BY lname;

 emp_rec emp_cur%ROWTYPE;

BEGIN
 OPEN emp_cur; -- open the cursor
 LOOP
 FETCH emp_cur INTO emp_rec;
 EXIT WHEN emp_cur%notfound; -- exit condition
 /*
 || Print employee information. Note that the syntax for the
 || field names uses the record variable, not the cursor.
 */
 HTP.print (emp_rec.lname);
 HTP.print (get_department_name (emp_rec.dpt_id));
 HTP.print (emp_rec.lname);
 END LOOP;
 CLOSE emp_cur;
END;

As another example, here is a formal implementation of a slightly modified version of the get_emp_info procedure. In
this example, only one fetch is necessary, so there is no need for a loop. However, the procedure must test to see if a
matching record was found before it returns a value. This is done using the FOUND attribute:

/* Formatted by PL/Formatter v.1.1.13 */
/*
|| Procedure to return employee information
|| for the passed employee id
|| Parameters
|| ----------
|| e_id IN - employee to return (primary key)
|| e_num OUT - employee number
|| e_name OUT - employee name
|| e_dpt_id OUT - employee'sn department name
*/
CREATE OR REPLACE PROCEDURE get_emp_info (
 e_id IN NUMBER,
 e_num OUT VARCHAR2,
 e_name OUT VARCHAR2,
 e_dpt_id OUT NUMBER
)
IS

 -- Tests for the parameter value in the WHERE clause
 CURSOR emp_cur

http://lib.ommolketab.ir

 IS
 SELECT *
 FROM emp
 WHERE emp.emp_id = e_id;

 emp_rec emp_cur%ROWTYPE;

BEGIN
 OPEN emp_cur;
 FETCH emp_cur INTO emp_rec;
 IF emp_cur%found
 THEN
 e_num := emp_rec.emp_number;
 e_name := emp_rec.fname || ' ' || emp_rec.lname;
 e_dpt_id := emp_rec.dpt_id;
 ELSE
 e_num := NULL;
 e_name := NULL;
 e_dpt_id := NULL;
 END IF;
 CLOSE emp_cur;
END get_emp_info;

6.2.5.3 Implicit cursors

The previous examples were all explicit cursors. We declared the cursor, opened it, processed its rows, then closed it.
There is a second type of hidden cursor called an implicit cursor that allows us to skip these steps. The
SELECT...INTO command, which programmers use to save time, is the most common example of an implicit cursor.
Here's an example that loads information from a table into a local variable, all in one step:

SELECT emp_rec.emp_number,
 emp_rec.fname || ' ' || emp_rec.lname,
 emp_rec.dpt_id
 INTO e_num, e_name, e_dpt_id
 FROM emp
 WHERE emp.emp_id = e_id;

Despite its brevity, there are three reasons to avoid SELECT...INTO:

SELECT...INTO is slower than an explicit cursor because it makes two fetches instead of one. The first fetch
determines how many rows the query returns, and the second fetch actually retrieves the data and assigns the
columns to the variables.

SELECT...INTO raises an exception if the underlying query doesn't return exactly one row. If it returns no
rows, it raises the NO_DATA_FOUND exception. If it finds more than one row, it raises the
TOO_MANY_ROWS exception. This behavior often results in unhandled exceptions, because the harried
programmer, in a rush to finish, makes a wrong assumption about the query.

SELECT...INTO makes you lazy. We should take positive steps to prevent foreseeable errors, not simply
respond to them as if they're uncontrollable acts of God. The extra time it takes to implement a single-row
SELECT using an explicit cursor almost always outweighs the short-term benefits of the SELECT...INTO

http://lib.ommolketab.ir

command.

6.2.6 Index-by Tables (Arrays)

The last construct we'll look at is the index-by table, PL/SQL's version of an array (prior to Oracle8i, these were
called PL/SQL tables). Like a true array, an index-by table is made up of elements indexed by unique integers. This,
however, is about as far as the analogy goes. Table 6.1 summarizes the difference between real arrays and index-by
tables.

Table 6.1. Differences Between Real Arrays and Index-by Tables

Real Array Index-by Table

Multidimensional. One-dimensional.

Contains a fixed number of elements. Contains an "unlimited" number of elements.

Memory is allocated for every element in the array, even
if it's never used.

Memory is allocated only when an element is added.

Elements are consecutive (i.e., a(1), a(2), a(3) . . . a(N)).
Elements are non-consecutive (i.e., a(1), a(5632),
a(1013), a(999), . . .).

In reality, an index-by table is much closer to a linked-list or single-column table than to an array. Despite this (or
because of it, depending on the application), it's an extremely useful construct with a wide range of applications. In
this section, we'll see how to declare an array, assign values to its elements, and then retrieve the values.

6.2.6.1 Creating an index-by table

There are two steps in creating an index-by table. The first is to define a new datatype for the table. The second is to
declare the actual table variable itself by assigning it to the new table datatype created in the first step.

You define a table's datatype by placing the following command in the declaration section of a procedure or
function:[6]

[6] You can also declare the type in a package specification or body. We'll see how to do this in the next section.

TYPE table_type_name IS TABLE OF element_datatype
 INDEX BY BINARY_INTEGER;

The table_type_name is the name of the index-by table datatype (not the name of the table variable itself), and the
element_datatype specifies the type of elements the table contains. These elements can be any simple scalar datatype,
like a number, date, or string; unfortunately, you can't use complex types like records or other index-by tables. You
can either define the type directly (for example, by declaring it as a NUMBER) or use an anchored declaration to link
it to a table in a column. Here are a few examples of declaring an index-by table datatype:

TYPE monthly_sales_type IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;

http://lib.ommolketab.ir

TYPE ssn_array_type IS TABLE OF VARCHAR2(9)
 INDEX BY BINARY_INTEGER;

TYPE emp_array_type IS TABLE OF emp.lname%TYPE
 INDEX BY BINARY_INTEGER;

You can create a table variable after you've defined the table datatype. These are like normal variable declarations,
except that they use the datatypes you defined in the previous step. Here are a few examples of creating a table
variable:

sales_by_month monthly_sales_type;

ssn_array ssn_array_type;

emp_name_array emp_array_type;

You can begin adding elements to the table after you have created its type and an associated variable.

6.2.6.2 Adding elements to an index-by table

You assign values to an index-by table by associating its elements with unique integer indexes. The syntax is similar
to that used in C or Pascal. Here are some examples for a table of string elements:

emp_name_array (16) := 'albee';
emp_name_array (21) := 'mcmanus';
emp_name_array (1043) := 'jenkins';
emp_name_array (1013) := 'harrington';

Unlike most 3GL languages, where the index is a fixed offset from the start of the array, the index of an index-by
table is basically a primary key. Assigning an element for the first time is similar to inserting a record into a normal
database table. Subsequent changes to the value are like UPDATE statements.

6.2.6.3 Retrieving elements from an index-by table

You retrieve the value for an element using the same syntax you would for a 3GL language. Here are a few examples:

HTP.print (emp_name_array (21));
HTP.print (emp_name_array (1013));
IF emp_name_array (1043) = 'jenkins'
THEN
 HTP.print ('Hi, Garry.');
END IF;

There is one major difference between the retrieval of an index-by table element and a 3GL array element: you can
only retrieve elements to which you have previously assigned values. The retrieval process is a lot like the
SELECT...INTO statement we looked at in the section on cursors: the RDBMS raises a NO_DATA_FOUND
exception if the element doesn't exist. To prevent this, make sure you initialize your arrays before you use them.

http://lib.ommolketab.ir

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 6. PL/SQL

6.3 Packages

Now that we've looked at PL/SQL's structure and its most common programming constructs, we're ready to group
these elements into tidy little structures called packages. A package is a container (hence the name) for other PL/SQL
elements, such as variables and constants, procedures and functions, and datatype definitions.

A package has two parts: a specification and a body. The specification is a sort of table of contents that lists the items
in the package. The body contains the implementations for each item. For example, the specification tells us "This
package contains a procedure named `foo', which has the following parameters." The body of the package contains
the actual implementation of foo.

Packages are the most powerful and useful PL/SQL constructs because they help us build standard code libraries with
well-defined application programming interfaces (APIs). In a web environment, for example, you can create standard
libraries to handle security, page formatting, or list of values (LOV) generation. Each time you build a new
application, you can just plunk in calls to these standard libraries, rather than reinventing them for each new system.
Packages are also excellent for building abstract data types (ADTs), a fancy terminology for structures like stacks,
lists, and queues.

Prebuilt packages with clear APIs encourage software reuse, the Holy Grail of software engineering. In this final
section, we'll learn how to use packages effectively. We'll start by looking at the structure of the specification and the
body, and then move on to how to use a package within other programs. After that, we'll look at how to hide the
implementation details of a package to create a "black box." Finally, we'll look at package persistence.

6.3.1 The Package Specification

The specification defines the package's API, which governs every aspect of how the package is used. The
specification lists the headers of the procedures and functions in the API, as well as any variables, types, cursors, or
constants necessary to interface with the package. These last items are global variables, accessible both from inside
and outside the package. The headers and declarations in the specification are called public elements because they are
the interface between the package and the outside world.

You might see the specification as an afterthought, if not a downright nuisance, that stands in the way of your real
work. Nothing could be further from the truth. The success or failure of a package almost always depends on a clean,
crisp interface that is simple to understand and use.

http://lib.ommolketab.ir

6.3.2 The Package Body

The package body contains the actual code for the modules in the specification. It must include a complete
implementation of each of these modules. Additionally, it can also include procedures and functions not listed in the
specification, as well as declarations for variables, types, cursors, and constants. These elements, invisible to the
outside world, are private because they can be referenced only from within the body itself.

6.3.3 Example

Designing a good package takes practice. A package should be rich enough to support a wide variety of complex
activities, yet simple enough to grasp quickly. As with any other art, the best place to learn package design is from the
classics, so in this section we'll create a stack package based on an index-by table. Here's the specification:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE stack
IS

 /*--
 || Global type declaration
 */--
 TYPE stack_array IS TABLE OF VARCHAR2(2000)
 INDEX BY BINARY_INTEGER;

 /*---
 || Global API declaration
 */---
 -- Initialize the stack
 PROCEDURE init;

 -- Push an item onto the stack
 PROCEDURE push (item IN VARCHAR2);

 -- Return the first element on the stack
 FUNCTION pop
 RETURN VARCHAR2;

 -- Return a boolean if the stack is empty
 FUNCTION is_empty
 RETURN BOOLEAN;

 -- Copy the stack into an array
 PROCEDURE copy_to_array (
 s OUT stack_array,
 num_elements OUT NUMBER
);

END stack;

Our next step is to actually implement each of the procedures and functions listed in the specification. Here's the body

http://lib.ommolketab.ir

of the stack package:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE BODY stack
IS

 /*--
 || Local declarations
 */--
 -- Declare stack data structure
 local_stack stack_array;
 -- Declare index to top of stack
 top NUMBER DEFAULT 0;

 /*---
 || Implementation
 */---

 /*
 || Initialize the stack
 */
 PROCEDURE init
 IS
 BEGIN
 top := 0;
 END init;

 /*
 || Push an item onto the stack.
 || Since PL/SQL arrays are unconstrained, we never have
 || to worry about pushing too many elements!
 */
 PROCEDURE push (item IN VARCHAR2)
 IS
 BEGIN
 top := top + 1;
 local_stack (top) := item;
 END push;

 /*
 || Return a boolean if the stack is empty
 */
 FUNCTION is_empty
 RETURN BOOLEAN
 IS
 BEGIN
 IF top = 0
 THEN
 RETURN TRUE;
 ELSE
 RETURN FALSE;
 END IF;

http://lib.ommolketab.ir

 END is_empty;

 /*
 || Return the first element on the stack.
 || Return NULL if the stack is empty.
 */
 FUNCTION pop
 RETURN VARCHAR2
 IS
 item_to_return VARCHAR2(2000);
 BEGIN
 IF is_empty
 THEN
 item_to_return := NULL;
 ELSE
 item_to_return := local_stack (top);
 top := top - 1;
 END IF;
 RETURN item_to_return;
 END pop;

 /*
 || Copy the stack into an array
 */
 PROCEDURE copy_to_array (
 s OUT stack_array,
 num_elements OUT NUMBER
)
 IS
 BEGIN
 -- Set the number of elements
 num_elements := top;
 -- Load each element into the array
 FOR i IN 1 .. top
 LOOP
 s (i) := local_stack (i);
 END LOOP;
 END copy_to_array;

END stack;

6.3.4 Using a Package

After we've created the package specification and body, we can start using it in other procedures and functions. You
use the following syntax to refer to a public element (variable, procedure, function, etc.) in a package:

package_name.public_element_name

The following sample illustrates how to use the stack package developed in the last section:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PROCEDURE test_stack

http://lib.ommolketab.ir

IS
 stack_copy stack.stack_array;
 stack_size NUMBER;
BEGIN
 --Push some test data onto the stack
 FOR i IN 1 .. 10
 LOOP
 stack.push (i);
 END LOOP;

 -- Make a copy of the stack

 stack.copy_to_array (stack_copy, stack_size);

 -- Pop all elements off the stack
 WHILE NOT stack.is_empty
 LOOP
 DBMS_OUTPUT.put_line (stack.pop);
 END LOOP;

 -- Print the copied elements
 FOR i IN 1 .. stack_size
 LOOP
 DBMS_OUTPUT.put_line (stack_copy (i));
 END LOOP;

END test_stack;

6.3.5 Information Hiding

You might have noticed in the stack example that we declared the local_stack and the top variable inside the body,
rather than in the specification. This is an example of information hiding, a technique that's used to hide a package's
implementation details from its users.

A package should be a black box; input comes in one side and predictable output goes out the other. The details
between these steps should be invisible to everyone except the package's developer. It's amazing how often knowing
how something works can get us into trouble. How many times have you written one program to take advantage of a
bug in another? These shortcuts turn bugs into permanent fixtures. Information hiding eliminates the possibility of
this problem by forcing everyone to use the package the way it was intended to be used.

Access to the internal workings of a package can cause problems even when the workaround seems perfectly
innocent. To return to our original example, if the local_stack and top variables in the stack example were declared in
the package specification, and not hidden away in the body, a developer in a rush might be tempted to write a
program to bypass the stack directly, as you can see here:

/*
|| Quick procedure to print stack
*/
CREATE OR REPLACE PROCEDURE show_stack
 i NUMBER DEFAULT 0;
IS
BEGIN

http://lib.ommolketab.ir

 FOR i IN REVERSE 1 .. STACK.top
 LOOP
 DBMS_OUTPUT.put_line (STACK.local_stack (i));
 END LOOP;
END;

This shortcut depends on the stack being implemented as an index-by table. If we decided to redesign the package to
represent the stack in another way (for example, using an object type we can store directly in the database), it would
break this program and every other program that made a similar use of the package's public data structures.

6.3.6 Variable Persistence Throughout a Session

Package variables, whether they are declared in the specification or the body, maintain their values throughout a
session. All values are initialized when a session begins and are lost when it ends. This is called persistence because
the values remain, or persist, even when the package is not being directly used. Only package variables declared as
part of the specification or body persist. Variables declared inside a procedure or function do not.

For example, suppose you log into SQL*Plus and push a few elements onto the stack. After that, you execute a few
SELECT statements, issue some updates, and describe a table or two. Finally, before you're ready to log out, you call
the test_stack procedure. When it executes, not only does it print "1" through "10," it also prints the elements you
manually added at the beginning of the session. PL/SQL remembered the previous elements, even though you've been
doing other things. However, if you logged out and reconnected before running the test_stack procedure, the previous
elements disappear, because variables persist only throughout a single session.

In Chapter 7, we'll look at some strategies to mimic persistence in the web environment.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 6. PL/SQL

6.4 PL/SQL Tools

There are many tools you can use to improve your PL/SQL development productivity. Table 6.2 shows some of the
more popular, along with the web sites where they can be found, so you can download and experiment. In the
following subsections, we'll look at two of the most helpful tools, TOAD and PL/Formatter.

Table 6.2. Some Handy PL/SQL Development Tools

Tool Web Site

CAST Workbench http://www.castsoftware.com

FROG (Funky Resource for Oracle Gorillas) http://www.507pm.com/pcs

Oracle Procedure Builder http://www.oracle.com

PLEdit http://www.benthicsoftware.com

PL/Formatter http://www.revealnet.com

SQL/Expediter http://www.compuware.com

SQL Navigator http://www.quests.com

SQL*Object Builder http://www.idb-consulting.fr

SQL Programmer http://www.sfi-software.com

SQL Station http://www.platinum.com

TOAD (Tool for Oracle Application Developers) http://www.toadsoft.com

6.4.1 TOAD

In the bad old days, developers wrote their PL/SQL programs with a text editor like vi or Notepad, then compiled
them with SQL*Plus. If the program failed to compile because of a syntax error, about the only tool you had to help

http://www.castsoftware.com
http://www.507pm.com/pcs
http://www.oracle.com
http://www.benthicsoftware.com
http://www.revealnet.com
http://www.compuware.com
http://www.quests.com
http://www.idb-consulting.fr
http://www.sfi-software.com
http://www.platinum.com
http://www.toadsoft.com
http://lib.ommolketab.ir

track down the error was the SQL command:

SELECT * FROM user_errors

Even then, you got little more information than a generic Oracle syntax error and an approximate line number where
the error might have occurred. You had to go back to the code and hunt and peck to find the problem. It could take
hours to track down a misplaced quote mark or a misspelled keyword (ELSEIF instead of ELSIF was really hard to
find).

Fortunately, third-party PL/SQL editors like TOAD (Tool for Oracle Application Developers) have changed all that.
TOAD is a SQL and PL/SQL editor, object browser, query analyzer, and table data editor (finally, a tool that lets you
enter data into a table in spreadsheet format!) all rolled into one. Figure 6.1 shows TOAD's PL/SQL editor.

Figure 6.1. The TOAD PL/SQL Editor

Frankly, TOAD is awesome, and if you're doing any Oracle development, whether related to the Web or not, it's a
must-have tool. Perhaps the most unbelievable thing about TOAD is that you can get it for free! Originally written by
Jim McDaniel ("The Toadman") as freeware, TOAD is now fully supported by Quest Software, a maker of other
Oracle tools. The downside is that the free version is no longer being updated with new features, so it doesn't support
the new Oracle8/8i features. However, free is a very reasonable price! You can download the freeware version from
http://www.toadsoft.com, and the commercially supported version from http://www.quests.com/toad/toad_info.html.

6.4.2 PL/Formatter

PL/Formatter, another productivity tool, is a PL/SQL code formatter from RevealNet (http://www.revealnet.com).
PL/Formatter "pretty-prints" ugly, mangled code into the format recommended by Steven Feuerstein, the guru of
PL/SQL development.

http://www.toadsoft.com
http://www.quests.com/toad/toad_info.html
http://www.revealnet.com
http://lib.ommolketab.ir

In addition to just satisfying your aesthetic sensibilities, well-formatted source code helps make your programs more
readable and maintainable. Figure 6.2 shows PL/Formatter in action; the top half of the screen shows the original
code and the bottom half shows the code after it's been reformatted.

Figure 6.2. RevealNet's PL /Formatter

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 7. The PL/SQL Toolkit

The PL/SQL toolkit is a set of PL/SQL packages supplied by Oracle for use in developing web applications.
These packages are used to generate HTML dynamically, perform text operations, and improve developer
productivity. Table 7.1 shows an alphabetical listing of the packages included in the PL/SQL toolkit, along
with an explanation of their uses.

Table 7.1. PL/SQL Toolkit Packages

Package Name Use

HTF Parses HTML

HTP Generates HTML

OWA_COOKIE Stores cookies

OWA_OPT_LOCK Performs record locking

OWA_PATTERN Searches and replaces text

OWA_SEC Manages security

OWA_TEXT Represents text

OWA_UTIL Improves productivity

The sections that follow group these packages in categories according to their functionality. HTF and HTP are
used for communicating with the outside world; OWA_TEXT and OWA_PATTERN are used for text
processing; OWA_COOKIE and OWA_OPT_LOCK are used for maintaining state. The last two packages,
OWA_UTIL and OWA_SEC, are used for maintaining productivity and security.

In addition to learning how to use dozens of procedures, we'll keep an eye on what these packages can teach us
about good design. After all, the developers who created these packages are some of the most talented PL/SQL

http://lib.ommolketab.ir

programmers in the world. We would be wise to learn from their examples.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 7. The PL/SQL Toolkit

7.1 Communicating with the Outside World

When scripting languages like Perl are used to develop dynamic resources, their output is sent to the standard output (stdout)
device, then funneled back to the browser. Because PL/SQL cannot communicate directly with stdout , the toolkit includes a
package, called HTP, that mimics this behavior.

7.1.1 HTP: Generating HTML

The HTP package is a sort of web-enabled version of DBMS_OUTPUT, a built-in package that provides basic output
capabilities such as printing text. Like DBMS_OUTPUT, HTP contains commands that store text in a buffer. When a
procedure using the package terminates, the contents of the output buffer are "printed" and returned to the user. This buffering
is one difference between PL/SQL toolkit programs and standard CGI programs, which immediately return output to the user.
As such, the size of the buffer limits the size of a page. In most cases, this is not a problem; however, you should be aware that
if you choose to dump a million-row table onto a single page, you will quickly encounter this limit. Table 7.2 shows the
procedures included in the HTP package; HTP also includes a large number of wrapper procedures that correspond to various
HTML tags.

Table 7.2. Various HTP Procedures

Procedure Parameters Description

ANCHOR Depend on tag Generates an anchor tag

PRINT Any value Outputs any value passed as a parameter

Various wrapper procedures (e.g., HTMLOPEN) Depend on tag Simplifies coding of an HTML tag

The HTP procedure PRINT, which is analogous to DBMS_OUTPUT.PUT_LINE, simply outputs the value that is passed as a
parameter. Here, for example, is a procedure that generates a page that prints "Hello, World!":

CREATE OR REPLACE PROCEDURE hello_world
IS
BEGIN
 HTP.print ('<html>');

http://lib.ommolketab.ir

 HTP.print ('<head>');
 HTP.print ('<title>You knew it was coming...</title>');
 HTP.print ('</head>');
 HTP.print ('<!-- ');
 HTP.print ('This phrase is in every computer book.');
 HTP.print ('--!>');
 HTP.print ('<body bgcolor=blue>');
 HTP.print ('And here it is Hello, World!');
 HTP.print ('</body>');
 HTP.print ('</html>');
END;

More sophisticated tags require parameters to be included in the wrapper procedure. Each parameter corresponds to a particular
tag attribute. As a general rule, a parameter is named after the HTML attribute it represents and is used to complete a template
based on the tag's syntax. This parameter can take any valid PL/SQL value, including a literal, variable, concatenation, or
function. Optional attributes are declared as DEFAULT NULL.

To make the HTML syntax more palatable to Oracle developers, HTP has a number of specialized wrapper procedures that
correspond to individual tags. These procedures hide HTML's ugly syntax from developers, who are more familiar with
PL/SQL and other 3GLs. For example, rather than embedding <html> directly into a program, as we've done in the previous
example, the HTP package provides a more aesthetically pleasing procedure called HTMLOPEN to perform the same function.
Other HTP wrapper procedures include HTP.HTMLCLOSE for </html>, and HTP.HEADOPEN and HTP.HEADCLOSE for
<head> and </head>, respectively.

Although there are many benefits in using an API to isolate programs against underlying changes, the wrapper procedures often
cause more problems than they prevent. During development, you may find yourself flipping through manuals to figure out the
order of a particular procedure's parameters or trying to match some obscure tag to its toolkit equivalent. Once you locate the
procedure, you often find that there is no clear way to create the complex nesting required by many of the most useful tags,
such as those for forms or tables. In general, code is simply much more readable if you can see the actual HTML, rather than
hiding it away behind a complex API.

By convention, the parameters for these attributes are preceded by a single character indicating the parameter's datatype.
VARCHAR2 parameters, denoted by a "c," are by far the most common. "N" and "d" denote, respectively, the integer and date
datatypes, and appear mainly in overloaded or specialized procedures.

Here, for example, is the declarationas it appears in the HTP specificationfor a wrapper procedure that generates an anchor
(<a>) tag:

PROCEDURE anchor (
 curl IN VARCHAR2,
 ctext IN VARCHAR2,
 cname IN VARCHAR2 DEFAULT NULL,
 cattributes IN VARCHAR2 DEFAULT NULL
)

The parameter values are used to complete a template based on the tag the procedure represents. The ANCHOR procedure has
the following template:

ctext

Calling the ANCHOR procedure with the following values returns a link to the O'Reilly home page on the Web:

HTP.anchor (

http://lib.ommolketab.ir

 'www.oreilly.com',
 'O' || CHR (39) || 'Reilly Homepage',
 'oreilly_link',
 'target=_blank'
);

The URL for the link is http://www.oreilly.com , its name is oreilly_link , and its text (the part that shows up on the user's
screen) is "O'Reilly Homepage." The call uses the cattributes parameter to cause the page to open in a new window. Since
HTML has such a flexible syntax that a tag may have dozens of optional attributes, most of the procedures in the HTP package
include the cattributes parameter as a sort of catch-all within the tag. Here is the URL returned by the call:

O'Reilly Homepage

Individually, these commands are of limited use. You can combine the various procedures, however, to create a complete page.
Here is the "Hello, World" program written using the procedures from HTP:

CREATE OR REPLACE PROCEDURE hello_world2
IS
BEGIN
 HTP.htmlopen;
 HTP.headopen;
 HTP.title ('You knew it was coming...');
 HTP.headclose;
 HTP.comment ('This phrase is in every computer book.');
 HTP.bodyopen (cattributes => 'body bgcolor=blue');
 HTP.print ('And here it is Hello, World!');
 HTP.bodyclose;
 HTP.htmlclose;
END;

The other wrapper procedures in the package work in exactly the same way as the ANCHOR procedure. In the next section,
we'll concentrate on how to make the best use of the wrapper procedures, rather than focus on the gritty details of their API.

7.1.2 WebAlchemy

As you can imagine, developing sophisticated interfaces by translating raw HTML into its PL/SQL equivalent is enormously
tedious. Fortunately, there is a free tool that does much of this work: WebAlchemy, written by Alan Hobbs of Oracle
Consulting, Australia, translates a static HTML file into a corresponding PL/SQL procedure. By combining WebAlchemy with
any of the dozens of GUI-based HTML editors, you can create complex screens in PL/SQL quickly and easily.

WebAlchemy is simple enough to use that you probably won't even need any documentation. Figure 7.1 shows the main screen,
whose menu options should be familiar to any user of PC software. Using the program is simply a matter of opening an HTML
file and using the "Generate PL/SQL" option to generate a corresponding procedure. Figure 7.1 illustrates this procedure. The
raw HTML file, hello_world.html , appears on the left panel; the right panel shows the PL/SQL procedure created by the
"Generate PL/SQL" option.

Figure 7.1. WebAlchemy main screen

http://lib.ommolketab.ir

You can download WebAlchemy from:

http://www.users.bigpond.com/ahobbs/

At first blush, WebAlchemy inspires a sense of euphoria, because it promises to eliminate the need to know both HTML and
the PL/SQL toolkit. However, although WebAlchemy is useful for creating static pages whose layout is known ahead of time,
most programs generate documents dynamically from information stored in a table. There is simply no getting around the fact
that you must understand how to manually construct an HTML document. Fortunately, this is not particularly difficult.

7.1.3 HTF: Parsing HTML

The HTF package turns HTP procedures into functions that return the HTML output as a formatted string. Table 7.3
summarizes the functions available in the HTF package.

