Helpr for Welr Awthors

The Definitive Guide

O,REILLY. Chuckh Musciano & Bl Kermedy

HTML & XHTML: The Definitive Guide
4th edition

Chuck Musciano & Bill Kennedy

Fourth Edition August 2000

ISBN: 0-596-00026-X, 677 pages

This complete guide is full of examples, sample code, and practical hands-on
advice for creating truly effective web pages and mastering advanced features.

Web authors learn how to insert images, create useful links and searchable
documents, use Netscape extensions, design great forms, and much more.

The fourth edition covers XHTML 1.0, HTML 4.01, Netscape 6.0, and Internet
Explorer 6.0, plus all the common extensions.

Table of Contents

Preface

1. HTML, XHTML, and the World Wide Web
1.1. The Internet, Intranets,and Extranets
1.2. Talking the Internet Talk
1.3. HTML: What It Is
1.4. XHTML: What It Is
1.5. HTML and XHTML: What They Aren't
1.6. Nonstandard Extensions
1.7. Tools for the Web Designer

2. Quick Start
2.1. Writing Tools
2.2. A First HTML Document
2.3. Embedded Tags
2.4. HTML Skeleton
2.5. The Flesh on an HTML or XHTML Document
2.6. Text
2.7. Hyperlinks
2.8. Images Are Special
2.9. Lists, Searchable Documents, and Forms
2.10. Tables
2.11. Frames
2.12. Style Sheets and JavaScript
2.13. Forging Ahead

3. Anatomy of an HTML Document
3.1. Appearances Can Deceive
3.2. Structure of an HTML Document
3.3. Tags and Attributes
3.4. Well-Formed Documents and XHTML
3.5. Document Content
3.6. HTML Document Elements
3.7. The Document Header
3.8. The Document Body
3.9. Editorial Markup
3.10. The <bdo> Tag

4. Text Basics
4.1. Divisions and Paragraphs
4.2. Headings
4.3. Changing Text Appearance
4.4. Content-Based Style Tags
4.5. Physical Style Tags
4.6. HTML's Expanded Font Handling
4.7. Precise Spacing and Layout
4.8. Block Quotes
4.9. Addresses
4.10. Special Character Encoding

5. Rules, Images, and Multimedia
5.1. Horizontal Rules
5.2. Inserting Images in Your Documents
5.3. Document Colors and Background Images
5.4. Background Audio
5.5. Animated Text
5.6. Other Multimedia Content

14

27

42

82

Table of Contents (cont...)

6. Links and Webs
6.1. Hypertext Basics
6.2. Referencing Documents: The URL
6.3. Creating Hyperlinks
6.4. Creating Effective Links
6.5. Mouse-Sensitive Images
6.6. Creating Searchable Documents
6.7. Relationships
6.8. Supporting Document Automation

7. Formatted Lists
7.1. Unordered Lists
7.2. Ordered Lists
7.3. The Tag
7.4. Nesting Lists
7.5. Definition Lists
7.6. Appropriate List Usage
7.7. Directory Lists
7.8. Menu Lists

8. Cascading Style Sheets
8.1. The Elements of Styles
8.2. Style Syntax
8.3. Style Classes
8.4. Style Properties
8.5. Tag-less Styles: The Tag
8.6. Applying Styles to Documents

9. Forms
9.1. Form Fundamentals
9.2. The <form> Tag
9.3. A Simple Form Example
9.4. Using Email to Collect Form Data
9.5. The <input> Tag
9.6. The <button> Tag
9.7. Multiline Text Areas
9.8. Multiple Choice Elements
9.9. General Form Control Attributes
9.10. Labeling and Grouping Form Elements
9.11. Creating Effective Forms
9.12. Forms Programming

10. Tables
10.1. The Standard Table Model
10.2. Table Tags
10.3. Newest Table Tags
10.4. Beyond Ordinary Tables

11. Frames
11.1. An Overview of Frames
11.2. Frame Tags
11.3. Frame Layout
11.4. Frame Contents
11.5. The <noframes> Tag
11.6. Inline Frames
11.7. Named Frame or Window Targets

116

152

168

201

236

261

Table of Contents (cont...)

12. Executable Content
12.1. Applets and Objects
12.2. Embedded Content
12.3. JavaScript
12.4. JavaScript Style Sheets

13. Dynamic Documents
13.1. An Overview of Dynamiic Documents
13.2. Client-Pull Documents
13.3. Server -Push Documents

14. Netscape Layout Extensions
14.1. Creating Whitespace
14.2. Multicolumn Layout
14.3. Layers

15. XML
15.1. Languages and Metalanguages
15.2. Documents and DTDs
15.3. Understanding XML DTDs
15.4. Element Grammar
15.5. Element Attributes
15.6. Conditional Sections
15.7. Building an XML DTD
15.8. Using XML

16. XHTML
16.1. Why XHTML?
16.2. Creating XHTML Documents
16.3. HTML Versus XHTML
16.4. Should You Use XHTML?

17. Tips, Tricks, and Hacks

17.1. Top of the Tips

17.2. Trivial or Abusive?

17.3. Custom Bullets

17.4. Tricks with Tables

17.5. Transparent Images

17.6. Tricks with Windows and Frames
A. HTML Grammar

B. HTML/XHTML Tag Quick Reference
Core Attributes

C. Cascading Style Sheet Properties Quick Reference
D. The HTML 4.01 DTD

E. The XHTML 1.0 DTD

F. Character Entities

G. Color Names and Values

Colophon

Article - XHTML: Bridging HTML & XML

276

300

306

322

334

343

354

369

404
409
420
432
439
442

443

Description

HTML is changing so fast it's almost impossible to keep up with developments. XHTML is HTML 4.0 rewritten in
XML; it provides the precision of XML while retaining the flexibility of HTML. HTML & XHTML: The Definitive
Guide, 4th Edition, brings it all together. It's the most comprehensive book available on HTML and XHTML
today. It covers Netscape Navigator 6.0, Internet Explorer 5.0, HTML 4.01, XHTML 1.0, JavaScript, Style sheets,
Layers, and all of the features supported by the popular web browsers.

Learning HTML and XHTML is like learning any new language, computer or human. Most students first immerse
themselves in examples. Studying others is a natural way to learn, making learning easy and fun. Imitation can
take learning only so far, though. It's as easy to learn bad habits through imitation as it is to acquire good ones.
The better way to become HTML-fluent is through a comprehensive reference that covers the language syntax,
semantics, and variations in detail and demonstrates the difference between good and bad usage.

HTML & XHTML: The Definitive Guide, 4th Edition, helps in both ways: the authors cover every element of
HTML/XHTML in detail, explaining how each element works and how it interacts with other elements. Many
hints about HTML/XHTML style smooth the way for writing documents that range from simple online
documentation to complex presentations. With hundreds of examples, the book gives web authors models for
writing their own effective web pages and for mastering advanced features, like style sheets and frames.

HTML & XHTML: The Definitive Guide, 4th Edition, shows how to:
e Implement the XHTML 1.0 standard and prepare web pages for the transition to XML browsers
e Use style sheets and layers to control a document's appearance
e C(Create tables, from simple to complex
e Use frames to coordinate sets of documents
e Design and build interactive forms and dynamic documents
e Insertimages, sound files, video, Java applets, and JavaScript programs
e Create documents that look good on a variety of browsers

e Use new features to support multiple languages

HTML & XHTML: The Definitive Guide

Preface

Learning Hypertext Markup Language (HTML) and Extensible Hypertext Markup Language (XHTML) is like
learning any new language, computer or human. Most students first immerse themselves in examples. Studying
others is a natural way to learn, making learning easy and fun. Our advice to anyone wanting to learn HTML and
XHTML is to get out there on the World Wide Web with a suitable browser and see for yourself what looks good,
what's effective, what works for you. Examine others' documents and ponder the possibilities. Mimicry is how
many of the current webmasters have learned the language.

Imitation can take you only so far, though. Examples can be both good and bad. Learning by example will help
you talk the talk, but not walk the walk. To become truly conversant, you must learn how to use the language
appropriately in many different situations. You could learn all that by example, if you live long enough.

Remember, too, that computer-based languages are more explicit than human languages. You've got to get the
language syntax correct or it won't work. Then, too, there is the problem of "standards." Committees of academics
and industry experts define the proper syntax and usage of a computer language like HTML. The problem is that
browser manufacturers like Netscape Communications Corporation (now an America Online company) and
Microsoft Corporation choose the parts of the standard they will use and which parts they will ignore. They even
make up their own parts, which may eventually become standards.

Standards change, too. As we write this current edition, HTML is undergoing a conversion into XHTML, making
it an application of the Extensible Markup Language (XML). HTML and XHTML are so similar that we often
refer to them as a single language. But there are key differences; more about this later in the preface.

To be safe, the way to become fluent in HTML and XHTML is through a comprehensive, up-to-date language
reference that covers the language syntax, semantics, and variations in detail to help you distinguish between
good and bad usage.

There's one more step leading to fluency in a language. To become a true master of the language, you need to
develop your own style. That means knowing not only what is appropriate, but what is effective. Layout matters.
Alot. So does the order of presentation within a document, between documents, and between document
collections.

Our goal in writing this book is to help you become fluent in HTML and XHTML, fully versed in their syntax,
semantics, and elements of style. We take the natural learning approach, using examples: good ones, of course.
We cover every element of the currently accepted versions (HTML 4.01 and XHTML 1.0) of the languages in
detail, as well as all of the current extensions supported by the popular browsers, explaining how each element
works and how it interacts with all the other elements.

And, with all due respect to Strunk and White, throughout the book we will give you suggestions for style and
composition to help you decide how best to use HTML and XHTML to accomplish a variety of tasks, from simple
online documentation to complex marketing and sales presentations. We'll show you what works and what
doesn't, what makes sense to those who view your pages, and what might be confusing.

In short, this book is a complete guide to creating documents using HTML and XHTML, starting with basic
syntax and semantics, and finishing with broad style guidelines to help you create beautiful, informative,
accessible documents that you'll be proud to deliver to your browsers.

Our Audience

We wrote this book for anyone interested in learning and using the language of the Web, from the most casual
user to the full-time design professional. We don't expect you to have any experience in HTML or XHTML before
picking up this book. In fact, we don't even expect that you've ever browsed the World Wide Web, although we'd
be very surprised if you haven't at least experimented with this technology by now. Being connected to the
Internet is not necessary to use this book, but if you're not connected, this book becomes like a travel guide for the
homebound.

The only things we ask you to have are a computer, a text editor that can create simple ASCII text files, and copies
of the latest leading web browsers - preferably Netscape Navigator and Internet Explorer. Because HTML and
XHTML documents are stored in a universally accepted format - ASCII text - and because the languages are
completely independent of any specific computer, we won't even make an assumption about the kind of computer
you're using. However, browsers do vary by platform and operating system, which means that your HTML or
XHTML documents can look quite different depending on the computer and version of browser. We will explain
how the various browsers use certain language features, paying particular attention to how they are different.

