lib.ommolkefab.ir

Build a complete Android app productively
and quickly with the Eclipse IDE

Android Apps
with EClipse

Onur Cinar

lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

N

Apress®

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Android Apps
with Eclipse

Onur Cinar

Apress-

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Contents at a Glance

About the AUthOr.........cccsmiemmsmis s —————— X
About the Technical REVIBWETccsssmssssssssmssssnsssssssssssssnssssssssnssssssssassssnsnsansas xi
INtroductioncciiveminmmnnse s ————————— xii
Chapter 1: Android PrHmercccccmmsmmmssmmssmmssssmssssmsssmssssssssssssssssssssssssssssssnsnss 1
Chapter 2: Application Architecturec..cccnrmmnnmnmnssnmnsesmnsesmsssssses. 27
Chapter 3: Eclipse Primerccccinissemmmmmssssssmmsssssssmmsssssssssssssssssssssssssssssssnnnsnss 45
Chapter 4: Mastering EClipSe......cccurmmmmmmsmmnmmssssnssmmsssssssssssssssssssssssssssssssnnsnnss 73
Chapter 5: Android Development Tools for EClipSe.......ccccummmmmmmmnnnnnnsssssssnnnns 111
Chapter 6: Project: Movie Playerccccueemmmmsssssnsmssssssssssssssssssssssnsssssssnsnnns 151
Chapter 7: Android Native Development Using Eclipse........cccsuusssnnnnmssssannnns 185
Chapter 8: Project: Extending Movie Player for AVl Moviescccuseerrisennas 239
Chapter 9: Android Scripting Using EClipSeccccinnsuemmmnssssnnnmnssssssnsssssnnans 271
Chapter 10: Project: Movie Player Using HTML and JavaScriptccuueeeene 307
Appendix A: Testing Android Applications.......c.ccccimmnsmmmmmmssssnnmnsssnnmmssnnns 333
INA@X weeeririssnnnnnnssssnnnnmssssnnnsnssssnnnnsssssnnnnnssssnnnnsssssnnnnsssssnnnnnssssnnnnsnsssnnnnsnsssnnnnnss 349

iv

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Xii

Introduction

Android is one of the major players in the mobile phone market, and its market share is
continuously growing. Android is the first complete, open, and free mobile platform, and it offers
endless opportunities for mobile application developers. As with all other platforms, having a
robust and flexible development environment is the key for the platform's success.

Eclipse is the most adopted integrated development environment (IDE) for Java
programmers. And now Eclipse is the preferred IDE for Android app developers.

Android Apps with Eclipse provides a detailed overview of Eclipse, including the steps
and illustrations to help Android developers quickly get up to speed on Eclipse and to streamline
their day-to-day software development.

Who This Book Is For

This book is for both beginners and intermediate developers who would like to quickly come up
to speed on Android development using the Eclipse IDE.

What You Will Learn

This book covers the following topics:

How the Android platform works and the basics of Android application development
How to use the most popular Java IDE, Eclipse, to develop Android applications

How to install and configure Eclipse for Android development

How to leverage Eclipse with the Android Native Development Kit (NDK) for C/C++
needs

How to leverage Eclipse for scripting using Android's Scripting Layer for Android (SL4A)
e How to debug and troubleshoot Android applications using Eclipse

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Downloading the Code

The source code for this book is available to readers from http://www.apress.com.

Contacting the Author

Readers can contact the author through his Android Apps with Eclipse site at
http://www.zdo.com/android-apps-with-eclipse.

Xiil

downloaded from: lib.ommolkefab.ir

http://www.apress.com
http://www.zdo.com/android-apps-with-eclipse
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Chapter

Android Primer

In this chapter, we will briefly cover the Android platform from various angles.
We will start with Android’s history, to better understand the motivations behind
its formation. Then we will explore the Android platform architecture’s fine
combination of technologies that empower the platform to deliver a superior
mobile experience. We will emphasis the multilayer Android security framework,
which employs both software and hardware to keep the platform secure. We will
briefly review the service application programming interfaces (APIs) that are
provided through the Android framework for user-level applications to interact
with the platform. Finally, we will discuss Android application deployment and
distribution.

Android History

Android Inc. was founded in Silicon Valley, California, in October 2003, with the
idea of providing a mobile platform that is more aware of the user’s location and
preferences.

Google acquired Android Inc. in August 2005 as a wholly owned subsidiary of
Google Inc. Google’s main intention was to provide a fully open platform,
backed by Google technologies, for both the users and the application
developers.

In November 2007, the Open Handset Alliance was founded as a consortium to
develop an open standard for mobile devices. Open Handset Alliance began its
journey by announcing the Android platform. In less than a year, new members
started joining this consortium.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Android became an open source initiative that is led by Google under Open
Handset Alliance’s umbrella. The goal of the Android open source project is to
provide an open platform to improve the mobile experience of users.

Android is the first complete, open, and free mobile platform.

Complete: The Android platform is a robust, secure, easily
upgradable, mobile platform with a comprehensive framework
and well-defined interfaces. It allows application developers to
develop and fully blend their applications into the platform. It
also provides compatibility and certification programs, so
device manufacturers can design highly compliant devices.

Open: The entire Android platform has been developed and
provided under open source Apache licensing terms. Android
does not distinguish between preloaded applications and
third-party applications. Developers have full access to device
features and services while developing applications.

Free: The Android platform does not charge any licensing,
royalty, membership, or certification fees to develop
applications on the platform. Android platform source code
and software development kits are provided free of charge to
application developers. The software development platform is
widely available on many desktop operating systems, allowing
application developers to develop applications using the
operating system of their choice.

Today, Android is one of the major players in mobile phone market. Based on
the recent market analysis, on average, 700 thousand Android devices are
activated daily, and more than 200 million devices are already activated. Android
currently has 48% of the mobile phone market share, and it’s growing rapidly.

Android Versions

The first beta of the Android platform was released on November 5, 2007. Since
then, it has been through a number of updates and bug fixes. Although bug fixes
are usually transparent from the application developer’s perspective, updates
usually mean changes and additions to the framework API. For that reason,
besides the Android platform version numbers, a second version number, called
the AP/ level, is used to identify the framework API that is supported.

Since April 2009, each Android version has been released under a codename
based on desserts, such as Eclair, Froyo, and Gingerbread. This introduced a
third versioning scheme to the Android platform, making things even more

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

cryptic for first-time Android application developers. When speaking of Android
application development, you will often hear people say things like “my
application requires Eclair and above,” “this method requires at least API level
9,” and “my phone got the Android 2.1 update.” Understanding which version
and which API level they are referring to, as well as which new APIs are part of
which Android platform version, can easily become a cumbersome memory
exercise. You can use Table 1-1 as a reference to map between these three

version schemes.

NOTE: Since the Android platform is continuing to evolve, Table 1-1 may not cover
the latest platform revisions. For an up-to-date listing, refer to the API Levels section

of the Android Developer Pages, at

http://developer.android.com/guide/appendix/api-levels.html.

Table 1-1. Android Release Dates, Revisions, API Levels, and Codenames

Release Date

Platform Version

Codename

November 5, 2007
September 23, 2008
February 9, 2009
April 30, 2009
September 15, 2009
October 26, 2009
December 3, 2009
January 12, 2009
May 20, 2010
January 18, 2011

January 22, 2011

downloaded from: lib.ommolkefab.ir

Beta

Android 1.0

Android 1.1

Android 1.5

Android 1.6

Android 2.0

Android 2.0.1

Android 2.1

Android 2.2

Android 2.2.1

Android 2.2.2

Cupcake
Donut
Eclair
Eclair
Eclair
Froyo
Froyo

Froyo

http://developer.android.com/guide/appendix/api-levels.html
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Release Date

November 21, 2011
December 6, 2010
February 9, 2011
July 25, 2011
September 2, 2011
February 22, 2011
May 10, 2011

July 15, 2011
September 20, 2011
August 30, 2011
October 19, 2011
November 28, 2011
December 16, 2011

February 4, 2012

Platform Version

Android 2.2.3

Android 2.3

Android 2.3.3

Android 2.3.5

Android 2.3.6

Android 3.0

Android 3.1

Android 3.2

Android 3.2.1

Android 3.2.2

Android 4.0.1

Android 4.0.2

Android 4.0.3

Android 4.0.4

API Level

8

9

10

10

10

11

12

13

13

13

14

14

15

15

Codename

Froyo

Gingerbread
Gingerbread
Gingerbread
Gingerbread
Honeycomb
Honeycomb
Honeycomb
Honeycomb
Honeycomb

Ice Cream Sandwich
Ice Cream Sandwich
Ice Cream Sandwich

Ice Cream Sandwich

As shown in Table 1-1, there are 15 API levels that you should consider while
developing your applications. The API level determines the size of your audience
as well, so picking this number wisely is very important while developing a new

Android application.

The Android mobile phone market is highly fragmented. By simply looking at the
release dates, you might think that most of the Android user base is running at
least Android 3.0, since it has already been around for a year; however, this is
not true. Due to the fragmentation, the release dates are far from giving a clear
view of Android versions in use. Figure 1-1 is the latest version distribution chart
from Android Platform Versions Dashboard
(http://developer.android.com/resources/dashboard/platform-

versions.html).

downloaded from: lib.ommolkefab.ir

http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Android 2.3.3

— Android 3.0
"~ Android 3.1
— = Android 3.2
)= Android 4.0
'.; Android 4.0.3
= Android 1.5
.~ Android 1.6
- Android 2.1

Android 2.3 ———

Android 2.2

Figure 1-1. Distribution of Android versions based on market data

As you can see in Figure 1-1, most of the Android user base is currently running
Android 2.3.3, Gingerbread. This means that your application needs to support
API level 10 as a minimum in order to reach the majority of the Android users. It
also means that you won’t be able to use the latest API features introduced in
the newer versions of the Android platform in your application. In this book, we
will be developing our examples using Android 2.3.3.

The variety of versions is a common problem for Android developers. Most
application developers develop packages for different API levels. This resolves
the problem, but it means that different code branches need to be maintained.

In March 2011, Google introduced the Support Package as a solution to the
versions problem. The Support Package is a set of static libraries that allows
application developers to develop Android applications that support multiple
Android platform versions. The main goal of the Support Package is to simplify
the process of supporting multiple Android versions from a single code base.
You can find more information about the Support Package at
http://developer.android.com/sdk/compatibility-library.html.

downloaded from: lib.ommolkefab.ir

http://developer.android.com/sdk/compatibility-library.html
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Android Platform Architecture

Android is more of a complete software stack for mobile devices than an
operating system. It is a combination of tools and technologies that are carefully
optimized for mobile needs.

Android relies on the well-proven Linux kernel in order to provide its operating
system functions. For the user-space application, Android relies on the Java
Virtual Machine technology by employing the Dalvik virtual machine. The
Android Zygote application process, through service preloading and resource
sharing, boosts the application startup times and allows efficient use of scarce
memory resources on mobile platforms. All these successful technologies play
an important role in the success of the Android platform, as illustrated in Figure
1-2. In addition to these tools and technologies, the Android runtime provides a
unique computing environment that is tailored for providing a smooth mobile
experience to end users, while streamlining mobile application development for
developers.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Applications
| Home | | Contacts | | Application 1 | | Application 3 |
| Phone | | Browser | | Application 2 | | Application 4 |
Android Framework
| Accessibility Service | | Account Service | | Activity Service | | Alarm Service |
| Audio Service | | Clipboard Service | | Connectivity Service | | Device Policy Service |
I Download Service | I Drop Box Service | I Input Method Service | I Notification Service |
Location Service		NFC Service		Power Service		Sensor Service
Telephony Service		Ul Mode Service		USB Service		Vibrator Service
Wallpaper Service		Wi-Fi Peer to Peer Service		Wi-Fi Service		Package Service
Android Runtime						
Dalvik Virtual Machine		Zygote		Android Debug Bridge		Framework Libraries
Platform Libraries						
Media Framework		OpenMax		OpenGL		Open ES
saite		FreeType		WebKit		SGL
S6L		Open SSL		Bionic (iibc)		
Linux Kernel						
Display Driver		Camera Driver		Binder IPC		Alarm Timer
WI-Fi Driver		Audio Driver		Logger		Viking Killer

Figure 1-2. Android platform architecture

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Hardware Abstraction Layer

Android relies on the Linux kernel as its hardware abstraction layer (HAL), and
also to provide its operating system functionality. During the course of Android
development, multiple improvements have been made to the Linux kernel code
in order to tune it for mobile needs. The following are the most notable features:

Alarm timer

Paranoid network security

Binder

Wakelocks

Android shared memory (Ashmem)
Process shared memory (Pmem)
Low memory killer (Viking Killer)
Logger

Although application developers are not expected to interact with these low-
level components directly, knowing their roles in the overall Android platform is
important.

Alarm Timer

Android is designed to run on mobile platforms, where the only power to the
device is provided through batteries. Android goes into a variety of sleep modes
in order to efficiently use the limited battery resources. While the device is in
sleep mode, the applications need a way to wake up the system in order to
perform certain periodic tasks. On Android, this is achieved through the alarm
timer kernel module. It allows a user-space application to schedule itself to run
at some point in the future, regardless to the state of the device.

The android.app.AlarmManager class in Android runtime allows the user-level
application to interact with the alarm timer through API calls. The Alarm
Manager allows the applications to schedule an intent using the alarm timer
(intents are discussed in the next chapter). When the alarm goes off, the
scheduled intent is broadcast by the system to start the application. The Alarm
Manager holds a CPU wakelock (described a little later in this chapter) as long
as the application is busy executing code in its broadcast receiver’s onReceive
method. This guarantees that the device will not go into sleep mode again until
the application is finished performing its task.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The alarm timer retains the scheduled alarms while the device is asleep;
however, this list is cleared if the device is turned off and rebooted.

Paranoid Network Security

Network security is one of the most important requirements of any mobile
platform. In order to provide an extensive level of security, Android handles this
requirement at the lowest possible layer as a kernel modification. Through this
implementation, Android restricts access by the group of the calling process.
Applications should request the necessary permissions in advance, in order to
be part of these network groups. Otherwise, the network access of these
applications will be blocked within the kernel.

Binder

The Android platform architecture makes heavy use of interprocess
communication (IPC). Applications communicate with the system, phone
services, and each other by using IPC.

NOTE: Interprocess communication (IPC) is a mechanism to allow applications to
exchange data with each other and also with the operating system itself.

Although Android relies on the Linux kernel for its operating system-related
functionality, it does not use the System V IPC mechanism that is provided
through the Linux kernel. Instead, it relies on an Android-specific IPC system,
which known as Binder.

Binder technology originated with the engineers at Be Inc. as a part of the Be
Operating System (BeOS). The development of Binder continued at PaimSource
as a key foundation of the Cobalt system, and later was open sourced as a
Linux kernel module under the name OpenBinder project. Android’s Binder
implementation is a complete rewrite of the OpenBinder project in order to
comply with the Apache License. Binder communicates between processes
using a kernel module, as shown in Figure 1-3.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Dalvik Virtual Machine Dalvik Virtual Machine
Application 1 Application 2
Thread Thread
Pool Pool
LN 28N
v Linux Kernel v
Binder IPC

Figure 1-3. Binder kernel module allowing two applications to communicate

Binder’s user-space code maintains a pool of threads in each process, and
these threads are used to process incoming Binder requests as local events.
Binder is also responsible for tracking the object references across processes.
Additionally, Binder provides an extra level of security, by transmitting the user
and group ID of the calling process with each Binder request.

Binder is a key construct in the Android platform. It is the central messaging
channel across the entire Android platform. Android applications communicate
with the system, services, and each other through the Binder interface.

Although Binder is implemented as a low-level service, application developers
are not expected to directly interact with it. The Android runtime provides the
android.os.IBinder interface as the APl to communicate with other processes
through Binder. Android provides the Android Interface Definition Language
(AIDL), which is tuned for Binder.

AIDL allows you to define the programming interface that the client and server
will use to communicate with each other. As with many other operating systems,
on Android, the processes are not allowed to access the memory of another
process directly. AIDL provides the functionality to decompose the objects into
primitives that Binder can understand and use across project boundaries.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Threading is one of the most important parts of interacting with Binder:

Calls made from the local process are executed in the calling
thread. Binder calls are synchronous and will block the current
thread until the request is processed. If the request is
expected to take a long time to complete, the request should
not be made from the application’s main thread. This would
make the application hang, and may result in the application
being terminated by the Android platform. Binder also
supports nonblocking requests through the oneway attribute.

Calls from a remote process are dispatched from the thread
pool provided by the local process. The service code is
expected to be thread-safe, since the requests can be
executed by any of these threads.

Android SDK provides the necessary code generators to translate programming
interfaces that are defined in AIDL into actual Java classes. Application
developers are only expected to provide the implementation for the generated
interface and the Android service that will provide the interface to the clients.

Wakelocks

Android is designed to operate on mobile platforms with scarce resources.
Because of this, Android devices go into sleep mode very frequently. Although
this allows the system to use the available resources efficiently, it is not
preferable for the device to go into sleep mode while the kernel or an application
is in the middle of an important process. Wakelocks were introduced as a kernel
patch in order to allow an application to prevent the system from going into
sleep mode while it is performing a task.

Two types of wakelocks are supported by the Android platform:

An idle wakelock prevents the system from entering a low-
power idle state.

A suspend wakelock prevents the system from entering a full-
system suspend state.

Application developers interact with wakelocks through the
android.os.PowerManager.Wakelock interface. To use this interface, the
application should request android.permission.WAKE_LOCK in advance.

Wakelocks should be used with caution. Preventing the device from going into
sleep mode will increase the power consumption, which will eventually cause it
to run out of battery power. An application should hold the wakelock during

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

important operations, and immediately release it as soon as the operation is
complete.

Android Shared Memory

Android shared memory (Ashmem))is a POSIX-like shared memory subsystem
on the Android platform that is implemented as kernel module. Ashmem is
highly tuned for mobile needs, and it provides better support for low-memory
devices. Ashmem supports reference-counted objects that can be shared
among multiple processes.

Process Shared Memory

In addition to Ashmem, Android provides a second type of shared memory
subsystem, known as process shared memory (Pmem). Pmem is used for
sharing large amounts of physically contiguous memory among processes.
Pmem is mostly used by the Android media engine to deliver large media frames
between the media engine and the application processes.

Low Memory Killer

Low memory killer, also known as the Viking Killer, is one of the other Android-
specific enhancements in the Linux kernel. This feature allows the system to
reclaim memory before it runs out of memory.

In order to start an application, the device must first read the application code
from the persistent storage to random-access memory (RAM). Since this is a
time-consuming and costly process, Android attempts to keep the application
processes around as long as possible. But eventually, it will need to remove
them from RAM when the memory runs low.

The order in which applications are removed to prevent running out of memory
depends on the importance of an application, which is gauged by the current
state of the user’s interaction with that application:

An application with a foreground activity, which the user is
currently interacting with, is considered the most important
one.

An application with a visible activity, which is not currently
interacting with the user but still visible, is also considered
important.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

An application with a background activity, which is no longer
visible to the user, is not considered important, since its
current state can be saved and later restored when the user
navigates back to the activity.

Android starts with the least important application when removing processes
from memory. An empty process is one that has no activities, services, or
broadcast receivers. These types of applications are considered as the least
important, and Android starts removing them first.

The threshold values for each of these application states are configured using
the /etc/init.rc system configuration file. Table 1-2 lists these thresholds.

Table 1-2. Memory Threshold Values for Removing Applications from Memory

Application State Memory Threshold
Foreground application 6MB

Visible application 8MB

Hidden application 20MB

Content provider 22MB

Empty application 24MB

The low memory Killer service gets this information through
ActivityManagerService.

Logger

Logging is the most important part of troubleshooting, but it is tricky to achieve,
especially on mobile platforms, where the development and the execution of the
application happen on two different machines. Android has an extensive logging
system that allows system-wide centralized logging of information from both the
Android system itself and the applications.

The Android logging system is implemented as a kernel module known as the
logger. A set of API calls and user-level applications are also provided to
interact with the logger module.

The amount of information being logged on the platform at any given time
makes the viewing and analysis of these log messages very difficult. In order to

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

simplify this procedure, the Android logging system groups the log messages
into four separate log buffers:

Main: Main application log messages

Events: System events

Radlio: Radio-related log messages

System. Low-level system debug messages for debugging

These four buffers are kept as pseudo-devices under the /dev/log system
directory. Since input and output (I/0O) operations on mobile platforms are very
costly, the log messages are not saved in persistent storage; instead, they are
kept in memory. In order to keep the memory utilization of the log messages
under control, the logger module puts them in fixed-sized buffers. Main, radio,
and system logs are kept as free-form text messages in 64KB log buffers. The
event log messages carry additional information in binary format, and they are
kept in a 256KB log buffer.

A set of user-level applications is also provided to view and filter these logs,
such as the logcat and the Dalvik Debug Monitor Server (DDMS) tools, which we
will examine in chapter 5.

The Android runtime provides a set of API calls to allow applications to easily
send their log messages to the logger. Application log messages are sent
through the following classes:

android.util.Log: This class is used to send application log
messages. It provides a set of methods to specify the priority
of the message, as well as a tag to indicate which application
is generating this log message.

android.util.EventLog: This class is used to send event log
messages in binary format.

android.util.Slog: This class is used by the Android runtime
components to send system log messages. It is not part of the
Android API, and it is not accessible from the applications.

Zygote

On most UNIX-like operating systems, the application that is known as Init is
considered as the parent of all processes. Init gets started after the kernel
successfully boots. Its primary role is to start a set of other processes based on
the system configuration.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Zygote, also known as the "app process," is one of those core processes
started by Init when the system boots. Zygote’s role within the Android platform
is very similar to that of Init. Its first task is to start a new Dalvik virtual machine
instance and initialize the core Android services, such as the following:

Power service
Activity service
Package service
Content service
Alarm service
Window service
Content providers
Telephony service
Battery service
Watchdog

After starting these services, Zygote starts working on its second task, which is
where its name comes from.

NOTE: Based on its dictionary definition, zygote is the initial cell formed. In single-
celled organisms, the zygote divides to produce offspring.

As noted earlier, on Android, every application runs within its dedicated virtual
machine instance. In addition, Android applications rely on a set of class and
data objects that needs to be loaded into memory first for the application to
perform its task. This introduces a large overhead when starting a new
application. Despite this overhead, Android needs to keep the startup time as
small as possible in order to provide a highly responsive user experience. By the
use of forking, Zygote resolves this problem in a fast and efficient way.

In computing, forking is the operation to clone an existing process. The new
process has an exact copy of all memory segments of the parent process,
although both processes execute independently, as shown in Figure 1-4. Copy-
on-write is an optimization strategy used in forking that delays copying the
memory by allowing both processes to share the same memory segment until
one of them tries to modify it.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

— Zygote — Application 1 -

Dalvik Virtual Machine

Read-0nly Shared Memory Segment
| Power Manager | [Activity Service | | Package Service | | Content Service |
l Alarm Service | ’ Window Service | | Content Providers | | Telephony Service |
[Battery Service | | Watchdog |

Figure 1-4. Zygote and other applications sharing read-only components of the Android framework

Since the Android runtime classes and data objects are immutable by the
applications, this makes them ideal candidates for copy-on-write optimization
during forking.

Zygote preloads the Android runtime objects and waits for requests to start new
applications. When a new request arrives, instead of starting a new virtual
machine instance, it simply forks. This allows the new application to start very
quickly while keeping its memory footprint low.

Dalvik Virtual Machine

Java is a general-purpose, object-oriented programming language that is
specifically designed for platform-independent application development with the
goal of “write once, run anywhere.” Java achieves this by compiling the
application code into an intermediate platform-independent interpreted
language called bytecode. During runtime, this bytecode is executed through
another Java entity known as the Java Virtual Machine.

Virtual machines are native applications that run on the host computer and
interpret the bytecode. In order to optimize the runtime of complex applications,
most virtual machine implementations also support the just-in-time (JIT) feature,
which allows on-the-fly translation from bytecode to native machine code. This
allows long-running applications to execute much faster, since the interpretation
of the bytecode is needed only at the beginning of the application execution.

One of the biggest challenges most mobile platforms face is the lack of
applications. In order to resolve that problem from the very beginning, Android
relies on the well-proven Java programming language, which already has a very
large developer community, as well as applications, tools, and components that
will facilitate application development.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Android also relies on a highly customized virtual machine implementation that
is tuned for mobile needs. Dalvik virtual machine is Android’s customized Java
Virtual Machine for mobile platforms.

Dalvik virtual machine is very different from other Java Virtual Machine
implementations. Most virtual machine implementations on the desktop platform
are developed based on the stack-based virtual machine model. Dalvik virtual
machine is based on the register-based virtual machine model due to the mobile
needs. Register-based virtual machines require longer instructions to interpret;
however, the actual number of instructions executed is very low compared to
stack-based virtual machines. This makes register-based virtual machines a
much better choice for mobile environments, where the computing power is a
scarce resource.

Since Dalvik virtual machine requires a different type of bytecode to interpret, it
does not support the standard Java class files, and it relies on its own format,
which is known as Dalvik Executable (DEX). The Android software development
platform comes with a set of tools to postprocess the compiled Java class files
into DEX format.

DEX format is also a much more compact way to store compiled Java
application code on the mobile platform. Standard Java applications are formed
by multiple class files that are stored separately. DEX merges all class files into
one big DEX file, as shown in Figure 1-5. This minimizes the footprint of the
application code.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Classes.jar Classes.dex
A.class Header
Header
String Constants Pool
Constant Pool |
’ Type Constants Pool]

Class Definition | l

Fields —l N
—l/ Method Constants Pool

Field Constants Pool |

b Dalvik Exectuable Class Definitions
Conversion
Attributes | l
Field List
B.class Method List

Figure 1-5. The conversion from standard Java class files in a JAR file to a single DEX file

The constant pools in the DEX format allow string, type, field, and method
constants, and everything else in the code, to be stored in a single place, using
indexes to those lists instead of the full names. This reduces the size of the
class files almost 50%.

The Android platform runs each application in its own dedicated virtual machine
instance as a sandbox. This puts high requirements on the platform, since
multiple virtual machines are expected to run simultaneously within a limited
CPU resource environment. Dalvik virtual machine is specifically tuned to work
in this type of environment.

File System

The file system is a very crucial piece of the operating system. Especially on
mobile platforms, file system plays an important role in satisfying the
expectations of the operating system.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Mobile devices rely on flash-based storage chips. Android relies on Yet Another
Flash File System (YAFFS2) as its primary file system. YAFFS2 is an open
source file system implementation designed and written by Charles Manning for
the Linux operating system. YAFFS2 is a high-performance file system
specifically designed to work on NAND-based flash chips. It is a log-structured
file system that takes data integrity as a high priority.

In addition to the file system, the structure of how the operating system files and
components are organized plays an important role in Android as well. Mobile
platforms are expected to be easily upgradable and also highly secure in order
to protect user’s confidential information. Android addresses this requirement by
relying on organizing itself using multiple partitions. By keeping different parts of
the operating system in different partitions, Android provides a high level of
security and also makes the platform easily upgradable.

The partitions used depend on the device manufacturers. Here is a list of the
most common ones:

/boot: This partition includes the boot loader and the Linux
kernel that is needed to boot the device. This partition is not
writable by the user applications, since modifying the content
of this partition may cause the device not to boot anymore.

/system: This partition contains all the Android system files
and applications that are preloaded on the device. During an
upgrade, this partition is replaced by the latest version of the
Android platform. This partition is not writable by user
applications, although the Android Market application can
make this partition writable temporarily in order to update the
preloaded applications.

/recovery: This partition keeps a recovery image, which is an
alternative boot partition. It provides maintenance functionality
in order to recover the system or to do other tasks, such as
making system backups. This partition is also not writable
from user applications.

/data: This partition keeps the user's applications and also the
user’s data, such as the contacts, messages, and settings.
When the device is factory reset, this partition is erased.

/cache: This partition is used to store frequently accessed
files. On most Android devices, cache is not a partition on the
flash media, but rather a virtual partition stored in RAM. The
content of this partition does not persist when the device
reboots.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/sdcard: This is a mount point, rather than a partition, on the
internal storage. The SD card that is attached to the device is
mounted under this name. This mount point is not always
accessible to the applications, since it may be directly
mounted on a host PC when the device is connected through
the USB connection.

Although Android does not expect application developers to use these partitions
directly, knowing their purpose can be very useful during Android application
development.

Security

As with many other mobile platforms, the biggest requirement for Android, from
the users’ perspective, is the security and integrity of users’ applications and
data. Android is designed with security in mind.

The Android architecture provides security at multiple layers of the platform.
This extensive security framework is also exposed to the developers through the
Android runtime. Security-savvy developers can easily rely on these APIs in
order to provide a high level of security for their application and the data it uses.
Developers less familiar with the security are already protected by the default
security settings.

Android provides a high level of security by using multiple security features from
both the hardware and the software. Although it is designed to work on a variety
of hardware platforms, Android still takes advantage of hardware-specific
security capabilities such as the ARMv6 eXecute-Never feature.

The Android platform is built on the top of the Linux kernel. The Linux kernel
itself has been used in many security-sensitive environments for many years.
The Linux kernel provides Android several key security features, such as the
following:

A user-based permission model
Process isolation
Secure IPC mechanism

Ability to remove unnecessary functionality from the kernel
itself

The Linux kernel is designed for multiuser platforms. Although Android is a
single-user environment, it still takes advantage of the user-based permission
model. Android runs the applications within a virtual machine sandbox, and

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

treats them as different users on the system. By simply relying on the user-
based permission model, Android easily secures the system by preventing the
applications from accessing other applications’ data and memory.

On Android, services and hardware resources are also protected through the
user-based permission model. Each of these resources has its own protection
group. During application deployment, the application requests access to those
resources. If the request is granted by the user, the application becomes a
member of these resource groups. The application won’t be allowed to access
any additional resources if it is not a member of that resource’s group.

In addition to the security features provided by the operating system, Android
also enhances the Android platform binaries using ProPolice to protect them
from stack buffer overflow attacks.

File system protection is also one of the new Android features available since
Android 3.0. It allows Android to encrypt the entire storage media using the
AES-128 algorithm. This prevents other people from accessing the user’s data
without knowing the key used.

Device administration is one of the other security features available since
Android 2.2. It allows administrators to remotely enforce security policies and to
erase the device remotely when the device is lost or stolen.

Services

The Android platform is not limited to only the features provided from the Linux
kernel. The Android runtime comes with a lot of services for application
developers. The following are the major services provided.

Accessibility service: This service is provided through the
android.view.accessibility.AccessibilityManager class. It
is a system-level service that serves as an event dispatcher for
accessibility events and provides a set of APIs to query the
accessibility state of the system.

Account service: This service is provided through the
android.accounts.AccountManager class. It is a centralized
registry of the user’s online accounts. It allows applications to
access online resources using the user’s accounts after user
approval.

Activity service: This service is provided through the
android.app.ActivityManager class. It allows the application
to interact with the activities running in the system.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Alarm service: This service is provided through the
android.app.AlarmManager class. It allows applications to
register with the Alarm service in order to schedule execution
at some point in the future.

Audio service: This service is provided through the
android.media.AudioManager class. It allows applications to
control the volume and the ringer mode.

Clipboard service: This service is provided through the
android.content.ClipboardManager class. It allows
applications to place data in the system clipboard and retrieve
it from the clipboard.

Connectivity service: This service is provided through the
android.net.ConnectivityManager class. It allows applications
to query the state of the network connectivity. It also
generates events when the network connectivity changes.

Device Policy service: This service is provided through the
android.app.admin.DevicePolicyManager class. The device
administration API provides device administration features at
the system level. It allows development of security-aware
applications that are useful in enterprise settings.

Download service: This service is provided through the
android.app.DownloadManager class. It handles long-running
HTTP downloads. Applications may request a URI to be
downloaded to a particular destination file using this service.
The Download service takes care of the HTTP interactions and
retrying downloads after failures, connectivity changes, and
system reboots.

Drop Box service: This service is provided through the
android.os.DropBoxManager class. It provides system-wide,
data-oriented log storage. It collects data from application
crashes, kernel logs, and other sources. The data does not get
sent anywhere directly, but debugging tools may scan and
upload entries for processing.

Input Method service: This service is provided through the
android.view.inputmethod.InputMethodManager class. It
allows applications to interact with the input method
framework (IMF) through the provided methods.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Notification service: This service is provided through the
android.app.NotificationManager class. It allows applications
to notify the user regarding events that happen. The services
running in the background communicate with the user only
through this service.

Location service: This service is provided through the
android.location.LocationManager class. It allows
applications to obtain periodic updates of the device’s current
location.

Near Field Communication service: This service is provided
through the android.nfc.NfcManager class. It allows
applications to use the near field communication (NFC)
features of the device.

Package service: This service is provided through the
android.content.pm.PackageManager class. It allows
applications to retrieve information related to application
packages that are currently installed on the system.

Power service: This service is provided through the
android.os.PowerManager class. It allows applications to
control the power state of the device. It allows applications to
hold wakelocks to prevent the device from going into sleep
mode while performing a task.

Sensor service: This service is provided through the
android.hardware.SensorManager class. It allows applications
to access the device’s sensors.

Telephony service: This service is provided through the
android.telephony.TelephonyManager class. It allows
applications to interact with the telephony functionality of the
mobile device. It also generates events for applications to
watch telephony state changes.

Ul Mode service: This service is provided through the
android.app.UiModeManager class. It allows applications to
control the user interface (Ul) modes of the device such as
disabling the car mode.

USB service: This service is provided through the
android.hardware.usb.UsbManager class. It allows applications
to query the state of the USB and to communicate with
devices through USB devices.

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Vibrator service: This service is provided through the
android.os.Vibrator class. It allows applications to control
the vibrator on the device.

Wallpaper service: This service is provided through the
android.service.wallpaper.WallpaperService class. It allows
applications to show live wallpapers in the background.

Wi-Fi Peer-to-Peer service: This service is provided through
the android.net.wifi.p2p.WifiP2pManager class. It allows
applications to discover available peers and establish peer-to-
peer connections through the Wi-Fi network.

Wi-Fi service: This service is provided through the
android.net.wifi.WifiManager class. It allows applications to
manage Wi-Fi connectivity. Applications can list and update
the configured networks, access the results of access point
scans, and establish and tear down connections.

Android Deployment and Distribution

Because the Android platform is a free platform, it does not charge any
licensing, royalty, membership, or certification fees to develop and distribute
applications on the platform.

The Android platform lets application developers decide how to distribute and
monetize their applications. Application developers can distribute their
applications as freeware, shareware, advertisement sponsored, or paid.

The Android platform comes with a default marketplace, Google Play, previously
known as the Android Market, which is an online store developed by Google for
Android devices. Unlike the Android platform, the Android Market application is
not open source. It is available only for devices that comply with Google’s
compatibility requirements. The client portion comes preloaded on Android
devices under the name Market. Users can use this application to search and
download Android applications. The Market application also keeps the installed
Android applications up to date by informing the user of software updates.

Application developers use the server part of the Android Market. Through the
web-based interface, application developers can upload their applications for
publication.

The Android Market runs a set of tests on the distributed applications, but it
does not take any responsibility for the applications downloaded from the
Android Market. During installation, the Android Market application displays a

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

list permissions requested by the application and gets the user’s implicit
permission before proceeding with installation.

Although most Android devices come with Google’s Android Market application
preloaded, other application distribution channels are supported by the Android
platform. GetJar and Amazon Appstore are two alternatives for Android
application distribution.

Summary

We started this chapter with a brief summary of Android’s history and the
existing Android versions. We then explored the core of Android platform and
the Linux kernel, and briefly reviewed the Android-specific changes and
additions to the Linux kernel to deliver a superior mobile platform.

We explained the reasons behind Android’s choice of the Java technology as a
foundation for Android applications, and the unique features provided through
Dalvik virtual machine to optimize the Java technology for mobile computing.
We explored Zygote, the application process that enables Android applications
to have quick startup times and small memory footprints. We also studied the
Android multilayer security framework. We then presented a brief overview of
the Android framework services that allow applications to interact with the
Android platform. Finally, we discussed Android development and distribution.

In the next chapter, we will focus on the Android application architecture.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Chapter

Application
Architecture

Understanding the architecture of an Android application is key for solid
application development. In this chapter, we will start exploring the Android
application architecture.

First, we will briefly review the fundamental components that are provided by
the Android framework, such as activities, services, broadcast receivers, content
providers, and the user interface components. Then we will examine both the
activity and service life cycles in great detail. Next, we will go through the
procedure to package an Android application for deployment. Finally, we will
study the Android manifest file, and its role and importance in Android
application development.

Android Components

The main difference between Android and other mobile platforms is the
definition of an application.

Other mobile platforms define an application as a stand-alone program that runs
within its own sandbox, with limited interaction with the surrounding platform.
Mobile platforms provide APIs to allow applications to use the platform services
and data stores, such as an address book, to offer a rich user experience.
However, this communication is always one-directional, meaning applications
may use platform services, but the platform and other applications cannot
access services provided in another application.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

On Android, applications are like modules. Each application is formed by a set
of components, and these components can be accessed by both the platform
and other applications. Each new application on Android expands the platform
and opens up more opportunities for other application developers by providing a
new set of components. Application developers do not need to decide on a set
of APIs or a contract in order to achieve interoperability between their
applications.

Four main components are defined by the Android framework: activity, service,
broadcast receiver, and content provider. Each application does not need to use
all of these components, but using them properly allows the application to fully
blend into the platform.

Activities and Intents

The activity is the most important component of an application. It corresponds
to a display screen. Users can interact with Android applications only through
the activities. An application may be formed by one or more activities. Each
activity allows the user to do a specific task. In order to be modular, it is
expected that each activity does a single task.

Users initiate a new activity by its intention to do a certain task. These intentions
are captured in Android framework as /nfents. The intent is an abstract
description of an operation to be performed. It provides a late runtime binding
between different components using a passive data structure.

Android keeps a mapping from intents to activities, and initiates the correct
activity based on a given intent. For certain intents, there may be more than one
activity that can do the task. In such cases, Android presents the user with a list
of these activities to choose from.

A complex task may involve more than one activity. In that case, the activities
are kept in an activity stack as the user moves from one activity to the other.

To better understand the concept of an activity, let’s imagine a simple use case
where the user is sending an e-mail message:

1. The user presses the Compose E-Mail button on the screen.

2. The code captures the user’s intention to compose an e-mail
message into an Intent object, and gives this intent to the
Android framework.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3. Android goes through its registry and pulls the activity that can
satisfy this intent, and adds the new activity to the top of the
activity stack. Upon starting, the activity takes up the entire
screen.

4. The user presses the Select Recipient button. The user’s
intention gets captures in a new Intent object, and the Android
framework goes through its registry again and starts the
Contact List activity.

5. The user chooses one or more recipients from the list and
selects the Done button. The activity returns the user’s selection
to the Android framework as a result, and removes itself from
the activity stack by making the previous activity visible again.

6. Upon receiving the result from the Android framework, the
Compose E-Mail activity populates the user interface
accordingly with the list of selected recipients.

7. After completing the message, the user clicks the Send button,
and the e-mail gets sent.

8. The Compose E-Mail activity removes itself from the activity
stack, and the user is returned to the screen where he or she
started.

An application is not limited to using just its own activities. During a task flow,
the application can make use of other activities that are provided by either the
platform or other applications. For example, to select a contact from the user’s
address book, the application can use the activity that is already provided by the
platform instead of writing a new one. This approach promotes reuse of
activities and also provides consistency throughout the platform.

Activities are designed for interacting with the user. When they are no longer
visible to the user, Android may terminate them at any time in order to free
memory resources. For that reason, activities are not good for performing tasks
that are expected to take a long time to complete, such as downloading files
from the Internet. The Android framework provides the service component for
running these types of tasks.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Services

Services run in the background. Services do not provide a user interface, and
they cannot directly interact with the user. Android does not limit their lifetime,
and it allows them to continue running in the background as long as the system
has enough resources to perform the foreground tasks. Applications can
provide activities to interact with the user in order to control the service.

For example, suppose that we are developing a music player application. We
would like to let the user select a music file and listen to it while continuing to
use the device. An initial activity can interact with the user to select the song;
however, the activity cannot play the song directly, since the activity’s lifetime is
limited by its visibility. We will need to have a service that will run in the
background, so that the application can continue playing the songs while the
user is doing other tasks with the device. At any given time, the user can start an
activity to control the service, since the service itself cannot interact directly with
the user.

As with activities, an application is not limited to its own services. Applications
can also use services that are provided either by the platform or by other
applications. For example, to receive Global Positioning System (GPS)
coordinates continuously, the application may start the GPS service that is
provided by the platform.

Services are also started through intents. By design, only a single instance of a
service can run at any given time. The Android framework starts the service
when the first request arrives, and then delivers the subsequent requests to the
already running instance.

Sometimes services may need the user’s attention. Notifications are used by the
services to inform the user about the current status of the service. For example,
in our music player application, when the new song starts playing, a notification
with the name of the song can be displayed on the notifications bar to inform
the user.

Broadcast Receivers

Applications not only interact with the user, but they also interact with the
platform and other applications by generating and consuming events. On
Android, these events are also delivered in the form of intents.

In order to receive certain types of events, the application may register for a set
of intents by providing a broadcast receiver. When a matching event is
generated in the system, Android delivers the event to that broadcast receiver.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For example, suppose that we would like to have our application
start automatically when the phone is turned on. In our
application, we specify that the application is interested in
receiving the device startup event. When the device is starting,

it broadcasts the event. Only the interested applications receive
this event through their broadcast receiver.

Content Providers

Content providers allow Android applications to exchange data with the platform
and with other applications. Unlike the other components, content providers do
not rely on intents. Instead, content providers uses a standard interface in the
form of a content URlIs, and provide access to the data as one or more tables
that are similar to tables found in a relational database. The structure of these
tables is communicated to the external applications through the Contract
classes. Contract classes are not part of the content provider framework.
Content provider developers are expected to define and make the Contract
classes available to external applications.

When an application issues a content provider query, Android goes through a
registry to match the given URI with the appropriate content provider. The
Android framework checks to make sure that the application has the necessary
privileges, and sends the request to the corresponding content provider. The
response goes back to the requesting application in the form of a cursor. The
application then retrieves and manipulates the data through the interface
provided by the cursor.

Views, Widgets, Layouts, and Menus

View objects are the basic units of the user interface on the Android platform. A
view object is a data structure whose properties store the layout parameters and
the content of a rectangular region on the screen. It provides the methods
necessary to handle its drawing and layout measurement.

A widgetis a view object that allows the application to interact with the user.
The Android runtime provides a rich set of widgets to enable application
developers to easily develop comprehensive user interfaces. Android application
developers are not limited to using the widgets provided by the Android runtime.
By deriving new view objects, developers can create new widgets from scratch
or by basing them on an existing widget. A widget is provided through the base
class android.view.View.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A /ayoutis used to express view hierarchy and how each view component
should be positioned on the display. Since the size, resolution, and orientation
of Android devices vary greatly, the layout allows application developers to
dynamically position the view components based on the device’s specifications.
The Android runtime provides a rich set of layout components that allow views
to be positioned based on a different set of constraints. A layout is provided
through the base class android.view.ViewGroup. The following are some of the
common layout objects:

Frame /ayout: This is the simplest type of layout object. It is
provided through the android.widget.FramelLayout class. It is
a basic layout that can hold only one view object that will
occupy the entire space that is covered by the frame view.

Linear layout: This layout allows assigning weights to view
objects and positioning them accordingly. It is provided
through the android.widget.LinearlLayout class. It can
position view objects either vertically or horizontally based on
its configuration. All view objects are stuck following each
other. Margins can be introduced using the configuration
parameters. Also, a single view object can be nominated to fill
the entire empty display area.

Table layout: This layout allows the view objects to be
positioned in a table-like format in rows and columns. It is
provided through the android.widget.TableLayout class.
Although it follows a table format, it does not provide borders
around the cells. Also cells cannot span columns.

Relative layout: This layout allows view objects to be relatively
positioned on the display. It is provided through the
android.widget.Relativelayout class. It is one of the most
advanced layout components.

In addition to widgets and layouts, application menus are also very important for
user interface development. An application menu provides a reliable interface for
application functions and settings.

Menus are revealed using the hard and soft menu buttons on Android devices.
Menus are slowly losing their importance and being replaced by action bars on
the later versions of the Android platform. Beginning with Android 3.0, host
devices are no longer required to provide a hard menu button.

Android user interfaces are formed by combining views, widgets, layouts, and
menus as appropriate for the application’s functionality. The Android framework
allows applications to define their user interfaces dynamically as a part of the

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

application code, or they can rely on an XML-based user interface definition
language that is specific to the Android platform. This XML-based language
allows view code to be designed and managed outside the actual application
logic. In addition, application developers can design different user interfaces for
both portrait and landscape display without changing the application logic.

Android applications can control and populate the view objects from the
application code. Due to the user interface architecture of the Android platform,
the user interface is expected to be modified only from the main Ul thread.
Modifying the user interface from an application thread is not supported and can
cause problems during the application runtime. The Android runtime provides an
enhanced message queue system that allows application developers to
schedule user interface-related tasks through the main Ul thread.

Although Android applications can manipulate the view objects, applications
with extensive user interface and data model components may be harder to
develop due to the complexity of keeping the user interface aligned with the
data model. In order to resolve that problem, the Android runtime provides
adapters to bind data to views. This allows user interface components to
automatically reflect any changes to the data model. The view objects
android.widget.Gallery, android.widget.ListView, and
android.widget.Spinner are good examples of the use of adapters for data
binding to view objects on the Android platform.

Resources

Android architecture encourages users to externalize the application resources
from the application source code as much as possible. By externalizing
resources, Android applications can use different sets of both graphics and text
resources based on the device configurations as well as the current locale. The
following resources are currently supported by the Android platform:

Animation resources
Color resources
Drawable resources
Layout resources
Menu resources
String resources
Style resources

Value resources

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Application resources are placed in the res directory in applications. There are
different subdirectories to group different resources.

During compile time, Android generates a resource class to allow the application
to refer to these resources in the code.

Data Storage

The Android platform provides multiple ways to save persistent application data.
The following are some of the alternatives:

Shared preferences: This approach allows applications to
store data as key/value pairs. The Android framework comes
with utility functions to allow developers to maintain shared
preferences easily. Shared preferences support only primitive
data types, and applications should do any marshaling needed
to convert the data into primitive types. The Android platform
also guarantees that the shared preferences will be saved,
even if the application is killed.

Internal and external storage: This approach allows application
developers to store any type of data as plain files on the
platform. The Android framework provides a set of utility
functions to allow application developers to easily do these file
operations without knowing the actual location of these files.

SQLjte databases: Using a SQLite database allows application
developers to store and retrieve structured data easily. SQLite
provides a relational database within the application’s process
space. Although SQLite functionality is provided through
native libraries, the Android framework includes a set of utility
functions and classes to allow application developers to easily
interact with the SQLite database.

Android Life Cycles

The Android application life cycle is much more complicated than the life cycle
of desktop applications. The life cycle of desktop applications is directly
controlled by the user. Users can choose to start and terminate an application at
any given time. However, on Android, the platform manages the application’s
life cycle in order to efficiently use the scarce system resources.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Activity Life Cycle

The activity life cycle is the group of states that an activity goes through from
the time it is first created until it is destroyed.

The Android framework provides a set of life cycle methods that allow the
application to make the appropriate adjustments when the activity life cycle
changes. For example, if the activity is no longer visible to the user, there is no
reason for it to consume CPU cycles for showing animations on the screen. In
that case, the application is expected to stop doing any CPU-extensive
operations in order to let the foreground application get enough system
resources to provide a smooth user experience.

Seven life cycle methods are defined in the android.app.Activity class:

public class Activity {

protected void onCreate(Bundle savedInstanceState);
protected void onStart();

protected void onRestart();

protected void onResume();

protected void onPause();

protected void onStop();

protected void onDestroy();

}

Figure 2-1 illustrates the activity life cycle state machine with these methods.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

| Activity Launched |

Y
onCreate
Becomes Visible
A
onStart <

Foreground?

onResume <

Y

(Activity Running) onRestart

In Background A
Y

onPause

User returns

Not Visible
Y

> onStop

Visible Again

Terminating
Y

onDestroy

Y

(Activity Terminated)

Figure 2-1. Activity life cycle state machine

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

These activity life cycle methods work as follows:

downloaded from: lib.ommolkefab.ir

onCreate: This method is called when the activity is created. It
initializes the activity and creates the views. This method also
takes a Bundle object that contains the frozen state from the
activity’s previous run. The activity uses this bundle to restore
its previous state. This method call is always followed by
onStart.

onStart: This method is called when the activity becomes
visible. It is followed by a call to onResume if the activity comes
to the foreground. It is followed by onStop if the activity
becomes hidden.

onRestart: This method is called when the activity is being
redisplayed to the user. It is followed by onStart.

onResume: This method is called each time the activity comes
to the foreground to interact with the user.

onPause: This method is called when the activity is going into
the background, but has not been terminated yet. This
callback is mostly used to save any persistent state. It is also a
good place to stop any CPU-extensive operations and release
any system resources, such as the camera. When the
application is in the paused state, the system may decide to
terminate the application at any time if it needs to reclaim
resources for the foreground application. For that reason, the
application is expected to save its current state during this
call, since it may not have a second chance. Depending on the
user’s interaction with the foreground application, this call is
followed by either onResume or onStop.

onStop: This method is called when the activity is no longer
visible to the user. It is followed by a call to onRestart if the
activity is coming to the foreground or with a call to onDestroy
if the activity is terminating.

onDestroy: This method is called when the activity is being
destroyed. This may be because the activity is finishing or
because the system needs to free resources. The application
is expected to release its resources at this time.

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

NOTE: When overriding these life cycle methods, do not forget to call up to the
superclass. Android itself also needs to closely monitor these life cycle events in
order to function properly.

The activity should finish up by saving its state within the onPause method,
although the onStop and onDestroy methods follow it. The Android platform
guarantees that the application process will not be terminated while the
application is performing any work in the onPause method; the application may
be terminated while executing the onStop or onDestroy method. However, you
should be very careful to not spend too much time in the onPause method, since
both the Android platform and the user are waiting for this method to complete
before bringing the next activity into the foreground. Spending too much time in
the onPause method will make the system look irresponsive to user’s requests.

Service Life Cycle

The service life cycle is similar to the activity life cycle but with a few big
differences. Because services do not interact with the user directly, their life
cycle does not depend on the user’s actions, as is the case with activities. Since
visibility is not a concern for services, the life cycle methods onPause, onResume,
and onStop do not apply to them.

Three life cycle methods are defined in the android.app.Service class:

public abstract class Service {
public void onCreate();
public int onStartCommand(Intent intent, int flags, int startId);
public void onDestroy();

Figure 2-2 illustrates the service life cycle state machine with these methods.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Service Launched

Y

onCreate

Y

onStartCommand |«

Y

onDestroy

Y

[onDestroy)

Figure 2-2. Service life cycle state machine

These service life cycle methods work as follows:

downloaded from: lib.ommolkefab.ir

onCreate: This method is called when the
Context.startService(Intent) method is used by the
application and the service was not running already. Since the
services are singleton by design, the service gets only one
onCreate call during its lifetime.

onStartCommand: This method is called each time the
Context.startService(Intent) method is used by the
application. A service may end up processing multiple
requests, so it is possible for the service to receive multiple
onStartCommand calls during its lifetime. If the service is already
busy processing the previous request, it is expected that the
service will queue this new request.

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

GAUTION: When more resources are needed for the foreground application, the
Android platform may decide to destroy a running service, and then later restart it
when the resource condition improves. If your service needs to store persistent data
in order to continue functioning properly after the restart, it is best to store such data
during an onStartCommand call.

onDestroy: This method is called when the service is about to
be destroyed by the Android platform.

Packaging

The Android Package File (APK) file format is used to package and distribute
Android applications. APK files are actually archive files in ZIP file format. They
partially follow the JAR file format, except for the way that the application class
files are packaged. APK files contain the following:

META-INF/MANIFEST.MF: This is the JAR manifest file for the
package file itself.

META-INF/CERT.SF: This contains SHA1 hashes for the files that
are included in the package file. The file is signed by the
application developer’s certificate.

META-INF/CERT.RSA: This is the public key of the certificate that
is used to sign the CERT.SF file.

AndroidManifest.xml: This is the application’s manifest file. It
is one of the most important components of Android
applications, and we will briefly explore it in the next section.

classes.dex: This is the application class files in DEX format.

assets: This is special in that its contents are not compressed
while the APK file is generated. This allows the Android
platform to provide a file descriptor directly to the APK file
during runtime, so the application can easily access the
resources without extracting them to the device. Android
developers are expected to keep large resource files in the
assets directory in order to minimize the application’s footprint
on the installed device.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

res: This directory contains the application resources.

resources.arsc: This contains the view definitions and the
string resources.

APK files are signed with a certificate whose private key is held by the
application developer. The certificate identifies the author of the application, as
well as the integrity of the files contained in the APK file. Compared to many
other mobile platforms, Android does not require these certificates to be signed
by a certificate authority. Android developers can generate and use self-signed
certificates to sign their applications.

The Android platform uses the certificates during software updates in order to
make sure that the update is coming from the same author as the one who
created the application that is already installed on the system. In addition to the
updates, the Android platform also relies on the certificates while granting
signature-level permissions to the applications during installation.

Android Manifest

Android applications are described to the system through a manifest file called
AndroidManifest.xml. All Android applications are expected to have this file in
their root directory. The Android manifest file presents essential information
about the application to the system in order to let the Android platform correctly
run the application's code and to grant the necessary privileges during
installation.

The Android manifest file provides the following information to the system:

It includes the name, package name, and the version number
of the application.

It indicates the minimum version of the API required for
running the application.

It describes the application’s components (activities, services,
broadcast receivers, and content providers) and their
capabilities in terms of the intents that they can handle.

It declares which permissions are required in order to access
protected parts of the Android runtime and also interact with
other applications running on the system.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

It declares the permissions that other applications are required
to have in order to interact with this application's components.

It lists the libraries that the application must be linked against
during runtime in order to operate.

The Android manifest file is an XML-formatted plain text file. Here is an example
of an AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.cm/apk/res/android"
package="com.apress.example"
android:versionCode="1"
android:versionName="1.0.0">

<application android:icon="@drawable/icon"
android:label="@string/app_name">

<activity android:name=".MyActivity"
android:label="@string/my_activity">

<intent-filter>
<action
android:name="android.intent.action.MAIN" />

<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<activity android:name=".MyPrivateActivity">
</activity>
</application>

<uses-permission
android:name="android.permission.CAMERA" />

<uses-feature
android:name="android.hardware.camera" />

<uses-sdk
android:minSdkVersion="5"
android:targetSdkVersion="9" />
</manifest>

downloaded from: lib.ommolkefab.ir

http://schemas.android.cm/apk/res/android
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Summary

This chapter introduced the Android application architecture by briefly reviewing
the most fundamental Android components, including activities, services,
broadcast receivers, content providers, and other user interface components.
We tried to shed light on one of the most confusing concepts of Android
development: the activity and service life cycles. Then we explored the
procedure to package Android applications and took a closer look at Android
manifest files. The next chapters show examples of these concepts in action.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Chapter

Eclipse Primer

Eclipse is the integrated development environment that we will be using
throughout our journey into Android development. Eclipse is much more than a
simple code editor. It is a highly powerful and complex platform for tools. From
that perspective, this chapter is a very important one, as we will establish the
framework for the following chapters by setting up the proper working
environment for Eclipse.

This chapter will provide an introduction to Eclipse, emphasizing the most
frequently used Eclipse components. Becoming familiar with Eclipse is the key
to a smooth Android development experience.

Eclipse History

In 1995, Sun Microsystems released the first public implementation of the Java
programming language to the public. Java's arrival divided the developer
community in two groups: one centered on Microsoft technologies and tools,
and the other centered on the Java platform.

Visual Studio was Microsoft’s tool platform that provided access to all Microsoft
technologies in an integrated fashion. There were numerous successful Java
development tools in the market, but they were not as closely integrated as
Microsoft technologies.

In the late 1990s, IBM was a major player in Java. IBM's main goal at the time
was to bring developers closer to Java middleware. IBM knew that the ideal
development environment must consist of a heterogeneous combination of tools
from IBM, third parties, and customers’ internal tools. IBM's Object Technology
International (OTI) lab, the folks behind the VisualAge products family, had
extensive experience building integrated development environments. As the first

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

step, VisualAge for Java Micro Edition was developed as a reimplementation of
the integrated development environment purely using the Java programming
language. Later, the VisualAge for Java Micro Edition code was used as the
basis for the Eclipse platform.

IBM was already aware that simply having IBM products on this new platform
was not enough to achieve broad adoption by the developer community. Having
integrated third-party tools was the key to the success of the Eclipse platform.
In 2001, IBM decided to adopt the open source licensing and operating model
for the Eclipse platform. IBM, along with eight other organizations, established
the Eclipse consortium. The main operating principal for the consortium was to
drive the marketing and relations for the Eclipse platform, while leaving the
control of the Eclipse source code to the open source community.

In 2003, the Eclipse platform, with its quickly growing set of open source and
commercial extensions, was becoming popular with developers. In 2004,
Eclipse Foundation, a nonprofit organization with its own professional and
independent staff, took over the full control of the Eclipse platform. Eclipse is
now the leading Java development environment. Due to its unique and
extensible architecture, it also is being used as a development environment for
many other programming languages.

Eclipse Architecture

As an Android developer, you will not need to interact with the internals of the
Eclipse platform. However, knowing its architecture will make it much easier for
you to conceptualize and understand how Eclipse works in general.

The Eclipse platform is primarily designed for building integrated development
environments. It is a highly extensible platform, rather than a custom tool for a
specific set of tasks.

The Eclipse platform defines the mechanisms and the rules, and allows tools to
be built on the top of them by providing a set of well-defined APIs. The Eclipse
platform is structured around the concept of plug-ins, as illustrated in

Figure 3-1.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Eclipse SDK
Java Development Tools B Eclipse Platform _I Bl
Plug-ins I~ - 9
Workbench Help
Plug-in Developer Perspectives
S PI- 11 Plug-in2
| Views ‘ Preferences i
PN
| Editor Area ‘ .
Team :[(Plug-in 3
C/C++ Development Tools):_
Plug-ins B ‘ Workspace |
Eclipse Runtime

Figure 3-1. Eclipse platform architectural overview

Plug-ins are the smallest unit of the Eclipse platform. They are structured
bundles of code that contribute a set of functionality to the platform. Plug-ins
can be developed, distributed, and deployed individually. The Eclipse platform
allows the plug-ins to be extensible as well. Plug-ins can provide a set of
extension points, through a well-defined API, for other plug-ins to expand their
functionalities.

Each subsystem in the Eclipse platform is based on a set of plug-ins. For
example, the Java Development Tools for Eclipse is a set of plug-ins that
provide Java development functionality to the platform in an integrated fashion.
Java Development Tools plug-ins are also extensible.

In this book, we are going to use Android Development Tools plug-ins. These
expand the existing Java Development Tools in order to provide Android-
specific development tools and functionality.

Eclipse platform’s core, also known as the Eclipse runtime, is responsible for
providing the infrastructure where the plug-ins can work and interoperate. The
Eclipse runtime also provides any utility servers that will make development of
new plug-ins easier for developers. At the time of writing, the latest version is
Eclipse Indigo 3.7.2.

In the following sections, we will set up the proper working environment for
Eclipse.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Installing the Java Development Kit

Eclipse is a Java-based application, and it requires a Java Virtual Machine in
order to run. You will need to install the Java Development Kit (JDK), and not
just the Java Runtime Edition (JRE), prior to installing Eclipse. Multiple JDK
flavors are supported by Eclipse, such as the IBM JDK, OpendDK, and Oracle
JDK (formerly known as Sun JDK). In this section, we will assume that you are
installing the Oracle JDK, the original JDK implementation, which supports a
broader range of platforms.