Table 7.3. Various HTF Functions

Function Parameters Description

ANCHOR Depend on tag Stores anchor tag as a string

PRINT Any value Stores any value in a string

For example, the following procedure stores the results of the HTF.ANCHOR function in a string, and then uses the PL/SQL
built-in SUBSTR function to print the result on two lines, using the DBMS_OUTPUT package:

CREATE OR REPLACE PROCEDURE htf_test
IS
 anchor_string VARCHAR2(500);
BEGIN
 anchor_string :=
 HTF.anchor (
 'http://www.ora.com',
 'O' || CHR (39) || 'Reilly',
 'ora_link',

http://www.users.bigpond.com/ahobbs/
http://lib.ommolketab.ir

 'target=_blank'
);
 DBMS_OUTPUT.put_line (SUBSTR (anchor_string, 1, 29));
 DBMS_OUTPUT.put_line (SUBSTR (anchor_string, 30, 50));
END;

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 7. The PL/SQL Toolkit

7.2 Text Processing

The enormous popularity of Perl is due in large part to its sophisticated text processing capabilities. A single Perl
command can replace dozens of PL/SQL INSTR and SUBSTR operations. Additionally, Perl's pattern matching
capabilities are well suited for processing and validating the text entered into HTML forms.

The PL/SQL toolkit has two packages that bring a subset of these capabilities to PL/SQL. The first, OWA_TEXT,
manipulates large chunks of text. The second, OWA_PATTERN, allows developers to use sophisticated search
patterns to perform many of the text operations found in Perl.

Beyond their mere utility, these two packages are interesting examples of good package design. OWA_TEXT is
similar to the abstract datatypes described in Chapter 6. OWA_PATTERN builds on OWA_TEXT to create dozens
of variations of the search and replace procedure, each useful in particular circumstances.

7.2.1 OWA_TEXT: Representing Text

The largest PL/SQL string can contain 32,767 characters. Unfortunately, there are many cases where we might like to
process larger chunks of text. A document indexing system, for example, must almost certainly process files much
larger than 32K.[1] The OWA_TEXT package overcomes the 32K limitation by breaking text streams into smaller
pieces that are stored as elements in a PL/SQL array.

[1] The human resources dress code guidelines at some companies probably exceed a megabyte.

Additionally, it is often useful to treat the components of a string as a single entity (e.g., a sentence as an array of
words). OWA_TEXT is ideal for this type of application. In practice, though, you'll probably not use OWA_TEXT
directly; instead, it's used to provide more flexibility to the OWA_PATTERN package discussed later in this chapter.

7.2.1.1 Data structures

OWA_TEXT's specification declares four data structures. The first two, vc_arr and int_arr, are PL/SQL arrays that
are the building blocks of the more complex types. vc_arr is a 32K string array; int_arr holds indexes to the
interesting rows of vc_arr. The declarations for these two datatypes are:

http://lib.ommolketab.ir

TYPE vc_arr IS TABLE OF VARCHAR2(32767)
 INDEX BY BINARY_INTEGER;

TYPE int_arr IS TABLE OF INTEGER
 INDEX BY BINARY_INTEGER;

The third data structure, called multi_line, is used to store information about an entire text stream. multi_line contains
three fields: a vc_arr array to hold the individual rows of the stream, an integer to hold the number of rows in the
vc_arr array, and a Boolean flag to indicate the presence of a partial row. Its declaration is:

TYPE multi_line IS RECORD (
 rows vc_arr,
 num_rows INTEGER,
 partial_row BOOLEAN
);

The fourth data structure, row_list, is used to represent pointers into the rows in a multi_line structure. This structure
is generally used by other toolkit packages, such as OWA_PATTERN, discussed later in this chapter. The declaration
for the row_list structure is:

TYPE row_list IS RECORD (
 rows int_arr,
 num_rows INTEGER
);

7.2.1.2 Procedures

The procedures in OWA_TEXT define a limited set of operations similar to those of a classic linked list. There are
procedures to create a new multi_line structure, to add a new row onto the end of an existing structure, and even to
print its contents. Table 7.4 summarizes these procedures:

Table 7.4. Various OWA_TEXT Procedures

Procedure Parameters Description

ADD2MULTI

stream IN
VARCHAR2

mline OUT
multi_line

continue IN
BOOLEAN

DEFAULT
TRUE

Appends the passed stream to the multi_line structure. If the continue flag
is TRUE, the stream is appended to the last line of the multi_line array. If
FALSE, the stream is appended as the last row.

NEW_MULTI
mline OUT
multi_line

Creates a new, blank multi_line. There is also a functionalized version
that returns an empty structure.

http://lib.ommolketab.ir

Procedure Parameters Description

NEW_ROW_LIST rlist IN row_list
Creates a new row_list structure. The command can be used as either a
procedure or a function.

PRINT_MULTI
mline IN
multi_line

Prints the content of the multi_line data structure using HTP.PRINT.

PRINT_ROW_LIST rlist IN row_list Prints the row_list using HTP.PRINT.

STREAM2MULTI

stream IN
VARCHAR2

mline OUT
multi_line

Converts a VARCHAR2 into a multi_line.

7.2.1.3 Example

Let's look at a quick example that illustrates OWA_TEXT in action. The following procedure, TOKENIZE, uses
OWA_TEXT to break apart and print the individual words in a sentence:

CREATE OR REPLACE PROCEDURE tokenize (
 sentence IN VARCHAR2 DEFAULT NULL
)
IS
 mline OWA_TEXT.multi_line;
 i NUMBER;
 n NUMBER := LENGTH (sentence);
 c VARCHAR2(1);
BEGIN
 OWA_TEXT.new_multi (mline); -- Initialize the structure
 FOR i IN 1 .. n
 LOOP
 c := SUBSTR (sentence, i, 1); -- Fetch current character
 IF c = ' '
 THEN
 -- Add a new row if the character is a space
 OWA_TEXT.add2multi (c, mline, FALSE);
 ELSE
 -- Otherwise, append the character to the string
 OWA_TEXT.add2multi (c, mline);
 END IF;
 END LOOP;
 /*
 || Print individual words in sentence
 */
 FOR i IN 1 .. mline.num_rows
 LOOP
 HTP.print ('Word ' || i || ' is ');
 HTP.print (mline.rows (i) || '
');
 END LOOP;
END;

NEW_ROW_LIST rlist IN row_list
Creates a new row_list structure. The command can be used as either a
procedure or a function.

PRINT_MULTI
mline IN
multi_line

Prints the content of the multi_line data structure using HTP.PRINT.

PRINT_ROW_LIST rlist IN row_list Prints the row_list using HTP.PRINT.

STREAM2MULTI

stream IN
VARCHAR2

mline OUT
multi_line

Converts a VARCHAR2 into a multi_line.

7.2.1.3 Example

Let's look at a quick example that illustrates OWA_TEXT in action. The following procedure, TOKENIZE, uses
OWA_TEXT to break apart and print the individual words in a sentence:

CREATE OR REPLACE PROCEDURE tokenize (
 sentence IN VARCHAR2 DEFAULT NULL
)
IS
 mline OWA_TEXT.multi_line;
 i NUMBER;
 n NUMBER := LENGTH (sentence);
 c VARCHAR2(1);
BEGIN
 OWA_TEXT.new_multi (mline); -- Initialize the structure
 FOR i IN 1 .. n
 LOOP
 c := SUBSTR (sentence, i, 1); -- Fetch current character
 IF c = ' '
 THEN
 -- Add a new row if the character is a space
 OWA_TEXT.add2multi (c, mline, FALSE);
 ELSE
 -- Otherwise, append the character to the string
 OWA_TEXT.add2multi (c, mline);
 END IF;
 END LOOP;
 /*
 || Print individual words in sentence
 */
 FOR i IN 1 .. mline.num_rows
 LOOP
 HTP.print ('Word ' || i || ' is ');
 HTP.print (mline.rows (i) || '
');
 END LOOP;
END;

http://lib.ommolketab.ir

The following HTML form is used to test the procedure; note how the <textarea> tag is used to supply the value for
the sentence parameter.

<html>
<title>Test tokenizer procedure</title>
<body>
 Enter the text to tokenize:
 <form action="http://gandalf/agent_webtest/plsql/tokenize">
 <textarea name=sentence>Enter sentence here</textarea>
 <p>
 <input type=submit>
 </form>
</body>
</html>

Figure 7.2 shows the results of the TOKENIZE procedure. The image on the left shows the form used to submit the
sentence; the image on the right shows the corresponding output generated by TOKENIZE.

Figure 7.2. Results of the TOKENIZE procedure

7.2.1.4 Design note

In a classic ADT, such as the stack presented in Chapter 6, the datatypes would be hidden within the package body
and would be accessible only through a programmatic interface. While this information hiding approach gives the
developer strict control over how the package is used, it also makes it difficult to extend the package.

Although it seems like an obscure issue, the placement of the declaration has a profound impact on the life of the
package. Declaring everything in the specification can make the package unwieldy and hard to maintain. The other
extreme, declaring everything in the body and making nothing accessible, results in a package that is rigid and
difficult to use in new circumstances.

OWA_TEXT resolves this tension admirably. By placing the declarations in the specification, the developers are
consciously creating a general-purpose object that other packages can use. However, the package also contains a
well-defined, private set of procedures that limit the operations that can be performed against its structures. In the
next section, we'll see how the package is used to extend the toolkit's pattern searching capabilities.

http://lib.ommolketab.ir

7.2.2 OWA_PATTERN: Searching and Replacing Text

The OWA_PATTERN package is the second component of our text processing unit. As its name implies,
OWA_PATTERN performs more complex text manipulation than is possible with PL/SQL's INSTR and SUBSTR
functions. Regular expressions make this sophistication possible.

7.2.2.1 Regular expressions

A regular expression, or RegExp, is a compact description for a pattern of characters used to find matches within
another string. Chances are you have used a simple RegExp to perform wildcard file searches using commands such
as dir *.sql or ls *.sql. In these searches, instead of looking for a specific file, you are looking for any file that matches
the .sql extension. In this case, the RegExp translates to the sentence "Any string of characters that ends in .sql."

You can use regular expressions to create more sophisticated patterns. For example, suppose you want to take some
action if any date appears within a string; you are only interested in its presence and do not know its value ahead of
time. Clearly, the following INSTR test is not very effective:

IF INSTR (some_string, '07/13/71')
 OR INSTR (some_string, '07/14/71')
 OR INSTR (some_string, '07/15/71')
 OR INSTR (some_string, '07/16/71') ...

What you are really after is a pattern consisting of three sets of two digits separated by slashes (for clarity, assume the
date is always DD-MM-YY). A regular expression is a mini-language that uses a compact vocabulary to describe
these patterns.

The first part of the RegExp vocabulary defines the different types of characters that can be matched, such as digits,
letters, or tabs. These characters are sometimes called atoms because they form the basic building blocks on which the
expressions are based. The atoms that can be used in OWA_PATTERN are shown in Table 7.5.

Table 7.5. Atoms Available in OWA_PATTERN

Atom Description

. Any character except newline (\n)

\n Newline

\t Tab

\d Any digit (0 . . . 9)

\D Any non-digit

\w Any alphanumeric character (0 . . . 9, a . . . z, A . . . Z)

\W Any nonalphanumeric character

\s Any whitespace character (space, tab, or newline)

http://lib.ommolketab.ir

Atom Description

\S Non-whitespace character

\b Word boundary

\xnn Character having the hexadecimal value nn (i.e., \x20 is a space)

\nnn Character having the octal value nnn (i.e., \040 is a space)

\c Any character matching c

The next part of the vocabulary defines how many characters must appear to constitute a match. For example, we may
want to return a match only if there are exactly two consecutive digits. The characters in this set are called the
quantifiers; the possibilities for them are shown in Table 7.6.

Table 7.6. Quantifiers Available in OWA_PATTERN

Quantifier Description

? Exactly zero or one occurrence of an atom

* Zero or more occurrences of an atom

+ One or more occurrences of an atom

{n} Exactly n occurrences of an atom

{n,} At least n occurrences of an atom

{n,m} At least n, but not more than m, occurrences of an atom

There are two possible assertions, or sets of characters used to fix the position of a match, as shown in Table 7.7.

Table 7.7. Assertions Available in OWA_PATTERN

Assertion Description

^ Match must come at the start of the string.

$ Match must come at the end of the string.

Finally, the vocabulary of the regular expression contains a set of flags that are used to control the behavior of the
search. Unlike the atoms, quantifiers, and assertions, these flags are not included as part of the RegExp itself. Instead,
they are passed as a separate parameter to control how the various OWA_TEXT procedures behave. The two
available flags are shown in Table 7.8.

Table 7.8. Flags Available in OWA_PATTERN

\S Non-whitespace character

\b Word boundary

\xnn Character having the hexadecimal value nn (i.e., \x20 is a space)

\nnn Character having the octal value nnn (i.e., \040 is a space)

\c Any character matching c

The next part of the vocabulary defines how many characters must appear to constitute a match. For example, we may
want to return a match only if there are exactly two consecutive digits. The characters in this set are called the
quantifiers; the possibilities for them are shown in Table 7.6.

Table 7.6. Quantifiers Available in OWA_PATTERN

Quantifier Description

? Exactly zero or one occurrence of an atom

* Zero or more occurrences of an atom

+ One or more occurrences of an atom

{n} Exactly n occurrences of an atom

{n,} At least n occurrences of an atom

{n,m} At least n, but not more than m, occurrences of an atom

There are two possible assertions, or sets of characters used to fix the position of a match, as shown in Table 7.7.

Table 7.7. Assertions Available in OWA_PATTERN

Assertion Description

^ Match must come at the start of the string.

$ Match must come at the end of the string.

Finally, the vocabulary of the regular expression contains a set of flags that are used to control the behavior of the
search. Unlike the atoms, quantifiers, and assertions, these flags are not included as part of the RegExp itself. Instead,
they are passed as a separate parameter to control how the various OWA_TEXT procedures behave. The two
available flags are shown in Table 7.8.

Table 7.8. Flags Available in OWA_PATTERN

http://lib.ommolketab.ir

Flag Description

I The search is not case sensitive.

g Used in the change procedure to specify a global search and replace.

There are additional special characters that remember the portions of the original string that was matched. The first
special character, the ampersand (&), can be used during the replace phase of a search and replace operation. The &
represents the original pattern found in a match; including it in a replace string recreates the original string of
characters that matched the pattern. The second special character is a pair of parentheses. When a portion of a match
sequence is enclosed in parentheses, the subsequent replace operation can remember each parenthesized match. These
remembered strings are called back references (backrefs) and are stored in an array.

7.2.2.2 Data structures

You must supply a regular expression to each function in OWA_PATTERN. Initially, the pattern is stored as a simple
VARCHAR2 string. In order to use the expression, however, OWA_PATTERN transforms it into a more useful
format. This relatively time-consuming process converts the regular expression from a VARCHAR2 into a PL/SQL
array, using the following declaration:

TYPE pattern IS TABLE OF VARCHAR2(4)
 INDEX BY BINARY_INTEGER;

Like many of the other data structures we've seen, pattern datatypes are initialized by calling a procedure. In this case,
the procedure is called GET_PAT. There are two parameters to this procedure. The first is a VARCHAR2 string
called arg that holds the regular expression to be parsed. The second is a pattern datatype (declared as an IN OUT
mode parameter) to hold the resultant parsed pattern.

In the next section, we'll see once again how the toolkit's developers intentionally placed the declaration in the
specification and not the body, even though it's a purely internal representation. This time, however, the intent is to
improve the package's performance as well as its usability.

7.2.2.3 Procedures and functions

In addition to GET_PAT, the OWA_PATTERN package contains three other basic functions: MATCH, AMATCH,
and CHANGE. In an attempt to match the enormous flexibility of Perl, each function has several overloaded versions
that derive from the data structures found in OWA_TEXT. For example, the MATCH function can search either a
simple VARCHAR2 string or the more complex multi_line data structure. This is a great example of the power and
flexibility a good package can provide.

However, with 14 variations of just three functions, OWA_PATTERN reveals an API that just might be too complex.
The next three sections describe the functions for this package, shown in Table 7.9. Keep in mind that some of these
functions are like the finches on the Galapagos Islands: very specialized.

Table 7.9. Various OWA_PATTERN Procedures and Functions

http://lib.ommolketab.ir

Procedure/Function Parameters Description

AMATCH
See Table 7.11 for details on
overloaded versions.

Returns the position of the end of the first RegExp
found within text

CHANGE
See Table 7.12 for details on
overloaded versions.

Replaces matched pattern with a new string

GET_PAT
arg IN VARCHAR2

pat IN OUT pattern
Initializes a datatype

MATCH
See Table 7.10 for details on
overloaded versions.

Returns a Boolean value indicating whether a
RegExp was found inside text

7.2.2.3.1 The MATCH function.

This function returns a Boolean value indicating whether a regular expression was found inside a chunk of text. There
are six overloaded versions. The parameters for this function are:

line/mline

The text that is being searched, either a VARCHAR2 or an OWA_TEXT.MULTI_LINE (in the latter case, the
parameter is renamed mline).

pat

The regular expression, either a VARCHAR2 or a pattern. If used as a pattern, the structure must be initialized
with the GET_PAT procedure before it is passed as a parameter.

flags

Controls the behavior of the search as described in Table 7.8; a VARCHAR2.
backrefs

Optional parameter to hold back references when parentheses are used as part of the regular expression; an
OWA_TEXT.VC_ARR.

rlist

Identifies the rows in which a match was found; an OWA_TEXT.ROW_LIST (mandatory when the line
parameter is an OWA_TEXT.MULTI_LINE).

Table 7.10 lists the formal parameters for each of the different versions of MATCH.

Table 7.10. Overloaded Versions of MATCH

http://lib.ommolketab.ir

Version Parameters Description

1

line IN VARCHAR2

pat IN VARCHAR2

flags IN VARCHAR2
DEFAULT NULL

The simplest of the versions; all parameters are VARCHAR2.

2

line IN VARCHAR2

pat IN OUT pattern

flags IN VARCHAR2
DEFAULT NULL

In this version, the pat parameter is declared using the PATTERN datatype.
This version optimizes multiple searches that use the same RegExp.

3

line IN VARCHAR2

pat IN VARCHAR2

backrefs OUT
owa_text.vc_arr

flags IN VARCHAR2
DEFAULT NULL

Version 1 with the optional backrefs parameter. When the function
completes, the backrefs array contains the portions of the original string
that matched the parentheses.

4

line IN VARCHAR2

pat IN VARCHAR2

backrefs OUT
owa_text.vc_arr

flags IN VARCHAR2
DEFAULT NULL

Version 2 with the optional backrefs parameter.

5

mline IN
owa_text.multi_line

pat IN VARCHAR2

rlist OUT
owa_text.row_list

flags IN VARCHAR2
DEFAULT NULL

In this version, the text string is a multi_line datatype rather than a
VARCHAR2. The mline parameter must be initialized using the procedures
described in the OWA_TEXT section.

6

mline IN
owa_text.multi_line

pat IN OUT pattern

rlist OUT
owa_text.row_list

Same as version 5, but the pat parameter is declared as a pattern structure.

http://lib.ommolketab.ir

Version Parameters Description

flags IN VARCHAR2
DEFAULT NULL

7.2.2.3.2 The AMATCH function.

This function is similar to MATCH, except that it returns the position of the end of the first match found within the
string.[2] The function returns if no match is found. There are four overloaded versions; the parameters for each
version are:

[2] INSTR, a similar function that's built into PL/SQL, returns the position of the first character of a match.

line

The text that is being searched; unlike the MATCH function, it is always a VARCHAR2.
from_loc

Starting position within the string for the search.
pat

The regular expression, either a VARCHAR2 or a pattern. If used as a pattern, the structure must be initialized
with the GET_PAT procedure before it is passed as a parameter.

flags

Controls the behavior of the search as described in Table 7.8; a VARCHAR2.
backrefs

Optional parameter to hold back references when parentheses are used as part of the regular expression; an
OWA_TEXT.VC_ARR.

Table 7.11 lists the four versions of AMATCH.

Table 7.11. Overloaded Versions of AMATCH

Version Parameters Description

1

line IN VARCHAR2

from_loc IN INTEGER

pat IN VARCHAR2

flags IN VARCHAR2 DEFAULT
NULL

The simplest of the versions; all parameters are VARCHAR2.

2

line IN VARCHAR2

from_loc IN INTEGER

pat IN OUT pattern
In this version, the pat parameter is declared using the PATTERN
datatype.

flags IN VARCHAR2
DEFAULT NULL

7.2.2.3.2 The AMATCH function.

This function is similar to MATCH, except that it returns the position of the end of the first match found within the
string.[2] The function returns if no match is found. There are four overloaded versions; the parameters for each
version are:

[2] INSTR, a similar function that's built into PL/SQL, returns the position of the first character of a match.

line

The text that is being searched; unlike the MATCH function, it is always a VARCHAR2.
from_loc

Starting position within the string for the search.
pat

The regular expression, either a VARCHAR2 or a pattern. If used as a pattern, the structure must be initialized
with the GET_PAT procedure before it is passed as a parameter.

flags

Controls the behavior of the search as described in Table 7.8; a VARCHAR2.
backrefs

Optional parameter to hold back references when parentheses are used as part of the regular expression; an
OWA_TEXT.VC_ARR.

Table 7.11 lists the four versions of AMATCH.

Table 7.11. Overloaded Versions of AMATCH

Version Parameters Description

1

line IN VARCHAR2

from_loc IN INTEGER

pat IN VARCHAR2

flags IN VARCHAR2 DEFAULT
NULL

The simplest of the versions; all parameters are VARCHAR2.

2

line IN VARCHAR2

from_loc IN INTEGER

pat IN OUT pattern
In this version, the pat parameter is declared using the PATTERN
datatype.

http://lib.ommolketab.ir

Version Parameters Description

flags IN VARCHAR2 DEFAULT
NULL

3

line IN VARCHAR2

from_loc IN INTEGER

pat IN VARCHAR2

backrefs OUT owa_text.vc_arr

flags IN VARCHAR2 DEFAULT
NULL

Version 1 with the optional backrefs parameter.

4

line IN VARCHAR2

from_loc IN INTEGER

pat IN pattern

backrefs OUT owa_text.vc_arr

flags IN VARCHAR2 DEFAULT
NULL

Version 2 with the optional backrefs parameter.

7.2.2.3.3 CHANGE.

The CHANGE function or procedure searches a chunk of text for a pattern. When it finds a match, it replaces the
matched substring with a new string. When used as a procedure, CHANGE simply updates the text with the
appropriate matches. When used as a function, it makes the changes and returns the number of substitutions.

This second usage is questionable. When a function changes the value of a parameter, it violates the most important
rule about functions: that a function should return exactly one value. By updating the parameters, CHANGE is
essentially returning two values: one for the number of updates and another for the actual results of that update.
Including an OUT mode parameter to the procedural version would probably have been a better design.

The parameters used in each version are:

line/mline

The text that is being searched and replaced; either a VARCHAR2 or an OWA_TEXT.MULTI_LINE (in the
latter case, the parameter is renamed mline).

from_str

String to be replaced; always a VARCHAR2. Note that although the string represents a regular expression like
the pat parameter in the MATCH and AMATCH functions, it cannot be used as a PATTERN datatype.

to_str

The string that replaces from_str; always a VARCHAR2. An & character, when used anywhere in the string,
is replaced by the original portion of the text line that matches the from_str pattern.

flags

flags IN VARCHAR2 DEFAULT
NULL

3

line IN VARCHAR2

from_loc IN INTEGER

pat IN VARCHAR2

backrefs OUT owa_text.vc_arr

flags IN VARCHAR2 DEFAULT
NULL

Version 1 with the optional backrefs parameter.

4

line IN VARCHAR2

from_loc IN INTEGER

pat IN pattern

backrefs OUT owa_text.vc_arr

flags IN VARCHAR2 DEFAULT
NULL

Version 2 with the optional backrefs parameter.

7.2.2.3.3 CHANGE.

The CHANGE function or procedure searches a chunk of text for a pattern. When it finds a match, it replaces the
matched substring with a new string. When used as a procedure, CHANGE simply updates the text with the
appropriate matches. When used as a function, it makes the changes and returns the number of substitutions.

This second usage is questionable. When a function changes the value of a parameter, it violates the most important
rule about functions: that a function should return exactly one value. By updating the parameters, CHANGE is
essentially returning two values: one for the number of updates and another for the actual results of that update.
Including an OUT mode parameter to the procedural version would probably have been a better design.

The parameters used in each version are:

line/mline

The text that is being searched and replaced; either a VARCHAR2 or an OWA_TEXT.MULTI_LINE (in the
latter case, the parameter is renamed mline).

from_str

String to be replaced; always a VARCHAR2. Note that although the string represents a regular expression like
the pat parameter in the MATCH and AMATCH functions, it cannot be used as a PATTERN datatype.

to_str

The string that replaces from_str; always a VARCHAR2. An & character, when used anywhere in the string,
is replaced by the original portion of the text line that matches the from_str pattern.

flags

http://lib.ommolketab.ir

Controls the behavior of the search as described in Table 7.8; a VARCHAR2. If no value is specified (the
default), only the first match is replaced. If the value "g" is used, it replaces all the matches.

Table 7.12 lists the four versions of CHANGE.

Table 7.12. Overloaded Versions of CHANGE

Version Parameters Description

1

line IN OUT VARCHAR2

from_str IN VARCHAR2

to_str IN VARCHAR2

flags IN VARCHAR2

Function that returns the number of substitutions made. After the function
exits, the line parameter is updated with the results of the search and replace.

2

line IN OUT VARCHAR2

from_str IN VARCHAR2

to_str IN VARCHAR2

flags IN VARCHAR2

Procedural version of version 1.

3

mline IN OUT
owa_text.multi_line

from_str IN VARCHAR2

to_str IN VARCHAR2

flags IN VARCHAR2

Function that returns the number of substitutions made; the target text is
declared as a multi_line structure.

4

mline IN OUT
owa_text.multi_line

from_str IN VARCHAR2

to_str IN VARCHAR2

flags IN VARCHAR2

Procedural version of version 4.

7.2.2.4 Example

As you can imagine, there are a lot of possible examples for the OWA_PATTERN package. However, it's not
necessary to detail every one. Instead, let's focus on a single example, based on the CHANGE procedure, that allows
you to test the effect of various regular expressions in search and replace operations.

The example procedure, regexp_test, accepts the parameters of version 1 of CHANGE and builds an HTML table
that breaks the final page into two columns. The first column contains a data entry form with the fields necessary to
test the CHANGE procedure. The second column displays the results of the CHANGE procedure when it is executed

http://lib.ommolketab.ir

with the regexp_test procedure's parameters.

The interesting thing about this procedure is that it preserves the values entered when the user submits the form. This
is accomplished by setting the form action attribute back to the regexp_test procedure. When the form is submitted,
the procedure reconstructs the form using the input from the previous screen:

CREATE OR REPLACE PROCEDURE regexp_test (
 line IN OUT VARCHAR2 DEFAULT NULL,
 from_str IN VARCHAR2 DEFAULT NULL,
 to_str IN VARCHAR2 DEFAULT '&',
 flags IN VARCHAR2 DEFAULT NULL
)
IS

BEGIN
 HTP.print ('<html><title>Pattern Test</title><body>');
 HTP.print ('<table border=1><tr><td>'); -- Used to format results
 HTP.print ('<form action=regexp_test>');
 HTP.print ('Line:<textarea name=line>' ||
 line ||
 '</textarea>
');
 HTP.print ('From:<input name=from_str value="' ||
 from_str ||
 '">
');
 HTP.print ('To:<input name=to_str value="' ||
 to_str ||
 '">
');
 HTP.print ('Flags:<input name=flags value="' ||
 flags ||
 '">
');
 HTP.print ('<input type=submit>');
 HTP.print ('</form></td><td>'); -- Results print in second column
 -- Call the change procedure
 OWA_PATTERN.change (line, from_str, to_str, flags);
 HTP.print (line_copy);
 HTP.print ('</td></tr></html>');
END;

Figure 7.3 shows the output of the regexp_test procedure.