If you are new to HTML, the World Wide Web, or hypertext documentation in general, you should start by

reading Chapter 1. In it, we describe how all the World Wide Web technologies come together to create webs of
interrelated documents.

page 1

HTML & XHTML: The Definitive Guide

If you are already familiar with the Web, but not with HTML or XHTML specifically, or if you are interested in the
new features in the latest standard version of HTML and XHTML, start by reading Chapter 2. This chapter is a
brief overview of the most important features of the language and serves as a roadmap to how we approach the
language in the remainder of the book.

Subsequent chapters deal with specific language features in a roughly top-down approach to HTML and XHTML.
Read them in order for a complete tour through the language, or jump around to find the exact feature you're
interested in.

Text Conventions

Throughout the book, we use a constant-width typeface to highlight any literal element of the HTML/XHTML
standards, tags, and attributes. We always use lowercase letters for tags.l We use italic to indicate new concepts
when they are defined and for those elements you need to supply when creating your own documents, such as tag
attributes or user-defined strings.

1 HTML is case-insensitive with regard to tag and attribute names, but XHTML is case-sensitive. And some
HTML items like source filenames, are case-sensitive, so be careful.

We discuss elements of the language throughout the book, but you'll find each one covered in depth (some might
say in nauseating detail) in a shorthand, quick-reference definition box that looks like the following box. The first
line of the box contains the element name, followed by a brief description of its function. Next, we list the various
attributes, if any, of the element: those things that you may or must specify as part of the element.

<html>

Function:

Delimits a complete HTML document

Attributes:
DIR
VERSION
LANG
End tag:
</html>; may be omitted in HTML
Contains:

head_tag, body_tag, frames

We use the following symbols to identify tags and attributes that are not in the HTML 4.01 or XHTML 1.0
standards, but are additions to the languages:

(N Netscape Navigator extension to the standards

o Internet Explorer extension to the standards

The description also includes the ending tag, if any, for the element, along with a general indication whether or
not the end tag may be safely omitted in general use with HTML. With the few tags that do not have an end tag in
HTML, but for which XHTML requires one, the language lets you indicate that ending with a forward slash (/) at
the end of the tag, such as
. In these cases, the tag also may contain attributes, indicated with an
intervening elipsis, such as <br ... />.

"Contains" names the rule in the HTML grammar that defines the elements to be placed within this tag. Similarly,
"Used in" lists those rules that allow this tag as part of their content. These rules are defined in Appendix A.

page 2

HTML & XHTML: The Definitive Guide

Finally, HTML and XHTML are fairly intertwined languages. You will occasionally use elements in different ways
depending on context, and many elements share identical attributes. Wherever possible, we place a cross-
reference in the text that leads you to a related discussion elsewhere in the book. These cross-references, like the
one at the end of this paragraph, serve as a crude paper model of hypertext documentation, one that would be
replaced with a true hypertext link should this book be delivered in an electronic format. Section 3.3.1

We encourage you to follow these references whenever possible. Often, we'll only cover an attribute briefly and
expect you to jump to the cross-reference for a more detailed discussion. In other cases, following the link will

take you to alternative uses of the element under discussion or to style and usage suggestions that relate to the
current element.

Versions and Semantics

The latest HTML standard is Version 4.01, but most updates and changes to the language standard were made in
Version 4.0. Therefore, throughout the book, we generally refer to the HTML standard as HTML 4, encompassing
all Versions 4.0 and later. We explicitly state the "dot" version number only when it is relevant.

The XHTML standard is currently in its first iteration, 1.0. For the most part, XHTML 1.0 is identical to HTML
4.01; we detail their differences in Chapter 16. Throughout the book, we specifically note cases where XHTML
handles a feature or element differently than the original language, HTML.

The HTML and XHTML standards make very clear the distinction between "element types" of a document and

the markup "tags" that delimit those elements. For example, the standard refers to the paragraph element type,
which is not the same as the <p> tag. The paragraph element consists of the accepted element-type name within
the starting tag (<p>), intervening content, and the ending paragraph (</p>) tag. The <p> tag is the starting tag
for the paragraph element, and its contents, known as attributes, ultimately affect the paragraph element type's
contents.

Although these are important distinctions, we're pragmatists. It is the markup tag that authors apply in their
documents and that affects the intervening content, if any. Accordingly, throughout the book, we relax the
distinction between element types and tags, most often talking about tags and all related contents, not necessarily
using the term element-type when it would be technically appropriate to make the distinction. Forgive us the
transgression, but we do so for the sake of clarity.

Is HTML Going Away?

Heavens, no. Why would we even think such a thing?

Well, actually, the language has reached middle age in standard Version 4.01 and is not expected to change again.
Rather, HTML is being subsumed and modularized as part of Extensible Markup Language (XML). Its new name
is XHTML, Extensible Hypertext Markup Language.

The emergence of XHTML is just another chapter in the often tumultuous history of HTML and the World Wide
Web, where confusion for authors is the norm, not the exception. At the worst point, the elders of the World Wide
Web Consortium (W3C) responsible for accepted and acceptable uses of the language - i.e., standards - lost
control of the language in the browser "wars" between Netscape Communications and Microsoft. The abortive
HTML+ standard never got off the ground, and HTML 3.0 became so bogged down in debate that the W3C
simply shelved the entire draft standard. HTML 3.0 never happened, despite what some opportunistic marketers
claimed in their literature. Instead, by late 1996, the browser manufacturers convinced the W3C to release HTML
standard Version 3.2, which for all intents and purposes simply standardized most of the leading browser's
(Netscape's) HTML extensions.

Fortunately for those of us who appreciate and strongly support standards, the W3C took back its primacy role
with HTML 4.0, which stands today as HTML Version 4.01, released in December 1999. The standard is clearer
and cleaner than any previous ones, establishes solid implementation models for consistency across browsers and
platforms, provides strong supports and incentives for the companion Cascading Style Sheets (CSS) standard for
HTML-based displays, and makes provisions for alternative (non-visual) user-agents, as well as for more
universal language supports.

Cleaner and clearer aside, the W3C realized that HTML could never keep up with the demands of the web
community for more ways to distribute, process, and display documents. HTML only offers a limited set of
document creation primitives and is hopelessly incapable of handling non-traditional content like chemical
formulae, musical notation, or mathematical expressions. Nor can it well support alternative display media, such
as handheld computers or intelligent cellular phones, for instance.

page 3

HTML & XHTML: The Definitive Guide

To address these demands, the W3C developed the Extensible Markup Language (XML) standard. XML provides
the way to create new, standards-based markup languages that don't take an act of the W3C to implement. XML-
compliant languages deliver information that can be parsed, processed, displayed, sliced, and diced by the many
different communication technologies that have emerged since the Web sparked the digital communication
revolution a decade ago. XHTML is HTML reformulated to adhere to the XML standard. It is the foundation
language for the future of the Web.

Why not just drop HTML for XHTML? For many reasons. First and foremost, don't expect everyone to just drop
everything and start using XHTML standards (Version 1.0 just got recommended in January 2000). There's just
too much current investment in HTML-based documentation and expertise for that to happen anytime soon.
Besides, XHTML is HTML 4.01 reformulated as an application of XML. Know HTML 4 and you're all ready for
the future.

[21 We plumb the depths of XML and XHTML in Chapter 15 and Chapter 16.

The paradox in all this is that even the HTML 4.01 standard is not the definitive resource. There are many more
features of HTML in popular use and supported by the popular browsers than are included in the latest language
standard. And there are many parts of the standards that are ignored. We promise you, things can get downright
confusing when you're trying to sort it all out.

We've managed to sort things out, so you don't have to sweat over what works with what browser and what
doesn't work. This book, therefore, is the definitive guide to HTML and XHTML. We give details for all the
elements of the HTML 4.01 and XHTML 1.0 standards, plus the variety of interesting and useful extensions to the
language - some proposed standards - that the popular browser manufacturers have chosen to include in their
products, such as:

e (Cascading Style Sheets
e Java and JavaScript

e Layers

e Multiple columns

And while we tell you about each and every feature of the language, standard or not, we also tell you which
browsers or different versions of the same browser implement a particular extension and which don't. That's
critical knowledge when you want to create web pages that take advantage of the latest version of Netscape
Navigator versus pages that are accessible to the larger number of people using Internet Explorer or even Lynx, a
once-popular text-only browser for Unix systems.

In addition, there are a few things that are closely related but not directly part of HTML. For example, we touch,
but do not handle, CGI and Java programming. CGI and Java programs work closely with HTML documents and
run with or alongside browsers, but are not part of the language itself, so we don't delve into them. Besides, they
are comprehensive topics that deserve their own books, such as CGI Programming with Perl, by Scott Guelich,
Shishir Gundavaram, and Gunther Birzneiks, and Java in a Nutshell, by David Flanagan, both published by
O'Reilly & Associates.

This is your definitive guide to HTML and XHTML as they are and should be used, including every extension we

could find. Some extensions aren't documented anywhere, even in the plethora of online guides. But, if we've
missed anything, certainly let us know and we'll put it in the next edition.

page 4

HTML & XHTML: The Definitive Guide

We'd Like to Hear from You

We have tested and verified all of the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors you find, as
well as your suggestions for future editions, by writing:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send email to:
info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

Since the HTML and XHTML standards and browser additions to the languages are evolving so rapidly, some of
the information in this book may be slightly out of date by the time you read it. We have a web site for the book,
where we'll list errata and plans for future editions. Here you'll also find all the source code from the book
available for download so you don't have to type it all in:

http://www.oreilly.com/catalog/htmlg/
For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com/
Acknowledgments

We did not compose, and certainly could not have composed, this book without generous contributions from
many people. Our wives, Jeanne and Cindy, and our children, Eva, Ethan, Courtney, and Cole (they happened
before we started writing), formed the front lines of support. And there are numerous neighbors, friends, and
colleagues who helped by sharing ideas, testing browsers, and letting us use their equipment to explore HTML.
You know who you are, and we thank you all.

In addition, we thank our technical reviewers, Robert Eckstein, Kane Scarlett, Eric Raymond, and Chris Tacy, for
carefully scrutinizing our work. We took most of your keen suggestions. We especially thank Mike Loukides, our
editor, who had to bring to bear his vast experience in book publishing to keep us two mavericks corralled. And
special thanks to Deb Cameron for her perseverance and insight in bringing the Fourth Edition to fruition.

pages

HTML & XHTML: The Definitive Guide

Chapter 1. HTML, XHTML, and the World Wide Web

Though it began as a military experiment and spent its adolescence as a sandbox for academics and eccentrics,
recent events have transformed the worldwide network of computer networks - also known as the Internet - into
a rapidly growing and wildly diversified community of computer users and information vendors. Today, you can
bump into Internet users of nearly any and all nationalities, of any and all persuasions, from serious to frivolous
individuals, from businesses to nonprofit organizations, and from born-again Christian evangelists to
pornographers.