The version of the JDK needs to be compatible with the Dalvik virtual machine
as well, since we will be using Eclipse for Android development. At the time of
writing, the Dalvik virtual machine supports Java compiler compliance levels 1.5
and 1.6. Although the newer versions of the JDK can be configured to work at
those compliance levels, it is much easier to start with the corresponding JDK
version, JDK 6, instead.

Using your favorite web browser, navigate to
http://www.oracle.com/technetwork/java/javase/downloads/index.html. As
shown in Figure 3-2, you will be presented with a list of download options.

e Java SE Downloads - Windows Intemet Explorer [o] x]
9 &) v [Enpswwwo.. O] B 4] X [=] Java SE Downloads x
DF\)ACI—G unt | Helg) United Sistes ~ Communities > lams.. ~ lwanite. i} Secur
Products and Services Solutions Downloads Store Support Training Partners About Oracle Technology N
Oracle Technology Networ Java Java SE
ava SE Overview = Downloads | Documentation = Community | Technologies Training daveiSDKs aad
ava i
Java iz Java SE Downloads e
& Java M
Hext Release (Early Access) EmbeddedUse Previous Releases 5 g
Latest Release I L o 2 & Javafy
Javs Carg
¥ MetBeans IDE
e 5 Java Resour
b < = javaFx ¥ NetBeans = % Mewto Java?
ava Card 5 APls
New o Java Java Platferm (JDK] Tu2 JavaFX 2.0.2 JOK 7u2 + NetBeans Bundle JOK Tui + Java EE Bundle * De'v'-s\ogar'[ram_in,j
1l | 3

Figure 3-2. Java download page on Oracle’s web site

Since we would like to download JDK 6 rather than the latest version of the JDK,
scroll down to the Java SE 6 section on the download page. At the time of
writing, the latest version of JDK 6 is Update 31. Click the Download button next
to JDK 6 to proceed.

downloaded from: lib.ommolkefab.ir

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Currently, the Oracle JDK does not provide an installation package for the Mac
OS X platform, since the installer is distributed through Apple’s software
updates. For all other major platforms, Oracle JDK installers are listed on this
page, as shown in Figure 3-3. The installation procedure for each operating
system varies. In order to make the installation experience as smooth as
possible, we will be covering the three major operating systems—Windows,
Mac OS X, and Linux—in the following sections.

& Java SE Development Kit 6u31 Downloads - Windows Intemet Explorer

* [l htottwwwo... O2] 5145 K| [dva 5E Devepment e 8d. % ||

s ol) Deve\ogarTrainin:J
Communty Java SE Development Kit 6 Update 31 Documentation
Java Magazine You must accept the Oracle Bini ode License Aqreement for Java SE to download this Java com
software,
Java net
(o Accept License Agreement @ Dpeciine License Agreement Stugent Develgper
Tutorials
Product / File Description File Size Download
Linux x86 (32-bit) 77.07 MB # jdk-6u1-linu-iSgs-rpm bin
Linux 86 (32-bit) 81.34 MB_¥ jdicfu31-linun-is85 bin
Linux Intel lanium (64-Bit) 60.27 ME ® jdk-6u31-linux-iaéd-rpm bin
Linux Intel tanium (64-bit) 67.92 MB # jdi-6ul1-inux-iafid.bin
Linux 64 (54-bit) T7.32ME # igk-Bu31-linux-xGd-rpm.bin
Linux x64 (54-bit) 81.62ME # jdk-6u31-linux-x5d.bin Subscribe Toc
Solaris x86 (32-bit) 81.23MB # jdi- -s0laris-iS86
Solanis x86 (32-bit) 137.35MB # |dk-Bu31-solaris-1586 tar.2
Solaris SPARC (32-bit) 86.2 MB §M—6u31fsolans—sgarc\sh
Solaris SPARC (32-bit) 141.89 MB_* jdk-Bu31-solaris-sparctar
Solaris SPARC (64-bit) 122418 # dk-Bu31-solans-sparcyd.sh
Solaris SPARC (64-bit) 1559 WB # jak-6u3i1-solans-sparcydtarg
Solarig X564 (54-bit) 85MB # jdk-6u3i-solaris-x54.sh
Solaris x64 (G4-bit) 12.25MB # jgk-Bu31-solanis-xBdtar?
Windows x86 (32-bit) 78.93 WMB # jdk-6u31-windows-1586.exe
Windows Intel Hanium (64-bit) 6334 1B # diBu3windows-iafd exe
Windows x54 (64-bit} 6955 MB_# jdk-6u31-windows-xfid exe
| | »

Figure 3-3. List of Oracle JDK installation packages for major operating systems

Installing the JDK on Windows

The Oracle JDK comes as an executable installer for the Microsoft Windows
operating system. The installation wizard will guide you through the process of
installing the JDK on your machine, as shown in Figure 3-4.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

]@ Java(TM) SE Development Kit 6 Update 31 - Setup [x|
S

= ORACLE’

<=
Javar

Welcome to the Installation Wizard for Java™ SE Development Kit 6 Update 31

This wizard will guide you through the installation process for the Java SE Development
Kit 6 Update 31.

Cancel |

Figure 3-4. Oracle JDK 6 installation wizard

The installation wizard will first install the JDK, and then the JRE. During the
installation process, the wizard will ask for the destination directories, as well as
the components to be installed. You can continue with the default values here.
Make a note of the installation directory for the JDK part.

The installation wizard will automatically make the necessary system changes.
The JDK will be ready to use upon completion of the installation process.

On Windows, the installation wizard does not automatically add the Java binary
directory into the system Path variable, so you’ll need to do this. Go to the
Control Panel and choose System (or from the Start menu, select Run, and
execute sysdm.cpl) to open the System Properties dialog. Switch to Advanced
tab, and click the Environment Variables button, as shown in Figure 3-5.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

| Computer Name] Hardware = Advanced | System Protection] Hemote]

*fou must be logged on as an Administrator to make most of these changes.

i~ Perfformance
Visual effects, processor scheduling, memory usage, and virttual memory

- User Profiles
Deskiop settings related to your logon

Settings...

r~ Statup and Recovery
System startup, system failure, and debugging irformation

Environment Variables... |

0K Cancel |

Figure 3-5. Advanced tab of the System Properties dialog

As shown in Figure 3-6, the Environment Variables dialog is separated into two
parts: the top one is for the user, and the bottom one is for the system.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

~User variables for oncinar

Variable | value !
TEMP %USERPROFILE%\AppData\Local\Temp
T™P %USERPROFILE%:\AppData\Local\Temp

New... Edit... | Delete |

r~System variables

Variable | value _:'
NUMBER_OF _P... 4 =
0S Windows_NT
Path C:\Program Files\Common Files\Microsof...
PATHEXT .COM;.EXE; .BAT;.CMD;.VBS;.VBE;.J5;.... LI
Edit... | Delete I
OK | Cancel |

Figure 3-6. Environment Variables dialog

In the System variables pane, click the New button to define a new environment
variable. Set the variable name to JAVA_HOME, and set the variable value to the
JDK installation directory, as shown in Figure 3-7. Click the OK button to save
the variable.

Variable name: [2ava_Home

Variable value: | C:\Program Files (x36)\Java\jdk1.6.0_31

OK Cancel |

Figure 3-7. Setting the JAVA_HOME system environment variable

In the list of system variables, double-click the Path variable, and append
3%JAVA_HOME%\bin to the variable value, as shown in Figure 3-8.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Edit System Variable [x|

Variable name: I Path

Variable value: | Windows Live\Shared; %JAVA_HOME%'bin
| OK | Cancel

Figure 3-8. Setting the Path system environment variable

Now the JDK is easily reachable from the command prompt. In order to validate
the installation, open a command prompt window by choosing Start Accessories
Command Prompt. Using the command prompt, execute javac -version. If the
installation was successful, you’ll see the JDK version number, as shown in
Figure 3-9.

\windows\system32\cmd .exe

IC:=\Usersoncinar>javac —version
ljavac 1.6.8_31

C:sUserssoncinar?

Figure 3-9. Windows command prompt showing the JDK version

Installing the JDK on Mac 0S X

The Apple Mac OS X operating system ships with the JDK already installed. It is
based on the Oracle JDK but configured by Apple for better integration with
Mac OS X. New versions of the JDK are available through the Software Update
window, as shown in Figure 3-10. Make sure that JDK 6 or later is installed on
the host machine.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

N.Yale Software Update

New software is available for your computer.
“"E y) If you don’t want to install now, choose Apple menu > Software Update

" when you're ready to install.

Install Name Version Size
Security Update 2012-001 1.1 202.3 MB
™ iTunes 10.5.3 105.5 MB
™ Safari 5.1.2 49,2 MB
HP Printer Software Update 2.8 102.9 MB
iPhoto Update 9.2.1 376.3 MB
£ Java for Mac OS X 10.6 Update 6 6.0 79.2 MB
™ Digital Camera Raw Compatibility U... 3.9 7.5 MB
@ Remote Desktop Client Update 3.5.2 3.7 MB

Java for Mac OS X 10.6 Update 6 delivers improved compatibility, security, and
reliability by updating Java SE 6 to 1.6.0_29.

Please quit any web browsers and Java applications before installing this update.
See http://support.apple.com/kb/HT4884 for more details about this update.

See hup:f/support.apple.com/kb/HT1222 for information about the security
content of this update.

Note: Use of this software is subject to the original Software License Agreement(s)
that accompanied the software being updated. A list of Apple SLAs may be found
here: http://www.apple.com/legal/sla/.

Java for Mac OS X 10.6 Update 6: Downloaded.

.} You must restart your computer after the updates are installed.

(Hide Details) (NotNow) (Install 8 Items)

b

Figure 3-10. Mac 0S X Software Update window showing the JOK

Installing the JDK on Linux

The JDK installation procedure varies based on the Linux distribution. Due to the
licensing terms of the Oracle JDK, it is not included in any Linux distribution.
Certain distributions come with a stub application, which allows you to install
the Oracle JDK without going through the web download process. As shown in
Figure 3-3 earlier in the chapter, Oracle’s web site provides two types of
installation packages for Linux systems:

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The installation package with a name ending with -rpm.bin
contains a set of installable packages in Red Hat Package
Manager (RPM) format. If you are using a Linux distribution,
such as Red Hat Enterprise Linux, Fedora, CentOS, SUSE, or
openSUSE, you can download this installation package.

The installation package with a name ending with .bin contains
a self-extracting ZIP archive file. This installation package
works on any Linux distribution, although it will require some
manual system configuration after the installation.

In this section, we will assume that you are running a Linux distribution with
RPM support.

After downloading the RPM-formatted installation package, open a terminal
window. As shown in Figure 3-11, first invoke chmod +x jdk-6u31-linux-i586-
rpm.bin to enable the execution bit on the installer. To start the installation,
invoke sudo ./jdk-6u31-1inux-i586-rpm.bin on the command line. Depending
on the version of JDK, replace jdk-6u31-1linux-i586-rpm.bin with the
appropriate file name.

Preparing...

Unpacking J4

cinar@linux-75xf.site:~/Downloads

Edit View Search

2, by Info-ZIP (Zip-Bugs@lists.wku.edu).

Figure 3-11. Installing the Oracle JOK on Linux

NOTE: On the Linux operating system, installing a software package requires super-
user (root) permissions. The sudo command will prompt for a password to grant
super-user permissions prior to starting rpm.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Installing Eclipse

Installing Eclipse is a fairly straightforward process, although the installation
procedure for different operating systems varies. In this section, we will again
cover the three major operating systems: Windows, Mac OS X, and Linux.

Using your favorite web browser, navigate to the Eclipse web site,
http://www.eclipse.org, as shown in Figure 3-12 (the site may look different by
the time you are reading this). Throughout this book, we will be using the latest
version of Eclipse. At the time of writing, the latest version is Eclipse Indigo
3.7.1.

B Eclipse - The Eclipse Foundation open source community website. - Windows Intemet Explorer

G_ v| hitp:/fwwwee... Ov| 5 Y7 A [Echpss - The Eclipse Foundat.. X

P Yoo Tl . LAST WEEK FOR EARLY IR
=l 56n A e ™ 38 P ® = d

Home Downloads Users Members Committers Resources Projects About Us Se.

Featured Eclipse Project

The CDO (Connected Data Objects) Model Repositary

.' Get Started now.. B
% | s a distnbuted shared model framework for EMF models J'

Download Eclipse
| and meta models.
CDO is also a model runtime environment with a focus

on orthogonal aspects like model scalability, transactionality,

O] —

persistence, distribution, queries and more. » Plugins » Contribute
The Mo » Documentation » Report a Bug
Announcements CRYSTAL REPORTS

FOR ECLIPSE

Last Week for EclipseCon Early Registration Prices

Ther f for Con registratio The pricess will go up after Febriary 14

Figure 3-12. The Eclipse web site

Follow the link for the download page. As shown in Figure 3-13, you will be
presented with a long list of downloadable Eclipse flavors for the operating
system of your choice (in this case, Windows). From this list, Eclipse Classic is
the most basic Eclipse package that you can download. It contains only the
Eclipse platform and the Java Development Tools (JDT). You can certainly start
from this package and later install other plug-ins of your choice.

downloaded from: lib.ommolkefab.ir

http://www.eclipse.org
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

| & Eclipse Downloads - Windows Intemet Explorer
KD o = B mwimmwe. O] 15 [+ X [ecipes Dowricads x [

2]
Home Downloads Users Members Committers Resources Projects About Us Se

Packages Developer Builds Projects I Like

Compare Packages Older Versions Eciipse Indigo (3.7.1) Packages for [N LN W3(1}14

You will need a Java runtime

-J; Eclipse IDE for Java Developers. 126 8 Windows 3281t opvironment (JRE) to use Eclipse (J
" Downloaded 3,401,723 Times Details = Windows 64 Bit SE 5 or gresiet i recommendec), AL
downlgads are provided under the ten
#11 Eclipse IDE for Java EE Developers, 212me JBL Windows 32 Bit and conditions of the Eclipse Found
=8 Downloaded 2 415139 Times Details mitm Windows 64 Bit Software User Agreement unless

otherwise spacified

. Eclipse Classic 3.7.1. 1748 B 32 Bit
Downloaded 1,241,158 Times Details Other Downloads = Windows 64 Bit .
'(:‘,[!YSI::TJI_ITFBEEPORTS'
)R ECLIPS
@* Eclipse IDE for C/C++ Developers (includes Incubating compenents). [, Windows 32 Bit B
107 MB i Windows 64 Bit

Downloaded 720,118 Times Details

L

F‘e%

Eclipse IDE for JavaScript Web Developers. 110M8 _['f;? Windows 32 Bit

4

Figure 3-13. Eclipse download page

Other Eclipse packages in this list simply contain a set of frequently used plug-
ins prepackaged with the Eclipse platform for major programming languages.
You can find a detailed comparison of these packages at
http://www.eclipse.org/downloads/compare.php.

Installing Eclipse on Windows

The Eclipse installation package for Microsoft Windows comes as a ZIP archive
file. Simply right-click the file and choose Extract All... from the context menu.

As shown in Figure 3-14, Windows will prompt for the destination directory to
extract the files. In this section, we will assume that the destination directory is
C:\, the root of the C drive.

downloaded from: lib.ommolkefab.ir

http://www.eclipse.org/downloads/compare.php
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ll Edract Compressed (Zipped) Folders [x|

: | 1 Bxdract Compressed {(Zipped) Folders

Select a Destination and Extract Files
Files will be extracted to this folder:

] Ch Browse... |

¥ Show extracted files when complete

Eximcll Cancel

Figure 3-14. Extracting the Eclipse ZIP package to its destination
When the process completes, Eclipse will be installed in the C:\eclipse

directory, as shown in Figure 3-15. You may now consider making a shortcut to
the Eclipse application.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[EE. I .
' - Windows (C?) - eclipse ~ [2)| [Search edlipse 2l
Organize v [Open New folder == | @
Mame = Date modified | Type Size l |
configuration 2/9/2012 10:50 ... File folder
dropins 9/9/2011 5:34 PM File folder
features: 2/9/2012 10:51 ... Fle folder
p2 2/9/2012 10:50 ... File folder
plugins 2/9/2012 10:51 ... File folder
readme 2/9/2012 10:50 ... File folder
.eclipseproduct 2/9/2012 10:50 ... ECLIPSEPRODU... 1KB
artifacts 2/9/2012 10:50 ... XML Document 95 KB
2/9/2012 10:50 ...
+ edipse 2/9/2012 10:50 ... Configuration set... 1KB
" | eclipsec 2/9/2012 10:50 ... Application 18 KB
= lepl-wv10 2/9/2012 10:50 ... HTML Document 17 KB
= |notice 2/9/2012 10:50 ... HTML Document 9 KB
eclipse Date modified: 2/9/2012 10:50 AM Date created: 3/21/2011 5:05 PM
Application Size: 42.5 KB

Figure 3-15. Eclipse files after installation

Installing Eclipse on Mac 0S X

The Eclipse installation package for Mac OS X comes as a GZIP compressed
TAR file. When the download completes, Eclipse will show up in your Downloads
directory. Depending on the version of the operating system, you may need to

double-click to extract the archive file, if it is not already extracted.

You can drag-and-drop Eclipse into your Applications directory from the
Downloads directory, as shown in Figure 3-16.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Downloads anNne (i3] Applications =

<[» = m|m © | #- q («]>] = [[m o |[#-] a
DEVICES DEVICES

. Macintosh HD 2| Macintosh HD 0
£ iDisk I iisk *

PLACES PLACES i

E Desktop eclipse E Desktop

A cinar A& cinar App Store

Applications

}J_ Applications

1| Documents | Documents -:)
SEARCH FOR SEARCH FOR -f £
L) Today “) Today ¥
L) Yesterday L) Yesterday Automator
L) Past Week ~) Past Week
(@] All Images] All Images
L& All Movies L] ANl Movies
L] All Documents L] All Documents ¥l
v
195.19 GB available e]k 52 items, 195.19 GB available i —

Figure 3-16. Moving Eclipse from the Downloads directory to the Applications directory

Later, you can also add Eclipse to your dashboard for easy access.

Installing Eclipse on Linux

The Eclipse installation package for Linux comes as a GZIP compressed TAR
file. Open a terminal window and change directory to the destination where you
would like install Eclipse, as shown in Figure 3-17. To extract Eclipse files, issue
tar zxf eclipse-java-indigo-SR1-linux-gtk.tar.gz on the command line by
replacing the file name depending on the version of Eclipse.

cinar@linux-75xf.site:~/bin

File Edit View Search Terminal Help
1 zxf eclipse-]
= mv eclipse]
in= ln -s eclipse-ind
in> eclipsefl

Figure 3-17. Installing Eclipse on Linux

Eclipse is now ready to use. You may find it convenient to make a shortcut to
the Eclipse application for easy access.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Exploring Eclipse

You are now ready to start using Eclipse. In this section, we will start exploring
Eclipse and the terminology it uses.

Workspace

When you start Eclipse, you will be prompted to choose the workspace
directory, as shown in Figure 3-18. In Eclipse terminology, workspace is the
directory where your projects, source code, and Eclipse settings will be stored.

& Workspace Launcher [x|

Select a workspace

Edlipse SDK stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: v] Browse..

[" Use this as the default and do not ask again

OK I Cancel

Figure 3-18. Eclipse workspace selection dialog at startup

If you move forward with the default setting, Eclipse will make a new directory
named workspace under the user’s home directory. In the Workspace Launcher
dialog, you can also set this workspace as the default, and Eclipse will not
prompt for it again next time.

Workspaces are very useful for organizing your projects. For example, |
simultaneously work in two main workspaces: one for work-related projects and
another for my garage projects. However, many Eclipse developers are just fine
working with a single workspace.

After you choose your workspace, Eclipse will greet you with the Welcome
screen, as shown in Figure 3-19. Here, you will find useful links to Eclipse
resources such as tutorials and examples. In the top-right corner, click the
Workbench link to get to the main screen.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ehva—EdipseSDK HEE|
File Edit Mavigate Search Project Bun Window Help

& x A B

@ £ H

Welcome to Eclipse S

“Overview Tutorials
Get an overview of the features Go through tutorials
.\
Samples What's New
Try out the samples Find out what is new

Figure 3-19. Eclipse’s opening Welcome screen

TIP: You can go back to the Welcome screen at any time by choosing Help
Welcome.

Workbench

In Eclipse terminology, Workbench refers to the desktop development
environment. It is the name given to the Eclipse window shown in Figure 3-20.
Each Workbench contains a set of perspectives with their respective views,
editors, menu, and toolbar items.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Java - Example/src/com/apress/example/Main java - Eclipse SDK

o i = =)—“{\7 ¥ow~
! Example Menu \ ! :::::;::r c/ Toolbar -\- .-——7/ -t s
Do 5 o _ ¢ -

\ B Main
£ comapress s - Perspectives B ciniSusingl]) - vod
1 com.apress, " ng|
@} A sV S
[= JRE System Library [JavaSE-1.6, * Main method /" __

* @param args main arguments, Editor
-/ -
public statie veid main{String[] args) { —

the console

N 4/ Write a message to

== '\ System out printin{"Hello Eclipse™)]
Fast VIEWS/ }) .
iK1 _JJ < |
[Probleme 3 _@ Javadoc) (@, Declaration it =
0 items
Description | Resource Path | Location | Type |

. I

‘Writable Smant Insert 16: 45

Figure 3-20. Eclipse Workbench

You can open more than one Workbench at a time. To open a new Workbench,
choose Window » New Window.

Perspectives

A perspective defines the set of views and the layout of views in the Workbench.
Each perspective is designed to facilitate accomplishing a specific type of task:

Java perspective: This perspective combines views, menus,
and toolbars that are commonly used while developing Java
applications.

Debug perspective: This perspective contains views that are
related to troubleshooting and debugging Java applications.

Eclipse comes with predefined perspectives for common tasks. You can also
modify perspectives and define new ones based on your requirements. To do
so, select Window » Customize Perspective.

You can use the perspective switcher, as shown in Figure 3-21, or select Window
> Open Perspective to switch between perspectives at any time.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9| &’ Java 75 Debug
= B[5 outline %X . =8|

Figure 3-21. Perspective switcher

Eclipse will also make recommendations to change perspectives when you
initiate a new task, such as debugging a project. This allows automatic
switching between perspectives depending on the current task.

Editors

Editors allow you to edit source code and resource files. Eclipse supports
multiple editor flavors depending on the file types. For example, the source code
and the XML resource files are handled with different editor types.

Most file types are already mapped with the correct editors in Eclipse. If Eclipse
cannot find an internal editor for a specific file type, it relies on the operating
system to find an external editor. For example, if you try to open a PNG
formatted graphic file, since Eclipse does not have an internal graphic editor, it
will launch the default editor for PNG files by relying on the operating system’s
mapping. Depending on the type of the active editor, only the relevant toolbar
and menu items are shown.

Any number of editors can be open at once. Editors are presented as separate
tabs in the editor area, as shown in Figure 3-22. Only one editor can be active at
any given time.

Main java X \/| Book java =B

=
* Main class for our example.
* @author Onur Ginar
*/
public class Main {
r~
* Main method.
* @param args main arguments.
g7 4l
public static void main(String[] args) {

// Write a message to the console
System.ow?.printin("Hello Edlipse™)]

H
4 o

Figure 3-22. Editor area

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

You can split the editor area into multiple tab groups by right-clicking the editor
tab, choosing Move » Editor from the context menu, and moving the detached
editor to your preferred corner location.

Views

Views provide alternative presentations for the project and the editors, allowing
easy navigation and access to information within the Workbench. For example,
the Outline view provides a list of the methods and variables in the currently
edited source file, allowing easy navigation within the editor.

Eclipse comes with dozens of views. To open a new view, choose Window »
Show View. As shown in Figure 3-23, the drop-down menu shows only the most
frequently used views. For a full list, choose Other....

Run | Window Help

2, New Window s . " B | &2
New Editor L e
= E (B
Y Open Perspective » || o= Ou
o TR + 7 :
Customize Perspective... Console Alt+Shift+Q. C
Save Perspective As_.. |, Declaration Alt+Shift+Q. D e-¢
Reset Perspective... <] Bror Log Alt+Shift+Q. L
Close Perspective @ Javadoc Alt+Shift+Q, J
s M Close All Perspectives %= Navigator
| Navigation » 5 Outline Alt+Shift+Q, O
) = a— £ Package Explorer Alt+Shift+Q. P
args main arguments |%. Problems Alt+Shift+Q, X
static void main(String[] arg! >
i = I Project Explorer
_ . " Search Alt+Shift+Q, S -‘J—
@ Javadoc - Tasks
= Templates |
[% Type Hierarchy Ateshit-Q. T ||

Other... Alt+Shift+Q, Q

Figure 3-23. Choosing a view
Depending on the layout of the perspective, views can be visible at all times,

stacked in a tabbed notebook, or minimized. Views may have their own toolbars
and menus embedded in the view area.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Fast Views

Fast views are hidden views that can be quickly opened and closed using the
Fast View icon on the status bar in the bottom-left corner of the Workbench, as
shown in Figure 3-24.

[Show View as a Fast View|

Figure 3-24. Fast View icon on the status bar

Clicking the Fast View icon brings up a drop-down menu, as shown in
Figure 3-25.

% Ant

=] Console

:_1'=_.;,. Declaration

&) Emor Log

@ Javadoc

‘“=. Navigator

5% Outline

[Package Explorer

%
§
g
T

-]
g
g
]
Iol=

Other... Alt+Shift+Q. Q

Figure 3-25. Fast view drop-down menu
Fast views work like other views, but they don’t take up any screen space when

they are not in use. You can make any view a fast view by dragging and
dropping it to the Fast View icon.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

TIP: Alternatively, the same type of behavior as fast views can be achieved by
minimizing the views. Minimized views are displayed in a toolbar-like fashion. They
are much easier to activate than fast views, since each minimized view is easily
identifiable by its icon, which is always visible on the display.

Quick Views

Quick views are hidden views that are shown on the top of the editor area when
triggered through a key combination. Quick views are designed to provide easy
access to information about the element under the cursor or the currently active
editor. Quick Outline view and Quick Type Hierarchy view are examples.

Menus

Eclipse comes with different kinds of menus. Some of these menus are harder
to discover than others. The most visible one is the main menu across the top of
the Workbench, as shown in Figure 3-26.

& Java - Example/src/com/apress/example/Main java - Eclipse SDK
File Edit Source Refactor Navigate Search Project Run Window Help

Figure 3-26. Main menu

Views may also have their own menus, as indicated by a downward-facing
triangle icon on the view’s toolbar, as shown in Figure 3-27. Click this icon to
display the view’s menu.

=08

= .az \ \? @ \-L o
; :\ com.apress.example v Filters....
(_',‘_v“, Main .

b @ 8 main(String[]) - & Go Into Top Level Type

v ", Link with Editor

iz Visible Categories...

Figure 3-27. A view menu

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Child windows in the Workbench also provide a menu, also known as the
system menu, for window-related operations. This menu can be activated by
right-clicking the window’s title bar, as shown in Figure 3-28.

bl Restore i java
Move Y
Size » kample.
Minimize
Maximize
Close

Close Others

Close All
_p arguments.

New Editor = _
n({String[] 2
// Write a message to the col

Figure 3-28. A system menu

Editors and most views also provide context menus for various sets of tasks.
You can access this menu by right-clicking anywhere on that view, as shown in
Figure 3-29.

Open Type Hierarchy F4
Show In Alt+Shift+W »
of Cut Qi +X
= Copy Cd+C
= Copy Qualified Name
- Paste Cd+V
_L K Delete Delete
4
b Refactor Alt+Shift+=T »
References »
] Declarations »
Run As »
Debug As »

Figure 3-29. A view menu

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Toolbars

Toolbars provide shortcuts for common tasks. The Workbench contains multiple
types of toolbars. The most important one is the toolbar below the main menu at
the top of the screen, as shown in Figure 3-30. This toolbar contains icons for
the most frequently used Eclipse tasks.

G . & | ﬁ;; - QA) - 1_,-;" - | 1_§:| & - ® 4~ © 4@ m |2 - ' L ==
Figure 3-30. Top toolbar
Depending on the editor or view in focus, the toolbar items may toggle between

enabled and disabled states to reflect the availability of the task in the current
context.

Another toolbar appears in the bottom-right corner of the Workbench. It
contains shortcuts to the resources mentioned in the Welcome screen.

Views may also have toolbars. These toolbars are located within the view,
directly below the view title, as shown in Figure 3-31.

5% Outline 53 . =0)
S " Y e v

Figure 3-31. Outline view toolbar

Eclipse also provides a toolbar to provide easy access to minimized views, as
shown in Figure 3-32.

==

'S

Figure 3-32. Toolbar for minimized views

Projects

A projectis the largest structural unit in Eclipse, which is used to group and
organize related files, folders, resources, settings, and other artifacts. For
example, a Java project is a group of source files, resources, and settings.

Projects available in the current workspace are presented to the user through
the Project Explorer view, as shown in Figure 3-33.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#+|J] Authorjava
[#-1J| Book java
: -] Main java
-2 JRE System Library [JavaSE-1.6]

Figure 3-33. Project Explorer view

Projects can either be open or closed. When a project is in the closed state, it
requires less memory, it is not examined during builds, and it is not editable in
the Workbench. It is always a good practice to close projects to improve the
build time of the active project.

To create a new project, choose File » New Project from the top menu bar. You
will see the New Project dialog with a list of available project types, as shown in
Figure 3-34.
(Etenpres —___ EEE
Select a wizard
Create a Java project

Wizards:
hrpe filter text

BEE ..o Project
¢ Java Project from Existing Ant Buildfile
= Plug-in Project

= General

= Java

= Plug-in Development

B B8 B
|

w':P ¢ Back Next > Finish Cancel

Figure 3-34. New Project Wizard dialog

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Summary

In this chapter, we first walked through the steps for setting up the proper
working environment for Eclipse on Microsoft Windows, Mac OS X, and Linux
systems. Next, we briefly reviewed the Eclipse architecture to better
conceptualize how the Eclipse platform works in general. Then we explored the
most frequently used user interface components. such as workspaces, the
Workbench, perspectives, editors, and views.

This chapter established the foundation for subsequent chapters. In the next
chapter, we will explore the navigation, refactoring, prototyping, and other
advanced features provided by the Eclipse platform.

References

The following references were used for this chapter:

A Brief History of Eclipse,
http://www.ibm.com/developerworks/rational/library/novo5s
/cernosek

About the Eclipse Foundation, http://www.eclipse.org/org/

Eclipse Platform Technical Overview,
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

Eclipse documentation,
http://help.eclipse.org/indigo/index.jsp

downloaded from: lib.ommolkefab.ir

http://www.ibm.com/developerworks/rational/library/nov05
http://www.eclipse.org/org/
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://help.eclipse.org/indigo/index.jsp
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Chapter

Mastering Eclipse

In the previous chapter, we explored the most frequently used Eclipse
components. However, Eclipse has much more to offer.

Large and complex projects, especially when multiple developers are involved,
can quickly become difficult to follow and navigate. In this chapter, we will
explore the advanced Eclipse navigation features, such as outlines, type and call
hierarchies, and markers, that help developers easily find their way around the
code.

Besides the navigation, day-to-day software development also involves a lot of
time-consuming and redundant tasks, such as writing the getters and setters for
each member field, refactoring the code, and updating all the references to it. In
this chapter, we will explore the extensive code generators and code
manipulators that are provided by Eclipse to handle these labor-intensive tasks.
Employing these powerful features enables developers to code much faster, as
they can dedicate more time to the actual application.

Navigation

Navigating between different components of a complex project, or even within a
large source code file, can easily become a very time-consuming exercise.

Being able to navigate easily in a complex project is one the biggest
requirements of any graphical development environment. Eclipse provides many
advanced functions to streamline the day-to-day development experience;
however, most of these nice features are hidden in the platform. Here, you’ll
learn how to use some of the navigation features, including working sets, Outline
view, Type Hierarchy view, Call Hierarchy view, markers, and search.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Working Sets

Working sets allow further grouping of elements, such as projects, files,
resources, and breakpoints, for display and operational purposes. Working sets
are one of the most important features of Eclipse to facilitate the navigation
within the workspace. Working sets can be used as filtering criteria for many
views, and also to build a certain portion of the workspace using the build
system.

By default, every element in the workspace is considered to be a member of the
Window working set. In order to define a new working set, first select an
element, such as a file on the Workbench, and then right-click to activate the
context menu and choose Assign » Working Sets..., as shown in Figure 4-1.

& Java - Example/src/com/apress/example/Main java - Eclipse SDK

File Edit Source Refactor Navigate Search Projed Run Wind
| % - |%-0- Q- |HE-|®F-|F
Ea— —
Open F3 3
Open With >
Open Type Hierarchy F4 r
Show In Alt+Shift+W » L
:=| Copy Qr+C
[Mainji &= Copy Qualified Name
" Paste Cl+V
¥ Delete Delete F
Build Path »
Source Alt+Shift+S » |-
Refactor Alt+Shift+T » |-
i3 Import ...
References »
Dedlarations »
] e oy + Refresh F5 I
i) | Assign Working Sets_ .. L
Run As »
Debug As
Team »

Figure 4-1. Choosing Assign Working Sets from the context menu

The Working Sets Assignments dialog will appear, showing a list of existing
working sets. Click the New button on the right to define a new working set.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Eclipse will display the New Working Set wizard, starting with a list of available
working set types that are applicable to the selected element. In the example in
Figure 4-2, we have selected a Java source file, and the available working set
types are populated based on that source. Select the type of the working set
and click Next to move to the next step.

[€ NewWorkingsete ~ HEHA]| l

Select a working set type ==
Working set for Java elements # —
'

Working set type:

)

L Resource

@ cBack | Next> | Finich Cancel

Figure 4-2. Starting the New Working Set wizard

In the next step, give a name to this new working set. You can also add other
elements to it, as shown in Figure 4-3.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& New Working Set [[O] x|
Java Working Set i
Enter a working set name and select the working set elements. f\(ﬁ
Working set name:
|Data Model
Workspace content: Working set content:
1= Example Add > \J| Book java
Add Al ->
<- Remove
<- Remove All
‘i;"jJ < Back I Next > | Finish | Cancel

Figure 4-3. Naming and adding elements to the working set

When you select Finish, the Working Set Assignments dialog will be shown

again, this time with the newly defined working set in the list and checked, as

shown in Figure 4-4.

& Working Set Assignments [_ O] x]
Select working sets for 'Book java':

A
@ [ok] canca |

Figure 4-4. Working Set Assignments dialog showing the new working set

This new working set can be used as filtering criteria in multiple places. As an
example, let’s filter the content of the Package Explorer view with the newly
defined working set. Select the view’s drop-down menu by clicking the
expansion arrow icon on the Package Explorer’s toolbar, as shown in Figure
4-5. Choose Select Working Set... to set the working set to use. Recently
used working sets get added to the context menu also for easy access.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

IL Main java ﬁg"*.‘_‘
package com.apress.example;
Top Level Hements 4

Select Working Set ...
Deselect Working Set
Edit Active Working Set...

|41 Main java

"1 Window Working Set

= JRE System Library [JavaSE-1.6] ' 2 Data Model lm
s
oy [args) {
Package Presentation 2 dc iupse“ "'..;

v Show 'Referenced Libraries’ Node

%, Link with Editor

||C_ Problems 23 @ Javadoc| 2, Declaration |

Figure 4-5. Package Explorer view menu

Now the Package Explorer view will filter its content to reflect only the elements
that are members of the selected working set, as shown in Figure 4-6.

E\LEJ Example
SRz com apress example!

\J] Book java

Figure 4-6. Package Explorer view filtered by a working set

Outline View

The Outline view provides a structural view of the currently open file in the
editor. It allows quick navigation through the content of the editor. The Outline
view toolbar offers options for filtering and ordering the view’s content.

The content of the Outline view is editor-specific. Some editors, such as the
plain text file editor, do not support Outline view. While using the Java editor,
Outline view shows classes, variables, and methods in the current Java file as
structural elements, as shown in Figure 4-7.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

32 Outine x =]
BV e xV
------ # com.apress.example
=© 23
------ o title : String
------ o author : Author

get Title() : String
set Title(String) : void
getAuthor() : Author

setAuthor{Author) : void
~ @ a toString() : String

Figure 4-7. Outline view

of a Java file

The Outline view is visible by default in the Java perspective. To add the Outline
view to another perspective, choose Window » Show View » Outline.

There is a quick view alternative to the Outline view, known as the Quick Outline
view. This view is not visible by default. To display it, press Ctrl+0 on Windows

and Linux, or Command+O on Mac OS X. It will appear in the editor area, as
shown in Figure 4-8

i [7] Main Jjava

“. [7] Author java

=V ol
* Book publication.

{ [7] Book java SS‘_V

* @author Onur Cinar
*/
public class Book exter o
/** Book title. */ -
private String title: th com.apress.example
253 Book
- Bool;lalumh:r .{n i o title : String
private L - o author : Author
-~ ERN Book(String)
:Cmmctor. -© getTitle() : String
- : - ® setTitle(String) : void
@param isbn 1SB}
o] @ getAuthor() : Author
public Bo?k(Stq'ng is - @ setAuthor(Author) : void
super(“Book™. isb @ 4 toString() : String
-~
* Gets the book title
= Press "‘Ctri+0’ to show inherited members]
* @retumn book title-
f
public String getTitle() {

downloaded from: lib.ommolkefab.ir

Figure 4-8. The Quick Outline view is shown at the top of the editor.

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

By default, the Quick Outline view shows the class fields and methods. Pressing
Ctrl+0 a second time expands this list to cover inherited fields, methods, and
types. Inherited elements are displayed in gray to make them easily
distinguishable.

The Quick Outline view also supports automatic filtering by allowing the user to
type the initial letters of the element to narrow its content. Like other views, the
Quick Outline view has its own drop-down menu to allow further customization.

Type Hierarchy View

The Type Hierarchy view is Java-specific and shows subtypes and supertypes
of the selected Java object. It allows you to discover the type hierarchy quickly
and navigate through the types.

In order to launch the Type Hierarchy view, you will need to first select a Java
object from either the Package Explorer view or the editor. After selecting the
object, you can open the Type Hierarchy view in three ways:

Press F4.

Right-click and choose Open Type Hierarchy from the context
menu, as shown in Figure 4-9.

In the top menu bar, choose Window » Show View » Type
Hierarchy.

Lﬂ Main java I

) A
i

* Book publication.

* @author Onur Ci
*/ Undo CuleZ
pi.b}E: Edm'g‘l)c’k_‘ Reveit File
private StrirzjrtilJ Save CtrleS
/** Author objec Open Declaration F3
pivae Min g
- Open Call Hierarchy Cirl+Alt+H
* Constructor. Show in Breadcrumb Alt+Shift+B
=) Quick Outline Qrd+0
./E"a'a" isbn Quick Type Hierarchy Ctd+T
public P¥(str Open With >
super("Book™ Show In Alt+Shift+W »
Cut QX
e book oY QulsC
- Gets the Copy Qualified Name
* @retum book, Paste Ctl+V

Figure 4-9. Selecting Open Type Hierarchy from the context menu

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Type Hierarchy view is separated into two panes, as shown in Figure 4-10.
The top pane shows the type hierarchy for the selected Java object. The bottom

pane shows the member list.

o e+ N
‘Book - com_apress . example’ - in working set: Wik =

a1 o @ -

2-O Object
23" AbstractPublication

® Book 2| L AR W e
o author

o title

© ° Book(String)

@ getAuthor() - Author

® getTitle() - String

® setAuthor{Author) : void

© setTitle(String) : void

@ »toString() : String

Figure 4-10. The Type Hierarchy view is separated into two panes.

The Type Hierarchy view has its own menu, which can be activated by clicking
the expansion arrow in the top-right corner. From this menu, you can further
filter the type hierarchy by a working set.

In addition to the menu, the Type Hierarchy view has two toolbars: one for each
pane. The toolbar for the top pane provides icons to switch between subtype

hierarchy, supertype hierarchy, and complete type hierarchy. The toolbar for the
bottom pane provides icons to filter and sort the member list.

Double-clicking any element in this view allows you to automatically open it in
the editor area.

As with the Outline view, a quick view alternative is available. To open the Quick
Type Hierarchy view, press Ctrl+T on Windows and Linux, or Command+T on
Mac OS X. It appears at the top of the editor area, as shown in Figure 4-11.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[J_J Main java [J) Author java j [J] Book java 8] AL
=== =l

* Book publication.
./E L Gmﬁ'i’ype hierarchy of ‘com.apress.example.Book= +
public class Book ex
/** Book title. */ ; P
private String title E"”'G, Ot’fd -javalang
B5--(&* AbstractPublication - com_apress.exan|
- Book authr. *)
private Author aut
-
* Constructor.
* @param isbn 1S
=/
public FRE(String
("Book™. i
r~] »
* Gets the book ti l | —I
. | Press "Ctri+T to see the supertype hierarchyj

* @retum book title.
Fiol

Figure 4-11. Quick Type Hierarchy view displayed in the editor

Call Hierarchy View

Another Java-specific view is the Call Hierarchy view, which shows the callers
and callees of the selected Java member object. It allows you to quickly
discover the call hierarchy within the code and to navigate through the calls.

To launch the Call Hierarchy view, first select a Java member object, and then
use one of the following methods:

Press Ctrl+Alt+H on Windows and Linux, or Control+Alt+H on
Mac OS X.

Right-click and choose Open Call Hierarchy from the context
menu, as shown in Figure 4-12.

In the top menu bar, choose Window » Show View » Other... »
Call Hierarchy.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[7) Main Jjava

n Author java X | Book java

/™ Last name. */
private String lastName:

/:‘C tructor Undo CuleZ
*/ Reveit File
public Author() {

Save Ctel+S

Open Declaration F3
7~ Open Type Hierarchy F4
:Gels the first name. Open Call Hierarchy Cird+Alt+H

Show in Breadcrumb Alt +Shift +B

/ ’ Quick Outline ar+0

public String getFirstName Quick Type Hierarchy Cird+T
retum firstName: Open With ;
Show In Alt +Shift+W »

/‘:—Sets the first name. Cut CreeX

g Copy CtrleC

* @param firstName first 1 Copy Qualified N
7
public void setFirstName(S ~ Faste QrisV

Figure 4-12. Selecting Open Call Hierarchy from the context menu

The Call Hierarchy view also has its own menu. You can activate this menu by
clicking the expansion arrow, as with the other views. This drop-down menu
allows you to change the Call Hierarchy mode between caller and callee
hierarchies. It also provides filtering capabilities, such as filtering by field access
type while exploring field access call hierarchies.

As shown in Figure 4-13, the call hierarchy is displayed in a tree-like fashion on
the left. The right side of the view is used to show the line number and the
function that is called. When you click the plus icon on the left side of the tree
items, the call hierarchy discovery continues one more step. The plus icon
disappears when the last method in the call hierarchy has been reached.

. Probl ! @ Javadoc| [Declarati I & (%l o2] ~ p¢ © = 8)
Members calling "getFirstName()’ - in work
E" @ getFirstName() : String - com.apress.example.Author | Line i Call
B @ toString() : String - com.apress_example. Author @ 23 toString()

=+ @ toStnng() : String - com.apress.example. Book

i.g main(String[) - void - com apress example_Main

| »

Figure 4-13. Call Hierarchy view

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Markers

Markers are metadata that can be associated with Workbench resources.
Markers are shown on the marker bar on the left border of the editor area.
Eclipse supports different marker types. In this section, we will review three
marker flavors: bookmarks, problems, and tasks.

Bookmarks View

Bookmarks provide a way to mark frequently used resources for easy access
later. While working in a complex project, certain parts of the code, such as the
main API, can be good candidates for bookmarks. You can add bookmarks for
specific lines within a file or for the entire resource.

The Bookmarks view provides a list of these bookmarks in a tabular format, as
shown in Figure 4-14.

(12 Problems | @ Javadoc [, Dedlaration QT)

2 items
Description + | Resource | Path | Location |
Author set first name Author java /Example/src/co... line 27
Main method Main java /Example/src/co... line 14

Figure 4-14. Bookmarks view

If Bookmarks view is not visible, you can add it to the current perspective by
choosing Window » Show View » Other... » Bookmarks.

To add a new bookmark, right-click the marker bar in the editor area and
choose Add Bookmark... from the context menu, as shown in Figure 4-15. A blue
bookmark icon will appear in the marker bar on the selected line to indicate that
the line is bookmarked. You can then manage bookmarks using the Bookmarks
view.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

] Book java

Main java

* @retum last name.
*/

PR R | U Spp—— | p——y | ioo——, Y 4
@ Toggle Breakpoint

Toggle Breakpoint Enablement

Go to Annotation Crk+1
Add Task...
v Show Quick Diff Ctrd+Shift+Q

Show Annotation
Show Line Numbers
Folding »

Breakpoint Properties...

Figure 4-15. Adding a new bookmark

Problems View

The Problems view provides a central location for various Eclipse components
to log problems, errors, and warnings. The Problems view presents this
information in a tabular format, as shown in Figure 4-16.

(R © v it

2 errors, 1 waming, 0 others
Description + | Resource | Path | Location [Type |
B @ Emors (2 items)
£ Type mismatch: cannot convert from int tc Author java /Example/src/co... line 15 Java Problem
41 Type mismatch: cannot convert from Strine Book java /Example/src/co... line 9 Java Problem
= & Wamings (1 item)
.1 The constructor Date(int, int, int) is depre: Author java /Example/src/co... line 17 Java Problem

Figure 4-16. Problems view showing existing issues

For example, during compile time, any error is first associated with the
corresponding resource through a marker, and then reported to the user through
the Problems view. Double-click the error message to quickly jump to the
corresponding resource.

By default, the Problems view shows all problems and groups them based on
their severity. Using the view menu (accessed through the window’s expansion
arrow), you can filter the list and change the grouping and sorting. When the
problems have been addressed, they are automatically removed from the
Problems view.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Problems view also provides help for fixing the reported problems, through
the Quick Fix functionality. To launch Quick Fix, press Ctrl+1 on Windows and
Linux, or Command+1 on Mac OS X, or choose Quick Fix from the context menu
of the selected problem item. Quick Fix provides a set of recommendations for
fixing the problem, as shown in Figure 4-17.

) Mainjave [Tl 1] Book java | = B[}z Type Hier 52 57 Oul

public class Author { ﬂ’l ‘Book - com.apress.example
/= First publication. */ = =
private Date firstPublication = new Data(12_12_12): [e ¢
/** First name¢ ? e “mmﬂim k = = ' Et:blic class Author {
private Siring * Create getter and setter for YirstPublication /- First name. */ iblic

= Rename in file (Cird+2, R) private String firstName;

s I:"‘Sr;m" i+ Rename in workspace (Alt+Shift+R)
phvaie SIS @ add @SuppressWamings ‘unused’ to YirstPublicati
£* 4
* Constructo Lo
-/ |
public Author
H
-~
“ Gets the fir_*| |]
= Press ‘Tab’ from proposal table or click for focu
* @retum first name. ™1 1T & setAuthorfAthor) - voit

Figure 4-17. Quick Fix provides recommendations for fixing a problem.

Tasks View

The Tasks view allows you to associate tasks with Workbench resources. For
example, a missing code segment or a known bug that needs to be addressed
can be expressed by associating a task with relevant resources. The Tasks view
presents this information in a tabular format, as shown in Figure 4-18.

L_: Problems | @ Javadoc | [, Dedlaration e |
o

items

"« | | Desecription_ - ~ | Resource_ [Path | location | Type |
. FIXME: First and last name are required. Author java /Example/src/co... line 19 Java Task
] FIXME: No error checking for missing fields. Book java /Example/src/co... line 68 Java Task
] FIXME: Title must be checked for null Book java J/Example/src/co... line 43 Java Task
TODO: Check Muthor java /Example/src/co... line 69 Java Task
TODO: Get books needs to be implemented Author java /Example/src/co... line 22 Java Task

Figure 4-18. Tasks view

Using the Tasks view’s drop-down menu, you can organize this list. For
example, you can reorder the list based on the task priorities or filter the list to
show only a certain type of task.

As with most markers, a new task can be defined by right-clicking the marker
bar on the corresponding line. You can also use certain keywords in the

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

resources, as shown in Figure 4-19. The latter approach is much more
frequently used by developers.

B Authorjava X

| [7] Main java || Bookjava | = 0]

FZ4TODO: Get books needs to be implemented ——J

~
* Gets the first name.

* @retum first name.
!

q Gl

'[! Problems | @ Javadoc [, Declaration [%] Tasks & . ¥.2 0
5 items
~_ |t | Description | Resource | Path [tocation | Type |
[] FIXME: First and last name are required. Author java /Example/src/co... line 19 Java Task
g FIXME: No error checking for missing fields. Book java /Example/src/co... line 68 Java Task
] FIXME: Title must be checked for null Book java /Example/src/co. .. line 43 Java Task
TODO: Check Author java /Example/src/co | line 69 Java Task

-- TODO: Get books needs to be implemented Puthor java /Example/src/co.. | line 22 I

Figure 4-19. Task automatically defined by TODO keyword

The following are the most common keywords used to automatically define a
task:

TODO: This keyword is used to record any missing code part
that needs to be implemented later. Developers mostly use
TODO to record tasks that they are currently postponing and
plan to address later.

FIXME: This keyword is mostly used to record any known bugs
in the code that need to be addressed.

When adding tasks to your resources, you are not limited to these keywords.
Other keywords can be defined through the Task Tags Preferences dialog, as
shown in Figure 4-20. To open this dialog, select Window » Preferences on
Windows and Linux, or Eclipse » Preferences on Mac OS X, and navigate to Java,
then Compiler, then Task Tags.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

fype filter text Task Tags & 5 v w
S:MEE e Confi ject Specific Settings...
El Help _er;r:bges incif#i;l'g;asks i:\ Jav;cnmned& The entry marked as default
& Install/Update will.be used i the code templates.
iy r— — |
i [Appearance ==
: [Build Path TODO (defauit) Normal =

[#- Code Style xXxXx Normal R ve
- Compiler =
; .- Building
-- Errors/Wamings Defauit
- Javadoc
Task Tags
(- Debug
- Editor
| [Installed JREs
- JUnit
- Properties Files Editor
- Plug-in Development
(& Run/Debug
- Team
V| Case sensitive task tag names
Restore Defaults Apply

a] | |
)

@ [ok]| cance |

Figure 4-20. Task Tags Preferences dialog

Search

Effective searching is the key for easy navigation within a development
environment. Eclipse provides multiple layers of search functionality that are
specifically optimized for certain use cases.

The most basic search feature provided by Eclipse, also known as a file search,
is searching the Workbench for a text string. To open the Search dialog, press
Ctrl+H on Windows and Linux, or Control+H on Mac OS X, or choose Search »
Search... from the top menu.

As shown in Figure 4-21, the Search dialog provides extensive customization for
searching. Although it is a very powerful feature, it is only optimized for
searching text in generic files. Searching Java resources this way is not
recommended, as there is already an optimal solution provided specifically for
Java resources.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Eseoen ——— — mEQ|

=/ File Search Ilig Java Seachl %’ Plug-n Sead‘l

Containing text:
TODO:Gelbooksrmdstobei plemented. ;' " Case sensitive

(* = any string. ? = any character. \ = escape for literals: * ?\) [Regular expression

File name pattems:

Pattems are separated by a comma (* = any string, ? = any character)
"] Consider derived resources

Scope
& Workspace C Selected resources ' Enclosing projects

) Working set: | Choose... |

Figure 4-21. Using the Search dialog for a file search

A Java search is much faster than a file search for Java resources since it relies
on the existing code indexes. You can launch a Java search by choosing Search
> Java ... from the top menu or by clicking the Java Search tab in the Search
dialog. As shown in Figure 4-22, the Java Search tab provides additional
parameters specific to Java that you can use to further customize a search.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

€ Search BEH|

=" File Search 17 Java Search I'ﬂf Plug-in Sead\l
Search string (* = any string, ? = any character):

lgetﬁrstﬂane ;' [~ Case sensitive
- Search For Limit To

 Type " All occumences (' Declarations

) Package (' Constructor @ References

C Feld) Match locations (0 of 4 selected)
I~ Search In

[¥| Sources ¥ Reguired projects [V JRE libraries [V Application libraries

- Scope
& Workspace (Selected resources (' Enclosing projects

' Working set: [Choose...

Figure 4-22. Java Search tab of the Search dialog

Search results are presented through the Search view, as shown in Figure 4-23.
The Search view drop-down menu and toolbar provide further filtering
capabilities to organize the search results based on user preferences.

& ¢ ‘ x 2&| H & | =3 iy) % | & Y rmT
_getFirstName’ - 1 ce in worksg {0 i from view)
B~} com.apress.example - sic - Example
=@ Author
R tostring 0|

Figure 4-23. Search view
The Search menu also provides some boilerplate searches, as shown in Figure

4-24. The currently selected Java resource can be used to quickly start a new
search for references, decelerations, and implementors.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Java - Example/src/com/apress/example/Book java - Eclipse SDK
File Edit Source Refactor Navigate | Search Project Run Window Help
" Search... Cird+H

Wotkspace — Cil+Shift=G
Project
Hierarchy

3
»
» Working Set...
v T

Occumences in File Ctrl+Shift+U »

Refemring Tests...

public String get Title() {

Figure 4-24. Boilerplate searches

Being able to navigate easily within the project definitely speeds up the coding
process, but it is not enough alone. Developers still need to write a considerable
amount of code while developing applications. In the next section, we will
explore the advanced features that are offered by Eclipse for fast coding.

Fast Coding

In most software projects, the majority of developer's time does not go into
developing the actual application logic. Developers spends considerable
amount of time dealing with simple but labor intensive coding tasks, such as
implementing getters and setters, or updating all references within the source
after doing a code refactoring. Eclipse provides a set of advanced features,
such as templates and code generators, to automate a portion of coding, and to
reduce the amount of code that developers need to produce. In this section, we
will review some these handy Eclipse features.

Templates

There are many coding patterns and code structures that we use every day
while developing any type of application. Most of the time, we find ourselves
copying and pasting code segments, and trying to adapt them to their new
home by manipulating their parameter names. For example, logging is one of
the must-haves for every project. While developing an application, developers
often end up copying the logger initiation code many places.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Copy-and-paste functionality in most text editors certainly makes the task easy;
however, it does require you to have immediate access to the original code
segments in order to copy them first. So, developers may spend a majority of
their time searching through previous projects in order to extract those precious
code segments.

Eclipse provides a much more elegant solution to this problem through support
for code templates. Code templates allow you to store frequently used code
patterns and snippets within Eclipse. Eclipse handles the storage and indexing
of these templates, and makes them easily available.

Eclipse supports multiple code template types. Users can define their own
templates, as well as use predefined templates that come with plug-ins (which
can be customized by users).

To get a better idea of the extent of template support in Eclipse, from the top
menu bar, select Window » Preferences on Windows and Linux, or Eclipse
Preferences on Mac OS X to launch the Eclipse Preferences dialog. Start typing
templates to filter the extensive list of preferences to only templates, as shown

in Figure 4-25.
Fmplds Templates =184 - w
2 ?Edtnr Create, edit or remove templates:
Name | Context | Description [Auto Ins_~ New... |
& Java Buildfil_.. Ant simple buildfile wit... on -
l?j-C_odeSter [F] comment Ant comments the sel... on LI
: | " Code Templates comment Ant Task comments the sel .. on Remove |
| B Editor comm... Ant comments the sel... on
i - Templates
Ci Team comm... Ant Task comments the sel... on Restote Re@medl
B CVS delete Ant Task delete files in afil... on
L. Crasmeint Tamplate delete Ant Task deletefilesinare... on Reyert to Default |
fileset Ant Task fileset type within... on
javac Ant Task add a javac task on Import ... |
macro... Ant Task macrodef with a si... on

Export.. |

property Ant Task property with nam___ on |~
1] I*1
Preview:
[
< _>|J
] [»] Restore Qefaj‘lsl Apply |
@ OK | Camcel |

Figure 4-25. Eclipse Preferences dialog filtered for templates

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As you may have noticed, two sets of templates are listed in the Java section of
the Preferences dialog: Code Templates under Code Style and Templates under
Editor. We'll look at both types in this section.

Code Templates

Code templates are mainly used during automatic code generation. The most
basic code template is for the comment lines that are placed at the top of new
files. In many companies, you will be required to include a copyright notice and
a license at the top of every source file that you develop. To easily achieve this
using a code template, select Window » Preferences on Windows and Linux, or
Eclipse » Preferences on Mac OS X, and navigate to Java, then Code Style, then
Code Templates. You will be presented with a list of available code templates,
as shown in Figure 4-26.

terrplda Code Templates =10 - w

Import ...
Exgort All...
Pattemn:
(<]
<] _>lJ
" Automatically add comments for new methods and types
< |] Restore Defauts | Apply |
@ OK || Cancel |

Figure 4-26. Java code templates list

Code templates are presented in a tree-like fashion under two main groups:
Comments and Code. Click the triangle icon on the left side of the Comments

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

group to expand the list of available comment code templates. The code
template that we will modify for this example is the one named Files. After you
select this template from the list, the bottom pane of the dialog will immediately
show the current pattern for the selected code template, as shown in

Figure 4-27.
Configure generated code and comments:
- Comments -~ Edit...
-- Types I :
Felds
-- Constructors Export...
- Overmriding methods Export All...
- Delegate methods
- Getters
- Setters
= Cnde ;[
Pattem:
o [«
ol
<] _r'

Figure 4-27. File comment code template

As you can see, currently it does not include any text, but only the comment
decoration. In order to modify it, click the Edit button on the right. This will bring

up the Edit Template dialog, as shown in Figure 4-28.

& Edit Template

Description: [Comment for created Java files

Pattem: ~

Figure 4-28. Edit Template dialog

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

You can now modify the file comment to say something like the following:

Vio

* Copyright © 2012 Apress Media LLC. All Rights Reserved.
*/

Code templates are all about reusability, and developers like to make them as
generic as possible in order to avoid needing to keep them up to date. In our
example, we have a hard-coded year, 2012, in the template. It would be better
to have this copyright line reflect the current year, rather than always showing
2012. This can be achieved by adding a variable, which is easy to do with
Eclipse’s template support. To replace 2012 with the correct variable, click the
Insert Variable... button below the Pattern text area. You will be presented with
a list of available variables that can be used within the template, as shown in

=]

Figure 4-29.
€ Edit Template |- 1O] x]
Description: [Comment for created Java files
Pattemn: [f“
date (Current year
dollar
file_name
package_name
project_name
- Lime
todo
type_name

a Al

~ o

Press Tab® from proposal table or click for focus]

Figure 4-29. Available variables for code templates

For this example, choose year from the list of variables to replace 2012. Our file

comment will now look like the following:

J**

* Copyright © ${year} Apress Media LLC. All Rights Reserved.
*/

From now on, any new Java file that you add to your project will be generated
with the copyright line in the file comment, as shown in Figure 4-30.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

| [J] Mainjava | [J] Authorjava |AJ Book java Example java X
Vs
*“ Copyright © 2012 Apress Media LLC. All Rights Reserved.
*/

package com apress example;
- il

: Example object.
: @author Onur Cinar|
pi.i:lic class Example {

H

Figure 4-30. New Java file with the copyright in its file comment

Editor Templates

Since the code templates can be consumed only through the code generators,
Eclipse does not allow users to add new templates to that list. However, the
second template type, editor templates, is primarily for users to define new
templates and to use them while developing applications. Open the Eclipse
Preferences dialog as described earlier, and navigate to Java, then Editor, then
Templates, as shown in Figure 4-31.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

herrpld& Templates B - - v
B AE']‘Ediot Create. edit or remove templates:
: i Templ Name | Context | Descripti | Auto Ins_ ~ New... I
EI--.J;va @au... Javadoc author name on —
LB &> Javadoc on T Edit..
Code Templates <cod... Javadoc <code></code> on Remove
a> Javadoc <G> on
B Team <pre> Javadoc <pre></pre> on Restore Removed
&-CVS addli... SWT statements add a listenert...
i Comment Template amay... Java statements add an element . Reyeit lo Default
amay... Java statements merge two ama...
... tat its new L
[Bow... SWT B Import
E.ﬂ.on %\\‘T ddanui.s r:ew Button = Ezport.
qJ i
Preview
<] »
¥ Use code formatter
T D Restore Defauits || Apply |
@ OK | Cancal |

Figure 4-31. Editor templates

To define a new editor template, click the New button on the right. The New
Template dialog will be launched, as shown in Figure 4-32.