Figure 7.3. The results of the regexp_test procedure

http://lib.ommolketab.ir

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 7. The PL/SQL Toolkit

7.3 Maintaining State

The inability to save information, or state, throughout a session is one of HTML's major limitations. HTML has no
client/server type variables that remember things as the user moves from page to page. For example, if we want to use
a piece of information entered by a user on the first page of a web system, we must save it somehow and be able to
recall it later. There are four basic ways to do this: saving the information as part of a query string in a URL, saving it
in a hidden field, saving it in a database table, or saving it in a cookie file by using the OWA_COOKIE package,
described later in this section. In this section, we'll look at each method and discuss possible problems you may run
into.

The first way to maintain state, using a query string of a URL, is the most straightforward: you simply build the string
as you go, placing the information you want to pass from screen to screen in name/value pairs. These values are then
passed to the procedure specified in the URL's href attribute when the user clicks on the hyperlink. The disadvantages
to this approach include the following:

Depending on the system, the maximum length of the URL is limited to 256 characters.

Each value must be encoded to the CGI specification. It can be easy to forget to do this if you're in a rush.

The second way to save state information is to store it in hidden fields. A hidden field is simply an invisible input
element that is part of an HTML form. Although the user cannot see the value on the screen, the hidden field is stored
as part of the underlying HTML code. To maintain a value across multiple sessions, all we have to do is include the
value as a hidden field on the form. You create a hidden field by setting the type attribute of an <input> element to
"hidden," as in the following example:

<input type=hidden name=user_id value="10235">

The disadvantages of this approach include the following:

Every procedure must include a corresponding parameter for the hidden value. While this might be okay for a
small number of fields, it quickly becomes unworkable for larger numbers (this also applies when embedding
the information in a URL).

Each procedure must include the code to reproduce the hidden fields as part of its output.

http://lib.ommolketab.ir

Hidden fields are insecure since almost all browsers have a "View Source" option that allows users to look at
the underlying HTML code, making hidden fields of limited value when security is an issue.

The third method for maintaining state simply saves the information in a table and uses a SELECT statement to
retrieve it later. However, there are two problems with this approach:

It requires a hit against a table to both save and recall a piece of information.

We need something to use as a primary key, carried across each page, to associate the state information with a
particular session. The simplest way to do this is to store the client's IP address as part of a primary key. We can
use this address, which is simple to obtain, when we want to recall the information later.

The fourth method is to save state information using cookies. Each cookie has a name and one or more associated
values, and is saved either as a record on the user's machine or as an environment variable on the web server. In either
case, it is accessible throughout (and sometimes even after) a user's session. You create a cookie on a user's browser
by embedding HTML-like commands into the MIME header of a page. For example, the following set of instructions
creates two cookies (notice that the second has multiple values):

Set-Cookie: username=odewahn
Set-Cookie: city=BOSTON; city=CHICAGO; city=NEW YORK

Some disadvantages of this approach are:

Cookies were originally introduced by Netscape and are not part of the HTML standard. However, they have
become a popular way to overcome statelessness and are now supported by most browsers.

Cookies that are saved on a user's machine (and don't expire) tie the user to that specific machine. For example,
many Internet storefronts use cookies to save your user information. When you visit the site, the server reads
the cookies and thinks it's you. When someone else borrows or uses your computer, though, this information is
still stored on the machine, which can lead to problems.

Cookies can be turned off. Most browsers allow users to reject cookies, usually out of privacy concerns.
Consequently, you can't save any state information to those users' machines.

In the next section, we'll look at the toolkit package for manipulating cookies.

7.3.1 OWA_COOKIE: Storing Cookies

The OWA_COOKIE package contains procedures that allow us to create, access, and even update cookies within
PL/SQL.

7.3.1.1 Data structures

A cookie can have multiple values that can be as large as 4K. These are stored in an array named vc_arr:

TYPE vc_arr IS TABLE OF VARCHAR2(4096)
 INDEX BY BINARY_INTEGER;

http://lib.ommolketab.ir

The vc_arr used in OWA_COOKIE is not the same as the one used in OWA_TEXT.

The cookie itself is represented with a record that holds its name, its values, and the number of these values:

TYPE cookie IS RECORD (
 name VARCHAR2(4096),
 vals vc_arr,
 num_vals INTEGER
);

7.3.1.2 Procedures and functions

The procedures and functions of OWA_COOKIE read, create, and remove cookies. The instructions to read cookies
retrieve those cookies from the browser and store their values in a cookie variable. Creating or removing the cookies
is slightly trickier. Table 7.13 shows the procedures and functions for OWA_COOKIE, along with their parameters.

Table 7.13. Various OWA_COOKIE Procedures and Functions

Procedure/Function Parameters Description

GET name IN VARCHAR2
Generates instructions to retrieve a specified cookie from
the browser and store its value in a cookie variable

GET_ALL

names OUT owa_cookie.vc_arr

vals OUT owa_cookie.vc_arr

num_vals OUT INTEGER

Generates instructions to retrieve the names and values of
all unexpired cookies

SEND

name IN VARCHAR2

value IN VARCHAR2

expires IN DATE DEFAULT
NULL

path IN VARCHAR2
DEFAULT NULL

domain IN VARCHAR2
DEFAULT NULL

SECURE IN VARCHAR2
DEFAULT NULL

Generates instructions to create a cookie

REMOVE

name IN VARCHAR2

value IN VARCHAR2
Generates instructions to delete a cookie

http://lib.ommolketab.ir

Procedure/Function Parameters Description

path IN VARCHAR2
DEFAULT NULL

Like the procedures of the HTP package, the OWA_COOKIE procedures and functions generate instructions that are
sent to the browser for processing. Unlike normal HTML tags, however, these instructions must appear outside the
normal document in a section called the HTTP header. To place instructions in the header, we must use the
MIME_HEADER and HTTP_HEADER_CLOSE procedures from the OWA_UTIL package. Please see Section
7.4.1.4, later in this chapter, for a detailed discussion of these procedures.

The following snippet shows how the OWA_UTIL procedures are used to create cookies:

/*
|| FALSE value in mime_header keeps the header open
|| so we can insert the cookie into the header section
*/
OWA_UTIL.mime_header ('text/html', FALSE);
OWA_COOKIE.send ('city', 'BOSTON');
OWA_COOKIE.send ('city', 'CHICAGO');
OWA_COOKIE.send ('city', 'NEW YORK');
OWA_UTIL.http_header_close; -- Now close the header
HTP.print ('<html>');
...

7.3.1.2.1 The SEND procedure.

This procedure generates the instruction to create a cookie. As noted, this instruction must appear inside the HTTP
header. The parameters for the procedure are as follows:

name IN VARCHAR2

Name of the cookie.
value IN VARCHAR2

Value of the cookie.
expires IN DATE DEFAULT NULL

Expiration date; the cookie is deleted after the specified date. If omitted, it never expires. Also note that the
time zone must match the settings in OWA_INIT.

path IN VARCHAR2 DEFAULT NULL

If a path is specified, the server sends the cookie only when the URL of the request matches the path; this
make the cookie available only to those requests that match the specified path.

domain IN VARCHAR2 DEFAULT NULL

Like the path, the server sends the cookie only if the domain (i.e., www.oreilly.com) matches the URL of the
request, allowing you to prevent a cookie from being sent if the domain (the server section of the URL)
matches the specified path.

SECURE IN VARCHAR2 DEFAULT NULL

If non-NULL, the keyword SECURE is added to the cookie; if added, the cookie is sent only if the client and
server are connected through a secure protocol like HTTPS.

path IN VARCHAR2
DEFAULT NULL

Like the procedures of the HTP package, the OWA_COOKIE procedures and functions generate instructions that are
sent to the browser for processing. Unlike normal HTML tags, however, these instructions must appear outside the
normal document in a section called the HTTP header. To place instructions in the header, we must use the
MIME_HEADER and HTTP_HEADER_CLOSE procedures from the OWA_UTIL package. Please see Section
7.4.1.4, later in this chapter, for a detailed discussion of these procedures.

The following snippet shows how the OWA_UTIL procedures are used to create cookies:

/*
|| FALSE value in mime_header keeps the header open
|| so we can insert the cookie into the header section
*/
OWA_UTIL.mime_header ('text/html', FALSE);
OWA_COOKIE.send ('city', 'BOSTON');
OWA_COOKIE.send ('city', 'CHICAGO');
OWA_COOKIE.send ('city', 'NEW YORK');
OWA_UTIL.http_header_close; -- Now close the header
HTP.print ('<html>');
...

7.3.1.2.1 The SEND procedure.

This procedure generates the instruction to create a cookie. As noted, this instruction must appear inside the HTTP
header. The parameters for the procedure are as follows:

name IN VARCHAR2

Name of the cookie.
value IN VARCHAR2

Value of the cookie.
expires IN DATE DEFAULT NULL

Expiration date; the cookie is deleted after the specified date. If omitted, it never expires. Also note that the
time zone must match the settings in OWA_INIT.

path IN VARCHAR2 DEFAULT NULL

If a path is specified, the server sends the cookie only when the URL of the request matches the path; this
make the cookie available only to those requests that match the specified path.

domain IN VARCHAR2 DEFAULT NULL

Like the path, the server sends the cookie only if the domain (i.e., www.oreilly.com) matches the URL of the
request, allowing you to prevent a cookie from being sent if the domain (the server section of the URL)
matches the specified path.

SECURE IN VARCHAR2 DEFAULT NULL

If non-NULL, the keyword SECURE is added to the cookie; if added, the cookie is sent only if the client and
server are connected through a secure protocol like HTTPS.

http://lib.ommolketab.ir

SEND produces a string based on the following template:

Set-Cookie: name=value expires=expires path=path domain=domain secure

The following procedure illustrates the use of the SEND procedure:

CREATE OR REPLACE PROCEDURE send_cookie (
 cookie_name IN VARCHAR2 DEFAULT NULL,
 cookie_val IN VARCHAR2 DEFAULT NULL
)
IS

BEGIN
 -- Cookies must be set within the header
 OWA_UTIL.mime_header ('text/html', FALSE);
 -- Send a cookie if a name was entered
 IF cookie_name IS NOT NULL
 THEN
 OWA_COOKIE.send (cookie_name, cookie_val);
 END IF;
 OWA_UTIL.http_header_close;
END;

7.3.1.2.2 The REMOVE procedure.

This procedure causes a cookie to immediately expire and, like SEND, must be used inside the HTTP header. The
parameters are:

name IN VARCHAR2

The name of the cookie to remove.
value IN VARCHAR2

The value of the cookie to remove.
path IN VARCHAR2 DEFAULT NULL

The path of the cookie to remove.

REMOVE produces the following template:

Set-Cookie: name=value expires=01-JAN-1990 path=path

7.3.1.2.3 The GET function.

This function retrieves the value for the specified cookie and returns it as a cookie datatype. Unlike SEND or
REMOVE, GET is not limited to the header and may appear anywhere within a procedure. It has one parameter:

name IN VARCHAR2

Name of the cookie to retrieve.

The following example illustrates the GET procedure:

http://lib.ommolketab.ir

CREATE OR REPLACE PROCEDURE get_cookie (
 cookie_name IN VARCHAR2 DEFAULT NULL
)
IS

 target_cookie OWA_COOKIE.cookie;

BEGIN
 target_cookie := OWA_COOKIE.get (cookie_name);
 -- Print message if the cookie was not found
 IF target_cookie.num_vals = 0
 THEN
 HTP.print ('<h1>Cookie not found!</h1>');
 ELSE
 HTP.print ('<h1>Values for cookie ' ||
 cookie_name ||
 '</h1><hr>');
 FOR i IN 1 .. target_cookie.num_vals
 LOOP
 HTP.print (target_cookie.vals (i) || '<p>');
 END LOOP;
 END IF;
END;

7.3.1.2.4 The GET_ALL procedure.

This procedure retrieves the names and values for all nonexpired cookies. Its parameters are:

names OUT owa_cookie.vc_arr

Array of cookie names.
vals OUT owa_cookie.vc_arr

Array of cookie values.
num_vals OUT INTEGER

Total number of cookies retrieved.

The following procedure illustrates the GET_ALL procedure:

CREATE OR REPLACE PROCEDURE print_cookies
IS

 -- Note that vc_arr is in owa_cookie, not owa_text!

 current_cookie_names OWA_COOKIE.vc_arr;
 current_cookie_vals OWA_COOKIE.vc_arr;
 n INTEGER DEFAULT 0;

BEGIN
 -- Fetch and print the current cookies
 OWA_COOKIE.get_all (

http://lib.ommolketab.ir

 current_cookie_names,
 current_cookie_vals,
 n
);
 FOR i IN 1 .. n
 LOOP
 HTP.print ('' || current_cookie_names (i) || ':');
 HTP.print ('' || current_cookie_vals (i) || '<p>');
 END LOOP;
END;

7.3.2 OWA_OPT_LOCK: Record Locking

Developing data entry forms with HTML is closely related to the problem of maintaining state. As discussed in
Chapter 2, forms are processed in two steps. In the first, the form is displayed and the user is allowed to make
changes. In the second, once the user has made all desired edits, the form is submitted to another program for
processing. This program adds, deletes, or updates the original record. As any client/server developer knows, forms
must be able to handle situations in which multiple users attempt to update the same record simultaneously.

There are two different approaches to handling the simultaneous update problem: pessimistic locking and optimistic
locking. With pessimistic locking, the record is locked as soon as the user attempts to edit it. If the lock succeeds,
other users are unable to make changes until the original user releases the lock.

With optimistic locking, no locks are issued, in the hope (hence the term "optimistic") that someone else won't come
along in the interim and make changes to the record. A user makes edits on the screen, and only when the user has
finished editing does the system attempt to lock the record and apply the changes. Unfortunately, because the record
was not initially locked, other users are free to make changes while the first user is still staring at his screen. If this
occurs, the first user must be given a choice about how to proceed; he can choose to overwrite the other user's updates
with his own, or choose to discard his changes in favor of the other user's.

HTML's inability to maintain state makes it extremely difficult, if not impossible, to implement pessimistic locking.
However, it is relatively straightforward, although a little clumsy, to implement optimistic locking. With this
approach, a snapshot is taken of a record before the user makes any changes. When the user submits the form, the
original record is requeried and compared to the snapshot. If they are identical (i.e., no one has made intervening
changes) the user's edits are saved. Otherwise, the user is asked how to proceed.

The OWA_OPT_LOCK package provides two ways to simplify optimistic locking in HTML forms. With the first
method, the record's columns are saved in hidden fields within the form. When the form is submitted, these hidden
fields are passed to the new procedure in an array, where they are then compared with the original record. The second
method computes a checksum of the original record. This value is compared to a recomputed checksum to determine
if the record has been updated.[3]

[3] A checksum is a mathematical function that computes a single, unique value for any input. For example, the sum

of a record's bytes is probably unique to that particular record. Real checksum functions, however, are complex

enough that even tiny changes to the record result in a different value.

7.3.2.1 Data structures

The vcArray array holds the hidden fields that are passed from the data entry form:

TYPE vcarray IS TABLE OF VARCHAR2(2000)

http://lib.ommolketab.ir

 INDEX BY BINARY_INTEGER;

7.3.2.2 Procedures and functions

The procedures and functions in OWA_OPT_LOCK implement the two strategies for optimistic locking. Table 7.14
shows the procedures and functions, along with their parameters. Note that the hidden fields and checksum
approaches are two different methods, each with its own distinct set of operations.

Table 7.14. Various OWA_OPT_LOCK Procedures and Functions

Procedure/

Function
Parameters Description

CHECKSUM

p_owner IN
VARCHAR2

p_tname IN
VARCHAR2

p_rowid IN
VARCHAR2

Generates a checksum (rather than a hidden field) for each sensitive
column of the row being updated

GET_ROWID

p_values IN
owa_opt_

lock.vcArray

Returns the ROWID from fields generated by store_values

STORE_VALUES

p_owner IN
VARCHAR2

p_tname IN
VARCHAR2

p_rowid IN
VARCHAR2

Generates a hidden field for each column of the row being updated

VERIFY_VALUES

p_old_values IN
owa_opt_

lock.vcArray

Compares old and new values

7.3.2.2.1 The STORE_VALUES procedure.

This procedure generates a hidden field for each column of the row that is to be updated. Its parameters are:

p_owner IN VARCHAR2

The schema that owns the table that is to be updated; you can use the reserved word USER to default to the
current schema.

p_tname IN VARCHAR2

http://lib.ommolketab.ir

The table to be updated.
p_rowid IN VARCHAR2

ROWID of the record in the table that is to be updated; the procedure always uses the ROWID of the row that
is to be updated, regardless of the primary key of the table.

Like the HTP procedures, STORE_VALUES generates HTML tags that are returned to the browser. These tags must
appear as part of the data entry form that is being used to update a record. The hidden fields generated by
STORE_VALUES have the same name: "old_" followed by the name of the table passed in the p_tname parameter.
This passes the old values in a single array parameter to the procedure that processes the form.

Here is a sample program that creates a simple data entry form based on the EMP table. The <form> tag's action
attribute points us to the procedure that performs the update:

CREATE OR REPLACE PROCEDURE opt_lock_fentry (
 iempno IN VARCHAR2 DEFAULT NULL
)
IS

 emp_rec scott.emp%ROWTYPE;
 rec_row_id ROWID;

BEGIN
 -- Fetch the record and rowid the employee with the given id
 SELECT *
 INTO emp_rec
 FROM scott.emp
 WHERE emp.empno = iempno;
 SELECT ROWID
 INTO rec_row_id
 FROM scott.emp
 WHERE emp.empno = iempno;
 -- Create a simple data entry form
 HTP.print ('<form action=opt_lock_fupdate>');
 HTP.formhidden (cname => 'iempno', cvalue => iempno);
 HTP.print ('Employee Name:');
 HTP.formtext (cname => 'iename', cvalue => emp_rec.ename);
 HTP.print ('Job:');
 HTP.formtext (cname => 'ijob', cvalue => emp_rec.job);
 /*
 || Store the current values for the row that is to be updated
 */
 OWA_OPT_LOCK.store_values ('SCOTT', 'emp', rec_row_id);
 HTP.print ('<input type=submit>');
 HTP.print ('</form>');
END;

The following listing shows what happens when the procedure is executed. The first three fields simply reproduce the
original parameters: the schema name, the table name, and the ROWID of the record that is being updated. After
these fields, all the columns in the target row are listed:

<FORM action=opt_lock_fupdate>

http://lib.ommolketab.ir

<INPUT TYPE="hidden" NAME="iempno" VALUE="7934">
Employee Name:
<INPUT TYPE="text" NAME="iename" VALUE="MILLER">
Job:
<INPUT TYPE="text" NAME="ijob" VALUE="CLERK">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="SCOTT">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="emp">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="AAAAeFAACAAAAEbAAN">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="7934">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="MILLER">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="CLERK">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="7566">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="23-JAN-82">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="1300">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="">
<INPUT TYPE="hidden" NAME="old_emp" VALUE="10">
<input type=submit>
</form>

7.3.2.2.2 The VERIFY_VALUES function.

This function, used when a form is submitted, compares the old values from the row to the current values. If they
match, the function returns TRUE; otherwise, it returns FALSE. Its one parameter is:

p_old_values IN owa_opt_lock.vcArray

The array of field values created by the STORE_VALUES procedure.

The VERIFY_VALUES procedure is meant to work in tandem with the STORE_VALUES procedure. The following
example performs the record update started in the earlier example. In addition to a parameter for each input element
on the form, we must also include a parameter that receives the values from the STORE_VALUES procedure. The
parameter, declared as a vcArray, must have the same name as the hidden fields created by STORE_VALUES:

CREATE OR REPLACE PROCEDURE opt_lock_fupdate (
 iempno IN VARCHAR2 DEFAULT NULL,
 iename IN VARCHAR2 DEFAULT NULL,
 ijob IN VARCHAR2 DEFAULT NULL,
 old_emp IN OWA_OPT_LOCK.vcarray
)
IS
BEGIN
 IF OWA_OPT_LOCK.verify_values (old_emp)
 THEN
 -- Perform the update
 UPDATE scott.emp
 SET emp.ename = iename,
 emp.job = ijob
 WHERE emp.empno = iempno;
 COMMIT;
 HTP.print ('<h1>Change Successful</h1>');
 ELSE
 HTP.print ('<h1>The record has been changed!</h1>');

http://lib.ommolketab.ir

 END IF;
END;

7.3.2.2.3 The GET_ROWID function.

This function accepts a vcArray, and returns the ROWID (always in the third element in the array) from the fields
generated by the STORE_VALUES procedure. Like VERIFY_VALUES, GET_ROWID is used in the procedure that
handles form submission. The function is included as a convenience to save us from having to pass the original
primary key of the record we are attempting to update. For example, in the previous procedure, we had to include the
empno field both in the data entry form and as a parameter to the submission form (again, due to statelessness) to
retain the original primary key. We could have saved a step by omitting empno and using GET_ROWID to retrieve
the ROWID of the target record, as illustrated in the following code snippet:

-- old_rowid is a local variable declared as a rowid

old_rowid := OWA_OPT_LOCK.get_rowid (old_emp);
UPDATE scott.emp
 SET emp.ename = iename,
 emp.job = ijob
 WHERE ROWID = old_rowid;

7.3.2.2.4 The CHECKSUM function.

This function provides an alternative to the hidden field method that is useful when the underlying table contains
sensitive information that might be compromised with the "View Source" browser option. Additionally, for tables
with a very large number of columns, a checksum results in a more compact HTML form. This can be an important
factor in improving download times, particularly when users are connecting with a modem or a WAN.

The CHECKSUM function has the same parameters as the STORE_VALUE procedure discussed earlier. The
function returns a unique value for the values in the target row, and this value is stored as a hidden field within the
data entry form. When the form is submitted, the checksum for the target row is recomputed and compared to the old
value. If they are the same, then the procedure can apply the user's updates.

The following procedure illustrates how to use the CHECKSUM function when creating a data entry form. Unlike
STORE_VALUES, which automatically passes the ROWID or the target record, we must manually include it as a
hidden field when using the CHECKSUM approach:

CREATE OR REPLACE PROCEDURE opt_lock_centry (
 iempno IN VARCHAR2 DEFAULT NULL
)
IS

 emp_rec scott.emp%ROWTYPE;
 rec_row_id ROWID;
 csum NUMBER;

BEGIN
 SELECT *
 INTO emp_rec
 FROM scott.emp
 WHERE emp.empno = iempno;
 SELECT ROWID

http://lib.ommolketab.ir

 INTO rec_row_id
 FROM scott.emp
 WHERE emp.empno = iempno;
 -- Create a simple data entry form
 HTP.print ('<form action=opt_lock_cupdate>');
 HTP.formhidden (cname => 'iempno', cvalue => iempno);
 HTP.formhidden (cname => 'irowid', cvalue => rec_row_id);
 HTP.print ('Employee Name:');
 HTP.formtext (cname => 'iename', cvalue => emp_rec.ename);
 HTP.print ('Job:');
 HTP.formtext (cname => 'ijob', cvalue => emp_rec.job);
 /*
 || Save the row's checksum in a hidden field
 */
 csum := OWA_OPT_LOCK.checksum ('SCOTT', 'emp', rec_row_id);
 HTP.formhidden (cname => 'iold_checksum', cvalue => csum);
 HTP.print ('<input type=submit>');
 HTP.print ('</form>');
END;

Here is the output of the procedure, showing the hidden field for the checksum of the target row:

<form action=opt_lock_cupdate>
<INPUT TYPE="hidden" NAME="iempno" VALUE="7934">
<INPUT TYPE="hidden" NAME="irowid" VALUE="AAAAeFAACAAAAEbAAN">
Employee Name:
<INPUT TYPE="text" NAME="iename" VALUE="MILLER">
Job:
<INPUT TYPE="text" NAME="ijob" VALUE="CLERK">
<INPUT TYPE="hidden" NAME="iold_checksum" VALUE="7925">
<input type=submit>
</form>

The next procedure illustrates how the function is used to process the form data; notice that the parameter name for
the checksum must match the name used for the hidden field:

CREATE OR REPLACE PROCEDURE opt_lock_cupdate (
 iempno IN VARCHAR2 DEFAULT NULL,
 iename IN VARCHAR2 DEFAULT NULL,
 ijob IN VARCHAR2 DEFAULT NULL,
 iold_checksum IN VARCHAR2 DEFAULT NULL,
 irowid IN VARCHAR2 DEFAULT NULL
)
IS

 new_checksum NUMBER;

BEGIN

 new_checksum :=
 OWA_OPT_LOCK.checksum ('SCOTT', 'emp', irowid);
 IF (iold_checksum = new_checksum)

http://lib.ommolketab.ir

 THEN
 -- Perform the update
 UPDATE scott.emp
 SET emp.ename = iename,
 emp.job = ijob
 WHERE emp.empno = iempno;
 COMMIT;
 HTP.print ('<h1>Change Successful</h1>');
 ELSE
 HTP.print ('<h1>The record has been changed by another user.</h1>');
 END IF;
END;

There is a second version of the CHECKSUM function that computes a value for an arbitrary VARCHAR2 string.
The following example shows its return value on two strings that differ by just one character:

OWA_OPT_LOCK.checksum ('Hello, World'); -- (csum = 21074)
OWA_OPT_LOCK.checksum ('Hello, Wordl'); -- (csum = 23114)

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 7. The PL/SQL Toolkit

7.4 Improving Productivity

The final two packages, OWA_UTIL and OWA_SEC, let you perform a variety of administrative and security-related
tasks that help improve overall productivity.

7.4.1 OWA_UTIL: Creating Complex HTML Structures

The OWA_UTIL package is a grab-bag of useful procedures and functions that simplify many complex tasks. It
contains procedures to query the web server environment, simplify debugging, change the default HTTP header, and
simplify HTML development.

Table 7.15 shows the various functions and procedures contained in the OWA_UTIL package, which are grouped in
categories in the following sections according to their uses.

I've attempted to classify the OWA_UTIL procedures into broad, general categories
(debugging, querying the environment, representing dates, etc.). These classifications reflect
my own experience and are not intended to limit other possible uses.

Table 7.15. Various OWA_UTIL Procedures and Functions

Procedure/Function Description

BIND_VARIABLES Creates complex HTML structures

CALENDARPRINT Creates complex HTML structures

CELLSPRINT Creates complex HTML structures

CHOOSE_DATE Represents dates

DATETYPE Represents dates

http://lib.ommolketab.ir

Procedure/Function Description

GET_CGI_ENV Queries the environment

GET_OWA_SERVICE_PATH Queries the environment

GET_PROCEDURE Performs debugging

HTTP_HEADER_CLOSE HTML and HTTP utilities

IP_ADDRESS Queries the environment

LISTPRINT Creates complex HTML structures

MIME_HEADER HTML and HTTP utilities

PRINT_CGI_ENV Queries the environment

REDIRECT_URL HTML and HTTP utilities

SHOWPAGE Performs debugging

SHOWSOURCE Performs debugging

SIGNATURE HTML and HTTP utilities

STATUS_LINE HTML and HTTP utilities

TABLEPRINT Creates complex HTML structures

TODATE Represents dates

WHO_CALLED_ME Performs debugging

7.4.1.1 Debugging

OWA_UTIL has a number of procedures useful for debugging, many of which are built on top of the
DBMS_UTILITY built-in package. These debugging procedures are listed in Table 7.16.