In many ways, the World Wide Web - the open community of hypertext-enabled document servers and readers
on the Internet - is responsible for the meteoric rise in the network's popularity. You, too, can become a valued
member by contributing: writing HTML and XHTML documents and then making them available to web surfers
worldwide.

Let's climb up the Internet family tree to gain some deeper insight into its magnificence, not only as an exercise of
curiosity, but to help us better understand just who and what it is we are dealing with when we go online.

1.1 The Internet, Intranets,and Extranets

Although popular media accounts are often confused and confusing, the concept of the Internet really is rather
simple. It's a worldwide collection of computer networks - a network of networks - sharing digital information via
a common set of networking and software protocols. Nearly anyone can connect a computer to the Internet and
immediately communicate with other computers and users that are on the Net.

Networks are not new to computers. What makes the Internet global network unique is its worldwide collection of
digital telecommunication links that share a common set of computer-network technologies, protocols, and
applications. So whether you use a PC with Microsoft Windows 2000 or Linux or have an ancient Apple Ile, when
connected to the Internet, the computers all speak the same networking language and use functionally identical
programs so that you can exchange information - even multimedia pictures and sound - with someone next door
or across the planet.

The common and now quite familiar programs people use to communicate and distribute their work over the
Internet have also found their way into private and semi-private networks. These so-called intranets and
extranets use the same software, applications, and networking protocols of the Internet. But unlike the Internet,
intranets are private networks, usually unconnected to outside institutional boundaries and with restricted access
to only members of the institution. Likewise, extranets restrict access, but use the Internet to provide services to
members.

The Internet, on the other hand, seemingly has no restrictions. Anyone with a computer and the right networking
software and connection can "get on the Net" and begin exchanging their words, sounds, and pictures with others
around the world, day or night: no membership required. And that's precisely what is confusing about the
Internet.

Like an oriental bazaar, the Internet is not well organized, there are few content guides, and it can take a lot of
time and technical expertise to tap its full potential. That's because...

1.1.1 In the Beginning

The Internet began in the late 1960s as an experiment in the design of robust computer networks. The goal was to
construct a network of computers that could withstand the loss of several machines without compromising the
ability of the remaining ones to communicate. Funding came from the U.S. Department of Defense, which had a
vested interest in building information networks that could withstand nuclear attack.

The resulting network was a marvelous technical success, but was limited in size and scope. For the most part,
only defense contractors and academic institutions could gain access to what was then known as the ARPAnet
(Advanced Research Projects Agency network of the Department of Defense).

With the advent of high-speed modems for digital communication over common phone lines, some individuals
and organizations not directly tied to the main digital pipelines began connecting and taking advantage of the
network's advanced and global communications. Nonetheless, it wasn't until these last few years (around 1993,
actually) that the Internet really took off.

Several crucial events led to the meteoric rise in popularity of the Internet. First, in the early 1990s, businesses
and individuals eager to take advantage of the ease and power of global digital communications finally pressured
the largest computer networks on the mostly U.S. government-funded Internet to open their systems for nearly
unrestricted traffic. (Remember, the network wasn't designed to route information based on content - meaning
that commercial messages went through university computers that at the time forbade such activity.)

page 6

HTML & XHTML: The Definitive Guide

True to their academic traditions of free exchange and sharing, many of the original Internet members continued
to make substantial portions of their electronic collections of documents and software available to the newcomers
- free for the taking! Global communications, a wealth of free software and information: who could resist?

Well, frankly, the Internet was a tough row to hoe back then. Getting connected and using the various software
tools, if they were even available for their computers, presented an insurmountable technology barrier for most
people. And most available information was plain-vanilla ASCII about academic subjects, not the neatly packaged
fare that attracts users to online services such as America Online, Prodigy, or CompuServe. The Internet was just
too disorganized, and, outside of the government and academia, few people had the knowledge or interest to learn
how to use the arcane software or the time to spend rummaging through documents looking for ones of interest.

1.1.2 HTML and the World Wide Web

It took another spark to light the Internet rocket. At about the same time the Internet opened up for business,
some physicists at CERN, the European Particle Physics Laboratory, released an authoring language and
distribution system they developed for creating and sharing multimedia-enabled, integrated electronic
documents over the Internet. And so was born Hypertext Markup Language (HTML), browser software, and the
World Wide Web. No longer did authors have to distribute their work as fragmented collections of pictures,
sounds, and text. HTML unified those elements. Moreover, the World Wide Web's systems enabled hypertext
linking, whereby documents automatically reference other documents, located anywhere around the world: less
rummaging, more productive time online.

Lift-off happened when some bright students and faculty at the National Center for Supercomputing Applications
(NCSA) at the University of Illinois, Urbana-Champaign wrote a web browser called Mosaic. Although designed
primarily for viewing HTML documents, the software also had built-in tools to access the much more prolific
resources on the Internet, such as FTP archives of software and Gopher-organized collections of documents.

With versions based on easy-to-use graphical-user interfaces familiar to most computer owners, Mosaic became
an instant success. It, like most Internet software, was available on the Net for free. Millions of users snatched up
a copy and began surfing the Internet for "cool web pages."”

1.1.3 Golden Threads

There you have the history of the Internet and the World Wide Web in a nutshell: from rags to riches in just a few
short years. The Internet has spawned an entirely new medium for worldwide information exchange and
commerce, and its pioneers are profiting well. For instance, when the marketers caught on to the fact that they
could cheaply produce and deliver eye-catching, wow-and-whizbang commercials and product catalogs to those
millions of web surfers around the world, there was no stopping the stampede of blue suede shoes. Even the key
developers of Mosaic and related web server technologies sensed potential riches. They left NCSA and formed
Netscape Communications to produce commercial web browser and server software.

Business users and marketing opportunities have helped invigorate the Internet and fuel its phenomenal growth,
particularly on the World Wide Web. But do not forget that the Internet is first and foremost a place for social
interaction and information sharing, not a strip mall or direct advertising medium. Internet users, particularly
the old-timers, adhere to commonly held, but not formally codified, rules of netiquette that prohibit such things
as "spamming" special-interest newsgroups with messages unrelated to the topic at hand or sending unsolicited
email. And there are millions of users ready to remind you of those rules should you inadvertently or intentionally
ignore them.

Certainly, the power of HTML and network distribution of information go well beyond marketing and monetary
rewards: serious informational pursuits also benefit. Publications, complete with images and other media like
executable software, can get to their intended audience in a blink of an eye, instead of the months traditionally
required for printing and mail delivery. Education takes a great leap forward when students gain access to the
great libraries of the world. And at times of leisure, the interactive capabilities of HTML links can reinvigorate our
otherwise television-numbed minds.

1.2 Talking the Internet Talk

Every computer connected to the Internet (even a beat-up old Apple II) has a unique address: a number whose
format is defined by the Internet Protocol (IP), the standard that defines how messages are passed from one
machine to another on the Net. An IP address is made up of four numbers, each less than 256, joined together by
periods, such as 192.12.248.73 or 131.58.97.254.

While computers deal only with numbers, people prefer names. For this reason, each computer on the Internet
also has a name bestowed upon it by its owner. There are several million machines on the Net, so it would be very
difficult to come up with that many unique names, let alone keep track of them all. Recall, though, that the
Internet is a network of networks. It is divided into groups known as domains, which are further divided into one
or more subdomains.

page 7

HTML & XHTML: The Definitive Guide

So, while you might choose a very common name for your computer, it becomes unique when you append, like
surnames, all of the machine's domain names as a period-separated suffix, creating a fully qualified domain
name.

This naming stuff is easier than it sounds. For example, the fully qualified domain name wwuw.oreilly.com
translates to a machine named "www" that's part of the domain known as "oreilly," which, in turn, is part of the
commercial (com) branch of the Internet. Other branches of the Internet include educational institutions (edu),
nonprofit organizations (org), U.S. government (gov), and Internet service providers (net). Computers and
networks outside the United States may have a two-letter abbreviation at the end of their names: for example,
"ca" for Canada, "jp" for Japan, and "uk" for the United Kingdom.

Special computers, known as name servers, keep tables of machine names and their associated unique IP
numerical addresses and translate one into the other for us and for our machines. Domain names must be
registered and sometimes paid for through the nonprofit organization InterNIC. Once registered, the owner of the
domain name broadcasts it and its address to other domain name servers around the world. Each domain and
subdomain has an associated name server, so ultimately every machine is known uniquely by both a name and an
IP address.

1.2.1 Clients, Servers, and Browsers

The Internet connects two kinds of computers: servers, which serve up documents, and clients, which retrieve
and display documents for us humans. Things that happen on the server machine are said to be on the server
side, while activities on the client machine occur on the client side.

To access and display HTML documents, we run programs called browsers on our client computers. These
browser clients talk to special web servers over the Internet to access and retrieve electronic documents.

Several web browsers are available - most are free - each offering a different set of features. For example,
browsers like Lynx run on character-based clients and display documents only as text. Then there are others that
run on clients with graphical displays and render documents using proportional fonts and color graphics on a
1024 x 768, 24-bit-per-pixel display. Others still - Netscape Navigator, Microsoft's Internet Explorer, Opera, and
Mozilla, to name a few - have special features that allow you to retrieve and display a variety of electronic
documents over the Internet, including audio and video multimedia.

1.2.2 The Flow of Information

All web activity begins on the client side, when a user starts his or her browser. The browser begins by loading a
home page document from either local storage or from a server over some network, such as the Internet, a
corporate intranet, or a town extranet. In these latter cases, the client browser first consults a domain name
system (DNS) server to translate the home page document server's name, such as wwuw.oreilly.com, into an IP
address, before sending a request to that server over the Internet. This request (and the server's reply) is
formatted according to the dictates of the Hypertext Transfer Protocol (HTTP) standard.

A server spends most of its time listening to the network, waiting for document requests with the server's unique
address stamped on it. Upon receipt, the server verifies that the requesting browser is allowed to retrieve
documents from the server, and, if so, checks for the requested document. If found, the server sends (downloads)
the document to the browser. The server usually logs the request, the client computer's name, document
requested, and the time.

Back on the browser, the document arrives. If it's a plain-vanilla ASCII text file, most browsers display it in a
common, plain-vanilla way. Document directories, too, are treated like plain documents, although most graphical
browsers will display folder icons, which the user can select with the mouse to download the contents of
subdirectories.

Browsers also retrieve binary files from a server. Unless assisted by a helper program or specially enabled by
plug-in software or applets, which display an image or video file or play an audio file, the browser usually stores
downloaded binary files directly on a local disk for later use.

For the most part, however, the browser retrieves a special document that appears to be a plain text file, but
contains both text and special markup codes called tags. The browser processes these HTML or XHTML
documents, formatting the text based upon the tags and downloading special accessory files, such as images.