& New Template | _ (O] x|

Name: Il Context - |Java LI [Automatically insert

Description: |

Pattem: ;I
1 b |
Insert Variable... |

@ OK I Cancel

Figure 4-32. New Template dialog for an editor template

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This dialog has two more fields than the Edit Template dialog for code
templates: one for the name of the new template and another for the context.
The name is primarily used to refer to this template while using it within the
editor, and it is more like a keyword. The context is used by Eclipse to filter the
templates based on the current context in order to offer only the applicable
ones.

As an example, we will define a new editor template for the logger initiation
code. Name the new template Logger, and select the Java context. We will start
by copying an existing logger initialization line into the template’s pattern editor.

private static final Logger logger = Logger.getlLogger(Author.class.getName());

In order to make this editor template more generic, the reference to the class file
should be converted to a variable. Click the Insert Variable... button, and you
will be presented with a much larger list of variables than those available for
code templates. Choose enclosing_type from the variables list to replace
Author in the template. The new template will look like the following:

private static final Logger logger =
Logger.getLogger(${enclosing type}.class.getName());

The Logger class is defined in the java.util.logging package, which is not part
of the automatically imported set of Java packages. To make the editor template
more generic, let’s instruct Eclipse to import the Logger class while inserting the
template into the code. To do this, select import from the list of variables, and
add the parameter java.util.logging.Logging. As shown in Figure 4-33, the
modified template will look like the following:

private static final Logger logger =
Logger.getLogger(${enclosing_type}.class.getName());
${:import(java.util.logging.Logger)}

& New Template [_ O] x]

Name: llogger Context : |Java ;I [V Automatically insert

Description: | Logger initialization code template.

Pattem: private static final Logger logger = Lnggu'.gdlﬂgga{ﬂﬂdodng_lype}.dm_gdﬂmﬂ
${import(java.util logging.Logger)}

| =
<] | »

Insert Variable. .. |

@ oK || Cancel

Figure 4-33. Editor template fully defined in the dialog

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The editor template is now ready to be used. To insert it into the code, start
typing logger, and then press Ctrl+spacebar on Windows and Linux, or
Control+spacebar on Mac OS X to launch the Content Assist feature (discussed
in the next section), as shown in Figure 4-34.

‘. 1] Main java | [J] Author java [J] Book java

=
* Copyright © 2012 Apress Media LLC._ All Rights Reserved.
="

package com.apress.example;

~
: Example object.
* @author Onur Cinar
7
public class Bxample {
logger

private static final Logger logger = Logger. getLogger(E}

Logger - java.util logging
@ logger() : void - Method stub

r

F-
2

olg
o
Moryk

Press "Cirl+Space’ to show Template Proposals Press “Tab' from proposal table or click for focus)

Figure 4-34. Content Assist suggesting the editor template

You will see a list of suggestions, including the editor template we defined in this
example. Choose logging from the list in order to insert the logging initialization
code template into the editor, as shown in Figure 4-35.

(B Msinjava [Authorjava |)] Book java 3l “Bample java X = ﬁ|

[=]@

=¥ o
* Copyright © 2012 Apress Media LLC. All Rights Reserved.
=

package com apress example;
import java.util logging.Logger:
£

: Example object.

:/@auhor Onur Cinar

public class Example {
P } private static final Logger {ogoer = Logger.geflogoe{Example. class getName()):

g o

Figure 4-35. Editor template inserted into the code

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Content Assist

Using a third-party API or working on a complex project will be difficult if you
need to memorize and remember each and every type and method name. Most
of the time, developers do recall the existence of a method, but not its full
signature. Eclipse’s Content Assist feature becomes really handy during those
moments.

The easiest way to trigger Content Assist is through the dot character. For
example, start typing System.out. and wait for a second. The dot character
brings up Content Assist, which presents a list of suggestions to complete the
current code line, as shown in Figure 4-36.

)] *Main java X

[J] Author java [J] Book java |

public static void main(String[] args) {

System.out |
o :
Author auth feer]
author setfi @ append(CharSequence csq) : Print Stream - Prini
author.setli © append(CharSequence csq. int start, int end) : |
@ checkEmor() : boolean - Print Stream o
book setAul © close() : void - Print Stream
book setTitl @ equals(Object obj) - boolean - Object
} © flush() : void - PrintStream
L[@ format(String format. Object... args) : Print Strea
() Problems ‘ @ Javac © format(Locale |. String format. Object... args) : F
= © getClass() : Class<?> - Object

© hashCode() : int - Object - | &4
‘getFirstName” - 1 refe 4 | | v |
E-if com.apress.e Press "Ciri+Space” to show Template Proposals
B-G Author

Figure 4-36. Content Assist making suggestions to complete the line

Content Assist prepares the list of the suggestions by using the first word on the
left side of the cursor, and the list may be very long. In order to narrow down the
suggestions, continue typing more characters, and Content Assist will filter the
list accordingly. For our example, type p, and the list will now cover only
suggestions starting with the letter p, as shown in Figure 4-37.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B “Mainjava X 1J| Author java | |4} Book java

public static void main(String[] arge) {

System.outp
Auth t Sl print (boolean b) : void - Print Stream =
author setf @ print(char c) : void - Print Stream print
author.setli © print(char{] s) : void - PrintStream
@ print(double d) : void - PrintStream public wvoid print (boolean b)
book set Aul @ print {float f) - void - Print Stream B _— i i =
3 % e R inte a lean value. string
boolcset Tall @ pr!rll,irl - vmd_ megm i String. valueOf (boolean) is translated into
@ print(long 1) - void - Print Stream bytes according to the platform's default ~
@ print(Object obj) : void - PrintStream character encoding. and these bytes are —
‘ﬁm © print(String s) - void - PrintStream wnﬂen in exh;a:tlythe manner of the write
————————— © printf(String format . Object... args) : PrintStream {int) method.
@ pnntf(Locale |. String format, Object... args) : Pr. ~ Parameters: |t
‘getFirstName’ - 1 refe ¢ | | » b - The boolean to be printed |
B h‘ COM.apress.e Press "Ctri+Space’ to show Template Proposals Press Tab® from proposal table or click for focus]

B-® Audhor

Figure 4-37. Content Assist suggestions further filtered

You can also navigate through the list of suggestions. When you select a
suggestion, the proposed code will be automatically inserted into the line. If
none of the suggestions is applicable, you can press the Esc key to close the
Content Assist list.

Although the dot character automatically triggers Content Assist, it can also be
manually launched by using the key combination Ctrl+spacebar on Windows
and Linux, or Control+spacebar on Mac OS X at any time. Content Assist is a
very powerful and handy tool for streamlining day-to-day Eclipse development.

Code Generators

To facilitate coding, Eclipse provides a set of code generators that automatically
generate code for frequently used coding patterns. These code generator
options are available through the Source menu on the top menu bar:

Override/Implement Methods: Provides a list of methods
from superclasses and implemented interfaces for overriding
and implementing.

Generate Getters and Setters: Generates getter and setter
methods for selected fields.

Generate Delegate Methods: Generates method delegates
for fields in the current type.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Generate toString(): Generates the toString() method using
content from selected fields and methods.

Generate hashCode() and equals(): Generates hashCode()
and equals() methods based on the selected fields.

Generate Constructor Using Fields: Adds a constructor that
initializes selected fields.

Generate Constructors from Superclass: Adds a constructor
that is defined in the superclass of the current class.

The best example of Eclipse code generators is the getter and setter generator.
In object-oriented programming, mutator methods are methods that are used to
control changes to a variable. Methods like getters and setters are examples of
mutator methods. Class variables are always declared as private, and getter and
setter methods are public methods defined to manipulate those fields. In most
development projects, getter and setter methods occupy a large portion of the
source code, and developers may spend a considerable amount of time writing
code for these simple but time-consuming methods.

Eclipse’s getter and setter code generator provides an elegant solution to this
problem. After defining the fields in a class, select Source » Generate Getters and
Setters... from the top menu bar to launch the Generate Getters and Setters
dialog, as shown in Figure 4-38.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Generate Getters and Setters |_ (O] x|
Select getters and setters to create:
B[] = firstPublication
#-[] o lastName Deselect All
Select Getters
Select Setters

[Allow setters for final fields (remove Yinal' modifier from fields if necessary)
Insertion point:
[After *Author(’ ~]
Sort by:
| Fields in getter/setter pairs LI
Access modifier
(% public protected ' default O private
[final " synchronized

" Generate method comments
The format of the getters/setters may be configured on the Code Templates preference page.

=
I\?J 0K I Cancel

Figure 4-38. Generate Getters and Setters dialog

The Generate Getters and Setters dialog provides a list of the member fields in a
tree-like fashion. The check box on the left side of each member field allows you
to mark a field for getter and setter generation. To the left of the check box is a
triangle icon to expand the selection to further show the individual methods that
will be generated. By default, both the getter and setter are generated, unless
you specify which mutator method to generate, as in the example in Figure 4-39.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[& Generate Getters and Setters !E n
Select getters and setters to create:

Deselect All

Select Getters
getFirst Publication()

i i setFirstPublication(Date) Select Setters
2 o lastName

- o getlastName()
“[J e setLastName(String)

Figure 4-39. Selecting individual methods to be generated

The Generate Getters and Setters dialog also provides additional configurable
parameters to specify the insertion point, sorting, and the access modifiers for
the automatically generated methods.

Figure 4-40 shows automatically generated getters and setters. The format of
the getters and setters is based on the Java code templates, and can be
customized through the Eclipse Preferences dialog, by navigating to Java, then
Code Style, then Code Templates, as discussed earlier in the chapter.

EI;J Main java M Authorjava X [J] Book java |

public String getFirstName() {
y retum firstName;

public void setFirstName(String firstName) {
this firstName = firstName:

public Date getFirstPublication() {
retumn first Publication:
H

public String getLastName() {
retum lastName:

[

Figure 4-40. Automatically generated getters and setters

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Refactoring

Refactoring refers to the process of transforming the code without changing its
functionality. Refactoring is frequently done during the development cycle in
order to improve the design and the efficiency of the code based on the new
requirements.

Renaming is the simplest refactoring operation. However, it does require a
considerable amount of manual work to adjust the code after the renaming.
Every reference to the renamed object needs to be modified in order to be able
use the code. Existing search-and-replace functionality is not applicable to this
operation, since it may cause unintentional changes in other parts of the code.
Due to the amount of manual operations required, this process is also prone to
user error.

Eclipse provides a much more elegant solution to this problem. In order to
rename a Java object, press Alt+Shift+R on Windows and Linux, or
Alt+Command+R on Mac OS X, or choose Refactor » Rename from the top menu
bar. As shown in Figure 4-41, Eclipse will allow you to rename the object, and it
will automatically refactor the application code accordingly.

"lij Main java J 1J] Author java Book java X
¥

* Gets the book author.

public Author FELITR() {
retum

} Enter new name. press Enter to refactor +

r~
* Sets the book author.

Figure 4-41. Renaming a Java object

Renaming is not the only refactoring operation supported by Eclipse, as you can
see in the Refactor menu, shown in Figure 4-42.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Java - Example/src/com/apress/example/Main java - Eclipse SDK

File Edit Source | Refactor Navigate Search Project Run Window Help
‘ . Rename... Alt+Shift+R s J .
T Move... Alt+Shift +V
Change Method Signature... Al+Shift+C Book java
Extract Metheod... Alt+Shift+M
W Extract Local Warnable... Alt+Shift+L
E 0% sro Extract Constant...
i E‘Iﬂ com.ay Inline.. Al+Shift+]
(1] Ab: Convert Local Yariable to Field...
@ Aul gonvert Anonymous Class to Nested...
lﬂ Bot hiove Type to New File...)
{0 Ex:
& m 1Pu Extract Superclass...
B-[J) Ma Bxdract Interface...
B-=) JRE Syste Use Supertype Where Possible...
Pull Up...
Extract Class...
Introduce Parameter Object...
Introduce Indirection.. ————
Introduce Factoy... /| Tasks | 4 Searc
Introduce Parameter..
Encapsulate Field.. 0 matches filtered fn
Generalize Declared Type... e
Infer Generic Type Arguments...
Migrate JAR File...
Create Script...
Apply Script...
b History...
| o¢ iJ] com apress_example_E le java - Example/:

Figure 4-42. Refactoring operations supported by Eclipse

This me|

downloaded from: lib.ommolkefab.ir

nu provides easy access to many refactoring operations:

Rename: Renames the selected Java object and corrects all
references.

Move: Moves the selected Java object and corrects all
references.

Change Method Signature: Changes parameter names and
types, and updates all references accordingly.

Extract Method: Extracts the currently selected code section
as a new module, and replaces the selection with a reference
to the newly defined method.

Extract Local Variable: Extracts the currently selected
variable as a new local variable, and replaces the selection
with a reference to the newly defined local variable.

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Extract Constant: Extracts the currently selected expression
as a new constant, and replaces the selection with a reference
to the new constant.

Inline: Inlines local variables, methods, or constants.

Convert Anonymous Class to Nested: Converts the selected
anonymous class to a member class.

Move Type to New File: Moves the selected type to its own
Java source file, and updates the references accordingly.

Convert Local Variable to Field: Converts the selected local
variable to a field, and updates the references and the
initialization accordingly.

Extract Superclass: Extracts a superclass from a set of
siblings and changes the siblings to become a direct subclass
of the newly defined superclass.

Extract Interface: Extracts an interface with a set of selected
methods, and makes the selected class implement this new
interface.

Use Supertype Where Possible: Replaces the occurrence of
a type with its supertype when possible.

Push Down: Moves methods between the superclass and a
class.

Pull Up: Moves methods between the class and its
superclass.

Extract Class: Extracts a set of fields as a new class, and
replaces the references to these fields with the new class.

Introduce Parameter Object: Replaces a set of parameters
with a new class, and updates all callers of the method to pass
an instance of this new class with the parameters.

Introduce Indirection: Generates a static indirection method
delegating to the selected method.

Introduce Factory: Generates a new factory method for the
selected type.

Introduce Parameter: Replaces an expression with a
reference to a new method parameter and updates all callers.

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Encapsulate Field: Replaces all references to a field with
getters and setters.

Generalize Declared Type: Allows the user to choose a
supertype of the reference’s current type if the reference can
be safely changed to that supertype.

Infer Generic Type Arguments: Replaces raw type
occurrences of generic types with parameterized types where
possible.

Some refactoring tasks may involve a combination of these refactoring
operations. Eclipse keeps a history of the refactoring tasks, to allow you to undo
specific refactoring steps. To view the refactoring history, choose Refactor »
History from the top menu bar.

Selected refactoring tasks can also be saved in to a script file for later use by
choosing Refactor » Create Script.... You can then choose Refactor » Apply Script...
to apply these refactoring steps again.

Scrapbook

The Scrapbook feature allows users to easily experiment with code snippets
without dealing with the extra burden of writing full Java code. Scrapbook is like
a code interpreter. It allows you to type only a piece of the code to experiment,
and then it can quickly execute the code and show the result. Within the
Scrapbook page, you can use classes defined in a project as well as the Java
system classes.

To launch a Scrapbook page, select File » New » Other... » Java » Java Run/Debug
> Scrapbook Page from the top menu bar. An empty Scrapbook page will be
added to the editor area, as shown in Figure 4-43.

[[1) Mainjava [[I] Authorjava | (] Bookjava [[LIMEESERTIRY

‘ava util_Date date = new java.ulil Date(): -
date

0
o)

4 o

Figure 4-43. Scrapbook page

Start typing the following example expression:

java.util.Date date = new java.util.Date();
date

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Scrapbook provides the following three execution types:

Display: Evaluates the expression and prints its value directly
to the Scrapbook page.

Inspect: Evaluates the expression and shows an inspection
window with all the information the object provides.

Execute: Evaluates the expression as regular Java code.

In order to use any of these execution types, first highlight the expression. Then
start the display execution by pressing Ctrl+Shift+D on Windows and Linux, or
Shift+Command+D on Mac OS X, or by choosing Run » Display from the top
menu. The expression will be evaluated, and its value will be shown in the
Scrapbook page, as shown in Figure 4-44.

[[Main java :1] Author java | 4| Book java n *Test jpage X =B

java.util Date date = new java.util Date(): _:J
e

ava.ulil.Date) Wed Feb 15 00:47:42 PST 2012

4 o

Figure 4-44. Scrapbook display

Keep the expression highlighted, and start the inspect execution by pressing
Ctrl+Shift+l on Windows and Linux, or Shift+Command+l on Mac OS X, or by
choosing Run » Inspect from the top menu. The expression will be evaluated, and
the Inspect window will appear at the top of the Scrapbook page, as shown in
Figure 4-45.

1) Mainjava | [J) Adhorjava | 1) Bookjava | J) "Testjpage 2 -

java. util.Date date = new java.util_Date():
date

SR “java.util. Date .1 .Date(); date”= Date (id
#- @ cdate= Gregorian$Date (id=62)
‘@ fastTime= 1334698354274

d o]
Tue Apr 17 14:32:34 PDT 2012 _|
Kl ['
“a—‘ Problems "@ Javadoc Press ‘clmsm(m :n Move to Elxpmssnorrs View|
} 4 ¢ % %|®

Figure 4-45. Scrapbook Inspect function

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Change the expression to the following:

java.util.Date date = new java.util.Date();
System.out.println(date.toString());

Highlight the expression, and execute it by pressing Ctrl+U on Windows and
Linux, or Command+U on Mac OS X, or by choosing the Run » Execute. The
expression will be executed like normal Java code, and the output will be
displayed in the Console view, as shown in Figure 4-46.

."-m Mainjava | [J) Authorjava !f [J] Book java

java.util. Date date = new java.util. Date();
System_ out printin{date toString()):

Kl
2. Problems [@ Javadoc ([, Declaration |] Tasks 47 Search [[E Console 53
|C-\Program Files (x86)\Java\jre6\bin\javaw.exe (Apr 17. 2012 2:32:16 PM) B

Tue Apr 17 14:34:39 PDT 2012
Figure 4-46. Scrapbook Execute function

Summary

In this chapter, we covered powerful Eclipse features that can boost the
development cycle. We started the chapter by diving into the advanced
navigation features offered by Eclipse, including views and the different types of
markers to pinpoint code parts easily. We then looked at the Eclipse features for
fast coding. These include code and editor templates, which can be employed
to maintain code consistency, as well as code generators and refactoring
functions that are provided by Eclipse to handle time-consuming development
tasks. Later chapters will demonstrate these features in action.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Chapter

Android Development
Tools for Eclipse

In the previous four chapters, we have studied the Android framework and the
Eclipse integrated development environment in great detail. In this chapter, we
will be gluing these two worlds together using the Android Development Tools
(ADT) plug-ins for Eclipse. We will start our journey by installing ADT and the
Android Software Development Kit (SDK). We will then start exploring the views
and tools they provide. In the next chapter, while developing our first Android
project, we will start putting these views and tools into action.

Preparing Eclipse

Although Eclipse comes with the tools for Java development, Android-specific
platform APIs and application packaging tools are required in order to develop
Android applications using Eclipse.

Installing Android Development Tools

As explained in Chapter 3, the Eclipse platform is structured around the concept
of plug-ins. ADT is a set of plug-ins for Android application development on the
Eclipse platform.

ADT extends the capabilities of Eclipse integrated development environment to
let application developers perform the following tasks:

Quickly set up new Android projects

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Visually design advanced user interfaces
Access and use Android framework components
Debug, unit test, and release Android applications

ADT is free software that is provided under the open source Apache License.
More information about the latest ADT version and the most current installation
steps can be found at the ADT Plugin for Eclipse page
(http://developer.android.com/sdk/eclipse-adt.html).

We will be using Eclipse’s Install New Software wizard to install ADT. Launch the
wizard by choosing Help » Install New Software from the top menu bar, as shown

in Figure 5-1.

| Jova - Craptord/srioom/apress/chapler/Mainava Ecipse SK |
File Edit Source Refactor Mavigate Search Project Run Window | Help
les- @)%-0-Q-|BE-|® - |P 4 O Welcome

25 Project Bxplor 8 = O]

. = v i
- = public class Main { Dynamic Help
Y= Chapter2 Y
: Main method Key Assist il +Shift+L
i i Tips and Tricks...
", e Cheat Sheets...
public static void main(String[] arg:
Author author = new Author(): Check for Updates
o [intall Nom Software——————_|

(55 Problems | @ Javadoc (E! Console 53 About Eclipse SDK |
No consoles to display at this time.

Figure 5-1. Choosing to install new software

The wizard will start and display a list of available plug-ins. Since ADT is not part
of the official Eclipse software repository, you need to first add Android’s
Eclipse software repository as a new software site. To do this, click the Add
button, as shown in Figure 5-2.

downloaded from: lib.ommolkefab.ir

http://developer.android.com/sdk/eclipse-adt.html
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Available Software l_
D 3

Select a site or enter the location of a site.

Work with-" =l Add...
Find more software by working with the “Available Software Sites] preferences.
iype filter text [

O There is no site selected.

Add a new
Software Site

Select All Deselect All
Detalls ———™—™ ™ @ X ———————————
==
[V Show only the latest versions of available software [~ Hide items that are already installed
[¥| Group items by category What is already installed?

[T Show only software applicable to target environment
[V Contact all update sites during install to find required software

'@ ¢ Back Hext > [l Finish I Cancel

Figure 5-2. Beginning to add new software

The Add Repository dialog appears. In the Name field, enter a unique name to
refer to this repository. In the Location field, enter the URL for Android’s Eclipse
software repository: https://dl-ssl.google.com/android/eclipse/, as shown

in Figure 5-3.
Name: IAnci'oid Development Tools (ADT) for Eclipse Local...
Location: |I'ﬂpsu’ld—ssl.google.mnda‘d‘nidfedipse/ Archive. ..

@ [ok] cCance |

Figure 5-3. Add Repository dialog completed with ADT information

downloaded from: lib.ommolkefab.ir

https://dl-ssl.google.com/android/eclipse/
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

After you add the new software site, the Install New Software wizard will display
a list of available ADT plug-ins, as shown in Figure 5-4. Each of these plug-ins is
crucial for Android application development, and it is highly recommended that
you install all of them. (We will discuss these plug-ins in the “Exploring ADT”
section later in this chapter.) Click the Select All button to select all of the ADT
plug-ins, and then click the Next button to move to the next step.

& Install [_[O]

Available Software

Check the items that you wish to install.) —=|
o,

Worlk with: |Android Development Tools (ADT) for Eclipse - hitps://dl-ssl .goodeonm!aﬂoidfaclipse!_:] Add. .. |
Find more software by working with the “Available Software Sites” preferences.

hrpe filter text
Name [Version I
=] Uil Developer Tools
-{:1-, Android DDMS 16.0.1.¥201112150204-238534
<J* Android Development Tools 16.0.1.+201112150204-238534
4+ Android Hierarchy Viewer 16.0.1.¥201112150204-238534
«J* Android Traceview 16.0.1.v201112150204-238534
“Seiect Al || Deselect Al | 4 items selected
e B
=
¥ Show only the latest versions of available software [Hide items that are already installed
[¥ Group items by category What is already installed?

[Show only software applicable to target environment
¥ Contact all update sites during install to find required software

©

&/

< Back I Nex > l Finish Cancel

Figure 5-4. Installing ADT developer tools

Eclipse will go through the list of selected plug-ins to append any dependencies
to the list, and then present the final download list for review. Click the Next
button to move to the next step.

ADT also contains a set of other third-party components with different licensing
terms. During the installation process, Eclipse presents each software license,
and asks the user to accept the terms of the license agreements in order to

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

continue with the installation. Review the license agreements, choose to accept
their terms, and then click the Finish button to start the installation process.
Eclipse will report the progress of the installation, as shown in Figure 5-5.

| & Installing Software HE=]

0.' Installing Software

|
[
Fetching org.eclipse emf edit_2.7.1.v20.._/indigo/201109230900/aggregate /plugins/
[Always run in background

Run in Background Cancel

LDstals >

Figure 5-5. ADT installation progress

ADT plug-ins come within unsigned JAR files, which may trigger a security
warning, as shown in Figure 5-6. Click the OK button to dismiss the warning and
continue the installation. When the installation of ADT plug-ins is complete,
Eclipse will need to restart in order to apply the changes.

| & Secuwrity Waming | |O] x|

Waming: You are installing software that contains unsigned content. The
! . authenticity or validity of this software cannot be established. Do you want to
continue with the installation?

oK Cancel Details >>

Figure 5-6. Security warning due to unsigned ADT plug-ins

Installing the Android SDK

ADT is a set of plug-ins to blend Android development tools into the Eclipse
integrated development environment; it is not a substitute for the Android SDK.

The Android SDK is a comprehensive set of development tools, including
Android platform Java libraries, an application packager, a debugger, an
emulator, and extensive documentation. In order to do anything useful with ADT,
the Android SDK needs to be installed on the machine. Upon restarting, ADT will
welcome you with the SDK Configuration wizard, as shown in Figure 5-7.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

|‘ & Welcome to Android Development]

Welcome to Android Development 4
Configure SDK '

To develop for Android. you need an Android SDK. and at least one version of the Android APls to
compile against. You may also want additional versions of Android to test with.

® Install new SDK
¥ Install the latest available version of Android APls (supports all the |atest features)
[Install Android 2.1, a version which is supported by ~97% phones and tablets
(You can add additional platforms using the SDK Manager.)

Target Location: [C-\Users\oncinar\android-sdks
("' Use existing SDKs

Existing Location: |
@ <Back | Nem> [[Fnish Cancel

Figure 5-7. Android SDK Configuration wizard

The SDK Configuration wizard allows you to point ADT to an existing Android
SDK (if it is previously installed), or to instruct ADT to download and install the
Android SDK for you. Click the Finish button to move forward with the SDK
configuration process. The SDK Configuration wizard will guide you through the
process for installing the Android SDK to your host machine. Note the
installation directory of the Android SDK, since you will need it to update the
system Path variable, as described next.

Updating the Path

During Android SDK installation, the Path variable is not automatically added to
the system. ADT does not require having the SDK binaries in the system Path
variable, but to make these files easily accessible, it is strongly recommended
that you add them.

Updating the Path on Microsoft Windows

Just as we did in Chapter 3 to add the JDK to the system Path variable, open
the Control Panel and choose System to launch the System Properties dialog.
Switch to the Advanced tab, and click the Environment Variables button. Select

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the Path variable from the System variables pane, and click the Edit button.
Append ;<sdk-dir>\tools;<sdk-dir>\platform-tools to the Path variable
value, replacing <sdk-dir> with the Android SDK installation directory, as shown
in Figure 5-8. Click the OK button to save the changes.

Edit System Variable ﬂ

Variable name: | Path

Variable value: I I-tools;C: \Users\oncinar\android-sdks'toold
I OK | Cancel |

Figure 5-8. Adding the Android SDK directories to the Windows system Path variable

Updating the Path on Mac 0S X and Linux

To append the Android SDK binary directories to your system Path variable,
open a terminal window on Mac OS X, or a shell window on Linux, and enter the
following command (replace <sdk-dir> with the Android SDK installation
directory):

export PATH=$PATH:<sdk-dir>/tools:<sdk-dir>/platform-tools >> ~/.bashrc

Figure 5-9 shows the command in the terminal window.

[o M) Terminal — bash — 80x6
$ export PATH=$PATH:/Users/cinar/android-sdks/tools:/Users/cinarfandroid-sdks/pl B
atform-tools >> ~/.bashrc I O

N

v

Figure 5-9. Adding the Android SDK directories to the Mac 0S X system Path variable

Installing Platform APIs

By default, the SDK Configuration wizard will install the latest version of the
Android APIs; however, you can install different versions of Android APIs using
the Android SDK Manager at any time. To launch the SDK Manager, choose
Window » Android SDK Manager from the top menu bar, as shown in Figure 5-10.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ftle Edit Run Source Refactor Navigate Search Project | Window Help

Figure 5-10. Opening the Android SDK Manager

= ag O New Window
8B IRIB8 A& e
— Open Perspective »
UETYECIE N (/] Authorji Show View »
KI5 GO e Customize Perspective...
" Save Perspective As...
- Main class of our exampl Reset Perspective...
* @author O Ci Close Perspective
s Close All Perspeclives
public class Main {
S Navigation r
* Main method
- ; Android SDK Manager
: @param args main arg g AVD Manager
public static void main(S Run Android Lint
Author author = new .
author set FirstName(’, Preferences
author.set LastName("Cinar"');

As shown in Figure 5-11, the Android SDK Manager presents a list of Android
SDK components, such as tools, APIs, and add-ons, that can be downloaded.
The list is structured in a tree-like fashion. The first item in the list is Tools. These
are the common and required components of the Android SDK. It is strongly
recommended that you use the latest versions of the Tools components. The
other components in the list are grouped under Android versions and API levels,

and they are optional.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i Android SDK Manager [_ o] %]

Packages Tools

SDK Path: C:\Users\oncinar\android-sdks\

~Packaies: - =

% Name | APl | Rev. | Status | -

=00 Tools

: ~[O% Android SDK Tools 16 2 installed

: [} Android SDK Platform-tools 10 £ Installed

£ (= Android 4.0.3 (API 15)

i - Documentation for Android SDK 5
~['7 SDK Platform 15
-~ Samplesfor SDK 15

[l % ARM EABI v75 System Image 15
=] & Google APis by Google ne. 75

: OB Sources for Android SDK 75

#-[J = Android 4.0 (AP 14)

@-[]1:] Android 3.2 (API 13)

&[0 Android 3.1 (AP 12)

&-[J151 Android 3.0 (API 11)

/! Android 2.3.3 (API 10)

&[] 1= Android 2.2 (API 8) ~|

Show: [Updates/New [Installed [T Obsolete Select New or Updates manzpmga,.]

Sort by: & APl level) Repository Deselect All Delete packages... |

B

¥ Not instaled
£ Installed

¥ Not instaled
¥ Not instaled
¥ Mot installed
W Not instalied

e N

Done loading packages.

Figure 5-11. Using the Android SDK Manager

Click the plus sign next to these Android versions to see a list of available
components. Depending on the selected version, you will be presented with a
list of core components, as well as the available add-ons. Although this list
changes based on the selected version, these are the most common
components:

SDK Platform: This is the core component that must be
installed in order to develop applications for the selected
Android version. The Android SDK Manager installs the SDK
Platform under the <sdk-dir>/platforms/android-<api-
level> directory, and the emulator system images under <sdk-
dir>/system-images/android-<api-level> directory
subfolders. The Android SDK makes these resources available
to your application based on your application’s target
platform. Android developers are not expected to directly
interact with these files.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Documentation for Android SDK: This provides the offline
version of the Android resources that are available at the
http://developer.android.com website. The Android SDK
Manager installs the documentation under the <sdk-dir>/docs
directory if it is selected for installation. You can access the
main page of the documentation by pointing your web
browser to file:///<sdk-dir>/docs/index.html. For fast and
offline access, you may consider installing this component.

Samples for SDK: These provide example applications
demonstrating the use of the Android APIs. The Android SDK
Manager installs the sample applications under <sdk-
dir>/samples/android-<api-level> directory subfolders. It is
highly recommended that you install the sample applications
because they are a great resource for learning about Android
API features and experimenting with them.

Sources for Android SDK: These provide the source code for
the Android framework. The Android SDK Manager installs the
source code under the <sdk-dir>/sources/android-<api-
levely directory. These source files come in very handy while
troubleshooting Android applications, since they allow
developers to dive into the Android framework to quickly
identify the root cause of many obscure problems.

Google APIs by Google Inc.: This is not a part of the core
components and is distributed as an add-on. The Android
SDK Manager installs these APIs under the <sdk-dir>/add-ons
directory. This add-on allows you to develop applications
using Google’s API and services, such as Google Maps. It also
comes with an extended emulator system image that contains
the Google system components that are not available in the
default emulator system image.

As you may recall from the Chapter 1, the Android market is highly fragmented,
and the newer versions of Android propagate very slowly. It is a common
practice to build applications on the top of the most widely supported API level
in order to cover a larger user base. At the time of this writing, the most widely
used Android version is 2.3.3, which supports API level 10.

To install API level 10, click the plus sign next to Android 2.3.3 (API 10) in the list
to expand it. Select the SDK Platform component and any other components
that you would like to install, and click the Install Packages button. The Android
SDK Manager will ask you to accept the licensing terms for the selected

downloaded from: lib.ommolkefab.ir

http://developer.android.com
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

components. Choose Accept All, and then click the Install button to continue
with the installation of the packages.

Certain components may require you to register on the producer’s web site and
provide download credentials. In those cases, the Android SDK Manager shows
the corresponding dialogs to guide you through the process. The Android SDK
Manager installs the selected components in their corresponding directories
under the SDK directory. The location of the SDK directory is shown at the top
of the Android SDK Manager dialog, labeled as “SDK Path” (see Figure 5-11).

Exploring ADT

ADT provides access to Android SDK components from within Eclipse. In this
section, we will explore these components: the Android Virtual Device Manager,
Dalvik Debug Monitor, Traceview, Hierarchy Viewer, and Android Lint.

Android Virtual Device Manager

The Android SDK comes with a full-featured emulator, a virtual device that runs
on your machine. The Android emulator allows you to develop and test Android
applications locally on your machine without using a physical device.

The Android emulator runs a full Android system stack, including the Linux
kernel. It is a fully virtualized device that can mimic all of the hardware and
software features of a real device. Each of these features can be customized by
the user using the Android Virtual Device (AVD) Manager. To launch the AVD
Manager, choose Window » AVD Manager from the top menu bar, as shown in
Figure 5-12.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Java - Chapter2/src/com/apress/chapter2/Main java - Eclipse SDK

Fle Edit Run Source Refactor Navigate Search Pmject | Window | Help

= 1 = = Qs .Q e New Windo
| 5 - & 8B IR I8F & o Eser | ® & -
J L 1‘|‘ - . -
o — —— — Open Perspective [=
|LC| Project Explor 23 =] Main java X |J] Author ji Show View »

| package com.apress. chapt Customize Perspective. ..
B3 Chapter2 =V o Save Perspective As...
- Main class of our exampl Reset Perspective...
* @author Onur Cinar Close Perspective
i Close All Perspectives

public class Main {
r Navigation »

{9 Android SDK Manager

: @param args main arg B AVD M

public static void main(S Run Android Lint
Author author = new 4
author setFirstName(”
author setLastName("Ginar™).

* Main method

Preferences

Figure 5-12. Launching the AVD Manager

The AVD Manager allows you to define multiple virtual device configurations.
The AVD Manager dialog lists the previously defined configurations, as shown in
Figure 5-13.

[§ Android Vitual Device Marager o]
List of existing Android Virtual Devices located at C:\Users\oncinar\.android\avd

AVD Name | Target Name | Platiorm | API Level | CPU/ABI
" Android4 Android 4.0.3 403 15 ARM (armeab...

~ A valid Android Virtual Device. A repairable Android Virtual Device.
¥ An Android Virtual Device that failed to load. Click "Details’ to see the eror.

Figure 5-13. Existing virtual devices listed in the AVD Manager dialog

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Configuring a New Virtual Device

To define a new virtual machine instance, click the New button on right side of
the AVD Manager dialog. This opens the Create new Android Virtual Device
(AVD) dialog, as shown in Figure 5-14.

€& Create new Android Virtual Device (AVD) B

Name: |And'oid__4

Target: |Android 4.0.3 - API Level 15 |
CPU/ABI: |ARM (armeabi-v7a) [~]
SD Card:
@ Size: [20 [mB |
 File:] Bmwse..,l
Snapshot:
[~ Enabled
Skin:
@ Builtin: | Default (WVIGAS00) -l
' Resolution: | x |
Hardware
Property [Value |
Abstracted LCD density 240
Max VM application he... 48
Device ram size 512

[T] Ovesride the existing A¥D with the same name

Create AVD Cancel

Figure 5-14. Configuring a new virtual device

This dialog has the following fields:

Name: This is the unique name for the new virtual device
configuration.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Target: This is the Android version number and the API level
for the virtual device. The drop-down list shows only the
Android versions that were installed using the Android SDK
Manager. If the preferred version is not available, you will need
to install it using the Android SDK Manager.

CPU/ABI: This is machine architecture for the new virtual
device. Currently, only ARM machine architecture is
supported.

SD Card: This is either the size of the SD card or the location
of the existing disk image. This field can be empty if an SD
card is not required for this virtual device configuration.

Snapshot: This is to allow the persistence of the state of the
virtual device between sessions.

Skin: This is the skin and screen dimensions for the virtual
device. The drop-down list is populated based on the installed
versions and add-ons. Custom screen dimensions can also be
defined.

Hardware: This is the list of hardware features that the virtual
device supports, such as a GPS and camera. You can enable
features by clicking to the New button and selecting the
individual items, as shown in Figure 5-15.

Property: r
Type: boolean

Description: Whether we use a /cache partition on the device.
[ok] cance |

Figure 5-15. Adding a hardware feature

In the next chapters, we will be using the Android emulator. The following virtual
machine configuration is recommended to execute the example code snippets
in those chapters:

The Name parameter should be set to Android_10.

The Target parameter should be set to Android 2.3.3 — API
Level 10. If this target is not available in the drop-down list,
use the Android SDK Manager to download it.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The SD Card size should be set to at least 128MB.
The other settings can be left as is.

After setting the parameters, click the Create AVD button to store the virtual
device configuration.

Launching the Emulator

Virtual device configurations can be used to start emulator instances at any
time. After selecting the virtual device configuration, click the Start button start a
new emulator instance using the selected virtual device configuration. Before
starting the emulator, the AVD Manager displays the Launch Options dialog, as
shown in Figure 5-16.

Skin: WVGAS00 (480x800)
Density: High (240)
" iScale display to real size:

Scireen Size [in): [3
Monitor dpi: [96

Scale: default

"] Wipe user data
7] Launch from snapshot

"] Save to snapshat

e

Figure 5-16. Emulator Launch Options dialog

The emulator screen may look too big depending on your screen size and
resolution. Using the Launch Options dialog, check the “Scale display to real
size” box, and set your monitor size and resolution to scale the emulator.

The Launch Options dialog also allows you to wipe the user data to bring the
emulator to its initial state. If you set Snapshot to Enabled during the
configuration, the Launch Options dialog also allows you to launch the emulator
from the existing snapshot, and to decide whether the emulator state should be
stored in the snapshot or discarded upon termination.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Click the Launch button in the Launch Options dialog to start the emulator, as
shown in Figure 5-17. The Android emulator may take some time to start,
depending on the CPU power of your host platform.

[l 5554:-Android4 |- o] x|

WIDGETS

APl Demos Browser Calculator

GEON -3 -

Camera Custom Dev Tools
Locale

YRR

Downloads Email Gestures
Builder

B o m <

Messaging Music People Phone

[B ﬁ

Settings Speech Widget
Recorder Preview

Figure 5-17. Emulator instance

Controlling the Emulator

The left pane of the emulator window shows the emulator display, and the right
pane contains the soft keys. Touch events can be emulated using the mouse.
Also, the key combinations listed in Table 5-1 can be used to control hardware
features.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 5-1. Emulator Control Shortcut Keys

Key Combination Description

Keypad 7, Ctrl+F11 Switches to previous layout orientation (portrait or
landscape)

Keypad 9, Ctrl+F12 Switches to next layout orientation (portrait or landscape)

F8 Toggles cell networking

F9 Toggles code profiling

Alt+Enter Toggles full-screen mode

F6 Toggles trackball

Android Console

The mouse- and keyboard-based control methods allow users to interact with
the emulator and to do common tasks. However, directly controlling the
hardware features, such as the network connectivity, is not possible through this
method. The Android console provides an extensive interface that allows users
to control the emulator and the hardware features. On a single machine, multiple
emulator instances can run in parallel. Each emulator instance is automatically
assigned a unique port number between 5554 and 5584. This number appears
before the configuration name on the title bar of the emulator window (see in
Figure 5-17).

The emulator listens on that port number to provide access to the Android
console. A telnet application can be used to connect to that port to access the
Android console. Telnet applications establish a TCP connection to the given
port and allow the users to interact with the remote service. On Mac OS X and
Linux platforms, a telnet application is provided by the operating system. For
Windows systems, you can download a free telnet application, such as PuTTY
(http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html).

Using the telnet application based on your system, connect to the address
localhost and the port number associated with the emulator instance. After
you’ve connected to the Android console, the text-based interface allows you to
control the emulator and the hardware features. By typing help, you can get a
list the available commands, as shown in Figure 5-18.

downloaded from: lib.ommolkefab.ir

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[£ 127.0.0.1-PuTTY HE I

Android Console: type 'help' for a list of commands ;I
(0):4

?

EO: unknown command, try 'help’

2

Android console command help:

help|h|? print a list of commands
event gsimulate hardware events
geo Geo-location commands

gsm GSM related commands

cdma CDMA related commands

kill kill the emulator instance
network manage network settings
power power related commands
quit|exit quit control session
redir manage port redirections
=ms SMS related commands

avd control virtual device execution
window manage emulator window
qgemu QEMU-specific commands
sensor manage emulator sensors

try 'help <command>' for command-specific help
CK

i [~

Figure 5-18. Emulator control port list of commands

Dalvik Debug Monitor Server

The Android SDK comes with a debugging tool called Dalvik Debug Monitor
Server (DDMS). DDMS allows developers to monitor and interact with attached
devices and emulators. It provides port-forwarding, screen capture, access to
process and thread states, heap information, a file explorer, logs, and many
other features.

DDMS also acts as a bridge between the Dalvik virtual machine running on the
device or emulator, as well as the Eclipse debugger. It handles the lower-level
communication setup to allow the Eclipse debugger to communicate with the
Dalvik virtual machine. This allows developers to debug Android applications
easily, as if they were plain Java applications running on the host machine.

Although DDMS comes as a stand-alone application with the Android SDK, it is
broken down by ADT into multiple Eclipse views and provided as an Eclipse
perspective combining these individual views. In this chapter, we will focus on
the Eclipse perspective flavor of DDMS.

To launch the DDMS perspective, choose Window » Open Perspective » Other ...
from the top menu bar and select DDMS from the Open Perspective dialog. The

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DDMS perspective is formed by multiple Android-specific views, as shown in
Figure 5-19 and described in the following sections.

- I — — I S
€ DDMS - Chapter2/sre/com/apress./chapter2/Main java - Eclipse SDK [_ O] %]

~ 3 «¥p o~

File Edit Run Source Refactor Navigale Search Project Window Help
] 6B IBIBAE]IH-0-%-|®F-]F

a Devices 2

%8 & @[i’@‘%@_{;ﬁ“’

o [poMs & Java %5 Deby

= Heml Allocation Tradeet"! = File Explorer|

77 native

1< 1

MName I i
= [emulator-55¢ Online Anc
system p 77| | | acofl] ||

73 vmwait

646

@ Emuistor Control 53

Sat Feb 25 11:50:35 PST 2012

152 GC
0 Signal Catcher

82 vmwait 0
4 | 83 mmning | 2] 3aloowe |
*5 84 vmwait

com.andr 204 860 .
com andr 218 a0 |- ; £ ViCoser
gL T P | B 85 wait 2 0 ReferenceQueueDaemon
4] | » *7 86 wait 8 3 FinalizerDaemon g

Location Controls | Method | File -]
Manual IGPX I KML I org.apache hammon... getStackTrace... DdmVmintemal java J
& B =9 android .ddm DdmH... handleSTKL DdmHandle Thread java

andid ddm.DdmH... handleChunk DdmHandle Thread java
" Sexagesimal _T L S e Ty O PR e Jﬂ
| onnitude 1-122 NA4NGS LI 1 .
D LogCat R M =a

Saved Filters 4 = |Search for messages. Accepts Java regexes. Prefix with pid:-. app:. tag- or text- to limit sc |verbo&a ;I H E—a[ﬂ [

All messages (no fil

| PiD | Application | Tag | Text
77 system_pIi s ActivityMan Stazrt pro
218 com.android.syst... dalvikvm GC_CONCURRENT
4 | 3

Figure 5-19. DDMS perspective

Devices View

The Devices view provides a list of attached devices and emulators. Each device
can be expanded to show the list of running applications by clicking the plus
sign on its left. The Devices view also provides a toolbar and drop-down menu
to initiate common operations on the selected device or application, as shown in
Figure 5-20.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5% e 58 o

IIEI--I 8 Cause GC

AL XIEE I N Viasad i
o B R -0
B G 43423541314346445A5 Online 232 de..
system_process 218 8(;00 @ Update Heap
com android system. 282 {5 Dump HPROF file

cornandud wc 1172

com sonyenmon te 292 8804 %, Update Threads
= 20 e "2 Start Method Profiling
=
@ Emulator Control X -
@ Stop Process
r Telephony Status
Vaice: I ﬂ Speed: I LI iz Screen Capture
Data: I ;I Latency I LI , Reset adb

Figure 5-20. Devices view drop-down menu

The Devices view drop-down menu offers the following options:

Debug Process: This option starts a debug session for the
selected application.

Update Heap: This option enables collecting heap information
for the selected application.

Dump HPROF File: This option dumps the heap of the
selected application into an HPROF-formatted file for deeper
memory investigation.

Cause GC: This option triggers garbage collection for the
selected application to free up unused memory.

Update Threads: This option enables tracking thread status
for the selected application.

Start Method Profiling: This option enables collecting
profiling data of method invocations from the selected
application.

Stop Process: This option stops the selected application
process.

Screen Capture: This option captures the device’s current
display into a file.

Reset adb: This option resets the Android Debug Bridge
(ADB) that is providing the connection between the host
machine and the device.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Emulator Control View

If the selected device is an emulator, the Emulator Control view allows
simulating voice and data networks and location status for debugging and
testing purposes, as shown in Figure 5-21.

@) Emulator Control X =8)

~ Telephony Status el

Voice: I 'I Speed: I 'I
Data: | 'I Latency: I 'I

~ Telephony Actions
Incoming number: I
& Voice
O SMS

Message:

4

ﬂl Hang Upl

Location Controls
Manual [GPX | KML | —
® Decimal

' Sexagesimal

Longitude I—l22.[184095

Latitude |37.422006
[5=]

Figure 5-21. Emulator Control view

The Emulator Control view functionality is grouped into three sections:

Telephony Status: This section allows changing the different
aspects of a device’s network status, such as the connection
state, network speed, and latency.

Telephony Actions: This section allows generating calls and
SMS messages against the device in order to test the
application’s interaction with incoming voice calls and SMS
messages.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Location Controls: This section allows setting a mock
location for the device in order to test the application’s
interaction with location changes. The mock location can be
specified as a fixed coordinate, or multiple locations can be
injected into the device using the GPX- or KML-formatted
coordinate files.

LogCat View

The LogCat view, shown in Figure 5-22, provides access to the log messages
from the device. It presents the log messages in real time in a table-like fashion.
The table is divided into multiple columns, including Level, Time, PID,
Application, Tag, and Message.

e+ NG —
Saved Filters 4 = |Seamhim’messages Accepts Java regexes_ Prefix with pid:. app:. tag: or text: to limit sc ‘veﬁmse LI H E’”E[]]
— — - o

v 02-25 15:04:26.350 218 sSystem process RudioService onnected

0Z-25 15:04:27.880 218 system process RudinoService HDMI disconnected

o e

Figure 5-22. LogCat view showing log messages

The LogCat view allows filtering log messages by log level and also based on
message filtering criteria. Commonly used log filters can also be stored and
reused. You can save displayed log messages to a file using the LogCat view
interface.

Threads View

The Threads view provides access to thread state and stack traces for the
selected application. By default, thread tracking is not enabled. To access the
thread information, select the application using the Devices view, and then click
the Update Threads button. The Threads view presents the list of existing
threads in a table format, as shown in Figure 5-23.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

O USSR (§ Heap| () Allocation Tracker| i1 File Explorer] =)
ID Tid | Status | llimel ﬂimel Name I -

“2 219 vmwait 212 13 HeapWorker [
“3 220 vmwait 441 9 GC
*4 221 vmwait 0 Signal Catcher
B-m--m

223 vmwait 232 69 Compiler
7 224 native 4 0 Binder Thread #1
8 225 native 5 0 Binder Thread #2 -

Sat Feb 25 15:07:05 PST 2012

; . D¢anIr|l|ava S ——
android ddm.DdmH... handleSTKL DdmHandle Thread java

android ddm DdmH... handleChunk DdmHandle Thread java
nlr anache harmon disnatch NdmServer iava E _Iﬂ
4 »

Figure 5-23. Threads view of a selected application

The Threads view columns provide the following information per thread:
ID: This is the virtual machine assigned to the thread instance.

TID: This is the thread ID assigned by the Linux operating
system.

Status: This is the current status of the thread, which can be
any of the following states:

Running, when executing code

Sleeping, when sleeping in a Thread.sleep() call
Monitor, when waiting for a monitor lock

Waiting, when waiting in an object.wait() call
Native, when executing native code

Vmwait, when waiting on a virtual machine resource

Utime: This is the time spent running the user code in jiffies.
Stime: This is the time spent running the system code in jiffies.

Name: This is the name given to the thread by the application.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

NOTE: A jiffy is the unit of time for the duration of one tick of the system timer
interrupt. On the Android system, a jiffy equals 4 milliseconds.

Heap View

The Heap view provides information about the amount of memory the selected
application is using. It is a very important tool for investigating memory
problems. It displays the list of heap allocations in a table format, as shown in
Figure 5-24. This table shows the count, total size, and statistics about each
heap allocation, grouped by the class type. The bottom pane of the Heap view
contains a histogram chart demonstrating the allocation counts per allocation
sizes.

5 oo ERO 6 in o]

Heap updates will happen after every GC for this client
ID | Heap Size| Allocated | Free | % Used| # Objecis|

1 5.254 MB 2.586 MB 2668 MB 4921% 49,825 —,CalBEGC
Display: !Stas vl

Type] (‘auil Tnldﬁzel Small I lﬂg&dl ll‘l
data object 33,940 1.005.562 ... 16B 168 B

class object 2.036 586.609 KB 168 B 27117 KB

1-byte amray (byte[]. boolean(]) 1.573 230609 KB 24 B 1.977 KB

2-byte array (short[]. char{]) 9.253 588.203 KB 24B 28.023 KB

dyte array (obiect(l ntl] float D] 2800 | 225538 KB L 24 B|_1c.023KB | Ji
8byte amray (long]]. double[]) 223 10 328 KB 32B 2 000 KB

< | 3

Allocation count per size

Count
8 g 9

Figure 5-24. Heap view

By default, heap information is not collected from every application. To start
collecting heap allocation information, select the application in the Devices view,
and then click the Update Heap button. The Heap view will begin collecting
heap allocation information from the application. Heap allocation information is
collected when the virtual machine does garbage collection. To get a quick

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

snapshot of the heap allocation, click the Cause GC button to trigger garbage
collection.

Allocation Tracker View

The Allocation Tracker view allows tracking of the memory allocation of the
selected application. It is a very useful tool for investigating memory problems in
complex applications. This view provides the list of allocations in a table format,
as shown in Figure 5-25. The columns show information about the allocation,
including the allocated class type; allocation size; and in which class, method,
and thread the allocation occurred.

%, Threads | § Heap [CRESTSRESOSE RN ! File Explorer | =)

Start Tracking | Get Allocations | Filter: [[Inc. trace

Alluc Order | ¥ .| Allocated Qass | T... | Allocated in | Allocated in | -
140 com.android.... 52 com. anrkmd se.. bmadcastlrtemLodoed -
“mwm
9 aﬂmd Patx:l readString
1 Ba d'lar[] 5 andmid.ddm Dd... handleREAL

N cCaA = I MG [~} imae— s bil Al ind —lA j
Class | Method | File -
android.os_Parcel readString Parcel java L
android.os.|Permissi... onTransact IPemmissionController java
android.os.Binder exec Transact Binder java
alind'oid .media.Audi... setDeviceConn... AudioSystem.java I i
4 » |

Figure 5-25. Allocation Tracker view

To start collecting allocation data from the selected application, click the Start
Tracking button. Using the application, conduct any operations that are the
subject of the memory investigation. During this process, you can get snapshots
for the allocations by clicking the Get Allocations button. When you are finished
with the investigation, stop the Allocation Tracker by clicking the Stop Tracking
button.

File Explorer View

The File Explorer view allows users to interact with the file system on the
selected device. As shown in Figure 5-26, it presents the file system of the
devices in a combined tree and table format. You can expand directories by

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

clicking the plus sign on their left. The list also shows the size, permissions,
modification date, and time for each file and directory.

'%ﬂteads"@blea):@ﬂlncdime H'ﬁ;—|‘§“v=ﬁ.|
Name | Sze|[)de |Time Permissi... | Info]
C data 20110519 1455 drwxrwx—x & Push File...
B (= mnt 2012-02-25 13:00 drwxarwarx -

= asec 2012-02-25 13:00 drwxraax Delete
= obb 2012-02-25 13:00 drwxraax
(> sdcard 2012-02-25 14:39 d—rworx 4 New Folder
= secure 2012-02-25 13:00 drwx—
= system 2011-0303 22:21 drwxraarx
= app 2011-0303 22:21 drworaax
(= bin 20110303 22:21 drwxrxrx
| buildpr 4347 20110303 22:21 +wrir—
= 2011-03-03 22:21 drwxrxrx b
= 2011-03-03 22:21 drwxrao=x
= lib 2011-0303 22:21 drwxrsa=x
(= lost+foL 2012-02-25 13:00 drw-rw-w- =
o 20110207 2291 de

Figure 5-26. File Explorer view listing files on the selected device

The File Explorer view also provides file operations through its toolbar and its
drop-down menu, which has the following options:

Pull File: This option downloads a file from the device to the
host machine.

Push File: This option uploads a file from the host machine to
the device.

Delete: This option deletes the selected file from the device.
New Folder: This option adds a new folder to the device.

These file operations run under a restricted user account, known as the shell
user. For that reason, the operations that can be done on the device are limited
by this user account’s privileges. If an operation could not be completed due to
restrictions, the File Explorer view will show an error dialog to inform the user.

Traceview

As the Heap and Allocation Tracker views allow you to analyze the memory
consumption of their application, Traceview lets you analyze the breakdown of
where CPU time has been spent during the execution of the application.
Traceview comes with the Android SDK both as a stand-alone application and
an Eclipse editor plug-in.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Traceview operates on recorded trace files. The Dalvik virtual machine does not
generate these trace files by default. To create trace files, you can use the
tracing methods provided through the android.os.Debug API, or you can enable
tracing through DDMS by clicking the Start Method Profiling button in the
Devices view. Traceview analyzes the trace file and presents the results, as

shown in Figure 5-27.

11 ddms3060269288210049472 trace X =
msec: 404.314 max msec: 4,100 (cpu time)
I T T T T T T T
o 500 1.000 2500 3.000 3.500 4,000
e S R — ST
[10) Binder Thead 3. | || I I
18] Binder Thead 712, | | | Il 1]
[7] Binder Thread fi1 \ || |||| |||| L
[51 JDWP | (] I
Name | incl Cpu Tim... | incl Cpu Time | Excl Cpu Tim... | Excl Cpu Time | Calls+RecurC « |
w1 0 toplevel) 100.0% 4037.659 0.3% 13.141 0.0 —
w-l 1 android/os/Handier dispatchMessage (Landroid/os/Mess 98.2% 3964.512 0.1% 3.624 545+0
w- | 2 andrvid/view/ViewRoot handleMessage (Landroid/os/Me 92.1% 3719.848 0.1% 5.158 514+0
=1 3 android/view/ViewRoot_perform Traversals (V 90.4% 3651.335 0.7% 29.717 466+0
= -f] 4 android/view/ViewRoot draw (Z)V 87.6% 3537.482 1.3% 44 680 463+0
e § com/android/intemal/policy/impl/F Decorvi 78.7% 3177.325 01% 3112 459+0
=—f| 6 android/widget /FrameLayout draw {Landroid/graphics/Ca 78.6% N7a.213 0.3% 10.722 4594916
& 7 android/view/View.draw (Landroid/graphice/Canvas)V 78.5% N7N.s7 14% 56.286 459+1668
[-l 8 andmid/view/ViewGroup dispatchDraw (Landroid./graphic 63.9% 2579.385 1.6% 63.673 4591413
s--fl 9 android/view/ViewGroup. drawChild (Landroid/graphics/C 63.5% 2565.293 33 134.223 45922138
e . s e i Rores "_'I_I
Find: |

Figure 5-27. Traceview analyzing a trace file

Traceview has two panels:

Timeline panel: The top panel shows each thread’s execution
in its own row, with time increasing to the right. Each method
that was executed in this thread is color-coded and displayed

as a thin line on the timeline.

Profile panel: The bottom panel shows the detailed summary

of time spent in each method. It shows both inclusive and

exclusive times. Exclusive time is the time spent running the
method itself. Inclusive time is the total time spent running the
method and other methods that are called from this method.
The Profile panel also shows the number of times the method

is called. This panel provides extensive information for

identifying methods that are consuming the most CPU time

during the execution of the application.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Hierarchy Viewer

An Android user interface is constructed on top of layout
components that position its child views dynamically based on
the available screen space. When these layouts and views are
not properly structured, they can easily slow down the entire
application, and it’s hard to find these bottlenecks in a
complex application.

The Android SDK comes with a tool called Hierarchy Viewer,
which allows you to debug and optimize user interfaces. It
provides a visual representation of the layout and view
hierarchy. It also determines the time it takes to measure, lay
out, and draw a view. The bottlenecks are color-coded, which
makes them easily visible.

Hierarchy Viewer also provides the Pixel Perfect tool, which
magnifies the user interfaces. This allows you to examine pixel
properties of the actual display in order to make final touches.

Although Hierarchy Viewer comes as a stand-alone application with the Android
SDK, it is broken down by ADT into multiple Eclipse views and provided as an
Eclipse perspective that combines these individual views. In this chapter, we will
focus on the Eclipse perspective flavor of Hierarchy Viewer.

To launch the Hierarchy Viewer perspective, choose Window » Open Perspective »
Other ... from the top menu bar and select Hierarchy Viewer from the Open
Perspective dialog. The Hierarchy Viewer perspective is formed by multiple
Android-specific views, as shown in Figure 5-28 and described in the following
sections.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Hierarchy View - Weatherl istWidget /src/com/example/android/weatherdist widget /WeatherWidget Provider java - Edlipse SDK

File Edit Bun Source Refactor Navigale Search Project Window Help
o BB | B|BNE | H-0-Q%-|®F-]5 =7 | Hierarchy V. & Java 3

- -t G-

Q Win [*2f Vie 2
Value

= O} Tree View £ . #|® % 7 =0 Teeovene % —0
B Events

Filter by class or id:

Figure 5-28. Hierarchy view

Windows View

The Windows view lists the attached devices and the emulators in a tree-like
format. Each device can be expanded to show the active windows by clicking
the plus sign on the left, as shown in Figure 5-29.

ol v
>

B- @ 43423541314346445A57

StatusBar

StatusBarExpanded

TrackingView

com_android settings/com android setting
com.android settings/com.android .setting
com.android settings/com.android setting
com_sonyericsson.home/com_sonyericssol
com_android.intemal _service wallpaper. inj

| | »

Figure 5-29. Windows view showing the active windows

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A window needs to be selected in order to use Hierarchy Viewer. If your
application is not visible on the list, click the Refresh button for the view to
reload the active windows list.