Table 7.16. OWA_UTIL Procedures and Functions Used for Debugging

Procedure/

Function
Parameters Description

GET_PROCEDURE None
Returns the name of the procedure being executed by the PL/SQL
agent

SHOWPAGE None Prints the HTML generated by the HTP package

SHOWSOURCE None
Prints the PL/SQL source code for a particular procedure, function,
or package

owner IN
VARCHAR2

GET_CGI_ENV Queries the environment

GET_OWA_SERVICE_PATH Queries the environment

GET_PROCEDURE Performs debugging

HTTP_HEADER_CLOSE HTML and HTTP utilities

IP_ADDRESS Queries the environment

LISTPRINT Creates complex HTML structures

MIME_HEADER HTML and HTTP utilities

PRINT_CGI_ENV Queries the environment

REDIRECT_URL HTML and HTTP utilities

SHOWPAGE Performs debugging

SHOWSOURCE Performs debugging

SIGNATURE HTML and HTTP utilities

STATUS_LINE HTML and HTTP utilities

TABLEPRINT Creates complex HTML structures

TODATE Represents dates

WHO_CALLED_ME Performs debugging

7.4.1.1 Debugging

OWA_UTIL has a number of procedures useful for debugging, many of which are built on top of the
DBMS_UTILITY built-in package. These debugging procedures are listed in Table 7.16.

Table 7.16. OWA_UTIL Procedures and Functions Used for Debugging

Procedure/

Function
Parameters Description

GET_PROCEDURE None
Returns the name of the procedure being executed by the PL/SQL
agent

SHOWPAGE None Prints the HTML generated by the HTP package

SHOWSOURCE None
Prints the PL/SQL source code for a particular procedure, function,
or package

owner IN
VARCHAR2

http://lib.ommolketab.ir

Procedure/

Function
Parameters Description

WHO_CALLED_ME

name IN
VARCHAR2

lineno IN NUMBER

caller_t IN
VARCHAR2

Returns information about the procedure that called the currently
executing procedure

7.4.1.1.1 The SHOWPAGE procedure.

This procedure allows you to print the HTML generated by the HTP package. As mentioned earlier, output from this
package is stored in a buffer. The SHOWPAGE procedure lets you view the contents of this buffer in SQL*Plus. To
use SHOWPAGE:

Use SQL*Plus to log into the account that owns the desired procedure.1.

Use the SQL*Plus command SET SERVEROUT ON to turn on server output.2.

Execute the procedure, making sure to provide necessary parameters.3.

Execute OWA_UTIL.SHOWPAGE to print the results.4.

7.4.1.1.2 The SHOWSOURCE procedure.

This procedure prints the PL/SQL source code for a given procedure, function, or package.

7.4.1.1.3 The GET_PROCEDURE function.

This function returns the name of the procedure that is being executed by the PL/SQL agent.

7.4.1.1.4 The WHO_CALLED_ME procedure.

This procedure returns information about the procedure that called the currently executing procedure. This
information is particularly useful when you are trying to trace a program's execution. The parameters to the
WHO_CALLED_ME procedure, which are all defined as OUT variables, are the following:

owner IN VARCHAR2

The owner of the calling program unit.
name IN VARCHAR2

The name of the calling unit (procedure name, function name, or ANONYMOUS).
lineno IN NUMBER

WHO_CALLED_ME

name IN
VARCHAR2

lineno IN NUMBER

caller_t IN
VARCHAR2

Returns information about the procedure that called the currently
executing procedure

7.4.1.1.1 The SHOWPAGE procedure.

This procedure allows you to print the HTML generated by the HTP package. As mentioned earlier, output from this
package is stored in a buffer. The SHOWPAGE procedure lets you view the contents of this buffer in SQL*Plus. To
use SHOWPAGE:

Use SQL*Plus to log into the account that owns the desired procedure.1.

Use the SQL*Plus command SET SERVEROUT ON to turn on server output.2.

Execute the procedure, making sure to provide necessary parameters.3.

Execute OWA_UTIL.SHOWPAGE to print the results.4.

7.4.1.1.2 The SHOWSOURCE procedure.

This procedure prints the PL/SQL source code for a given procedure, function, or package.

7.4.1.1.3 The GET_PROCEDURE function.

This function returns the name of the procedure that is being executed by the PL/SQL agent.

7.4.1.1.4 The WHO_CALLED_ME procedure.

This procedure returns information about the procedure that called the currently executing procedure. This
information is particularly useful when you are trying to trace a program's execution. The parameters to the
WHO_CALLED_ME procedure, which are all defined as OUT variables, are the following:

owner IN VARCHAR2

The owner of the calling program unit.
name IN VARCHAR2

The name of the calling unit (procedure name, function name, or ANONYMOUS).
lineno IN NUMBER

http://lib.ommolketab.ir

The line number of the call within the calling unit.
caller_t IN VARCHAR2

The type of call made. Here is an example:

-- Parameters to who_called_me must be declared as local variables
OWA_UTIL.who_called_me (cowner, cname, clineno, ccaller);
HTP.print (cowner || '<p>');
HTP.print (cname || '<p>');
HTP.print (clineno || '<p>');
HTP.print (ccaller || '<p>');

7.4.1.2 Querying the environment

Like any web server, OAS maintains environment variables. Several procedures within OWA_UTIL allow you to
query these settings, as shown in Table 7.17.

Table 7.17. OWA_UTIL Procedures, Functions, and Datatypes for Querying the Environment

Procedure/Function Parameters Description

GET_CGI_ENV

param_name

IN
VARCHAR2

Returns the value of an environment variable

GET_OWA_SERVICE_PATH None
Returns the full path of the PL/SQL agent that executed the
request

IP_ADDRESS None
Datatype to hold the TCP/IP address of the client machine that
executed a procedure or function

PRINT_CGI_ENV None
Generates a list of the names and values for all environment
variables

7.4.1.2.1 The PRINT_CGI_ENV procedure.

This procedure generates a list of names and values for all the environment variables. The procedure is used like the
HTML procedures. As a general rule, it is not a good idea to allow casual users to view these settings, which provide
detailed information, such as path settings, that can be exploited by malicious deviants. Figure 7.4 illustrates the
output of this procedure.

Figure 7.4. The output of OWA_UTIL.PRINT_CGI_ENV

http://lib.ommolketab.ir

7.4.1.2.2 The GET_CGI_ENV function.

This function returns the value of an environment variable. It accepts a single VARCHAR2 parameter, param_name,
and returns the value as a string. If the environment variable is not defined, the function returns NULL. For example:

-- Fetch the server name into a local variable
server := OWA_UTIL.get_cgi_env ('SERVER_NAME');
HTP.print ('The server is: ' || server);

7.4.1.2.3 The IP_ADDRESS datatype.

The TCP/IP address of the client machine that executed a procedure or function is a particularly useful environment
variable. For this reason, OWA_UTIL declares a special data structure just to hold this address. Inexplicably,
however, this structure seems to be used only by the OWA_SEC package's GET_CLIENT_IP_ADDRESS function.
Go figure!

TYPE ip_address IS TABLE OF INTEGER
 INDEX BY BINARY_INTEGER;

The four elements of the ip_address array correspond to the four components of the address.

7.4.1.2.4 The GET_OWA_SERVICE_PATH function.

This function returns the full path of the PL/SQL agent used to execute the request. This string is typically the name
of the PL/SQL agent followed by "/plsql/" (depending on the agent's configuration).

-- SP is a local VARCHAR2 variable
sp := OWA_UTIL.get_owa_service_path;
HTP.print (sp);

7.4.1.3 Representing dates

http://lib.ommolketab.ir

With dozens of possible formats, dates are troublesome in almost every development environment. OWA_UTIL can
help simplify date entry by providing a standard input format for the day, month, and year. The procedures used to do
this are shown in Table 7.18.

Table 7.18. OWA_UTIL Procedures for Representing Dates

Procedure/Function Parameters Description

CHOOSE_DATE

p_name IN VARCHAR2

p_date IN DATE

DEFAULT SYSDATE

Generates input elements for date, month, and year

DATETYPE None Datatype for day, month, and year from choose_date

TODATE None Converts a datetype into a normal date variable

7.4.1.3.1 The CHOOSE_DATE procedure.

This procedure generates input elements for the day, month, and year that are used as part of a data entry form. Since
each element has the same name, the date is passed as an array. Its parameters are as follows:

p_name IN VARCHAR2

The name of the form element.
p_date IN DATE DEFAULT SYSDATE

The value of the date.

The following procedure creates a nicely formatted form for entering a hire date:

HTP.print ('form action=proc_date');
HTP.print ('Date Hired:');
OWA_UTIL.choose_date ('date_hired','31-OCT-98');

Figure 7.5 shows the output from this procedure.

Figure 7.5. A form that uses OWA_UTIL.CHOOSE_DATE

http://lib.ommolketab.ir

7.4.1.3.2 The DATETYPE datatype.

The day, month, and year created with the CHOOSE_DATE procedure are held as three elements in an array:

TYPE datetype IS TABLE OF VARCHAR2(10)
 INDEX BY BINARY_INTEGER;

The specification also includes a DATETYPE variable called empty_date that is used as the default value for
parameters that receive a DATETYPE value.

7.4.1.3.3 The TODATE function.

This function is used in the procedure that processes a form and converts a DATETYPE into a normal date variable:

CREATE OR REPLACE PROCEDURE proc_date (
 date_hired OWA_UTIL.datetype DEFAULT OWA_UTIL.empty_date
)
IS

 dhire DATE;

BEGIN
 dhire := OWA_UTIL.todate (date_hired);
 HTP.print (TO_CHAR (dhire, 'Month DD, YYYY'));
END;

7.4.1.4 HTML and HTTP utilities

OWA_UTIL contains a number of specialized HTTP and HTML procedures that don't fit cleanly into the HTP
package. These are shown in Table 7.19.

Table 7.19. OWA_UTIL Procedures Used for HTML and HTTP

Procedure Parameters Description

HTTP_HEADER_CLOSE

ccontent_type IN
VARCHAR2

bclose_header IN
BOOLEAN

DEFAULT TRUE

Manually closes a web page header

MIME_HEADER

ccontent_type IN
VARCHAR2

bclose_header IN
BOOLEAN

Signals the PL/SQL agent to change the default header for
a document

http://lib.ommolketab.ir

Procedure Parameters Description

DEFAULT TRUE

REDIRECT_URL

curl IN VARCHAR2

bclose_header IN
BOOLEAN

DEFAULT TRUE

Sends a user to a URL (passed as a parameter)

SIGNATURE
cname (optional; not

recommended)

Generates a single document signature showing the date
the page was last updated

STATUS_LINE

nstatus IN INTEGER

creason IN VARCHAR2

DEFAULT NULL

bclose_header IN
BOOLEAN

DEFAULT TRUE

Sends a numerical code to the browser indicating the status
of a request

7.4.1.4.1 The SIGNATURE procedure.

A signature is a standardized line that usually appears at the end of a document. For example, an email signature often
lists the sender's company, position, and phone number. Similarly, an HTML signature appears at the end of a web
page. The SIGNATURE procedure generates a simple signature that gives the date the page was last updated:

This page was produced by the PL/SQL Agent on sysdate

You can also provide the name for a procedure or function in an optional parameter called cname. This adds an
additional hyperlink to the signature that, when clicked, displays the PL/SQL code for the procedure or function
specified in the parameter. This is a dangerous practice you should probably avoid.

7.4.1.4.2 The MIME_HEADER procedure.

Every resource is identified as a particular type of content. This classification, called the MIME (Multipurpose
Internet Mail Extension) type, is based on a set of standards used for transmitting ASCII and binary files across the
Internet.

This MIME type is set in a section called the HTTP header that is separate from the actual content.[4] The header
section begins with a header that (like normal HTML) must be closed by another instruction. By default, the PL/SQL
agent automatically sends text/html as the MIME type and closes the header. To perform certain tasks, such as
creating a cookie or activating a content handler on the user's browser, we must interrupt this normal flow of events.

[4] Although they have similar names, the HTTP header is not the same as the HTML header created by the <head>

tag.

For example, suppose we want to place the results of a query in a spreadsheet, rather than in an HTML document. To

DEFAULT TRUE

REDIRECT_URL

curl IN VARCHAR2

bclose_header IN
BOOLEAN

DEFAULT TRUE

Sends a user to a URL (passed as a parameter)

SIGNATURE
cname (optional; not

recommended)

Generates a single document signature showing the date
the page was last updated

STATUS_LINE

nstatus IN INTEGER

creason IN VARCHAR2

DEFAULT NULL

bclose_header IN
BOOLEAN

DEFAULT TRUE

Sends a numerical code to the browser indicating the status
of a request

7.4.1.4.1 The SIGNATURE procedure.

A signature is a standardized line that usually appears at the end of a document. For example, an email signature often
lists the sender's company, position, and phone number. Similarly, an HTML signature appears at the end of a web
page. The SIGNATURE procedure generates a simple signature that gives the date the page was last updated:

This page was produced by the PL/SQL Agent on sysdate

You can also provide the name for a procedure or function in an optional parameter called cname. This adds an
additional hyperlink to the signature that, when clicked, displays the PL/SQL code for the procedure or function
specified in the parameter. This is a dangerous practice you should probably avoid.

7.4.1.4.2 The MIME_HEADER procedure.

Every resource is identified as a particular type of content. This classification, called the MIME (Multipurpose
Internet Mail Extension) type, is based on a set of standards used for transmitting ASCII and binary files across the
Internet.

This MIME type is set in a section called the HTTP header that is separate from the actual content.[4] The header
section begins with a header that (like normal HTML) must be closed by another instruction. By default, the PL/SQL
agent automatically sends text/html as the MIME type and closes the header. To perform certain tasks, such as
creating a cookie or activating a content handler on the user's browser, we must interrupt this normal flow of events.

[4] Although they have similar names, the HTTP header is not the same as the HTML header created by the <head>

tag.

For example, suppose we want to place the results of a query in a spreadsheet, rather than in an HTML document. To

http://lib.ommolketab.ir

accomplish this, we must tell the browser that the content is not a normal HTML document, then generate a data
stream, such as a tab-delimited set of columns, that is funneled to the spreadsheet program. We need to change the
default text/html type to something like text/tab (the MIME type for tab-delimited content) to signal the browser to
start a new content handler.

This is done with the OWA_UTIL procedures that change the default HTTP header. These procedures are not normal
HTML; instead, they are special instructions that cause the browser to act in a particular way, and each must be used
before any of the normal HTP procedures.

The MIME_HEADER procedure signals the PL/SQL agent to change the default header that is normally sent with the
document. It has two parameters:

ccontent_type IN VARCHAR2

The new content type.
bclose_header IN BOOLEAN DEFAULT TRUE

Flag indicating if the header should be immediately closed; a value of FALSE leaves it open so that more
instructions (like these to set cookies) can be included as part of the header.

7.4.1.4.3 The STATUS_LINE procedure.

This procedure sends a numerical code to the browser indicating the status of a request. There are three parameters to
the procedure:

nstatus IN INTEGER

The numeric status code.
creason IN VARCHAR2 DEFAULT NULL

Code description.
bclose_header IN BOOLEAN DEFAULT TRUE

Flag to close the HTTP header.

The Internet community has developed a standard set of number/message result codes, the most common of which
are:

200: Success
401: Unauthorized
403: Forbidden
404: Not Found

7.4.1.4.4 The REDIRECT_URL procedure.

It is often necessary to transparently send users from one web page to another. Most often, this is done when a page is
moved to another location. Rather than having users reenter the new location, we simply redirect them to the new
page.

Sometimes we want to direct users to a static page from within a PL/SQL program. For example, suppose you need to
make some changes to a popular PL/SQL web application and you want to keep users out for a while. You can use
redirection to send users who attempt to use the application to a new page that explains why the application is closed

http://lib.ommolketab.ir

and when it will be available again (assuming, of course, that you haven't shut the database down entirely). This basic
courtesy can save you lots of calls from irate users.

The REDIRECT_URL procedure sends a user to the URL passed as a parameter. This URL can refer to a static page
or another PL/SQL program; you can even pass parameters using the query string. Like MIME_HEADER and
STATUS_LINE, REDIRECT_URL places its output within the HTTP header and must appear before any other HTP
calls. It has two parameters:

curl IN VARCHAR2

The new URL.
bclose_header IN BOOLEAN DEFAULT TRUE

Flag to close the HTTP header.

The following procedure illustrates how you could redirect a user to a static page if you wanted to shut down an
application temporarily:

PROCEDURE popular_app_main
IS
BEGIN
 IF popular_app_is_closed
 THEN
 -- Redirect to static page
 OWA_UTIL.redirect_url ('http://server/alert/status.html');
 ELSE
 HTP.title ('The application you know and love...');
 popular_app.show_main_page;
 END IF;
END;

7.4.1.4.5 The HTTP_HEADER_CLOSE procedure.

This procedure is used to manually close the header when the bclose_header flag to any of the previous procedures is
FALSE. It does not have any parameters.

7.4.1.5 Creating complex HTML structures

The OWA_UTIL procedures and functions listed in Table 7.20 help you create more complex HTML structures.
They are described in the following sections.

Table 7.20. OWA_UTIL Procedures and Functions for Creating Complex HTML Structures

http://lib.ommolketab.ir

Procedure/Function Parameters Description

BIND_VARIABLES

theQuery IN VARCHAR2 DEFAULT
NULL

bvnName IN VARCHAR2 DEFAULT
NULL

bvnValue IN VARCHAR2 DEFAULT
NULL

Provides an interface to the built-in package
DBMS_SQL

CALENDARPRINT

p_theQuery IN VARCHAR2 OR NUMBER

p_cname IN VARCHAR2

p_nsize IN NUMBER

p_multiple IN BOOLEAN DEFAULT
FALSE

Creates an HTML-based monthly calendar

CELLSPRINT

theQuery IN VARCHAR2 OR NUMBER

p_max_rows IN NUMBER

p_format_numbers IN VARCHAR2
DEFAULT NULL

p_skip_rec IN NUMBER DEFAULT 0

p_more_data OUT BOOLEAN

A stripped-down version of TABLEPRINT

LISTPRINT

p_theQuery IN VARCHAR2 OR NUMBER

p_cname IN VARCHAR2

p_nsize IN NUMBER

p_multiple IN BOOLEAN DEFAULT
FALSE

Creates a list of values (LOV) on an HTML
form

TABLEPRINT

ctable IN VARCHAR2

cattributes IN VARCHAR2 DEFAULT
NULL

ntable_type IN INTEGER DEFAULT
HTML_TABLE

ccolumns IN VARCHAR2 DEFAULT `*'

cclauses IN VARCHAR2 DEFAULT NULL

ccol_aliases IN VARCHAR2 DEFAULT
NULL

Produces a formatted HTML table based on a
SQL query

http://lib.ommolketab.ir

Procedure/Function Parameters Description

nrow_min IN NUMBER DEFAULT 0

nrow_max IN NUMBER DEFAULT 0

7.4.1.5.1 The TABLEPRINT function.

This function produces a formatted HTML table based on a SQL query whose appearance is similar to that of a
SELECT statement in SQL*Plus. The function's return value indicates if all the rows in the underlying table have
been displayed. Its parameters are:

ctable IN VARCHAR2

The database table that is being reported on.
cattributes IN VARCHAR2 DEFAULT NULL

Free-format attributes to be included as part of the table tag (i.e., <table cattributes>).
ntable_type IN INTEGER DEFAULT HTML_TABLE

The output type; can be either an HTML table or a text table; two numeric constants, HTML_TABLE (value =
1) and PRE_TABLE (value = 2) are defined to represent these types.

ccolumns IN VARCHAR2 DEFAULT '*'

The columns to include in the output; the list is delimited with commas.
cclauses IN VARCHAR2 DEFAULT NULL

A WHERE or ORDER BY clause used to select specific rows from the underlying table; the clause must be
syntactically correct and include all necessary keywords (such as WHERE...).

ccol_aliases IN VARCHAR2 DEFAULT NULL

The column aliases used for each column; this list is comma-delimited and should correspond to the columns
specified in the ccolumns parameter.

nrow_min IN NUMBER DEFAULT 0

The ordinal position of the first row in the result set to display; not the same as rownum.
nrow_max IN NUMBER DEFAULT 0

The ordinal position of the last row in the result set to display; not the same as rownum.

The tprint procedure, shown in the following code, uses the TABLEPRINT procedure to page through the EMP table
five rows at a time. The i_page_num parameter is used to calculate corresponding values for the nrow_min and
nrow_max parameters. The output is shown in Figure 7.6.

CREATE OR REPLACE PROCEDURE tprint (
 i_page_num IN VARCHAR2 DEFAULT '1'
)
IS

 more_rows BOOLEAN;

 cur_page NUMBER
 := TO_NUMBER (i_page_num);

nrow_min IN NUMBER DEFAULT 0

nrow_max IN NUMBER DEFAULT 0

7.4.1.5.1 The TABLEPRINT function.

This function produces a formatted HTML table based on a SQL query whose appearance is similar to that of a
SELECT statement in SQL*Plus. The function's return value indicates if all the rows in the underlying table have
been displayed. Its parameters are:

ctable IN VARCHAR2

The database table that is being reported on.
cattributes IN VARCHAR2 DEFAULT NULL

Free-format attributes to be included as part of the table tag (i.e., <table cattributes>).
ntable_type IN INTEGER DEFAULT HTML_TABLE

The output type; can be either an HTML table or a text table; two numeric constants, HTML_TABLE (value =
1) and PRE_TABLE (value = 2) are defined to represent these types.

ccolumns IN VARCHAR2 DEFAULT '*'

The columns to include in the output; the list is delimited with commas.
cclauses IN VARCHAR2 DEFAULT NULL

A WHERE or ORDER BY clause used to select specific rows from the underlying table; the clause must be
syntactically correct and include all necessary keywords (such as WHERE...).

ccol_aliases IN VARCHAR2 DEFAULT NULL

The column aliases used for each column; this list is comma-delimited and should correspond to the columns
specified in the ccolumns parameter.

nrow_min IN NUMBER DEFAULT 0

The ordinal position of the first row in the result set to display; not the same as rownum.
nrow_max IN NUMBER DEFAULT 0

The ordinal position of the last row in the result set to display; not the same as rownum.

The tprint procedure, shown in the following code, uses the TABLEPRINT procedure to page through the EMP table
five rows at a time. The i_page_num parameter is used to calculate corresponding values for the nrow_min and
nrow_max parameters. The output is shown in Figure 7.6.

CREATE OR REPLACE PROCEDURE tprint (
 i_page_num IN VARCHAR2 DEFAULT '1'
)
IS

 more_rows BOOLEAN;

 cur_page NUMBER
 := TO_NUMBER (i_page_num);

http://lib.ommolketab.ir

 min_row NUMBER;
 max_row NUMBER;

 i_num_rows CONSTANT NUMBER := 5;

BEGIN
 min_row := (cur_page - 1) * i_num_rows + 1;
 max_row := min_row + i_num_rows - 1;
 more_rows :=
 OWA_UTIL.tableprint (
 ctable => 'scott.emp',
 cattributes => 'border=1',
 ntable_type => OWA_UTIL.html_table,
 ccolumns => 'job, ename, hiredate, sal',
 cclauses => 'order by job, ename',
 ccol_aliases => 'Job, Employee Name, Date Hired, Salary',
 nrow_min => min_row,
 nrow_max => max_row
);
 -- Put a "Prev" hyperlink if min_row > 1
 IF cur_page > 1
 THEN
 HTP.anchor (
 'tprint?i_page_num=' || (cur_page - 1),
 'Previous'
);
 END IF;
 -- Put a "Next" hyperlink if there are more rows in the query
 IF more_rows
 THEN
 HTP.anchor (
 'tprint?i_page_num=' || (cur_page + 1),
 'Next'
);
 END IF;

END;

Figure 7.6. The output of the tprint procedure

http://lib.ommolketab.ir

7.4.1.5.2 The BIND_VARIABLES procedure.

This procedure puts a friendly face on DBMS_SQL, one of the most flexible and powerful of all the built-in
packages. DBMS_SQL allows you to dynamically construct and execute SQL statements as your program executes.
The queries constructed by BIND_VARIABLES can even contain variables that are bound to values entered on the
HTML form.

The BIND_VARIABLES procedure accepts a SQL statement and up to 25 name/value pairs of bind variables. It
returns a cursor handle (not an actual cursor) that can be passed to other OWA_UTIL procedures to create complex
HTML structures. This handle is also used by the various procedures in DBMS_SQL to fetch, parse, and close
dynamic queries. For an excellent discussion of DBMS_SQL, see Oracle Built-in Packages by Steven Feuerstein,
Charles Dye, and John Beresniewicz (O'Reilly & Associates, 1998).

The parameters to the BIND_VARIABLES procedure are:

theQuery IN VARCHAR2 DEFAULT NULL

The select query to use in creating the dynamic cursor; it can contain up to 25 bind variables.
bvnName IN VARCHAR2 DEFAULT NULL

The name of the nth bind variable (i.e., bv1Name, bv2Name, . . . bv25Name); there must be a bind variable
parameter for each bind variable in the SELECT statement.

bvnValue IN VARCHAR2 DEFAULT NULL

The value of the n th bind variable (i.e., bv1Value, bv2Value, . . . bv25Value); there must be a corresponding
value for each bind variable name.

Here is a simple code snippet illustrating the use of the BIND_VARIABLES procedure. The SELECT statement is
built and stored in a string:

stmt :=
 'select emp.ename, emp.job, emp.sal, dpt.dname, dpt.loc';
 stmt := stmt || ' from scott.emp emp, scott.dept dpt';
 stmt := stmt || ' where emp.deptno = dpt.deptno and';
 stmt := stmt || ' dpt.dname like :bvDept and';
 stmt := stmt || ' emp.job like :bvJob and ';
 stmt := stmt || ' emp.sal > :bvSal';

http://lib.ommolketab.ir

 stmt := stmt || ' order by emp.ename';
 --
 cur_handle :=
 OWA_UTIL.bind_variables (
 TheQuery => stmt,
 bv1Name => 'bvDept',
 bv1Value => 'RESEARCH',
 bv2Name => 'bvJob',
 bv2Value => '%',
 bv3Name => 'bvSal',
 bv3Value => 1000
);

7.4.1.5.3 The CELLSPRINT procedure.

CELLSPRINT is a stripped-down version of TABLEPRINT. The main difference between the two procedures is that
CELLSPRINT can accept a dynamic query generated with BIND_VARIABLES in addition to a simple VARCHAR2
query string. This is especially useful when the underlying query contains a number of bind variables. Its parameters
are:

theQuery IN VARCHAR2 OR NUMBER

The query on which to build the table; it can be a simple string or a cursor handle returned by
BIND_VARIABLES.

p_max_rows IN NUMBER

The maximum number of rows allowed in the HTML output; this parameter is not optional.
p_ format_numbers IN VARCHAR2 DEFAULT NULL

If this value is non-null, numbers in the table are right-justified and formatted to two decimal places.
p_skip_rec IN NUMBER DEFAULT 0

Optional offset; sets the first row of the result set that is displayed; similar to the nrow_min parameter of
TABLEPRINT.

p_more_data OUT BOOLEAN

Optional flag used in conjunction with p_skip_rec that indicates if there are more rows in the underlying table;
similar to the return value of the TABLEPRINT function.