The user reads the document, selects a hyperlink to another document, and the entire process starts over.

page 8

HTML & XHTML: The Definitive Guide

1.2.3 Beneath the World Wide Web

We should point out again that browsers and HTTP servers need not be part of the Internet's World Wide Web to
function. In fact, you never need to be connected to the Internet, an intranet or extranet, or to any network, for
that matter, to write documents and operate a browser. You can load up and display on your client browser locally
stored documents and accessory files directly. This isolation is good: it gives you the opportunity to finish, in the
editorial sense of the word, a document collection for later distribution. Diligent authors work locally to write and
proof their documents before releasing them for general distribution, thereby sparing readers the agonies of
broken image files and bogus hyperlinks.!!

(11 Vigorous testing of the HTML documents once they are made available on the Web is, of course, also highly
recommended and necessary to rid them of various linking bugs.

Organizations, too, can be connected to the Internet and the World Wide Web, but also maintain private webs
and document collections for distribution to clients on their local network, or intranet. In fact, private webs are
fast becoming the technology of choice for the paperless offices we've heard so much about these last few years.
With HTML, and especially with next-generation XHTML document collections, businesses and other enterprises
can maintain personnel databases, complete with employee photographs and online handbooks, collections of
blueprints, parts, and assembly manuals, and so on - all readily and easily accessed electronically by authorized
users and displayed on a local computer.

1.2.4 Standards Organizations

Like many popular technologies, HTML started out as an informal specification used by only a few people. As
more and more authors began to use the language, it became obvious that more formal means were needed to
define and manage - to standardize - the language's features, making it easier for everyone to create and share
documents.

1.2.4.1 The World Wide Web Consortium

The World Wide Web Consortium (W3C) was formed with the charter to define the standards for HTML.
Members are responsible for drafting, circulating for review, and modifying the standard based on cross-Internet
feedback to best meet the needs of the many.

Beyond HTML, the W3C has the broader responsibility of standardizing any technology related to the World
Wide Web; they manage the HTTP, Cascading Style Sheet, and Extensible Markup Language (XML) standards, as
well as related standards for document addressing on the Web. And they solicit draft standards for extensions to
existing web technologies.

If you want to track HTML, XML, XHTML, CSS, and other exciting web development and related technologies,
contact the W3C at http://www.w3.org .

Also, several Internet newsgroups are devoted to the Web, each a part of the comp.infosystems.www hierarchy.
These include comp.infosystems.www.authoring.html and comp.infosystems.www.authoring.images.

1.2.4.2 The Internet Engineering Task Force

Even broader in reach than W3C, the Internet Engineering Task Force (IETF) is responsible for defining and
managing every aspect of Internet technology. The World Wide Web is just one small part under the purview of
the IETF.

The IETF defines all of the technology of the Internet via official documents known as Requests For Comment, or
RFCs. Individually numbered for easy reference, each RFC addresses a specific Internet technology - everything
from the syntax of domain names and the allocation of IP addresses to the format of electronic mail messages.

To learn more about the IETF and follow the progress of various RFCs as they are circulated for review and
revision, visit the IETF home page, http://www.ietf.org.

1.3 HTML: What It Is

HTML is a document-layout and hyperlink-specification language. It defines the syntax and placement of special,
embedded directions that aren't displayed by the browser, but tell it how to display the contents of the document,
including text, images, and other support media. The language also tells you how to make a document interactive
through special hypertext links, which connect your document with other documents - on either your computer or
someone else's, as well as with other Internet resources, like FTP.

page 9

HTML & XHTML: The Definitive Guide

1.3.1 HTML Standards and Extensions

The basic syntax and semantics of HTML are defined in the HTML standard, currently Version 4.01. HTML has
matured in barely eight years, having gone through at least four iterations in as many years. At one time, a new
version would appear before you had a chance to finish reading this book. Today, the pace of change has slowed.
Now the wait is for browser manufacturers to implement the standards.

Browser developers rely upon the HTML standard to program the software that formats and displays common
HTML documents. Authors use the standard to make sure they are writing effective, correct HTML documents.

However, the standard is not always explicit; manufacturers have some leeway in how their browser might
display an element. And to complicate matters, commercial forces have pushed developers to add into their
browsers nonstandard extensions meant to improve the language.

In this book, we explore in detail the syntax, semantics, and idioms of HTML Version 4.01, along with the many
important extensions that are supported in the latest versions of the most popular browsers, so that any aspiring
HTML author can create fabulous documents with a minimum of effort.

1.4 XHTML: What It Is

You've certainly heard of HTML, but did you know that it is one of many other markup languages? Indeed, HTML
is the black sheep in the family of document markup languages. HTML is based on SGML, the Standard
Generalized Markup Language. The powers-that-be created SGML with the intent that it be the one and only
markup metalanguage from which all other document markup elements would be created. Everything from
hieroglyphics to HTML can be defined using SGML, negating any need for any other markup language.

The problem with SGML is that it is so broad and all-encompassing that mere mortals cannot use it. Using SGML
effectively requires very expensive and complex tools that are completely beyond the scope of regular people who
just want to bang out an HTML document in their spare time. As a result, HTML and other language standards
adhere to some, but not all SGML standards,! eliminating many of the more esoteric features so that HTML is
readily useable and used.

[21 The HTML DTD in Appendix D uses a subset of SGML to define the HTML 4.01 standard.

Recognizing that SGML is unwieldy and not well-suited to describing the very popular HTML in a useful way, and
that there was a growing need to define other HTML-like markup languages to handle different network
documents, the W3C defined the Extensible Markup Language (XML). Like SGML, XML is a separate formal
markup metalanguage that uses select features of SGML to define markup languages. It eliminates many features
of SGML that aren't applicable to languages like HTML and simplifies other SGML elements in order to make
them easier to use and understand.

HTML Version 4.01 is not XML-compliant. Hence, the W3C offers XHTML, a reformulation of HTML to be
compliant under XML. XHTML attempts to support every last nit and feature of HTML 4.01 using the more rigid
rules of XML. It generally succeeds but has enough differences to make life difficult for the standards-conscious
HTML author.

Confused? Don't be. Learning HTML is still the way to go for most authors and Web developers. The native
language endures. Besides, by learning HTML, you learn the working bits of XHTML, effectively the same things.
There are some differences, which we explore in Chapter 16, XHTML. But the differences should not affect your
work in the foreseeable future.

1.5 HTML and XHTML: What They Aren't

With all their multimedia-enabling, new page layout features, and the hot technologies that give life to
HTML/XHTML documents over the Internet, it is also important to understand the languages' limitations. They
are not word-processing tools, desktop publishing solutions, or even programming languages. That's because
their fundamental purpose is to define the structure and appearance of documents and document families so that
they may be delivered quickly and easily to a user over a network for rendering on a variety of display devices.
Jack of all trades, but master of none, so to speak.

1.5.1 Content Versus Appearance
Before you can fully appreciate the power of the language and begin creating effective documents, you must yield

to one fundamental rule. These markup languages are designed to structure documents and make their content
more accessible, not to format documents for display purposes.

page 10

HTML & XHTML: The Definitive Guide

HTML and its progeny XHTML do provide many different ways to let you define the appearance of your
documents: font specifications, line breaks, and multicolumn text are all features of the language. And, of course,
appearance is important, since it can have either detrimental or beneficial effects on how users access and use the
information in your documents.

But with HTML and XHTML, content is paramount; appearance is secondary, particularly since it is less
predictable, given the variety of browser graphics and text-formatting capabilities. Besides, these markup
languages contain many more ways for structuring your document content without regard to the final
appearance: section headers, structured lists, paragraphs, rules, titles, and embedded images are all defined by
the standard languages without regard for how these elements might be rendered by a browser. Consider, for
example, a browser for the blind, wherein graphics on the page come with audio descriptions and alternative
rules for navigation. The HTML 4 standard defines such a thing: content over visual presentation.

If you treat HTML or XHTML as a document-generation tool, you will be sorely disappointed in your ability to
format your document in a specific way. There is simply not enough capability built into the languages to allow
you to create the kind of documents you might whip up with tools like FrameMaker or Microsoft Word. Attempts
to subvert the supplied structuring elements to achieve specific formatting tricks seldom work across all
browsers. In short, don't waste your time trying to force HTML and XHTML to do things they were never
designed to do.

Instead, use HTML and XHTML in the manner for which they were designed: indicating the structure of a
document so that the browser can then render its content appropriately. HTML and XHTML are rife with tags
that let you indicate the semantics of your document content, something that is missing from tools like Frame or
Word. Create your documents using these tags and you'll be happier, your documents will look better, and your
readers will benefit immensely.

1.6 Nonstandard Extensions

It doesn't take an advanced degree in the obvious to know that many people vie for distinction to draw the
attentions of others. So, too, with browsers. Extra whizbang features can give the edge in the otherwise
standardized market. That can be a nightmare for authors. A lot of people want you to use the latest and greatest
gimmick or even useful HTML extension. But it's not part of the standard, and not all browsers support it. In fact,
on occasion, the popular browsers support different ways of doing the same thing.

1.6.1 Extensions: Pro and Con

Every software vendor adheres to the technological standards; it's embarrassing to be incompatible and your
competitors will take every opportunity to remind buyers of your product's failure to comply, no matter how
arcane or useless that standard might be. At the same time, vendors seek to make their products different and
better than the competition's offerings. Netscape's and Internet Explorer's extensions to standard HTML are
perfect examples of these market pressures.

Many document authors feel safe using these extended browsers' nonstandard extensions because of their
combined and commanding share of users. For better or worse, extensions to HTML made by the folks at
Netscape or Microsoft instantly become part of the street version of the language, much like English slang
creeping into the vocabulary of most Frenchmen, despite all the best efforts of the Académie Francaise.

Fortunately, with HTML Version 4.0, the W3C standards caught up with the browser manufacturers. In fact, the
tables turned somewhat. The many extensions to HTML that originally appeared as extensions in Netscape
Navigator and Internet Explorer are now part of the HTML 4 and XHTML 1.0 standards, and there are other
parts of the new standard that are not yet features of the popular browsers.

1.6.2 Avoiding Extensions

In general, we urge you to resist using an extension unless you have a compelling and overriding reason to do so.
By using them, particularly in key portions of your documents, you run the risk of losing a substantial portion of
your potential readership. Sure, the Internet Explorer community is large enough to make this point moot now,
but even so, you are excluding several million people who use Netscape from your pages.

Of course, there are varying degrees of dependency on extensions. If you use some of the horizontal rule
extensions, for example, most other browsers will ignore the extended attributes and render a conventional
horizontal rule. On the other hand, reliance upon a number of font size changes and text alignment extensions to
control your document appearance will make your document look terrible on many alternative browsers. It might
not even display at all on browsers that don't support the extensions.

page 11

HTML & XHTML: The Definitive Guide

We admit that it is disingenuous of us to decry the use of extensions while presenting complete descriptions of
their use. In keeping with the general philosophy of the Internet, we'll err on the side of handing out rope and
guns to all interested parties while hoping you have enough smarts to keep from hanging yourself or shooting
yourself in the foot.