Tree View

The Tree view shows the layout structure of the selected window in a tree-like
fashion (see Figure 5-28). Each tree item is connected to its parent using lines,
which makes it easier to visualize the view hierarchy.

Each view item shows its name and resource ID as its title. You can drag the
content to navigate through the views. Below the title, the amounts of time
spent in measure, layout, and draw steps are color-coded and shown as circles
filled with green, yellow, or red. Red indicates that the view component is taking
too much time in any of these steps. When you click a view item, the actual
measurement for each of these steps is shown in milliseconds, as shown in
Figure 5-30.

FLIEDIE M)

Filter by class or id: 20% 4 B _»| 200%

Figure 5-30. Tree view showing view item details

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Tree Overview View

Depending on the size of the view hierarchy, showing all the views and
components within the Tree view may not be possible. For navigation within the
view hierarchy, the Tree Overview view provides a smaller map representing the
entire Tree view window, as shown in Figure 5-31. The currently selected view is
highlighted on the map.

'I'=§ Tree Overvie 52 - =}

Figure 5-31. Tree Overview view representing the entire Tree view as a map

View Properties View

The View Properties view provides access to the properties of the selected view
component. The View Properties view is displayed as a tab in the left pane.
Using the View Properties view, you can examine all of the properties without
needing to look at the application source code. To make the navigation easier,
the properties are displayed in a tree format organized by the property category,
as shown in Figure 5-32.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[SE Dra

-isDrawingCache false

--isOpaque() false

-- willNotCacheDr false

- willNotDraw() false

B Focus o
-- hasFocus() false
--isFocusable() false

-isFocused() false

- Layout

--getBaseline() 23

-getHeight() 29

-- getWidth() 340

-- layout_bottomM 0

- layout_height WRAP_CONTENT
- layout _leftMarg 0

- layout_mRules_ false/NO_ID
-layout_mRules_ false/NO_ID

lavout mBules faiseNO D 7|

Figure 5-32. View Properties view listing all of the properties of the active view

Layout View

The Layout view provides a block representation of the entire window, as shown
in Figure 5-33. When you select a view block, the corresponding view will be
selected in both the Tree and View Properties views.

<6 Lavout view > S
0"
—10

=0
=_|D

Figure 5-33. Layout view showing the block representation

The outline colors of the blocks also provide extra information regarding the
views:

Bold red represents the view that is currently selected in the
Tree view.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Light red represents the parent of the current selected view.

White represents a visible view that is not a parent or child of
the currently selected view.

Android Lint

Android Lint is a tool for scanning Android application projects for potential
bugs and most common mistakes. It also finds any inconsistencies in layouts,
resources, and the manifest file. It is a very powerful tool that should be
employed during the development cycle in order to keep the application source
code clean and robust.

The Android Lint tool can detect the following problems:
Missing and unused translations
Unused and inconsistent resources
Typography suggestions for string resources

Accessibility and internationalization problems such as hard-
coded strings

Layout performance problems
Usability problems in layouts and input fields

Icon and graphic problems, such as duplicate icons and
wrong sizes

Manifest errors
Use of deprecated APIs

Android Lint is provided both as a stand-alone application, for quick integration
into an existing build system, and an Eclipse plug-in that is integrated into the
development environment. In this section, we will focus on the Lint Eclipse plug-
in.

To start Android Lint, select a project and choose Window » Run Android Lint from
the top menu bar, as shown in Figure 5-34.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Fle Edit Run Source Refactor Navigate Search Project | Wmdou Help

- 1 aa Gl ¢ New Window -)
| B = & 8B I2[|B8HFE e -|® -
|PAEE |- -Pe-o- -
= “ — Open Perspective 4
5 Project Explor 57 . =0 [4] Main java [3] Author jav: Show View ' herWidget Provide
77 can be wiggersy Customize Perspective... Lo S PECE
// inside the main Save Perspective As...
final Context conte Reset P ive...
sWorkerQueve remor am Pe'm':::e
sWorkerQueue post(= Brapact
public void run(Close All Perspectives
final Content Esolver();
final Cursor c Navigation » FONTENT_UR/, null,
null);
final int coun [! Android SDK Manager
final int max{] AVD M

17 e s [T PR ot e coch
/7 will trigger Preferences er.
r.unregisterC,
for (inti = 0:i < count: ++) {
final Uni uri = ContentUris.w@hAapendedic{WeatherDataProvider
final ContentValues values = new ContentValues():

Figure 5-34. Choosing to run Android Lint

Android Lint goes through the project files, and presents its results through the
Lint Warnings view, as shown in Figure 5-35.

(I= Prublecm'@Javadoc|ECm‘nso(e|~/—Tasks|QSea‘d1 g X % =0
l] emors, 13 wamings
|Replace “..." with ellipsis LI
‘ Replace “_.." with ellipsis charact ... character (" &48230:) ?
& The image body png varies signific... body.png 1 Issue: Looks for ellipsis strings
) The image footer png varies signifi... footerpng 1 (...) vrhdl can be replaced with
& The image item_bg_dark.png varie... item_bg_dark.png 1 an ellipsis character
& The image item_bg_light png varie... item_bg_light png 1 You can replace the string "™
& The image refresh.png varies signi... refresh.png 1 with a dedicated ellipsis
% The image refresh_pressed. ... refresh_pressed., 1 character, ellipsis character (_.
~Usell beisl'lofﬂr.i?ngva 5 I -m:ng 46 &##8230:). This can help make the
i a layout _| pinstea... widget_layout text more readable.
& The resource R.drawable.icon app... WeatherListWidget 1
(% Missing density variation folders in... WeatherlistWidget 1 hitp://en wikipedia.org/wiki/Blip
.1 [Accessibility] Missing contentDes... widget_layout xml 29 _|[™®
«i [Accessibility] Missing contentDes... widget_layout xml 35
.1, [Accessibilitv]l Missina contentDes .. widoet lavout xml 64 LI LI

Figure 5-35. Android Lint Warnings view

The Lint warnings are listed in a table format. The columns show the Lint
warning message and the associated file and line number. Selecting a warning
item from the table shows a detailed description of the identified problem in the

right pane.

Through its toolbar, the Lint Warnings view also allows you to initiate the

following operations on the listed warnings:

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Refresh: This goes through the project files again and
refreshes the list of Lint warnings.

Fix: This fixes the warning automatically if a solution is known.

Ignore Type: This ignores all of the warnings with the same
type. For example, you can ignore all warnings related to
image density.

Remove: This removes the selected warning from the list.
Remove All: This removes all warnings from the list.

Lint can also be configured through its Preferences dialog. Choose Window »
Preferences on Windows and Linux, or Eclipse » Preferences on Mac OS X, from the
top menu bar, and select Android, then Lint Error Checking from the
Preferences category list to access the Lint properties. The Lint Preferences
dialog provides a list of issues that can be detected through Lint. Using this list,
you can change the severity levels associated with these issues, as shown in
Figure 5-36. If an issue is not relevant to the project, its severity level can be set
to Ignore in order to hide these issues from Lint warnings.

h«pe filter text Lint Error Checking - -~ w
& Genetd

¥ When saving files. check for errors
¥ Run full error check when exporting app

Issues:
id [Name I«
=l Comectness
Duplicatelncluded| &) Checks for duplicate ids across layouts that are combined. ..
Duplicatelds #y Checks for duplicate ids within a single layout e

Statelist Reachabl) Looks for unreachable states in a <selector>

Scmll\d'iew&ze Q. Checks that ScrollViews use wrap_content in scrolling dim..
: Looks for usages of deprecated layouts. attributes. aﬂdso

! NuledSn'Dllmg ', Checks whether a scrolling widget has any nested scrollin..
& Plug-in Development ScrollViewCount | & Checks that ScrollViews have exactly one child widget

B+ Run/Debug AdapterViewChildr & Checks that AdapterViews do not define their children in
a Team GridLayout 3 Checks for potential GridLayout emors like declaring rows ...
- XML ExtraTranslation /%y Checks for translations that appear to be unused (no defa...

Missing Translation 9 Checks for incomplete translations where not all strings ar... LI

Do e e £ Lanlen Ene nenblomme lon senne soeed oo Eilas
Checks that ScrollViews use wrap_content in scrolling dimension ~:J Severity:
ScrollView children must set their layout_width or layout_height Warmng Cl

attributes to wrap_content rather than fill_parent or match_parent in (Defauit)
the scrolling dimension Emror

—vl ln‘ormﬂ'ion
Restore Defal |
@ [ox]| cancel |

Figure 5-36. Setting Lint preferences

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Releasing Applications

As discussed in earlier chapters, the Android platform requires each application
to be signed by its author in order to be deployed on the Android platform. ADT
provides a wizard to guide developers through the signing process.

During the development phase, the Android SDK transparently generated a
debug key to sign the application automatically to streamline the process. But
when the application is going to be released to the public, Android requires it to
be signed with a release key.

Unlike other mobile platforms, Android does not rely on a certification authority
to issue digital certificates to developers. Every Android developer can generate
a key and sign an Android application on its host machine. When an application
is installed on Android, its signature is used to check the authenticity of the
application updates. If the application update is not signed with the same key,
Android does not allow the new version to be deployed as an update. The ADT
plug-in provides a set of wizards to generate keys and sign applications before
public release.

To sign your application for release, using the Package Explorer, choose the
application project, right-click it, and choose Android Tools » Export Signed
Application Package... from the context menu to launch the Export Android
Application wizard, as shown in Figure 5-37.

& Export Android Application | _[O]]
Project Checks

Performs a set of checks to make sure the application can be exported. \ f
Select the project to export:

Project: |ApiDemos Browse...

No emrors found. Click Next.

.@: < Back Next > Finish Cancel

Figure 5-37. Export Android Application wizard

Confirm the project to be exported, and click the Next button to proceed. As
shown in Figure 5-38, the wizard will ask for the location of the keystore to be
used. If this is the first time you are signing an application, choose the Create
new keystore radio button to generate a new one. Keystores hold one or more

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

private keys. Using the Browse button, select the location and the file name for
the keystore. Define a password to protect the keystore, and click the Next

button to proceed.

| € Bxport Android Application

Keystore selection

HEE|

(" Use existing keystore
(+ Create new keystore

Location: |C:\User3\ondnaf\D&¢ldop\keystore

Password: I' sesee

Confirm: Ic.o.-.

@ < Back Next > Finich

Figure 5-38. Keystore selection for exporting a signed application

If you choose to create a new keystore, the Export Android Application wizard
presents a form to get enough information to properly produce a key, as shown
in Figure 5-39. After you fill in the necessary information, click the Next button to

proceed.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

€ Export Android Application M=
Key Creation

Alias: |axes:
Password: [o---o.
Confirm: Ic.oooc

Validity (vears): |25

First and Last Name: [Onur Cinar
Organizational Unit: [Android
Organization: |Apress

City or Locality: |Hn|.ﬂain View
State or Province: [CA

Country Code 00Q: [US

|® < Back Next > Einish Cancel

Figure 5-39. Key creation information form

If you already have a keystore that you are going to use, the wizard will ask you
to select the key to be used from the given keystore, as shown in Figure 5-40.

€& Export Android Application !EI

Key alias selection p. '
|

& Use existing key
me [=
Password: Ioooo-.

(" Create new key

@ < Back Next > Finish Cancel

Figure 5-40. Key selection by alias from the given keystore

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As the last step, the Export Android Application wizard will ask for the
destination location for the signed APK file that will be released, as shown in
Figure 5-41. Click the Browse button, and select the location and the file name.
Then click the Finish button to start the process.

€& Export Android Application | _ O]]

Destination and key/certificate checks
L

Destination APK file: |C:\Users\oncinar\Desktop\ApiDemos-release apk Browse

Certificate expires in 25 years.

|i?_'.‘ < Back Mext > [Finish Cancel

Figure 5-41. Setting the destination for the signed APK file to be released

The wizard will compile the Android application in release mode and sign it with
the selected key. The signed APK file can be released to the public.

Summary

This chapter introduced the ADT plug-ins for Eclipse. We started our journey by
installing ADT and the Android SDK. We then configured an Android virtual
machine and explored its control interface. Next, we looked at DDMS,
Traceview, Hierarchy Viewer, and Android Lint, exploring how to employ these
tools during day-to-day Android development. Finally, we covered how to sign
an Android application for release by using ADT.

Resources
The following resources are available for the topics covered in this chapter:
Android Lint, http://tools.android.com/tips/lint

Debugging and Profiling User Interfaces,
http://developer.android.com/guide/developing/debugging/
debugging-ui.html

downloaded from: lib.ommolkefab.ir

http://tools.android.com/tips/lint
http://developer.android.com/guide/developing/debugging/
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Dalvik Debug Monitor,
http://www.netmite.com/android/mydroid/dalvik/docs/debug

mon. html
Android Tools Project, http://tools.android.com/

downloaded from: lib.ommolkefab.ir

http://www.netmite.com/android/mydroid/dalvik/docs/debug
http://tools.android.com/
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Chapter

Project: Movie Player

In the previous chapter, we explored ADT for Eclipse. We reviewed the ADT
views and tools, and how to involve them during day-to-day Android
development. In this chapter, we will start putting all the tools and concepts that
we have discussed in the previous chapters into action.

Our first Android project is a simple movie player application. Since the purpose
of this experiment is to see Android development on Eclipse in action, we will
not go too deeply into the Android framework APls. In the next chapters, we will
continue to build on this simple project.

An Overview of the Movie Player

Our movie player application will be a simple single activity application that will
present a list of movie files, which are in the external storage. The list will show
the thumbnail, name, and duration for each movie file. When you click a movie
item in the list, the movie player application will rely on the Android platform to
launch the corresponding video player activity to play the selected movie.
Although this is a very simple project, it will allow us to experiment with most of
the tools and concepts we have discussed in previous chapters.

We will start by using the New Android Project wizard to generate the skeleton
project. Then we will use the editors provided by ADT to create the user
interface. Through the manifest editor, we will modify the AndroidManifest.xml
file based on our project's requirements. Using the layout editor, we will define
the user interface layout for the movie list, as well as the layout for movie list
items. We will employ the resource editor to properly define the string resources
that we need in our user interface. While producing the necessary layout and
resources, we will use Android Lint to validate the code in parallel. The

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

application will rely on the media store content provider to fetch the list of movie
files that are in external storage. The fetched information will be saved into
movie objects that we will define in this chapter. We will also implement the
movie list adapter to feed the information into the list view for presentation.

To play the selected movie files, we will rely on the Android platform by utilizing
the startActivity method of the Activity class to launch the corresponding
video player. While doing all of this, we will rely heavily on Eclipse’s code
templates, automatic code generators, and refactoring features to streamline the
development process by letting Eclipse handle time-consuming operations.

Starting the MoviePlayer Project

To start our new Android project, choose File » New » Other from the top menu
bar to open the New Project dialog, as shown in Figure 6-1.

€ New Project HEE|
Select a wizard &
Wizards:
fype filter text

i Java Project from Existing Ant Buildfile
4% Plug-n Project

E| = Java

E| (= Plug-in Development

#H-(= Examples

©) < Back Finich Cancel

Figure 6-1. Eclipse New Project dialog

The New Project dialog is organized by project categories. Expand the Android
project category, choose Android Project as the project type, and click the Next
button. This launches the New Android Project wizard. As the first step, you

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

supply the project name and its location. You can also choose whether to start
with an empty project, build a project on top of an existing project, or start with
an Android sample application, by selecting the corresponding radio button. For
this example, name the project MoviePlayer, as shown in Figure 6-2, and then
click the Next button.

| & New Android Project

mEE|

Create Android Project ‘
Select project name and type of project i

Project Name: [MoviePlayer

{3 Create new project in workspace
(" Create project from existing source
(" Create project from existing sample

¥ Use default location
Location: [C-/Users/oncinar/workspace/MoviePlayer Browse..

Working sets

[~ Add project to working sets

Working sets: d Select... |

@ < Back Next > Finish Cancel

Figure 6-2. New Android Project wizard

Next, the New Android Project wizard asks for the Android platform target for
the new project, as shown in Figure 6-3. The list will show only the already
installed SDKs. If your target platform is not in the list, you may need to
download it using the Android SDK Manager. For this project, choose Android
2.3.3, API Level 10 as the target platform. This means that the new project will
run on any Android device that supports API level 10 and above. Click the Next
button to continue.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

| & New Android Project 1
Select Build Target p
Choose an SDK to target . I
r~ Build Target
Target Name | Vendor I Platform | API... |
O Android 2.2 Android Open Source Project 22 8
Android 2.3.3 Android Open Source Project 233 10
] Android 4.0.3 Android Open Source Project 403 15

Standard Android platform 2.3.3

@\\ < Back

/

Finish Cancel

Figure 6-3. Choosing the target platform for the new project

Android applications are bundled as packages with a unique package name.
The package naming concept and the naming convention are borrowed from the
Java programming language. Package names are usually defined using a
hierarchical naming pattern, with the levels of the hierarchy separated by dots.
Although the Android application code may contain multiple packages, there
should still be one main package for Android to refer to the application.

As the last step in defining a new project, the New Android Project wizard will
ask for the application name and the unique package name. For our example,
the package name is com.apress.movieplayer, as shown in Figure 6-4. Besides
the package name, this dialog also asks for the minimum SDK. The minimum
SDK identifies the minimum API level required in order to run this application on
an Android device.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[& New Android Project ME |
Application Info
Configure the new Android Project

Application Name: IMoviePIayer

Package Name: Imm .apress.movieplayer

V! Create Activity: |MovieP|ayerActivily

Minimum SDK: [10 (Android 2.3.3) ~]

[T Create a Test Project

Test Project Name: IMmriePIayerTeﬁ

Test Application: IMoviePlayerTest

Test Package: Iwm.apress.movieplayer.ied

@ < Back Newt> | Bnish Cancel

Figure 6-4. Entering the application name and the unique package name

As you can see in Figure 6-4, the New Android Project wizard can also generate
most of the default components, such as the main activity and the unit test
project, to provide enough skeleton code to make it faster to start a new project.

Since our movie player application will need an activity to interact with the user,
select the Create Activity option.

Click the Finish button. The New Android Project wizard will automatically

generate the project layout as well as the required project files, as shown in
Figure 6-5.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

|.'" _.J|HL; .L,,»!—:-;.h: d $~0~Q..v‘u,®v.;f‘?-;'~ [| & Java
| SEW S -f oD
[Project Explorer 82 EF-) B MoviePlayerActivity java X = -S--
=y g ' Com apress movi [+] s
=== MoviePlayer # import android app_Activity[] o=
gt gz
= sﬂc . public class MoviePlayerActivity extends Activity [}
©com.apress.movieplayer /- Called when the activity is first created. =/
a0 @overiie
28 Generated Java Files public void onCreate(Bundle savedinstanceState) {
; gen!l ! id 2.3 ;d e 1 euper.onCreate(savedinstance State);
kb ik selCnried\ﬁew[R layout_mai);
B\, com_.android.ide eclipse.adt LI }
& }
< [| IE | [l
| ¢ |w;itable |Sma'lhseﬂ I =& e B8 &4&

Figure 6-5. Project layout and required project files

The following project directories and files are created:

src: This directory contains the Java source files. The
application package is automatically generated in this
directory by the New Android Project wizard.

gen: This directory contains automatically generated project
files, such as the R class for resource index. Users are not
expected to modify the content of this directory. The content
of this directory is regenerated each time the project is
compiled.

assets: This directory contains the application assets.

bin: This directory contains the compiled class files and the
installable Android package file for this application. Users are
not expected to modify the content of this directory.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

res: This directory contains subdirectories for different types
of application resources. The New Android Project wizard will
automatically generate the layout, string resources, and icons
for the main activity in the corresponding resource directories.
Resources are organized as follows:

Animation resources are saved in the anim subdirectory.
Color resources are saved in the color subdirectory.

Image files are saved in corresponding drawable
subdirectories depending on the target screen
resolutions.

User interface resources are saved in the layout
subdirectory.

Menu resources are saved in the menu subdirectory.

Other resources, such as string resources and user
interface styles, are saved in the values subdirectory.

AndroidManifest.xml: This is the application manifest file. The
New Android Project wizard automatically generates this file
with the content from the information collected through the
wizard’s dialogs.

proguard.cfg: This is the ProGuard configuration file that is
used by ProGuard while obfuscating the application package
for release builds.

project.properties: This is a properties file that is used by
the Android SDK build system while compiling and packaging
the application.

Using ADT Editors

ADT provides a variety of editors to manipulate project files. In the following
sections, we will use these editors to customize the project skeleton based on
our project requirements.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Manifest Editor

Double-click the AndroidManifest.xml file to open it. ADT
comes with a custom editor for manipulating the manifest files.
Eclipse will detect the type of the file and open it with the
manifest editor, as shown in Figure 6-6.

MoviePlayer Manifest X =5

[":':: Android Manifest

| »

Defines general information about the AndroidManifest xml

|
8

Package |com .apress.movieplayer

Version code |1

Versionname [1.0

Shared userid | Browse...

EN—

Install location | I~

Wemslwet’ Extraty OOPOOOA: 0
{0 Uses Sdk

Remave...

Up

Down

£=] Manifest | (A] Application | (P) Permissions | (1] Instrumentation | | =] AndroidManifest xml

Figure 6-6. Android manifest file editor

The manifest editor provides a set of tabs to allow manipulating every aspect of
the Android manifest file. Since the user interface provides all possible values, it
makes editing manifest files easier and more robust. At any given time, you can
switch to the XML tab (AndroidManifest.xml) to work with the XML source file
as well.

Layout Editor

Android application user interfaces are defined using XML-based layout files.
For complex user interfaces, maintaining these XML files becomes a very
challenging task. ADT comes with a visual user interface editor plug-in for
Eclipse, which allows you to design and maintain the layout XML files.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

To see the layout editor in action, using the Project Explorer, navigate into the
res directory, and then the layout directory, and choose the main.xml file. The
main.xml file is the layout file for our main activity. Eclipse will automatically
detect the type of this file and open it in the ADT’s layout editor, as shown in
Figure 6-7. The code generator has already populated this layout file with a
“Hello World” message.

& Java - MoviePlayer/res/layout fmain xml - Eclipse SDK !Eﬂ
Fle Edit Refactor Bun Navigate Search Project Window Help
| £9 - a8 B8]0 |G- |& - 7 & Java
| 5l - o - -
(2, Project Explorer 127 = O([1] MoviePlayerActivity java =0=
=
= -

ks

Editing config: default

i MovieFlayer

[any locale | ~| [Android 233 -] | Create... [| 1

[3-7in WVGA (Nexus _+][Portre_~] [Norm: ~][Day |~ |[Theme Light

B sro

-t com.apress.movieplayer I e T o 1

| @-[J] MoviePlayerActivity jav ..M_ D“::] ||E| m |EaKQ |)
=% gen [Generated Java Files]

Form Widgets -
e 22 ﬂ =
Medium sma

OFF

i Hello World, MoviePlayerActivity!
[V]checksex =]
) Text Folds |
L Lavouts
|| Composite
Images & Media
[) Transitions

Custom... s ||] i
« |]| Graphical Layout | =) main.xmi |

[m® | o fleB@as

Figure 6-7. Android visual layout editor

The visual layout editor has three panes:

The right pane displays the current layout as it will look on a
real Android device.

The top pane provides a set of drop-down menus to change
the size and orientation of the display in order to see how the
layout will adjust itself to these changes.

The left pane contains a list of available widgets and layout
components. You can drag-and-drop any view component
from this pane to right pane to add a view component to the
current layout.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Right-clicking a view component shows a list of available parameters, which you
can change. Besides providing visual design capabilities, the editor also allows
you to directly interact with the underlying XML-formatted layout code. To
switch to the XML editing mode, select the main.xml tab at the bottom of the
editor.

Now let’s use the layout editor to change the layout of our movie player
application.

Movie List Layout

We want to have our movie player application display movie files as a list.
Switch to XML editor mode by selecting the main.xml tab, and the type the code
in Listing 6-1.

Listing 6-1. The main.xml File

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill parent"
android:orientation="vertical" »

<ListView
android:id="@+id/movielistView"
android:layout_width="fill parent"
android:layout_height="fill parent" >
</ListView>
</LinearlLayout>

This XML component contains only a single full-screen
android.widget.ListView. Using the android:id attribute, we are assigning the
ID movielListView to the android.widget.ListView component. Any view object
may have an ID associated with it to uniquely identify it in the view hierarchy. IDs
allow you to refer to view components in the application code. The at symbol (@)
at the beginning of the ID string indicates that the XML parser should expand
and identify it as an ID resource. The plus sign (+) that follows the at symbol
indicates that this is a new resource name and must be added to the ID
resources.

Now go back to the visual design mode to see the layout in action, as shown in
Figure 6-8.

downloaded from: lib.ommolkefab.ir

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

| i o =

Editing config: default |Any locale | ~] [Android 2.3.3 [~] | Create...
[3.7in WVGA (Nexus | ~][Portre_~][Normz ~ |[Day |~ || Theme. Light]
Brase ~| M[EF [| B
Form Widgets DrawSelectorOnTop » -
" Ten E Gt
[Layouts Edit Background...
=+ Composite | :

| Layout Width »
ListView =11 Item 1 Layout Height 4
Sub [tem

| Sub Item 1 Other Properties >
- Expandabl |
=/ subltem _‘ Preview List Content 5
iG] || [tem 2 Extract Include...

Extract Style..

) Time & Date ||| SUD Item 2 er:?n Cf:aimm
[Transitions | Remove Container...
S| Item 3 ||
Custom... Views u LinearLayout Pl
E‘]G.mﬁmuam[gimainm| Select »

Figure 6-8. ListView added to the layout

Movie Item Layout

ListView, by default, allows you to quickly present the data as text items.
However, for our movie player application, we would also like to show the movie
thumbnail on the left in order to make it easier for the users to make selections.

To define this custom list item layout, choose File » New » Other from the top
menu bar and select Android XML Layout File from the list, as shown in
Figure 6-9.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[ENew —— HEEH|
Select a wizard v
Wizards:
fype filter text

5= Android [+]

€5 Android Icon Set

&% Android Project

&% Android Sample Project
-75' Android Test Project
“/d Android XML File

Sl f Android XML Layout File

-l Android XML Values File

&.(> CVS

&= Java ;I
@ cBack | Next> | Finish Cancel

Figure 6-9. Selecting a new Android XML layout file

As the next step, the Android XML Layout File wizard will ask for the file name
and the root element. The file name for this layout will be movie_item.xml. We
would like the list items to have a thumbnail on the left, the movie title on the
right, and the movie duration below the title. The way we were able to describe
the layout strongly indicates that the android.widget.Relativelayout is the right
root element for the item layout. Select RelativelLayout from the list, as shown
in Figure 6-10, and then click the Finish button.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

x]|

New Android Layout XML File ‘ »
Creates a new Android Layout XML file. “)
Resource Type: |Layoul j
Project: |MuviePIayer ;I
File: |movie_itemjurll

Root Hement:

RadioGroup -]

RatingBar

= Relativelayout

[=] ScrollView =

) SeekBar
D SlidingDrawer ;I
@ < Back Next> |[Finish Cancel

Figure 6-10. Choosing the new layout root element

In this layout, we are going to use an android.widget.ImageView view to show
the movie thumbnail, and two android.widget.TextView views to show the
movie title and the duration. Switch to the XML editor mode and type the XML
code in Listing 6-2.

Listing 6-2. The movie_item.xml File

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent">

<ImageView

android:
android:
android:
android:
android:
android:
android:

downloaded from: lib.ommolkefab.ir

id="@+id/thumbnail”
layout_width="64dp"
layout_height="64dp"
layout_alignParentLeft="true"
layout_alignParentTop="true"
layout_marginRight="16dp"
src="@drawable/ic_launcher" />

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignTop="@+id/thumbnail®
android:layout_toRightOf="@+id/thumbnail”
android:text="Large Text"
android:textAppearance="?android:attr/textAppearanceLarge" />

<TextView
android:id="@+id/duration"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignlLeft="@+id/title"
android:layout_below="@+id/title"
android:text="Small Text"
android:textAppearance="?android:attr/textAppearanceSmall" />

</Relativelayout>

You can now switch to the visual editor mode to see the layout in action, as
shown in Figure 6-11.

o=
Editing config: default |Any locale |~ | [Andmid 233 |~| | Create... |
[3.7n WVGA (Nexus One) |~ |[Portrait [~][Normal _~|[Daytime][Theme.Light ~]

| Palette |l HED EE- | mEEa aaalaals
&, Fom Weigels
Textaew Large Medium smas | &

OFF
[+]

Bunon

| Text Felds
_| Layouts

2 G s
S " Large Text

__ ges b eds _@ Sma" Text toRightOf=thumbnail
L lime 2. Oale alignTop=thumbnail

(. Transitions

) Advanced =
Custom & Library Views LI _I"

%] Graphical Layout| = lllovie_item.mll|

Figure 6-11: Movie item added to the layout

As you may have noticed, there is a tiny warning icon in the top-right corner of
the visual layout editor. If you hover the mouse over this icon, you will see that
Android Lint is warning you about possible issues with this layout. Clicking the
warning icon brings up Android Lint’s warning dialog, as shown in Figure 6-12.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Lint Wamings in Layout
Lint Errors found for the cumrent layout:

= % [118N] Hardcoded string “Large Text™, should use @string resource (2 i‘ta;'ZI
.+, [118N] Hardcoded string "Small Text”, should use @string resource 30 Ignare |
lgnore Type |
[A=]

.1, [Accessibility] Missing content Description attribute on image 6

[118N] Hardcoded string "Large Text". should use @string resource -
Issue: Looks for hardcoded text attributes which should be converted to resource

lookup
Id: Hardcoded Text

£

Figure 6-12. Android Lint warning dialog showing layout problems

For the first two errors, Android Lint is telling us that the strings we used in the

XML layout file are hard-coded, and they should instead be in the string
resources. Lint can automatically fix these errors for us, as described in
Chapter 5.

Select the first issue that is related to the hard-coded "Large Text" string, and
click the Fix button. Lint will show the Extract Android String dialog to confirm
the proposed change, as shown in Figure 6-13. Click the OK button to proceed.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

€ Extract Android String - O] x|

- String Replacement
String
Replace by R.string

|Large Text

e o =]

Configuration:

" XML resource to edit

Available Qualifiers -~ Chosen Qualifiers

7 Country Code
[:T Network Code
ﬁ:éi Language

¥ Region

++ Screen Width
1 Screen Height
1 Size

C: Ratio

o Orientation
& Ul Mode

< Night Mode
(%21 Density

e SR T S

F Smallest Screen Width

A '
- -

-]

Resource file: I/lmfvdmfstringsmi LI

- Options

[Replace in all Java files
" Replace in all XML files for different configuration

& J/res/values/strings xml already contains a string I1D large_text’ with value "Large Text'.

Preview > | OK | Cancel

Figure 6-13. Lint replacing the hard-coded string with a string reference

Repeat the same procedure for the second error related to the "Small Text"

string. Now the

<TextView
android

android:
android:

android
android

android:
android:

<TextView

android:
android:
android:

downloaded from: lib.ommolkefab.ir

related portion of the layout XML file will look like the following:

:id="@+id/title"

layout_width="wrap_content"
layout_height="wrap_content"
:layout_alignTop="@+id/thumbnail”
:layout_toRightOf="@+id/thumbnail"
text="@string/large text"
textAppearance="?android:attr/textAppearanceLarge" />

id="@+id/duration"
layout_width="wrap_content"
layout_height="wrap_content"

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

android:layout_alignlLeft="@+id/title"
android:layout_below="@+id/title"
android:text="@string/small text"
android:textAppearance="?android:attr/textAppearanceSmall" />

For both errors, Lint defined a string resource, and replaced the value of
android:text attributes in the layout file with the corresponding string resource
ID. Not using any hard-coded strings in layout files is the proper way of defining
Android layouts.

Instead of having Lint fix the third error for us, let’s fix it manually. In the layout
editor, define the android:contentDescription attribute for the thumbnail with
the string reference thumbnail_description. With this change, the ImageView
component will look like the following:

<ImageView
android:id="@+id/thumbnail"
android:layout_width="64dp"
android:layout_height="64dp"
android:layout_alignParentLeft="true"
android:layout_alignParentTop="true"
android:layout_marginRight="16dp"
android:contentDescription="@string/thumbnail description”
android:src="@drawable/ic_launcher" />

An error marker will be shown next to thumbnail_description since the string
resource is not yet defined. We will use the resource editor to define this string
resource.

Resource Editor

Android application string resources are stored in XML-formatted files. ADT
provides a custom editor for manipulating these resource files. Navigate to the
res directory, and then the values directory, and select the strings.xml
resource file. Eclipse will open the resource file within the custom editor, as
shown in Figure 6-14.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i Android Resources (default)
Resouces @@ OO B O E M A:

HBements

-(8)iapp_name (String),
-(g) large_text (String)
.-.(S) small_text (String)

p

Down

=] Resources | = stn'ngs.xml|

Figure 6-14. Resource editor

On the top pane of the editor, you will see a set of letters to filter the list of
resources to contain only certain types of elements. By clicking the buttons on
the right, you can manipulate the list of resources. At any time, by switching to
the XML tab, you can directly interact with the resource XML source file.

To define the thumbnail_description string resource, click the Add button. In

the dialog that appears, choose String as the resource type, as shown in Figure

6-15, and then click the OK button to proceed.

e (O] x|
Create a new element at the top level. in Resources.

@Color

(D Dimension

(D Drawable

(1) integer Amay
Item

(s)String Amay

(S Style/Theme

OK | Cancel

Figure 6-15. Selecting the resource type

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using the right pane, define the thumbnail_description string resource, as
shown in Figure 6-16.

Resources @ © @ @ B @ 5 (1) Az | Altributes for String &
(S Strings. with optional simple

name (Stri formatting, can be stored and
- apey Ehnal retrieved as resources. You can add

() large_text (String)

: ’ formatting to your string by using

- (©) small_text (String) three standard HTML tags: b. i. and

@m u. If you use an apostrophe or a
II' quote in your string, you must either

escape it or enclose the whole &=
string in the other kind of enclosing
quotes.
Name™ [thnrmal_dauiplion
Value™ | Thumbnail

Figure 6-16. Defining the string resource

Defining the Classes

We have completed defining the user interface and the necessary resources. We
will now start implementing the necessary model classes to hold the data that
will be presented in the user interface.

Movie Class

For our movie player application, we will need a model class called Movie to
store the information about each movie item. Choose File » New » Class from the
top menu bar to define a new class. Eclipse will ask for the class name and its
package. Set the class name field to Movie, and set the package name to
com.apress.movieplayer. In the editor area, enter the Java code in Listing 6-3
(don’t worry about the errors for now).

Listing 6-3. The Movie.java File

package com.apress.movieplayer;
/**

* Movie file meta data.
*

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

* @auth

*/

class Mo
/**

priv
/**
priv
Vi
priv
Vi
priv
Vi
priv
/**

* C
*

*@
*

*e
*

*/
publ

}
This def

downloaded from: lib.ommolkefab.ir

or Onur Cinar

vie {
Movie title. */
ate final String title;

Movie file. */
ate final String moviePath;

MIME type. */
ate final String mimeType;

Movie duration in ms. */
ate final long duration;

Thumbnail file. */
ate final String thumbnailPath;

onstructor.

param mediaCursor
media cursor.
param thumbnailCursor
thumbnail cursor.

ic Movie(Cursor mediaCursor, Cursor thumbnailCursor) {
title = mediaCursor.getString(mediaCursor
.getColumnIndexOrThrow(MediaStore.Video.Media.TITLE));

moviePath = mediaCursor.getString(mediaCursor
.getColumnIndex(MediaStore.Video.Media.DATA));

mimeType = mediaCursor.getString(mediaCursor
.getColumnIndex(MediaStore.Video.Media.MIME_TYPE));

duration = mediaCursor.getLong(mediaCursor
.getColumnIndex(MediaStore.Video.Media.DURATION));

if ((thumbnailCursor != null) && thumbnailCursor.moveToFirst()) {
thumbnailPath = thumbnailCursor.getString(thumbnailCursor
.getColumnIndex(MediaStore.Video.Thumbnails.DATA));
} else {
thumbnailPath = null;
}

ines a new Movie class with five member fields:

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Movie title

Movie file URI

MIME type of the movie file
Duration in milliseconds
Movie thumbnail URI

We will be getting the information from the android.provider.MediaStore
content provider, which is a system content provider for providing information to
the application regarding the media files on the device. While you're typing the
code into the editor, you will start seeing error markers from Eclipse indicating
errors in the code, as shown in Figure 6-17.

M Movie java X

:/ thumbnail cursor.

ptb!ic Movie!CW rne:ci?_-Cu.rsor WlmlCtIWl {
e z_gﬁc .1 Cursor cannot be resolved to a type

11 quick fixes available:

moviePath| —
getd - ‘Cursor” (android database =
5 ® Create class "Cursor’
duration =
get ©@ Create interface ‘Cursor’
. « Change to "Color’ (android_graphics) =
5 ﬂll'\urbn: @ to "CursorJoiner' (android database
g{ « Change to 'CursorWindow' (android database) ;I
lelse{ |- A
thumbn: - Press 'F2° for focud]

Figure 6-17. Eclipse indicating errors in the code

When you hover your mouse over the red underlined errors in the code, Eclipse
will automatically display the Quick Fix view with recommendations for possible
actions to fix the problem. In our application, the problem is that we haven’t
imported all of the referenced classes. You can use Quick Fix to fix them
manually, or you can press Ctrl+O on Windows and Linux, or Command+O on
Mac OS X, to organize and fix all of the imports.

In order to access the member fields, we will now need to define the getter and
setter methods. As described in Chapter 4, we can have Eclipse automatically
generate these getters and setters, as shown in Figure 6-18.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Generate Getters and Setters |- 1a] x]

Select All |
gadamﬂll
Select geltersl
[© getMoviePath() Select Seﬂersl

=-E = thumbnailPath
| : © get ThumbnailPath()

Select getters and setters to create:

© getTitle)

[T Allow setters for final fields (remove Yinal' modifier from fields if necessary)
Insertion point:
[After "Movie(Cursor. Cursor)’ |
Sort by:
IFlelch in getter/setter pairs El
Access modifier
@ public O protected () default C private
I" final ["| synchronized

¥ G method ¢

The format of the getters/setters may be configured on the Code T ates
preference page.

i 5of 10 selected.

@ OK || Cancel |

Figure 6-18. Automatically generating getters and setters for the Movie class

Now the source code for the Movie class will look like Listing 6-4.

Listing 6-4. Movie.java after Generating the Getters and Setters

package com.apress.movieplayer;

import android.database.Cursor;
import android.provider.MediaStore;

J**

* Movie file meta data.
*

* @author Onur Cinar

*/

class Movie {
/** Movie title. */
private final String title;

/** Movie file. */

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

private final String moviePath;

/** MIME type. */
private final String mimeType;

/** Movie duration in ms. */
private final long duration;

/** Thumbnail file. */
private final String thumbnailPath;

/**

* Constructor.

*

* @param mediaCursor

* media cursor.

* @param thumbnailCursor

* thumbnail cursor.

*/

public Movie(Cursor mediaCursor, Cursor thumbnailCursor) {
title = mediaCursor.getString(mediaCursor

.getColumnIndexOrThrow(MediaStore.Video.Media.TITLE));

moviePath = mediaCursor.getString(mediaCursor
.getColumnIndex(MediaStore.Video.Media.DATA));

mimeType = mediaCursor.getString(mediaCursor
.getColumnIndex(MediaStore.Video.Media.MIME_TYPE));

duration = mediaCursor.getLong(mediaCursor
.getColumnIndex(MediaStore.Video.Media.DURATION));

if (thumbnailCursor.moveToFirst()) {
thumbnailPath = thumbnailCursor.getString(thumbnailCursor
.getColumnIndex(MediaStore.Video.Thumbnails.DATA));
} else {
thumbnailPath = null;
}

}

/**

* Get the movie title.
*

* @return movie title.
*/
public String getTitle() {
return title;
}

/**

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

* Gets the movie path.
*

* @return movie path.
*/
public String getMoviePath() {
return moviePath;
}

Vi
* Gets the MIME type.
*

* @return MIME type.
*/
public String getMimeType() {
return mimeType;

}

Vi

* Gets the movie duration.
*

* @return movie duration.
*/

public long getDuration() {
return duration;

}

Vi

* Gets the thumbnail path.
*

* @return thumbnail path.
*/

public String getThumbnailPath() {
return thumbnailPath;
}

/*
* (non-Javadoc)
*

* @see java.lang.Object#toString()
*/
@0verride
public String toString() {
return "Movie [title=" + title +
+ ", mimeType=" + mimeType + ", duration="
+ ", thumbnailPath=" + thumbnailPath + "]";

, moviePath=" + moviePath
" + duration

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Movie List Adapter Class

The android.widget.ListView user interface component requires an adapter to
consume its data. Although default adapters are provided by the Android

framework, because of the custom item layouts, these default adapters are not
usable in the movie player application.

To define a new adapter class, choose File » New » Class from the top menu bar.
Name the new class file MovielListAdapter, and also set its superclass to
android.widget.BaseAdapter, as shown in Figure 6-19.

= New Java Class

Java Class
Create a new Java class.

o]

f
a

Source folder: |MoviePlayer/src

Package: Imm .apress.movieplayer

Browse__.

I" Enclosing type: |

Browse...

it

Name: |MovieListAdapter
Modifiers: @ public " default O private O protected
[T abstract [~ final] static
Superclass: | Browse...
. 3 r 1
& Superclass Selection [[O] x| |

Choose a type: v
[BaseAdapter
Matching items:

A
(?)
\+/

i 1 android widget - C:\Users\oncinar\android-sdks\platforms\android-10\android jar

o]

Cancel |

(7))

Finish

Figure 6-19. Setting the superclass to BaseAdapter

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Eclipse will automatically generate the empty bodies for each of the abstract
methods that needs to be implemented in the MovielistAdapter class. After
implementing these methods, the MovielListAdapter code will look like
Listing 6-5.

Listing 6-5. The MovieListAdapter.java File

package com.apress.movieplayer;
import java.util.Arraylist;

import android.content.Context;
import android.net.Uri;

import android.view.layoutInflater;
import android.view.View;

import android.view.ViewGroup;
import android.widget.BaseAdapter;
import android.widget.ImageView;
import android.widget.TextView;

Vo

* Movie list view adapter.

*

* @author Onur Cinar

*/

class MovielistAdapter extends BaseAdapter {
/** Context instance. */
private final Context context;

/** Movie list. */
private final ArraylList<Movie> movielist;

Vi
* Constructor.
*

* @param context

* context instance.

* @param movielist

* movie list.

*/

public MovielListAdapter(Context context, ArraylList<Movie> movielist) {
this.context = context;
this.movielist = movielist;

}

/**

* Gets the number of elements in movie list.
*

* @see BaseAdaptertigetCount()

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

*/

public int getCount() {
return movielist.size();

}

/**

* Gets the movie item at given position.

*

* @param poisition

* item position

* @see BaseAdaptertigetItem(int)

*/

public Object getItem(int position) {
return movielist.get(position);

}

/**

* Gets the movie id at given position.

%

* @param position

* item position

* @return movie id

* @see BaseAdapteriigetItemId(int)

*/

public long getItemId(int position) {
return position;

}

/**
* Gets the item view for given position.
*
* @param position
* item position.
* @param convertView
* existing view to use.
* @param parent
* parent view.
*/
public View getView(int position, View convertView, ViewGroup parent) {
// Check if convert view exists or inflate the layout
if (convertView == null) {
LayoutInflater layoutInflater = (LayoutInflater) context
.getSystemService(Context.LAYOUT _INFLATER_SERVICE);
convertView = layoutInflater.inflate(R.layout.movie item, null);

}

// Get the movie at given position
Movie movie = (Movie) getItem(position);

// Set thumbnail

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Vi
* G
*

* e
*

* e
*/
priv

}

ImageView thumbnail = (ImageView) convertView
.findViewById(R.id.thumbnail);

if (movie.getThumbnailPath() != null) {
thumbnail.setImageURI(Uri.parse(movie.getThumbnailPath()));
} else {
thumbnail.setImageResource(R.drawable.ic_launcher);
}

// Set title
TextView title = (TextView) convertView.findViewById(R.id.title);
title.setText(movie.getTitle());

// Set duration
TextView duration = (TextView) convertView.findViewById(R.id.duration);
duration.setText(getDurationAsString(movie.getDuration()));

return convertView;

ets the given duration as string.

param duration
duration value.
return duration string.

ate static String getDurationAsString(long duration) {
// Calculate milliseconds

long milliseconds = duration % 1000;

long seconds = duration / 1000;

// Calculate seconds
long minutes = seconds / 60;
seconds %= 60;

// Calculate hours and minutes
long hours = minutes / 60;
minutes %= 60;

// Build the duration string
String durationString = String.format("%1$02d:%2$02d:%3$02d.%4$03d",
hours, minutes, seconds, milliseconds);

return durationString;

The MovielistAdapter constructor takes an array of Movie classes and feeds

them as

downloaded from: lib.ommolkefab.ir

they are requested by android.widget.ListView. The getView method

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

of MovielListAdapter populates our custom list item layout using the member
fields of the Movie objects.

Activity Class

Now that we have satisfied all of the prerequisites, we can start writing the code
for the activity class. MoviePlayerActivity will be providing the
android.widget.ListView component to show the list of movies to the user. The
movie information will be coming from the android.provider.MediaStore
content provider.

Using the managedQuery method of the Activity class, we will first query
android.provider.MediaStore for a set of movie information. For each movie,
we will make a second query to android.widget.MediaStore to obtain the movie
thumbnail. The results will later be stored in the Movie class instances, and they
will be displayed in the list view. When you select a movie item, it will be played
by the default video player based on its type. Enter the code in Listing 6-6 into
the editor area for MediaPlayerActivity.

Listing 6-6. The MediaPlayerActivity.java File

package com.apress.movieplayer;
import java.util.Arraylist;

import android.app.Activity;

import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;

import android.os.Bundle;

import android.provider.MediaStore;
import android.util.log;

import android.view.View;

import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.ListView;

/**

* Movie player.

*

* @author Onur Cinar

*/
public class MoviePlayerActivity extends Activity implements OnItemClickListener

/** Log tag. */
private static final String LOG_TAG = "MoviePlayer";

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/**
* On create lifecycle method.
*
* @param savedInstanceState saved state.
* @see Activity#onCreate(Bundle)
*/
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ArraylList<Movie> movielist = new ArraylList<Movie>();

// Media columns to query

String[] mediaColumns = { MediaStore.Video.Media. ID,
MediaStore.Video.Media.TITLE, MediaStore.Video.Media.DURATION,
MediaStore.Video.Media.DATA,
MediaStore.Video.Media.MIME_TYPE };

// Thumbnail columns to query
String[] thumbnailColumns = { MediaStore.Video.Thumbnails.DATA };

// Query external movie content for selected media columns

Cursor mediaCursor = managedQuery(
MediaStore.Video.Media.EXTERNAL_CONTENT_URI, mediaColumns,
null, null, null);

// Loop through media results
if ((mediaCursor !'= null) 8& mediaCursor.moveToFirst()) {
do {
// Get the video id
int id = mediaCursor.getInt(mediaCursor
.getColumnIndex(MediaStore.Video.Media. ID));

// Get the thumbnail associated with the video
Cursor thumbnailCursor = managedQuery(
MediaStore.Video.Thumbnails.EXTERNAL_CONTENT_URI,
thumbnailColumns, MediaStore.Video.Thumbnails.VIDEO_ID
+ "=" + id, null, null);

// New movie object from the data
Movie movie = new Movie(mediaCursor, thumbnailCursor);
Log.d(LOG_TAG, movie.toString());

// Add to movie list
movielist.add(movie);

} while (mediaCursor.moveToNext());

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

// Define movie list adapter
MovielListAdapter movielListAdapter = new MovielistAdapter(this,
movielist);

// Set list view adapter to movie list adapter
ListView movielListView = (ListView) findViewById(R.id.movielListView);
movielListView.setAdapter(movielistAdapter);

// Set item click listener
movielListView.setOnItemClickListener(this);

}

/¥
* On item click listener.
*/
public void onItemClick(AdapterView<?> parent, View view, int position, long
id) {
// Gets the selected movie
Movie movie = (Movie) parent.getAdapter().getItem(position);

// Plays the selected movie
Intent intent = new Intent(Intent.ACTION VIEW);
intent.setDataAndType(Uri.parse(movie.getMoviePath()),
movie.getMimeType());
startActivity(intent);
}

Running the Application

Our sample application is now ready to try out. You can run it on an Android
device or in the emulator. If you are going to run the movie player application in
the Android emulator, make sure that the emulator is configured with the
settings discussed in Chapter 5.

The movie player application requires a set of movie files to exist in the external
storage, the SD card, in order to display anything. If you don’t have any movie
files, use the Camera application to record some sample movie files prior to
starting the application.

When you’re ready to test the application, choose Run » Run from the top menu
bar. Since this is the first time you are running this application, Eclipse will ask
how you would like to run it, as shown in Figure 6-20.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CAUTION: By default, certain Android devices are configured to act as a storage
medium when they are attached to a host machine through USB. This may prevent
the movie player application from accessing the SD card. Using the USB settings,
change the USB operation mode to Charge Only to prevent the SD card from getting
locked.

& Run As N=]E
Select a way to run 'MoviePlayer':

Ji Android JUnit Test
¥4 Java Applet
[7]Java Application
Ju JUnit Test

- Description
Runs an Android Application

@ OK | Cancel

Figure 6-20. Run As dialog asking how the application should run

Select Android Application from the Run As dialog. If more than one device or
emulator is currently attached, Eclipse will ask you to pick the target device on
which to execute the application, as shown in Figure 6-21.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

€& Android Device Chooser [x|

Select a device compatible with target Android 2.2.
& Choose a running Android device

&) emulator-5554 Androidd

Android 4.0.3 Yes Online

' Launch a new Android Virtual Device

AVD Name | Target Name | Platform | API Level | CPU/ABI ||| Detaits...
- No AVD available — -

i

Start...

Refresh

Managei...

il

[Use same device for future launches | OK |

Figure 6-21. Android Device Chooser dialog

After you click OK in the dialog, the application will start on the selected Android
device or emulator, as shown in Figure 6-22.

Tl > T - |

MoviePlayer

MOV_0003

00:00:04.599

MOV_0004

00:00:06.304

MOV_0005

00:00:03.545

MOV_0006

00:00:02.501

MQOV_0007

00:00:02.524

Figure 6-22. Movie player application listing movies

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

You can start the application again by choosing the movie player from the
applications list on the device.

Summary

In this chapter, we started developing a movie player application to become
familiar with the typical Android project development cycle. We put some of the
core concepts and components covered in the previous chapters into action.
We used the New Android Project wizard, manifest editor, layout editor, Android
Lint, and resource editor. We also defined an Android activity and fetched data
from a content provider. Throughout the chapter, we used Eclipse's code
templates, code generators, and refactoring features to automate some of the
development process. In the following chapters, we will extend this project to
demonstrate other aspects of Android application development.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Chapter

Android Native
Development Using
Eclipse

In the previous chapters, we have explored Android application development
using Java. Android software development is not limited to using only Java
technology. Android allows application developers to implement parts of their
application using native-code languages such as C and C++ through the
Android Native Development Kit (NDK).

In this chapter, we will start with an introduction to the Android NDK, and go
through the steps to properly install it on major operating systems. We will
briefly review the structure of the Android NDK and the components it provides.
Then we will discuss how the NDK expects Android applications with native
components to be structured.

In order to streamline the development experience, we will use the Sequoyah for
Eclipse plug-in to integrate the Android NDK into the Eclipse platform.

After establishing the proper working environment for native development, we
will start reviewing the tools for integrating native components provided through
the JDK. We will focus on the Java Native Interface (JNI), the primary API used
by native components to interact with the Java part of the application.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Android Native Development Kit

The Android NDK is a companion tool set for the Android SDK, designed to
allow developers to implement and embed performance-critical portions of their
applications using native machine code. Although the Android framework is
designed purely for Java-based applications, the NDK provides the necessary
tools and components to develop parts of an Android application using machine
code-generating programming languages like C, C++, and Assembly. Through
the JNI technology, these native components run and are accessed seamlessly
within the Java-based application while their implementations run as machine
code, and are not interpreted by the Dalvik virtual machine.

When to Use Native Code?

Using native machine code does not always result in an automatic performance
increase. Although the earlier versions of Java were known to be much slower
than native code, the latest Java technology is highly optimized, and the speed
difference is negligible in many cases. The JIT compilation feature of Java Virtual
Machine allows the translation from the interpreted bytecode into machine code
at application startup. The translated machine code is then used throughout the
execution of the application, making the Java applications run as fast as their
native counterparts.

Using native components in a Java application also increases the complexity of
the overall application. In order to effectively execute side by side with the virtual
machine, the native components are expected to be good neighbors and
interact with their Java counterparts in a delicate way. If this interaction is not
properly managed, the native components can result in hardly traceable
instabilities within the application, and they can even take the entire application
down by crashing the virtual machine.

Using native code in Android applications is definitely not a bad practice. In
certain cases, it becomes highly beneficial because it can provide for reuse and
improve the performance of some complex applications.

Applications rely on a set of modules and libraries to achieve their tasks. For
example, the user interfaces contain graphics and icons to improve the user
experience. These graphic resources are usually PNG or JPEG image files.
These formats are not part of any programming language, so they are not
directly consumable by the applications. Since developing the code necessary
to deal with these formats is not an efficient use of time, applications rely on
existing PNG or JPEG code libraries. Despite the popularity of Java, the code
library ecosystem is still highly mandated by C/C++-based native code libraries.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Although most common libraries are already integrated with either Java or the
Android framework, not everything is available out of the box.

The Android NDK allows application developers to easily integrate use of any
native library with their Java-based Android applications. Without the NDK,
these native libraries need to be rewritten in Java in order to be used by the
Android applications. The Android NDK promotes reuse of non-Java based
components within Android applications and facilitates the development
process.

Regarding performance, as a platform-independent programming language,
Java does not provide any mechanism for using the CPU-specific features for
optimizing the code. Compared to desktop platforms, mobile device resources
are highly scarce. For complex applications with high performance
requirements, such as 3D games and multimedia applications, effectively using
every possible CPU feature is key. ARM processors, such as ARM NEON and
ARM VFPv3-D32, provide additional instruction sets in order to allow mobile
applications to hardware-accelerate many performance-critical operations. The
Android NDK allows development of application components as native code in
order to use these CPU features.

What Is Provided by the NDK?

The Android NDK is a comprehensive set of APls, cross-compilers, linkers,
debuggers, build tools, documentation, and sample applications to allow
development of native Android application components. It complements the
Android SDK by providing native development features. The following are some
of the native Android APlIs it provides:

m Clibrary

Minimal standard C++ library
Math library

zlib compression library
Android logging library
Android pixel buffer library
Android native application APIs
OpenGL ES 3D graphics library
OpenSL ES native audio library

OpenMAX AL minimal support

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Installing the Android NDK

The Android NDK is available for major operating systems. The installation
packages are available from the Android NDK web site at
http://developer.android.com/sdk/ndk/index.html. The following sections
describe how to install the Android NDK on Microsoft Windows, Mac OS X, and
Linux systems.

Installing the NDK on Microsoft Windows

The Android NDK was initially designed to work on UNIX-like systems. Some of
the NDK components are shell scripts, and they are not directly executable on
the Microsoft Windows operating system. Although the latest version of the
Android NDK shows progress in making itself more independent and self-
packaged, it still requires Cygwin to be installed on the host machine in order to
fully operate. Cygwin is a UNIX-like environment and command-line interface for
the Windows operating system. It comes with base UNIX applications, including
a shell that allows running the Android NDK’s build system.

At the time of writing, the latest version of the Android NDK for Windows is r7b,
and it requires Cygwin 1.7 to be preinstalled on the host machine.

Installing Cygwin

To install Cygwin, navigate to http://www.cygwin.com and click Install Cygwin.
The installation page will provide a link to the Cygwin installer, also known as
the setup.exe application. Cygwin is not a single application; it is a large
software distribution containing multiple applications. The Cygwin installer
allows installing only the selected applications to the host machine.

When you run the Cygwin installer, you’ll see the Cygwin Setup dialog, as
shown in Figure 7-1.

downloaded from: lib.ommolkefab.ir

http://developer.android.com/sdk/ndk/index.html
http://www.cygwin.com
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

> Cygwin Setup HE“:!
Cygwin Net Release Setup Program

This setup program is used for the initial installation of the
Cygwin environment as well as all subsequent updates. Make
sure to remember where you saved it.

The pages that follow will guide you through the installation.
Please note that Cygwin consists of a large number of
packages spanning a wide variety of purposes. We only
install a base set of packages by default. You can always un
this program at any time in the future to add, remove, or
upgrade packages as necessary.

Setup.exe version 2.769
Copyright 2000-2012
hitp://www.cygwin.com/

Cancel

Figure 7-1. Running the Cygwin installer

Click the Next button to move to the next step, where you will need to choose
the download source, as shown in Figure 7-2.

» Cygwin Setup - Choose Installation Type !E ﬂ

Choose A Download Source
Choose whether to install or download from the intemet, or install from files in oo
a local directory.

@ install from Intemet
{downloaded files will be kept for future re-use}

€ Download Without Installing

O Install from Local Directory

< Back Next > Cancel

Figure 7-2. Choosing the Cygwin download source

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Choose the Install from Internet option, and then click the Next button to instruct
the Cygwin installer to download the packages from the network. In the next
dialog, the installer will ask you to select the directory where you want to install
Cygwin, as shown in Figure 7-3.

Select Root Install Directory -
Select the directory where you want to install Cygwin. Also choose a few &
installation parameters.

r~ Root Directory

Browse... |

r Install For
@& Al Users (RECOMMENDED)
Cygwin will be available to all users of the system.

0 Just Me
Cygwin will still be available to all users, but Desktop Icons, Cygwin Menu Entres, and
important Installer information are only available to the cument user. Only select this if
you lack Administrator privileges or if you have specffic needs.

< Back Next > Cancel

Figure 7-3. Choosing the target directory for Cygwin

By default, Cygwin will be installed under the C:\cygwin directory, which is the
recommended location. Click the Next button to move to the next step.

The Cygwin installer first downloads the selected packages to the host machine,
and then starts installing them as soon as everything is downloaded. The
installer will ask for the location of this directory during the installation process,
as shown in Figure 7-4.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

| = Cygwin Setup - Select Local Package Directory !E m I
Select Local Package Directory .
Select a directory where you want Setup to store the installation files it g

downloads. The directory will be created if it does not already exdist.

Local Package Directory

Browse... |

< Back Next > Cancel

Figure 7-4. Selecting the local package directory
Since the content of this directory will not be used after the installation, you can
point it to a temporary location, such as the Downloads or Temp directory.

In the next step, the installer will ask for the connection type, as shown in Figure
7-5. Unless your network connection requires otherwise, choose Direct
Connection, and then click the Next button to continue.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Select Your Intemet Connection .
Setup needs to know how you want it to connect to the intemet. Choose =
the appropriate settings below.