Here is a simple example based on a VARCHAR2 query string:

OWA_UTIL.cellsprint (
 'select * from emp where job like ' || iename || '%',
 10,
 'Y'
);

We could use CELLSPRINT to quickly print the results of the SELECT statement defined in a call to the
BIND_VARIABLES procedure:

OWA_UTIL.cellsprint (cur_handle, 10, 'Y');

7.4.1.5.4 The LISTPRINT procedure.

http://lib.ommolketab.ir

This procedure is handy for creating lists of values (LOVs) on an HTML form. Like traditional LOVs, the elements in
the list come from an underlying query. However, since HTTP is stateless, the entire contents of the query must be
downloaded to the HTML form, which can present a problem for very large numbers of elements. It has the following
parameters:

p_theQuery IN VARCHAR2 OR NUMBER

The underlying query on which the LOV is based; can be either a VARCHAR2 string or a cursor handle to a
dynamic query created with the BIND_VARIABLES procedure.

p_cname IN VARCHAR2

The name of the HTML input element.
p_nsize IN NUMBER

The size of the input list; setting this value to "1" creates a drop-down list; otherwise, it creates a scrollbox
with the specified number of items visible.

p_multiple IN BOOLEAN DEFAULT FALSE

Flag indicating that the select list can contain multiple selections; if TRUE, the input element must be treated
as an array of elements when the form is processed.

The underlying query must have the following layout:

Column 1

The value returned when the element is selected from the list (e.g., empno, deptno, etc.).
Column 2

The value the user sees on the form (e.g., ename, deptname, etc.).
Column 3

A non-NULL value in the third column marks the row as "selected" on the form.

The following procedure call creates an input element we can include within an HTML form:

OWA_UTIL.listprint (
 'select empno, ename, null from scott.emp order by ename',
 'iempno',
 1
);

The procedure generates the following HTML:

<SELECT NAME="emp_no" SIZE="1">
<OPTION value="7876">ADAMS
<OPTION value="7499">ALLEN
<OPTION value="7698">BLAKE
....
<OPTION value="7844">TURNER
<OPTION value="7521">WARD
</SELECT>

http://lib.ommolketab.ir

7.4.1.5.5 The CALENDARPRINT procedure.

This procedure creates an HTML-based monthly calendar. The procedure has the following parameters:

p_query IN VARCHAR2 OR INTEGER

The underlying query for the calendar; can be either a simple VARCHAR2 string or a handle to a dynamic
cursor created with the BIND_VALUES procedure.

p_mf_only IN VARCHAR2 DEFAULT `N'

Flag to exclude Sunday and Saturday from the calendar; an "N" (the default) includes them, a "Y" excludes
them.

The underlying query must have the following layout:

Column 1

A date; CALENDARPRINT generates a one-month calendar for each unique month/year combination in this
column. The query should be ordered by this column.

Column 2

The text printed on the calendar for the date.
Column 3

If non-NULL, this column turns the text into a hyperlink. The column must contain a valid URL.

For example, suppose we want to print a calendar based on a to-do list stored in a database table with the following
columns and data:

DUE_DATE DESCRIPTION HYPERLINK
--------- ---------------------------- -----------------------
20-OCT-98 Give cat pill http://www.sickcat.com
22-OCT-98 Research Dev2K http://www.oracle.com
28-OCT-98 Check out new O'Reilly books http://www.oreilly.com
30-OCT-98 Buy Costume
31-OCT-98 Trick-or-Treat!

We can use the following line to create the calendar:

str := 'select due_date, description, hyperlink ';
str := str || 'from to_do order by due_date';
OWA_UTIL.calendarprint (str);

Figure 7.7 shows the output of this call.

Figure 7.7. A calendar based on a to-do list

http://lib.ommolketab.ir

7.4.2 OWA_SEC: Managing Security

The toolkit includes a package, OWA_SEC, that is used to query and set various security options, such as realms,
domains, etc. Most of these procedures are conceptually similar to the procedures of OWA_UTIL that query the
environment variables. Table 7.21 summarizes the various security procedures and functions.

Table 7.21. Various OWA_SEC Procedures and Functions

Procedure/Function Parameters Description

GET_CLIENT_HOSTNAME None Returns the web server's hostname

GET_CLIENT_IP None
Returns the TCP/IP address of the client browser that
executed the procedure

GET_USER_ID None Returns the username of the user executing the procedure

GET_PASSWORD None Returns the password used to log in

SET_AUTHORIZATION
scheme IN
INTEGER

Forces the PL/SQL agent to call a custom authentication
function called AUTHORIZE

SET_PROTECTION_REALM
realm IN
VARCHAR2

Forces the user to provide a valid login name and password
for the specified security realm

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 8. Developing Applications

In the last chapter, we learned about the individual packages of the PL/SQL toolkit. In this chapter, we'll use
these packages to create two realistic web applications. The first application allows us to create and distribute
anonymous surveys; the second allows users to communicate over the Web in a threaded discussion forum.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 8. Developing Applications

8.1 Designing a Web Application

Before looking at these two systems, however, let's take a quick look at four simple steps that can improve the design
process. When you are confronted with any design task, it can greatly help to break the process down into
manageable pieces, as follows:

Evaluate your development options; be sure PL/SQL and HTML are really the right tools for the job.[1]

[1] We'll assume that in this chapter!

1.

Create a storyboard that will help you visualize the relationship between an application's various web pages.2.

Create a data model to help you create the screens.3.

Use PL/SQL packages to actually structure the code.4.

The next few sections describe these steps in more detail.

8.1.1 Evaluate Development Options

Choosing the right development language is always the critical first step in building any application. While you can
use HTML and PL/SQL to create very powerful systems, there are still some things you should think about before
you start coding. For example:

Does the proposed application require a lot of sophisticated data entry screens?

Will users accept a new kind of interface?

Do all users have modern browsers?

Is the system brand-new, or is it replacing an existing system you could easily retrofit for the Web? For
example, you could take an existing Oracle Forms application and access it using the web-enabled version of
Developer.

http://lib.ommolketab.ir

The first of these questions is the most important. As a rule of thumb, it's probably better to use Java or client/server
than HTML for mission-critical applications with sophisticated data entry screens requiring lots of user interactions,
which would be very difficult to code from scratch. For example, you would not want to develop an accounts payable
system in HTML. In my own experience, the most effective use of PL/SQL and HTML is for creating systems that
generate information from a database, not those that put information into a database.

Also, once again, it's important to remember that you must always accommodate your design to the stateless nature of
HTML. For example, a complex, hierarchical system where users progressively drill down to lower and lower levels,
all the while picking up extra state information, might be difficult to implement in a web environment.

8.1.2 Create a Storyboard

Once you've decided to build an HTML system using PL/SQL, the next step is to create a diagram, called a
storyboard, that helps you visualize the relationship between an application's various web pages. Figure 8.1 shows a
simple storyboard for an organizational chart application.

Figure 8.1. A simple storyboard

Each block on the diagram represents a page. The arrowed lines represent links between the pages. The labels on the
link represent the information needed to move from one screen to the next. For example, to generate the second
screen of the organization chart application, we must use the department ID code (dept_id) to fetch the correct
employees.

There are several benefits to building a simple storyboard before you begin an application:

Since a storyboard gives even a casual observer an overview of the entire system, you can get useful feedback
from potential end users before you begin any actual coding.

The elements on the storyboard translate almost directly into PL/SQL structures. For example, a quick look at
the organization chart storyboard shows that we need at least three procedures. The labels on the links give us
the formal parameters for each of these procedures.

The storyboard, even if sketched out on the back of a napkin, is a useful piece of system documentation that
can help future developers to quickly grasp the system's major functions.

8.1.3 Create a Data Model

Once you have completed the storyboard, you should build a simple data model to help you create the screens. Tables
and relationships are your bread-and-butter resources; put them to work in your web systems. For example, suppose
your company reorganizes and adopts some crazy new management plan. Inevitably, you will be called upon to
develop hundreds of online surveys, with questions such as "Do you meet your core objectives?" or "How can you

http://lib.ommolketab.ir

better align your personal life to the strategic goals of the company?"

We could take two approaches to this problem. In the first, we'll simply wait by the phone until someone in human
resources (probably Bob) calls and asks us to create a particular survey (perhaps "Cross-Functional Teams and You").
Unfortunately, every call means that we have to build a new form, as well as analyze the results. This really cuts into
our recreational web surfing.

A second, more interesting approach is to build a data-driven system that uses a data model to create any survey. Each
time we have to create a new survey, we can simply enter the questions into the tables of our model, and out pops a
complete form. Since the forms are standardized, we can also build a general system to store the user's responses and
analyze the results.

Building a robust data model is a key part of this idea, and data models require data entry forms to populate their
tables. We could build these tables with HTML, but it makes more sense to use a WebDB form or a client/server tool.
If we, as IS developers, are the only people who will use a maintenance application, why spend the effort developing
a complex system no one else will ever see?

8.1.4 Use PL/SQL Packages

The final step in building an application is to actually structure the code. As we've seen, the best tool for organizing
PL/SQL is the package. Breaking your systems down along logical lines can simplify the design process and
eliminate huge, monolithic programs. Package design is the most important PL/SQL skill to master, and simple web
applications are a great place to practice your techniques. Here are some guidelines you should keep in mind when
designing your systems:

Separate the "business rule" parts of your code from the user interface code. This will help you reuse these
business rules in non-HTML applications, such as Java, client/server, and even Pro*COBOL.

Build a standard library of web functions that you can use over and over. Coding is hard work; anything you
can do to reuse what you've already done (or better yet, what someone else has done) makes your life much
easier.

Follow best-practices coding standards. A good PL/SQL book will help get you started; see Appendix A for
further information.

Follow best-practices naming conventions for parameters and variables. As we've seen in earlier chapters,
WebDB and OAS are very picky about variable names and types.

Okay, enough sermonizing. Let's look at some code.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 8. Developing Applications

8.2 Example 1: An Anonymous Survey

Our first application will let users fill out anonymous surveys using a web browser. Surveys and opinion polls are
some of the most common web applications, and usually consist of a list of questions. Users respond by selecting an
answer from a small list of options. Most systems also have an option that lets users see the tabulated results for each
survey.

This section walks through a simple process you can use to create a generic survey system. Our first step is to design
a storyboard to define each screen in the system. This sketch helps us in the next step: designing a generic data model
that we can use to construct each page. Our last step is to actually code the system.

8.2.1 Storyboard

In a typical survey application, the first screen presents a list of all available surveys. There are usually two options
for each survey: to answer it or to view its tabulated results. If the user decides to answer a survey, she's presented
with a bunch of questions and a corresponding list of possible answers. She then answers the questions and presses
"Submit" to save the responses in a database table. If the user chooses to view the results of a survey, she's presented
with a table summarizing all the previous responses. Figure 8.2 is a simple storyboard that captures these functions.

Figure 8.2. The storyboard for the anonymous survey

http://lib.ommolketab.ir

8.2.2 Data Model

We can use the storyboard to design a data model. The first storyboard screen tells us that we need some sort of table
to hold the survey list. The screen used to respond to a survey suggests three more tables. The first table holds the text
of each question, the second holds the possible answers for each question, and the third holds the actual user
responses. The "view results" screen queries these tables.

Figure 8.3 shows a data model that uses these four tables. The SURVEY table contains information about the survey
itself, such as its name, description, and the date range during which it is available. The rows in QUESTIONS
represent the individual questions on a survey. ANSWERS defines the list of valid responses for each question. The
final table, RESPONSES, holds the actual responses given by the respondents.

Figure 8.3. A data design for the anonymous survey

8.2.3 Implementation Notes

Since the survey application is a fairly simple system, we can implement it using a single package, which we'll call
EMP_SURVEY. We'll store all the application objects, including code and tables, in a schema named SURVEY.

8.2.4 The EMP_SURVEY Package

http://lib.ommolketab.ir

Now that we've got the basic screen layout and data model, we're finally ready to develop the actual package. Table
8.1 shows the five procedures contained in EMP_SURVEY.

Table 8.1. The EMP_SURVEY Package

Procedure Parameters Description

display_survey_list None Generates an HTML list of available surveys, with descriptions.

answer_survey
i_survey_id IN
VARCHAR2

Creates the HTML form that allows a user to respond to the survey.

process_survey

question IN
response_array

DEFAULT
emp_survey.no_

response

response IN
response_array

DEFAULT
emp_survey.no_

response

Inserts the user's answers into the RESPONSES table.

view_results
i_survey_id IN
VARCHAR2

Prints each question in the survey. Together, view_results and
print_answers tabulate the results for the survey.

print_answers
i_question_id IN
VARCHAR2

Prints the corresponding summary information for a question.
Together, view_results and print_answers tabulate the results for the
survey.

Like all packages, EMP_SURVEY requires a specification and a body.

8.2.4.1 Specification

We can translate the storyboard almost directly into a package specification. The four boxes on the diagram, each of
which represents a screen in the system, indicate that we'll need at least four procedures. The lines connecting the
boxes give us the formal parameter list for each procedure. Not everything is on the storyboard, though; we'll also
need to declare an array to hold the user's survey answers. We'll discuss how to use this when we write the program to
create the form.

The code for the EMP_SURVEY package is as follows:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE emp_survey
AS

http://lib.ommolketab.ir

 /*
 || Datatype used to hold the responses to the survey
 */
 TYPE response_array IS TABLE OF VARCHAR2(20)
 INDEX BY BINARY_INTEGER;
 no_response response_array;

 -- Display the list of available surveys
 PROCEDURE display_survey_list;

 -- Display the form so that the user can respond
 PROCEDURE answer_survey (i_survey_id IN VARCHAR2);

 -- Save the responses
 PROCEDURE process_survey (
 question IN response_array DEFAULT emp_survey.no_response,
 response IN response_array DEFAULT emp_survey.no_response
);

 -- Display the results of a survey
 PROCEDURE view_results (i_survey_id IN VARCHAR2);

END;

8.2.4.2 Body

With the basic design complete, all that's left is to fill in the pieces. In the survey system, this consists largely of
building screens based on the information in our data model. Recalling the specification, we have to write five
procedures for the package body: display_survey_list, answer_survey, process_survey, view_results, and
print_answers.

8.2.4.2.1 The display_survey_list procedure

The first procedure, display_survey_list, generates the first page of the storyboard. This page presents an HTML list
of all available surveys along with their descriptions. Each survey requires two hyperlinks: one to link to the
"response" page and one to link to the "view results" page.

The following procedure uses the SURVEY table to create the list. For each row in the table, the procedure creates a
new HTML list item based on the survey_name and survey_desc columns. It also creates the two hyperlinks that
include the survey_id as a parameter in the query string:

PROCEDURE display_survey_list
IS
 -- Create cursor of all surveys that are active
 -- Done by testing the start_date and end_date columns
 -- of the SURVEY table
 CURSOR survey_cur
 IS
 SELECT *
 FROM survey

http://lib.ommolketab.ir

 WHERE SYSDATE BETWEEN start_date AND end_date;
 survey_rec survey_cur%ROWTYPE;
 rec_count NUMBER DEFAULT 0;

BEGIN
 HTP.print ('<title>Available Surveys</title>');
 HTP.print ('<body bgcolor=white>');
 HTP.print (''); -- Begin an ordered list
 OPEN survey_cur;
 LOOP
 FETCH survey_cur INTO survey_rec;
 EXIT WHEN survey_cur%notfound;
 HTP.print ('');
 HTP.bold (survey_rec.survey_name);
 HTP.print ('
');
 HTP.print ('<i>' || survey_rec.survey_desc || '</i>
');
 -- Put an anchor to take the survey
 HTP.anchor (
 'emp_survey.answer_survey?i_survey_id=' ||
 survey_rec.survey_id,
 'Take the survey'
);
 -- Put an anchor to view the results
 HTP.anchor (
 'emp_survey.view_results?i_survey_id=' ||
 survey_rec.survey_id,
 'View the results'
);
 HTP.print ('<p>');
 END LOOP;
 HTP.print ('');
 CLOSE survey_cur;
END display_survey_list;

Figure 8.4 shows the procedure's output.

Figure 8.4. The main screen of the survey application

http://lib.ommolketab.ir

8.2.4.2.2 The answer_survey procedure

The next procedure creates the HTML form that allows a user to respond to the survey. answer_survey has one
parameter, survey_id, to indicate the survey the user selected on the preceding screen. answer_survey uses the rows of
the QUESTION table for the specified survey to build corresponding rows in a two-column table. The first column in
the table holds the question's text. The second column holds two form <input> elements. The first element, a hidden
field containing the question's ID, is needed to associate the user's answer with a corresponding question. The second
element, created by the OWA_UTIL.LISTPRINT procedure, is a selectable list of the question's possible answers as
they appear in the ANSWERS table. When the user submits the form, both the hidden field and the response field are
passed as parameter arrays to the process_survey procedure.

The code for this procedure is as follows:

PROCEDURE answer_survey (i_survey_id IN VARCHAR2)
IS
 CURSOR q_cur
 IS
 SELECT *
 FROM questions
 WHERE survey_id = i_survey_id
 ORDER BY question_num;

 q_rec q_cur%ROWTYPE;
 stmt VARCHAR2(500);

BEGIN
 HTP.title ('Survey');
 HTP.print ('<body bgcolor=white>');
 HTP.print ('<form action=emp_survey.process_survey>');
 HTP.print ('<table width=80%>');
 OPEN q_cur;
 LOOP
 FETCH q_cur INTO q_rec;

http://lib.ommolketab.ir

 EXIT WHEN q_cur%notfound;
 -- Start a new row in the HTML table
 HTP.print ('<tr>');
 -- Print the question in column 1
 HTP.print ('<th align=left valign=top>');
 HTP.print (q_rec.question_text);
 HTP.print ('</th>');
 -- Put the question_id and select list in column 2
 HTP.print ('<td>');
 -- Put the question_id in as a hidden field
 HTP.formhidden (
 cname => 'question',
 cvalue => q_rec.question_id
);
 -- Use owa_util.listprint to build the LOV for the answer
 stmt :=
 'select answer_id, answer_text, default_ans_flag ';
 stmt := stmt || ' from survey.answers where';
 stmt := stmt || ' question_id = ' || q_rec.question_id;
 stmt := stmt || ' order by answer_order';
 OWA_UTIL.listprint (stmt, 'response', 4, FALSE);
 HTP.print ('</td>');
 HTP.print ('</tr>');
 END LOOP;
 HTP.print ('</table>');
 HTP.formsubmit;
 CLOSE q_cur;
END;

Figure 8.5 shows the output of this procedure for a sample survey.

Figure 8.5. The form used to answer a survey

http://lib.ommolketab.ir

8.2.4.2.3 The process_survey procedure

The third procedure, process_survey, inserts the user's answers into the RESPONSES table. It accepts two
response_array parameters (see the specification), question and response. For each question on the answer form, these
parameters hold (respectively) the ID of the question as defined in QUESTIONS and the ID of the user's
corresponding answer as defined in ANSWERS.

The procedure loops through each element, inserting a new row in the RESPONSES table for each question. The
procedure calls the display_survey_list procedure to return the user to the main screen:

PROCEDURE process_survey (
 question IN response_array DEFAULT emp_survey.no_response,
 response IN response_array DEFAULT emp_survey.no_response
)
IS

 count NUMBER DEFAULT 0;

BEGIN
 HTP.title ('Saving Responses');
 HTP.print ('<body bgcolor=white>');
 -- COUNT attribute available in PL/SQL 2.3
 FOR count IN 1 .. question.count
 LOOP
 INSERT INTO responses (response_id,question_id,answer_id)
 VALUES (
 response_seq.nextval,
 question (item_count),
 response (item_count)
);
 END LOOP;

http://lib.ommolketab.ir

 HTP.print ('<h1>Values Saved</h1><hr>');
 display_survey_list;
END;

8.2.4.2.4 The view_results procedure

The last procedure in the application tabulates the results for the survey specified by the survey_id parameter. The
procedure is split into two parts: a main procedure (view_results) to print each question and a secondary procedure
(print_answers) to print a corresponding summary. The code for the main procedure is as follows:

PROCEDURE view_results (i_survey_id IN VARCHAR2)
IS
 CURSOR q_cur
 IS
 SELECT *
 FROM questions
 WHERE survey_id = i_survey_id
 ORDER BY question_num;
 q_rec q_cur%ROWTYPE;
BEGIN
 HTP.title ('Survey Responses');
 HTP.print ('<body bgcolor=white>');
 HTP.print ('');
 OPEN q_cur;
 LOOP
 FETCH q_cur INTO q_rec;
 EXIT WHEN q_cur%notfound;
 HTP.print ('');
 HTP.print ('' || q_rec.question_text || '');
 HTP.print ('
');
 -- Call another procedure to generate the response summary
 print_answers (q_rec.question_id);
 HTP.print ('</td>');
 END LOOP;
 HTP.print ('');
 CLOSE q_cur;
END;

The secondary procedure, print_answers, generates the summary information for a question. The procedure opens a
cursor based on the ANSWERS table to retrieve all the answers for a particular question. It then queries the
RESPONSES table to calculate the percentages for that response. The code for the procedure is as follows:

PROCEDURE print_answers (i_question_id IN VARCHAR2)
IS
 CURSOR ans_cur
 IS
 SELECT *
 FROM answers
 WHERE question_id = i_question_id
 ORDER BY answer_order;
 ans_rec ans_cur%ROWTYPE;
 total_responses NUMBER;

http://lib.ommolketab.ir

 num_responses NUMBER;
BEGIN
 -- Fetch the total number of responses
 SELECT COUNT (*)
 INTO total_responses
 FROM responses
 WHERE question_id = i_question_id;
 HTP.print ('<table width=50%>');
 OPEN ans_cur;
 LOOP
 FETCH ans_cur INTO ans_rec;
 EXIT WHEN ans_cur%notfound;
 HTP.print ('<tr>');
 -- Print question text
 HTP.print ('<td nowrap>' ||
 ans_rec.answer_text ||
 '</td>');
 -- Fetch and print number of responses
 SELECT COUNT (*)
 INTO num_responses
 FROM responses
 WHERE answer_id = ans_rec.answer_id;
 HTP.print ('<td align=right>' ||
 ROUND (
 num_responses / total_responses * 100,
 2
) ||
 '%</td>');
 HTP.print ('</tr>');
 END LOOP;
 HTP.print ('</table>');
 CLOSE ans_cur;
END;

Figure 8.6 shows the combined results of these procedures.

Figure 8.6. A sample summary

http://lib.ommolketab.ir

8.2.5 Security Privileges

Our last formal step is to make the package accessible to the user's web browser. Rather than creating a new PL/SQL
agent for the SURVEY schema, we can make the package available to an existing agent's schema (in this case,
WEBTEST). This makes the system more secure and reduces maintenance for the webmaster. Here are the steps to
follow:

Log in to the SURVEY schema using SQL*Plus.1.

Grant EXECUTE privileges on the EMP_SURVEY package to the agent account (WEBTEST).2.

Connect to the agent account (again, WEBTEST).3.

Create a synonym called EMP_SURVEY for survey.emp_survey.4.

Figure 8.7 shows how these commands are used in SQL*Plus.

Figure 8.7. Using SQL*Plus to grant privileges to the PL/SQL agent

http://lib.ommolketab.ir

8.2.6 Summary

Developing the anonymous survey has taught us several things about web development. First, we have seen that a
storyboard is a good place to start when faced with a new application. We can use the information on our diagram to
define how the user will navigate, get a good idea of the database tables we'll need, and get a jump-start on defining
the package specification. Second, this example has illustrated how to use parameter arrays to pass multiple field
values, as well as how (and under what circumstances) you should use hidden fields. We'll expand these ideas further
in the next sample application.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 8. Developing Applications

8.3 Example 2: A Discussion Forum

Our second, more complex example allows users to post messages in a browser-based threaded discussion forum. The
granddaddy of all discussion lists, Usenet, allows the Internet community to share its views on literally thousands of
topics, ranging from C programming to The X-Files. A more focused list, run by RevealNet at
http://www.revealnet.com, is geared to PL/SQL developers.

The system presented here is based loosely on the forums run by the online version of InfoWorld computer magazine
(http://www.infoworld.com). Each week, the editors at InfoWorld select a number of topical issues in the computer
industry for its readers to discuss. These forums allow registered users to express their opinions on both the forum
topic and the posts from other readers. Figure 8.8 shows the user interface for the discussion forum we'll develop in
this section.

Figure 8.8. A typical discussion list

http://www.revealnet.com
http://www.infoworld.com
http://lib.ommolketab.ir

A vibrant internal discussion forum is a great way for users and developers to communicate simply and efficiently.
For example, a forum about an IS application provides users with the ability to report bugs (e.g., "the total dollars on
this report should be double-underlined") and suggest new, potentially interesting ideas ("It'd be cool if we could click
on the client number and get an AR report"). Monitoring these discussions can help you design better systems and
establish your department, or at least you, as responsive and customer friendly.

8.3.1 Storyboard

Our system follows a well-established format. Users begin at a login screen where they provide a username and
password. To allow users to express both personality and anonymity in their postings, we'll create our own list of
users and not use the OWA_SEC package described in Chapter 7. (This also saves the DBA from user maintenance.)
Of course, the downside is that you now have a new list of users, possibly increasing maintenance. However, building
maintenance features into the system (such as allowing a user to create a new account) helps shift the burden some so
that users are maintaining their own information.

Initially, a user must enroll in the system and provide some optional information, such as a real name, an email
address, and a personal description. Once the user logs in, he is presented with a list of the various forums. He can
choose to create a new forum topic or respond to a previous post. If he chooses to create a forum, he is brought to a
screen where he can enter the forum subject and its topic. If he chooses to view a forum discussion, he is brought to a
list of all the previous responses.

These posts are arranged hierarchically, meaning that responses to a particular post are indented beneath the original
message. Each post shows the subject of the message, the author, and the date it was created. Clicking one of these
posts presents its full text, as well as a hyperlink labeled "Respond." Clicking the link allows the user to enter a
response to the message. Figure 8.9 shows the storyboard for the system.

Figure 8.9. A storyboard for a threaded discussion list

http://lib.ommolketab.ir

8.3.2 Data Model

Figure 8.10 shows a straightforward data design for the discussion list. The first table we'll need is one to hold
information about the forum members. The table, called MEMBERS, contains fields for the username, password, real
name, and a personal description. All fields except the username are optional.

Figure 8.10. The data model for the discussion forum system

The second table, named MESSAGES, holds the posts submitted by the forum members. Its fields include a primary
key based on a sequence value, the username of the member who submitted the message, a subject line, and the text

http://lib.ommolketab.ir

of the message itself. To represent the hierarchical relationship between the messages, MEMBERS is defined
recursively: an additional field must hold the primary key of the message's parent.

Notice that it isn't necessary to create a separate table to hold the forums. Instead, we can simply treat a forum as a
message that is the root of a thread of other messages. By convention, we'll differentiate a forum from a normal post
by setting its parent field to zero.

8.3.3 Implementation Notes

The threaded discussion list is complex enough that we should break it into simpler parts. The storyboard suggests at
least two components: a package to register new members and a package to display the discussion list itself. Breaking
the system into pieces lets us tackle the problem in discrete, logical steps.

In the next sections, we'll implement the system using three packages. The first package, GENERAL_FORM, will
contain useful formatting procedures that are shared between the other packages. The second package,
FORUM_USERS, will handle user management. The third package, FORUM, will handle all the code needed to
allow users to post and view messages. Table 8.2 shows these packages with their procedures.