Our advice still holds, though: only use an extension where it is necessary or very advantageous, and do so with
the understanding that you are disenfranchising a portion of your audience. To that end, you might even consider
providing separate, standards-based versions of your documents to accommodate users of other browsers.

1.6.3 Beyond Extensions: Exploiting Bugs

It is one thing to take advantage of an extension, and it is quite another to exploit known bugs in a particular
version of a browser in order to achieve some unusual document effect.

A good example is the multiple-body bug in Version 1.1 of Netscape Navigator. The HTML standard insists that a
compliant document have exactly one <body> tag, containing the body of the document. The now-obsolete
browser allowed any number of <body> tags, processing and rendering each <body> in turn. By placing several
<body> tags in an HTML document, an author could achieve crude animation effects when the document was first
loaded into the browser. The most popular trick used several <body> tags, each with a slightly different
background color. This trick results in a document fade-in effect.

The party ended when Version 1.2 of Netscape fixed the bug. Suddenly, thousands of documents lost their fancy
fade-in effect. Although faced with some rather fierce complaints, to their credit, the people at Netscape stood by
their decision to adhere to the standard, placing compliance higher on their list of priorities than nifty rendering
hacks.

In that light, we can unequivocally offer this advice: never exploit a bug in a browser to achieve a particular effect
in your documents.

1.7 Tools for the Web Designer

While you can use the barest of barebones text editors to create HTML and XHTML documents, most authors
have a bit more elaborate toolbox of software utilities than a simple word processor. You also need a browser, so
you can test and refine your work. Beyond the essentials are some specialized software tools for HTML document
preparation and editing, and others for developing and preparing accessory multimedia files.

1.7.1 Essentials
At the very least, you'll need an editor, a browser to check your work, and ideally, a connection to the Internet.
1.7.1.1 Word processor or WYSIWYG editor?

Some authors use the word-processing capabilities of their specialized HTML/XHTML editing software. Others
use the WYSIWYG (what-you-see-is-what-you-get) composition tools that come with their browser or the latest
versions of the popular word processors. Others, such as ourselves, prefer to compose their work on a general
word processor and later insert the markup tags and their attributes. Still others include markup as they
compose.

We think the stepwise approach - compose, then mark up - is the better way. We find that once we've defined and
written the document's content, it's much easier to make a second pass to judiciously and effectively add the
HTML/XHTML tags to format the text. Otherwise, the markup can obscure the content. Note, too, that unless
specially trained (if they can be), spellcheckers and thesauruses typically choke on markup tags and their various
parameters. You can spend what seems to be a lifetime clicking the Ignore button on all those otherwise valid
markup tags when syntax- or spell-checking a document.

When and how you embed markup tags into your document dictates the tools you need. We recommend that you
use a good word processor, such as WordPerfect or Word, which comes with more and better writing tools than
simple text editors or the browser-based markup-language editors. You'll find, for instance, that an outliner,
spellchecker, and thesaurus will best help you craft the document's flow and content well, disregarding for the
moment its look. The latest word processors encode your documents with HTML, too, but don't expect miracles.
Except for boilerplate documents, you will probably need to nurse those automated HTML documents to full
health. And it'll be a while before you'll see XHTML-specific markup tools in the popular word processors.

Another word of caution about automated composition tools: they typically change or insert content, such as

replacing relative hyperlinks with full ones, and arrange your document in ways that will annoy you. Annoying, in
particular, since they rarely give you the opportunity to do things your own way.

page 12

HTML & XHTML: The Definitive Guide

So become fluent in native HTML/XHTML. Be prepared to reverse some of the things a composition tool will do
to your documents. And make sure you can wrest your document away from the tool so you can make it do your
bidding.

1.7.1.2 Browser software

Obviously, you should view your newly composed documents and test their functionality before you release them
for use by others. For serious authors, particularly those looking to push their documents beyond the
HTML/XHTML standards, we recommend that you have several browser products, perhaps with versions
running on different computers, just to be sure one's delightful display isn't another's nightmare.

The currently popular - and therefore most important - browsers are Netscape Navigator (the browser portion of
Netscape Communicator) and Microsoft's Internet Explorer. Download the latest versions from their web sites.

1.7.1.3 Internet connection

We think you should have bona fide access to the Internet if you are really serious about learning and honing your
document markup skills. Okay, it's not absolutely essential, since you can compose and view documents locally.
And for some, a connection is perhaps not even possible or practical, but make the effort: sometimes there's no
better way to learn than by example. Examples both good and bad abound on the Internet, and there are literally
millions of Web pages whose source HTML you can download and examine, albeit fewer XHTML ones.

Moreover, an Internet connection is essential for development and testing if you include hypertext links to
Internet services in your web documents. Most of all, an Internet connection gives you access to a wealth of tips
and ongoing updates to the language through special-interest newsgroups, as well as much of the essential and
accessory software you can use to prepare document collections.

1.7.2 An Extended Toolkit

If you're serious about creating documents, you'll soon find there are all sorts of nifty tools that make life easier.
The list of freeware, shareware, and commercial products grows daily, so it's not very useful to provide a list here.
This is, in fact, another good reason why you should get an Internet connection; various groups keep updated lists
of HTML and XHTML resources on the Web. If you are really dedicated to writing in HTML and XHTML, you
will visit those sites, and you will visit them regularly to keep abreast of the language, tools, and trends.

We think the following four web sites are the most useful for authors. Each contains dozens, sometimes
hundreds, of hyperlinks to detailed descriptions of products and other important information. Go at it:

http://www.stars.com
http://msdn.microsoft.com
http://search.netscape.com
http://www.w3.org/MarkUp

page 13

HTML & XHTML: The Definitive Guide

Chapter 2. Quick Start

We didn't spend hours studiously poring over some reference book before we wrote our first HTML document.
You probably shouldn't, either. HTML is simple to read and understand, and it's simple to write, too. And once
you've written an HTML document, you've nearly completed your first XHTML one, too. So let's get started
without first learning a lot of arcane rules.

To help you get that quick, satisfying start, we've included this chapter as a brief summary of the many elements
of HTML and its progeny, XHTML. Of course, we've left out a lot of details and some tricks that you should know.
Read the upcoming chapters to get the essentials for becoming fluent in HTML and XHTML.

Even if you are familiar with the languages, we recommend you work your way through this chapter before
tackling the rest of the book. It not only gives you a working grasp of basic HTML and its jargon, but you'll also be
more productive later, flush with the confidence that comes from creating attractive documents in such a short
time.

2.1 Writing Tools

Use any text editor to create an HTML or XHTML document, as long as it can save your work on disk in ASCII
text file format. That's because even though documents include elaborate text layout and pictures, they're all just
plain old ASCII documents themselves. A fancier WYSIWYG editor or a translator for your favorite word
processor are fine, too - although they may not support the many nonstandard features we discuss later in this
book. You'll probably end up touching up the source text they produce, as well.

While not needed to compose documents, you should have at least one version of a popular browser installed on
your computer to view your work, preferably Netscape Navigator or Microsoft's Internet Explorer. That's because
the source document you compose on your text editor doesn't look anything like what gets displayed by a
browser, even though it's the same document. Make sure what your readers actually see is what you intended by
viewing the document yourself with a browser. Besides, the popular ones are free over the Internet.

Also note that you don't need a connection to the Internet or the World Wide Web to write and view your HTML
or XHTML documents. You may compose and view your documents stored on a hard drive or floppy disk that's
attached to your computer. You can even navigate among your local documents with the languages' hyperlinking
capabilities without ever being connected to the Internet, or any other network, for that matter. In fact, we
recommend that you work locally to develop and thoroughly test your documents before you share them with
others.

We strongly recommend, however, that you do get a connection to the Internet if you are serious about
composing your own documents. You may download and view others' interesting web pages and see how they
accomplished some interesting feature - good or bad. Learning by example is fun, too. (Reusing others' work, on
the other hand, is often questionable, if not downright illegal.) An Internet connection is essential if you include
in your work hyperlinks to other documents on the Internet.

2.2 A First HTML Document

It seems every programming language book ever written starts off with a simple example on how to display the
message, "Hello, World!" Well, you won't see a "Hello, World!" example in this book. After all, this is a style guide
for the new millennium. Instead, ours sends greetings to the World Wide Web:

<html>
<head>
<title>My first HTML document</title>
</head>
<body>
<h2>My first HTML document</h2>
Hello, <i>World wide web!</i>
<!-- No "Hello, world" for us -->
<p>

Greetings from

0'Reilly & Associates
<p>
composed with care by:
<cite>(insert your name here)</cite>

©2000 and beyond
</body>
</html>

Go ahead: type in the example HTML source on a fresh word-processing page and save it on your local disk as
myfirst.html. Make sure you select to save it in ASCII format; word processor-specific file formats like Microsoft
Word's .doc files save hidden characters that can confuse the browser software and disrupt your HTML
document's display.

page 14

HTML & XHTML: The Definitive Guide

After saving myfirst.html (or myfirst.htm if you are using archaic DOS- or Windows 3.11-based filenaming
conventions) onto disk, start up your browser, locate, and then open the document from the program's File menu.
Your screen should look like Figure 2-1.

Figure 2-1. A very simple HTML document

" My first HTML document - Microsoft Inleinet Exploier
File Edt View Favorkez Took Help

JB

My first HTML document
Hello, World Wide Web!

Greetings from

ety & Associates

Cemposed with care by (ingert your nawe hare)
S2000 and beyond

2.3 Embedded Tags

You have probably noticed right away, perhaps in surprise, that the browser displays less than half of the example
source text. Closer inspection of the source reveals that what's missing is everything that's bracketed inside a pair
of less-than (<) and greater-than (>) characters. Section 3.3.1

HTML and XHTML are embedded languages: you insert their directions or tags into the same document that you
and your readers load into a browser to view. The browser uses the information inside those tags to decide how to
display or otherwise treat the subsequent contents of your document.

For instance, the <i> tag that follows the word "Hello" in the simple example tells the browser to display the
following text in italics.!! - Section 4.5

[Ttalicized text is a very simple example and one that most browsers, except the text-only variety like Lynx, can
handle. In general, the browser tries to do as it is told, but as we demonstrate in upcoming chapters, browsers vary
from computer to computer and from user to user, as do the fonts that are available and selected by the user for
viewing HTML documents. Assume that not all are capable or willing to display your HTML document exactly as it
appears on your screen.

The first word in a tag is its formal name, which usually is fairly descriptive of its function, too. Any additional
words in a tag are special attributes, sometimes with an associated value after an equal sign (=), which further
define or modify the tag's actions.

2.3.1 Start and End Tags

Most tags define and affect a discrete region of your document. The region begins where the tag and its attributes
first appear in the source document (a.k.a. the start tag) and continues until a corresponding end tag. An end tag
is the tag's name preceded by a forward slash (/). For example, the end tag that matches the "start italicizing" <i>
tagis </i>.