" Use Intemet Explorer Proxy Settings
) Use HTTP/FTP Proxy:

Proxy Host |

ot [fT]

< Back Next > Cancel

Figure 7-5. Selecting the configuration type

Cygwin is an open source project, and multiple organizations across the world
donate their bandwidth by providing mirror sites for Cygwin packages.
Depending on your geographical location, choose a download site from the list,
as shown in Figure 7-6. Then click the Next button to proceed.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

> Cygwin Setup - Choose Download Site(s) !E m
Choose A Download Site
Choose a site from this list, or add your own sites to the list g

Available Download Sites:
http://mimors.163.com i‘

http://box-soft.com
http://cygwin.mimrors hoobly.com
ftp://cygwin mimorcatalogs.com
http://cygwin.mimorcatalogs.com
http://www netgull com
ftp://cygwin.mimors pair.com
http://cygwin. mimors pair.com
http://cygwin parentingamerica.com
http://cygwin.skazkaforyou.com
http://mimor symnds.com
http:/Aweedo.com

ftp://mimors xmission.com ;l

L T T TN

User URL: Add |

o
(na]
(]
&

Next > [Cancel |

Figure 7-6. Selecting a download site

The installer will present you with a list of available applications in a tree format,
as shown in Figure 7-7. The default selection is suitable for our purposes.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"F Cygwin Setup - Select Packages !Em
[Select Packages .
Select packages to install el

§earch| Qearl (' Keep & Cur O Bo View | Category
Category | New | B| S| Size l Package lj

=3 Al &¥ Default
Accessibilty £¥ Default
[Admin & Default
@ Archive £¥ Default
Audio £¥ Default
[Base &¥ Defautt
[Database £¥ Default
Devel &¥ Default

[Doe: &% Default =
«| >

[¥ Hide obsolete packages

< Back Next > Cancel |

Figure 7-7. Selecting Cygwin packages

The Android NDK requires GNU Make 3.8.1 or later. To install GNU Make, type
make in the Search field and press the Enter key. The installer will filter the list of
applications accordingly. Expand the Devel section for development
applications, and select the make application. Click the Next button, and the
installation will start.

Installing the Android NDK

The Android NDK is provided as a compressed ZIP archive file for the Windows
platform. Download the installation package from the Android NDK web site
(http://developer.android.com/sdk/ndk/index.html). Then right-click it and
choose Extract All... from the context menu. You’'ll see the Extract Compressed
(Zipped) Folders dialog, as shown in Figure 7-8. Choose a destination directory,
and then click the Extract button to install the Android NDK.

downloaded from: lib.ommolkefab.ir

http://developer.android.com/sdk/ndk/index.html
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Bl Exdract Compressed (Zipped) Folders | x|

Select a Destination and Extract Files
Files will be extracted to this folder

| C:\I Browse... |

¥ Show extracted files when complete

Figure 7-8. Extract Compressed (Zipped) Folders dialog

Updating the Path Variable

Adding both Cygwin and the Android NDK to the Path environment variable
makes the Android NDK easily accessible. To modify the Path environment
variable, go to the Control Panel and choose System, or select Start » Run, and
then type sysdm.cpl.

In the System Properties dialog, switch to the Advanced tab, and then click the
Environment Variables button. In the System variables pane, click the Edit
button. Edit the Path environment variable. Both the Android NDK and Cygwin
binary directories should be appended to the Path variable, as shown in Figure
7-9. If you have used the default target directories during the installation
process, you can append ;c:\cygwin\bin\;c:\android-ndk-r7b\ to the
variable.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Edit System Variable [X |

Variable name: | Path

Variable value: I lks\tools;C: \android-ndk-r 7b;C: \cygwin\bin
I OK | Cancel

Figure 7-9. Adding the Android NDK and Cygwin directories to the Path variable

Installing the NDK on Mac 0S X

The Android NDK is provided as a bzip2 compressed TAR file for the Mac OS X
platform. Download the archive file from the Android NDK web site
(http://developer.android.com/sdk/ndk/index.html). Then, inside the
destination directory, execute tar jxvf ~/Downloads/android-ndk-r7b-darwin-
x86.tar.bz2 in a terminal window to extract the Android NDK files, as shown in

Figure 7-10.

e N O Terminal — bash — 75x8

$ tar jxvf ~/Downloads/android-ndk-r7b-darwin-x86.tar.bz2 B
x android-ndk-r7b/

x android-ndk-r7b/tests/

x android-ndk-r7b/tests/run-tests.sh o
x android-ndk-r7b/tests/awk/

x android-ndk-r7b/tests/awk/extract-pid/ A
x android-ndk-r7b/tests/awk/extract-pid/test-1.1in v
®x android-ndk-r7b/tests/awk/extract-pid/test-1.out ;

Figure 7-10. Extracting the Android NDK files

Adding the Android NDK directory to the Path variable makes it more
accessible. To do this, execute echo export PATH=\$PATH:$(pwd)/android-ndk-
r7b >> ~/.bashxc from the same directory where you extracted the Android
NDK, as shown in Figure 7-11.

downloaded from: lib.ommolkefab.ir

http://developer.android.com/sdk/ndk/index.html
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

o N N) Terminal — bash — 75x6
$ echo export PATH=\$PATH:$(pwd)/android-ndk-r7b >> ~/.bashrcfl =)

Figure 7-11. Adding the Android NDK directory to the Path variable

Installing the NDK on Linux

The Android NDK is provided as a bzip2 compressed TAR file for the Linux
platform. Download the archive file from the Android NDK web site
(http://developer.android.com/sdk/ndk/index.html). Then inside the
destination directory, execute tar jxvf android-ndk-r7b-linux-x86.tar.bz2 in
a shell to extract the Android NDK files, as shown in Figure 7-12.

» BEE)

File Edit View Terminal Help
cinar@debianl:~$ tar jvxf android-ndk-r7b-linux-x86,tar.bz2
android-ndk-r7b/

android-ndk-r7b/tests/

android-ndk-r7b/tests/run-tests.sh
android-ndk-r7b/tests/awk/

android-ndk-r7b/tests/awk /extract-pid/
android-ndk-r7b/tests/awk /extract-pid/test-1.in
android-ndk-r7b/tests/awk /fextract-pid/test-1.out

L

Figure 7-12. Extracting Android NDK files

Adding the Android NDK directory to the Path variable makes it more
accessible. To do this, execute echo export PATH=$PATH:$(pwd)/android-ndk-
17b >> ~/.bashrc from the same directory where you extracted the Android
NDK. as shown in Figure 7-13.

Eile Edit View Terminal Help w

cinar@debianl:~$ echo export PATH=\$PATH:$(pwd) /android-ndk-r7b >> ~/‘bashrdﬂ [~]

@

Figure 7-13. Adding the Android NDK directory to the Path variable

downloaded from: lib.ommolkefab.ir

http://developer.android.com/sdk/ndk/index.html
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

How
During t

the Android NDK Is Structured

he installation process, all of the Android NDK components are installed
under the target directory. The following are some of the important files and

subdirectories:

ndk-build: This shell script is the starting point of the Android
NDK build system. It gets executed within the Android
application directory, and it manages the build process for the
native part of Android applications.

ndk-gdb: This shell script allows debugging native components
using the GNU Debugger. Upon starting, it sets up the
communication between the device and the GNU Debugger.

ndk-stack: This shell script is a helper to facilitate analyzing
the stack traces that are produced when native components
crash. It parses the given stack trace and maps the addresses
to the source code file and line numbers. We will be
experimenting with it later in this chapter.

build: This directory contains the modules of the entire
Android NDK build system. Developers are not expected to
interact with these files directly.

platforms: This directory contains header files and libraries for
each Android target version. These files are used automatically
by the Android NDK build system.

samples: This directory contains sample applications to
demonstrate the capabilities provided by the Android NDK.
These sample projects are very useful for learning how to use
the features that are provided by the Android NDK.

sources: This directory contains add-on modules that
developers can import into their existing Android NDK
projects.

toolchains: This directory contains cross-compilers for
different target machine architectures that the Android NDK
currently supports. The Android NDK build system uses the
cross-compiler based on the selected target architecture.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

How a Native Project Is Structured

Native components share the same project directory as the Java-based Android
applications. Here is a list of the important files and directories:

B jni: This subdirectory holds the C/C++ header and source
files for the native components.

B jni/Android.mk: This is the build file that describes the native
project. It contains the list of source files to compile and the
libraries to link. It is imported into the main Makefile during the
build process. The content looks like the following:

Stores the current directory
LOCAL_PATH := $(call my-dir)

Clears the build variables
include $(CLEAR_VARS)

Native components get compiled into modules
LOCAL_MODULE := hello-jni

Native code source files
LOCAL_SRC_FILES := hello-jni.c
LOCAL_SRC_FILES += testl.c test2.c

Builds a shared library for this module
include $(BUILD SHARED_ LIBRARY)

B jni/Application.mk: This is an optional global build file that
specifies which native modules will be built and the list of
common configuration flags for all application modules. The
content looks like the following:

Defines which modules to build; otherwise
all modules are built
APP_MODULES := hello-jni

Alters the optimization level for building
either in release or debug mode
APP_OPTIM := release

Defines which target machine architectures
to build for
APP_ABI := armeabi armeabi-v7a

Compiler flags for all modules
APP_CFLAGS := -I/opt/module

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B libs: This subdirectory is generated as a result of the build
process. It is divided into one or more subdirectories,
depending on the target machine architecture. These
subdirectories hold the compiled shared libraries that contain
the native components. The libs subdirectory is created
automatically when the Android SDK packages the application
into an installable APK file.

B obj: This subdirectory is generated as a result of the build
process. It contains compiled object files for each source file
and also the debug versions of the shared libraries.

Sequoyah for Eclipse

The ADT plug-in for Eclipse handles only the Java part of Android applications.
It does not automatically handle the native components, and relies on the
Android developer to manually compile them in advance. The Sequoyah plug-in
for Eclipse streamlines this process.

Sequoyah is an open source Eclipse plug-in project that aims to provide a
complete mobile development environment based on the Eclipse platform.
Sequoyah inherits components from many other Eclipse projects, such as Tools
for Mobile Linux (TmL), Mobile Tools for Java (MTJ), and Pulsar, in order to
provide a complete environment. The most notable feature of Sequoyanh is its
ability to add Android native code support to existing Android projects.

Installing Sequoyah

Sequoyah is available through the Eclipse plug-ins repository. Start Eclipse and
choose Help » Install New Software... from the top menu bar to launch the
installation wizard. For the Work with field, choose the Indigo repository. Type
Sequoyah into the filter text field below the Work with field, and Eclipse will filter
the list of available plug-ins. Expand the Mobile and Device Development
category and select Sequoyah Android Native Code Support, as shown in
Figure 7-14. Click the Next button to proceed.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Install - 1O] x|
Available Software I

Check the items that you wish to install .
D .
Work with: |Indgo - http://download .eclipse org/releases/indigo _"_'.l Add... |
Find more software by working with the "Available Software Sites” preferences.
Name | Version -
= Uil Mobile and Device Development
“J* Sequoyah Android Localization Editor 2.0.1.M20110913-0203
M %¥- Sequoyah Android Native Code Support 1.1.3.M20110913-02032
[<* Sequoyah Common Libraries 2.0.1.M20110913-0203 L
O (]”— Sequoyah Device Framework Runtime 2.0.1.M20110913-0203
%" Sequoyah Localization Tools 2.0.1.M20110913-0203
| M5 Samnumh Prodacal Ftima. in1 u'JnunQﬂ.n'Jn':I _'L,
[»
Select Al || Deselect Al 1 item selected
 Details

This feature adds support for development of native code for Android applications.

[¥| Show only the latest versions of available software [" Hide items that are already installed
V' Group items by category What is already installed?

[~ Show only software applicable to target environment

[V Contact all update sites during install to find required software

@ < Back Next > Finish Cancel

Figure 7-14. Installing the Sequoyah plug-in

The Sequoyah plug-in depends on C/C++ Development Tools (CDT) to function.
CDT provides a fully functional C/C++ integrated development environment
based on the Eclipse platform. The installation wizard will present the list of
dependencies, as shown in Figure 7-15. Click the Next button to proceed with
the installation.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Install [[O] x]

Install Details i
Review the items to be installed. |
P
Name I Version I Id
B 4+ Seguoyah Android Native Code Support 1.1.3.M20110913... org.eclipse.sequoyah_android.co
- C/C++ Development Tools 8.0.2.201202111... omg.eclipse.cdt feature group
4 C/C++ Development Platform 8.0.2.201202111... org.eclipse.cdt platform feature
-{] C/C++ DSF GDB Debugger Integration 4.0.1.201202111... org.edlipse.cdt_gnu. dsf feature .
-{L C/C++ GNU Toolchain Build Support 8.0.2.201202111... org.eclipse.cdt.gnu.build featun
-'{[l C/C++ GNU Toolchain Debug Support 7.1.1.201202111... org.edipse.cdt gnu.debug featu
4* CDT Common GDB Support 7.0.0.201202111... org.eclipse cdt gdb feature grov
< | i
Size: Unknown
~ Details
Eclipse C/C++ development tools. Binary runtime and user documentation. ==
s |
@ < Back Next > Finish Cancel

Figure 7-15. Installing C/C++ Development Tools

Eclipse will present the license agreement for the selected plug-ins. Accept the
license agreements and click the Finish button to start the installation. You’ll
need to restart Eclipse after the installation completes.

Configuring Sequoyah

Sequoyah needs to know the location for the Android NDK installation in order
to function. Launch the Preferences dialog by choosing Window » Preferences on
Windows and Linux, or Eclipse » Preferences on Mac OS X. In the Preferences
dialog, expand the Android category, and choose Native Development. Click the
Browse button and choose the NDK location, as shown in Figure 7-16.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Preferences

jype filter text

- General
El- Android
i Build

- LogCat
® Native Development

1ESE:
ﬂl&'ui
Pl

I

ug-in Development

<

Native Development

NDK Location |C:\android-ndk-r7b

Restore Defauits |

u §§§

()

oK |

Figure 7-16. Setting the NDK location

Adding Native Code Support

To validate the Sequoyah configuration, we will build an Android NDK sample
application through Eclipse. We’ll use Hello JNI, a sample Android NDK

application that loads a string from a native method implemented in a shared
library and displays it in the application’s user interface.

Launch the New Android Project wizard by choosing File » New » Android Project
from the top menu bar. Name the project HelloJni, and choose the “Create
project from existing source” option. Then click the Browse button and choose
<NDK Directory>\samples\hello-jni as the location, as shown in Figure 7-17.
Click the Next button to proceed.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[€ New Android Project]|
Create Android Project
Select project name and type of project

Project Name: |[HelloJni

" Create new project in workspace
% Create project from existing source
(" Create project from existing sample

I~ Use default location

Location: |C:\android-ndk-7b\samples\hello-jni
Working sets
I~ Add project to working sets

Woiking sets: I d Select... I

@ < Back Next> | Finish Cancel

Figure 7-17. Starting a new project for the NDK sample application

The New Android Project wizard will ask for the target Android version. The
Android NDK supports Android versions 1.5 and later. Since Android 2.3.3 is our
preferred platform, choose Android 2.3.3 as the SDK target for the new project,
and click the Finish button to add the sample Android project to Eclipse.

Upon importing the project, you may see an error message saying “Unable to
resolve target ‘android-8'.” This is due to a bug with the current version of the
ADT plug-in. Since ADT version 14, the project properties file has been renamed
from default.properties to project.properties. When the project is imported
though Eclipse, the ADT plug-in generates the project.properties file, but
keeps the default.properties file as well, confusing the build system. Using the
Package Explorer, open both the default.properties and project.properties
files, and copy the value of the target property from the default.properties file
to the project.properties file. Using the Package Explorer, right-click the
default.properties file and choose Delete from the context menu.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Although the sample project contains the native code, ADT will not be able to
build it. You need to first add native code support to the project to allow
Sequoyah to build the native code as a part of the Android application build
process. Right-click the project and choose Android Tools » Add Native Support
from the context menu, as shown in Figure 7-18.

& Java - Edlipse SDK

File Edit Run Source MNavigate Search Project Refactor Window Help

| c% - a8 2|85 d[-0-@-|®E-|®F~-[|5-F -
e 7

New »
Go Into
Open in New Window
Open Type Hierarchy F4
Show In Alt+Shift+W »
= Copy Cir+C
| Andi % paste Qd+V
) d%f2 3¢ Delete Delete
proji . - 2
Build Path 3
Source Alt+5Shift+S »
Refactor Alt+Shift+T »
gy Import... Jii New Test Project...
) Export ... & New Resource File...
.{\}'J Refresh F5 Export Signed Application Package...
Close Project Export Unsigned Application Package...
Assign Working Sets. .. Dhspby disx byt !
Run As » Rename Application Package
Debug As ¥ i1 Add Compatibility Library...
Profile As * Fix Project Properties
Team »
Compare With % Add Native Support |
Restore from Local History... [7 Run Lint: Check for Common Errors
Clear Lint Markers
Configure 3
|=—I'|-=- Properties Alt+Enter

Figure 7-18. Choosing to add native support to an Android project

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Eclipse displays the Add Android Native Support dialog, as shown in Figure 7-
19. The most important field in this dialog is the name for the shared object
library that will be generated after the native code is compiled. The Android NDK
packages the native code in shared libraries that are loaded by the Java
application during runtime. Although the dialog has only one field for the shared
library, an Android application can have multiple shared libraries defined. We'll
revisit the internals of the Android NDK build system later in this chapter. Click
the Finish button to add native support to the project.

[€ Add Android Native Support HEE|

Project
Settings for adding native support to the project

|C|

- Prqed
Project |HelloJni Browse |

—~ NDK Location
[C:\android-ndk-+7b

Set NDK Location

~ Library name lib*_so will be added

[HelloJni
|® Cancel l

Figure 7-19. Add Android Native Support dialog

Building with Native Components

The process of building Android applications with native components is the
same process as building a plain Java-based Android application. Sequoyah
injects the necessary build steps into the flow automatically. As soon as the
Android application is compiled, the Console view will display log messages
related to the Android NDK, as shown in Figure 7-20. In case of an error, these

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

messages are parsed automatically and presented to the developer through the
Problems view.

| @] Error Log | @ Javadoc | [& Declaration m 4 @5

ICDT Global Build Console

T — =
HBE Gn|t B -9 - B

-

**** Build of configuration Default for project HelloJni **

bash C:\android-ndk-r7b\ndk-build V=1

cygwin warning: =
MS-DOS style path detected: Clandroid-ndk-r7b\sarnples\hello-jni
Preferred POSIX equivalent is: /cygdrive/c/android-ndk-r7b/samples/hello-jni
CYGWIN environment variable option "nodosfilewarning” tums off this warning.
Consult the user's guide for more details about POSIX paths:

http://cygwin.com/cygwin-ug-net/using html|Zusing-pathnames

rm -f ./libs/armeabi/lib*.s0 ./libs/armeabi-v7a/lib*.s0 ./libs/x86/lib*.s0

rm -f ./libs/armeabi/gdbserver ./libs/armeabi-v7a/gdbserver /libs/x86/gdbserver

rm -f ./libs/armeabi/gdb.setup ./libs/armeabi-via/gdb.setup ./libs/x86/gdb.setup

Gdbserver : [arm-linux-androideabi-4.4.3] libs/armeabi/gdbserver

Figure 7-20. Console view showing Android NDK log messages

At this stage, you can run the application on a device or with the emulator.

Our build environment is now ready for native development. In the following
sections, we will explore some of the Java tools that can facilitate native
development.

Java Tools

Two Java tools are commonly used for native development: javah and javap.
These tools are part of the JDK, and they are provided as command-line
executables. In this section, we will explore their functions, and we will integrate
them into Eclipse in order to streamline their use during the development
process.

First, we need to define a variable that will allow us to point to the Android
framework JAR file while defining the external tool. In Eclipse, choose Window »
Preferences on Windows and Linux, or Eclipse » Preferences on Mac OS X, to open
the Preferences dialog. To filter the list, type String Substitution, as shown in
Figure 7-21.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[string Subs String Substitution . . v
El- Run/Debug e o =
Create and configure string substitution variables.
Variable | Value | Description | Contribute.... | |

Edit.. |
Remove |

=
‘\7 9] OK Cancel

Figure 7-21. Setting string substitutions

Click the New button to define a new variable. In the New String Substitution
Variable dialog, set the variable name to android_jar. For the Value setting, use
the Browse button to navigate to the platforms subdirectory in the Android SDK
(not the NDK) installation directory. The list of directories depends on the
platforms you have installed. Select the highest platform. Prepend \android. jar
to the value if you are running on a Windows host machine, or /android. jar for
Mac OS X and Linux systems, as shown in Figure 7-22. Click the OK button to
close the dialog.

€& New String Substitution Variable [x|

Name |android_jar
Value |<s\platforms\android-15\android jar, ~ Browse
Description: |

T

Figure 7-22. Adding a string substitution variable

We are now ready to start integrating the javah and javap tools with the Eclipse
integrated development environment.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

C Header and Stub File Generator: javah

The javah tool generates C header and source files that are required to
implement native methods. It takes the compiled class files and parses them for
native methods, and generates the necessary header and source files. Although
this can be achieved without using the javah tool, it makes the process more
robust and much easier. It is one of the most frequently used tools during native
development.

In order to streamline the use of javah, we will define a new external tool using
Eclipse. Choose Run » External Tools » External Tool Configurations... from the top
menu bar. In the External Tools Configurations dialog, select Program, and then
click the New launch configuration button. Fill in the tool information as follows
and shown in Figure 7-23:

® Name: Set the name to javah.

B Location: Set the location to ${system_path:javah}, so
Eclipse can extract the full path to the javah tool by using the
system path.

B Working Directory: Set the working directory to
${project_loc}, which is the project’s root directory.

B Arguments: Set the arguments to -verbose -jni -classpath
"${project_loc}/bin/classes;${android_jar}" -d
"${project_loc}/jni" ${java_type_name}. On Mac OS X and
Linux systems, separate the classpaths with a colon rather
than a semicolon.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& BExdemnal Tools Configurations B

Create. manage. and run configurations @

Run a program rf—_—-

T X | = —_':=‘ M : Name: |ia\rda
type filter text | (CEEDA, ' Refresh| [, Build] 7§ Environment | [Common |

3 Ant Build ~ Location:

[~@: API Use Report ||| | [s{system_pathijavah}

EQ& Program 3

q. javah Browse Workspace... | Browse File Systeml Variables. .. |
|
~Working Directory:
|${project_loc}

Browse Workspace... | | Browse File System... || Variables... |

r Arguments:
rb 4ni -classpath "${project_loc}/bin/classes:${android_jar}” d |«
"${project_loc}/jni" ${java_type_name} ::

Note: Enclose an argument containing spaces using double-quotes (7).

Filter matched 4 of 4 iter| Aooly |[Reven |

@ [Bm][e |

Figure 7-23. Defining the javah external tool

Click Apply to save the external tool definition.

To use the javah external tool, select a class file with native methods, and
choose Run » External Tools » javah from the top menu bar. Eclipse will first build
the project to make sure that the class files are up to date. The javah tool will
then generate the C header file in the jni subdirectory. If you prefer to have
javah generate stub C source files as well, change the external tool definition,
and append -stub to the arguments.

Java Class File Disassembler: javap

The javap tool disassembles the given compiled class file for the requested
information. It is frequently used during native development to extract proper
field and method signatures easily.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As with javah, we will define a new external tool for javap using Eclipse. Choose
Run » External Tools » External Tool Configurations from the top menu bar. In the
External Tools Configurations dialog, select Program and click the New launch
configuration button. Fill in the tool information as follows and shown in Figure
7-24:

B Name: Set the name to javap.

B Location: Set the location to ${system _path:javap}, so
Eclipse can extract the full path to the javap tool by using the
system path.

® Working Directory: Set the working directory to
${project_loc}, which is the project’s root directory.

B Arguments: Set the arguments to -classpath
"${project_loc}/bin/classes;${android_jar}" -p -s
${java_type_name}. On Mac OS X, and Linux systems, replace
the semicolon with a colon character to separate the
classpaths.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& BEdemal Tools Configurations [x|

Create, manage. and run configurations O
i W=
BRIER. | S Name: [javap
fype filter text =\ . Refresh| ;;; Build| 7§ Envi | EIC _5]

" | ~ Location:
|${system_path;javap}

Browse Workspace.... | | Browse File System... || Variables... |

~Working Directory:

|stproject_loc}
Browse Workspace... | | Browse File System... || Variables... |
- Arguments:
-classpath "${project_loc}/bin/classes:${android_jar}" p = [+]
sfjava_type_name}

[=]
Variables... |

Note: Enclose an argument containing spaces using double-quotes (™).

Apply | Revert |

Filter matched 5 of 5 ites|

Figure 7-24. Defining the javap external tool

To use the javap external tool, select a class file with native methods, and
choose Run » External Tools » javap from the top menu bar. Eclipse will first build
the project to make sure that the class files are up to date. The javap tool will
then parse the compiled Java class, and output the field and method signatures
to the Console view, as shown in Figure 7-25.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

O] Error Log | @ Javadoc (€, Declaration [CRO RS X% EEeE8s8-r9-08
<erminated> javap [Program] C:\Program Files\Java\jdk1.7.0_02\bin\javap.exe
Compiled from "HelloJni java™ -
public class com_example hellojni. HelloJni extends android.app.Activity {
static {}
Signature: (V

public com_example hellojni. HelloJni ();
Signature: (V

public void onCreate(android.os.Bundle);
Signature: (Landroid/os/Bundle;)V

public native java.lang.String stringFromJNI():
Signature: ()Ljava/lang/String:

public native java.lang.String unimplementedString FromJNI():
; Signature: (JLjava/lang/String:

>
4 13

Figure 7-25. Some javap output showing field and method signatures

Both of these Java tools help developers by automatically generating the stub
code for native files, as well as the field and method signatures. In the next
section, we will start exploring the JNI, which we will use while coding the actual
implementations of these stub functions.

The Java Native Interface

The JNI is a powerful feature of the Java programming language. It allows
certain methods of Java classes to be implemented natively, and still be called
and used as ordinary Java methods. The Android NDK provides platform-
specific features, and relies on JNI technology to glue the native code to the
Java application.

A Simple JNI Example

Before going into the details of JNI technology, we’ll walk through a JNI
example application. We will start with a simple Hello World application.

public class HelloWorldActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

TextView textView = new TextView(this);

textView.setText(sayHelloWorld());
setContentView(textView);

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

private String sayHelloWorld() {
return "Hello World!";
}

}

The HelloWorldActivity class contains a single method, sayHelloWorld, which
returns the "Hello World!" message when called. For this example, we will
implement the sayHelloWorld method natively using C/C++. To do this, we need
to first remove the method’s body, and then add the native keyword to the
method’s signature.

private native String sayHelloWorld();

The native keyword indicates that the method is implemented natively.
Although the virtual machine now knows that the method is implemented
natively, it still does not know where to find the implementation.

As mentioned earlier, native methods are compiled into a shared library. This
shared library needs to be loaded first for the virtual machine to find the native
method implementations. The java.lang.System class provides the loadLibrary
method for Java applications to load shared libraries during runtime. Assuming
that the native method is compiled into a shared library called

libHelloWorld. so, the following method call should be added to the code.

static {
System.loadLibrary(“HelloWorld”);
}

The loadlLibrary method is called within the static context, because we would
like to have it loaded only once during the virtual machine’s lifetime. After
making this change, the Java part of the sample application is now complete.

public class HelloWorldActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

TextView textView = new TextView(this);

textView.setText(sayHelloWorld());
setContentView(textView);

}
private native String sayHelloWorld();

static {
System.loadLibrary("HelloWorld");
}

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

In order to start writing the C/C++ code, we first need to generate the function
signature for the sayHelloWorld method. We will be using the javah tool
introduced earlier in the chapter to generate the C/C++ header and source files.
Calling the javah tool produces the header file
com_apress_HelloWorldActivity.h with the following content.

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_apress_HelloWorldActivity */

#ifndef _Included_com_apress_HelloWorldActivity
#define _Included_com_apress_HelloWorldActivity
#ifdef _ cplusplus
extern "C" {
#endif
/*
* Class: com_apress_HelloWorldActivity
* Method: sayHelloWorld
* Signature: ()Ljava/lang/String;
*/
INIEXPORT jstring INICALL Java_com_apress_HelloWorldActivity sayHelloWorld
(INIEnv *, jobject);

#ifdef _ cplusplus
}

#endif

#endif

The header file first includes the jni.h header file This header file contains
definitions of JNI data types and functions.

The header file also maps the HelloWorldActivity class’s sayHelloWorld
method to the Java_com_apress_HelloWorldActivity_ sayHelloWorld native
function. This explicit function naming allows the virtual machine to
automatically find native functions in loaded shared libraries. Although the Java
method sayHelloWorld does not take any parameters, the native function takes
two parameters. The first parameter, JNIEnv, is an interface pointer that points to
a function table of available JNI functions. The second parameter is a Java
object reference to the HelloWorldActivity class instance. The INIEnv interface
pointer is always provided with each native function call. The second parameter
can either be an object reference for member methods or a class reference for
static methods.

Using the automatically generated header file, we will provide the native
implementation in a C/C++ source file.

#include “com_apress HelloWorldActivity.h”

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

jstring Java_com_apress_HelloWorldActivity sayHelloWorld(INIEnv* pEnv, jobject
thiz) {
return (*env)->NewStringUTF(env, “Hello World!”);

As seen in the code, we cannot directly return the C string "Hello World!" asis,
since Java will not know how to handle it. Using the NewStringUTF function from
the INIEnv interface, the C string is converted into a Java String reference.

After the C/C++ source code is compiled into a shared library, the application
will be ready. We will not go into the details of the compilation, since this will be
handled automatically by the Android NDK through Eclipse.

Data Types

There are two kinds of data types in Java:

B Primitive types such as boolean, byte, char, short, int, long,
float, and double

B Reference types such as String, arrays, and other classes

Let’s take a closer look at each of these data types.

Primitive Types

Primitive types are directly mapped to C/C++ equivalents. The JNI uses type
definitions to make this mapping transparent to developers. For example, the
Java int type is mapped to jint in the jni.h header file, as follows:

typedef int jint; /* signed 32 bits */
Table 7-1 shows the primitive type mapping and the type sizes.

Table 7-1. Java Primitive Type Mapping

Java Type Native Type Size

Boolean jboolean Unsigned 8 bits
Byte jbyte Signed 8 bits
Char jchar Unsigned 16 bits
Short jshort Signed 16 bits

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Type Native Type Size

Int Jint Signed 32 bits
Long jlong Signed 64 bits
Float jfloat 32 bits
Double jdouble 64 bits

Reference Types

Reference types are handled differently by the JNI. They are passed as opaque
references to native methods. Native code can interact and manipulate the
reference types only through the set of functions provided by the INIEnv
interface. Their internal data structure is not exposed directly to native code. The
reference type mapping is shown in Table 7-2.

Table 7-2. Java Reference Type Mapping

Java Type Native Type
java.lang.Class jclass
java.lang.Throwable jthrowable
java.lang.String jstring
Other objects jobject
java.lang.Object[] jobjectArray
boolean[] jbooleanArray
byte[] jbyteArray
char[] jcharArray
short[] jshortArray
int[] jintArray
long[] jlongArray

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Type Native Type
float[] jfloatArray
double[] jdoubleArray
Other arrays jarray

String Operations

Java strings are handled by the JNI as reference types. Java strings are not
directly convertible to native C strings. JNI provides the necessary functions to
convert between Java and native strings. These functions can handle both
Unicode and UTF-8 encoded strings. In case of a memory overflow, these
functions return NULL to inform the native code that an exception has been
thrown in the virtual machine and the native code should not continue.
const jbyte* str;
str = (*env)->GetStringUTFChars(env, javaString, NULL);
if (0 != str) {

printf(“Java string: %s”, str);

Strings obtained though the JNI functions need to be properly released after the
native code is finished using them, or memory leaks will occur. The correct
release function to use depends on the function used to obtain the string.

(*env)->ReleaseStringUTFChars(env, javaString, str);

New string instances can also be constructed from the native code using the
new string functions.

jstring javaString;
javaString = (*env)->NewStringUTF(env, “Hello World!”);

Array Operations

Java arrays are handled by the JNI as reference types. The JNI provides the
necessary functions to access and manipulate Java arrays. Two types of array
functions are provided: Get<Type>ArrayRegion and Get<Type>ArrayElements.

The Get<Type>ArrayRegion function copies the given primitive Java array to the
given C array.

jint nativeArray[10];
(*env)->GetIntArrayRegion(env, javaArray, 0, 10, nativeArray);

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Get<Type>ArrayElements function allows the native code to get a direct
pointer to array elements, but it does require the native code to release these
pointers when it finishes.

jint* nativeDirectArray;

nativeDirectArray = (*env)->GetIntArrayElements(env, javaArray, NULL);
if (0 != nativeDirectArray) {

(*env)->ReleaseIntArrayElements(env, javaArray, nativeDirectArray, 0);

New array instances can also be constructed from the native code using the
New< Type>Array function.

jintArray javaArray;

javaArray = (*env)->NewIntArray(env, 10);

if (o != javaArray) {
(*env)->SetIntArrayRegion(env, javaArray, 0, 10, nativeArray);

Accessing Fields

Java has two types of fields: instance fields and static fields. Each instance of a
class owns its copy of the instance fields, whereas all instances of the a class
share the same static fields.

The JNI provides functions to access both field types. The following is an
example of a Java class with one static and one instance field:

public class JavaClass {
/** Instance field */
private String instanceField = "Instance Field";

/** Static field */
private static String staticField = "Static Field";

/¥
* Access fields native method.

*/

private native void accessFields();

}

The accessFields method is a native method, which will have the following
signature for this example:

void Java_com_apress_JavaClass_accessFields(INIEnv* env, jobject instance) {

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The INIEnv interface pointer and the object instance are provided by the virtual
machine to the native function when it is called. The JNI provides access to both
types of fields through field IDs. You can obtain field IDs through the class
object for the given instance. The class object is obtained through the
GetObjectClass function.

jclass clazz;

clazz = (*env)->GetObjectClass(env, instance);

Depending on the field type, there are two functions to obtain the field ID from
the class: GetFieldId function for instance fields and GetStaticFieldId for
static fields. Both functions return the field ID as a jfieldID type.

jfieldID instanceFieldId;
jfieldID staticFieldId;

instanceFieldId = (*env)->GetFieldID(env, clazz, “instanceField”,
“Ljava/lang/String;”);

staticFieldId = (*env)->GetStaticFieldID(env, clazz, “staticField”,
“Ljava/lang/String;”);

The last parameter of both functions takes the field descriptor that represents
the field type in Java. In the example code, "Ljava/lang/String" indicates that
the field type is a String.

The JNI follows a specific format for the field descriptor. The easiest way to
extract the field descriptor from an existing class file is through the javap tool
introduced earlier in the chapter. The output from javap will show the signatures
for each field and method in the class file.

public class com.apress.JavaClass {
private static java.lang.String staticField;
Signature: Ljava/lang/String;
private java.lang.String instanceField;
Signature: Ljava/lang/String;
static {};
Signature: ()V

public com.apress.JavaClass();
Signature: ()V

private native void accessFields();
Signature: ()V

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

After you obtain the field ID, you can get the actual field through the
Get<Type>Field function for instance fields, or the GetStatic<Type>Field
function for static fields.

jstring instanceField;
jstring staticField;

instanceField = (*env)->GetObjectField(env, instance, instanceFieldId);
staticField = (*env)->GetStaticObjectField(env, clazz, staticFieldId);

In case of a memory overflow, both of these functions can return NULL, and the
native code should not continue to execute. The field IDs can be cached in
order to improve application performance.

Calling Methods

As with fields, there are two types of methods in Java: instance methods and
static methods. The JNI provides functions to access both types. The following
is a Java class that contains one static method and one instance method.
public class JavaClass {

/**

* Instance method.

*/

private String instanceMethod() {

return "Instance Method";
}

/**

* Static method.

*/

private static String staticMethod() {
return "Static Method";

}

/**

* Access methods native method.
*/
private native void accessMethods();

}

The accessMethods method is a native method that will have the following
signature for this example:

void Java_com apress JavaClass_accessMethods(INIEnv* env, jobject
instance) {

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The INIEnv interface pointer and the object instance are provided by the virtual
machine to the native function when it is called. The JNI provides access to both
types of methods through method IDs.

You can obtain method IDs through the class object for the given instance. Use
the GetMethodID function to obtain the method ID of an instance method or the
GetStaticMethodID function to get the method ID of a static field. Both functions
return the method ID as a jmethodID type.

jmethodID instanceMethodId;
jmethodID staticMethodld;

instanceMethodId = (*env)->GetMethodID(env, clazz, “instanceMethod”,
“()Ljava/lang/String;”);

staticMethodId = (*env)->GetStaticMethodID(env, clazz, “staticMethod”,
“()Ljava/lang/String;”);

As with the field functions, the last parameter of both functions takes the
method descriptor that represents the method signature in Java. Method
signatures can be obtained through the javap tool. The output from javap will
show the signatures for each field and method in the class file.

public class com.apress.JavaClass {
public com.apress.JavaClass();
Signature: ()V

private java.lang.String instanceMethod();
Signature: ()Ljava/lang/String;

private static java.lang.String staticMethod();
Signature: ()Ljava/lang/String;

private native void accessMethods();
Signature: ()V

Using the method ID, you can call the actual method through the
Call<Type>Method function for instance methods or the CallStatic<Type>Field
function for static methods.

jstring instanceMethodResult;
jstring staticMethodResult;

instanceMethodResult = (*env)->CallStringMethod(env, instance,
instanceMethodId);
staticMethodResult = (*env)->CallStaticStringMethod(env, clazz, staticMethodId);

In case of a memory overflow, both of these functions can return NULL, and the
native code should not continue executing. The method IDs can be cached in
order to improve application performance.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Exception Handling

Exception handling is an important aspect of the Java programming language.
Exceptions behave differently in the JNI than they do in Java.

When an exception is thrown in a virtual machine, the control is transferred
automatically to the nearest try/catch statement that matches the exception
type. The virtual machine then clears the exception and executes the exception
handler. In contrast, the JNI requires developers to explicitly implement the
exception handling flow after an exception has occurred.

The INIEnv interface provides a set of functions related to exceptions. To see
these functions in action, we will use the following Java class as an example.
public class JavaClass {

/**

* Throwing method.

*/

private void throwingMethod() throws NullPointerException {

throw new NullPointerException(“Null pointer");
}

/**

* Access methods native method.

*/

private native void accessMethods();

}

The accessMethods native method needs to explicitly do the exception handling
while calling the throwingMethod method. The JNI provides the
ExceptionOccurred function to query the virtual machine if there is pending
exception. The exception handler needs to explicitly clear the exception using
the ExceptionClear function after it finishes with it.

jthrowable ex;

(*env)->CallVoidMethod(env, instance, throwingMethodId);
ex = (*env)->ExceptionOccurred(env);
if (0 !'= ex) {

(*env)->ExceptionClear(env);

/* Exception handler. */
The JNI allows the native code to throw exceptions as well. Since exceptions

are Java classes, the exception class should be obtained first using the
FindClass function, and the ThrowNew function can be used to initiate and throw

the new exception.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

jclass clazz;

clazz = (*env)->FindClass(env, “java/lang/NullPointerException”);
if (0 !'= clazz) {
(*env)->ThrowNew(env, clazz, “Exception message.”);

Local and Global References

References play an important role in Java programming. The virtual machine
manages the lifetime of class instances by tracking their references and
garbage-collecting the ones that are no longer referenced. Since native code is
not a managed environment, the JNI provides a set of functions to allow native
code to explicitly manage the object references and lifetimes. The JNI supports
three type kinds of references: local references, global references, and weak
global references, as described in the following sections.

Local References

Most JNI functions return local references. Local references cannot be cached
and reused in subsequent invocations since their lifetime is limited to the native
method. Local references are freed once the native function returns. For
example, the FindClass function returns a local reference; it is freed
automatically when the native method returns. Native code can also be freed
explicitly through the DeleteLocalRef function.

jclass clazz;
clazz = (*env)->FindClass(env, “java/lang/String”);
Z*env)—>De1eteLoca1Ref(env, clazz);

This becomes really handy while doing multiple memory-intensive operations
within a single method invocation.

Global and Weak Global References

Global references remain valid across subsequent invocations of the native
methods until they are explicitly freed by the native code. Global references can
be initiated from local references through the NewGlobalRef function.

jclass localClazz;
jclass globalClazz;

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

localClazz = (*env)->FindClass(env, “java/lang/String”);
globalClazz = (*env)->NewGlobalRef(env, localClazz);

E*env)->De1eteLoca1Ref(env, localClazz);

When a global reference is no longer needed by the native code, you can free it
at any time through the DeleteGlobalRef function:

(*env)->DeleteGlobalRef(env, globalClazz);

Another flavor of global references is the weak global reference. Like global
references, weak global references remain valid across subsequent invocations
of the native methods. Unlike global references, weak global references do not
prevent the underlying object from being garbage-collected. Weak global
references can be initiated using the NewWeakGlobalRef function.

jclass weakGlobalClazz;

weakGlobalClazz = (*env)->NewWeakGlobalRef(env, localClazz);

To determine if the weak global reference is still pointing to a live class instance,
you can use the IsSameObject function:

if (INI_FALSE == (*env)->IsSameObject(env, weakGlobalClazz, NULL)) {
/* Object is still live and can be used. */

} else {
/* Object is garbage collected and cannot be used. */

Weak global references can be freed at any time using the DeletelWeakGlobalRef
function.

(*env)->DeleteleakGlobalRef(env, weakGlobalClazz);

Threading

The virtual machine supports running native code as a part of the multithreaded
environment. There are certain constraints of JNI technology to keep in mind
while developing native components:

B Local references are valid only during the execution of the
native method and in the thread context that is executing
the native method. Local references cannot be shared
among multiple threads. Only global references can be
shared by multiple threads.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B The INIEnv interface pointer that is passed into each native
method call is also valid in the thread associated with the
method call. It cannot be cached and used by other
threads.

Synchronization

Synchronization is an important aspect of multithreaded programming. Similar
to Java’s synchronized blocks, JNI’'s monitors allow the native code to
synchronize using Java objects. The virtual machine guarantees that the thread
that acquired the monitor executes safely, while the other threads wait until the
monitored object becomes available. The synchronized block in a Java
application looks like the following:

synchronized(obj) {
/* Synchronized thread-safe code block. */

The same can be achieved using the JNI’s monitor methods:

if (INI_OK == (*env)->MonitorEnter(env, obj)) {
/* Error handling. */
}

/* Synchronized thread-safe code block. */

if (INI_OK == (*env)->MonitorExit(env, obj)) {
/* Exror handling. */
}

The call to the MonitorEnter function should be matched with a call to
MonitorExit in order to prevent deadlocks in the code.

Native Threads

As noted earlier in the chapter, the JNI is mostly used for integrating native
libraries and modules into Java applications. These native components may
already be using native threads in order to execute certain tasks in parallel.
Since those native threads are not known to the virtual machine, they cannot
directly communicate with the Java components. Native threads should be
attached to the virtual machine first in order to interact with the remaining
portion of the application.

The JNI provides the AttachCurrentThread function to allow native code to
attach native threads to the virtual machine.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

JavaVM* cachedJvm;
INIEnv* env;

/* Attach the current thread to virtual machine. */
(*cachedJvm)->AttachCurrentThread(cachedJvm, &env, NULL);

/* Thread can communicate with the Java application using the INIEnv interface.
*/

/* Detach the current thread from virtual machine. */
(*cachedJvm)->DetachCurrentThread(cachedJvm);

Troubleshooting

Native code running on a device is much harder to troubleshoot than Java code.
In this section, we will review the Android NDK tools that can be used to ease
the troubleshooting process.

Logging from Native Code

The easiest way of troubleshooting native code is to properly log the application
state and events. The Android NDK provides support for two types of logging
mechanisms: Android-specific logging and console logging.

Android-Specific Logging

The NDK provides two Android-specific logging functions to allow native
components to log messages in the Android system log: __android_log_print
and __android log write. These messages can then be viewed through the
LogCat view in DDMS. To use these logging functions, the android/log.h
header file should be included in the source file.

#include <android/log.h>

The native component can log messages to the system log at any time by
calling these functions.

__android_log write(ANDROID _LOG_INFO, “NativeCode”, “Info message.”);

Besides the header file, the logging library should also be linked while building
the shared library. This requires updating the jni/Android.mk file.

LOCAL_LDLIBS := -1log

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The application will log the messages into the Android system log, and these
messages will appear in the LogCat view.

Console Logging

When integrating existing libraries and modules into an Android application
project, changing their logging mechanism to Android-specific logging may not
be possible. Most logging mechanisms either log messages to a file or directly
to the console.

The console file descriptors, stdout and stderr, are not visible by default on the
Android platform. To redirect these log messages to the Android system log,
open a command prompt on Windows, or a terminal window on Linux and Mac
OS X, and execute the following commands:

$ adb shell stop
$ adb shell setprop log.redirect-stdio true
$ adb shell start

The system retains this setting until the device reboots. If you want to make
these settings the default, add them to the /data/local.prop file on the device
or emulator.

Debugging Native Code

Native components can be debugged using the GNU Debugger (GDB). The
Android NDK provides a shell script, called ndk-gdb, to set up the
communication between the application and GDB.

GDB provides an extensive debugging environment in text mode. In this section,
we will glue ndk-gdb to the Eclipse platform in order to streamline the debugging
process.

Before setting up an ndk-gdb debug session, the application itself should be
defined as debuggable in its AndroidManifest.xml file. To do this, using the
Package Explorer, open the AndroidManifest.xml file, and in the manifest editor,
switch to the Application tab. The manifest editor provides a form-based
interface for manipulating the Android manifest file. Using the drop-down menu,
set the Debuggable attribute to true, as shown in Figure 7-26.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B HelloJni Manifest X

1571 Android Manifest Application

icat

15y The application tag describes applicationdevel components contained in the package. as well as general application attributes.
[Define an <application> tag in the AndroidManifest xml

w Application Attributes

Figure 7-26. Setting the Debuggable attribute in the AndroidManifest.xml file

After you make this change, rebuild the application and deploy it again to the

targ

et device or the emulator. The ndk-gdb tool expects the application to

already be deployed on the platform. You can start the application through
Eclipse to have it deployed automatically, or you can rely on the adb command-

line

tool to install the APK file manually.

Text Mode Debugging Using ndk-gdb

To configure Eclipse to invoke the ndk-gdb tool directly from the integrated
development environment, from Eclipse, choose Run External Tools External Tool
Configurations from the top menu bar. In the External Tools Configuration dialog,
select Program and click the New launch configuration button. Fill in the tool
information as follows and shown in Figure 7-27:

B Name: Set the name to ndk-gdb.

B Location: On Windows-based host machines, set the location
to c:\cygwin\bin\bash.exe. On Mac OS X- and Linux-based
host machines, set the location to /bin/bash.

B Working Directory: Set the working directory to
${project_loc}, which is the project’s root directory.

downloaded from: lib.ommolkefab.ir

Defines the attributes specific to the application.
s | e)
Theme] Vim safe mode] =] L
Label [@string/app_name Manage space activity |
lcon [Allow clear user data | d
Description | Test only |]

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B Arguments: If you are using a Windows host machine, set the
arguments to -c¢ "/cygdrive/c/android-ndk-r7b/ndk-gdb --
start". By default, the ndk-gdb tool tries to attach to an
existing running instance of the application. The --start
argument explicitly launches the application prior to
establishing the debug session. It will launch the first
launchable activity in the application package. To launch a
specific activity, add the --launch=<name> argument as well.

:. External Tools Configurations

Create, ge. and run configurations @
Run a program ——
‘=_l'|
BXIBE- ILlame [ndk-gdb
= | CIZEN 5 reresh] G 5ud] PG Ervrorsmerd] = Common] -
3 Ant Build L :
| i @\;- API Use Report | IC:\cr!;‘win\bin\bash.ae
B3, Program
..... q} Browse Workspace... I Browse File System... | Variables. .. |
g Di
[stproject_loc}

Browse Workspace... | | Browse File System... || Variables... |

< "/cygdrive/c/android-ndkr7bYndk-gdb —start™ 1]
L

Note: Enclose an argument containing spaces using double-quotes (7).

Apply I Revest I

Filter matched 4 of 4 items

® T .

Figure 7-27. Defining the ndk-gdb external tool

Click the Apply button to save the external tool definition.

Before you use the ndk-gdb external tool, make sure that the application is set to
debuggable and properly deployed to the target device, as described earlier.

To run ndk-gdb, select the project using the Package Explorer, and then select
Run » External Tools » ndk-gdb. The ndk-gdb tool will be launched in the Console
view. It does a set of checks to make sure that the debug session can be
established properly. If you have any problems using ndk-gdb, append --
verbose to the list of arguments to turn on detailed logging, which will help with
troubleshooting.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For more information about ndk-gdb, including the other command-line
arguments that it supports, execute ndk-gdb with the --help argument. You can
also refer to the NDK-GDB. html documentation file in the NDK’s doc directory.

Graphical Mode Debugging Using Eclipse

Text mode debugging is the officially supported method of debugging native
components in Android applications. However, you can set up graphical mode
debugging by tweaking certain Android NDK files based on the Android NDK
version R7. Since this is not an official way of debugging native Android
applications, these steps may change with the new releases of Android NDK,
but the general flow should be the same.

Graphical mode debugging requires a set of files that should be pregenerated
using the text mode ndk-gdb tool. Before running graphical mode debugging for
the first time for an application, execute the ndk-gdb external tool as described
in the previous section. As discussed, make sure that the application is
debuggable and properly deployed to the device. After you run the ndk-gdb tool,
it will generate a set of files that are necessary to define the graphical debugging
configuration. We will modify these files slightly and use them to establish a
debug session using Eclipse.

Since Eclipse will be using its internal GDB debugger client, we need prevent
ndk-gdb from starting in the client session. Go into the Android NDK installation
directory and make a copy of the ndk-gdb script, naming it ndk-gdb-eclipse.
Open the ndk-gdb-eclipse script, and remove the last line:

$GDBCLIENT -x “native_path $GDBSETUP"

The ndk-gdb tool also prepares a configuration setup script called gdb.setup
under obj/local/<target architecture> in the project directory. We need to
modify this script file, but since it will be overwritten by ndk-build during the
build process, we will modify a copy of it instead. Make a copy of the script file
and name it gdb-eclipse.setup. Right-click gdb-eclipse.setup and choose Open
With » Text Editor to open the file in Eclipse. Remove the last line:

target remote :5039

Following the same steps described in the preceding section, define a new
external tool configuration for the ndk-gdb-eclipse script. Start Eclipse, and
choose Run » Debug Configurations from the top menu bar. In the Debug
Configurations dialog, select the C/C++ application, and click the New icon to
define a new debug configuration. As shown in Figure 7-28, fill in the tool
information as follows:

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B C/C++ Application: Using the Browse button, navigate to the
obj/local/<target architecture> directory under the project
directory and select the app_process application. If the
app_process application is not there, you will need to first run
the default ndk-gdb session in order to generate it.

B Process Launcher: Click the Select other... link at the bottom
of the dialog, choose the “User configuration specific settings”
option, and choose Standard Create Process Launcher.

& Debug Configurations [x|
Create, manage, and run configurations o
cEx|ak- || Name: [FelloJni Default

fype fiter text (XD, - Arguments| 7§ Environment | %5 Debugger 1/ Source | Refresh| (=1 Common | |

C/C++ Application:
[C:\android-ndk-7b\samples\hellojniobjNocal\ameabiapp_ | Search Pn»ece| | Browse...
Project:

|HelloJni Browse....
C/C++ Attach to Appli
1-[€] C/C++ Postmortem Dei ||| [Build {f required) before launching T i)
- [E] ©/Ca+ Remote Applict | || g4 configuration: Use Active o |
@ Eclipse Application) I - g 3 T sy _I I
L1 Java Applet [¥ Select configuration using 'C/C++ Application ‘
Java Application O Enable auto build " Disable auto build |
-Ju JUnit
—du @ Use workspace setti Confiqure W Setti |
7% JUnit Plugin Test e e e —_—
[Launch Group

¥l Connect process input & output to a terminal.

-2, Remote Java Applicati

| Filter matched 16 of 17 items

Using Standard Create Process Launcher - Select other... Aoply || Reven |

':’_?‘l Debug | Closc |

Figure 7-28. Configuration on the Main tab of the Debug Configurations dialog
Select the Debugger tab, and fill in the debugger information as follows and
shown in Figure 7-29:

B Debugger: Select gdbserver as the debugger.

B Stop on startup at: This can be checked and set to your main
native function, or to JNI_OnLoad if it is implemented.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

m GDB debugger: Using the Browse button, navigate into the
toolchains subdirectory in the Android NDK directory.
Depending on your target machine architecture, find the
corresponding gdb.exe flavor. On the Windows platform, it is
located at <NDK Directory>\toolchains\arm-linux-
androideabi-4.4.3\prebuilt\windows\bin\arm-linux-
androideabi-gdb.exe.

B GDB command file: Using the Browse button, select the gdb-
eclipse.setup file that you generated earlier.

B GDB command set: On Windows-based host machines,
choose Cygwin from the drop-down menu. On other
platforms, keep this setting as Standard.

. & Debug Configurations B

; Create, manage, and run configurations

|IDEX |85~ || Mame: [HelloJni Default

- | Main | 69+ Arguments | P Envirurmen_?; Source | i Refresh| 7] Common
Debugger: [gdbserver -
¥ Stop on startup at: [JNI_OnLoad| Advanced... |

Debugger Options
C/C++ Atach to Appli — s - - -
C/C++ Postmortem Del Main IShuedLubmnelenmmnl

cl

|| -[E] C/C++ Remote Applice S - —
| @ Eclipse Application GDE debugger: |ebuilt\windows\bin\arm-inux-androideabi-gdb exe Browse...
|| "2 Java Applet GDB command file: [ples\hellojni\obiNocal\ammeabi\gdb-eclipse setup| | Browse...

-[1] Java Application
| - Ju JUknit {(Waming: Some commands in this file may interfere with the startup operation of the
1 |-I Mlm_forw‘* «rm“-) (=1
|| =Ju Junit Plug-in Test
|| P Launch Group GDB ¢ set: [standard =

-# 05Gi Framework

P Protocol: I i 'I
|| . Remote Java Applica = o
i I I ﬂ
| Using Standard Create Process Launcher - Select other. .. Apply | Reyert |
| | Filter matched 16 of 17 items |
: ':’}: I Debug | Close |

Figure 7-29. Configuration on the Debugger tab of the Debug Configurations dialog

Select the Connection tab within the Debugger tab, and fill in the information as
follows and shown in Figure 7-30:

B Type: Select TCP as the connection type.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B Host name or IP address: Set this to localhost, since the
Android Debug Bridge (ADB) will be doing the forwarding
between the device and the host machine.

B Port number: Set thie port number to 5039.

| & Debug Configurations [x|

; Create, manage, and run configurations
| g

|| Name: |HelloJni Def
-_ Main | 9+ Arguments | P Envirurmen_?; Source | " Refresh| [7] Common| |

{ Debugger: [gdbserver =] =
! [¥ Stop on startup at: [JNI_OnLoad Advanced... |
: Debugger Options

\-[E] C/C++ Atach to Appli

[t | C/C++ Postmortem Del Main]MUW“ ml

1

|

|| ~[E] €/Cr+ Remote Applicz i I__I'

| @ Eclipse Application Type: |TCP

|| i Java Applet Host name or IP address: Ilocalhud

| 1| Java Application Port i Ism—

|| =du Junit L
|| [~Jt JUnit Plug-n Test

I e o

|| | :tf 05Gi Framework

18 -, Remote Java Applicati | ;I
| Using Standard Create Process Launcher - Select other. .. Apply | Reyert |
| | Filter matched 16 of 17 items

: 'J’T)‘ I Debug | Close |

Figure 7-30. Debugger connection configuration

Eclipse is now ready to debug the native components. To successfully establish
the debug session, follow these steps:

1. Launch your Android emulator instance or connect your Android
device to your host machine.

2. Put a breakpoint into the com.example.hellojni.HelloJni Java
class, after the loadLibrary call, by introducing a dummy call,
such as System.out.println(); and enabling the breakpoint on
the dummy call. This will stop the Java debugger immediately
after the shared library is loaded.

3. Start a Java debug session.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4. When the debugger reaches the breakpoint, select the project,
and then launch the ndk-gdb-eclipse external tool that you
defined earlier by choosing Run » External Tools » ndk-gdb-eclipse.

5. When the ndk-gdb-eclipse tool establishes the connection to
GDB, select the C/C++ debug session that you defined earlier.

6. Eclipse will ask to switch to Debug perspective. You can now
start debugging the native components.

As noted at the beginning of this section, since this graphical debugging setup
is not officially supported by the Android NDK, it may not work exactly the same
way with later versions of the NDK.

Analyzing the Stack Traces

If a native component crashes, a stack trace is logged into the system logs. This
stack trace can be accessed through the LogCat view, as shown in Figure 7-31.

I /DEBUG ¢ 114): Build fingerprint:
ers/release—keys’
1 /DEBUG 114>: pid: 2175, tid: 2175 >>> com.example.hellojni <<

¢ 114>: signal 11 <(SIGSEGU>, code 1 <(SEGU_MAPERR>., fault addr BOBBB0O

r@ BBBPf2c® »1 41860d3b8 »2 OOEPOBED »3 DODOBBDO
r4 56f498b8 »5 56cH6c?4 6 BBBBBBA4 »7 S6cSbcald
8 befabh698 »? 56c56c98 10 BBB12838 fp hefahbac
ip 56c42c29 sp hefabht88 1r 48888c?74 pc 56c42c38

dd@ 7246676e6972746f d1 4abfbcbcb5482f6d
d2 56ccB19856cc814a d3 56ccB820856ccBlde
d4 0OOPAREPAR1R1AB36 dS ©02P0PEP8A1010A99

‘google/yakjusmaguro:4.08.1/I1TL41F/228551 :u

cpsr 688

BANRRAPAR1B1AA?9
BANRRAPARARANBRA
BAANARANARARARBRA
BENARANARARANBRA
jalsfs]a]a]u]s]ala]sla]a]a]5 5 0]
BR0AARA1 41807760
B707878703030363
8100618681 66001 00
B0PEBIBERABENBREG
B006BAPRRERAARRA
8106019001000100
8196019601000100
8001 00PER0010008
60000012

3f8000PA3f80RARA
BAANRANARANARARA
0APNRAEPNARANARARA
BAPNRARARANARARA
HEANNARNARANARERA
PBERRARARRRRRRAAA
PBBOBARARARBROBO
916081 806160661680
PBPBBERABENBROBO
B6066600B0DERARA
819601 0001000100
919601 06001000100
080160000001 0000

AAAAAAAAI\A/‘\AAAAAAAA falatatal

11 #88 pc O0BOBAc38 ~datarsdatascom.example.hellojnisli
/1libhello—jni.so (Java_com_example_hellojni_HelloJni_stringFromJNI>
1.-DEBUG ¢ 114>: #81 pc 0BB1lec?d systems/lib-slibhdum.so (dumPlatform

Invoke)
I /DEBUG ¢ 114>:
NIMethodPKjP6JUaluePK6
I/DEBUG ¢ 114):

114>: code

pe BBAS9@6a systems/libslibdum.so (_Zi6dumCall

#a2
HethadPGIhread)

around p

4
¢ 114)>: 56c42cl8 328P3l34 e5908008 eafffffB@ 56c453a8
¢ 114)>: 56c42c28 hB85H500 71009801 93032300 22809hH83

=]

Figure 7-31. LogCat view showing a stack trace

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The following lines show the stack trace with function names and addresses.