Table 8.2. The Discussion Forum Packages

Package Procedures Description

GENERAL_FORM
print_input_row

print_textarea_row
Contains formatting procedures for the various forum procedures

FORUM_USERS

login_form

login

get_current_user

create_user_form

save_user_info

Handles user management for the forum

FORUM

print_thread_links

current_forum_list

view_message

create_msg_form

save_message

Handles users' posting and viewing of forum messages

Finally, we'll create all the application's objects (tables, packages, etc.) in a database schema named DISC_LIST.

8.3.4 The GENERAL_FORM Package

http://lib.ommolketab.ir

The GENERAL_FORM package contains two procedures that format form input elements into an HTML table. Both
do the following basic things:

Open a new table row.

Print the passed label in the first column.

Print an input element in the second column; the element's attributes are set using the various parameters.

Conceptually similar to the HTP package procedures, the GENERAL_FORM procedures use parameters to set the
tag attributes. Creating a library of simple procedures like these can encapsulate line after line of clumsy HTML code
in a single call, resulting in cleaner and shorter programs. Table 8.3 shows the procedures and functions of the
GENERAL_FORM package.

Table 8.3. The GENERAL_FORM Procedures

Procedure Parameters Description

print_input_row

i_label IN VARCHAR2

i_input_name IN VARCHAR2

i_hidden_flag IN BOOLEAN DEFAULT TRUE

i_size IN NUMBER DEFAULT 40

i_value IN VARCHAR2 DEFAULT NULL

Formats a text input box using a table

print_textarea_row

i_label IN VARCHAR2

i_input_name IN VARCHAR2

i_cols IN NUMBER DEFAULT 40

i_rows IN NUMBER DEFAULT 7

Formats a textarea input box using a table

8.3.4.1 Specification

Here's the specification for the GENERAL_FORM package:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE general_form
IS

 PROCEDURE print_input_row (
 i_label IN VARCHAR2,
 i_input_name IN VARCHAR2,
 i_hidden_flag IN BOOLEAN DEFAULT FALSE,
 i_size IN NUMBER DEFAULT 40,

http://lib.ommolketab.ir

 i_value IN VARCHAR2 DEFAULT NULL
);

 PROCEDURE print_textarea_row (
 i_label IN VARCHAR2,
 i_input_name IN VARCHAR2,
 i_cols IN NUMBER DEFAULT 40,
 i_rows IN NUMBER DEFAULT 7
);

END;

8.3.4.2 Body

The GENERAL_FORM procedures are simple enough that they don't require any annotation. Here's the code:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE BODY general_form
IS

 /*
 || Prints a single two-column table row;
 || Column 1 is description,
 || Column 2 has either an input element plain text
 */
 PROCEDURE print_input_row (
 i_label IN VARCHAR2,
 i_input_name IN VARCHAR2,
 i_hidden_flag IN BOOLEAN DEFAULT FALSE,
 i_size IN NUMBER DEFAULT 40,
 i_value IN VARCHAR2 DEFAULT NULL
)
 IS
 BEGIN
 HTP.print ('<tr>');
 HTP.print ('<th align=right>' || i_label || ':</th>');
 HTP.print ('<td>');
 IF NOT i_hidden_flag
 THEN
 HTP.formtext (
 cname => i_input_name,
 csize => i_size,
 cvalue => i_value
);
 ELSE
 HTP.formpassword (
 cname => i_input_name,
 cvalue => i_value
);
 END IF;
 HTP.print ('</td>');
 HTP.print ('</tr>');

http://lib.ommolketab.ir

 END;

 /*
 || Create a two-column table
 || Column 1 is description
 || Column 2 is a <textarea> field
 */
 PROCEDURE print_textarea_row (
 i_label IN VARCHAR2,
 i_input_name IN VARCHAR2,
 i_cols IN NUMBER DEFAULT 40,
 i_rows IN NUMBER DEFAULT 7
)
 IS
 BEGIN
 HTP.print ('<tr>');
 HTP.print ('<th align=right>' || i_label || ':</th>');
 HTP.print ('<td>');
 HTP.formtextarea (i_input_name, i_rows, i_cols);
 HTP.print ('</td></tr>');
 HTP.print ('</table>');
 END;
END;

8.3.5 The FORUM_USERS Package

Our second package, FORUM_USERS, will implement the user management portions of our discussion list. It
performs two basic functions: user authentication and user enrollment. The authentication code is responsible for
displaying a login form, verifying the username and password, and setting a cookie to save the username throughout
the user's session. The enrollment code is responsible for displaying a user information screen and saving that data in
the MEMBERS table.

One thing to note about the enrollment system is that it only inserts new users; once created, a user cannot update his
profile. Although it would be relatively straightforward to also update a row, doing so would require considerably
more code. Since updating a row adds little that is interesting to the example, users of the application in its current
state (after all, this is just an example) simply have to make sure they spell their names right on the first try!

Table 8.4 shows the procedures and functions of the FORUM_USERS package.

Table 8.4. The FORUM_USERS Procedures and Functions

Procedure/Function Parameters Description

login_form

i_username IN VARCHAR2

DEFAULT NULL

i_message IN VARCHAR2

DEFAULT NULL

Creates a login screen for users

http://lib.ommolketab.ir

Procedure/Function Parameters Description

login
i_username IN VARCHAR2

i_password IN VARCHAR2
Verifies the user's login

get_current_user None Assigns the author of a message

create_user_form None
Displays the data entry form to create a new
user

save_user_info
save_user_info

i_username IN VARCHAR2

DEFAULT NULL

i_name IN VARCHAR2

DEFAULT NULL

i_password IN VARCHAR2

DEFAULT NULL

i_email_address IN
VARCHAR2

DEFAULT NULL

i_desc IN VARCHAR2

DEFAULT NULL

Inserts new user data into the MEMBERS table

8.3.5.1 Specification

The leftmost portion of the storyboard lays out how users log in to the system. By referring back to the diagram, we
can see that we need at least three procedures in the specification: a procedure to create the login form itself
(login_form); one to enroll new users (create_user_form); and one to insert the new user's information into the
MEMBERS table (save_user_info). Since HTTP is a stateless protocol, we'll also need a function to pass the user's
login name to the package that implements the discussion list code. This function is named get_current_user.

Here's the specification for FORUM_USERS:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE forum_users
IS

 PROCEDURE login_form (
 i_username IN VARCHAR2 DEFAULT NULL,
 i_message IN VARCHAR2 DEFAULT 'Please Log-In'
);

 PROCEDURE login (
 i_username IN VARCHAR2,

login
i_username IN VARCHAR2

i_password IN VARCHAR2
Verifies the user's login

get_current_user None Assigns the author of a message

create_user_form None
Displays the data entry form to create a new
user

save_user_info
save_user_info

i_username IN VARCHAR2

DEFAULT NULL

i_name IN VARCHAR2

DEFAULT NULL

i_password IN VARCHAR2

DEFAULT NULL

i_email_address IN
VARCHAR2

DEFAULT NULL

i_desc IN VARCHAR2

DEFAULT NULL

Inserts new user data into the MEMBERS table

8.3.5.1 Specification

The leftmost portion of the storyboard lays out how users log in to the system. By referring back to the diagram, we
can see that we need at least three procedures in the specification: a procedure to create the login form itself
(login_form); one to enroll new users (create_user_form); and one to insert the new user's information into the
MEMBERS table (save_user_info). Since HTTP is a stateless protocol, we'll also need a function to pass the user's
login name to the package that implements the discussion list code. This function is named get_current_user.

Here's the specification for FORUM_USERS:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE forum_users
IS

 PROCEDURE login_form (
 i_username IN VARCHAR2 DEFAULT NULL,
 i_message IN VARCHAR2 DEFAULT 'Please Log-In'
);

 PROCEDURE login (
 i_username IN VARCHAR2,

http://lib.ommolketab.ir

 i_password IN VARCHAR2
);

 FUNCTION get_current_user
 RETURN VARCHAR2;

 PROCEDURE create_user_form;

 PROCEDURE save_user_info (
 i_username IN VARCHAR2 DEFAULT NULL,
 i_name IN VARCHAR2 DEFAULT NULL,
 i_password IN VARCHAR2 DEFAULT NULL,
 i_email_address IN VARCHAR2 DEFAULT NULL,
 i_desc IN VARCHAR2 DEFAULT NULL
);
END;

8.3.5.2 Body

In the following sections, we'll develop each procedure in the specification for USER_FORUM.

8.3.5.2.1 The login_form procedure.

This procedure creates a login screen that has three elements: a username field, a password field,[2] and a hyperlink
used to enroll as a new user. The procedure has two parameters: the first parameter, i_username, sets the default text
of the username. The second parameter, i_message, is used to change the message displayed on the form; this gives
us added flexibility so that the form can serve multiple purposes. Note how this procedure calls the
GENERAL_FORM package to create and format the form input elements:

[2] While the HTML password attribute adds a measure of security to the password field, it's important to remember

that the text has only been masked, not encrypted! When the user submits the form, hackers can use a program

called a packet sniffer to intercept and read the password. Your database administrator or webmaster must secure

your site with a tool such as SSL to prevent this possibility.

PROCEDURE login_form (
 i_username IN VARCHAR2 DEFAULT NULL,
 i_message IN VARCHAR2 DEFAULT 'Please Log-In'
)
IS

BEGIN
 HTP.print ('<body bgcolor=white>');
 HTP.print ('<h1>' || i_message || '</h1>');
 HTP.print ('<form action=forum_users.login>');
 general_form.print_input_row (
 'Forum User Name',
 'i_username',
 FALSE,
 30,
 i_username

http://lib.ommolketab.ir

);
 general_form.print_input_row (
 'Forum Password',
 'i_password',
 TRUE
);
 HTP.print ('</table>');
 HTP.formsubmit (cvalue => 'Login');
 HTP.print ('</form>');
 HTP.print ('<p><p>');
 HTP.anchor (
 'forum_users.create_user_form',
 'Enroll as a new user'
);
END;

Figure 8.11 shows the output of the login_form procedure.

Figure 8.11. The forum login screen

8.3.5.2.2 The login procedure.

This procedure, called when the user submits the information from the login form, is the gateway to the FORUM
package, which we'll describe later. The procedure begins by calling the verify_user function to determine if the
person has entered a valid username and password. If the user has done this, login executes the set_user procedure,
which saves the user's login name in a cookie named forum_user, then calls the procedure to display the forum topic
list.

Since cookies are relatively easy to hack, this approach is very insecure. For a system in
which security (in the "I wanna keep out the bad guys" meaning of the word) is a serious
issue, you would also need to use a protocol like SSL or HTTP and set the cookies to expire
so they aren't saved on the user's machine.

If the user has entered an invalid username or password, the procedure calls login_form to display an error message

http://lib.ommolketab.ir

along with the original login form:

/*
|| Check to see if username and password are valid
*/
FUNCTION verify_user (
 i_username IN VARCHAR2,
 i_password IN VARCHAR2
)
 RETURN BOOLEAN
IS

 match_count NUMBER := 0;

BEGIN
 SELECT COUNT (*)
 INTO match_count
 FROM members
 WHERE username = i_username
 AND password = i_password;
 IF match_count = 1
 THEN
 RETURN TRUE;
 ELSE
 RETURN FALSE;
 END IF;
END;

/*
|| Save username into a cookie
*/
PROCEDURE set_user (i_username IN VARCHAR2)
IS
BEGIN
 OWA_UTIL.mime_header ('text/html', FALSE);
 OWA_COOKIE.send ('forum_user', i_username);
 OWA_UTIL.http_header_close;
END;

/*
|| Main procedure -- perform logic test and take
|| appropriate action
*/
PROCEDURE login (i_username IN VARCHAR2, i_password IN VARCHAR2)
IS
BEGIN
 IF verify_user (i_username, i_password)
 THEN
 set_user (i_username);
 forum.current_forum_list;
 ELSE
 login_form (i_username, 'Username/Password not found');

http://lib.ommolketab.ir

 END IF;
END;

8.3.5.2.3 The get_current_user function.

This function, the third block of code in the FORUM_USERS package, fetches and returns the original username
stored in the forum_user cookie. The function is used by the FORUM package to assign the author of a message.
While this function could also go in the actual FORUM package, there's a nice symmetry to keeping all functions that
act on the same data structure (in this case, a cookie) together in the same package. Here's the code:

FUNCTION get_current_user
 RETURN VARCHAR2
IS
 cookie OWA_COOKIE.cookie;
 ret_val VARCHAR2(50) DEFAULT NULL;
BEGIN
 cookie := OWA_COOKIE.get ('forum_user');
 IF cookie.num_vals != 0
 THEN
 ret_val := cookie.vals (1);
 END IF;
 RETURN ret_val;
END;

8.3.5.2.4 The create_user_form procedure

This procedure displays the data entry form to create a new user. This screen, which the storyboard labels as "Fill out
form to enroll as new user," is displayed when the user clicks "Enroll as a new user" on the login form. Here's the
code:

PROCEDURE create_user_form
IS
BEGIN
 HTP.print ('<body bgcolor=white>');
 HTP.print ('<h1>Welcome, New User!</h1><hr>');
 HTP.print ('<form action=forum_users.save_user_info>');
 -- Existing users cannot change their name or username
 HTP.print ('<table>');
 general_form.print_input_row (
 'Forum User Name',
 'i_username'
);
 general_form.print_input_row ('Real Name', 'i_name');
 general_form.print_input_row (
 'Forum Password',
 'i_password',
 TRUE
);
 general_form.print_input_row (
 'Email Address',
 'i_email_address'

http://lib.ommolketab.ir

);
 general_form.print_textarea_row ('Description', 'i_desc');
 HTP.print ('</table>');
 HTP.formsubmit (cvalue => 'Create New User Profile');
 HTP.print ('</form>');
END;

Figure 8.12 shows the output generated by the procedure.

Figure 8.12. The "add new user" screen

8.3.5.2.5 The save_user_info procedure.

This procedure, the last procedure in the FORUM_USERS package, attempts to insert the data entered on the "Create
User" form into the MEMBERS table after the user presses the "Create New User Profile" button. If the insert is
successful, the procedure calls set_user to save the new username and calls the procedure to display the forum list. If
the insert fails, either because the user already exists or because there is some other error, the exception section prints
an appropriate error message.

Here's the code:

PROCEDURE save_user_info (
 i_username IN VARCHAR2 DEFAULT NULL,
 i_name IN VARCHAR2 DEFAULT NULL,
 i_password IN VARCHAR2 DEFAULT NULL,
 i_email_address IN VARCHAR2 DEFAULT NULL,
 i_desc IN VARCHAR2 DEFAULT NULL
)
IS

http://lib.ommolketab.ir

BEGIN
 -- Create the new user
 INSERT INTO members (
 username,
 password,
 name,
 email_address,
 personal_desc
)
 VALUES (
 i_username,
 i_password,
 i_name,
 i_email_address,
 i_desc
);
 COMMIT;
 set_user (i_username);
 forum.current_forum_list;
EXCEPTION
 WHEN DUP_VAL_ON_INDEX
 THEN
 HTP.print ('<h1>User already exists!</h1>');
 WHEN OTHERS
 THEN
 HTP.print ('<h1>An unidentified error occurred!</h1>');
END;

8.3.6 The FORUM Package

Now that we've built our supporting packages, we can turn our attention to the real meat of the application. The
FORUM package displays and manipulates the records in the MESSAGES table. Table 8.5 shows the procedures in
the FORUM package.

Table 8.5. The FORUM Procedures

Procedure Parameters Description

print_thread_links

i_thread_list IN
VARCHAR2

i_expand_thread IN
VARCHAR2

DEFAULT ̀ N'

Private procedure used for formatting other procedures

current_forum_list None Generates the list of available forums

i_thread_id IN
VARCHAR2

http://lib.ommolketab.ir

Procedure Parameters Description

view_message
DEFAULT NULL

i_hierarchy_flag IN
VARCHAR2

DEFAULT NULL

Prints the full text of a message, a link for posting a response, and
the threaded list of previous responses

create_msg_form

i_parent_msg IN
VARCHAR2

DEFAULT NULL

Creates an HTML form used to respond to a message

save_message

i_parent_msg IN
VARCHAR2

DEFAULT NULL

i_subject IN VARCHAR2

DEFAULT NULL

i_msg_body IN
VARCHAR2

DEFAULT NULL

MESSAGES table

8.3.6.1 Specification

We'll need four procedures: one to display a list of forum topics, one to view the full text of a message, one to create a
message, and one to save the new message into the MESSAGES table. Here's the specification for FORUM that
includes procedures for each of these tasks:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE forum
IS

 PROCEDURE current_forum_list;

 PROCEDURE view_message (
 i_thread_id IN VARCHAR2 DEFAULT NULL,
 i_hierarchy_flag IN VARCHAR2 DEFAULT NULL
);

 PROCEDURE create_msg_form (
 i_parent_msg IN VARCHAR2 DEFAULT NULL
);

 PROCEDURE save_message (
 i_parent_msg IN VARCHAR2 DEFAULT NULL,
 i_subject IN VARCHAR2 DEFAULT NULL,
 i_msg_body IN VARCHAR2 DEFAULT NULL

view_message
DEFAULT NULL

i_hierarchy_flag IN
VARCHAR2

DEFAULT NULL

Prints the full text of a message, a link for posting a response, and
the threaded list of previous responses

create_msg_form

i_parent_msg IN
VARCHAR2

DEFAULT NULL

Creates an HTML form used to respond to a message

save_message

i_parent_msg IN
VARCHAR2

DEFAULT NULL

i_subject IN VARCHAR2

DEFAULT NULL

i_msg_body IN
VARCHAR2

DEFAULT NULL

MESSAGES table

8.3.6.1 Specification

We'll need four procedures: one to display a list of forum topics, one to view the full text of a message, one to create a
message, and one to save the new message into the MESSAGES table. Here's the specification for FORUM that
includes procedures for each of these tasks:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE forum
IS

 PROCEDURE current_forum_list;

 PROCEDURE view_message (
 i_thread_id IN VARCHAR2 DEFAULT NULL,
 i_hierarchy_flag IN VARCHAR2 DEFAULT NULL
);

 PROCEDURE create_msg_form (
 i_parent_msg IN VARCHAR2 DEFAULT NULL
);

 PROCEDURE save_message (
 i_parent_msg IN VARCHAR2 DEFAULT NULL,
 i_subject IN VARCHAR2 DEFAULT NULL,
 i_msg_body IN VARCHAR2 DEFAULT NULL

http://lib.ommolketab.ir

);

END;

8.3.6.2 Body

In addition to implementing the procedures listed in the specification, the body of the FORUM package contains a
private procedure called print_thread_links. Even though it can't be called directly from the Web, this procedure is
used in all of FORUM's public procedures. Consequently, we'll begin by examining this private procedure, even
though it's not declared in the specification.

8.3.6.2.1 The print_thread_links procedure.

This procedure calls itself recursively to produce the indented list of hyperlinked subject headers illustrated in Figure
8.8. Clicking on one of these links displays the full body of the original message.

The procedure accepts two parameters. The first, i_thread_id, is the primary key (as defined in MESSAGES) for the
root of the thread. The second parameter, i_expand_flag, is used to make the procedure expand the child elements
under the root thread. If the flag is "Y," then the procedure will call itself again, this time using the ID of the child
message as the new root thread. Here's the code:

PROCEDURE print_thread_links (
 i_thread_id IN VARCHAR2,
 i_expand_thread IN VARCHAR2 DEFAULT 'N'
)
IS

 CURSOR t_cur
 IS
 SELECT *
 FROM messages
 WHERE msg_parent = i_thread_id
 ORDER BY date_created;

 t_rec t_cur%ROWTYPE;
 link VARCHAR2(500);

BEGIN
 HTP.print ('<h4>');
 HTP.print (''); -- Start a new ordered list
 OPEN t_cur;
 LOOP
 FETCH t_cur INTO t_rec;
 EXIT WHEN t_cur%notfound;
 HTP.print ('');
 link := 'forum.view_message?i_thread_id=' || t_rec.msg_id;
 HTP.anchor (link, t_rec.msg_subject);
 HTP.italic ('(' ||
 t_rec.msg_author ||
 ',' ||

http://lib.ommolketab.ir

 t_rec.date_created ||
 ')');
 HTP.print ('');
 -- Recursively print the children if necessary
 IF i_expand_thread = 'Y'
 THEN
 print_thread_links (t_rec.msg_id, 'Y');
 END IF;
 END LOOP;
 HTP.print (''); -- End the ordered list
 HTP.print ('</h4>');
 CLOSE t_cur;
END;

8.3.6.2.2 The current_ forum_list procedure.

This procedure generates the list of available forums that serves as the main entry point of the forum system. From
here, the user selects the forum topic that he or she would like to discuss.

If you'll recall from the Section 8.2.2 section, we defined a forum (as opposed to normal posts) as rows in the
MESSAGES table where the parent column equals 0. current_forum_list works by passing the print_thread_links a
value of for the root thread and a value of `N' for the expand flag, as shown in this example:

PROCEDURE current_forum_list
IS
 link VARCHAR2(200);
BEGIN
 HTP.print ('<body bgcolor=white>');
 HTP.print ('<h1>Forums</h1>
');
 link := 'forum.create_msg_form?i_parent_msg=0';
 HTP.anchor (link, 'Create a new forum');
 HTP.print ('<hr>');
 -- Print the threads, but do not recurse
 print_thread_links (0, 'N');
END;

Figure 8.13 shows the output of the procedure.

Figure 8.13. The available forum list

http://lib.ommolketab.ir

8.3.6.2.3 The view_message procedure.

This procedure prints the full text of a message, a link that allows the user to post a response, and the threaded list of
previous responses:

PROCEDURE view_message (
 i_thread_id IN VARCHAR2 DEFAULT NULL,
 i_hierarchy_flag IN VARCHAR2 DEFAULT NULL
)
IS

 m_rec messages%ROWTYPE;
 msg_found BOOLEAN;
 link VARCHAR2(500);
BEGIN
 SELECT *
 INTO m_rec
 FROM messages
 WHERE msg_id = i_thread_id
 ORDER BY date_created;
 HTP.print ('<body bgcolor=white>');
 HTP.print ('<h2>' || m_rec.msg_subject || '</h2>');
 HTP.print ('<i>Posted by ' || m_rec.msg_author);
 HTP.print (' on ' || m_rec.date_created || '</i><p>');
 HTP.print ('<h2>Message:</h2><p>' || m_rec.msg_body || '<p>');
 link := 'forum.create_msg_form?i_parent_msg=' || i_thread_id;
 HTP.anchor (link, 'Respond');
 HTP.print ('<h2>Previous Responses:</h2><p>');
 print_thread_links (i_thread_id, 'Y');
 HTP.print ('<p>');
 IF m_rec.msg_parent != 0
 THEN

http://lib.ommolketab.ir

 link :=
 'forum.view_message?i_thread_id=' || m_rec.msg_parent;
 HTP.anchor (link, 'Previous Message');
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 HTP.print ('<h1>Message Not Found!</h1>');
END;

8.3.6.2.4 The create_msg_form procedure.

This procedure creates an HTML form used to respond to a message. Before displaying the form, the procedure first
confirms that the user is logged in. If not, the procedure calls FORUM_USERS.login_form to force the user to log
on. Here's the code:

PROCEDURE create_msg_form (
 i_parent_msg IN VARCHAR2 DEFAULT NULL
)
IS
BEGIN
 -- Only allow users that are logged in to post
 IF forum_users.get_current_user IS NULL
 THEN
 forum_users.login_form (
 NULL,
 'You must login to post a message'
);
 ELSE
 -- Print message form
 HTP.print ('<body bgcolor=white>');
 -- Print a header; a msg_id of zero indicates a forum topic
 IF i_parent_msg = 0
 THEN
 HTP.print ('<h1>Create Forum Topic</h1><hr>');
 ELSE
 HTP.print ('<h1>Post response</h1><hr>');
 END IF;
 HTP.print ('<form action=forum.save_message method=POST>');
 HTP.print ('<table>');
 HTP.formhidden (
 cname => 'i_parent_msg',
 cvalue => i_parent_msg
);
 general_form.print_input_row ('Subject', 'i_subject');
 general_form.print_textarea_row (
 'Body',
 'i_msg_body',
 80,
 10
);
 HTP.print ('</table>');

http://lib.ommolketab.ir

 HTP.formsubmit;
 HTP.print ('</form>');
 END IF;
END;

Figure 8.14 shows the output of the procedure.

Figure 8.14. Posting a response to a message

8.3.6.2.5 The save_message procedure.

This final procedure inserts the user's posts into the MESSAGES table. Like create_msg_form, the procedure first
checks to make sure that the user is logged in.[3] Otherwise, people would be able to easily forge messages from other
users, which can lead to big trouble. If the user checks out, the procedure inserts the record and redisplays the updated
message list. If not, the exception section traps the error and prints a message. Here's the code for this procedure:

[3] Despite our best efforts, users are still free to jump into the application at any point simply by entering the URL into

the browser's "Navigation" box. The cookie simply allows us to determine if the user has logged in.

PROCEDURE save_message (
 i_parent_msg IN VARCHAR2 DEFAULT NULL,
 i_subject IN VARCHAR2 DEFAULT NULL,
 i_msg_body IN VARCHAR2 DEFAULT NULL
)
IS

 author members.username%TYPE
 := forum_users.get_current_user;

http://lib.ommolketab.ir

BEGIN
 -- Only allow users that are logged in to post
 IF forum_users.get_current_user IS NULL
 THEN
 forum_users.login_form (
 NULL,
 'You must login to post a message'
);
 ELSE
 -- Save message
 INSERT INTO messages (
 msg_id,
 msg_parent,
 msg_author,
 msg_subject,
 msg_body
)
 VALUES (
 message_seq.nextval,
 i_parent_msg,
 author,
 i_subject,
 i_msg_body
);
 COMMIT;
 -- Now return to the original message to display the new post
 IF i_parent_msg = 0
 THEN
 current_forum_list;
 ELSE
 view_message (i_parent_msg);
 END IF;
 END IF;
EXCEPTION
 WHEN OTHERS
 THEN
 HTP.print ('<body bgcolor=white>');
 HTP.print ('An error has occurred<p>');
END;

8.3.7 Security Privileges

We'll follow the same steps we used in the survey example to make the discussion list available on the Web. Since we
have two packages, though, we'll have to use two sets of grants:

Log in to disc_list using SQL*Plus.1.

Grant the EXECUTE privilege on FORUM to the agent account (WEBTEST).2.

Grant the EXECUTE privilege on FORUM_USERS to the agent account (WEBTEST).3.

4.

5.

http://lib.ommolketab.ir

2.

3.

Connect to the agent account (WEBTEST).4.

Create a synonym named FORUM for disc_list.forum.5.

Create a synonym named FORUM_USERS for disc_list.forum_users.6.

Figure 8.15 shows how these commands are used in SQL*Plus.

Figure 8.15. Using SQL*Plus to grant privileges to the PL/SQL agent

8.3.8 What Next?

The FORUM package is the most complex example we'll look at in this book. It illustrates how to break complex
systems into multiple packages, how to create reasonably complex navigation schemes, and how to use cookies to
save state information. If you have understood this example, you're well on the way to being able to write almost any
PL/SQL-and-HTML-based system.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 9. XML

Extensible Markup Language (XML) is an emerging standard closely related to Standardized General Markup Language
(SGML), the granddaddy of all markup languages, which was designed by the U.S. government to create complex
documents. Realizing that SGML was simply too complicated for his purposes, Tim Berners-Lee (the inventor of the
Web) used SGML to create HTML, and the rest is history.