End tags never include attributes. In HTML, most tags, but not all, have an end tag. And, to make life a bit easier
for HTML authors, the browser software often infers an end tag from surrounding and obvious context, so you
needn't explicitly include some end tags in your source HTML document. (We tell you which are optional and
which are never omitted when we describe each tag in later chapters.) Our simple example is missing an end tag
that is so commonly inferred and hence not included in the source that some veteran HTML authors don't even
know that it exists. Which one?

The XHTML standard is much more rigid, insisting that all tags have a corresponding end tag. Section 16.3.2 /
Section 16.3.3

page 15

HTML & XHTML: The Definitive Guide

2.4 HTML Skeleton

Notice, too, in our simple example source that precedes Figure 2-1, the HTML document starts and ends with
<htm1> and </htm1> tags. Of course, these tags tell the browser that the entire document is composed in HTML.!2!
The HTML and XHTML standards require an <htm1> tag for compliant documents, but most browsers can detect
and properly display HTML encoding in a text document that's missing this outermost structural tag. Section
3.6.1

21 XHTML documents also begin with the <html> tag, but with additional information to differentiate them from
common HTML documents. See Chapter 16 for details.

Like our example, all HTML and XHTML documents have two main structures: a head and a body, each bounded
in the source by respectively named start and end tags. You put information about the document in the head and
the contents you want displayed in the browser's window inside the body. Except in rare cases, you'll spend most
of your time working on your document's body content. Section 3.7.1 / Section 3.8.1

There are several different document header tags you may use to define how a particular document fits into a
document collection and into the larger scheme of the Web. Some nonstandard header tags even animate your
document.

For most documents, however, the important header element is the title. Standards require that every HTML and
XHTML document have a title, even though the currently popular browsers don't enforce that rule. Choose a
meaningful title, one that instantly tells the reader what the document is about. Enclose yours, as we do for the
title of our example, between the <title> and </tit1e> tags in your document's header. The popular browsers
typically display the title at the top of the document's window onscreen. Section 3.7.2

2.5 The Flesh on an HTML or XHTML Document

Except for the <htm1>, <head>, <body>, and <title> tags, the HTML and XHTML standards have few other
required structural elements. You're free to include pretty much anything else in the contents of your document.
(The web surfers among you know that authors have taken full advantage of that freedom, too.) Perhaps
surprisingly, though, there are only three main types of HTML/XHTML content: tags (which we described
previously), comments, and text.

2.5.1 Comments

A raw document with all its embedded tags can quickly become nearly unreadable, like computer-programming
source code. We strongly recommend that you use comments to guide your composing eye.

Although it's part of your document, nothing in a comment, including the body of your comment that goes
between the special starting tag <! -- and ending tag delimiters --> gets included in the browser display of your
document. Now you see a comment in the source, like in our simple HTML example, and now you don't on the
display, as evidenced by our comment's absence in Figure 2-1. Anyone can download the source text of your
documents and read the comments, though, so be careful what you write. Section 3.5.3

2.5.2 Text

If it isn't a tag or a comment, it's text. The bulk of content in most of your HTML/XHTML documents - the part
readers see on their browser displays - is text. Special tags give the text structure, such as headings, lists, and
tables. Others advise the browser how the content should be formatted and displayed.

2.5.3 Multimedia

What about images and other multimedia elements we see and hear as part of our web browser displays? Aren't
they part of the HTML document? No. The data that comprise digital images, movies, sounds, and other
multimedia elements that may be included in the browser display are in documents separate from the document.
You include references to those multimedia elements via special tags. The browser uses the references to load and
integrate other types of documents with your text.

We didn't include any special multimedia references in the previous example simply because they are separate,
nontext documents you can't just type into a text processor. We do, however, talk about and give examples of how
to integrate images and other multimedia in your documents later in this chapter, as well as in extensive detail in
subsequent chapters.

page 16

HTML & XHTML: The Definitive Guide

2.6 Text

Text-related HTML/XHTML markup tags comprise the richest set of all in the standard languages. That's
because the original language - HTML - emerged as a way to enrich the structure and organization of text.

HTML came out of academia. What was and still is important to those early developers was the ability of their
mostly academic, text-oriented documents to be scanned and read without sacrificing their ability to distribute
documents over the Internet to a wide diversity of computer display platforms. (ASCII text is the only universal
format on the global Internet.) Multimedia integration is something of an appendage to HTML and XHTML,
albeit an important one.

And page layout is secondary to structure. We humans visually scan and decide textual relationships and
structure based on how it looks; machines can only read encoded markings. Because documents have encoded
tags that relate meaning, they lend themselves very well to computer-automated searches and also to the
recompilation of content - features very important to researchers. It's not so much how something is said as what
is being said.

Accordingly, neither HTML nor XHTML are page-layout languages. In fact, given the diversity of user-
customizable browsers as well as the diversity of computer platforms for retrieval and display of electronic
documents, all these markup languages strive to accomplish is to advise, not dictate, how the document might
look when rendered by the browser. You cannot force the browser to display your document in any certain way.
You'll hurt your brain if you insist otherwise.

2.6.1 Appearance of Text

For instance, you cannot predict what font and what absolute size - 8- or 40-point Helvetica, Geneva, Subway, or
whatever - will be used for a particular user's text display. Okay, so the latest browsers now support standard
Cascading Style Sheets and other desktop publishing-like features that let you control the layout and appearance
of your documents. But users may change their browser's display characteristics and override your carefully laid
plans at will; quite a few of the older browsers out there don't support these new layout features; and some
browsers are text-only with no nice fonts at all. What to do? Concentrate on content. Cool pages are a flash in the
pan. Deep content will bring people back for more and more.

Nonetheless, style does matter for readability, and it is good to include it where you can, as long as it doesn't
interfere with content presentation. You can attach common style attributes to your text with physical style tags
like the italic <i> tag in the simple example. More importantly and truer to the language's original purpose,
HTML and XHTML have content-based style tags that attach meaning to various text passages. And you can alter
text display characteristics, such as font style and size, color, and so on, with Cascading Style Sheets.

Today's graphical browsers recognize the physical and content-related text style tags and change the appearance
of their related text passage to visually convey meaning or structure. You can't predict exactly what that change
will look like.

The HTML 4 standard, and particularly the XHTML 1.0 standard, stress that future browsers will not be so
visually bound. Text contents may be heard or even felt, for example, not read by viewers. Context clues surely are
better in those cases than physical styles.

2.6.1.1 Content-based text styles

Content-based style tags indicate to the browser that a portion of your HTML/XHTML text has a specific usage or
meaning. The <cite> tag in our simple example, for instance, means the enclosed text is some sort of citation -
the document's author, in this case. Browsers commonly, although not universally, display the citation text in
italic, not as regular text. Section 4.4

While it may or may not be obvious to the current reader that the text is a citation, someday, someone might
create a computer program that searches a vast collection of documents for embedded <cite> tags and compiles
a special list of citations from the enclosed text. Similar software agents already scour the Internet for embedded
information to compile listings, such as the infamous Webcrawler and the AltaVista database of web sites.

The most common content-based style used today is that of emphasis, indicated with the tag. And if you're
feeling really emphatic, you might use the content style. Other content-based styles include <code> , for
snippets of programming code; <kbd>, to denote text entered by the user via a keyboard; <samp>, to mark sample
text; <dfn>, for definitions; and <var>, to delimit variable names within programming code samples. All of these
tags have corresponding end tags.

page 17

HTML & XHTML: The Definitive Guide

2.6.1.2 Physical styles

Even the barest of barebones text processors conform to a few traditional text styles, such as italic and bold
characters. While not word-processing tools in the traditional sense, HTML and XHTML do provide tags that tell
the browser explicitly to display (if it can) a character, word, or phrase in a particular physical style.

Although you should use related content-based tags for the reasons we argue earlier, sometimes form is more
important than function. So use the <i> tag to italicize text, without imposing any specific meaning; the tag to
display text in boldface; or the <tt> tag so that the browser, if it can, displays the text in a teletype-style
monospaced typeface. Section 4.5

It's easy to fall into the trap of using physical styles when you should really be using a content-based style instead.
Discipline yourself now to use the content-based styles, because, as we argue earlier, they convey meaning as well
as style, thereby making your documents easier to automate and manage.

2.6.1.3 Special text characters

Not all text characters available to you for display by a browser can be typed from the keyboard. And some
characters have special meanings, such as the brackets around tags, which if not somehow differentiated when
used for plain text - the less-than sign (<) in a math equation, for example - will confuse the browser and trash
your document. HTML and XHTML give you a way to include any of the many different characters that comprise
the ASCII character set anywhere in your text through a special encoding of its character entity.

Like the copyright symbol in our simple example, a character entity starts with an ampersand followed by its
name, and terminated with a semicolon. Alternatively, you may also use the character's position number in the
ASCII table of characters preceded by the pound or sharp sign (#) in lieu of its name in the character entity
sequence. When rendering the document, the browser displays the proper character, if it exists in the user's font.
Section 3.5.2

For obvious reasons, the most commonly used character entities are the greater-than (>), less-than (&1t;),
and ampersand (& ;) characters. Check Appendix F to find what symbol the character entity ¦
represents.

2.6.2 Text Structures

It's not obvious in our simple example, but the common carriage returns we use to separate paragraphs in our
source document have no meaning in HTML or XHTML, except in special circumstances. You could have typed
the document onto a single line in your text editor and it would still appear the same in Figure 2-1.(s]

[3] We use a computer programming-like style of indentation so that our source HTML/XHTML documents are
more readable. It's not obligatory, nor are there any formal style guidelines for source HTML/XHTML document
text formats. We do, however, highly recommend that you adopt a consistent style, so that you and others can
easily follow your source documents.

You'd soon discover, too, if you hadn't read it here first, that except in special cases, browsers typically ignore
leading and trailing spaces, and sometimes more than a few in between. (If you look closely at the source
example, the line "Greetings from" looks like it should be indented by leading spaces, but it isn't in Figure 2-1.)

2.6.2.1 Divisions, paragraphs, and line breaks

A browser takes the text in the body of your document and "flows" it onto the computer screen, disregarding any
common carriage-return or line-feed characters in the source. The browser fills as much of each line of the display
window as possible, beginning flush against the left margin, before stopping after the rightmost word and moving
on to the next line. Resize the browser window, and the text reflows to fill the new space, indicating HTML's
inherent flexibility.

Of course, readers would rebel if your text just ran on and on, so HTML and XHTML provide both explicit and
implicit ways to control the basic structure of your document. The most rudimentary and common ways are with
the division (<d1iv>), paragraph (<p>), and line-break (
) tags. All break the text flow, which consequently
restarts on a new line. The differences are that the <div> and <p> tags define an elemental region of the document
and text, respectively, the contents of which you may specially align within the browser window, apply text styles
to, and alter with other block-related features.