I/DEBUG (114): #00 pc 00000c38
/data/data/com.example.hellojni/lib/1libhello-jni.so
(Java_com_example_hellojni_HelloIni_stringFromINI)

I/DEBUG (114): #01 pc 0001ec70 /system/lib/libdvm.so
(dvmPlatformInvoke)
I/DEBUG (114): #02 pc 0005906a /system/lib/libdvm.so (_Z16dvmCall

INIMethodPKjP6IValuePK6MethodP6Thread)

As seen in the stack trace, the native code crashed at address 00000c38 in the
Java_com_example hellojni HelloJni_stringFromINI function. This information
may not be enough while troubleshooting complex native components. The
Android NDK comes with the ndk-stack tool to decode the stack trace into file
names and line numbers. From the project directory, you can call the ndk-stack
tool on the command line as follows:

adb logcat | ndk-stack -sym obj\locallarmeabi

The tool parses the log lines for crash dumps, and decodes the stack traces to
show the file names and line numbers. As shown in Figure 7-32, the address
00000c38 was translated in the file hello-jni.c and at line number 31.

3\an&roid—ndk—r’?h\samples\hello—jn:i_>adh logeat | ndk-stack —sym ohjslecalsarmea
i

Crash dump: i
uild fingerprint: ’'googles/vakju/maguro:-4.0. 1/ITL41F/228551 user/release-keys’
id: 2175, tid: 2175 >>> com.example.hellojni <4<
ignal 11 (SIGSEGU>, code 1 (SEGU_I“IHPERR) fault: addr APABBOOBA
tack frame #08 pc PBABAC38 rdatasdatascom.example.hellojnislibs/libhello—jni.s
(Java_com_example_hellojni_HelloJni_stringFromJNI): Routine Java_com_example_h
1lojni_Hellodni_stringFromJNI in jnishello—jni.c:31
tack frame #01 pc BBBlec?d /system/libr/libdum.so (dvmPlatformInvoke)
tack frame #82 pc BBB5986a /systems/lib/libdum.so (_Z16dumCallJNIMethodPKjP6JU
luePK6MethodP6Thread> _I

Figure 7-32. Stack trace decoded by the ndk-stack tool

The ndk-stack tool can also be used directly from the Eclipse platform, as an
external tool, in order to streamline the troubleshooting process. Once again,
from Eclipse, choose Run External Tools External Tool Configurations... from the
top menu bar. In the External Tools Configurations dialog, select Program and
click the New launch configuration button. Complete the external tool
information as follows and shown in Figure 7-33:

B Name: Name the new external tool configuration ndk-stack.

B Location: On Windows, use ${system_path:cmd} as the
location. On Linux and Mac OS X, use ${system_path:bash}
as the location.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B Working Directory: On all platforms, the working directory is
${project_loc}.
B Arguments: On Windows, enter the arguments /C "adb

logcat -d | ndk-stack -sym obj\local\armeabi". On Linux
and Mac OS X, enter -C "adb logcat -d | ndk-stack -sym
obj/local/armeabi" as the arguments.

& Extemnal Tools Configurations m

Create. manage. and run configurations @
Run a program =
: =]
BEER I B3 - Name: |ndk-stack
jype filter text | m&' Refresh | 5} Build| g Environment | =1 Common|
¢~ Ant Build ~ Location:
@— AP1 Use Report | [s{system_path:-cmd}
&4, Program -
q* javah Browse WOdmgaoel Browse File System... | Variables... |
-, javap S
LQ ~Working Directory:
|s{project_loc}
Browse WDrlgspaml Browse Fle System._.. | Variables... |
r~ Arguments:
/C “adb logcat —d | ndk-stack —sym obj\ocal\armeabi~ ﬂ
Variables... |
Note: Enclose an argument containing spaces using double-quotes (™).
Appl R t
Filter matched 6 of 6 ite e | e |
f_\l

Figure 7-33. Defining the ndk-stack external tool
To prevent Eclipse from rebuilding the application every time the tool is
launched, go to the Build tab and uncheck Build before launch.

Now you can use the ndk-stack tool. After an application crashes, choose Run »
External Tools » ndk-stack. The tool will be executed, and the output will be
displayed in the Console view, as shown in Figure 7-34.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

.-Q_\ETurLog: @ Javadoc‘ﬁH DadaﬁionLogCi.‘ x &i N n_.t|'{».r"1i[}3‘» e)
<terminated> ndk-stack [Program] C:\windows\ 32\cmd exe

Crash dump: ***=++*+ -
Build fingerprint - 'google/yakju/maguro:4.0.1/1TL4 1F/228551 user/release-keys’

pid: 2874 tid: 2874 >>> com.example hellojni <<<

signal 11 (SIGSEGV). code 1 (SEGV_MAPERR). fault addr 00000000

Stack frame #00 pc 00000c38 /data/data/com.example hellojni/lib/Aibhellojni.so (Java_com_example_hellojni_HelloJni_stringF
Stack frame #01 pc 0001ec70 /system/lib/Aibdvm so (dvmPlatforminvoke)

Stack frame H#02 pc 0005906a /system/lib/libdvm.so (_Z16dvmCallJNIMethodPKjP6JValue PKEMethodP6Thread)

=
| | »

Figure 7-34. The ndk-stack output displayed in the Console view

Summary

In this chapter, we explored the Android NDK, including its purpose and the
features it provides. We went through the Android NDK installation process on
most popular host platforms. We glued the Android NDK to the Eclipse platform
through Sequoyah plug-ins. Then we looked at the core of the Android NDK, the
JNI technology, and discussed the important aspects of developing hybrid
applications. We also touched on the most common troubleshooting tasks and
how they can be streamlined through the Eclipse platform.

Resources

The following resources are available for the topics covered in this chapter:
B Sequoyah Project, http://www.eclipse.org/sequoyah/

B Android Debug Bridge (ADB),
http://developer.android.com/guide/developing/tools/adb.

html

B Java Native Interface: Programmer’s Guide and Specification,
http://java.sun.com/docs/books/jni/

downloaded from: lib.ommolkefab.ir

http://www.eclipse.org/sequoyah/
http://developer.android.com/guide/developing/tools/adb
http://java.sun.com/docs/books/jni/
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Chapter

Project: Extending
Movie Player for AVI
Movies

In Chapter 6, we developed a movie player application on Android. The
application obtains the names of existing movie files through the content
provider, and presents them to the user in a list format. After the user selects a
movie, the application indirectly launches the default video player activity to play
the movie.

Since our movie player is relying on the default video player, it can play only the
video formats that are supported by the Android platform. In this chapter, we
will expand the movie player application to support Audio Video Interleave (AVI)
movie files. AVI is more of a container format that can wrap many different
media types. For the sake of simplicity, our AVI player will support only AVI files
with uncompressed video in RGB565 color space.

Handling Dependencies

Although the AVI format is not too complicated, supporting it does require a
considerable amount of effort to be implemented from scratch in Java. A quick
web search for AVI libraries comes up with a list of open source solutions,
mostly implemented in C/C++. To take advantage of these existing libraries, the
Android NDK is the right tool.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The AVI implementation that we will be using throughout this project is AVILib. It
comes as a component of a larger open source project called Transcode.

To download Transcode, navigate to http://tcforge.berlios.de/ using your
browser, and follow the Downloads link. At the time of this writing, the latest
version of Transcode is 1.1.5. Transcode comes as a bzip2 compressed TAR
archive file. To extract its content, open Cygwin if you are on a Windows-based
platform, or a terminal window on Mac OS and Linux, go to the directory where
you downloaded Transcode, and enter tar jxvf transcode-1.1.5.tar.bz2.

As shown in Figure 8-1, Transcode comes with a lot of other components,
AVILib is provided in its own directory called avilib.

$1s -1 =
total 1706 ‘J
-rw-r--r-- oncinar Domain Users 21857 Oct 31 2009 acinclude.md

drwxr-xr-x+ oncinar Domain Users 0 Oct 31 2009 aclib

-rw-r--r-- oncinar Domain Users 279009 Oct 31 2009 aclocal.md

=rW=r==r=- oncinar Domain Users 4968 Feb 21 2009 AUTHORS

drwxr-xr-x+ 1 oncinar Domain Users 0 Oct 31 2009 autotools

drwxr-xr-x+ 1 oncinar Domain Users 0 Mar 11 14:55 avilib

-rw-r--r-- oncinar Domain Users 2495 Oct 31 2009 Changelog

-rwW-r--r-- oncinar Domain Users 9137 Oct 31 2009 config.h.in

—PWXP=XI=X oncinar Domain Users 1266525 Oct 31 2009 configure

-rw-r--r-- oncinar Domain Users 42524 Oct 31 2009 configure.in

-rW=r==r=-- oncinar Domain Users 18007 Feb 21 2009 COPYING

drwxr-xr-x+ 1 oncinar Domain Users 0 Oct 31 2009 docs

drwxr-xr-x+ 1 oncinar Domain Users 0 Oct 31 2009 encode

drwxr-xr-x+ 1 oncinar Domain Users 0 Oct 31 2009 export

drwxr-xr-x+ oncinar Domain Users 0 Oct 31 2009 filter

drwxr-xr-x+ oncinar Domain Users 0 Oct 31 2009 import

=rw=r==r=-- oncinar Domain Users 18652 Oct 31 2009 INSTALL

drwxr-xr-x+ 1 oncinar Domain Users 0 Oct 31 2009 libdldarwin
drwxr-xr-x+ 1 oncinar Domain Users 0 Oct 31 2009 libtc
drwxr-xr-x+ oncinar Domain Users 0 Oct 31 2009 libtcaudio
drwxr-xr-x+ 1 oncinar Domain Users 0 Oct 31 2009 libtcvideo
-rW-r--r-- oncinar Domain Users 448 Feb 21 2009 Makefile.am
-rwW=r==r--

oncinar Domain Users 24847 Oct 31 2009 Makefile.in
oncinar Domain Users 0 Oct 31 2009 multiplex
oncinar Domain Users 0 Oct 31 2009 pvm3

drwxr-xr-x+
drwxr-xr-x+

I e T T e e e e e e e e n e a a a a a e e s A s e ey ey o

=rW=r==r== oncinar Domain Users 2244 Feb 21 2009 README
drwxr-xr-x+ 1 oncinar Domain Users 0 Oct 31 2009 src

-rW-r=--r-- oncinar Domain Users 17906 Feb 21 2009 STYLE

drwxr-xr-x+ oncinar Domain Users 0 Oct 31 2009 testsuite
-rw=-r--r-- oncinar Domain Users 107 Feb 21 2009 TODO

drwxr-xr-x+ 1 oncinar Domain Users 0 Oct 31 2009 tools

-FW-r--r-- oncinar Domain Users 4045 Feb 21 2009 transcode.spec.in

Figure 8-1. Contents of the Transcode library

For more information about Transcode, visit the Transcode Forge web site, at
http://tcforge.berlios.de/.

downloaded from: lib.ommolkefab.ir

http://tcforge.berlios.de/
http://tcforge.berlios.de/
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Adding Native Support

Before we start integrating AVILib into our existing MoviePlayer project, we need
to first add native support to it. Right-click the MoviePlayer project and choose
Android Tools » Add Native Support... from the context menu to launch the Add
Native Support dialog. Click the Finish button to use the default parameters.
Sequoyah (which we installed in the previous chapter) will modify the project

configuration, and it also will include a set of boilerplate files, as shown in Figure
8-2.

& Java - MoviePlayer/jni/Android mk - Eclipse SDK

Fle Edit Run MNavigate Search Project Refactor Window Help

& & g IB|BANE]H-0-%-|HE-|®F- | & dava
& - v &
12 Package Explorer 23 e B Android mic X = O[5 outline 32 =0
= V|| \OCALPATH = Sy I) . [T
o [—— 4] S(CLEAR_VARS) | LOCAL_PATH
- . S
iy g LOCAL_MODULE -= MoviePlayer S nciics Sy} =R VA,
| - com.apress movieplayer it Add all source file names to be included in lib separated by a whitespz i AL MO
| E[) Moviejava LOCAL_SRC_FILES := MoviePlayer.cop =] LOCAL_SRC_FILES
|) MovieListAdapter java - - " include ${BUILD_SHARE
i " EJ MoviePt. vity ja S(BUILD_SHARED_LIBRARY)
gen [Generated Java Files] =
il | o[Jix] =

£ Problems | @ Javadoc (¢, Declaration | B Console 2

|t B - -8

|cor Buld Cntuole |Momenayu1

i ideabid 4 ey y i i o]
+ -MMD -MP -MF fomnocalfamemfonslﬂoweﬁayerfmeﬁayer o.d.omg fpic ffunction-sections
Hunwind-tables -fstack-protector -D__ARM_ARCH_5__ -D__ ARM_J ARCH 5T__ -D__ARM_ARCH_S5E__
-0 ARMMH 5TL -Wno-osatn h Se -mt -msoftfloat Fro s fno-tti J
_mihumb sct-aal
IClandud-ndr-r sy

jude inl -DANDRDID -Wa_ —noexecstack 02 -DNDEBUG g

< ﬂilbweﬂayercpn o

I /ohﬂwd/md:l/ohsﬂomsﬁm}"ﬂweﬁmr.u &% /obj/convert |
<51 nenen el fobjlocal /armeabi/objs/MoviePlayer/MoviePlayer.o.d |

] I StaticLibrary - libstdc++.a =l

fandroid-8/arch-

|5maﬂ!nseﬂ |4:1

(-]
s

Figure 8-2. Adding native support to MoviePlayer

Integrating AVILib

The latest version of the Android NDK comes with support for modules. This
allows third-party modules to be deployed on a central location, from which
other platforms can quickly pull them into their build process. You can read
more about it in the IMPORT-MODULE . html file included with the Android NDK

documentation. For the sake of simplicity, we will include the AVILib library
directly in our project.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Adding AVILib to the Project

Copy the avilib directory from Transcode into the MoviePlayer project’s jni
directory as a subdirectory, as shown in Figure 8-3.

. Java - MoviePlayer/jni/avilib/avilib_c - Eclipse SDK

Fle Edit Source Bun Navigate Search Project Refactor Window Help

&l& a2 |8ME]|5-0-Q-|we-|®@® -4 2 [& ava

| B
2 * avilib.c = ——

|
|
|
| .
| r—2 configh -~
* Copyright {C) Thomas Oestreich - June 2001 | L-# PACKAGE
* multiple audio track support Copyright (C) 2002 Thomas Oestreich =l i
* Version 1.1.0: Copyright {C) 2007-2008 Francesco Romani = | # VERSION |
£ | & unistdh
* Original code: =l - u awilibh
* Copyright (C) 1999 Rainer Johanni <Rainer@Johanni de> | i-ma platform h
= This file is part of transcode. a video siream processing tool = i o # INFO_LIST
= | 8-0 (anonymous
* imnscode is free software: you can redistribute it and//or modify d IR # AVl HNULN
= * it under the terms of the GNU General Public License as published by | =
Lol platform h * the Free Software Foundation: either version 2. or (at your option) | # PAD_EVENQ

- README.avilib * any later version
® transcode is distributed in the hope that it will be useful .

* but WITHOUT ANY WARRANTY. without even the implied wammanty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See o
* GNU General Public License for more details.

#° shor2st riunsigned

* You should have received a copy of the GNU General Public License s
@ 7 strdlongfunsigned

* along with GNU Make: see the file COPYING. ¥ not, write to

(R : - * the Free Software Foundation. 675 Mass Ave, Cambridge, MA 02139, Uf ~ et str2ulong(unsigned ~
<1 | + | | 3|
| me | E = = =
| Writable Smart Insert | @ e fieR B

Figure 8-3. Copying the AVILib directory into the jni directory

Using Eclipse, open the platform.h header file from the jni directory, and
remove the following include statement from the file:

#include "config.h"

We removed this line because we are not going to use the Makefile that came
with AVILib; instead, we will use the Android NDK’s build system.

Modifying the Android.mkK File

The Android NDK requires that the AVILib module and its source files are
defined in the Android.mk file in order to compile it. Using Eclipse, open the
Android.mk file. The first line, LOCAL_PATH := $(call my-dir), sets the current
work directory for the Android NDK project, and it needs to be the first
command in the Android.mk file. Immediately after this line, we will start to
define a new module for AVILib.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#
AVILib

#

include $(CLEAR_VARS)

The include $(CLEAR_VARS) line allows the Android NDK to clear the module-
specific variables first in order to prevent any conflict. Every module in the
Android.mk file has a name. This name is used while referring to this specific
module from other modules or from the Application.mk file.

Module name is avilib
LOCAL_MODULE := avilib

The source files for AVILib are in the subdirectory named avilib. We need only
two source files in order to compile the AVILib.

Source files
LOCAL_SRC_FILES := avilib/avilib.c avilib/platform posix.c

As you can see, the avilib/ prefix is repeated, since all source files are under
the avilib subdirectory. The Android.mk file is actually a Makefile with a lot of
Android-specific macros. The Android.mk file is processed by the GNU Make
tool, and it supports all functions provided through GNU Make. We can break
the line into two lines by using GNU Make’s addprefix function.

Temporary variable to hold list of source files
MY _SRC_FILES := avilib.c platform_posix.c

Prefix them with the sub-directory name
LOCAL_SRC_FILES := $(addprefix avilib/, $(MY_SRC_FILES))

The first line contains only the source file names. The second line sets the
LOCAL_SRC_FILES by prefixing the source file names with avilib/.

Export the includes directory for dependent modules
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/avilib

Modules usually have their include path hierarchy; for example, AVILib header
files are in the avilib subdirectory. Modules can also depend on other modules
with other include paths, and keeping track of the combined include path may
become a time-consuming task. The Android NDK provides the
LOCAL_EXPORT_C_INCLUDES variable to allow modules to export their include path
to their dependents. Dependent modules automatically inherit the include path,
and no manual processing is required.

Build it as static library
include $(BUILD STATIC LIBRARY)

We will finalize the module definition by telling the Android NDK that we would
like to build AVILib as a static library. AVILib does not need to be a shared

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

library, since we will not be exposing any functions directly to Java from AVILib.
Listing 8-1 shows how the Android.mk file looks now.

Listing 8-1. The jni/Android.mk File
LOCAL_PATH := $(call my-dir)

#

AVILib

#

include $(CLEAR VARS)

Module name is avilib
LOCAL_MODULE := avilib

Temporary variable to hold list of source files
MY_SRC_FILES := avilib.c platform_posix.c

Prefix them with the sub-directory name
LOCAL_SRC_FILES := $(addprefix avilib/, $(MY_SRC_FILES))

Export the includes directory for dependent modules
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/avilib

Build it as static library
include $(BUILD_STATIC_LIBRARY)

#

Movie Player

#

include $(CLEAR_VARS)

Module name
LOCAL_MODULE := MoviePlayer

Source files
LOCAL_SRC_FILES := MoviePlayer.cpp

Build as shared library
include $(BUILD_SHARED_LIBRARY)

To make sure that we can now build AVILib, choose Project » Build Project from
the top menu bar to build the MoviePlayer project. If everything goes well, you
will see the “Build Finished” message, as shown in Figure 8-4.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

'.;.f'_ Problems | @ Javadoc | [/, Declaration ')"' Search| Ol -}

ICDT Build Console [MoviePlayer] iy 'LF‘ : ;:\ | [| _n B | =g N
mkdir -p _Aibs/armeabi _ﬁJ
/cygdrive/c/android-ndk-+7b/prebuilt /windows/bin/echo "set solib-search-path _/obj/local farmeabi" >
Aibs/armeabi/gdb setup

/cygdrive/c/android-ndk-7b/prebuilt /windows /bin/echo "directory
C-/andmid-ndk-r7b/platforms/android-8/arch-arm/usr/include jni/avilib C-/android-ndk+7b/sources/cxx-stl /system™ >>
_flibs/armeabi/gdb setup

Install : libMoviePlayer so => libs/armeabi/libMoviePlayer so

mkdir p _/libs/armeabi

install -p /obj/local/armeabi/libMoviePlayer so _/libs/ameabi/libMoviePlayer.so

/eyodrive/c/android-ndk-r /b/toolchains/am-inux-androideabi-4.4_3/prebuilt /'windows/bin/amm-inux-androideabi-strip
—strip-unneeded _/libs/ameabi/libMoviePlayer so

*** Build Finished = —

Figure 8-4. Console view showing that the build is finished

Implementing the AVI Player

We will now start implementing the AVI player class. The AVI player class will
rely on AVILib to properly read the AVI video files, and it will rely on Android APIs
to render the video frames as they are read. Due to its dependencies, the AVI
player class will be a hybrid class with one part in Java and the other part in
native space. We’ll start by defining the tip of the iceberg, the Java portion of
the AVI player.

The Java Part

The Java part of the AVI player will take the name of the AVI video file and hand
it over to AVILib through its native methods. As the frames start coming, it will
set up an Android surface to render these frames.

To start implementing the Java part of the AVI player, select the
com.apress.movieplayer Java package through the Project Explorer, choose File
» New » Class from the top menu bar, and name the new class as AviPlayer.
Listing 8-2 shows the content of the AviPlayer class file.

Listing 8-2. The AviPlayer.java File
package com.apress.movieplayer;
import android.graphics.Bitmap;

import android.util.log;
import android.view.SurfaceHolder;

/¥
* AVI player.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

*
* @author Onur Cinar
*/
class AviPlayer implements Runnable {
/** Log tag. */
private static final String LOG_TAG = "AviPlayer";

/** Surface holder. */
private SurfaceHolder surfaceHolder;

/** Movie file. */
private String movieFile;

/** Playing flag. */
private boolean isPlaying;

/** Thread instance. */
private Thread thread;

/**

* Sets the surface holder.
*

* @param surfaceHolder
* surface holder.
*/
public void setSurfaceHolder(SurfaceHolder surfaceHolder) {
this.surfaceHolder = surfaceHolder;
}

Jx*

* Sets the movie file.
*

* @param movieFile
* movie file.
*/
public void setMovieFile(String movieFile) {
this.movieFile = movieFile;
}

/**

* Start playing.

*/

public synchronized void play() {
if (thread == null) {

isPlaying = true;

thread = new Thread(this);
thread.start();

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Vi
* Stop playing.
*/

public synchronized void stop() {
isPlaying = false;

/**

* Runs in its thread.

*/

public void run() {
try {

render (surfaceHolder, movieFile);
} catch (Exception e) {
Log.e(LOG_TAG, "render", e);

thread = null;
}

Vi
* New bitmap using given width and height.
*
* @param width
* bitmap width.
* @param height
* bitmap height.
* @return bitmap instance.
*/
private static Bitmap newBitmap(int width, int height) {

return Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565);
}

/¥

* Renders the frames from the AVI file.

*

* @param surfaceHolder surface holder.

* @param movieFile movie file.

* @throws Exception

*/

private native void render(SurfaceHolder surfaceHolder, String movieFile)
throws Exception;

/** Loads the native library. */

static {
System.loadLibrary("MoviePlayer");
}

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The AviPlayer class is very simple player implementation. It provides setter
methods to define the movie file and an android.view. Surface instance to
render the frames. There are two methods, play and stop, to control the player.
Since the AVI movie file can take a long time to play, the AVI player has its own
thread for doing the rendering tasks. As you can see in the code, the Java
portion does not contain any code related to handling AVI files. The native
render method will take care of processing and rendering the AVI movie file.

The Native Part

The native part of the AVI player will act as a bridge between the AVILib module
and the Java part of the AVI player. The native part will get the AVI video file
name from the Java part, and it will start reading it through the AVILib module.
As the frames are read, it hands them over to the Java part for rendering.

To start implementing the native portion of the player, we will need to generate
the C header file for AVI player. As in the previous chapter, we will use the javah
tool for this task. Select the AviPlayer class, and start javah from the external
tools menu, as shown in Figure 8-5.

& Java - MoviePlayer/src/com/apress/movieplayer/AviPlayer java - Eclipse SDK

File Edit Run R I i Search Project Window Help
| C3 - & & a8 |8FfEdls-0- Q- |#E-]|®+-]|® IE
[§ Package Explorer 53 . =8l NI AviPlayerjava X %Zrﬂ(ﬂd’
———— 3 javap —
= 5 i
B MoviePlayer * Runs in its thread. Run As »
E =Y g .) Bxdemnal Tools Configurations...
il public void run() { Organize Favorites
. B com.apress movieplayer try {
o b e
B] AviPlayerAclivity java Log.elL0G_TAG, "render”, e);
&-[J] Movie java .
- [J] MovieListAdapter java .
| [[J] MoviePlayerActivity java 3 thread = null;
23 gen [Generated Java Files]

Figure 8-5. Using javah to generate the header file

The tool will process the AVI player class and generate the
com_apress_movieplayer AviPlayer.h C header file in the jni subdirectory.
Listing 8-3 shows the content of the header file.

Listing 8-3. The com_apress_movieplayer_AviPlayer.h File
/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>
/* Header for class com_apress_movieplayer AviPlayer */

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#ifndef _Included_com_apress_movieplayer AviPlayer
#define _Included_com apress_movieplayer AviPlayer
#ifdef _ cplusplus

extern "C" {

#endif
/*
* Class: com_apress_movieplayer AviPlayer
* Method: render
* Signature: (Landroid/view/SurfaceHolder;Ljava/lang/String;)V
*/

INIEXPORT void INICALL Java_com_apress_movieplayer AviPlayer render
(INIEnv *, jobject, jobject, jstring);

#ifdef _ cplusplus

}

#endif

#endif

Based on the generated header file, we will now need to implement the
Java_com_apress_movieplayer AviPlayer render function. Select the jni
directory, and choose File » New » Other... » C/C++ » Source File from the top
menu bar. Name the C source file as com_apress_movieplayer AviPlayer.c.

As shown in Listing 8-4, the first part of the C source file simply includes the
necessary libraries. We will be using the Android NDK’s bitmap library for
drawing the AVI frames, and its log library for extensively logging the operations,
in order to make this example easier to follow. As you may have noticed, there is
a set of macros for different levels of logging. These macros make the Android
NDK’s logging mechanism easier to use and add more logging information to
aid in troubleshooting.

Listing 8-4. The com_apress_movieplayer_AviPlayer.c File
#include "com_apress_movieplayer_ AviPlayer.h"
#include <limits.h>
#include <android/bitmap.h>
#include <android/log.h>
#include <avilib.h>
#define LOG_TAG "AviPlayer"
#define LOG_PRINT(level,fmt,...) \
__android log print(level, LOG TAG, "%s: " fmt, _ PRETTY_FUNCTION ,
VA_ARGS_)

#define LOG DEBUG(fmt,...) \
LOG_PRINT(ANDROID LOG DEBUG, fmt, ## VA ARGS)

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#define LOG_WARNING(fmt,...) \
LOG_PRINT(ANDROID LOG WARN, fmt, ## VA ARGS)

#define LOG_ERROR(fmt,...) \
LOG_PRINT(ANDROID LOG ERROR, fmt, ## VA ARGS)

#define LOG_INFO(fmt,...) \
LOG_PRINT(ANDROID LOG_INFO, fmt, ## VA ARGS)

Listing 8-5 provides a struct for caching and sharing the frequently used
method and field IDs, as well as objects like the surface holder and the bitmap,
between the native functions.

Listing 8-5. The avi_player struct

/**

* AVI player instance fields.
*/

typedef struct avi_player {
INIEnv* env;
jobject obj;
jclass clazz;

/* SurfaceHolder */
jmethodID lockCanvasMethodId;
jmethodID unlockCanvasAndPostMethodId;

/* Canvas */
jmethodID drawBitmapMethodId;

jfieldID isPlayingFieldId;
jobject surfaceHolder;
jobject bitmap;

} avi_player_t;

Defining the Bitmap Helper Function

The newBitmap function, shown in Listing 8-6, is a helper function that calls the
static newBitmap function in Java to generate a bitmap with the given
dimensions. It uses some of the JNI functions and error handling operations
discussed in the previous chapter.

Listing 8-6. The newBitmap Function

/**
* Calls the new bitmap method with the given width and height.
%

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

* @param p avi player.
* @param width bitmap width.
* @param height bitmap height.
* @return bitmap instance.
*/
jobject newBitmap(avi_player t* p, int width, int height) {
jobject bitmap = 0;
jmethodID newBitmapMethodId = 0;

LOG_DEBUG("BEGIN p=%p width=%d height=%d", p, width, height);

newBitmapMethodId = (*p->env)->GetStaticMethodID(p->env, p->clazz,
"newBitmap", "(II)Landroid/graphics/Bitmap;");
if (0 == newBitmapMethodId) {
LOG_ERROR("Unable to find newBitmap method");
goto exit;

}

bitmap = (*p->env)->CallStaticObjectMethod(p->env, p->clazz,
newBitmapMethodId, width, height);

exit:
LOG_DEBUG("END bitmap=%p", bitmap);
return bitmap;

}

Caching the AVI Player IDs and References

The newBitmap function (Listing 8-6) looks up the Java method by using the
signature (II)Landroid/graphics/Bitmap;. As discussed in the previous
chapter, to quickly find these signatures, we can use the javap tool. Select the
AviPlayer Java class, and choose to use the javap external tool. After
processing the Java class file, javap will output the following:

Compiled from "AviPlayer.java"
class com.apress.movieplayer.AviPlayer implements java.lang.Runnable {
private static final java.lang.String LOG_TAG;
Signature: Ljava/lang/String;
private android.view.SurfaceHolder surfaceHolder;
Signature: Landroid/view/SurfaceHolder;
private java.lang.String movieFile;
Signature: Ljava/lang/String;
private boolean isPlaying;
Signature: Z
private java.lang.Thread thread;
Signature: Ljava/lang/Thread;
static {};
Signature: ()V

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

com.apress.movieplayer.AviPlayer();
Signature: ()V

public void setSurfaceHolder(android.view.SurfaceHolder);
Signature: (Landroid/view/SurfaceHolder;)V

public void setMovieFile(java.lang.String);
Signature: (Ljava/lang/String;)V

public synchronized void play();
Signature: ()V

public synchronized void stop();
Signature: ()V

public void run();
Signature: ()V

private static android.graphics.Bitmap newBitmap(int, int);
Signature: (II)Landroid/graphics/Bitmap;

private native void render(android.view.SurfaceHolder, java.lang.String)
throws java.lang.Exception;
Signature: (Landroid/view/SurfaceHolder;Ljava/lang/String;)V

By looking at the output, we can easily extract the signatures for the member
fields and methods. In order to speed up the access, these field and method IDs
can be cached. Listing 8-7 provides a code segment for caching the class
reference for AviPlayer, as well as the field ID for the isPlaying member field.

Listing 8-7. The cacheAviPlayer Function
/**

* Caches the AVI player.

*

* @param p avi player.

* @return result code.

*/

int cacheAviPlayer(avi_player_ t* p) {
int result = o;
jclass clazz = 0;
jfieldID isPlayingFieldId = 0;

/* Get object class instance. */
clazz = (*p->env)->GetObjectClass(p->env, p->obj);
if (0 == clazz) {

LOG_ERROR("Unable to get class");

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

goto exit;

/* Get is playing field id. */
isPlayingFieldId = (*p->env)->GetFieldID(p->env, clazz, "isPlaying", "Z");
if (0 == isPlayingFieldId) {
LOG_ERROR("Unable to get isPlaying field id");
(*p->env)->DeleteLocalRef(p->env, clazz);
goto exit;

}

result = 1;

p->clazz = clazz;
p->isPlayingFieldId = isPlayingFieldId;

exit:
return result;
}

The isPlaying member field’s value will be used to control the lifetime of the
player later in the code.

Caching the Surface Holder IDs and References

The Android framework allows the user interface (Ul) to be modified only in the
Ul thread. Movie files usually take a long time to play, and they involve many Ul
operations throughout the playback. Doing these operations directly in the Ul
thread is not a good practice.

The Android framework provides surface objects to allow applications to draw
to the Ul from a non-Ul thread. Surfaces are the best tools for media
applications. The surface objects are accessible to Android applications through
the SurfaceHolder object. The SurfaceHolder object provides two main
methods, lockCanvas and unlockCanvasAndPost, to allow applications to
manipulate the surface objects. Since we are implementing a movie player
application, these methods will be called extensively throughout the playback.
Listing 8-8 shows the cacheSurfaceHolderMethods function to cache the method
IDs for these frequently used methods.

Listing 8-8. The cacheSurfaceHolderMethods Function

/**

* Cache surface holder method ids.
*

* @param p avi player.
* @return result code.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

*/
int

cacheSurfaceHolderMethods (avi_player t* p) {
int result = 0;

jclass surfaceHolderClazz = 0;
jmethodID lockCanvasMethodId = 0;
jmethodID unlockCanvasAndPostMethodId = 0;

surfaceHolderClazz = (*p->env)->FindClass(p->env,
"android/view/SurfaceHolder");
if (0 == surfaceHolderClazz) {
LOG_ERROR("Unable to find surfaceHolder class");
goto exit;

lockCanvasMethodId = (*p->env)->GetMethodID(p->env, surfaceHolderClazz,
"lockCanvas", "()Landroid/graphics/Canvas;");
if (0 == lockCanvasMethodId) {
LOG_ERROR("Unable to find lockCanvas method");
goto exit;

}

unlockCanvasAndPostMethodId = (*p->env)->GetMethodID(p->env,
surfaceHolderClazz, "unlockCanvasAndPost",
"(Landroid/graphics/Canvas;)V");
if (0 == unlockCanvasAndPostMethodId) {
LOG_ERROR("Unable to find unlockCanvasAndPost method");
goto exit;

}

p->lockCanvasMethodId = lockCanvasMethodId;
p->unlockCanvasAndPostMethodId = unlockCanvasAndPostMethodId;

result = 1;

exit:

}

return result;

Caching Canvas IDs and References

The SurfaceHolder object provides a canvas to paint on. The AVI player code
will convert each AVI frame into a bitmap object, and that object will be drawn
on the canvas. This operation will also occur many times during the playback.
The cacheCanvasMethods function, shown in Listing 8-9, caches the method ID
for the drawBitmap method of the Canvas class.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 8-9. The cacheCanvasMethods Function

Vo

* Cache canvas method ids.
*

* @param p avi player.

* @return result code

*/

int cacheCanvasMethods(avi_player t* p) {
int result = 0;

jclass canvasClazz = 0;
jmethodID drawBitmapMethodId = 0;

canvasClazz = (*p->env)->FindClass(p->env, "android/graphics/Canvas");
if (0 == canvasClazz) {

LOG_ERROR("Unable to find canvas class");

goto exit;

drawBitmapMethodId = (*p->env)->GetMethodID(p->env, canvasClazz,
"drawBitmap",
"(Landroid/graphics/Bitmap;FFLandroid/graphics/Paint;)V");
if (0 == drawBitmapMethodId) {
LOG_ERROR("Unable to get drawBitmap method");
goto exit;

}
p->drawBitmapMethodId = drawBitmapMethodId;
result = 1;

exit:
return result;
}

Drawing the Bitmap to the Canvas

The drawBitmap native function, shown in Listing 8-10, uses the previously
cached method IDs to paint the given bitmap objects to the surface object. As
you may have noticed, at the end of the function, the local reference to the
Canvas object is deleted. Since JNI functions return local references that are
valid throughout the lifetime of the native method call, the Canvas object will not
be cleaned up automatically until the playback ends. Since the drawBitmap
function will be called many times during the playback, it can quickly fill the
memory with Canvas instances that are no longer used. To prevent that, the
function deletes its local reference to the Canvas object before terminating.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 8-10. The drawBitmap Function

Vi

* Draw bitmap.
*

* @param p avi player.

* @return result code

*/

int drawBitmap(avi_player t* p) {
int result = 0;
jobject canvas = 0;

/* Lock and get canvas */
canvas = (*p->env)->CallObjectMethod(p->env, p->surfaceHolder,
p->lockCanvasMethodId);
if (0 == canvas) {
LOG_ERROR("Unable to lock canvas");
goto exit;

/* Draw bitmap */
(*p->env)->CallVoidMethod(p->env, canvas, p->drawBitmapMethodId, p->bitmap,
0.0, 0.0, 0);

/* Unlock and post canvas */
*p->env)->CallVoidMethod(p->env, p->surfaceHolder,
p p p
p->unlockCanvasAndPostMethodId, canvas);

result = 1;

exit:
(*p->env)->DeleteLocalRef(p->env, canvas);

return result;

Opening the AVI File

The openAvi function, shown in Listing 8-11, provides the necessary call to
AVILib to open the AVI files. This function takes a Java string as a parameter. It
first converts it to a C string in order to be able to use it as a parameter to the
AVI_open_input_file function. It releases the C string before terminating.

Listing 8-11. The openAvi Function

Vi
* Opens the given AVI movie file.
*

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

* @param movieFile movie file.
* @return avi file.
*/
avi_t* openAvi(avi_player t* p, jstring movieFile) {
avi_t* avi = 0;
const char* fileName = 0;

/* Get movie file as chars. */
fileName = (*p->env)->GetStringUTFChars(p->env, movieFile, 0);
if (0 == fileName) {

LOG_ERROR("Unable to get movieFile as chars");

goto exit;

/* Open AVI input file. */
avi = AVI_open_input_file(fileName, 1);

/* No need to have the file name. */
(*p->env)->ReleaseStringUTFChars(p->env, movieFile, fileName);

exit:
return avi;

Rendering the AVI File

The last code segment is the actual implementation of the native render method.
As shown in Listing 8-12, it initializes the environment using the helper functions
discussed earlier. In a loop, it goes through the AVI frames, populates the
bitmap object with the frame data, and draws the bitmap on the surface using
the drawBitmap function. After each frame, it checks the value of the isPlaying
flag, and terminates if the player is already stopped. Since the isPlaying flag
can be accessed from two threads, it uses the JNI’s monitor functions to
synchronize on the object instance before checking the value of the isPlaying
flag. Depending on the frame rate of the AVI movie, it sleeps after each frame to
match real playback time.

Listing 8-12. The Java_com_apress_movieplayer_AviPlayer_render Function

void Java_com_apress_movieplayer AviPlayer render(INIEnv* env, jobject obj,
jobject surfaceHolder, jstring movieFile) {
avi_player_t ap;
avi_t* avi = 0;
jboolean isPlaying = 0;
double frameRate = 0;
long frameDelay = 0;
long frameSize = 0;

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

char* frame = 0;
int keyFrame = 0;

/* Cache environment and object. */
memset(&ap, 0, sizeof(avi_player t));
ap.env = env;

ap.obj = obj;

ap.surfaceHolder = surfaceHolder;

/* Cache surface holder and canvas method ids. */
if (!cacheAviPlayer(&ap) || !cacheSurfaceHolderMethods(&ap)
|| !cacheCanvasMethods(8&ap)) {
LOG_ERROR("Unable to cache the method ids");
goto exit;

/* Open AVI input file. */
avi = openAvi(&ap, movieFile);

if (0 == avi) {
LOG_ERROR("Unable to open AVI file.");
goto exit;

/* New bitmap. */
ap.bitmap = newBitmap(8&ap, AVI_video width(avi), AVI_video_height(avi));
if (0 == ap.bitmap) {

LOG_ERROR("Unable to generate a bitmap");

goto exit;

}

/* Frame rate. */
frameRate = AVI_frame_rate(avi);
LOG_DEBUG("frameRate=%f", frameRate);

frameDelay = (long) (1000 / frameRate);
LOG_DEBUG("frameDelay=%1d", frameDelay);

/* Play file. */

while (1) {
/* Lock the bitmap and get access to raw data. */
AndroidBitmap_lockPixels(env, ap.bitmap, (void**) &frame);

/* Copy the next frame from AVI file to bitmap data. */

frameSize = AVI_read frame(avi, frame, 8keyFrame);

LOG_DEBUG("frame=%p keyFrame=%d frameSize=%d error=%s",
frame, keyFrame, frameSize, AVI_strerror());

/* Unlock bitmap. */
AndroidBitmap_unlockPixels(env, ap.bitmap);

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/* Synchronize on the current object. */

if (o != (*env)->MonitorEnter(env, obj)) {
LOG_ERROR("Unable to monitor enter");
goto exit;

}
isPlaying = (*env)->GetBooleanField(env, obj, ap.isPlayingFieldId);

/* Done synchronizing. */

if (0 != (*env)->MonitorExit(env, obj)) {
LOG_ERROR("Unable to monitor exit");
goto exit;

/* If there is no frame or player stopped. */

if ((-1 == frameSize) || (0 == isPlaying)) {
break;

}

/* Draw bitmap. */
drawBitmap(&ap);

/* Wait for the next frame. */
usleep(frameDelay);

}

exit:
if (0 != avi) {
AVI close(avi);
}

Updating Android.mk

The MoviePlayer module in the Android.mk file needs to be updated with the C
source file names and the system libraries that are required for both the bitmap
and log functions. Update the MoviePlayer module in the Android.mk file as
follows:

#

Movie Player

#
include $(CLEAR VARS)

Module name
LOCAL_MODULE := MoviePlayer

Source files

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LOCAL_SRC_FILES := com_apress_movieplayer_ AviPlayer.c

Static libraries
LOCAL_STATIC_LIBRARIES := avilib

System libraries
LOCAL_LDLIBS := -llog -ljnigraphics

Build as shared library
include $(BUILD_SHARED_LIBRARY)

In this version of the file, the LOCAL_LDLIBS variable defines two additional
system libraries to link against during the build process.

Defining the AVI Player Activity

The AVI player class needs a surface to play back the AVI files. The AVI player
activity will wrap the AviPlayer object and provide a surface as well as the
movie path.

Defining the Layout

Choose File » New » Other... » Android » Android XML Layout File from the top menu
bar to add a new layout file to the project as avi_player.xml. The layout will
contain only a SurfaceView object that fills the entire screen. Listing 8-13 shows
the content of the layout file.

Listing 8-13. The avi_player.xml Layout File

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:orientation="vertical" >

<SurfaceView
android:id="@+id/surface_view"
android:layout_width="fill_parent"
android:layout_height="fill parent" />

</LinearlLayout>

downloaded from: lib.ommolkefab.ir

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Defining the Activity

Choose File » New » Class from the top menu bar to launch the New Java Class
dialog. The new class will extend the Activity class, and it will implement the
SurfaceHolder.Callback interface, as shown in Figure 8-6.

%NBHJavaClass !Em

Java Class =
Create a new Java class. @
Source folder: |MoviePlayer/src Browse...
Package: |mm,aprmmvieplayer Browse...

"' Enclosing type: I Browse. .. |
Name: [AviPlayerActivity
Modifiers: % public C default O private O protected

[T abstract [final [T statig

Superclass: [android .app Activity Browse...
Interfaces: T android.view.SurfaceHolder Callback

Which method stubs would you like to create?
[public static void main(String[] args)
[Constructors from superclass
¥ Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
[~ Generate comments

@ Binish Cancel

Figure 8-6. The New Java Class dialog for the AVI player activity
The implementation of this class file is shown in Listing 8-14. As seen in the

onCreate method, the AVI player activity will receive the AVl movie file name as a
part of the launching intent. It will configure the AVI player with the given movie

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

file, and it will rely on the SurfaceHolder callbacks to start and stop the AVI
player.

Listing 8-14. The AviPlayerActivity.java File

package com.apress.movieplayer;

import android.app.Activity;

import android.os.Bundle;

import android.view.SurfaceHolder;

import android.view.SurfaceHolder.Callback;
import android.view.SurfaceView;

/¥
* AVI movie player activity.
*

* @author Onur Cinar

*/

public class AviPlayerActivity extends Activity implements Callback {
/** AVI player. */
private AviPlayer aviPlayer;

J**

* On create.
*

* @see Activity#onCreate(Bundle)

*/

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.avi_player);

SurfaceView surfaceView = (SurfaceView) findViewById(R.id.surface view);
surfaceView.getHolder().addCallback(this);

aviPlayer = new AviPlayer();
aviPlayer.setMovieFile(getIntent().getData().getPath());

}

Jx*

* Surface changed.
*

* @see Callback#surfaceChanged(SurfaceHolder, int, int, int)
*/
public void surfaceChanged(SurfaceHolder holder, int format, int width,
int height) {
}

/**
* Surface created.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

*
* @see Callback#tsurfaceCreated(SurfaceHolder)
*/
public void surfaceCreated(SurfaceHolder holder) {
aviPlayer.setSurfaceHolder (holder);
aviPlayer.play();
}

Jx*

* Surface destroyed.
*

* @see Callbacki#fsurfaceDestroyed(SurfaceHolder)
*/
public void surfaceDestroyed(SurfaceHolder holder) {
aviPlayer.stop();
}

Modifying AndroidManifest.xml

We would like to make AviPlayerActivity the systemwide default player for AVI
movie files. We will modify the AndroidManifest.xml file with the proper intent
filters to achieve this. Inmediately after the definition of MoviePlayerActivity,
define a new activity as follows:
<activity android:name=".AviPlayerActivity"
android:label="@string/avi_player_label">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:mimeType="video/avi" />
</intent-filter>
</activity>

The intent filter provides the VIEW action for movie files with the video/avi MIME
type. Android will now present AVI Player as an option when the user selects an
AVI movie file.

Updating the String Resources

The label for the AVI player activity should also be added to the string resources,
in res/values/strings.xml.

<?xml version="1.0" encoding="utf-8"?>
<resources>

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<string name="avi_player label">AVI Player</string>
</resources>

Scanning AVI Files into the Media Store

The Android platform has a default media scanner that updates the media store
with the list of audio, video, and picture files. Since AVI files are not supported
directly by the Android platform, the media scanner will not add them to the
media store automatically. We will add the scanning capability to the
MoviePlayerActivity class that we created earlier.
/**
* Goes through the external movies directory and scans the AVI files into
* the movies.
*/
private void scanAviFiles() {
LinkedList<File> queue = new LinkedList<File>();
queue.add(Environment.getExternalStorageDirectory());

while (!queue.isEmpty()) {
File dir = queue.poll();
Log.i(LOG_TAG, "Scanning " + dir.getPath());

File[] files = dir.listFiles();
if (files != null) {
for (File file : files) {
if (file.isDirectory()) {
queue.add(file);
} else if (file.getName().endsWith(".avi")) {
scanAviFile(file);

}

The scanAviFiles method goes through the external storage directories and
searches for AVI files.

Vi

* Scans the given AVI files into movies.

*

* @param file
* AVI file.

*/
private void scanAviFile(File file) {

ContentValues contentValues = new ContentValues();

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

String data = file.getPath();
Log.i(LOG_TAG, "scanAviFile " + data);

contentValues.put(MediaStore.Video.Media.TITLE, file.getName());
contentValues.put(MediaStore.Video.Media.DATA, data);
contentValues.put(MediaStore.Video.Media.MIME_TYPE, "video/avi");

ContentResolver contentResolver = getContentResolver();

if (0 >= contentResolver.update(
MediaStore.Video.Media.EXTERNAL_CONTENT_URI, contentValues,
MediaStore.Video.Media.DATA + "=2", new String[] { data })) {

contentResolver.insert(MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
contentValues);

}

When the scanAviFiles method finds an AVI file, it calls the scanAviFile
method. The scanAviFile method populates the media information for the AVI
file and either updates it or inserts it into the media store. We will call the
scanAviFiles method right before populating the movie list.

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

scanAviFiles();

}

For the sake of simplicity, we call the scanAviFiles method within the Ul thread;
however, in real life, an AsyncTask should be used as a wrapper around this
operation to prevent blocking the Ul thread with extensive IO operations.

Running the Application

Prior to starting the application, you will need to deploy an AVI file to the device.
Navigate to http://zdo.com/galleon.zip, and extract the galleon.avi file. The
galleon.avi file is an uncompressed raw AVI file with frames in RGB565 color
space. Using the command prompt on Windows, or the terminal window on
Linux and Mac OS X, upload the AVI file to the SD card on the device using the
following command:

adb push galleon.avi /sdcard/

downloaded from: lib.ommolkefab.ir

http://zdo.com/galleon.zip
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Starting the Movie Player

Start the movie player application on the device using Eclipse. The movie player
will first scan the SD card, and then list the AVI file, as shown in Figure 8-7.

galleon.avi
00:00:00.000

Figure 8-7. Movie player activity listing AVI movies

Click the AVI movie file, and the movie player will launch the default AVI movie
player on the system, which is the AVI player activity we developed in this
chapter. The AVI player will immediately start playing the AVI file, as shown in
Figure 8-8.

Figure 8-8. AVI player activity playing an AVI movie

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Viewing the Gallery

The AVI player is now the default movie player application for AVI files. If you
choose the Gallery from the Applications list, you will see the AVI file in the list
as well. Click the AVI file, and Android will present a list of available players, as
shown in Figure 8-9.

Video player

Use by default for this action.

Figure 8-9. Gallery presenting the list of AVI players

Checking the Logs

During the movie playback, the LogCat view will show the log messages from
both the Java application and the native functions, as shown in Figure 8-10.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=5

Saved Filters & =

All messages (no filt

[AviPlayer

[verbose =] 1 &[T 1

1_movieplayer

Flayex

1_mevieplayes Player

i_movieplayer_ Rwvi

i_movieplayes

q
i

¥

]
o
=
]
&
"

I;II!

s_movieplayer RviPlayer render:
viPlayer render:

ieplayer_RviBPlayer_render:

Flayer_rende
Player rende:
Player_render:
i_movieplayezr AviPlayer_render:

AviPlayer_reandex:

frame=0dlgdbaso

frame=0x4184bas0 &

keyFrama=1

frame=0x4184bas0 key

: frame=0x4184bas0
: frame=0x4l84bag0

ame=0x41E4bagl
rame=0x41lE4bad
rame=0x4184bagl
rame=0x4184bad0
ame=0x4184baB0
ame=0x4184bas0
frame=0x4184bag0
rame=0x4lE4bas0

keyFrame=1
keyFrame=1
keyFrame=1
keyFrame=1
keyFrame=1
keyFrame=1
keyFrame=1
keyFrame=1
keyFrame=1

kayFrame=1l

: frame=m0x4l84basi key

framaSize=302752
frameSize=202752

framefize=302752

eSize=20Z752

rameSize=202752

ize=202752
rameSizemz0Z752
rameSize=202752
rameSize=202752

rameSize=202752

2
P
£

ramefize=I02752

eSize=202752
eEize=I02752

frameSizem-1 err

Figure 8-10. LogCat view showing AVI player logs

Homework

To further explore the concepts and tools introduced in the previous chapter,
you may want to experiment with the project code to add these features:

B Thumbnail support: As you will remember from Chapter 6, the
movie player list can show thumbnails from movie files. You
will need to implement a native method to extract thumbnails
from AVI movie files, and also modify the AVI media scanner to
add the thumbnails to the media store. Instead of having the

native code read the entire AVI file and make callbacks for

each frame, you can modify the logic so that the Java code
can request frames one by one. This can allow the Java code
to extract only the first frame as the thumbnail. Upon obtaining
the thumbnail, the bitmap can then be converted to a proper
image format, and it can be saved through the media store

content provider interface.

B Player controls: The AVI player automatically starts playing
the AVI movie file, and it stops after the whole movie is played.
It does not provide any controls for the user to pause, stop, or
restart the playback. Implementing these features will allow
you to explore the interaction between Java and the native
layer. By refactoring the native code and separating the reader
code into multiple functions, you can allow the Java code to
control the flow to implement these features.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Summary

In this chapter, in order to better understand the Android NDK and the JNI
technology, we expanded the movie player application that we built in Chapter 6
to support AVI-formatted movie files. We integrated an open source AVI library
into our project. While implementing the native code, we reviewed method and
field access, static and instance method execution, and thread synchronization
using monitors from the native code using the JNI functions.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Chapter

Android Scripting
Using Eclipse

Developing a full-scale Android application using the Java programing language
may become a big overhead for simple tasks such as automation and
prototyping. Android scripting becomes a very handy tool for such simple tasks.
Scripting languages support dynamic typing, automatic memory management,
and multiple programming paradigms, and they provide an easy programming
environment. Compared to Java, scripting languages are interpreted
programming that do not require compiling, linking, packaging, and deployment
in order to be executed. Scripts are interpreted and executed on the fly as they
are typed on a console or read from a script file.

Multiple scripting solutions are available for the Android platform based on
different scripting languages. In this chapter, we will explore the R5 version of
the Scripting Layer for Android (SL4A)open source project. SL4A provides a
more generic solution to Android scripting. It allows editing and executing
scripts directly on the Android device itself, as well remotely from a host
machine. It provides access to Android APIs through a set of facades, and relies
on script interpreters for processing the actual script files. SL4A supports most
popular scripting languages.

Scripting Layer for Android

SL4A has three main components:

B Script interpreters: These execute the scripts in a sandbox
either on the actual Android device or the host machine.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B Android RPC client: The client allows the scripts that are
being executed by the interpreters within the sandbox to
communicate with SL4A.

B Facgades: These are exposed to the scripts through the
Android RPC client. They are extensive set of APIs that are
provided for scripts to interact with the Android platform.

In this section, we will explore each of these components in detail.

Script Interpreters

SL4A provides a scripting host and relies on script interpreters for executing the
actual scripts. SL4A provides interpreters for most popular scripting languages,
such as Python, Perl, Ruby, Lua, BeanShell, JavaScript, and Tcl. New scripting

languages can also be incorporated into SL4A dynamically by developing a new
SL4A interpreter for that scripting language.

SL4A runs each script sandboxed in its own interpreter instance. This allows
multiple scripts to run simultaneously without affecting each other.

Android RPC Proxy Client

Scripts that are running within their interpreter instance communicate with the
SL4A application through the Android proxy RPC client. The client establishes a
remote procedure call (RPC) connection to SL4A, and allows scripts to interact
with the Android framework through the use of SL4A fagades. SL4A enforces
per-script security by requiring all scripts to authenticate with the SL4A RPC
server by sending a shared handshake secret prior to gaining access to the
fagcades. This handshake secret is provided to the RPC client through the
AP_HANDSHAKE environment variable.

Android RPC clients are provided for every supported scripting language. When
executing scripts directly on the Android device, these client modules are
already available in the script interpreter’s path. The client modules need to be
present on the host machine interpreter’s path when the scripts are being
executed remotely. The client modules can be obtained from the SL4A web site
at http://code.google.com/p/android-scripting/wiki/AndroidFacadeAPI.

Although their implementations are different, RPC clients provide the same
interface in every scripting language. The RPC client module provides an
Android object to the script environment and encapsulates the RPC internals.
The instance method calls on this object are translated into RPC method calls

downloaded from: lib.ommolkefab.ir

http://code.google.com/p/android-scripting/wiki/AndroidFacadeAPI
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

and executed remotely on the Android device through SL4A. This allows new
APl methods to be introduced without modifying the RPC client modules.

Facades

SL4A exposes the Android framework API to scripts through an extensive set of
facades:

B ActivityResultFacade: Allows scripts to return results when
triggered by the startActivityForResult call. The resulting
intent contains the script result in the SCRIPT_RESULT attribute.

B AndroidFacade: Provides general-purpose Android routines
such as starting an activity, broadcasting an intent, toast
notifications, vibrating the device, queries for user input
through dialogs, sending e-mail, logging, and clipboard
operations.

B ApplicationManagerFacade: Allows managing Android
applications, such as getting a list of launchable activity class
names, starting an activity by class name, getting a list of
currently running activities and services, and forcing an
application package to stop.

B BatteryManagerFacade: Exposes the battery manager, and
allows tracking battery status, health, type, level, voltage,
temperature, and technology.

B BluetoothFacade: Exposes the Bluetooth API, and allows
controlling the Bluetooth connectivity, making the device
discoverable, querying for Bluetooth devices and their
information, connecting to another Bluetooth device, and
exchanging data over Bluetooth. This fagade requires at least
API level 5.

B CameraFacade: Allows taking a picture using the device’s
camera and saving it to a specified path.

B CommonIntentsFacade: Exposes easy access to common
Android intents, such as opening a list of contacts, making a
map search, pointing the browser to a local HTML page,
starting a bar code scanner, starting an activity by an action,
and displaying content to be picked by URI.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

ContactsFacade: Allows access to contacts, such as providing
the contact list for picking a contact, querying the contact list
by attributes, and getting a list of all contacts with their IDs
and attributes.

EventFacade: Allows managing the event queue, such as
clearing the existing events, removing older events, posting
new events, waiting for events, and blocking the script
execution until a specific event. It also allows listing,
registering, and unregistering broadcast signals.

EyesFreeFacade: Available on devices below API level 4. It
allows scripts to speak using the text-to-speech technology. It
is now deprecated by TextToSpeechFacade.

LocationFacade: Exposes the location manager, and allows
collecting location data and querying for the current location
and addresses at the current location.

MediaPlayerFacade: Allows playing media files, controlling the
player during the playback, and getting information about the
media files.

MediaRecorderFacade: Allows recording audio and video into
media files at a specified location and controlling the recorder
while recording.

PhoneFacade: Exposes the phone functionality, and allows
tracking phone state, roaming status, initiating calls, SIM
information, cell location, and reading the phone number and
the voice mail number.

PreferencesFacade: Allows access to shared preferences,
such as getting the list of existing preferences, and reading,
modifying, and adding new preferences.

SensorManagerFacade: Allows tracking the sensor data, such
as light, acceleration, magnetic field, and orientation.

SettingsFacade: Exposes the device settings, and allows
scripts to modify settings such as screen timeout, brightness,
airplane mode, ringer volume, media volume, and vibration.

SignalStrengthFacade: Allows monitoring phone signal
strength. It requires at least API level 7.

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B SmsFacade: Exposes the SMS functionality, and allows scripts
to access the existing SMS messages, mark them as read,
delete them, and send new SMS messages.

B SpeechRecognitionFacade: Exposes the speech recognition
functionality, and allows scripts to recognize user's speech.

B TextToSpeechFacade: Available on devices above API level 4. It
deprecates EyesFreeFacade. It allows scripts to speak using
the text-to-speech technology.

B ToneGeneratorFacade: Generates DTMF tones for given digits.

B UiFacade: Exposes the Android Ul components to scripts
through a variety of dialogs and menus to present content and
to query for user input. It also allows interactive use of HTML
pages.

B WakeLockFacade: Allows scripts to hold wakelocks to keep the
CPU and screen on during script execution.

B WebCamFacade: Allows streaming MJPEG streams from the
device camera to the network. It requires at least API level 8.

B WifiFacade: Exposes the Wi-Fi manager, and allows scripts to
query the status of Wi-Fi connectivity, search for access
points, connect and disconnect to Wi-Fi networks, and hold a
Wi-Fi lock during script execution.

For a full list of methods provided by these fagades, refer to the SL4A API
reference documentation at http://code.google.com/p/android-
scripting/wiki/ApiReference.

Installing SL4A

To download SL4A, navigate to the SL4A home page at
http://code.google.com/p/android-scripting/. The features section on the left
lists the latest versions of SL4A and the interpreters. At the time of this writing,
the latest version of SL4A is R5. Choose sl4a_r5.apk from the featured
downloads to download the Android package to your machine. The older
versions of SL4A can be downloaded through the SL4A download page at
http://code.google.com/p/android-scripting/downloads/list by browsing the
deprecated downloads.

The APK file can then be installed through the ADB. On Windows-based host
machines, open a command prompt window. On Mac OS X- and Linux-based

downloaded from: lib.ommolkefab.ir

http://code.google.com/p/android-scripting/wiki/ApiReference
http://code.google.com/p/android-scripting/wiki/ApiReference
http://code.google.com/p/android-scripting/wiki/ApiReference
http://code.google.com/p/android-scripting/
http://code.google.com/p/android-scripting/downloads/list
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

host machines, open a terminal window. Navigate to the directory where the
sl4a_r5.apk file is downloaded, and enter adb install sl4a r5.apk to deploy it
to the emulator or the device, as shown in Figure 9-1.