Now that the Web has matured, however, developers are starting to miss some of SGML's capabilities. XML is an
attempt to find a middle ground between the complexities of SGML and the ease of use of HTML. Like HTML, XML
employs a tag-based syntax to mark up ASCII text. Unlike HTML, which controls the appearance of a document, XML
describes the meaning and structure of a document by defining a syntax and grammar for creating new tags. XML is
extensible because it lets you define your own tag vocabulary (as long as it follows the rules of the XML specification)
for creating meaningful documents.

Although it's currently being touted as "HTML done right," XML is actually a lot more. It has a number of potential uses
as a tool for integrating disparate systems and building electronic commerce systems. The XML specification provides an
open framework for exchanging complex, structured documents (such as purchase orders, invoices, insurance claims,
etc.) among different computer systems. In one fell swoop, XML eliminates network dependencies such as TCP/IP or
IPX, protocol dependencies such as SQL*Net or ODBC, hardware dependencies such as Intel or Alpha, operating
system dependencies such as Windows NT or Unix, and even database dependencies such as Oracle or SQL Server. In
fact, the implications of XML are so profound that it even threatens the Fort Knox of the database worlddelimited flat
files!

While you might expect XML to be enormously complicated, it's really just a formal implementation of a wonderfully
simple idea: that the structure and meaning of a document's contents should be indicated inside, not outside, the text of
the document itself. An example can help make this idea clear. Suppose you receive the following comma-delimited file:

876514234,05/21/1999, Megaplex Industries
PN-5324,Super Duper Widget,5,19.99
PN-6354,Not So Super Duper Widget,2,9.99
119.93

While it's clear that this file contains some sort of structured information, we have no way to tell exactly what it might be;
about all we know for certain is that the first line might contain a date. This is the problem with delimited files. Until you
have the file's columnar layout, its secret decoder ring, you can't do anything meaningful with it.

http://lib.ommolketab.ir

Now suppose you receive the same information in XML format:

<?xml version="1.0"?>
<!DOCTYPE INVOICE SYSTEM "invoice.dtd">
<INVOICE>
 <INVOICE_NUMBER>876514234</INVOICE_NUMBER>
 <DATE>05/21/1999</DATE>
 <CUSTOMER>Megaplex Industries</CUSTOMER>
 <INVOICE_ITEMS>
 <ITEM>
 <ITEM_NAME ITEM_NUM="PN-5342">Super Duper Widget</ITEM_NAME>
 <QUANTITY>5</QUANTITY>
 <PRICE>19.99</PRICE>
 </ITEM>
 <ITEM>
 <ITEM_NAME ITEM_NUM="PN-6354">Not So Super Duper Widget</ITEM_NAME>
 <QUANTITY>2</QUANTITY>
 <PRICE>9.99</PRICE>
 </ITEM>
 </INVOICE_ITEMS>
 <TOTAL>119.93</TOTAL>
</INVOICE>

The XML version leaves no doubt about the file's purpose or structure: it's an invoice consisting of two items. Knowing
this, we can deduce the structure of the original file. The first line contains basic information, such as the invoice
number, the invoice date, the invoice total, and the customer to whom it is being sent. The next two lines are invoice
items, and consist of a part number, a name, an order quantity, and a unit cost. The last line is the invoice total.

The difference between the first file and the second is that the XML file contains a decoder ring within its own text,
making the meaning of each element in the document explicitly clear. While XML certainly doesn't eliminate the need
for comma-delimited files (for example, they will always be useful for loading data in bulk), the previous example shows
how it could be used in an electronic commerce setting to exchange invoice data. XML, combined with encryption and
digital signature technologies,[1] offers a reasonably straightforward way for businesses to exchange information simply
and securely.

[1] A digital signature computes an encrypted checksum (also called a hash function) for a document that guarantees the

document's integrity and authenticity. Integrity means that no one has tampered with the file, and authenticity means the

file is actually from the person who says he or she sent it. Phil Zimmerman's Pretty Good Privacy (PGP) is a widely

available and popular encryption system that can produce a digital signature.

Of course, to take advantage of XML's full potential, everyone must adopt a standard set of
domain-specific tags and nomenclature. Although this is probably a greater challenge than
XML's technical aspects (since it requires people to agree on something!), several industries'
experiences with SGML give some hope, at least, that this can happen. Companies in the
semiconductor industry (Intel, Hitachi, Texas Instruments, etc.) have adopted an SGML
standard for exchanging chip data.

This chapter will help you get your feet wet with XML by showing you how to generate XML documents using WebDB
or OAS. We'll start with a brief discussion of the motivations behind XML, then move on to the major skills you'll need
to generate XML from the Oracle database: creating syntactically correct XML documents and formally defining rules
that they must follow. From there, we'll cover how a program called an XML parser is used to check the structure of the
document and, if it's valid, break it into a hierarchical structure called a document tree. After that, we'll write a PL/SQL

http://lib.ommolketab.ir

program to generate the invoice we looked at earlier. Finally, we'll examine the future directions of XML and how it
relates to Oracle8i 's Internet File System.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 9. XML

9.1 Motivations for XML

You probably noticed that the invoice example looks remarkably similar to a standard HTML document, except that
there are a lot of new tags. These similarities are intentional. The XML specification was created in response to the
evolution (some would say devolution) of HTML.

HTML started as a simple way to define the structure of a document. The <head> and <body> tags separate
descriptive information from the main text. The header tags (<h1>, <h2>, etc.) break the text into logical sections,
much like the A and B headings in an outline. The emphasis tag denotes particularly important information.

As the Web has evolved, however, the original intent of these tags has been lost. They are now used to control a
document's appearance, rather than its structure. Browser vendors have exacerbated this trend by adding new tags
explicitly for formatting. Some of these tags have been good (<table>), some not so good (<blink>), but the net effect
is that HTML no longer has much to say about the purpose of the information it presents.

While this trend is not particularly important for many applications, such as creating attractive user interfaces for our
PL/SQL systems, there are several reasons why it has been a change for the worse:

HTML is no longer simple.

HTML designers place more emphasis on a document's appearance than on its content.

HTML documents are very difficult for computers to understand.

The last of these problems is probably one of the most important motivations for XML. As the Web becomes
increasingly automated, it has become more and more important that software "robots" understand and interpret a
variety of documents. If we're ever going to make a search engine smart enough so that the query "Where can I buy a
leather attaché case?" doesn't turn up links to an S&M site, we must create online catalogs a computer can easily
parse and understand. HTML is simply not designed to provide this type of information. XML is.

http://lib.ommolketab.ir

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 9. XML

9.2 XML Syntax

XML achieves its flexibility by allowing you to extend a base markup language (the XML specification itself) with
tags of your own design. You create tags to structure the text within a document so that its underlying meaning is
clearly presented. For example, to denote an item on an invoice, you could use an <ITEM> tag.

While XML and HTML documents look a lot alike, there are several important syntactical differences. HTML is
fairly flexible. You can omit end tags from many of an HTML document's most important structures, such as list
items, and most browsers will happily display the document as best they can. XML documents, however, must meet a
more rigid set of requirements:

A document must begin with a line that identifies it as XML. It must also include the XML specification with
which it complies. Since XML is a brand-new standard, this line is currently <?xml version="1.0"?>.[2]

[2] The line can also include additional metadata that I've omitted for purposes of simplicity.

Tags are case sensitive. For example, <INVOICE_NUMBER> and <invoice_number> are not the same. In
general, the convention is to always use uppercase.

All attribute values must appear in quotes, as in <CUSTOMER CUST_ID="12345">.

A start tag must always have a corresponding end tag. The combination of a start tag (plus any attributes), an
end tag, and any intervening text is called an element.

Elements cannot overlap. For example, the following set of markups is illegal:
<INVOICE_ITEM><PART_NUM>PN-1234</INVOICE_ITEM></PART_NUM>.

"Empty" tags that don't mark up any text, like HTML's <p> or
) must have corresponding end tags. For
example, if you want to use a <PAID_IN_FULL> tag to indicate that an invoice has been paid, you must end
with a </PAID_IN_FULL> tag, even though there is no text in between. XML also has an alternative notation
for empty tags that lets you simply append a "/" to the end of the start tag (for example, <PAID_IN_FULL/>).

A document that follows all these rules is called well-formed, which means that it is syntactically correct. Even more
so than with HTML, XML requires a precise syntax to make sure the documents follow a predictable structure.
Fortunately, there are several commercially available tools that help you create well-formed XML documents. Figure

http://lib.ommolketab.ir

9.1 shows Vervet Logic's XML Pro (http://www.vervet.com).

Figure 9.1. XML Pro by Vervet Logic

In the next section we'll look at how you can define strict rules the tags in your documents must follow.

Team-Fly

Top

http://www.vervet.com
http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 9. XML

9.3 The Document Type Definition (DTD)

If we're going to use XML to exchange documents electronically, we must be able to judge whether a document
meets a certain set of necessary requirements. For example, an electronic invoice must, at minimum, include an
invoice number, a date, and at least one item. Our systems should be smart enough to reject an invoice if it doesn't
contain the required information. Additionally, we should be able to create these requirements ourselves.

You can associate a document type definition (DTD) with an XML document to enforce these sorts of rules. You can
either create a DTD or use one that already exists. A major goal of XML is to encourage various groups (industry,
community, academic, etc.) to form standards bodies to define collective DTDs. Eventually, these DTDs will form
the basis for a variety of electronic data exchange systems.

A DTD is a lot like a database schema.[3] Just as you would define the columns in a database table, you can use a
DTD to define the name and datatype of every element that can appear in an XML document. Just as you define a
column constraint, you can require that particular elements appear within the document. Just as you would normalize
a set of database tables into one-to-many or one-to-one relationships, you can create the same relationships by
defining how the elements can be hierarchically nested.

[3] Oracle Corporation is an active participant in the World Wide Web Consortium's (W3C) "XML Schema" working

group. The W3C oversees the development of almost all the major Internet standards.

Let's revisit the invoice example from the beginning of this chapter. If we were to simply model a basic invoice using
an entity relationship diagram (ERD), we might wind up with something like Figure 9.2.

Figure 9.2. An ERD for a simple invoice

http://lib.ommolketab.ir

We can use this diagram as a guide to constructing a corresponding DTD. For clarity, though, we'll start with the
finished DTD and work backwards:

<!ELEMENT INVOICE (INVOICE_NUMBER, DATE, CUSTOMER+,INVOICE_ITEMS,TOTAL?)>
 <!ELEMENT INVOICE_NUMBER (#PCDATA)>
 <!ELEMENT DATE (#PCDATA)>
 <!ELEMENT CUSTOMER (#PCDATA)>
 <!ELEMENT INVOICE_ITEMS (ITEM+)>
 <!ELEMENT ITEM (ITEM_NAME, QUANTITY, PRICE)>
 <!ELEMENT ITEM_NAME (#PCDATA)>
 <!ATTLIST ITEM_NAME
 ITEM_NUM CDATA #REQUIRED>
 <!ELEMENT QUANTITY (#PCDATA)>
 <!ELEMENT PRICE (#PCDATA)>
 <!ELEMENT TOTAL (#PCDATA)>

As you can see from the example, the majority of the DTD consists of instructions to define the elements that can
appear within an invoice. The first line defines the root element, INVOICE, the highest element in the nesting tree, as
well as the names of all the elements that INVOICE can contain. A single character that indicates how often the
element can appear follows each element declaration. Table 9.1 summarizes the function of each character.

Table 9.1. Characters Used to Define Element Occurrences

Character Translation Rough Database Equivalent

Blank Element must appear exactly once. Non-NULL column constraint

? Element can appear 0 or 1 times. Constraint/one-to-one relationship

* Element can appear 0 or more times. Constraint/one-to-many relationship

+ Element can appear 1 or more times. Constraint/one-to-many relationship

As we can see from the preceding code example, the INVOICE must include an INVOICE_NUMBER, an invoice
DATE, at least one CUSTOMER (the + character leaves open our double-billing options), and an INVOICE_ITEMS
section. Finally, it can include an optional invoice TOTAL (why should you have to do all the work?).

Declarations for each of these elements follow the root declaration. The first four items are the simplest declaration,
and consist of a name and a datatype. XML datatypes are much more limited than the standard NUMBER,
VARCHAR2, and RAW types used to define table columns. The datatype used here (PCDATA) tells the XML
parser that the element consists of formatted text.

The next declaration, INVOICE_ITEMS, is an example of a nested element (notice how similar it is to the declaration
for the root element.) The INVOICE_ITEMS section must contain at least one ITEM, which is itself a nested
structure consisting of an ITEM_NAME, a QUANTITY, and a PRICE. As a final wrinkle, the ATTLIST command is
used to further refine the <ITEM_NAME> tag by defining a tag attribute called ITEM_NUM.

That's itwe've defined everything we need for our simple example: the name of each element, the number of times
each element can appear, and the allowable nesting arrangements they can follow. All that remains now is to make
sure our XML documents are valid, which means that they are both well-formed and comply with the associated
DTD. This is the job of the XML parser.

http://lib.ommolketab.ir

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 9. XML

9.4 The XML Parser

The XML parser is responsible for reading an XML document and making sure it complies with the necessary rules.
There are two kinds of parsers: non-validating and validating. The non-validating parser is the simpler of the two, and
simply checks to see if a document is well-formed. The more complex validating parser will not only check for well-
formedness, but also for validity (i.e., that the document actually follows all the rules laid out in an associated DTD).

If the document passes these tests, then the parser breaks it into a structure called a document tree. As the name
implies, a document tree is simply a hierarchical data structure created from the nested elements in the document. The
left-hand side of Figure 9.1 illustrates a typical document tree.

Once the document is parsed and loaded, you can use a wide variety of languages (such as Java, JavaScript, etc.) to
write programs that use the Document Object Model (DOM) API to traverse and manipulate the information in the
tree. For example, you could write a JavaScript program to build a hierarchical view of an XML invoice by
programmatically expanding and collapsing the tree's branches. This sort of client-side manipulation is very fast
because it acts on information stored in memory, rather than having to requery the server each time a user requests a
new view of the same information.

In the next two sections, we'll see how you can generate XML documents from information stored in the Oracle
database. In the first, we'll develop a package to build an XML invoice. In the second, we'll look at a set of
experimental packages that you can use to build a variety of XML applications.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 9. XML

9.5 Example: Generating an XML Invoice from Oracle

Like HTML, XML is stored in plain ASCII documents. Consequently, we can use the PL/SQL toolkit to generate
almost any XML document. In this section we'll write a package called XML_INVOICE_PKG to generate the XML
invoice we've been discussing.

9.5.1 Specification

We'll start, as always, with the package specification. For this particular application, we'll need just one procedure:
print_invoice. The procedure will accept the invoice number for a particular invoice and generate the corresponding
XML invoice. Here's the code:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE xml_invoice_pkg
IS

 PROCEDURE print_invoice (
 i_invoice_number IN VARCHAR2 DEFAULT NULL
);

END;

9.5.2 Body

The next step is to define the package body, as follows:

/* Formatted by PL/Formatter v.1.1.13 */
CREATE OR REPLACE PACKAGE BODY xml_invoice_pkg
IS

 -- Include code annotated below

END;

http://lib.ommolketab.ir

In addition to the print_invoice procedure defined in the specification, we'll need a private function, get_attribute,
and two private procedures, print_xml_tags and print_items. The first two items are needed to format the output to
the XML specification, since the PL/SQL toolkit doesn't have functions or procedures specifically for XML. The
other local procedure fetches the invoice items from the database and prints them to the web browser. Table 9.2 lists
the procedures and functions required in the package body.

Table 9.2. XML_INVOICE_PKG Procedures and Functions

Procedure/Function Parameters Description

get_attribute

attr_name IN
VARCHAR2

attr_val IN
VARCHAR2

Private function that returns a well-formed attribute tag:

attr_name = "attr_val".

print_xml_tag

tag_name IN
VARCHAR2

tag_value IN
VARCHAR2

tag_attr IN
VARCHAR2

DEFAULT NULL

Private procedure that prints a well-formed XML tag:

<tag_name tag_attr>tag_value</tag_name).

print_items

i_invoice_id IN
NUMBER

o_invoice_total OUT
NUMBER

Private procedure to print the individual items on the invoice.
The OUT parameter returns the total dollar value for all items.

print_invoice

i_invoice_number IN
VARCHAR2

DEFAULT NULL

Public procedure, called from the Web, that generates the XML
invoice.

The get_attribute function accepts an attribute and a value. It formats this information to the XML specification
(attr_name = "attr_val") and returns a string. Here's the function:

/*
|| Function to return an attribute tag
*/
FUNCTION get_attribute (
 attr_name IN VARCHAR2,
 attr_val IN VARCHAR2
)
 RETURN VARCHAR2
IS
BEGIN

http://lib.ommolketab.ir

 RETURN attr_name || '=' || '"' || attr_val || '"';
END;

The print_xml_tag procedure has a similar purpose. It accepts a tag name, a tag value, and an optional string for tag
attributes. The procedure then formats these parameters into a well-formed XML element. The HTP.PRINT
procedure sends this element back to the browser. Here's the procedure:

/*
|| Simple wrapper procedure to print a tag
*/
PROCEDURE print_xml_tag (
 tag_name IN VARCHAR2,
 tag_value IN VARCHAR2,
 tag_attr IN VARCHAR2 DEFAULT NULL
)
IS

 xml_str VARCHAR2(5000);

BEGIN
 IF tag_attr IS NULL
 THEN
 xml_str := '<' || tag_name || '>';
 ELSE
 xml_str := '<' || tag_name || ' ' || tag_attr || ' >';
 END IF;
 xml_str := xml_str || tag_value;
 xml_str := xml_str || '</' || tag_name || '>';
 HTP.print (xml_str);
END;

The last local procedure, print_items, uses the previous function and procedure to generate the <INVOICE_ITEMS>
section of the XML invoice. Like the other HTML procedures we've seen, it simply opens a cursor, loops, and prints
each row by calling print_xml_tag. In addition, the procedure uses an OUT parameter to keep a running total of the
dollar amount of each item. The value is passed back to the caller when the procedure completes. Here's the code:

/*
|| Print the items for the selected invoice. Return
|| the total of the invoice item using an OUT parameter.
*/
PROCEDURE print_items (
 i_invoice_id IN NUMBER,
 o_invoice_total OUT NUMBER
)
IS

 CURSOR item_cur
 IS
 SELECT p.part_num, p.part_name, i.quantity, i.unit_cost
 FROM xml_invoice_items i, xml_parts p
 WHERE i.part_id = p.part_id
 AND i.invoice_id = i_invoice_id;

http://lib.ommolketab.ir

 item_rec item_cur%ROWTYPE;

 part_num_attr VARCHAR2(500);

BEGIN
 o_invoice_total := 0;
 OPEN item_cur;
 HTP.print ('<INVOICE_ITEMS>');
 LOOP
 FETCH item_cur INTO item_rec;
 EXIT WHEN item_cur%notfound;
 -- Accumulate costs
 o_invoice_total :=
 o_invoice_total +
 item_rec.quantity * item_rec.unit_cost;
 -- Generate XML tags
 HTP.print ('<ITEM>');
 part_num_attr :=
 get_attribute ('ITEM_NUM', item_rec.part_num);
 print_xml_tag (
 'ITEM_NAME',
 item_rec.part_name,
 part_num_attr
);
 print_xml_tag ('QUANTITY', item_rec.quantity);
 print_xml_tag ('PRICE', item_rec.unit_cost);
 HTP.print ('</ITEM>');
 END LOOP;
 CLOSE item_cur;
 HTP.print ('</INVOICE_ITEMS>');
END;

The main public procedure, print_invoice, uses the local procedure to actually create the invoice. Here is the
implementation:

/*
|| Main procedure to print the invoice.
*/
PROCEDURE print_invoice (
 i_invoice_number IN VARCHAR2 DEFAULT NULL
)
IS

 CURSOR inv_cur
 IS
 SELECT i.invoice_id, i.invoice_date, c.customer_name
 FROM xml_invoice i, xml_customers c
 WHERE i.customer_id = c.customer_id
 AND i.invoice_number = i_invoice_number;

 inv_rec inv_cur%ROWTYPE;

http://lib.ommolketab.ir

 inv_total NUMBER DEFAULT 0;

BEGIN
 -- Set MIME type to XML
 OWA_UTIL.mime_header('text/xml', TRUE);
 inv_total := 0;
 OPEN inv_cur;
 HTP.print ('<?xml version="1.0"?>');
 -- Note: the DTD is defined in a file stored on server
 -- The URL has been omitted for space
 HTP.print ('<!DOCTYPE INVOICE SYSTEM "invoice.dtd">');
 HTP.print ('<INVOICE>');
 FETCH inv_cur INTO inv_rec;
 IF NOT inv_cur%notfound
 THEN
 print_xml_tag ('INVOICE_NUMBER', i_invoice_number);
 print_xml_tag ('DATE', inv_rec.invoice_date);
 print_xml_tag ('CUSTOMER', inv_rec.customer_name);
 print_items (inv_rec.invoice_id, inv_total);
 print_xml_tag ('TOTAL', inv_total);
 END IF;
 CLOSE inv_cur;
 HTP.print ('</INVOICE>');
END;

Figure 9.3 shows the XML output of the procedure.

You must use an XML-compliant browser such as Microsoft Internet Explorer version 5 to
view XML documents.

Figure 9.3. Output of XML_INVOICE_PKG.print_invoice

http://lib.ommolketab.ir

The XML_INVOICE_PKG is a very simple example of how to link XML and Oracle. In the next section, we'll look
at a set of packages that really illustrate XML's potential.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 9. XML

9.6 PLSXML Utilities and Demos

Steve Muench, Oracle Corporation's "XML evangelist," has developed a very interesting set of PL/SQL packages
called the PLSXML utilities and demos. While they are still experimental, they can give you a clear idea of the
power of generating XML inside the database. Additionally, there are several examples of how to use JavaScript and
XML to create rich interfaces. The PLSXML packages are:

DBXML

Uses dynamic SQL to automatically create XML documents from a SQL query. Based on the same
technology as WebDB, DBXML reduces the package we developed earlier to a single procedure call.

DBDOM

A PL/SQL implementation of the Document Object Model (DOM, the model used to create document trees)
API that allows you to create, parse, and search XML documents.

DBXSL

Generates formatting instructions called XSL stylesheets that control how the browser renders an XML
document.

You can download the PLSXML and its full documentation (it's excellent) from:

http://www.oracle.com/xml/plsxml/index.html

In the next section, we'll look at a product that takes full advantage of XML.

Team-Fly

Top

http://www.oracle.com/xml/plsxml/index.html
http://lib.ommolketab.ir

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Chapter 9. XML

9.7 XML and iFS

Oracle8i's Internet File System (iFS) has a built-in XML parser you can use to store XML documents directly in the
database. As more and more vendors (including Microsoft, a big proponent of the XML standard) "XML-enable"
their products, the iFS parser will become more and more useful. Widespread adoption of the XML format, as
opposed to proprietary formats, will help alleviate the common, frustrating, and usually contentious problem of
importing data from end user productivity tools into relational databases.

For instance, take spreadsheets. There is no denying the fact that these wonderful tools can help even the most
unsophisticated (at least in terms of computer experience) user perform meaningful and important tasks. An analyst
might use a spreadsheet to solve a finance problem, a manager might use one to schedule the phases of a project, and
an accountant might use one to do almost anything. Some companies even use spreadsheets to create client invoices.
Because they are easy to use and widely available, spreadsheets have become primary business tools, perhaps second
only to word processors. While spreadsheets have many benefits, however, they have also created difficult
information management problems.

For example, companies have spent millions of dollars on relational databases only to see them circumvented by
spreadsheets. End users complain, sometimes quite correctly, that systems developed by IS are too complex or time
consuming. Consequently, users simply create their own offline versions out of a ragtag collection of spreadsheets.
As a result, the critical business information these database systems are designed to collect is strewn randomly
throughout hundreds of spreadsheets on dozens of machines. This data is decentralized, unanalyzed, and insecure.

To remedy this problem, many companies try to force users to adopt standards. However, as anyone who has worked
in IS knows, there are few issues that stir up more controversy than trying to replace a tool users like, such as a
spreadsheet, with one that they don't like, such as a database. Any attempt to do so usually winds up in an "us versus
them" battle. End users see IS taking away the tools they need to do their job, and IS sees end users wasting valuable
company resources (time, money, sanity, etc.) by refusing to even consider the benefits of different approaches. In
most cases, IS is on the losing end of these political battles.

iFS can help eliminate this problem. Once productivity tool vendors adopt XML (many of them are doing this as
rapidly as possible), you can use iFS to simply import the relevant portions of the documents directly into the
database. Users can use their favorite tools, or at least new versions of these favorites, and you can treat their data as
standard relational data. As Humphrey Bogart said at the end of Casablanca, "This could be the start of a beautiful
friendship."

http://lib.ommolketab.ir

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction
By Andrew Odewahn

Table of Contents

Appendix A. Appendix: Resources for the Oracle Web
Developer

In this appendix, I've pulled together a variety of resourcesboth online and offlinethat you'll find helpful as
you develop Oracle web applications.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Appendix A. Appendix: Resources for the Oracle Web Developer

A.1 Books

There are many books on the market describing Oracle and the Web. I list here those titles I find the most helpful and
accurate:

Arnold, Ken, and James Gosling. The Java Programming Language (Addison-Wesley, 1997). Coauthored by the
creator of Java, this valuable introduction explains much of the rationale behind the language.

Brown, Bradley D., Richard J.Niemiec, and Joseph C.Trezzo. Oracle Application Server Web Toolkit Reference
(Oracle Press, 1998). This large book contains a lot of helpful information about OAS and Oracle's other web
products.

Dynamic Information Systems, LLC. Oracle Web Application Server Handbook (Oracle Press, 1997). This book is
not current with the latest Oracle software, but it contains useful discussions of building web systems with PL/SQL
and other tools.

Eckel, Bruce. Thinking in Java (Prentice Hall Computer Books, 1998).A popular and comprehensive introduction to
Java that doesn't pull any punches when it comes to criticizing aspects of the language that could be improved.

Feuerstein, Steven, and Bill Pribyl.Oracle PL/SQL Programming, Second Edition (O'Reilly & Associates, 1997).
Hands down, the definitive guide to PL/SQL: if you need information about PL/SQL, it's in this book. The second
edition has been updated for Oracle8.

Feuerstein, Steven. Oracle PL/SQL Programming: Guide to Oracle8i Features, (O'Reilly & Associates, 1999). This
small book supplements Oracle PL/SQL Programming by providing an up-to-date discussion of the Oracle8i
enhancements to PL/SQL.

Feuerstein, Steven, Charles Dye, and John Beresniewicz. Oracle Built-in Packages, O'Reilly & Associates, 1998.
The follow-up volume to Oracle PL/SQL Programming. Presents detailed information about the vast array of
packages built into the Oracle database.

Flanagan, David. Java in a Nutshell, Second Edition, (O'Reilly & Associates, 1997). Provides a compact reference to
the classes, methods, and variables in the Java API, practical real-world example programs, and a comprehensive
overview of Java.

Greenwald, Rick. Oracle WebDB Bible, (IDG Books Worldwide, 1999). A very current and complete discussion of

http://lib.ommolketab.ir

Oracle's WebDB product.

Musciano, Chuck, and Bill Kennedy. HTML: The Definitive Guide, Third Edition, (O'Reilly & Associates, 1999).
The most thorough description of all aspects of the HTML language, including models for writing your own web
pages.