Without special alignment attributes, the <div> and
 tags simply break a line of text and place subsequent

characters on the next line. The paragraph tag adds more vertical space after the line break than either the <div>
or
 tags. Section 4.1.1 / Section 4.1.2 / Section 4.7.1

page 18

HTML & XHTML: The Definitive Guide

By the way, the HTML standard includes end tags for the paragraph and division tags, but not for the line-break
tag.l4! Few authors ever include the paragraph end tag in their documents; the browser usually can figure out
where one paragraph ends and another begins.s! Give yourself a star if you knew that </p> even exists.

4l With XHTML,
's start and end are between the same brackets:
. Browsers tend to be very forgiving
and often ignore extraneous things, such as the forward slash in this case, so it's perfectly okay to get into the habit
of adding that end-mark.

151 The paragraph end tag is being used more commonly now that the popular browsers support the paragraph-
alignment attribute.

2.6.2.2 Headings

Besides breaking your text into divisions and paragraphs, you also can organize your documents into sections
with headings. Just as they do on this and other pages in this printed book, headings not only divide and title
discrete passages of text: they also convey meaning visually. And headings also readily lend themselves to
machine-automated processing of your documents.

There are six heading tags, <h1> through <h6>, with corresponding end tags. Typically, the browser displays their
contents in, respectively, very large to very small font sizes, and sometimes in boldface. The text inside the <h4>
tag is usually the same size as the regular text. Section 4.2.1

The heading tags also typically break the current text flow, standing alone on lines and separated from
surrounding text, even though there aren't any explicit paragraph or line-break tags before or after a heading.

2.6.2.3 Horizontal rules

Besides headings, HTML and XHTML provide horizontal rule lines that help delineate and separate the sections
of your document.

When the browser encounters an <hr> tag in your document, it breaks the flow of text and draws a line
completely across the display window on a new line. The flow of text resumes immediately below the rule.l¢!
Section 5.1.1

(ol Similar to
, with XHTML the formal horizontal rule tag is <hr/>.
2.6.2.4 Preformatted text

Occasionally, you'll want the browser to display a block of text as-is: for example, with indented lines and
vertically aligned letters or numbers that don't change even though the browser window might get resized. The
<pre> tag rises to those occasions. All text up to the closing </pre> end tag appears in the browser window
exactly as you type it, including carriage returns, line feeds, and leading, trailing, and intervening spaces.
Although very useful for tables and forms, <pre> text turns out pretty dull; the popular browsers render the block
in a monospace typeface. Section 4.7.5

2.7 Hyperlinks

While text may be the meat and bones of an HTML or XHTML document, the heart is hypertext. Hypertext gives
users the ability to retrieve and display a different document in their own or someone else's collection simply by a
click of the keyboard or mouse on an associated word or phrase (hyperlink) in the document. Use these
interactive hyperlinks to help readers easily navigate and find information in your own or others' collections of
otherwise separate documents in a variety of formats, including multimedia, HTML, XHTML, other XML, and
plain ASCII text. Hyperlinks literally bring the wealth of knowledge on the whole Internet to the tip of the mouse
pointer.

To include a hyperlink to some other document in your own collection or on a server in Timbuktu, all you need to
know is the document's unique address and how to drop an anchor into your document.

2.7.1 URLSs

While it is hard to believe, given the millions, perhaps billions, of them out there, every document and resource
on the Internet has a unique address known as its uniform resource locator (URL; commonly pronounced "you-
are-ell"). A URL consists of the document's name preceded by the hierarchy of directory names in which the file is
stored (pathname), the Internet domain name of the server that hosts the file, and the software and manner by
which the browser and the document's host server communicate to exchange the document (protocol):

protocol://server_domain_name/pathname

page 19

HTML & XHTML: The Definitive Guide

Here are some sample URLs:

http://www.kumquat.com/docs/catalog /price_list.html
price_list.html
http://www.kumquat.com/

ftp://ftp.netcom.com/pub/

The first example is an absolute or complete URL. It includes every part of the URL format: protocol, server, and
the pathname of the document.

While absolute URLSs leave nothing to the imagination, they can lead to big headaches when you move documents
to another directory or server. Fortunately, browsers also let you use relative URLs and automatically fill in any
missing portions with respective parts from the current document's base URL. The second example is the
simplest relative URL of all; with it, the browser assumes that the price_list.html document is located on the
same server, in the same directory as the current document, and uses the same network protocol.

Relative URLSs are also useful if you don't know a directory or document's name. The third URL example, for
instance, points to kumgquat.com's web home page. It leaves it up to the kumquat server to decide what file to
send along. Typically, the server delivers the first file in the directory, one named index.html, or simply a listing of
the directory's contents.

Although appearances may deceive, the last FTP example URL actually is absolute; it points directly at the
contents of the /pub directory.

2.7.2 Anchors

The anchor (<a>) tag is the HTML/XHTML feature for defining both the source and the destination of a
hyperlink.” You'll most often see and use the <a> tag with its href attribute to define a source hyperlink. The
value of the attribute is the URL of the destination.

[71 The nomenclature here is a bit unfortunate: the "anchor" tag should mark just a destination, not the jumping off
point of a hyperlink, too. You "drop anchor"; you don't jump off one. We won't even mention the atrociously
confusing terminology the W3C uses for the various parts of a hyperlink except to say that someone got things all
"bass ackwards."

The contents of the source <a> tag - the words and/or images between it and its end tag - is the portion of
the document that is specially activated in the browser display and that users select to take a hyperlink. These
anchor contents usually look different from the surrounding content (text in a different color or underlined,
images with specially colored borders, or other effects), and the mouse pointer icon changes when passed over
them. The <a> tag contents, therefore, should be text or an image (icons are great) that explicitly or intuitively
tells users where the hyperlink will take them. Section 6.3.1

For instance, the browser will specially display and change the mouse pointer when it passes over the "Kumquat
Archive" text in the following example:
For more information on kumquats, visit our

Kumquat Archive

If the user clicks the mouse button on that text, the browser automatically retrieves from the server
www.kumquat.com a web (http:) page named archive.html, and then displays it for the user.

2.7.3 Hyperlink Names and Navigation

Pointing to another document in some collection somewhere on the other side of the world is not only cool, but it
also supports your own web documents. Yet the hyperlink's chief duty is to help users navigate your collection in
their search for valuable information. Hence, the concept of the home page and supporting documents has arisen.

None of your documents should run on and on. First, there's a serious performance issue: the value of your work
suffers, no matter how rich it is, if the document takes forever to download and, if once retrieved, users must
endlessly scroll up and down through the display to find a particular section.

Rather, design your work as a collection of several compact and succinct pages, like chapters in a book, each
focused on a particular topic for quick selection and browsing by the user. Then use hyperlinks to organize that
collection.

For instance, use your home page - the leading document of the collection - as a master index full of brief
descriptions and respective hyperlinks to the rest of your collection.

page 20

HTML & XHTML: The Definitive Guide

Also use either the name variant of the <a> tag or the id attribute of nearly all tags to specially identify sections of
your document. Tag ids and name anchors serve as internal hyperlink targets in your documents to help users
easily navigate within the same document or jump to a particular section within another document. Refer to that
id'd section in a hyperlink by appending a pound sign (#) and the section name as the suffix to the URL.

For instance, to reference a specific topic in an archive, such as "Kumquat Stew Recipes" in our example Kumquat
Archive, first mark the section title with an id:

. preceding content...)
<h3 id="Stews">Kumquat Stew Recipes</h3>

in the same or another document, then prepare a source hyperlink that points directly to those recipes by
including the section's id value as a suffix to the document's URL, separated by a pound sign:
For more information on kumquats, visit our

Kumquat Archive,
and perhaps try one or two of our

Kumquat Stew Recipes.

If selected by the user, the latter hyperlink causes the browser to download the archive.html document and start
the display at our "Stews" section.

2.7.4 Anchors Beyond

Hyperlinks are not limited to other HTML and XHTML documents. Anchors let you point to nearly any type of
document available over the Internet, including other Internet services.

However, "let" and "enable" are two different things. Browsers can manage the various Internet services, like FTP
and Gopher, so that users can download non-HTML documents. They don't yet fully or gracefully handle
multimedia.

Today, there are few standards for the many types and formats of multimedia. Computer systems connected to
the Web vary wildly in their abilities to display those sound and video formats. Except for some graphics images,
standard HTML gives you no specific provision for display of multimedia documents except the ability to
reference one in an anchor. The browser, which retrieves the multimedia document, must activate a special
helper application, download and execute an associated applet, or have a plug-in accessory installed to decode
and display it for the user right within the document's display.

Although HTML and most web browsers currently avoid the confusion by sidestepping it, that doesn't mean you
can't or shouldn't exploit multimedia in your documents: just be aware of the limitations.

2.8 Images Are Special

Image files are multimedia elements you may reference with anchors in your document for separate download
and display by the browser. But, unlike other multimedia, standard HTML and XHTML have an explicit provision
for image display "inline" with the text, and images can serve as intricate maps of hyperlinks. That's because there
is some consensus in the industry concerning image file formats - specifically, GIF and JPEG - and the graphical
browsers have built-in decoders that integrate those image types into your document.(s]

[81 Some browsers support other multimedia besides GIF and JPEG graphics for inline display. Internet Explorer,
for instance, supports a tag that plays background audio. In addition, the HTML 4 and XHTML standards provide
a way to display other types of multimedia inline with document text through a general tag.

2.8.1 Inline Images

The HTML/XHTML tag for inline images is ; its required src attribute is the URL of the GIF or JPEG
image you want to insert in the document. Section 5.2.6

The browser separately loads images and places them into the text flow as if the image were some special, albeit
sometimes very large, character. Normally, that means the browser aligns the bottom of the image to the bottom
of the current line of text. You can change that with the special al1gn attribute whose value you set to put
the image at the top , middle, or bottom of adjacent text. Examine Figures Figure 2-2 through Figure 2-4 for the
image alignment you prefer. Of course, wide images may take up the whole line, and hence break the text flow. Or
you may place an image by itself, by including preceding and following division, paragraph, or line-break tags.

page 21

HTML & XHTML: The Definitive Guide

Figure 2-2. An inline image aligned with the bottom of the text (default)

4} Eottom - Microzoft Intemet Explorer

Eile Edit View Favorke: Took: Help n

Eehold the mighty kumoguat; Such a beautifal frt, indeed! -|
2] Done 2| My Campuier

Figure 2-3. An inline image specially aligned with the middle of the text

J5 Middle - Metscape H=E
File Edt Wiew Sewch Go Bookmedks Imsks Help
PR s]

Behold the mighty kumguat: Such a beautifl fruit, indeed!

A} Top - Microsolt |nternet Explorer =10 |
File Edi Wiew Favedes Took Help ﬂ
Behald the mighty kumguat Such a be autiful fruit, indeed|

|

Experienced HTML authors use images not only as supporting illustrations, but also as quite small inline
characters or glyphs, added to aid browsing readers' eyes and to highlight sections of the documents. Veteran
HTML authorslo! commonly add custom list bullets or more distinctive section dividers than the conventional
horizontal rules. Images, too, may be included in a hyperlink, so that users may select an inline thumbnail sketch
to download a full-screen image. The possibilities with inline images are endless.