] C\windows\system32\cmd .exe

:\Userssoncinar’\Dounloads>adb install sl4a_»rS.apk
95 HKB/s (877654 hytes in 4.374s)

prkg: sdataslocals/tmprsslda_»5 . apk
uccess

:\UserssoncinarsDownloads >

Figure 9-1. Installing SL4A using the ADB from command line

As you may have noticed, the SL4A Android package is not too big—only
857KB. The SL4A package includes only the scripting host and the facades.
Other than the ones provided by the Android platform, the interpreters are not
included, since SL4A does not know your preferred scripting language at this
point. On demand, SL4A downloads and installs the interpreters from the SL4A
web site.

Since the interpreters are not downloaded from the Android Market, the “Allow
installation of non-Market apps” option should be selected in the device settings
in order to allow SL4A to properly deploy the interpreters. On Android devices
running Gingerbread and below, this setting can be found by pressing Menu key
and choosing Settings » Applications. On newer devices, it can be found by
pressing Menu key and choosing Settings » Security, as shown in Figure 9-2.

@ oal B 823

Unknown sources ﬂ

Allow installation of non-Market applications

Quick launch

Set keyboard shortcuts to launch applications

Manage applications

Manage and remove installed applications

Running services

View and control currently running services

Figure 9-2. Setting a device to allow installation of non-Market applications

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

TIP: You do not need to set the device to allow installation of non-Market applications
if the interpreter is deployed manually using the ADB. The installation of interpreters
happens in two phases. First, SL4A installs the interpreter installer Android package
to the device, and then the interpreter installer downloads a set of compressed ZIP
archives containing the actual interpreter depending on the target machine
architecture. You can download the interpreter installers from the SL4A web site
under the featured downloads section, and manually install them using the ADB.

Next, start the SL4A application. The first time you start SL4A, it will ask your
permission to collect usage statistics, as shown in Figure 9-3. You can decline
this request; however, accepting usage tracking is strongly recommended.
Collecting usage statistics allows the SL4A project to align its road map to areas
and features that are frequently used by SL4A users.

& al B 9:00

Usage Tracking
Allow collection of anonymous usage information?

This can be changed later under preferences.

Y R—s—

Figure 9-3. SL4A asking permission for collecting usage statistics

The SL4A Ul provides a set of menus for working with the application. Press the
Menu Key to expand the menu bar, as shown in Figure 9-4.

©O 0 Q o O o

Add View Search Preferences Refresh Help

Figure 9-4. SL4A application menu bar

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Adding Interpreters

Before you can start writing scripts, you need to install a script interpreter. From
the application menu bar, select View » Interpreters. SL4A will show the list of
installed script interpreters. Only the Shell interpreter comes bundled with the
SL4A installation.This interpreter provides console access to the Android device.
Using the Shell interpreter, you can navigate through the file system and
execute the native applications.

From the application menu bar, select Add. SL4A will present a list of installable
interpreters, as shown in Figure 9-5.

ul B 823
[nlrnrnral‘arz:
' Add
Perl 5.10.1

Rhino 1.7R2

Figure 9-5. SL4A installable interpreters

From the list of interpreters, choose the one that you are planning to use for
scripting. In this chapter, to demonstrate the capabilities of SL4A, we will use
the Python programming language. Choose the Python interpreter, and SL4A
will download the Python interpreter installer. From the Android notification bar,
expand the download icon to see the status, as shown in Figure 9-6.

March 18, 2012 ol B 935
Android
Notifications

4 PythonForAndroid_r5.apk
Download complete 9:35 PM

Figure 9-6. Python interpreter installer download notification

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When the download is complete, click the Install button to start installing the
Android package, as shown in Figure 9-7.

% all B 1001

e Python for Android

Do you want to install this application?

Allow this application to:

+ Storage

modify/delete SD card contents

I Install I Cancel I

Figure 9-7. Installing Python for Android

The Android package contains only the interpreter installer, not the actual script
interpreter. After the package is installed, click the Open button to launch the
interpreter installer. Then click the Install button to deploy the actual interpreter
application, as shown in Figure 9-8.

= ul @ 10:08
Python for Android

Install

Latest Versions, interpreter: 16, extras: 14, scripts: 13
Installed Versions, interpreter: ND, extras: ND, scripts: ND

Import Modules

Browse Modules

Uninstall Module

Figure 9-8. Installing the interpreter application

The installer will download the Python interpreter based on the device
architecture, and then deploy it on the device. In order to efficiently use the

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

device memory, the resource part of the SL4A interpreter is installed in the
external storage, and the actual binaries go into the device’s internal memory. If
you are running the SL4A on an emulator, make sure to follow the configuration
settings provided in Chapter 5. If the installation fails, check to make sure that
you have enough space in both storage locations.

After a successful installation, the Install button changes to an Uninstall button.
Go back to the SL4A application, and you will see Python 2.6.2 added to the list
of available interpreters.

Executing Scripts

SL4A supports multiple ways for developing and executing scripts. In this
section, we will review these methods in detail.

Executing Scripts Locally on a Device

With the necessary interpreter for your favorite scripting language installed,
SL4A is ready to execute scripts directly on the device. SL4A provides two
options for developing and running scripts locally: the interactive console mode
and the script editor.

Using the Interactive Console

The interactive console mode is launched when you select an interpreter from
the list of available interpreters. This mode occupies the entire screen and
provides console access to the actual script interpreter, as shown in Figure 9-9.
Interpreters run in landscape mode to better use the available display area. If
you are running SL4A on the emulator, you can use the key combination
Ctrl+F11, or key 7 on numeric keypad to rotate the emulator display to
landscape mode. Using the device’s keyboard, you can start typing commands,
and they will be executed interactively.

3 o _
= ol B 10:34
dlopen 1ibpython2 . 6.50
Python 2.6.2 (r262:71600, Mar 20 2011, 16:54:21)
[GCC 4.4.3] on Limuox-armvSte]l
Type “help™, “copyright®, "credits® or "license” for more information,
w3

Figure 9-9. Python interpreter running interactively on the virtual console

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The advantage of interactive mode is that you can progressively execute script
commands without having a fully developed script in place. It is a great tool for
experimenting with the APls.

Using the Script Editor

In addition to the interactive console mode, SL4A provides a script editor for
editing and storing scripts. From interactive console mode, using the Back key,
go back to the Scripts view, and choose Add from the application menu bar.
SL4A will present a list of available script types based on the installed
interpreters, as shown in Figure 9-10.

= ol & 10:35
Add

HTML and JavaScript
!['Python 2.6.2

Shell

Figure 9-10. Launching the Python script editor

Choose Python 2.6.2 from the list to launch the Python script editor, as shown in
Figure 9-11. The top pane of the editor allows you to name the script file. The
bottom pane is the script editor. The script editor area will be populated
automatically with boilerplate script code based on the selected scripting
language.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

AB % wl B 10:48

examplel.py

import android

droid = android.Android()

Figure 9-11. Python script editor

Using the editor, you can develop and test your scripts, store them on your
device, and share them through e-mail. These tasks are accessible through the
script editor application menu bar, as shown in Figure 9-12.

r » ©®© 6 e ¥

Save & Exit Save & Run Preferences API Browser Help Share

Figure 9-12. Script editor application menu bar

The API browser is one of the most powerful features provided by the script
editor. As shown in Figure 9-13, it allows you to browse through the methods
provided through the SL4A fagades to streamline script development.

= ol ® 11:23

addContextMenultem
addOptionsMenultem
batteryCheckPresent
batteryGetHealth
batteryGetLevel
batteryGetPlugType
batteryGetStatus
batteryGetTechnology
batteryGetTemperature

Figure 9-13. Script editor APl browser listing available methods

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Executing Scripts Remotely

SL4A is not only a device-based scripting environment. It also supports remote
execution of scripts that are developed on a host machine. This allows you to
take advantage of integrated development environments while still executing
your scripts on the Android device.

Starting Scripts Through the ADB

Scripts that are developed on a host machine can be copied over to the Android
device, and then executed directly through the ADB on the command line. This
allows automating the deployment and execution of scripts.

To copy scripts to the SD card on an Android device, on Windows-based host
machines, open a command prompt window, or on Mac OS X- and Linux-based
host machines, open a terminal window, and enter the following ADB command:

adb push script.py /sdcard/sl4a/scripts
This places the script.py file into SL4A’s scripts directory.

After the scripts are copied onto the device, you can execute them in the
foreground or the background, as needed. To execute the script in the
background, issue the following ADB command at the command prompt from
the host machine, all in one line:

adb shell am start -a
com.googlecode.android_scripting.action.LAUNCH_BACKGROUND_SCRIPT -n
com.googlecode.android_scripting/.activity.ScriptinglayerServicelauncher -e
com.googlecode.android_scripting.extra.SCRIPT_PATH
/sdcard/sl4a/scripts/script.py

The Activity Manager (am) launches the SL4A application with the
LAUNCH_BACKGROUND_SCRIPT intent and with the path to the script.

To execute the script in the foreground, the intent changes, and the ADB
command becomes the following, all in one line:

adb shell am start -a
com.googlecode.android_scripting.action.LAUNCH_FOREGROUND_SCRIPT -n
com.googlecode.android_scripting/.activity.ScriptinglayerServicelauncher -e
com.googlecode.android_scripting.extra.SCRIPT_PATH
/sdcard/sl4a/scripts/script.py

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using Remote Procedure Call

Scripts can be hosted and executed on the host machine, using the script
interpreter running physically on the host machine. This allows scripts to benefit
from the high CPU power of the host machine and its extensive debugging
environment, while still being able to do Android-specific operations remotely.
Android-related API calls are executed through RPC on the Android device.

By default, SL4A does not listen for remote RPC connections. The SL4A RPC
server needs to be started first in order to allow scripts running on the host
machine to communicate with SL4A. To start the server, choose View »
Interpreters from the application menu bar to see the interpreters list. Then select
Start Server from the application menu bar, as shown in Figure 9-14.

+ v © 2

Add Start Server Praferences Help
Figure 9-14. Start Server menu item in the Interpreters view
Next, SL4A will ask you to choose the type of server you would like to launch, as
shown in Figure 9-15. SL4A supports two server types:

B Private: This server listens on a loopback network adapter,
and is reachable only from within the device or from a host
machine attached to the device through USB.

B Public: This server listens on either Wi-Fi or a data network
adapter, and is reachable through the public network.

When you’re executing scripts from only one host machine that is physically
attached to the Android device, using a private server is recommended.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

% all @ 11:56

Public

Private

Figure 9-15. Selecting a script server type

SL4A will start the server, and place its icon on the notification bar to indicate
that a script server is active. If more than one server is running on the device,
SL4A will show the number of active servers next to the icon within a circle, as
shown in Figure 9-16.

B £ wl B 1213

= Number of
D She“ Active Servers

Figure 9-16. SL4A active servers shown on the notification bar

You can select the SL4A icon and drag it to expand the notification. Tapping the
notification will take you to the Script Monitor activity, where SL4A lists the
running servers, as shown in Figure 9-17. The server list provides the address,
port number, interpreter process ID, and duration for all active servers. You can
use the address and port number to remotely connect to the servers.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P] % wl @ 1215

Server 00:00
10.0.2.15:51455 PID -1
Server 00:00
127.0.0.1:55582 PID -1

Figure 9-17. Script Monitor activity listing the active servers

Using an Attached Device

To remotely execute scripts from a host machine that is directly connected to
the Android device through a USB cable, start a private server. Expand the
notification icon to launch Script Monitor to find the port number. The port is
opened on the loopback device that is only reachable from the device itself. In
order to connect to this port from the host machine, it needs to be forwarded
through the ADB.

To set up port forwarding, on Windows-based host machines, open a command
prompt window, or on Mac OS X- and Linux-based host machines, open a
terminal window, and issue the following command (replace <server port> with
the server port number):

adb forward tcp:9999 tcp:<server port>

The ADB starts listening on TCP port 9999 on the host machine, and forwards
the communication to the script server that is running on the device.

The SL4A RPC module that is running on the host machine needs to know the
script server port number in order to communicate with the server. Supply the
port number while initiating the Android object in your script:

Connect to port 9999
droid = android.Android((‘localhost’, 9999))

If you prefer not to change your script files, you can inject the port number
through the environment variables. The SL4A RPC module reads the AP_HOST
and AP_PORT environment variables if the destination host and the port number
are not supplied implicitly. These environment variables can be set on the
command line or through the system environment variables list prior to starting
the interpreter.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using a Network Device

To remotely execute scripts from a host machine that can reach the Android
device through the network, start a public server. Expand the notification icon to
launch Script Monitor to find the public IP address and the port number. The
SL4A RPC module that is running on the host machine needs to know the server
port number in order to communicate with it. Supply the IP address and the port
number while initiating the Android object in your script:

Connect to IP adress 10.0.2.15 and port number 47176
droid = android.Android((’10.0.2.15°, 47176))

If you prefer not to change your script files, the port number can be injected
through the environment variables, as described in the preceding section.

Adding a User Interface

Depending on their functionality, scripts may sometimes need to interact with
the user. Although scripting languages support text-based input and output on
the console, mobile users are much more familiar with graphical and touch-
based Ul. SL4A provides a set of Ul fagades to allow developers to use the
Android GUI from their scripts. SL4A provides dialog-based, web-based, and
full-screen native Ul options. In this section, we will implement a simple
calculator application using each of these Ul types to demonstrate how these
facades can be employed from scripts.

Dialog-Based Uls

The easiest way of interacting with the user is through dialogs and menus. The
Ul fagcade comes with a set of predefined dialogs for most common tasks. Our
first version of the calculator application will use this fagade with a script written
in the Python scripting language. We start by initializing the SL4A Android RPC
client.

NOTE: If you are new to Python, make sure that you are copying the indention of the
code as shown. Python relies on code indention to define the boundaries of the code

sections.
#
SL4A Dialog based UI
#

@author Onur Cinar

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#
import android

Initialize the SL4A Android RCP Client
droid = android.Android()

Getting the Two Numbers

We would like to have our script execute as long as the user wants to make
calculations, so we enclose it in an infinite loop:

Title of our dialogs
title = "Calculator”

We will calculate recursively
while True:

The script first asks for the first number through an input dialog:

Get the first number from the user
result = droid.dialogGetInput(title, "Enter the first number:").result

Check if user answered it
if result is None:
break

Convert the text input to an integer

first = int(result)
As you can see in the example, it is always good practice to check the result of
the dialog, since user may cancel the dialog without providing any input.

When the script is executed, the input dialog is displayed, as shown in Figure
9-18. The application loops as long as the user provides a number, and stops
when the user selects the Cancel button.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Calculator

Enter the first number:

10

Ok l‘ Cancel

Figure 9-18. Dialog for the first number

The script then asks for the second number using these methods:

Get the second number from the user
result = droid.dialogGetInput(title, "Enter the second number:").result

Check if user answered it
if result is None:
break

Convert the text input to an integer
second = int(result)

Getting the Operation

With both numbers now available, the script next asks for the operation using a
list dialog:
List of possible operations

operations = ["+", RETTRRVIE

Open a generic dialog
droid.dialogCreateInput(title, "Select operation")

Set the items to make it a list
droid.dialogSetItems(operations)

Make the dialog visible
droid.dialogShow()

Get the user's response
result = droid.dialogGetResponse().result

Check if user answered it

if (result is None) or (result.has_key("canceled")):
break

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Get the index of selected operation
index = result["item"]

Find the operation at that index
operation = operations[index]

The dialogGetInput method that we use here to obtain the numbers is a
convenience method for getting the user’s input. The Ul facade provides
multiple methods to shape the dialogs. To present the list of available options,
we are starting with a generic input dialog box created through the
dialogCreateInput method call, and then we supply the list of items through the
dialogSetItems method call to generate a list dialog. After customizing the
dialog, we call the dialogShow method to make it visible. The dialogGetResponse
method blocks until the user responds to the dialog, and returns the response.
When the script is executed, the operations list dialog appears, as shown in
Figure 9-19.

Calculator

+

Figure 9-19. Dialog showing calculator operations

Based on the user’s selection, the script does the necessary operations using
the given two numbers.

Do the calculation
solution = {

"+" ¢ first + second,
"-" . first - second,
"*" . first * second,
"/" : first / second
}operation]

Show the solution and ask if user wants

to do more calculations

droid.dialogCreateAlert(title, "The solution is %d. New calculation?" %
solution)

Set the answer options

droid.dialogSetPositiveButtonText("Yes")
droid.dialogSetNegativeButtonText("No")

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Show dialog
droid.dialogShow()

Get the user's response
result = droid.dialogGetResponse().result

Check if user answered it
if (result is None) or (result.has_key("canceled")):
break

If user answer saying no
option = result["which"]

if option == "negative":
break
Showing the Result

The result is presented to the user in the form of an alert dialog, with Yes and No
buttons at the bottom, as shown in Figure 9-20. The user can choose either of
these buttons to control the flow of the script. The script first checks if the
dialog was dismissed or canceled. Otherwise, the result indicates the user’s
response as positive or negative, depending on the button clicked. If the user
wants to continue with calculations, the script repeats the same flow.

Calculator

The solution is 30. New calculation?

Yes || No

Figure 9-20. Dialog showing the calculation result

Before terminating, the script shows a toast using the makeToast method call:

Terminating script
droid.makeToast("Thank you")

The closing “Thank you” toast message is shown in Figure 9-21.
Thank you

Figure 9-21. Toast message on script termination

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Dialog-based interfaces require a minimal amount of programming. However,
from the user’s perspective, it’s more difficult to input information and navigate
in this Ul than in native Android applications. SL4A does not provide any
functionality to style these dialogs for customizing the application’s look and
feel. Dialog-based interfaces are the best option for quick automation tasks that
do not require too much user interaction.

Web-Based Uls

SL4A provides web-based Ul support as an alternative to dialog-based
interfaces. Web-based Uls run within an embedded web browser, and can be
styled using the CSS support already provided by the browser. Similar to native
Android applications, with web-based Uls, multiple Ul components can share
the same screen. From the user’s perspective, the navigation is much easier
than with dialog-based interfaces.

Using a web-based interface does not mean that all scripts must be written
using JavaScript and HTML. SL4A provides an extensive event queue
mechanism that makes it possible for developers to mix and match the
JavaScript-based web interface with any scripting language acting as a back
end for the application. This architecture is very similar to the way web-based
applications are developed these days. For example, you can develop your
Android application using a JavaScript/HTML-based Ul and Ruby-based back-
end code, using SL4A.

Ul Layout Through HTML and CSS

In this section, we will redo the calculator example using the web-based Ul. The
entire Ul will be implemented using generic HTML code. Listing 9-1 shows the
source code of the webview.html Ul file.

Listing 9-1. The webview.html File

<html>
<head>
<title>Calculator</title>

<style type="text/css">

label {
display: block;

#solution {
margin-top: 0.6em;

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

font-size: 2em;

}
</style>
</head>
<body>
<form onsubmit="return calculate();">

<fieldset>
<legend>Calculator</legend>

<label for="first">First number:</label>
<input type="number" id="first" />

<label for"second">Second number:</label>
<input type="number" id="second" />

<label for="operation">Operation:</label>
<select id="operation">

<option value="+">+</option>

<option value="-">-</option>

<option value="*">*</option>

<option value="/">/</option>
</select>

<input type="submit" value="Calculate" />
<div id="solution"></div>
</fieldset>

</form>

As you may have noticed, at the top of the code, we are styling the Ul using
CSS. Each HTML element that the application will be accessing or updating has
a unique ID.

Manipulating the Ul Through JavaScript

The dynamic portion of the Ul is implemented through JavaScript. SL4A
provides an Android RPC proxy client for JavaScript as well. This RPC client
allows the web-based Ul to communicate with SL4A and the platform.

<script type="text/javascript">
// Initialize the RPC client
var droid = new Android();

// Get elements by id

var first = document.getElementById("first");

var second = document.getElementById("second");

var operation = document.getElementById("operation");
var solution = document.getElementById("solution");

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The JavaScript code then registers a callback listener to handle events coming
from the SL4A event queue. It registers for only the solution event that will be
generated by the Python code:

// Register a callback listener for solution
droid.registerCallback("solution", function(data) {
solution.innerHTML = data.data;

B;

The calculate function will be triggered when the user chooses the Calculate
button. It handles delivering the request to the Python code.

// Calculate function
function calculate() {
// Put parameters into a dictionary
var request = [
parselnt(first.value),
parseInt(second.value),
operation.value

1.30in();

// Post request as an event
droid.eventPost("calculate", request);
return false;

</script>

</body>
</html>

Application Logic Using Python

The back end of the application is implemented using the Python scripting
language as webview.py. Similar to the dialog-based interface example, the
Python code starts by initializing the Android RPC proxy client.

#

SL4A WebView based UI
#

@author Onur Cinar

#

import android

Initialize the SL4A Android RCP Client
droid = android.Android()

The JavaScript/HTML code is loaded by using the webViewShow method call:

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Show the HTML page
droid.webViewShow("file:///sdcard/sl4a/scripts/webview.html")

Prior to making this method call, the HTML file should be available on the
device. Using the ADB, push the file to the Android device.

adb push webview.html /sdcard/sl4a/scripts/

NOTE: Due to a known bug in the Android emulator, you can run the web-based Ul
example on only an Android device. The Android emulator is not supported.

In this example, the HTML file is located in the SL4A default script directory
/sdcard/sl4a/scripts; however, the HTML file can be located anywhere on the
device. SL4A starts an embedded web browser and loads the web-based Ul, as
shown in Figure 9-22.

—Calculator
First number:

Second number:

Operation:

+ d Calculate

Figure 9-22. Calculator interface within the embedded browser

As seen in the JavaScript code, when the user clicks the Calculate button, the
web portion of the application posts a calculate event with the numbers and
the operation. The Python code receives this event through the SL4A event
queue:

We will calculate recursively
while True:
Wait for calculate event
result = droid.eventWaitFor("calculate").result

Make sure that event has data
if result is not None:
Data comes as a comma separated list of values

request = result["data"].split(",

Extract parameters from request array
first = int(request[0])

second = int(request[1])

operation = request[2]

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Calculate solution
solution = {

nwon

+" : first + second,

"-" : first - second,

"*" . first * second,

"/" . first / second
}operation]

The script can run on the device or the host machine. The SL4A RPC client
allows the script to access the main SL4A event queue to receive this request.
Upon receiving the request, it first extracts the parameters and does the
requested calculation. The solution of the calculation is also sent to the web-
based interface through the SL4A event queue:

Post the solution to event queue
droid.eventPost("solution", str(solution))

The JavaScript code that is already registered to handle the solution event
receives the solution and updates the Ul, as shown in Figure 9-23.
— Calculator
First number:
(10
Second number:
{20
Operation:

+ 4 | [Calculate

30

Figure 9-23. Solution shown in the web interface

Compared to the dialog-based Uls, web-based Uls are much more flexible.
Since the Android RPC proxy client is also accessible through the web code, the
entire application can also be developed in JavaScript.

Full-Screen Ul

The full-screen Ul allows XML-based Android layout files to be used in scripts.
In this section, we will redo calculator example using the full-screen Ul.

The script starts by initializing the Android RPC proxy client, and then defines
the Android layout XML through a string variable.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#

SL4A Full screen UI

#

@author Onur Cinar

#
import a

ndroid

Initialize the SL4A Android RCP Client
droid = android.Android()

XML la
layout =

yout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android

android:layout_width="fill parent"
android:layout_height="fill parent"
android:orientation="vertical"
android:background="#ffffffff">

<Tex

<Edi

<Tex

<Edi

<Tex

<Spi

downloaded from: lib.ommolkefab.ir

tView

android:
android:
android:

tText

android:
android:
android:
android:
android:

tView

android:
android:
android:

tText
android

tView

android:
android:
android:

nner

android:
:layout_width="fill_parent"

android

layout_width="fill parent"
layout_height="wrap_content"
text="First number:" />

id="@+id/first"
layout_width="fill parent"
layout_height="wrap_content"
numeric="integer"
inputType="number" />

layout_width="fill parent"
layout_height="wrap_content"
text="Second number:" />

:id="@+id/second"
android:
android:
android:
android:

layout_width="fill_parent"
layout_height="wrap_content"
numeric="integer"
inputType="numbexr" />

layout_width="fill parent"
layout_height="wrap_content"
text="Operation:" />

id="@+id/operation”

.com/apk/res/android"

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

android:layout_height="wrap_content" />

<Button
android:id="@+id/calculate”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Calculate"
/>

<TextView
android:id="@+id/solution"
android:layout_width="fill_parent"
android:layout_height="wrap_content" />
</LinearlLayout>

nnn

By default, SL4A renders the layout on a transparent background. This example
defines a background with a solid color. Since the strings cannot be provided by
the string resources, the layout file contains the hard-coded strings. Every Ul
component has an ID for the script to use.

Show layout
droid.fullShow(layout)

The script calls the fullShow method to display the layout, as shown in Figure
9-24.

Calculate

Figure 9-24. Full-screen Ul displaying Android layout XML
The spinner items are set to the list of available operations using the
fullSetList method.

List of possible operations

operations = ["+, , R

Set operation spinner items
droid.fullSetList("operation", operations)

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The script waits for the click event, and then checks the ID of the clicked
component to make sure that it is the Calculate button.

We will calculate recursively
while True:
Wait for click event
event = droid.eventWaitFor("click").result

Check if it is the calculate button
if event["data"]["id"] == "calculate":

The script first finds the Ul components using the fullQueryDetail method, and
then gets the values for the first and second numbers. If the numbers are not
supplied, the script does not do the calculation.

Get the first number
field = droid.fullQueryDetail("first").result["text"]

Check if field is empty
if field == "":
continue

Convert field to integer
first = int(field)

Get the first number
field = droid.fullQueryDetail("second").result["text"]

Check if field is empty
if field == "":
continue

Convert field to integer
second = int(field)

The script calls the fullQueryDetail method to find the operations spinner, and
then uses the selectedItemPosition attribute to determine the selected
operation.

Get the operation index
index =
int(droid.fullQueryDetail("operation").result["selectedItemPosition"])

Get operation
operation = operations[index]

Do the calculation
solution = {

+" ¢ first + second,
"-" ¢ first - second,

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"*" . first * second,
"/" . first / second
}operation]

The result is then displayed using the fullSetPropery method to set the text
attribute of the solution text view.

Show solution
droid.fullSetProperty("solution", "text", "Solution is %d" % solution)

Figure 9-25 shows an example of the result display. Compared to the dialog-
and web-based alternatives, the full-screen Ul is the only one that delivers a

platform look and feel. It allows scripts to benefit from all existing Android Ul

components.

10

Calculate

Figure 9-25. Updated display showing the result

Packaging Scripts As APKs

SL4A can also be used to package a script as an installable Android package.
This allows distributing scripts as ordinary Android applications. The installable
Android package contains only the script and resources; the script interpreter
should still be installed separately on the target device. In this section, we will go
through the steps to set up such an Android project, integrating the script files
and deploying it to the Android device.

Downloading the Project Template

To facilitate packaging the script as an installable Android package, the SL4A
project web site provides a template Android project. Point your browser to
http://android-

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

scripting.googlecode.com/hg/android/script_for android_template.zip and
download the template project as a compressed ZIP archive file.

Before importing the template project into Eclipse, you need to make sure that
Android API level 4 is installed. If not, use the Android SDK Manager to
download it, as described in Chapter 5. As an alternative, you can change the
project’s build target based on your target platform’s API level. To do so, right-
click the project and choose Properties to launch the Properties dialog. Choose
Android from the list on the left, and change the project build target to an API
level greater than or equal to 4.

Now we are ready to import the template project into Eclipse. Open Eclipse and
choose File » Import... from the top menu bar to launch the Import wizard, as
shown in Figure 9-26.

€moe ___________________ HE=H

Select
Create new projects from an archive file or directory. | ?\A [i]
i
[+]
@] < Back Next > Finish Cancel

Figure 9-26. Eclipse project Import wizard

From the list of sources, select Existing Projects into Workspace, and then click
the Next button. Eclipse will ask for the location of the project files. Select the
Select archive file radio button, and using the Browse button, point it to the
script_for_android_template.zip file that you downloaded, as shown in Figure
9-27. Then click the Finish button to start importing the project.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[r—— M= E3
Import Projects .
Select a directory to search for existing Eclipse projects. i ;'
-

' Select root directory: | Browse... |

@ Select archive file: |C:\Users\oncinar\Downloads\script_for_an< =~ Browse... |
Projects:
- [¥] SeriptForAndroid Template (/) Select All I

Deselect All

Refresh |

[V Copy projects into workspace
Working sets
[~ Add project to working sets

Working sets: I E' Select... |

@ < Back Next> [[Fnish Cancel

Figure 9-27. Importing a project from a ZIP archive file

Configuring the Project

Eclipse will import the template project into your workspace under the name
ScriptForAndroidTemplate. To rename the project, right-click its name, and then
choose Refactor » Rename from the context menu to launch the Rename Java
Project wizard, as shown in Figure 9-28.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

!ﬂ Rename Java Project _.I
New name:
V| Update references

Preview > | 0K Cancel

Figure 9-28. Renaming the template project

In addition to renaming the project, we should also change the package name to
prevent any naming conflicts when the application is deployed. We need to
rename the package in the AndroidManifest.xml file prior to renaming the Java
package itself. Open the AndroidManifest.xml file and change the Android
package name accordingly.

<?xml version="1.0" encoding="utf-8"?>
<manifest
package="com.apress.chapter9"”
android:versionCode="1"
android:versionName="1.0"
xmlns:android="http://schemas.android.com/apk/res/android">

Next, to rename the Java package, right-click the package name
com.dummy . fooforandroid and choose Refactor » Rename from the context menu
to launch the Rename Package wizard. In the New name field, enter the new
package name com.apress.chapter9, as shown in Figure 9-29.

downloaded from: lib.ommolkefab.ir

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[Update textual occumrences in comments and strings (forces preview)
" Update fully qualified names in non-Java text files (forces preview)

File name patteins: I‘

The patteins are separated by commas [* = any string. ? = anp character)

Preview > || OK | Cancel

Figure 9-29. Renaming the package

Make sure that the Update references option is checked, and then click the
Preview button. Eclipse will rename the package, and then it will update all

references accordingly. Before making any changes to the files, Eclipse will
present the required changes, as shown in Figure 9-30. Upon verifying the

changes, click the OK button to apply them to the project files.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Scnptk:lmly java - Script ForAndroid Template/src/com/dummy/fooforandroid
: - ScriptService java - Script ForAndroid Template /src/com/dummy foof orandroid
.'«2) Rename package 'com.dummy fooforandroid’ to 'com.apress. chapterd'

B V] %5 Android Package Rename

. [J] Script java

|0n'g‘nd Source | Refactored Source !
| |import android .content Context ; port com_d fooforandroid.R: -
import android content res. Resources:
import android.content.Context ; o
public class Script { import android.content res.Resources; |
public final static int ID = R.raw.script: public class Script {
public static String sFileName; public final static int ID = R.raw.script:
public static String getFileName({Context contes public static String sFileName:
if (sFileName == null) {
Resources resources = context .getResource public static String getFileName(Context ¢
String name = resources get Text(1D).toString if (sFileName == null) {
sFleName = name.substring(name.last indext Resources resources = context .getRes
} String name = resources. gelTeﬂ{ID) _I
s s o il B - AGla Mo - e— bl
L] | D)|

B [k][Gmea]

Figure 9-30. Changes required to rename the package

Although the template project comes with everything preconfigured, for security
reasons, except for the Internet access permission, all permission requests in
the AndroidManifest.xml file are intentionally commented out. Uncomment the
permissions that are required to execute your script properly.

Incorporating the Script File

Using the Package Explorer view, expand the res directory and then the raw
directory to show the raw project resources. The template project keeps the
actual script file as a raw project resource.

Although the script file that is provided with the template project is a Python
script, the template project can contain virtually any type of script that is
supported by SL4A. For example, if you are using the Ruby scripting language,

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

remove the script.py reference and insert your script as script.rb into the raw
resources. The point here is that the script file should be named as script with
the proper file extension for the scripting language used. If you prefer to rename
it differently, you will need to modify the ID static field in the Script class
accordingly:

package com.apress.chapter9;
public class Script {

public final static int ID = R.raw.script;

}

This script file is used as the main entry point by the SL4A engine. The Android
application may contain multiple script files acting as modules or dependencies
for the main script file. These additional script files should also be added into the
raw resources. When the application starts, it extracts all script files in the raw
resources into the files directory, prior to executing the script file.

Deploying and Running the Application

The application can then be deployed and run like an ordinary Android
application, as discussed in Chapter 5. When it first starts, SL4A looks for a
script interpreter on the platform based on the scripting language used, and
automatically installs one if it is not available. This still requires the Android
device to be configured to allow installing non-Market applications.

At the time of this writing, SL4A does not directly support bundling interpreters
with stand-alone Android applications. Although it is not officially supported, the
template application can be modified to include the necessary interpreters by
combining the necessary packages from the SL4A source code.

Summary

This chapter provided a quick introduction to Android scripting using the SL4A
open source library. We looked at the architecture of the SL4A application, and
explored the interpreters and fagades provided by SL4A. We also explored the
different methods of executing scripts on Android devices, both locally and
remotely. We then covered the Ul options provided by the SL4A and compared
their use with a simple calculator example. Finally, we demonstrated how scripts
can be packaged as a stand-alone application that can be distributed as an
ordinary Android application.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Chapter

Project: Movie Player
Using HTML and
JavaScript

In this chapter, we will reimplement the movie player application that we
developed in Chapter 5 in HTML and JavaScript by using the SL4A framework.
Since the SL4A framework does not provide all of the functionality that is
needed for the movie player application, we will go one step further and
integrate a new custom fagade into the SL4A framework. We will package the
resulting application as a stand-alone Android script application that can be
distributed and deployed in the same way as an ordinary Android application.

Getting the SL4A Source Code

Our movie player application requires access to the media store content
provider in order to query for a list of movie files on the device. None of the
existing SL4A version R5 fagades provide access to the media store. We will
develop a new facade as a part of this example to enable the script application
to fetch the necessary information from the platform. The SL4A framework
currently does not support dynamic discovery of new facades, and it is limited
to using only the built-in fagades.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

To add a new fagade, the SL4A framework source code needs to be slightly
modified. In order to achieve that, in this section, we will check out the SL4A
source code from the SL4A source repository.

Preparing the Workspace

SL4A R5 source code requires Android API level 3, 4, 7, and 8 platform SDKs to
be installed on the host machine. As described in Chapter 5, choose Window »
Android SDK Manager from the top menu bar to launch the SDK Manager and
download these SDKs to the host machine.

SL4A projects rely on the ANDROID_SDK classpath variable to be predefined in
Eclipse to compile. To define this variable, open the Eclipse Preferences dialog
as described in earlier chapters. Using the search box, filter the list of
preferences to Classpath Variables. Then click the New button to launch the
New Variable Entry dialog. Define the new variable entry as follows and shown in

Figure 10-1:

B Name: Set the name to ANDROID_SDK.

B Path: The variable should point to the location of the Android
SDK on the host machine. Using the Folder button on the
right, choose the Android SDK directory.

= Preferences - |C| Ill
hrpe filter text Classpath Variables & o - w
“ id Adasspﬂhvmablecanbeadtbdtoaprqedsdasspﬂh it can be used to define
. Androi the location of a JAR file that isnt part of the workspace. Non modifiable classpath
(- Ant variables are set intemally (for example, JRE_LIB, JRE_SRC, and JRE_SRCROOT
- C/C+s depend on the JRE setting).
B Help Defined classpath variables:
g: ﬁ:“’”"‘“e % ECLIPSE_HOME (non modifiable) - C-\eclipse New.. |
T & % JRE_LIB (non modifiable. deprecated) - C:\Program Files\Java\ire -
' & dpisbyg (% JRE_SRC (non modifiable. deprecated) - (empty) Ed. |
|| [erevmesss | | (2 JRE_SRCROOT (non modifiable. deprecated) - (empty) R I
Vses Librarias .%JUN[T_H)ME (non modifiable, deprecated) - C:\eclipse\plugins\o
. : &"le -.(AUIRIET W D WORET Fm e e o Bl B W o o e s, o el A% A T s e e
| & Compiler & New Variable Entry [x]
& Debug ;
Edor Name: |ANDROID SDK
-Installed JF Path: [C:/Users/oncinar/android-sdks File... | Folder... l
- JUnit
- Properties |
- Plug-in Develo|
[:}.. Mm (\:} oK | Cancel]
G- Team
- XML

Figure 10-1. Adding the ANDROID_SDK classpath variable for SL4A source code

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Setting the Java Compiler Compliance Level

SL4A source code is based on Java source version 1.6. If you have installed
JDK version 6, as recommended in Chapter 5, no additional configuration is
needed. Otherwise, the workspace compiler compliance level needs to be
changed to 1.6 for the SL4A source code to compile. To change the compliance
level, open the Eclipse Preferences dialog, and using the search box, filter the
list of preferences to Compiler. Select the Java Compiler preferences, and
change the compliance level to 1.6, as shown in Figure 10-2.

[Compiler Compiler Ly - -
& Java I
EH e
*.. Building ~JDK Compliance -
- Bmors/Wamings Compiler compliance level: 1.6 -
i~ Javadoc [¥ Use default compliance settings
- Task Tags | | =

Figure 10-2. Changing the workspace Java compiler compliance level

Installing Mercurial

SL4A source code is served as a Mercurial source repository through the
Google Code web site. To check out the SL4A source code to a host machine,
Mercurial and the Mercurial Eclipse plug-in need to be installed. On Mac OS X
and Linux platforms, Mercurial binary needs to be installed prior to downloading
the Mercurial Eclipse plug-in. In this section, we will go through the process of
installing Mercurial binary on these platforms.

Installing Mecurial on Mac 0S X

Using your web browser, navigate to the Mercurial download site at
http://mercurial.selenic.com to download the binary for Mac OS X. As shown
in Figure 10-3, the Mercurial web site detects your operating system
automatically, and provides a Download button for the Mercurial installer.

downloaded from: lib.ommolkefab.ir

http://mercurial.selenic.com
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

eno Mercurial SCM
b % hutp://mercurial.selenic.com/ [mercurial)

OO guide download extensions news/wiki sponsors -

Work easier P —
Mercurial 2.1.2
Mercurial 2.1.2 for Mac0S X
Work faster
Another qs?
Mercurial is a free, distributed source control B s
management tool. It efficiently handles projects of » Windows

» gther

any size and offers an easy and intuitive interface.

Figure 10-3. Mercurial download page for the Mac 0S X platform

Click the Download button to download the Mercurial installer ZIP archive file to
your host machine. Next, go to your Downloads folder. Depending on the version
of Mac OS X, the ZIP file may have been extracted automatically, or you may
need to extract it manually. This ZIP file contains the Mac OS X installable
package for Mercurial binary.

Double-click the installable package file to launch the Mercurial installer, which
will guide you through the installation process. Upon completion of the
installation, the Mercurial binary can be found at /usx/local/bin/hg. To validate
the Mercurial installation, open a terminal window and enter hg at the command
prompt. If you can see the Mercurial basic commands list, as shown in Figure
10-4, your Mercurial installation was successful. You can now proceed to the
Mercurial Eclipse plug-in installation.

$ h =]
Mercurial Distributed SCM -~

basic commands:

(=)

add add the specified files on the next commit

annotate show changeset information by line for each file

clone make a copy of an existing repository .
commit commit the specified files or all outstanding changes "
diff diff repository (or selected files) -
export dump the header and diffs for one or more changesets p

Figure 10-4. Verifying Mercurial installation on Mac 0S X

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Installing Mecurial on Linux

Mercurial binaries are available through the application repositories on most
Linux distributions. Open a terminal window, and depending to your Linux
distribution, execute the corresponding installation command:

B Debian/Ubuntu: sudo apt-get install mercurial
B OpenSUSE: sudo zipper in mercurial

B Fedora: sudo yum install mercurial

B Gentoo: sudo emerge mercurial

The Mecurial installation directory may vary depending on your Linux
distribution. To find the location of the Mercurial binary, open a terminal window
and enter which hg at the command prompt. If you can see the installation
directory of Mercurial, as shown in Figure 10-5, your Mercurial installation was
successful.

cinar@linux-75xf.site:~

File Edit View Search Terminal Help
cinar@linux-75xf:~= which hg
fusr/bin/hg
cinar@linux-75xf:~= [

Figure 10-5. Verifying Mercurial installation on Linux

Installing the Mercurial Eclipse Plug-in

To install the Mecurial Eclipse plug-in, in Eclipse, choose Help » Install New
Software... from the top menu bar to launch the Install wizard. Mercurial is not
part of the official Eclipse software site. Click the Add button and define the
Mercurial Eclipse software site with the location
http://cbes.javaforge.com/update, as shown in Figure 10-6.

downloaded from: lib.ommolkefab.ir

http://cbes.javaforge.com/update
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2 Install - O] x|
Available Software]'—
Select a site or enter the location of a site. |
! .
Work with: |type or select a site Add... I
Find more software by working with the "Awvailable Software " pref 4
iwe filter text
& Add sit
oo #0030 2elkcy Name: [Mercurial Eclipse] Local... |
Location: |I'ﬂp://cbes.javdorge.mmfimdde Archive__
@ I
Select Al | Deselect Al |

Figure 10-6. Adding the Mercurial software site to Eclipse

After you’ve added the new software site, Eclipse will fetch the list of Mercurial
plug-ins and present them within the Install wizard. This process may take some
time, depending on your network connectivity. From this list of plug-ins, choose
Mercurial Eclipse. For a Windows platform, also choose Windows Binaries for
Mercurial, as shown in Figure 10-7.

Name | Versi [
[0l codeBeamer Eclipse Studio (with Mylyn)
B [0l MercurialEclipse

-‘I‘"\;:-. Mercurial Eclipse 1.9.1.4201111302231

[#]4* Windows Binaries for Mercurial (Recommended) 1.9.3.4201110131844

Figure 10-7. Selecting Mercurial plug-ins

Click the Next button to proceed with the installation. Eclipse will list the plug-
ins that will be installed. Click the Finish button to start the installation.

Checking Out SL4A Source Code

With Mecurial and the Mecurial Eclipse plug-in installed, we’re ready to check
out the SL4A source code. Choose File » New » Other... from the top menu bar,
expand the Mercurial category, and select Clone Existing Mercurial Repository,
as shown in Figure 10-8.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Clone Existing Mercurial Repository
.2 Create New Mercurial Repository
EJ:, Plug-in Development

L

Figure 10-8. Selecting to clone the existing Mercurial repository

In the wizard’s URL field, enter https://code.google.com/p/android-scripting/
as the repository location, as shown in Figure 10-9, and then click the Next
button. Mercurial is a distributed source control system, meaning that it will
clone the entire repository to the host machine. This process may take a few
minutes, depending on your network connectivity.

| & Mercurial clone repository wizard l
Clone repository
(i) Ready to start clone

- Repository location
URL ps://code_google com/p./android-scripting/| d lncdl ’

Figure 10-9. Setting the repository location for cloning

The latest official version of SL4A is R5. At the time of this writing, SL4A version
R5 is not tagged in the source code repository. In order to check out the code
base to the R5 version, switch to the Revisions tab, and enter 1214 as the
revision number, as shown in Figure 10-10. Click the Next button to continue.

downloaded from: lib.ommolkefab.ir

https://code.google.com/p/android-scripting/
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Mercurial clone repository wizard

M= E
Select working directory revision
Select the revision to which the king dii v will be updated after clone.
In case nothing is sel 1. the king di y will be updated to the latest available changeset.

Please enter a valid revision (local. global, tag or branch):
[1214:824937072e62d200150e 2930687318395 1 1cae
[Buam:ha:] Headsl Tags

Global | Date | Author | Branch | Tags | Summary | ‘l
1216 d9304186... 2012-04-06 1... rimatthew... Full SereenUl - color names, text Style and nextF... —
1215 fdccB013... 20120405 2... rjmatthew...

Full ScreenU| - text Size and textColor should sup ..
(PALY [82493707 [2012-03292 |rimatthew | | [Releases |
1213 2d72ccH ... 2012-03-25 2... rimatthew...

Fix to issue 616 (editor npe in autoclose on unsu. ..
1212 Sbaelb6e... 2012-03-25 1... rimatthew .

Fix to issue 616 (editor npe in autoclose on unsu. .. ;I

<)

< Back Next > Finish Cancel

Figure 10-10. Choosing the SL4A R5 revision

The Mercurial Clone Repository wizard will present the list of all the projects in
the SL4A repository, as shown in Figure 10-11. Although the example project

will not use all of the SL4A projects, choose to import all projects except
DocumentationGenerator into Eclipse.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Mercurial clone repository wizard O] x|
Import Projects

Select projects to import into the workspace. Checked projects will be imported. Double
click on project to change project name.

i~ Projects
B D and'ocd—mpimg (C:\Users\oncinar\workspace5\android-scripting) j Select All |
Ii

: BeanShellForAndroid (C:\Users\oncinar\workspace5\android-scri

-[] BluetoothFacade (C:\Users\oncinar\workspace5\android-scripting Deselect All
-[¢] Common (C: \Users\nmna\wufkspaceE\amimdmptmg\arﬁmd\(

= M| DocumentationGenerator (C:\Users\oncinar\workspace5\android 4|
. InterpreterfForAndroid (C: \Lbem\nmna’\workmaceE\aﬂudmptl

. InterpreterForAndroid Template (C: \Um\om:nar\uorkspaceS\a'm
| 211 s EnrAndoid 0\ leare\nnei —|\ -\I_l
4 »
~ Working sets

[~ Add project to working sets

Working sets: I ;I Select... |

@ < Back Newt> |[Fnish Cancel

Figure 10-11. Choosing projects to import

Eclipse will start building all of the SL4A projects automatically. Check the
Problems view and address any reported problems.

Movie Player Script Project

As discussed in the previous chapter, SL4A provides a template project for
packaging scripts as stand-alone Android packages. The source code for the
template project is called ScriptForAndroidTemplate. The example project will
use the template project as its base.

Cloning the Template Project

Instead of modifying the template project directly, we will clone the template
project under a different project name. Select the ScriptForAndroidTemplate
project, right-click it, and choose Copy from the context menu. Right-click again,

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

and choose Paste from the context menu to launch the Copy Project wizard.
Name the new project MoviePlayerScript, as shown in Figure 10-12.

& Copy Project [O]]
Project name: Ih!oviePIayerSaipt

¥ Use default location
Location: |C:\Users\sndnar\workspace\MovieHayerSn Browse... |

{'?) | OK I Cancel [

Figure 10-12. Cloning the template project as MoviePlayerScript

Eclipse clones the entire project settings, including the Mercurial metadata.
Since the new project is not part of the SL4A source repository, right-click the
project name and choose Team » Disconnect to detach it from Mercurial.

Linking to SL4A Framework Code

The MoviePlayerScript project is an identical clone of the SL4A template. The
SL4A template project is a stand-alone project without any external
dependencies, except the interpreters.

The SL4A framework code is precompiled and supplied as a JAR file with the
SL4A template project. Since we will be modifying the SL4A framework in this
example project, we need to remove this JAR file and make the project depend
on the SL4A framework project directly. Using the Package Explorer view,
expand the 1ibs directory under the MoviePlayerScript project and delete the
script.jar file. Eclipse will show a confirmation dialog prior to deleting the file.

Next, right-click the project and choose Preferences to launch the project
Preferences dialog. Choose Java Build Path from the left pane, and then switch
to the Libraries tab. Using the Remove button, remove script. jar from the
project build path, as shown in Figure 10-13.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Properties for MoviePlayerScript [[O] x] I

1, Build path entry iz missing: MoviePlayerScriptlibs/script jar . 3

 Source | i Projects | B Libraries | %; Order and Export |
JARs and class folders on the build path:

(24 guava-r06 jar - MoviePlayerScript/libs Add JARs |

- libGoogleAnalytics jar - MoviePlayerSecript/libs

B locale_platform jar - MoviePlayerScript/libs Add Extemal JARs... |

E3RTE script jar - \MoviePlayerScript\libs (missing) Add Variable... |

&=, Android 1.6 =

) = Android Dependencies Add Library... |
Add Class Folder |

Migrate JAR File... |

Figure 10-13. Removing the precompiled SL4A library from the project

To make the MoviePlayerScript project directly dependent on the SL4A
framework, switch to the Projects tab and click the Add button. As shown in
Figure 10-14, choose to add BluetoothFacade, Common, InterpreferForAndroid,
Scriptinglayer, SignalStrengthFacade, TextToSpeechFacade, Utils, and
WebCamFacade. Then click the OK button to save the selections.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Required Project Selection

Select projects to add:

EREONO0JO00000000RORED]
G2 G2 02 02 02 02 02 2 02 05 02 02 0 02 05 0 02 02 Q2. G2 03

BluetoothFacade

Common
DocumentationGenerator
InterpreterForAndroid
InterpreterForAndroid Template
JRubyForAndroid
LuaForAndroid

PerForAndroid
PythonForAndroid
QuickAction

RhinoForAndroid

Script ForAndroid Template
ScriptingLayer
ScriptingLayerforAndroid
ScriptingLayerfForAndroid Test
SignalStrengthFacade
TclForAndroid

Text ToSpeechFacade

Utils

WebCamFacade

Select All

| Deselect Al |

o]

Cancel |

Figure 10-14. Selecting the required projects for the SL4A framework

Besides depending on these projects, the output of these projects should also
be packaged with the MoviePlayerScript project in order to have it execute on
the Android device. To do so, switch to the Order and Export tab, and select the
same list of projects for exporting, as shown in Figure 10-15. Eclipse will rebuild
the project. At this point, try running the project on your Android device to make
sure the project configuration was successful.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& Properties for MoviePlayerScript = I

[0 = Android 1.6

fype filter text 1, Build path entry is missing: MoviePlayerScript/libs/script jar > S
.- Android L’?mlﬁ‘ﬁmwsléu Libraries ‘-’4;’0rderandEmm|
Android Lint Preferences Build class path order and exported entries:
i Builders (Exported entries are contributed to dependent projects)
o —
LF: -) i i
ek iler # MoviePlayerScript/gen — |

< O é» locale_platform jar - MoviePlayerScript/libs
.. Mercurial [@: libGoogleAnalytics jar - MoviePlayerScript/libs Top |
: [0 ¢3¢ script jar - \MoviePlayerScript\libs (missing) |

Refactoring History [(¢ guava+06 jar - MoviePlayerScript/libs Bottom
.- Run/Debug Settings =i\ Android Dependencies
.- Task Tags BluetoothFacade Select All |
XML S ~ Common
yntax M= Deselect Al |

[-2 interpreterForAndroid

[4 = SeriptingLayer

[¥] == SignalStrengthFacade
[4] = Text ToSpeechFacade
= Wtils

[=* WebCamFacade

Figure 10-15. Marking the SL4A projects for export

Renaming the Project Package

Since the MoviePlayerScript project is a clone of a SL4A template project, it
shares the same Android package name. To prevent any possible conflicts while
deploying the MoviePlayerScript project, open the AndroidManifest.xml file
and change the package name to com.apress.movieplayerscript. To rename
the Java package, right-click the com.dummy.fooforandroid package and choose
Refactor » Rename.

Adding the Movie Facade

To provide access to the media store, a new fagade needs to be developed and
added to the SL4A framework. To minimize the amount of change on the actual
SL4A framework code, we will create a separate project for the facade
implementation.

Choose File » New » Java Project from the top menu bar, and name the Java
project MovieFacade, as shown in Figure 10-16. Click the Next button to
continue.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

! & New Java Project [[O] x| l
Create a Java Project) J
Create a Java project in the workspace or in an extemal location. i 1 7

Project name: |MovieFacade

V! Use default location
Location: IC:\Users\oncinar\wodcspac:e\MovieFacade Browse... ,

Figure 10-16. Creating the MovieFacade project

On the next screen, choose the Projects tab, and add the Common and Utils
projects as the project dependencies, as shown in Figure 10-17. MovieFacade
will be using components from these projects to function as a part of the SL4A

framework.
! & New Java Project [[O] x| l
Java Settings y
=k

Define the Java build settings. i

Source = Projects [E';ﬁ Libcariml e OrderandEmDﬂI
Required projects on the build path:

F

EdR... |

Remove |

Figure 10-17. Adding MovieFacade project dependencies

MovieFacade will also be using components from the Android framework;
however, it is not an Android project. We need to add the Android framework
library to the project. Switch to the Libraries tab, and click the Add Variable...
button. Select ANDROID_SDK from the list, and click the Edit button to change
its value to ANDROID_SDK/platforms/android-7/android.jar, as shown in Figure
10-18. Depending on the Android features you will be using in your fagades, you
can substitute android-7 with the appropriate API level required. Click the OK

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

button to save the variable, and then click the Finish button to apply the library
changes to the project.

mm| = Projects B I.ibtariﬁl‘!h} Qﬂera\dEmorl|
JARs and class folders on the build path:

- UM ANDROID_SDK - C:\Users\oncinar\android-sd Add JARs...
-4, JRE System Library [JavaSE-1.7]

Edit classpath variable entry:
[ANDROID_SDK/platforms/android-7/android jar| Variable . | Extension.... |

C:\Users\oncinar\android-sdks\platforms\android-MNandroid jar

(‘?‘ | OK I Cancel

Figure 10-18. Adding the Android framework as a library to MovieFacade

Creating the MovieFacade Class

In order to serve as a fagade within the SL4A framework, the MovieFacade
project needs to extend the
com.google.android_scripting.jsonrpc.RpcReceiver class. Select the
MovieFacade project and choose File » New » Class from the top menu bar.
Define the MovieFacade class in the com.apress.movieplayerscript package, as
shown in Figure 10-19.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

€ New Java Class MEH|

Java Class =
Create a new Java class. (, » !
Source folder: |MovieFacade/src Browse...
Package: |com_aprmmvieplayemaipl Browse...

[Enclosing type: | Browse... |
Name: |MovieFacade
Modifiers: {* public C default O private O protected

[T abstract [final] static

Figure 10-19. Defining the MovieFacade class

MovieFacade will contain one method, moviesGet, exposed to the scripts. SL4A
expects the exposed methods to be annotated using the necessary RPC
attributes. The following RPC attributes are provided by SL4A through the
com.googlecode.android_scripting.rpc package:

B Rpc: This attribute is used to mark the method as exposed
through RPC. It also provides brief documentation for the
method, including its return value.

B RpcParameter: This attribute is used to document the
parameters for methods.

B RpcOptional: This attribute is used to mark a parameter as
optional.

B RpcDefault: This attribute is used to mark a parameter that
has a default value.

B RpcMinSdk: This attribute is used to specify the minimum
Android SDK level required to execute the method.

B RpcStartEvent: This attribute is used to mark methods that
start event generation.

B RpcStopEvent: This attribute is used to mark methods that
terminate event generation.

The source code for the MovieFacade class is shown in Listing 10-1.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Listing 10-1. The MovieFacade.java File

package com.apress.movieplayerscript;

import
import

import
import

import
import
import
import
import
import
import
import

Jx*

java.util.Linkedlist;
java.util.List;

org.json.JSONException;
org.json.JSONObject;

android.app.Service;
android.content.ContentResolver;
android.database.Cursor;
android.provider.MediaStore;
android.util.log;

com.googlecode.android_scripting.facade.FacadeManager;
com.googlecode.android_scripting.jsonrpc.RpcReceiver;
com.googlecode.android_scripting.rpc.Rpc;

* Movie facade.

*

* @author Onur Cinar

*/
public

class MovieFacade extends RpcReceiver {

/** Log tag. */
private static final String LOG_TAG = "MovieFacade";

/** Service instance. */
private final Service service;

Jx*

*
*
*

*/

Constructor.

@param manager
facade manager.

public MovieFacade(FacadeManager manager) {

}

super(manager);

// Save the server instance for using it as a context
service = manager.getService();

@0verride
public void shutdown() {

}

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/¥*%
* Gets a list of all movies.
*
* @return movie list.
* @throws JSONException
*/
@Rpc(description = "Returns a list of all movies.", returns = "a List of
movies as Maps")
public List<JSONObject> moviesGet() throws JSONException {
List<JSONObject> movies = new LinkedList<JSONObject>();

// Media columns to query

String[] mediaColumns = { MediaStore.Video.Media._ ID,
MediaStore.Video.Media.TITLE, MediaStore.Video.Media.DURATION,
MediaStore.Video.Media.DATA, MediaStore.Video.Media.MIME_TYPE };

// Thumbnail columns to query
String[] thumbnailColumns = { MediaStore.Video.Thumbnails.DATA };

// Content resolver
ContentResolver contentResolver = service.getContentResolver();

// Query external movie content for selected media columns

Cursor mediaCursor = contentResolver.query(
MediaStore.Video.Media.EXTERNAL_CONTENT_URI, mediaColumns,
null, null, null);

// Loop through media results
if (mediaCursor.moveToFirst()) {
do {
// Get the video id
int id = mediaCursor.getInt(mediaCursor
.getColumnIndex(MediaStore.Video.Media. ID));

// Get the thumbnail associated with the video
Cursor thumbnailCursor = contentResolver.query(
MediaStore.Video.Thumbnails.EXTERNAL_CONTENT URI,
thumbnailColumns, MediaStore.Video.Thumbnails.VIDEO_ID
+ "=" + id, null, null);

// New movie object from the data
JSONObject movie = new JSONObject();

movie.put("title", mediaCursor.getString(mediaCursor
.getColumnIndexOrThrow(MediaStore.Video.Media.TITLE)));
movie.put("moviePath", "file://" +
mediaCursor.getString(mediaCursor
.getColumnIndex(MediaStore.Video.Media.DATA)));
movie.put("mimeType", mediaCursor.getString(mediaCursor
.getColumnIndex(MediaStore.Video.Media.MIME_TYPE)));

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

long duration = mediaCursor.getLong(mediaCursor
.getColumnIndex(MediaStore.Video.Media.DURATION));
movie.put("duration”, getDurationAsString(duration));

if (thumbnailCursor.moveToFirst()) {

movie.put(
"thumbnailPath",
"file://" +

thumbnailCursor.getString(thumbnailCursor
.getColumnIndex(MediaStore.Video.Thumbnails.DATA)));
} else {
movie.put("thumbnailPath", "");
Log.d(LOG_TAG, movie.toString());

// Close cursor
thumbnailCursor.close();

// Add to movie list
movies.add(movie);

} while (mediaCursor.moveToNext());

// Close cursor
mediaCursor.close();

}
return movies;
}
/**
* Gets the given duration as string.
*

* @param duration

* duration value.

* @return duration string.

*/

private static String getDurationAsString(long duration) {
// Calculate milliseconds
long milliseconds = duration % 1000;
long seconds = duration / 1000;

// Calculate seconds
long minutes = seconds / 60;
seconds %= 60;

// Calculate hours and minutes
long hours = minutes / 60;

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

minutes %= 60;

// Build the duration string
String durationString = String.format("%1$02d:%2$02d:%3$02d.%4$03d",
hours, minutes, seconds, milliseconds);

return durationString;

}

MovieFacade gets the FacadeManager instance when initialized. The
FacadeManager enables access to the SL4A Android service instance. The
service instance can be used by facades as the Android context while
interacting with the Android framework. The implementation of the moviesGet
method is partially borrowed from the Chapter 5 example project, and modified
to operate as an RPC method. Since the scripts cannot directly consume Java
classes, the return type of the moviesGet method is changed to a JSONObject list.

Registering the Facade

Although the fagade is now properly defined, it is not known to the SL4A
framework yet. The MovieFacade needs to be registered with the
FacadeConfiguration class.

Right-click the Scriptinglayer project and choose Properties. From the
Properties dialog, choose Java Build Path, and switch to the Projects tab to add
MovieFacade as a dependency, as shown in Figure 10-20.

| & Properties for ScriptingLayer !E 1
Jype filter text Java Build Path : - v

#- Resource - - ;

Builders (% Source = Projects | =i Libraries | “; Order and Export |
J Java Build Path Required projects on the build path: — |
- Java Code Style —— =
@ Java Compiler &= BluetoothFacade P
@ Java Editor (-1 Common

Javadoc Location GRE] MovicFacade| Edit...