Rosenfeld, Louis, and Peter Morville. Information Architecture for the World Wide Web, (O'Reilly & Associates,
1998). Describes architectural principles for web sites: how to design web sites that are easier to use, manage, and
expand.

Simpson, John E. Just XML, (Prentice Hall Computer Books, 1998). A breezy tone and simple style belies the
wealth of information contained in this useful book. Bonus: you'll learn as much about B movie trivia as you will
about Extensible Markup Language.

Spainhour, Stephen, and Valerie Quercia. Webmaster in a Nutshell, Second Edition, (O'Reilly & Associates, 1999).
A quick reference to a wide variety of information needed by web developers and administrators, including HTML,
CGI, JavaScript, Perl, HTTP, and server configuration.

Stein, Lincoln D. How to Set Up and Maintain a World Wide Web Site, (Addison Wesley, 1995). An excellent,
clear, and complete book on installing and administering web servers and authoring in HTML, with a web page style
guide and web security recommendations.

Theriault, Marlene, and William Heney. Oracle Security, (O'Reilly & Associates, 1998). The definitive source of
information on security and its implementation in the Oracle environment.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Appendix A. Appendix: Resources for the Oracle Web Developer

A.2 Other Publications

Select

This publication, produced as a membership benefit by the International Oracle Users Group-Americas
(IOUG-A), contains a variety of articles and columns on web issues, as well as web-related tips, techniques,
and practices.

Oracle Magazine

This magazine, published by Oracle Corporation, is primarily a marketing tool, but also carries articles (often
by Oracle technical staff) on current web issues.

In addition, many Oracle user groups and special interest groups publish newsletters that contain useful information
for Oracle web developers.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Appendix A. Appendix: Resources for the Oracle Web Developer

A.3 Organizations

International Oracle Users Group-Americas (IOUG-A)

401 North Michigan Avenue
Chicago, IL 60611
Voice: 1-312-245-1579
Fax: 1-312-527-6785
Email: iouga@ioug.org

Asia-Pacific Oracle Users Group

PO Box 3046
The Pines, Doncaster East
VIC 3109, Australia
Voice: +61 3 9842 3246
Fax: +61 3 9842 3050
Email: 100242.1746@compuserve.com

European Oracle Users Group (EOUG)

Brigittenauer Lنnde 50-54
A-1203 Vienna, Austria
Voice: +43 1 33777 870
Fax: +43 1 33777 873
Email: eoug@at.oracle.com

Team-Fly

Top

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Appendix A. Appendix: Resources for the Oracle Web Developer

A.4 Web Sites

http://www.oracle.com

The web site of Oracle Corporation. Contains a wide variety of pages of interest to Oracle web developers, as
well as links to other web development resources, including Oracle Support.

http://www.ioug.org

Operated by the IOUG-A. Contains technical articles from Select magazine, papers from IOUG-Alive
conferences, a technical discussion forum, and other areas of interest to Oracle web developers.

http://www.eoug.org

The web site of the EOUG. Contains information of general interest to Oracle web developers, information
about EOUG conferences and educational events, and information about European, Middle Eastern, and
African user groups.

http://apoug.oracle.com.sg

The web site of the Asia Pacific Oracle Users Group. Contains information of interest to Oracle users in the
Asia and Pacific Rim regions, as well as useful links to other Oracle resources.

http://www.oug.com

Operated by a consortium of Oracle user groups and special interest groups. Contains a number of useful
Oracle-related links.

http://www.revealnet.com

An online resource with useful articles and discussion forums for DB2 and Oracle developers.

Team-Fly

Top

http://www.oracle.com
http://www.ioug.org
http://www.eoug.org
http://apoug.oracle.com.sg
http://www.oug.com
http://www.revealnet.com
http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Appendix A. Appendix: Resources for the Oracle Web Developer

A.5 Discussion Groups

news:comp.databases.oracle.server

This discussion group features a wide variety of information relating to Oracle server technology. It should be
of interest to both new and experienced Oracle web developers

http://www.ioug.org

This web site includes a discussion area where items of interest to Oracle web developers are posted and
discussed.

http://www.revealnet.com

Operated by a commercial vendor, RevealNet, but contains many free and useful resources. See especially the
PL/SQL Pipeline, a discussion forum for PL/SQL developers. Includes archives full of papers and software,
monthly tips and puzzles, and other useful links.

Team-Fly

Top

http://www.ioug.org
http://www.revealnet.com
http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of Oracle Web Applications: PL/SQL Developer's Introduction is a boll weevil. The boll
weevil is one of several snout beetles with a small beak or snout, which it uses to puncture the flower buds of the
cotton crop as well as the fruits, which are known as bolls. The boll weevil is regarded as a notorious pest-possibly
the most destructive insect in North America-for its devastation of cotton crops in the southern United States since its
migration from Mexico in the late 1800s. Although 90 percent of adult boll weevils die over the winter, the egg cycle
from larva to adult takes only three weeks, so in one year between four and seven generations can be born. It's
estimated that boll weevils destroy 10 percent of the cotton crop per year, which amounts to over $200 million in
damage and affects at least 13 states in the U.S. Controlling the population of this small beetle is very difficult, as the
chemicals that can eradicate them often cause too much environmental pollution to be safely used.

These beetles are not despised everywhere, however. The town of Enterprise, Alabama, is home to the Boll Weevil
Monument-the world's only known monument to a pest. When boll weevils proved so destructive to their cotton
crops in the early 1900s, farmers in this Alabama town (as well as across the Southeast) had no other recourse but to
grow crops other than cotton, including hay, potatoes, and corn. Peanuts, however, were the most profitable crop,
and brought so much wealth to the area that the town decided to erect a monument honoring the boll weevil, without
whom the town never would have experienced such prosperity.

Madeleine Newell was the production editor and copyeditor for Oracle Web Applications: PL/SQL Developer's
Introduction. Clairemarie Fisher O'Leary proofread the book; Ellie Cutler and Nicole Arigo provided quality control.
Mike Sierra provided FrameMaker technical support. The index was written by Pamela Murray.

Edie Freedman designed the cover of this book, using an illustration created by Lorrie LeJeune. The cover layout
was produced by Kathleen Wilson with QuarkXPress 3.32 using the ITC Garamond font.

The inside layout was designed by Alicia Cech, based on a series design by Nancy Priest, and was implemented in
FrameMaker 5.5 by Mike Sierra. The text and heading fonts are ITC Garamond Light and Garamond Book. The
illustrations that appear in the book were produced by Rhon Porter and Robert Romano using Macromedia FreeHand
8 and Adobe Photoshop 5. This colophon was written by Nicole Arigo.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and
Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray,

http://lib.ommolketab.ir

Benn Salter, John Chodacki, and Jeff Liggett.

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Team-Fly

Top

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

& special character, OWA_PATTERN package

< form> tag, HTML

<a>... tag, HTML

... tag, HTML

 tag, HTML

<center>...</center> tag, HTML

... tag, HTML

<form>...</form> tag, HTML

<hn>...</hn> tag, HTML

<hr> tag, HTML

<i>...</i> tag, HTML

<input> tag, HTML 2nd

... tag, HTML

... tag, HTML

<option>...</option> tag, HTML

<p> tag, HTML

<pre>...</pre> tag, HTML

<select> tag, HTML

<select>...</select> tag, HTML

<small>...</small> tag, HTML

^{...} tab, HTML

<table>...</table> tag, HTML

<td>...</td> tag, HTML

<textarea> tag, HTML

<textarea>...</textarea> tag, HTML

<th>...</th> tag, HTML

<tr>...</tr> tag, html

<tt>...</tt> tag, HTML

... tag, HTML

() special character, OWA_PATTERN package

* quantifier, OWA_PATTERN package

+ quantifier, OWA_PATTERN package

. atom, OWA_PATTERN package

? quantifier, OWA_PATTERN package

http://lib.ommolketab.ir

\b atom, OWA_PATTERN package

\c atom, OWA_PATTERN package

\d atom, OWA_PATTERN package

\D atom, OWA_PATTERN package

\n atom, OWA_PATTERN package

\nnn atom, OWA_PATTERN package

\s atom, OWA_PATTERN package

\S atom, OWA_PATTERN package

\t atom, OWA_PATTERN package

\W atom, OWA_PATTERN package

\w atom, OWA_PATTERN package

\xnn atom, OWA_PATTERN package

^ assertion, OWA_PATTERN package

{n,} quantifier, OWA_PATTERN package

{n,m} quantifier, OWA_PATTERN package

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

abstract data types (ADTs)

accounts payable

accounts receivable

actual parameters, PL/SQL

Ada

ADD2MULTI procedure, OWA_TEXT package

Adobe PDF

ADTs (abstract data types)

Advanced Networking Option (ANO)

Advanced Queuing (AQ) 2nd

AIFF format

AIFF-C format

Alpha

AltaVista

AMATCH function, OWA_PATTERN package

ANCHOR function, HTF package

ANCHOR function, HTP package

anchored declaration

ANO (Advanced Networking Option

answer_survey procedure

answer_survey procedure, EMP_SURVEY package 2nd

APIs (application programming interfaces) 2nd

application development 2nd

application development, WebDB

application integration

application programming interfaces (APIs) 2nd

AQ (Advanced Queuing) 2nd

AQ Lite

arrays, PL/SQL

assertion, OWA_PATTERN package

assertions, OWA_PATTERN package

asynchronous mode, replication

AUF format

AVI 2nd

http://lib.ommolketab.ir

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

back references (backrefs), OWA_PATTERN package

BEGIN command, PL/SQL

BIND_VARIABLES procedure

blocks

body, HTML tag

body, PL/SQL

bottom-up design, PL/SQL

broken links

browser-specific extensions, HTML

business-to-business systems

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

C programs, writing

CA (certification authority)

calendar wizard, WebDB

CALENDARPRINT procedure

cartridges

CASE statements 2nd

CAST Workbench

categories, WebDB

CELLSPRINT procedure

certification authority (CA)

CGI (common gateway interface)

CHANGE function, OWA_PATTERN package

chart wizard, WebDB

CHECKSUM procedure, OWA_OPT_LOCK package 2nd

CHOOSE_DATE procedure

clients, types of

COBOL 2nd 3rd

colors library, WebDB

COM

comment, HTML tag

comments, in PL/SQL

communications protocols

complete refresh

conditional statements, PL/SQL

conditionals

configuration file, HTTP listener

connecting databases to web

content delivery model

 HTTP Listener

 PL/SQL gateways

content management 2nd 3rd 4th

content-driven web site management, WebDB

cookies, OWA_COOKIE package

CORBA

http://lib.ommolketab.ir

CORBA server objects

create_msg_form procedure, FORUM package 2nd

create_user_form, FORUM_USERS package 2nd

current_forum_list procedure, FORUM package 2nd

cursors

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

DAD [See Database Access Descriptor]

data models

data structures, OWA_TEXT package

data, managing with Oracle

data, types of

Database Access Descriptor 2nd

 parameters

Database Access Descriptor (DAD)

Database Access Descriptor Name parameter, DAD

database administration 2nd

database intengration 2nd

database object wizards

database objects

database security

 objects 2nd

 privileges

 users

datatype indicators, HTP package

datatype value, PL/SQL

date warehousing

DATETYPE datatype 2nd

DBDOM package

DBXML package

DBXSL package

debugging

declaration section, PL/SQL

DECLARE keyword, PL/SQL

Default (Home) Page parameter, DAD

default mime type parameter, server settings

default values, PL/SQL 2nd

dequeuing messages

developing web applications

development platforms

Devleloper/2000 applications

http://lib.ommolketab.ir

digital certificates

display_survey_list procedure, EMP_SURVEY package 2nd

DLL (Dynamic Link Library)

DNS (Domain Name Server)

Document Access Path parameter, DAD

Document Access Procedure parameter, DAD

Document Table parameter, DAD

document type definition (DTD)

Domain Name Server (DNS)

DOS

DTD (document type definition)

Dynamic Link Library (DLL)

dynamic page wizard, WebDB

dynamic resources 2nd

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

e-commerce

e-commerce applications

EJBs (Enterprise Java Beans™)

electronic data exchange

EMP_SURVEY Package

END command, PL/SQL

enqueuing messages

Enterprise Java Beans™ (EJBs)

Enterprise Resource Planning (ERP)

enterprise resource planning (ERP) systems

EnterpriseSync Lite (ESL)

ERP(enterprise resource planning)

ESL (EnterpriseSync Lite)

Eudora 2nd

Excel

exception section, PL/SQL

executable section, PL/SQL

EXECUTE permission

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

fast refresh

file attributes

file extensions

file, WebDB dashboard

filesystems

firewalls

flags, OWA_PATTERN package

folderlink, WebDB dashboard

folders, WebDB

fonts library, WebDB

FOR loop

form page wizard, WebDB

formal parameters, PL/SQL

forms, HTML

FORTRAN

FORUM package

 create_msg_form procedure 2nd

 save_message procedure 2nd

 view_message procedure 2nd

FORUM package>

 current_forum_list procedure 2nd

 print_thread_links procedure 2nd

FORUM_USERS package

FORUM_USERS Package 2nd

FORUM_USERS package

 create_user_form 2nd

 get_current_user 2nd

 login procedure 2nd

 login_form procedure 2nd

 save_user_info 2nd

forums, creating as web applications

frame driver page wizard, WebDB

FROG (Funky Resource for Oracle Gorillas)

FrontPage

http://lib.ommolketab.ir

FTP

function wizard, WebDB

functions, PL/SQL

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

gateways, PL/SQL

GENERAL_FORM package

GENERAL_FORM Package

geographic information systems (GIS)

GET function, OWA_COOKIE package 2nd

GET_ALL procedure, OWA_COOKIE package 2nd

get_attribute function, XML_INVOICE_PKG

GET_CGI_ENV function

GET_CLIENT_HOSTNAME procedure, OWA_SEC package

GET_CLIENT_IP procedure, OWA_SEC package

get_current_user, FORUM_USERS package 2nd

GET_OWA_SERVICE_PATH function

GET_PASSWORD procedure, OWA_SEC package

GET_PAT function, OWA_PATTERN package

GET_PROCEDURE function

GET_ROWID function, OWA_OPT_LOCK package 2nd

GET_USER_ID procedure, OWA_SEC package

GIF format

GIS (geographic information systems)

GRANT EXECUTE command

groups, WebDB

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

handlers

head, HTML tag

HEADCLOSE procedure, HTP

header section, PL/SQL

HEADOPEN procedure, HTP

hierarchy wizard, WebDB

HTF package

 parsing

HTML 2nd 3rd

 attributes

 browser-specific extensions

 forms

 parsing

 programming in

 reasons for using

 syntax

 tags 2nd

 anchor 2nd

 content flow 2nd

 form 2nd

 list 2nd

 structural 2nd

 table 2nd

 text formatting 2nd

HTMLCLOSE procedure, HTP

HTMLOPEN procedure, HTP

HTP package 2nd

HTTP

HTTP Listener

HTTP_HEADER_CLOSE procedure

hybrid sites 2nd

http://lib.ommolketab.ir

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

IF-THEN conditional statements, PL/SQL

IF-THEN-ELSE conditional statements, PL/SQL

iFS (Internet File System)

imagemap, WebDB dashboard

images library, WebDB

IMAP4

index wizard, WebDB

index-by table

information hiding, PL/SQL packages

int_arr data structure, OWA_TEXT package

Intel

internal applications

Internet Explorer

Internet File System (iFS) 2nd

Internet technology [See web technology]

internet technology, overview

InternetLite 2nd

IP_ADDRESS datatype

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

java

Java 2nd

 CORBA server objects

 Enterprise Java Beans™

 Java stored procedures

 JDBC

 servlets

 SQLJ

Java stored procedures (JSPs)

JDBC

JPEG format

JSPs (Java stored procedures)

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Keep Database Connection Open between Requests? parameter, DAD

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

LAN

laptops

links

links library, WebDB

LISTPRINT procedure

lists of values library, WebDB

location transparency

logging level parameter, server settings

login procedure, FORUM_USERS package 2nd

login_form procedure 2nd

loops, PL/SQL

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

maintaining state

master site

MATCH function, OWA_PATTERN package

Maximum Number of Worker Threads parameter, DAD

menu wizard, WebDB

metadata

metainformation

Microsoft

 access

 Excel

 FrontPage

 Internet Explorer

 Outlook 2nd

 PowerPoint

 Windows 95

 Windows 98

 Windows NT

MIME (Multipurpose Internet Mail Extensions)

MIME type, WebDB

MIME_HEADER procedure

mobile applications

modes, PL/SQL

MPEG

MPEG format

multi_line data structure, OWA_TEXT package

multimedia data

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

name value, PL/SQL

named notation

Net8 2nd

Netscape Communicator

NEW_MULTI procedure, OWA_TEXT package

NEW_ROW_LIST, OWA_TEXT package

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

OAS [See Oracle Application Server]

object privileges

Object Request Brokers (ORBs)

object wizards, WebDB

objects

OCA (Oracle Client Adapter)

OCI (Oracle Client Interface)

optimistic locking

Oracle Application Server (OAS) 2nd

Oracle Audio Video Server)

Oracle Call Interface

Oracle Client Adapter (OCA)

Oracle Client Interface (OCI)

Oracle Connect String parameter, DAD

Oracle Forms

Oracle interMedia 2nd

Oracle Lite

Oracle Password parameter, DAD

Oracle Procedure Builder

Oracle Spatial cartridge

Oracle User Name parameter, DAD

Oracle8<Emphasis>i<Default Para Font>

Oracle8i

ORBs (Object Request Brokers)

OS/2

overloading, PL/SQL

OWA_COOKIE package

 GET function 2nd

 GET_ALL procedu 2nd

 REMOVE procedure

 SEND procedure 2nd

 storing cookies

OWA_IMAGE

OWA_OPT_LOCK

http://lib.ommolketab.ir

OWA_OPT_LOCK package 2nd

 CHECKSUM procedure 2nd

 GET_ROWID function 2nd

 STORE_VALUES procedure 2nd

 VERIFY_VALUES function 2nd

OWA_PATTERN

OWA_PATTERN package

OWA_SEC

OWA_SEC package

OWA_TEXT

OWA_TEXT package 2nd

OWA_UTIL

OWA_UTIL package

 BIND_VARIABLES procedure

 CALENDARPRINT procedure

 CELLSPRINT procedure

 CHOOSE_DATE procedure

 DATETYPE datatype

 GET_CGI_ENV function

 GET_OWA_SERVICE_PATH function

 GET_PROCEDURE function

 HTTP_HEADER_CLOSE procedure

 IP_ADDRESS datatype

 LISTPRINT procedure

 MIME_HEADER procedure

 PRINT_CGI_ENV procedure

 REDIRECT_URL procedure

 SHOWPAGE procedure

 SHOWSOURCE procedure

 SIGNATURE procedure

 STATUS_LINE procedure

 TABLEPRINT function

 TODATE function

 WHO_CALLED_ME procedure

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

package wizard, WebDB

packages

 variable persistence

PalmPilots

parameter arrays

parameter name, PL/SQL

parameter passing

parameters, PL/SQL

parsing HTML

 parsing

path, URL

PDAs (Personal Data Assistants)

Perl

permissions, PL/SQL

Personal Data Assistants (PDAs)

perspectives, WebDB

pessimistic locking

physical directories, WebDB

PL/Formatter 2nd

PL/SQL 2nd

 arrays

 comments

 conditionals

 cursors

 declaration section 2nd

 exception section

 executable section

 functions

 gateway

 gateways 2nd

 header section

 location transparency

 loops

 modes

http://lib.ommolketab.ir

 overloading

 packages 2nd

 parameters

 permissions

 procedures 2nd

 reasons for using

 structured programming

 text processing

 toolkit

 tools

 variables

PL/SQL call, WebDB dashboard

PL/SQL toolkit

PL/SQL>

 OWA_PATTERN package

PLEdit

PLSXML utilities and demos

POP3

port

positional notation

PowerPoint

PRINT function, HTF package

PRINT function, HTP package

print_answers procedure, EMP_SURVEY package

PRINT_CGI_ENV procedure

print_input_row procedure, GENERAL_FORM package

print_invoice function, XML_INVOICE_PKG

print_items function, XML_INVOICE_PKG

PRINT_MULTI, OWA_TEXT package

PRINT_ROW_LIST, OWA_TEXT package

print_textarea_row procedure, GENERAL_FORM package

print_thread_links procedure, FORUM package 2nd

print_xml_tag function, XML_INVOICE_PKG

privileges 2nd

 object

 system

Procedural Language

procedure wizard, WebDB

process_survey procedure, EMP_SURVEY package 2nd

protocol, network

protocols, communications

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Query by Example (QBE) form

query string, URL

query strings

QuickTime

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

RealNetworks

record locking

REDIRECT_URL procedure

refresh options

RegExp

regular expressions

relational database management systems (RDBMSs)

REMOVE procedure, OWA_COOKIE package

REPAPI (Replication API)

replication modes, ESL

report wizard, WebDB

resource name, URL

resources, web

result sets

RETURN command

RevealNet

roles, database 2nd

root privileges, and ports

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

save_message procedure, FORUM package 2nd

save_user_info, FORUM_USERS package 2nd

search engines

searching and replacing text

Secure Sockets Layer (SSL)

security 2nd

 and PL/SQL cartridge

 examples

 managing with OWA_SEC

 system privileges

 WebDB

SEND procedure, OWA_COOKIE package 2nd

sequence wizard, WebDB

server

server port parameter, server settings

server settings, WebDB

server-to-client communications

 communication ports

 HTTP

 resource MIME type

 TCP/IP networks

 URLs

 web browsers

servers

 streaming

servlets, Java

SET_AUTHORIZATION procedure, OWA_SEC package

SET_PROTECTION_REALM procedure, OWA_SEC package

SGML (Standardized General Markup Language)

shared component libraries

SHOWPAGE procedure

SHOWSOURCE procedure

SIGNATURE procedure

signatures

http://lib.ommolketab.ir

simple loop

site administrator, WebDB

SMB

SMTP

snapshot site

software development kit (SDK)

software port

Sparc

SQL Navigator

SQL Programmer

SQL Station

SQL*Net 2nd

SQL*Object Builder

SQL/Expediter

SQLJ

SSL (Secure Sockets Layer)

state versus stateless

static resources 2nd

STATUS_LINE procedure

STORE_VALUES procedure, OWA_OPT_LOCK package 2nd

storyboards

storyboards, creating

STREAM2MULTI, OWA_TEXT package

streaming servers

structured programming

SWITCH statements

Symantec Visual Page

synchronous mode, replication

synonym wizard, WebDB

synonyms, PL/SQL

syntax, HTML

system privileges

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

table wizard, WebDB

TABLEPRINT function

tags, HTML

 anchor 2nd

 content flow 2nd

 form 2nd

 list 2nd

 structural 2nd

 table 2nd

 text formatting 2nd

TERM

Text cartridge, interMedia

text item, WebDB dashboard

text processing

text, searching and replacing

TIFF format

TOAD (Tool for Oracle Application Developers) 2nd

tools, PL/SQL

traditional filesystems

traditional relational data

trigger wizard, WebDB

TXT format

type wizard, WebDB

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

UI templates library, WebDB

URLs

 WebDB dashboard

users, database 2nd

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

values, assigning in PL/SQL

variable persistence

variables, in PL/SQL

vc_arr data structure, OWA_TEXT package

VERIFY_VALUES function, OWA_OPT_LOCK package 2nd

Video Information Retrieval (VIR) cartridge

videos

view wizard, WebDB

view_message procedure, FORUM package 2nd

view_results procedure, EMP_SURVEY package 2nd

virtual directories, WebDB

virtual machine

Virtual Reality Modeling Language (VRML)

VMS

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

WAN

WAV format

web applications

 e-commerce

 Enterprise Resource Planning (ERP) and

 internal

 mobile

web applications, designing 2nd

 data models

 Example: a discussion forum

 Example: an anonymous survey

 using PL/SQL packages

web management, content driven

Web Request Broker (WRB)

web site management, WebDB

web sites, tracking changes

web technologies

 application development

 application integration

 content management

 electronic data exchange

 inadequacies of current techniques

WebAlchemy

WebDB 2nd 3rd

 application development

 architecture

 content-driven web site management

 database administration

 database object wizards

 wizards

WebDB component

WHILE loop

WHO_CALLED_ME procedure

Windows 95

http://lib.ommolketab.ir

Windows 98

Windows NT

wizards, WebDB

WRB dispatcher

WRB executable engines

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

XML

 generating an XML index from Oracle

XML (Extensible Markup Language) 2nd 3rd 4th

 DTDs

 iFS

 parsers

 PLSXML

XML_INVOICE_PKG

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

Team-Fly

Oracle Web Applications: PL/SQL Developer's Introduction

By Andrew Odewahn

Table of Contents

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Yahoo!

Team-Fly

Top

URL 1565926870/index

http://lib.ommolketab.ir

	108 - Main
	001 - TOC
	060 - copyright
	061 - Preface
	062 - Goal of This Book
	063 - Structure of This Book
	064 - Conventions Used in This Book
	065 - Comments and Questions
	066 - Acknowledgments

	067 - Chapter 1. Introduction
	068 - 1.1 The Internet Grows Up
	069 - 1.2 Current Web Techniques Are Inadequate
	070 - 1.3 Oracle's Solution Oracle8
	071 - 1.4 A Roadmap to Oracle8

	072 - Chapter 2. Foundations
	073 - 2.1 Resources
	074 - 2.2 Server-to-Client Communication
	075 - 2.3 Content Delivery Model
	076 - 2.4 Database Integration
	077 - Using Synonyms to Achieve Location Transparency

	078 - Chapter 3. WebDB
	079 - 3.1 Overview of WebDB
	080 - 3.2 WebDB Architecture

	081 - Chapter 4. Oracle Application Server (OAS)
	082 - 4.1 How OAS Returns Web Resources
	083 - 4.2 Creating Dynamic Resources

	084 - Chapter 5. HTML
	085 - 5.1 Programming in HTML
	086 - 5.2 A Whirlwind Tour

	087 - Chapter 6. PL/SQL
	088 - 6.1 Structured Programming in PL/SQL
	089 - 6.2 Programming Constructs
	090 - 6.3 Packages
	091 - 6.4 PL/SQL Tools

	092 - Chapter 7. The PL/SQL Toolkit
	093 - 7.1 Communicating with the Outside World
	094 - 7.2 Text Processing
	095 - 7.3 Maintaining State
	096 - 7.4 Improving Productivity

	097 - Chapter 8. Developing Applications
	098 - 8.1 Designing a Web Application
	099 - 8.2 Example 1: An Anonymous Survey
	100 - 8.3 Example 2: A Discussion Forum

	101 - Chapter 9. XML
	102 - 9.1 Motivations for XML
	103 - 9.2 XML Syntax
	104 - 9.3 The Document Type Definition (DTD)
	105 - 9.4 The XML Parser
	106 - 9.5 Example: Generating an XML Invoice from Oracle
	054 - 9.6 PLSXML Utilities and Demos
	055 - 9.7 XML and

	056 - Appendix A. Appendix: Resources for the Oracle Web Developer
	057 - A.1 Books
	058 - A.2 Other Publications
	059 - A.3 Organizations
	060 - A.4 Web Sites
	061 - A.5 Discussion Groups

	062 - colophon
	063 - index
	064 - Symbol
	065 - A
	066 - B
	067 - C
	068 - D
	069 - E
	070 - F
	071 - G
	072 - H
	073 - I
	074 - J
	075 - K
	076 - L
	077 - M
	078 - N
	079 - O
	080 - P
	081 - Q
	082 - R
	083 - S
	084 - T
	085 - U
	086 - V
	087 - W
	088 - X
	089 - Y