Mercurial -1=F SignalStrengthFacade

Project References &= Text ToSpeechFacade Remove

Run/Debug Settings H-= Whils

Task Tags #1=* WebCamFacade

XML Syntax

Figure 10-20. Adding MovieFacade to the scripting layer as a dependency

Under the same project, using the Package Explorer view, expand the
com.googlecode.android_scripting.facade package under Sources, and open
the FacadeConfiguration class.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The FacadeConfiguration class acts as a registry for SL4A facades. SL4A
currently only allows fagades to be manually registered here. At the top of the
class file, within a static context, the fagades are added to the sFacadeClassList
set. As shown in the following code, add the sections marked between the
CHANGES BEGIN and CHANGES END comments to the FacadeConfiguration class.

if (sSdkLevel >= 8) {
sFacadeClasslList.add(WebCamFacade.class);

}
/1 ***% CHANGES BEGIN *¥x

// Movie facade
sFacadeClassList.add(MovieFacade.class);

// *¥*¥*¥%¥ CHANGES END ****

for (Class<? extends RpcReceiver> reciever(Class : sFacadeClasslList) {
for (MethodDescriptor rpcMethod :
MethodDescriptor.collectFrom(recieverClass)) {
sRpcs.put(rpcMethod.getName(), rpcMethod);

}

Now MovieFacade is part of the SL4A framework and consumable from the
scripts.

Exporting the Movie Facade

Although MovieFacade is properly registered with the SL4A framework, it is not
still declared in the export list of the MoviePlayerScript project. Right-click the
MoviePlayerScript project, choose Java Build Path, add the MovieFacade
project to the Projects list, and mark it in the Order and Export tab for export.

Adding the Script

The actual Ul and the application logic for the MoviePlayerScript project will be
implemented using HTML and JavaScript. The SL4A framework relies on the
Android framework for both rendering HTML and interpreting embedded
JavaScript code, and it will not need to download an interpreter.

The SL4A template project comes with an example Python script. Open the
MoviePlayerScript project, expand the resources, and delete the script.py
Python script file from the raw resources directory, /res/raw. Choose File » New

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

» File from the top menu bar, and add a script.html file. You can open this
script file for editing by right-clicking it and choosing Open » Text Editor from the
context menu. During runtime, the SL4A framework will detect the file type using
its extension, and automatically start an embedded web browser to execute the
script.

The HTML Part

The HTML part of the script is very short and basic. As shown in the following
code, it defines only an HTML div element with the id of movies to hold the list
of movies. The CSS defines how the movie items will be rendered by the
browser.

<html>
<head>
<style type="text/css">
.movie {
border: 1px solid #000;
padding: 0.4em;

.thumbnail {
width: 4em;
height: 4em;
float: left;
margin-right: 0.4em;

}
Jtitle {
font-size: x-large;
}
.clear {
clear: both;
}
</style>
</head>

<body>

<div id="movies"></div>

The JavaScript Part

The script will use JavaScript to communicate with MovieFacade through the
SL4A framework to fetch the list of movies and the related information. As with

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

all other scripting languages, the script begins by initializing the Android proxy
RPC client.

<script type="text/javascript">
// Initialize the RPC client
var droid = new Android();

// Movie element
var moviesElement = document.getElementById("movies");

The populateMovies JavaScript function uses MovieFacade to get the list of
movies through SL4A, loops through them, and calls the addMovie function to
populate the Ul.
/%%
* Populate movies.
*/
function populateMovies() {
// Get movies
var movies = droid.moviesGet().result;

for (var i = 0, e = movies.length; i < e; i++) {
var movie = movies[i];

addMovie(
movie["title"],
movie["moviePath"],
movie["mimeType"],
movie["duration"],
movie["thumbnailPath"]);

}

populateMovies();

The addMovie function simply defines the necessary set of HTML elements to
render the movie item, and appends it to the movie list. Besides the visible
information about the movie, the addMovie function also saves the movie path
and MIME type into the movie element in order to be able to retrieve it when
necessary.

/**

* Add movie.

*

* @param title movie title.

*/

function addMovie(title, moviePath, mimeType, duration, thumbnailPath) {

// Movie element
var movieElement = document.createElement("div");
movieElement.setAttribute("class", "movie");

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

}

Click events on movie items are handled through the onMovieClick function. The
onMovieClient function extracts the movie path and the MIME type that were
saved by the addMovie function, and relies on the view method provided by
CommonIntentsFacade to send an intent to the Android platform to launch the

movieElement.setAttribute("data-moviepath", moviePath);
movieElement.setAttribute("data-mimetype", mimeType);
movieElement.onclick = onMovieClick;

// Thumbnail element

var thumbnailElement = document.createElement("img");
thumbnailElement.setAttribute("class"”, "thumbnail");
thumbnailElement.src = thumbnailPath;
movieElement.appendChild(thumbnailElement);

// Title element

var titleElement = document.createElement("div");
titleElement.setAttribute("class", "title");
titleElement.innerHTML = title;
movieElement.appendChild(titleElement);

// Duration element

var durationElement = document.createElement("div");
durationElement.setAttribute("class", "duration");
durationElement.innerHTML = duration;
movieElement.appendChild(durationElement);

// Clear element

var clearElement = document.createElement("div");
clearElement.setAttribute("class", "clear");
movieElement.appendChild(clearElement);

// Append movie to list
moviesElement.appendChild(movieElement);

default player for the selected movie item.

Vi
* On movie click handler.

* @param e UI event.

function onMovieClick(e) {

downloaded from: lib.ommolkefab.ir

// Get clicked movie item
var movieElement = e.currentTarget;

// Movie path

var moviePath = movieElement.getAttribute("data-moviepath");

// MIME type

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var mimeType = movieElement.getAttribute("data-mimetype");

// View movie
droid.view(moviePath, mimeType);

</script>
</body>
</html>

Running the Application

The movie player script application is now ready to be deployed, as described in
Chapter 5. Due to a known bug in the Android emulator, the example code can
currently run only on an Android device. Since the example application will look
for video files in external storage, make sure that the Android device contains an
SD card with video files on it, and disconnect the Android device from your host
machine to release the SD card. When you run the application, you will see the
movie list, as shown in Figure 10-21.

"Movie Player Script

galleon.avi
00:00:00.000

VID_20120323_015014

00:00:10.838

VID_20120323_015034

00:00:05.821

i VID_20120323_015101
00:00:10.614

VID_20120323_015120

00:00:08.680

Figure 10-21. Movie player script application showing the movie list

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Summary

In this chapter, we went deep into the SL4A framework and explored its
internals, including the facade registry and the project structure. SL4A is an
open source project, and it is highly extensible. You can follow the same steps
described in this chapter’s example to extend the ScriptinglLayerForAndroid
project, the main SL4A application, to include new fagcades, and later use them
locally or remotely through any scripting language.

In this book, we have explored the fundamentals of the Android platform to
better understand its foundations. We studied the Android application
architecture, and we applied these new concepts to our first Android
application, a movie player. Then we augmented the movie player application to
support other video formats by integrating the native code library. At every stage
of development, we have employed the advanced development features
provided by Eclipse, such as fast navigation, Content Assist, code generators,
and debugging and troubleshooting features, to streamline the development
process.

Resources

The following resources are available for the topics covered in this chapter:

B Scripting Layer for Android (SL4A),
http://code.google.com/p/android-scripting/

B Mercurial Eclipse, http://javaforge.com/project/HGE

downloaded from: lib.ommolkefab.ir

http://code.google.com/p/android-scripting/
http://javaforge.com/project/HGE
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Appendix

Testing Android
Applications

Testing is one of the most important phases of the application development
cycle. The Android SDK provides a powerful test framework for defining and
running a variety of tests to validate different aspects of Android applications.
The Android test framework is built on top of the popular JUnit test framework.
The Android test framework extends JUnit by incorporating Android-specific
instrumentation functionality to allow tests to control the environment
surrounding the Android applications. This makes it easy to test all possible use
cases.

JUnit Basics

JUnit is a testing framework for the Java programming language. JUnit provides
a set of classes to define, organize, and run test cases. The most important
class provided by JUnit is junit.framework.TestCase, which is the base class
for all test cases. Android test classes are also built on top of this class, and
they follow the same code structure and flow. A basic test case class is shown
in Listing A-1.

Listing A-1. Basic Test Case Class
public class MyTest extends AndroidTestCase {

J**

* Sets up the text fixture before each test is executed.
*/
protected void setUp() {

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

}
/**
* Test method.
*/
protected void testSomething() {
}
Vi
* Tears down the text fixture after each test is executed.
*/
protected void tearDown() {
}

}

The following are the key parts of the test case class:

B setUp: This method sets up the test fixture before each test.
Developers are expected to override this class to properly
initialize the test fixture in order to make sure that new test
runs are isolated from the preceding test runs.

B tearDown: This method tears down the text fixture and
releases any resources that were allocated for the test. The
JUnit test framework keeps the test case classes around
through the execution of entire test cases. Developers are
expected to release any resources in the tearDown method
in order to prevent exhausting the platform.

B testXXX: The test case class can contain one or more tests.
Test methods have the prefix test. The JUnit framework
runs all methods with that prefix while processing the test
case class.

Assertions

In computer science, an assertion is a predicate that is used to indicate the
developer’s assumptions about the state of the application at that given stage.
Assertions are used to test the correctness of the application.

The JUnit framework provides a set of frequently used assertion methods,
through the junit.framework.Assert class, for use with test cases. The base
junit.framework.TestCase class extends the Assert class and provides direct
access to these assertion methods.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The assertion methods that are exposed by JUnit are highly generic. They do
not cover the frequent assertion operations that Android test cases cover. The
Android test framework comes into play here by providing additional assertion
classes with extensive sets of methods specifically designed to address Android
testing needs. Despite JUnit’s Assert class, these additional classes are not a
base class of test cases. Developers need to import these classes into the Java
code and use their static assertion methods.

The following additional assertion classes are provided as a part of the
android.test Java package:

B MoreAsserts: This class provides a set of generic assertion
methods that are not provided by JUnit for testing Java
types, arrays, and values.

B ViewAsserts: This class provides a set of assertion methods
for Android views. These methods can be used to assert the
visibility of user interface (Ul) components, as well as how
they are positioned on the display.

Unit Testing

Unit testing allows developers to test application components in isolation. The
Android test framework provides a set of component test classes that facilitate
the component-specific testing needs—such as fixture setup, teardown, and
life-cycle control—under the android.test Java package. Test cases can
extend these classes and provide the actual test methods built on top of the
functionality provided.

The following are some of the test framework classes that are provided:

B AndroidTestCase: This is a generic test case class with
methods for accessing context and resources, and testing
application permissions.

B ApplicationTestCase: This class provides an environment to
test the Application class in a controlled environment. It
allows the test code to control the application life cycle, as
well as inject dependencies such as isolated contexts. It
delays the initiation of the application until the
createApplication method is executed, to allow developers
to do the fixture setup.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

B ActivityUnitTestCase: This is a test class for isolated
testing of Activity classes. In a test, an activity is started
with minimal connection to the Android platform. It allows
injection of mock context and application instances into the
activity prior to testing. To provide a true unit testing
environment, it overrides a set of Android methods to
prevent the activity from interacting with other activities and
the platform.

B ServiceTestCase: This is a test class for testing Service
classes in a controlled environment. It provides basic
support for service life cycle management, and also allows
developers to inject dependencies and control the
environment through the test code.

B ProviderTestCase2: This is a test class for a single
ContentProvider class and for testing the application code
with an isolated content provider. Instead of using the
system map for providers, it maintains its internal list and
exposes those content providers to only the test cases. It
deprecates the ProviderTestCase class to break the
dependency on instrumentation.

Mock Objects

Unit testing is a repeatable process with known inputs and outputs. All
dependencies of the component are fulfilled through mock objects to eliminate
external dependencies that influence the test outcomes.

To facilitate the dependency injection, the Android framework provides mock
objects for core parts of the Android framework under the android.test.mock
Java package. These mock classes isolate tests from the running system by
overriding and stubbing their normal operations. They are nonfunctional except
for the portions defined by the developer. All methods that are not overridden
throw a java.lang.UnsupportedOperationException to inform the developer that
the test code is trying to communicate with the environment. The following
mock classes are provided:

B MockApplication: This class extends the Application class
and stubs its methods. Developers can extend this mock
class to implement the methods necessary for dependency
injection. All other methods will raise the
UnsupportedOperationException.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

MockContext: This class extends the Context class and
stubs its methods. Developers can use the mock context to
inject other dependencies into the application.

MockContentResolver: This class extends the
ContentResolver class and overrides Android’s normal way
of resolving content providers by authority. Instead of using
the system’s content provider mapping, the mock content
resolver keeps an internal mapping. Developers should
register their mock content providers into the mock content
resolver during the fixture setup. The mock content resolver
isolates the application being tested by resolving only the
mock content providers that are registered directly.

MockContentProvider: This class extends the
ContentProvider class and stubs its methods. Developers
should override the necessary content provider methods to
provide static data to the consumers of this content
provider. Later, through the mock content resolver, the
mock content provider can be injected into the application
being tested.

MockCursor: This class extends the Cursor class and stubs
its methods. It is usually used with mock content providers
to provide static data to the applications being tested.

MockDialogInterface: This class implements the
DialogInterface with stub methods. Developers can
override its methods to validate Ul inputs to dialogs.

MockPackageManager: This class extends the PackageManager
class and stubs its methods. Developers can override the
necessary methods to mock the interaction between the
application being tested and the Android system.

MockResources: This class extends the Resources class and
stubs its methods. It enables developers to do resource
injection in the application being tested by overriding the
mock methods.

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Functional Testing

Functional testing is a type of black-box testing. It tests software components
based on their specifications. Functional testing involves feeding input and
examining the output; the internal program structure is rarely considered.

The Android test framework allows functional testing of Android applications
through the instrumentation. Android instrumentation is a set of control methods
and hooks to inject user events and requests into the application, meanwhile
managing its life cycle. The instrumentation methods are provided through the
android.app.Instrumentation class. This class is instantiated before any of the
application code runs.

Unlike the unit testing classes, the functional testing classes load the application
using the actual system context, and feed events into the application using
either its Ul or the Android services it exposes to the system. The functional test
classes extend the InstrumentationTestCase class and provide access to the
instrumentation instance through the getInstrumentation method. The following
instrumentation classes are provided in the android.test Java package:

B ActivityInstrumentationTestCase2: This class provides
methods for functional testing of a single activity. The
activity being tested is initiated using the system
infrastructure and then can be manipulated using the
instrumentation methods. It deprecates the
ActivityInstrumentationTestCase class by providing finer
granularity of configuration options for the tested activity.

B SingleLaunchActivityTestCase: This class launches the
Activity class that is being tested on its setUp method and
terminates it in its tearDown method. Unlike the other test
classes, this class runs all test methods on the existing
activity instance, instead of setting up and tearing down the
activity instance for each test.

Ul Operations

The Android framework requires all interaction with the Ul components to
happen in the application’s main thread, also known as the U/ thread. The
InstrumentationTestCase class provides these options for running test code in
the Ul thread:

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

TouchUtils: This class provides methods for generating
touch events from the instrumentation test classed to mimic
user interaction with the application through the touch
screen.

UiThreadTest: Annotation can be used to mark the test
cases that should be executed within the application’s Ul
thread in the test class. In this mode, the instrumentation
methods may not be used.

runTestOnUiThread: This method can be used to schedule
Runnable objects in the Ul thread. This allows test cases to
inject only a portion of a test into the application’s Ul thread.

Test Projects

Test projects are no different from generic Android projects. They are generated
as a separate project from the actual application. Although they are a separate
project, the best practice is to store the test projects in the main project root
under the tests directory.

Android Development Tools (ADT), introduced in Chapter 5 of this book,
provides two options for generating a test project. One approach is to create the
test project while creating the actual project. The New Android Project wizard,
on its third step, asks you if a test project should also be generated, as shown in
Figure A-1. You can first mark the Create a Test Project option, and then
configure the test project.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[& New Android Project MEE|
Application Info
Configure the new Android Project|

Application Name: |Example1

Package Name: Icnm_apress_e.xa'rple

V! Create Activity: |E7ca|1'|[:;le1At':li\rit]lr

Minimum SDK: [10 =]

V! Create a Test Project

Test Project Name: [Example 1Test

Test Application: |Example 1Test

Test Package: !mm.q)r&n.exmplejest

IC?:I < Back Next > | Finish Cancel

Figure A-1. Configuring a test project with the New Android Project wizard

Having a test project at the very beginning of application development is good
practice for test-driven programming. However, if the test project is not created
at the beginning, it is never too late to build one. ADT provides a New Project
wizard specifically to generate a new test project for an existing Android project
in the workspace.

To create a new test project, Choose File » New » Project... from the top menu
bar, expand Android, and select Android Test Project, as shown in Figure A-2.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

& New Project MEE|
Select a wizard
Wizards:

fype filter text

L Dl

()

&/

< Back Next > Finish

Figure A-2. Choosing to create a new Android test project

The ADT New Android Test Project wizard will first ask you for the name of this
test project. As the location of the new project, it is recommended to use the
tests subdirectory inside the project to test. Proceed to the next step by

clicking the Next button.

Every test project needs to be associated with an existing Android project. On
the next step, the wizard will ask you to choose the target project, as shown in
Figure A-3. Select the target project and click the Next button to continue.

| & New Android Test Project

HEE|

Select Test Target
Choose a project to test

" This project
&' An existing Android project:

p Py = e

@ < Back Next > | Finish

Figure A-3. Choosing the target Android project for the test project

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As the last step, the New Android Test Project wizard will ask for the target
Android SDK version for the new test project. Select the SDK target suitable for
the target Android project, and click the Finish button. ADT will generate the test
project.

Running Tests

To run the test cases, select the test project and click the Run button. As shown
in Figure A-4, Eclipse will ask how the project should be executed. Choose
Android JUnit Test from the list, and then click the OK button proceed.

E€Rna _ HEIH

Select a way to run ‘ApiDemosTest":
[4] Android Application

il Java Applet

[7] Java Application

JuJUnit Test

- Description
Description not available

Figure A-4. Run As dialog for the test project on its first run

ADT first builds and deploys the actual Android project, and then does the same
for the test project itself. While the tests are running on the target device or the
emulator, you can monitor them using the JUnit view within Eclipse, as shown in
Figure A-5.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

N

5 ke e (T s
fcom example..android .apis.view.Focus2Activity Test - testGoing <

PR B E -
Runs: 15/21 B Erors: 0 B Failures: 0

' ahj com_.example .android .apis.app.ForwardingTest [Runner 4 |
l agj com_.example .android apis.app.LocalService Test [Runm
l a] com.example .android .apis.ApiDemosTest [Runner: JUni
B M_I com.example.android .apis.view .Focus2Activity Test [Ru

. -}k testGoingLeft FromRight ButtonGoes ToCenter

] testGoingRight FromLeft ButtonJumpsOverCenter ToRL_|
| testPreconditions

-‘-g’t_}] com.example .android .apis.os.MorseCodeConverterTest
«| | a

Figure A-5. JUnit view showing the progress of testing

The JUnit view has two panes:

B The top pane provides a list of tests that are being executed, along
with statistics regarding the number of passing and failing test cases.

B [f a test case fails, the bottom pane provides the failure trace showing
the location of the error, as shown in Figure A-6.

EI -Ht] com_example android ap(s os.MorseCodeConverterTest [Fhl
| e—ry
j:] com example. amd'md apis. \rlevr.Focl.BzAmioidTeﬂ [Runné
-] com .example.android.apis.ApiDemosApplicationTests [Run
< | i
= Failure Trace B
7 junit framework AssertionFailedEmror: Unexpected amay leng « |
at com.example .android .apis.os.MorseCodeConverterTest .z
at com_example .android apis.os. MorseCodeConverterTest t
at android test. Android Test Runner.runTest (Android Test Rur
at android test_Android Test Runner_runTest (Android Test Rur
at android test .IndrunﬁtdionTestRum.onSla‘t(hutm_

| at atﬂnid.app.h‘lslnmaioriﬁkﬂnm'ldionﬂmadm >
4 >

Figure A-6. Failure trace showing the failed test

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

While troubleshooting a failing test case on a large project, it is preferable to run
only that test case, rather than the entire test suite. To run only a single test,
select the test case class using the Package Explorer, and then click the Run
button. Eclipse will display the Run As dialog, as shown in Figure A-7. Select
Android JUnit Test, and then click the OK button to proceed. JUnit will run only
the tests in the selected test case class.

€ Run As 0] x]

Select a way to run 'ApiDemosApplicationT

Ju JUnit Test

~ Description
Description not available

1/;?:1 | oK I Cancel

Figure A-7. Executing the selected test case class

Measuring Test Code Coverage

How much testing is enough? This is one of the most frequently asked
questions for testing. The number of test cases is not a good measure for the
test coverage. The Android SDK comes with EMMA for measuring and reporting
code coverage of test cases.

NOTE: Code coverage is currently supported only on the Android emulator and rooted
devices.

Although EMMA is an important component of the Android test framework, its
use with Android applications is not clearly documented. In this section, we will
go through the steps to generate code coverage reports from test projects.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Setting Up EMMA Access

At the time of this writing, the ADT plug-in for Eclipse does not provide access
to EMMA directly. The EMMA code coverage tool can be invoked only through
the Ant-based build scripts. Eclipse does not generate Ant build scripts when
the Android project is created. The build scripts should be manually created for
both the application project and the test project.

To create the build scripts, open a command prompt if you are running on a
Windows host machineg, or a terminal window if you are using a Mac OS X or
Linux-based host machine, and invoke the following commands:

cd <application directory>
android update project --path .

cd <test directory>
android update test-project --main <application directory> --path .

These commands will generate the Ant build script, build.xml, and the other
necessary property files in both the application and test directories.

Enabling EMMA for Test Runs

To enable EMMA, using the Package Explorer, expand the test project. If the
build.xml file is not visible, press F5 to refresh the project directory. Right-click
the build.xml file and choose Run As Ant Build... from the context menu. The
Edit Configuration dialog will appear. Switch to the Main tab, and set the
arguments to all clean emma debug install test, as shown in Figure A-8.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Edit configuration and launch. O

Run an Ant build file_ @

Name: |ApiDemos Test build xml

m:s’ Refresh |) Buld w3 Targets] Lo Cla&q_ldh]_ <m> Pmperlia;] = .IRE'| % Environment ! = Qonmnn|
~ Buildfile:
[stworkspace_loc:/ApiDemosTest /build xmi}

[

Browse Workspace... | Browse File System...| | Variables... |
- Base Directory:
|
Browse Workspace.... | | Browse File System... || Variables... |
~ Arguments:
all clean emma debug install test ﬂ
Variables...
Note: Enclose an argument containing spaces using double-quotes (7).
¥/ Set an Input handler =
Apply | Reyert |
®@ Bn || Cos |

Figure A-8. Configuring the Ant build script

Make sure that the Android device is connected to the host machine, and click
the Run button to execute the Ant build script. The build script will deploy both
the application and the test to the target device or the emulator with EMMA
enabled, as shown in Figure A-9.

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5., Problems | @ Javadoc | [, Declaration [l RSN X % |G BE/EE| ¢ B -9 -=0)
<terminated> ApiDemosTest build xml [Ant Build] C:\Program Files\Java\jdk1.7.0_02\bin\javaw exe (Mar 29, 2012 10:41:17 PM)

[exec] com ple .android .apis.os. M CodeConverterTest:.
[exec] com example .android .apis.view.Focus2Activity Test:...
[exec] com example android apis_view_Focus2Android Test
[exec] Test results for InstrumentationTestRunner=.........
[exec] Time: 7.108
[exec] OK (21 tests)
exec] Generated code coverage data to /data/data/com.example android.apis/coverage ec
echo] Downloading coverage file into project directory
[exec] 84 KB/= (863 bytes in 0.010s)

[echo] Extracting coverage report ..
[echo] Cleaning up temporary files..
[delete] Deleting: C:\Users\oncinar\workspace 1\ApiDemos\tests\coverage ec
[delete] Deleting: C:\Users\oncinar\workspace 1\ApiDemos\tests\coverage em
echo] Saving the report file in C:\Users\oncinar\workspace 1\ApiDemos\lests/coverage/coverage himl
BUILD SUCCESSFUL
Total time: 1 minute 32 seconds

< I

-

A

Figure A-9. Console view showing EMMA being enabled

Upon completion of the test cases, the script will pull EMMA result files and
generate an HTML-formatted report in the coverage directory under the test
project. Refresh the project directory by pressing the F5 key after selecting the
test project using the Package Explorer. Expand the coverage directory, and
open the coverage.html report file, as shown in Figure A-10.

EMMA Coverage Report (generated Thu Mar 29 22:42:49 PDT 2012) . Dﬂ
B & [ef/CTUsersfonc kspace 1/ApiDemos tests/coverage/coverage hml e B

OVERALL COVERAGE SUMMARY

name class, % method, % block, % line, %
all classes 2% {10/581) i3 (27/2174) 2% (1490/63228) 1% {20.5/9782)

OVERALL STATS SUMMARY

total packages: i3

total executable files: 285
total classes: 581
total methods: 2174
total executabls linss: 9782

COVERAGE BREAKDOWN BY PACKAGE

name class, % method, % block, % line, %
com.example. android.apis.animation 0% (0/5) 0% {0/19) 0% (0/417) 0% (0/85)
com.example.android.apis.appwidget 0% (0/4) 0% {0/16) 0% (0/363) 0% (0/77)
com.example. android.apis.content 0% (0/18) 0% {0/47) 0% (0/1010) 0% (0/230)
com.example.android.apis.graphics 0% (0/123) 0% (0/492) 0% (0/17591) 0% (0/3463)
com.example. android.apis.graphics. kube 0% (0/10) 0% {0/58) 0% (0/3803) 0% (0/489)

-

Figure A-10. EMMA code coverage report file
The EMMA report HTML file provides extensive information about code

coverage of test cases. By clicking the packages and classes, you can navigate
into source files and see the portions of the code that are not executed by any

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

test case. Using this information, you can expand the test cases to cover a
larger portion of the application code.

Stress Testing

Stress testing is a form of testing that is used to determine the stability of the
application by introducing a load beyond the application’s operational capacity.
The Android SDK provides the Monkey tool to send pseudo-random streams of
keystrokes, touches, and gestures to the application. Stress testing is not a
repeatable process; however, the Monkey tool allows repeating the stream of
events to reproduce error cases.

To launch the Monkey tool, first connect the target device to the host machine
or launch the emulator. Open a command prompt if you are using a Windows-
based host machine, or a terminal window on Mac OS X and Linux-based host
machines, and invoke the following command:

adb shell monkey -p <your application package> -v 500
This command starts the Monkey tool and sends 500 pseudo-random events to
the Android application with the given package name. For more information

about the Monkey tool command-line arguments, see
http://developer.android.com/guide/developing/tools/monkey.html.

downloaded from: lib.ommolkefab.ir

http://developer.android.com/guide/developing/tools/monkey.html
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

P

Index

A
Accessibility service, 21
accessMethods method, 221
Account service, 21
Activities and intents, 28-29
Activity Class, 179-181
Activity service, 21
Alarm service, 22
Android API, installation
Android SDK Manager, 117-119
documentation for Android SDK,
120
Google APIs, 120
samples for SDK, 120
SDK Platform, 119
sources for Android SDK, 120
Android application testing, 333
assertion, 334-335
functional testing, 338
JUnit basics, 333-334
measuring test coverage
build script, 346
component, 344
console view, 347
enabling EMMA, 345-348
report file, 347
setting up EMMA access,
345
runing test projects
failure trace, 343
JUnit view, 343

downloaded from: lib.ommolkefab.ir

test case class selection, 344
test cases, 342
stress testing, 348
test projects
ADT, 339
configuration, 339-340
project creation, 340-341
target, 341
Ul operations, 338
unit testing
framework classes, 335—-336
mock objects, 336-337
Android Development Tools (ADT)
Android Lint (see Android Lint
tool)
Android Virtual Device Manager,
121-128
Dalvik Debug Monitor Server
(DDMS) (see Dalvik Debug
Monitor Server (DDMS))
installation
Add Repository dialog, 113
adding new software, 112—
113
new software selection, 112
plug-ins, 114
progress, 114-115
security warning, 115
tasks, 111-112
releasing applications, 146—
149

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Android Lint tool
problem detection, 143
Run Android Lint, 143-144
setting Lint preferences, 145
warnings view, 144-145
Android Native Development Kit
(NDK)
installation
on Linux, 197
on Mac 0S X, 196-197
on Microsoft Windows, 188—
196
native Android APls, 187
using native code, 186
native project, files and
directories, 198-200
Sequoyah
adding Native Code Support,
203-206
building with native
components, 206-207
configuration, 202—-203
installation, 200-202
structuring, 198
Android Package File (APK) file
format, 40
Android platform
architecture (see Hardware
abstraction layer (HAL))
Dalvik virtual machine, 16-18
deployment and distribution, 24
file system, 18-20
hardware abstraction layer (HAL)
alarm timer, 8-9
Android shared memory
(Ashmem), 12
binder, 9-11
logger, 13-14
low memory killer, 12-13
paranoid network security, 9
process shared memory
(Pmem), 12
wakelocks, 11-12

downloaded from: lib.ommolkefab.ir

history, 1-2
security, 20-21
services

accessibility service, 21
account service, 21
activity service, 21
alarm service, 22
audio service, 22
clipboard service, 22
connectivity service, 22
device Policy service, 22
download service, 22
drop Box service, 22
input Method service, 22
location service, 23
near field communication
(NFC) service, 23
notification service, 23
package service, 23
power service, 23
sensor service, 23
telephony service, 23
Ul mode service, 23
USB service, 23
vibrator service, 24
wallpaper service, 24
Wi-Fi peer-to-peer service,
24
Wi-Fi service, 24
versions, 2-5
zygote, 14-16
Android shared memory (Ashmem),
12
Android Software Development Kit
(SDK)
documentation, 120
installation
configuration wizard, 123
updating path on Mac 0S X
and Linux, 117
updating Path on Microsoft
Windows, 116-117
platform, 119

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

samples, 120 log checks, 267-268
sources, 120 starting, movie player, 265-
Android Virtual Device (AVD) 266
Manager AVILib integration

Android console, 126-127 Android.mK file, 242-245
configuring, 123 console view, 245
dialog lists, 122-124 module, 243
emulator project, 241-242
controlling, 126-127 handling dependencies, 239-240

launching, 125-126
launching, 121-122

virtual machine configuration,

124-125
AndroidManifest.xml, 41
APl level, 2
App process. See Zygote

Apple Mac 0S X operating system, 53

Application architecture

Java part, 245-248
layout definition, 260
media store scanner, 264-265
native part
AVI file functions, 256-257
bitmap helper function, 241
C source file, 249
Canvas, 254-255
drawing, bitmap to Canvas,

components
activities and intents, 28-29
Android user interfaces, 32
application menu, 32
broadcast receivers, 30-31
content providers, 31
layout, 32
services, 30
View object, 31
widget, 31
data storage, 34
life cycles
activity, 28-29
service, 38-40
manifest file, 41-42
packaging, 40-41
resources, 33-34

AttachCurrentThread function, 226
Audio Video Interleave (AVI) movie

files, 239
activity definition, 261-263
add native support, 241
AndroidManifest.xml, 263
applications
gallery view, 267

downloaded from: lib.ommolkefab.ir

255-256
header file, 248
IDs and references, 251-253
jni subdirectory, 248-249
modules, 248
render method, 257-259
struct functions, 250
surface holder, 253-254
player controls, 268
string resources, 263
thumbnails, 268
updation, Android.mk file, 259—
260

B

Binder technology, 9

Black-hox testing. See Functional
testing

Boilerplate searches, 89-90

Broadcast receivers, 30-31

build directory, 198

C
Call Hierarchy view, 81-82

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Clipboard service, 22

Code generators, 100-103

Code templates, Eclipse
available variables, 94
Edit Template dialog, 93
File comment code template, 93
Java code templates list, 92
New Java file with the copyright,

95

Connectivity service, 22

Content Assist, 99-100

Content providers, 31

Cygwin installation
running Cygwin installer, 189
selecting configuration type, 192
selecting Cygwin packages, 194
selecting download site, 193
selecting download source, 189
selecting local package directory,

191

selecting target directory, 190

D
Dalvik Debug Monitor Server (DDMS)
Allocation Tracker view, 135
definition, 128
Devices view, 129-130
Emulator Control view, 131-132
3

File Explorer view, 135-136
Traceview, 136-137

Heap view, 134-135

Hierarchy Viewer, 138—-139
Layout view, 142-143
Tree Overview View, 141
Tree view, 140
View Properties view, 141—

142

Windows view, 139-140

LogCat view, 132

perspective, 128-129

Threads view, 132-134

Dalvik Executable (DEX), 17

downloaded from: lib.ommolkefab.ir

Dalvik virtual machine, 16-18
Debug perspective, 63

Device policy service, 22
Download service, 22

Drop Box service, 22

E

Eclipse

architecture, 46-47

fast coding
code generators, 100-103
Content Assist, 99-100
refactoring, 104-107
Scrapbook feature, 107-109
templates, 90-98

history, 45-46

installation
download page, 56-57
editors, 64-65
on Linux, 60
on Mac 0S X, 59-60
menus, 67-68
perspectives, 63-64
projects, 69-70
toolbars, 69
views, 65-67
web site, 56
on Windows, 57-59
workbench, 62-63
workspace, 60-62

Java Development Kit (JDK)

installation

Java download page, 48
on Linux, 54-55
on Mac 0S X, 53-54
Oracle packages, 49
on Windows, 49-53

navigation
Call Hierarchy view, 81-82
markers, 83-87
Outline View, 77-79
search, 87-90

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Type Hierarchy view, 79-81 H
Working sets, 74-77 Hardware abstraction layer (HAL)

Eclipse platform’s core, 47
Eclipse runtime. See Eclipse
platform’s core
Editor templates, Eclipse
Content Assist, 98
inserted into code, 98
Logger, 97
New Template dialog, 96
Preferences dialog, 91
Editors, 64—65
Exception handling, 223-224

F

Fast coding
code generators, 100-103
Content Assist, 99-100
refactoring, 104-107
Scrapbook feature, 107-109
templates

Code templates, 92-95

copy-and-paste functionality,

91
Editor templates, 95-98
preferences dialog, 91
Fast views, 66-67
File search, 87-88
File system, 18-20
FIXME keywords, 86
Frame layout, 32
Functional testing, 338

G
Get<Type>ArrayElements function,
219
GNU debugger (GDB), 228-229
Graphical mode debugging using
eclipse, 231-235

downloaded from: lib.ommolkefab.ir

alarm timer, 8-9

Android shared memory
(Ashmem), 12

binder, 9-11

logger, 13-14

low memory killer, 12-13

paranoid network security, 9

process shared memory (Pmem),
12

wakelocks, 11-12

HelloWorldActivity class, 214
HTML and JavaScript, 307

application runing, 331
Facade
Android framework, 320-321
dependencies, 320
export, 327
MovieFacade class creation,
321-326
MovieFacade project, 319-320
register, 326-327
movie player script project
package rename, 319
SL4A framework code, 316-
319
template project, 315
scripting part
HTML, 327-328
JavaScript, 328-331
SL4A source code
check out, 312-315
import, 315
Java compiler, 309
Mercurial Eclipse plug-in,
311-312
Mercurial installation, 309-311
network connection, 313
R5 revision, 314
repositories, 313
workspace, 307-308

o

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Input Method service, 22
Interprocess communication (IPC), 9

J,K
Java Class File disassembler, 210-
213
Java Native Interface (JNI)
accessing fields, 219-221
array operations, 218-219
calling methods, 221-222
data types
primitive, 216-217
reference, 217-218
exception handling, 223-224
global and weak global
references, 224
local references, 224
simple Hello World application,
213-216
string operations, 218
threading
constraints, 225-226

native threads, 226-227
synchronization, 226
troubleshooting
analyzing stack traces, 235-
238
Android-specific logging, 227-
228
console logging, 228
GNU Debugger (GDB), 228-229
graphical mode debugging
using eclipse, 231-235
text mode debugging using
ndk-gdb, 229-231
Java perspective, 63
Java search, 88-89
Java tools
adding string substitution
variable, 208

©

downloaded from: lib.ommolkefab.ir

C Header and Stub File Generator,
209-210
Java Class File disassembler,
210-213
setting string substitutions, 207-
208
JavaScript, 293-294
addMovie function, 329
Android proxy RPC client, 329
onMovieClient function, 330
jni subdirectory, 199
jni/Android.mk subdirectory, 199
jni/Application.mk subdirectory, 199
JNIEnv interface, 217, 223
JNIEnv interface pointer, 215, 220,
222, 226
JUnit basics, 333-334

L
Layout, 32
Layout editor, 158—-160
libs subdirectory, 200
Linear layout, 32
loadLibrary method, 214
Location service, 23
Logging system, 13-14
Low memory Killer, 12-13

M
Manifest editor, 158
Markers, Eclipse
Bookmarks view, 83-84
Problems view, 84-85
Tasks view, 8§5-87
Menus, 67-68
Mock objects, 336-337
MonitorEnter function, 226
Movie Class, 169-174
Movie Item Layout, 161-167
Movie List Adapter Class, 175-179
Movie List Layout, 160-161

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

MoviePlayer Project
using ADT editors
layout editor, 158-160
manifest editor, 158
Movie Item Layout, 161-167
Movie List Layout, 160-161
resource editor, 167-169
classes
Activity Class, 179-181
Movie Class, 169-174
Movie List Adapter Class,
175-179
running application, 181-184
com.apress.movieplayer, 154-
155
New Android Project wizard, 153
New Project dialog, 152

KN

project directories and files, 156—

157
project layout and required
project files, 155-156
target platform selection, 153—
154

N

ndk-build, 198

ndk-gdb shell script, 198, 228-231

ndk-stack shell script, 198

Near Field Communication (NFC)
service, 23

Network security, 9

NewGlobalRef function, 224

Notification service, 23

O

obj subdirectory, 200
onCreate method, 39
onDestroy method, 40
onStartCommand method, 39
Outline View, 77-79

downloaded from: lib.ommolkefab.ir

P
Package service, 23
Packaging, 40—-41
Paranoid network security, 9
Perspectives, 63-64
platforms directory, 198
Power service, 23
Process shared memory (Pmem),
12
Projects, 69-70
Python applications
embedded browser, 294-295
JavaScript code, 295
web interface, 296

Q

Quick views, 67

R
Refactoring, 104-107
Remote procedure call (RPC)
device, 286
modules, 286
monitor, 285-286
network device, 287
notification bar, 285
script server type selection, 284-
285
server menu, 284
Resource editor, 167-169

S
samples directory, 198
Scrapbook feature, 107-109
Scripting Layer for Android (SL4A),
271. See also SL4A source
code
APKs package
application, 306
configuration, 302-305

eclipse project, 301

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Copyright © 2012 by Onur Cinar

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-4434-9
ISBN-13 (electronic): 978-1-4302-4435-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in
an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by
Google and used according to terms described in the Creative Commons 3.0 Attribution License. Android
and all Android and Google-based marks are trademarks or registered trademarks of Google, Inc., in the
U.S. and other countries. Apress Media, L.L.C. is not affiliated with Google, Inc., and this book was written
without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Development Editor: James Markham

Technical Reviewer: Pierpaolo Cira

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan

Copy Editor: Marilyn Smith

Compositor: Bytheway Publishing Services

Indexer: SPI Global

Artist: SPI Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm. com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer questions
pertaining to this book in order to successfully download the code.

downloaded from: lib.ommolkefab.ir

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Dedicated to my son Deren, my wife Sema, and my parents,
Zekiye and Dogan, for their love, continuous support, and always encouraging me to pursue ny
dreams.

I could not have done this without all of you.

—Onur Cinar

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Contents

About the Author...........ccovmmmismmmsmme s ——————_— X
About the Technical REVIEWETcccussmssmsssssmssssssnsssssssssssssnssssssssassssnsssansasanss Xi
Introduction ... X

Chapter 1: Android Primercccccunmmmssssssmmmmmmmmsssssssssnsssssssssssssssssssssssssssnnnnns
ANndroid HiStOryooeveverereneneeeeeeeeeseseseseeens

Android Versions.........c.cceeeverene

Android Platform Architecturecceeeevvevverereninnns

Hardware Abstraction Layer

Zygote

Dalvik Virtual Machine

File System.......cccocevevvevcrnnnne

Security

Services

Android Deployment and Distribution.............ccovuune

Summary

IBIESIEQIE-oo 1) IN) 1= ==k

15 IRIR

Chapter 2: Application Architectureccccmismmsnmmsmmssssmsssmsssssssssnssssnnnns 27

Android Componentscccceeeeueae

Activities and Intents

Services

Broadcast ReCEIVErS......ccuvvererererernienens
Content Providers
Views, Widgets, Layouts, and Menus...

RESOUICES.....ccceerrecirrseerss e ss e se s eneas
Data Storage.......cocorererererrnrnrnnnsee e

Android Life Cycles
Activity Life Cycle ...

Service Life Cycle

Packaging

Android Manifestccvverrnennnenennesensesennne

Summary

downloaded from: lib.ommolkefab.ir

27
28

30
30
31
31
33
34
34
35
38
40
il
43

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

vi

Chapter 3: Eclipse Primercccconvmmmsmmmssmmsssmmsssmssssmssssssssssssssssssssssnssssnsssnss 49

ECHPSE HIiSTOMY ...ttt n s e s s s n 45
Eclipse Architecture 46
Installing the Java Development Kit 48
Installing the JDK 0N WINAOWS ... ssssessssssssasens 49
Installing the JDK on Mac 0S X 53
Installing the JDK on LinUXcccovvreeneessseseseseneene 54
INSTAllING ECHIPSE....ceecceereccerre e 56
Installing Eclipse on Windows 57
Installing Eclipse on Mac 0S X 59
Installing EClIPSE ON LINUXceeecrieeessesesesesesesesesesssssssssssssssssssssssssssssens 60
Exploring Eclipse............. 61
WOrkspace........coouveseresnsesesnans 61
WOIKDENCH ...t ————— 62
Perspectives.................. 63
(0] P 64
Views 65
FaSE VIBWS ...cevcciiricss st 66
MENUS ...ttt —————— 67
TOOIDArS.....cceeeeeeeee e 69
Projects 69
3101311172 T il
RETBIBINCES ...ttt il
Chapter 4: Mastering EClipSe.......cccusmmssmmmsassssasmssnsssansssasssssssssnsssassssassssnsssansss 13
NAVIGAON.....c.cecceccceeeere e s 73
WOTKING SEES ...ucueieririririsisisssssss s e e e e E e E b e e E e na s s ananananan e e anas 74
OULIINE VIBW ..ot s 77
Type Hierarchy View 79
Call Hierarchy View 81
Markersccooereernnene 83
Search 87
Fast Coding........ccoevererererereens 90
TEMPIALES ...t 90
Content Assist 99
Code Generators 100
Refactoring 104
Scrapbook 107
SUMMATY ..ottt ss e e sttt se e e e e e s 109
Chapter 5: Android Development Tools for EClipSe.........cccsssemssnsssansssansnnns 111
Preparing Eclipse k]
Installing Android Development TOOISc.coverererenenenensnsnnnnas 111
Installing the Android SDK........ 115
L EY LT T o (0] Yo 117
EXPIOFING ADT ..ottt ss s e s sas e s sas e sas e sn e en e e nnssnsens 121
Android Virtual Device Managerouovuvevsusnnens 121
Dalvik Debug Monitor SErver ... 128
TRACBVIBWeeeeecucrceeresiss e ss st et e e e E AR e e E A E e E e EnE e AR A e A nanananananansnananas 136

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

HIErArCRY VIBWET ...cucuceeisiicssss e s 138
Android Lint........coevuvevnirnnne 143
Releasing Applicationsccceeeeeenenenencrcresesesesenenenenes 146
£ 1113111172 149
Resources 149
Chapter 6: Project: Movie Playerccsusmmssmmsssmssnsssssssssssssssssassssassnsnsnnsns 191
An Overview of the Movie Player-........ 151
Starting the MoviePlayer Project 152
Using ADT Editors 157
Manifest Editorcocovnncnnnnincnssnnnnenes 158
LAYOUL EQITON........ccceeeeeeeeeeeceserere e se e e se s ne e 158
Resource Editor 167
Defining the Classes........cocvveneerereresenees 169
Movie Classccoummmnmnmnnnmennnsssssssesnns 169
Movie List Adapter Classccceereunee 175
Activity Class 179
Running the AppliCationccccceeenenenenesesesesesesesesesese s sesssssssssnnnas 181
£ 1113111172 184
Chapter 7: Android Native Development Using Eclipse..........ccssusssansssasssanss 185
The Android Native Development Kit................ 186
When 10 USE NALIVE COUB?oeeurererereeeeeeeeeees e e e sesasssssss s se s se e e s sesasansssssssssessnens 186
What Is Provided by the NDK? ... 187
Installing the Android NDK 188
Installing the NDK on Microsoft Windows 188
Installing the NDK on Mac 0S X................... 196
Installing the NDK on Linux .. 197
How the Android NDK IS STrUCTUFEM.........cccceiererererereririrernsersssss e sesasassssssssssns 198
How a Native Project Is Structured 199
Sequoyah for Eclipse 200
Installing Sequoyah............ccccevuenenene 200
Configuring Sequoyah 202
Adding Native Code Support... 203
Building with Native COMPONENtScccocoeermrererererererereeee e 206
JAVA TOOIS....cciirirrrr s ————————————————— 207
C Header and Stub File Generator: javah 209
Java Class File Disassembler: javap 210
The Java Native Interface.........c.ovvvninnnnnnnsssnnns 213
A Simple JNI Example 213
Data TYPES.....ccoereerereerereenens 216
SEING OPEIALIONS........corirecreirriererrrese s e sas e as e s a s s e s s e s an Rt sesae e seeRe e se et e sae e nnsne e nnnannnnnnns 218
Array 0perations........ccocvvnninsnssss s sesesesesesesesesees 218
Accessing Fields..........cocovrennenennnnnnas 219
Calling Methods........ccouvrmrensnsnnnnnensssssssessssssenes 221
Exception Handling 223
Local and Global References........ 224
Threadingcocoeverererererenenes 225

vii

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

il

TrOUDIESNOOLING.ceeererireririr i e E bbb nE e 227
Logging from Native Code 227
Debugging Native Code 228
Analyzing the STACK TIaCEScccvuiriiiiiir e bbb 235

10T 4114 OO 238

Resources. 238

Chapter 8: Project: Extending Movie Player for AVI Moviescucceerrisssenens 239
Handling Dependencies
Adding Native Support.....
Integrating AVILIbcccevennene.

Adding AVILib to the Project
Modifying the Android.mK File.

Implementing the AVI PIAYET . ..ot s se st ssns e

B (Lo F= 11 T
B Lo LA = T R
Updating Android.mk.

Defining the AVI Player Activity .

Defining the LAYOUL.cocoeeeeeeeeeee e se e e nenan
Defining the Activity

Modifying AndroidManifest.xml
Updating the STriNg RESOUICES......c.uiciiiiirire s e p s nnan

Scanning AVI Files into the Media Store
Running the APPLICALIONocoveeeeeieeieccceece e

Starting the Movie Player
Viewing the Gallery.....
Checking the Logs......

L5 (00111
LT 1111 -

Chapter 9: Android Scripting Using Eclipsecccivunsemmmmnssssnnnmsssssnsnsnsssnnns 221
Scripting Layer fOr ANUIOId.cococeceererererererereseeseee e e e e e e e sesss e e e se e e e e e ssssssnsssenenensn 2A
Script Interpreters .
Android RPC Proxy Client
L T 1o [T OO
Installing SL4A.
AdAING INEEIPIETEIS. ...cveeereeecee e e nr s
Executing Scripts.

Executing Scripts LOCAIlY 0N @ DEVICE.........cccceereeererererererereseseses s ss s ssssnas
Executing SCHPtS REMOTEIY.coveveeeeeieeece et

AddiNg @ USEI INTEITACEceveeeeeecececeee e e

DT 10T R 7 T R
WED-BASEU UIS . ..ot s s e e e e e e e s e e R e e e p e s
Full-Screen Ul.

Packaging Scripts As APKs.
Downloading the Project Template.

| EEEEEREEEEHERR

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Incorporating the SCHPt Filecceeeeecesccrecere e 305
Deploying and Running the Application...........c.cocoeevrnnnnnnes 306
311311117 306
Chapter 10: Project: Movie Player Using HTML and JavaScript 307
GEtting the SLAA SOUICE COUE........coccerereeeeerereseeesreresessssese e sse s sse s as s s ssssse s s s s sse e s sssnsseseneas 307
Preparing the Workspacecucvemeinesnsnssnssnssnsssesnessessnnnns 308
Setting the Java Compiler Compliance Level 309
Installing Mercurial 309
Installing the Mercurial ECIIPSE PlUG=iNc.coccoeeeeeeeeeeerererererereresss e se s nees 3
Checking Out SLAA SOUICE COUE.......crurereeeurrrereseessssesesesssssesessssssesessssssssesesssssssssessssssssessssasesesssssssenens 312
Movie Player Script Project 315
Cloning the Template Projectccocovoeeenenenercncrcncncrereseeerenens 315
Linking to SL4A Framework Code 316
Renaming the Project PACKagecccourrrerenrsrnenesesssnnesesess e 319
Adding the Movie Fagade..........c.cccovererennee 319
Creating the MoVieFacade Classcovreeeuerrerenessneresessssnesesessssssesesssssssesessaees 321
Registering the Fagade..........c.cocoevrenenccnrereenes 326
Exporting the MOVie FAGAUE ... 327
Adding the Script............. 327
The HTML Part........ccovcvverenenensnnereenes 328
The JavaSCHiPt Partccovieirrssce e seseens 328
Running the Applicationccocvvnievnnennn e 331
3101311172 T 332
RESOUICES ... 332
Appendix A: Testing Android Applications...........ccoussmmemmssnsmsssmssssssnsssnssne: 333
LT T N 333
ASSEITIONS....vcsccs e ————— 334
Unit Testing 335
Mock Objects......ccocvererererererenns 336
Functional Testing 338
Ul Operations........ccceuene 338
Test Projects 339
RUNNING TESTS ...t 342
Measuring TeSt COUE COVEIAGE........ccuururrerererererererererereresessssssssssssssssssssssssssssesesssssesssssssssssssssssssssssssssssssssssnssens 344
Setting Up EMMA Access 345
Enabling EMMA for TESE RUNS ..o e 345
R T T] o T 348

111 U —-. T |

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

About the Author

X

downloaded from: lib.ommolkefab.ir

Onur Cinar has more than 17 years of experience in design,
development, and management of large-scale, complex software
projects, primarily in mobile and telecommunication space. His
expertise spans VoIP, video communication, mobile applications,
grid computing, and networking technologies on diverse
platforms. He has been actively working with the Android platform
since its beginning. He has a Bachelor of Science degree in
Computer Science from Drexel University in Philadelphia,
Pennsylvania. He is currently working at Skype as the Senior
Product Engineering Manager for Skype clients on the Android
platform.

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

About the Technical Reviewer

downloaded from: lib.ommolkefab.ir

Pierpaolo Cira has been working as a software developer, software
architect, and system integrator at the University of Salento in Italy since
he was 19. He has been involved in many e-business, knowledge
management, e-learning, and e-tourism research projects, in
collaboration with companies such as Oracle and IBM. He also
collaborated on the design and development for the first Semantics for
Business Vocabulary and Rules (SBVR) editor, based on the Eclipse Plug-
in Development Environment (PDE). He writes technical articles for IT
portals, and is involved in several high school and public administration
educational activities. Currently, he is working on the public web
systems for the University of Salento, based on Liferay and Alfresco.

Xi

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Scripting Layer for Android (SL4A),
APKs package (cont.)
project template, 300—302
script file, 305-306
ZIP archive file, 302
components
android RPC proxy client,
272-273
facades, 273-275
script interpreters, 271-272
full-screen Ul
fullQueryDetail method, 299-
300
fullSetList method, 298-299
result, 300
script layout, 298
XML-based android, 296-298
installation
command line, 276
menu bar, 277

non-Market applications, 276-

277
statistics, 277
interactive console mode, 280-
281
interpreters
application, 279-280
installation, 278
installing python, 279
python download, 278
remote execution
ADB, 283
remote procedure call, 284—
287
script editor
application menu bar, 282
browser methods, 282
launch, 281
python, 281
scripting languages, 271
user interfaces
calcuation result, 291-292

dialogs and menus, 287-288

downloaded from: lib.ommolkefab.ir

numbers, 288-289

operation, 289-291
web-based Uls
dialog-based interfaces, 292
HTML and CSS, 292-293
JavaScript, 293-294
python application, 294-
296
Search, Eclipse
boilerplate searches, 89-90
file search, 87-88
Java search, 88-89
Search view, 89
Security, 20-21
Sensor service, 23
Sequoyah
adding Native Code Support, 203-
206
building with native components,
206-207
configuration, 202—-203
installation, 200-202
Service life cycle, 38—40
setup.exe application, 188
Shared preferences, 34
SL4A source code. See also Scripting
Layer for Android (SL4A)
import, 315
Java compiler, 309
Mercurial installation
Eclipse plug-in, 311-312
Linux, 311
Mac 0S X, 309-310
movie player script project
export, 318-319
framework, 316
project selection, 316-318
network connection, 313
R5 revision, 314
repositories, 313
workspace, 307-308
sources directory, 198
SQLite databases, 34

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Stress testing, 348

Synchronization, 226

T
Table layout, 32

Telephony service, 23
Testing. See Android application

testing

Text mode debugging using ndk-gdb,

229-231
Threading, 11

constraints, 225-226

native threads, 226-227
synchronization, 226

TODO keywords, 86
Toolbars, 69

toolchains directory, 198
Type Hierarchy view, 79-81

U
USB service, 23

Vv

Vibrator service, 24
View object, 31
Views

fast views, 66—67

Quick views, 67

downloaded from: lib.ommolkefab.ir

selection, 65
Viking Killer. See Low memory Killer

W, X
Wakelocks, 11-12
Wallpaper service, 24
Widget, 31
Wi-Fi peer-to-peer service, 24
Wi-Fi service, 24
Workbench, 62-63
Working sets, 74-77
Assign Working Sets selection, 74
naming and adding elements, 75—
76
New Working Set wizard, 74-75
Package Explorer view
filtered, 77
menu, 76-77
Working Set Assignments dialog,
76
Workspace, 60-62

Y

Yet Another Flash File System
(YAFFS2), 19

Z
Zygote, 14-16

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://www.it-ebooks.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction

	Android Primer
	Android History
	Android Versions
	Android Platform Architecture
	Hardware Abstraction Layer
	Zygote
	Dalvik Virtual Machine
	File System
	Security
	Services

	Android Deployment and Distribution
	Summary

	Application Architecture
	Android Components
	Activities and Intents
	Services
	Broadcast Receivers
	Content Providers
	Views, Widgets, Layouts, and Menus

	Resources
	Data Storage
	Android Life Cycles
	Activity Life Cycle
	Service Life Cycle

	Packaging
	Android Manifest
	Summary

	Eclipse Primer
	Eclipse History
	Eclipse Architecture
	Installing the Java Development Kit
	Installing the JDK on Windows
	Installing the JDK on Mac OS X
	Installing the JDK on Linux

	Installing Eclipse
	Installing Eclipse on Windows
	Installing Eclipse on Mac OS X
	Installing Eclipse on Linux

	Exploring Eclipse
	Workspace
	Workbench
	Perspectives
	Editors
	Menus
	Toolbars
	Projects

	Summary
	References

	Mastering Eclipse
	Navigation
	Working Sets
	Outline View
	Type Hierarchy View
	Call Hierarchy View
	Markers
	Search

	Fast Coding
	Templates
	Content Assist
	Code Generators
	Refactoring
	Scrapbook

	Summary

	Android Development Tools for Eclipse
	Preparing Eclipse
	Installing Android Development Tools
	Installing the Android SDK
	Installing Platform APIs

	Exploring ADT
	Android Virtual Device Manager
	Dalvik Debug Monitor Server
	Traceview
	Android Lint

	Releasing Applications
	Summary
	Resources

	Project: Movie Player
	An Overview of the Movie Player
	Starting the MoviePlayer Project
	Using ADT Editors
	Manifest Editor
	Layout Editor
	Resource Editor

	Defining the Classes
	Movie Class
	Movie List Adapter Class
	Activity Class
	Running the Application

	Summary

	Android Native Development Using Eclipse
	The Android Native Development Kit
	When to Use Native Code?
	What Is Provided by the NDK?

	Installing the Android NDK
	Installing the NDK on Microsoft Windows
	Installing the NDK on Mac OS X
	Installing the NDK on Linux

	How the Android NDK Is Structured
	How a Native Project Is Structured
	Sequoyah for Eclipse
	Installing Sequoyah
	Configuring Sequoyah
	Adding Native Code Support
	Building with Native Components

	Java Tools
	C Header and Stub File Generator: javah
	Java Class File Disassembler: javap

	The Java Native Interface
	A Simple JNI Example
	Data Types
	String Operations
	Array Operations
	Accessing Fields
	Calling Methods
	Exception Handling
	Local and Global References
	Threading

	Troubleshooting
	Logging from Native Code
	Debugging Native Code
	Analyzing the Stack Traces

	Summary
	Resources

	Project: Extending Movie Player for AVI Movies
	Handling Dependencies
	Adding Native Support
	Integrating AVILib
	Adding AVILib to the Project
	Modifying the Android.mk File

	Implementing the AVI Player
	The Java Part
	The Native Part
	Updating Android.mk

	Defining the AVI Player Activity
	Defining the Layout
	Defining the Activity
	Modifying AndroidManifest.xml
	Updating the String Resources

	Scanning AVI Files into the Media Store
	Running the Application
	Starting the Movie Player
	Viewing the Gallery
	Checking the Logs

	Homework
	Summary

	Android Scripting Using Eclipse
	Scripting Layer for Android
	Script Interpreters
	Android RPC Proxy Client
	Façades

	Installing SL4A
	Adding Interpreters
	Executing Scripts
	Executing Scripts Locally on a Device
	Executing Scripts Remotely

	Adding a User Interface
	Dialog-Based UIs
	Web-Based UIs
	Full-Screen UI

	Packaging Scripts As APKs
	Downloading the Project Template
	Configuring the Project
	Incorporating the Script File
	Deploying and Running the Application

	Summary

	Project: Movie Player Using HTML and JavaScript
	Getting the SL4A Source Code
	Preparing the Workspace
	Setting the Java Compiler Compliance Level
	Installing Mercurial
	Installing the Mercurial Eclipse Plug-in
	Checking Out SL4A Source Code

	Movie Player Script Project
	Cloning the Template Project
	Linking to SL4A Framework Code
	Renaming the Project Package

	Adding the Movie Façade
	Creating the MovieFacade Class
	Registering the Façade
	Exporting the Movie Façade

	Adding the Script
	The HTML Part
	The JavaScript Part

	Running the Application
	Summary
	Resources

	Testing Android Applications
	JUnit Basics
	Assertions
	Unit Testing
	Mock Objects

	Functional Testing
	UI Operations

	Test Projects
	Running Tests
	Measuring Test Code Coverage
	Setting Up EMMA Access
	Enabling EMMA for Test Runs

	Stress Testing

	Index
	A
	B
	C
	E
	D
	H
	F
	G
	I
	J
	L
	M
	P
	Q
	R
	N
	S
	O
	T .W, X
	U
	V .Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