I XHTML is too new to call anyone a veteran or experienced XHTML author.

2.8.2 Image Maps
Image maps are images within an anchor with a special attribute: they may contain more than one hyperlink.

One way to enable an image map is by adding the ismap attribute to an tag placed inside an anchor tag
(<a>). When the user clicks somewhere in the image, the graphical browser sends the relative x,y coordinates of
the mouse position to the server that is also designated in the anchor. A special server program then translates
the image coordinates into some special action, such as downloading another document. Section 6.5.1.1

A good example of the use of an image map might be to locate a hotel while traveling. The user clicks on a map of

the region they intend to visit, for instance, and your image map's server program might return the names,
addresses, and phone numbers of local accommodations.

page 22

HTML & XHTML: The Definitive Guide

While they are very powerful and visually appealing, these so-called server-side image maps mean that authors
must have some access to the map's coordinate-processing program on the server. Many authors don't even have
access to the server, let alone a program on the server. A better solution is to take advantage of client-side image
maps.

Rather than depending on a web server, the usemap attribute for the tag along with the <map> and <area>
tags allow authors to embed all the information the browser needs to process an image map in the same
document as the image. Because of their reduced network bandwidth and server independence, the client-side
image maps are popular among document authors and system administrators alike. Section 6.5.2

2.9 Lists, Searchable Documents, and Forms

Thought we'd exhausted text elements? Headers, paragraphs, and line breaks are just the rudimentary text-
organizational elements of a document. The languages also provide several advanced text-based structures,
including three types of lists, "searchable" documents, and forms. Searchable documents and forms go beyond
text formatting, too; they are a way to interact with your readers. Forms let users enter text and click checkboxes
and radio buttons to select particular items and then send that information back to the server. Once received, a
special server application processes the form's information and responds accordingly, e.g., filling a product order
or collecting data for a user survey.!!

o] The server-side programming required for processing forms is beyond the scope of this book. We give some
basic guidelines in the appropriate chapters, but please consult the server documentation and your server
administrator for details.

The syntax for these special features and their various attributes can get rather complicated; they're not quick-
start grist. So we mention them here and urge you to read on for details in later chapters.

2.9.1 Unordered, Ordered, and Definition Lists

The three types of lists match those we are most familiar with: unordered, ordered, and definition lists. An
unordered list - one in which the order of items is not important, such as a laundry or grocery list - gets bounded
by <ul1> and tags. Each item in the list, usually a word or short phrase, is marked by the <11i> (list-item) tag
and, with XHTML, the </1li> end tag. When rendered, the list item typically appears indented from the left
margin. The browser typically precedes each item with a leading bullet symbol. Section 7.1.1 Section 7.3

Ordered lists, bounded by the <o1> and </01> tags, are identical in format to unordered ones, including the <1i>
tag (and </11i> end tag with XHTML) for marking list items. However, the order of items is important -
equipment assembly steps, for instance. The browser accordingly displays each item in the list preceded by an
ascending number. Section 7.2.1

Definition lists are slightly more complicated than unordered and ordered lists. Within a definition list's
enclosing <d1> and </d1> tags, each list item has two parts, each with a special tag: a short name or title,
contained within a <dt> tag, followed by its corresponding value or definition, denoted by the <dd> tag (XHTML
includes respective end tags). When rendered, the browser usually puts the item name on a separate line
(although not indented), and the definition, which may include several paragraphs, indented below it. Section

7.5.1

The various types of lists may contain nearly any type of content normally allowed in the body of the document.
So you can organize your collection of digitized family photographs into an ordered list, for example, or put them
into a definition list complete with text annotations. The markup language standards even let you put lists inside
of lists (nesting), opening up a wealth of interesting combinations.

2.9.2 Searchable Documents

The simplest type of user interaction provided by HTML and XHTML is the searchable document. You create a
searchable document by including an <isindex> tag in its header or body. The browser automatically provides
some way for the user to type one or more words into a text input box and to pass those keywords to a related
processing application on the server.[»! Section 6.6.1

(1] Few authors have used the tag, apparently. The <isindex> tag has been "deprecated" in HTML Version 4.0;
sent out to pasture, so to speak, but not yet laid to rest.

The processing application on the server uses those keywords to do some special task, such as perform a database

search or match the keywords against an authentication list to allow the user special access to some other part of
your document collection.

page 23

HTML & XHTML: The Definitive Guide

2.9.3 Forms

Obviously, searchable documents are very limited - one per document and only one user input element.
Fortunately, HTML and XHTML provide better, more extensive support for collecting user input through forms.

You create one or more special form sections in your document, bounded with the <form> and </form> tags.
Inside the form, you may put predefined as well as customized text-input boxes allowing for both single and
multiline input. You may also insert checkboxes and radio buttons for single- and multiple-choice selections, and
special buttons that work to reset the form or send its contents to the server. Users fill out the form at their
leisure, perhaps after reading the rest of the document, and click a special send button that makes the browser
send the form's data to the server. A special server-side program you provide then processes the form and
responds accordingly, perhaps by requesting more information from the user, modifying subsequent documents
the server sends to the user, and so on. Section 9.2

Forms provide everything you might expect of an automated form, including input area labels, integrated
contents for instructions, default input values, and so on - except automatic input verification; your server-side
program or client-side applets need to perform that function.

2.10 Tables

For a language that emerged from academia - a world steeped in data - it's not surprising to find that HTML, and
now its progeny XHTML, support a set of tags for data tables that not only align your numbers, but can specially
format your text, too.

Five tags enable tables, including the <tab1e> tag itself and a <caption> tag for including a description of the
table. Special tag attributes let you change the look and dimensions of the table. You create a table row by row,
putting between the table row (<tr>) tag and its end tag (</tr>) either table header (<th>) or table data (<td>)
tags and their respective contents for each cell in the table (end tags, too, with XHTML). Headers and data may
contain nearly any regular content, including text, images, forms, and even another table. As a result, you can also
use tables for advanced text formatting, such as for multicolumn text and sidebar headers (see Figure 2-5). For
more information, see Chapter 10.

Figure 2-5. HTML tables let you perform page layout tricks, too

] Netscape: Table Tricks |4
e . (S (e (e e i BT N
Back Home | Reload | Wmages | Open | Print | Find =l

Chapter 1:
Introducdtion to Kumquats

The Kumauat The term dwmgrafcomes from the Cantonese
Lover's Han?lbnok (Chinese) word "kam” (gold) and "kwat" [orange).

Kumquat actually refers to any of several small
citrus fruits from trees and bushes belonging to the
rue family of the genus Auvunedi

Fumguats, as the name implies. are golden
orange-calored fruits with a spongy rind and juicy
pulp. Unlike the orange, however, kurquat rinds
are sweet and the pulp is quite acid. Hence,
kuraquats are rarely served as fresh table fare,
except in the homes of the most intellizent of the
human species,

2.11 Frames

Anyone who has had more than one application window open on their graphical desktop at a time can
immediately appreciate the benefits of frames. Frames let you divide the browser window into multiple display
areas, each containing a different document.

page 24

HTML & XHTML: The Definitive Guide

Figure 2-6 is an example of a frame display. It shows how the document window may be divided into many
individual windows separated by rule lines and scroll bars. What is not immediately apparent in the example,
though, is that each frame may display an independent document, and not necessarily HTML or XHTML ones,
either. A frame may contain any valid content that the browser is capable of displaying, including multimedia. If
the frame's contents include a hypertext link the user selects, the new document's contents, even another frame
document, may replace that same frame, another frame's content, or the entire browser window.

Figure 2-6. Frames divide the window into many document displays

] Metscape: Frames Layout ET]
B & | B =& ® LN
Back Home | Reload | Images Open | Print | Find =l
My first HTML document Behold the mighty kumquat:
Hello, #sbrdt Hide #Ed/ W i)

Creetings from

Composed with care by s prowr name bered Such a beautitul fruit. indeed|

@2000 and beyond
The Kumguat Chapter 1: Introduction to Kumguats —
Lover's oy
Handbook The term Lumiguascomes from the Cantonese (Chinese) ward
"kam" (gold) and "kwat" [orange).
Table of Knmquat actually refers to any of several small citrus fruits
Contents from trees and bushes belonging to . -
the rue familyof
. the 115
. ﬁzx%‘funwﬁf'd
-
™ Kumguats, as the
name lmplies, are
geolden orange-colored fruits with a spongy ||
rind and juicy pulp. Unlike the crange, 4]

Frames are defined in a special document in which you replace the <body> tag with one or more <frameset> tags
that tell the browser how to divide its main window into discrete frames. Special <frame> tags go inside the
<frameset> tag and point to the documents that go inside the frames.

The individual documents referenced and displayed in the frame document window act independently, to a
degree; the frame document controls the entire window. You can, however, direct one frame's document to load
new content into another frame. Selecting an item from a table of contents, for example, might cause the browser
to load and display the referenced document into an adjacent frame for viewing. That way, the table of contents is
always available to the user as he or she browses the collection. For more information on frames, see Chapter 11.

2.12 Style Sheets and JavaScript

Browsers also have support for two powerful innovations to HTML: style sheets and JavaScript. Like their
desktop-publishing cousins, style sheets let you control how your web pages look - text font styles and sizes,
colors, backgrounds, alignments, and so on. More importantly, style sheets give you a way to impose display
characteristics uniformly over the entire document and over an entire collection of documents.

JavaScript is a programming language with functions and commands that let you control how the browser
behaves for the user. Now, this is not a JavaScript programming book, but we do cover the language in fair detail
in later chapters to show you how to embed JavaScript programs into your documents and achieve some very
powerful and fun effects.

The W3C - the putative standards organization - prefers that you use the Cascading Style Sheets (CSS) model for
document design. Since version 4, both Netscape and Internet Explorer support CSS and JavaScript. Netscape
alone also supports a special JavaScript-based Style Sheet (JSS) model which we describe in Chapter 12 , but we
do not recommend that you use it. CSS is the universally approved, universally supported way to control how
your documents might (not will) usually get displayed on users' browsers.

page 25

HTML & XHTML: The Definitive Guide

To illustrate CSS, here's a way to make all the top-level (H1) header text in your HTML document appear in the
color red:

<html>
<head>
<title>CSS Example</title>
<!-- Hide CSS properties within comments so old browsers
don't choke on or display the unfamiliar contents. -->
<style type="text/CSS">
<!l--
H1 {color: red}
-—>
</style>
</head>
<body>

<H1>I'11 be red if your browser supports CSS</H1>

Something in between.

<H1>I should be red, too!</Hl>

</body>

</html>

Of course, you can't see red in this black & white book, so we won't show the result in a figure. Believe us or prove
it to yourself by typing in and loading the example in your browser: the <H1>-enclosed text appears red on a color
screen.

JavaScript is an object-based language. It views your document and the browser that displays your documents as
a collection of parts ("objects") that have certain properties that you may change or compute. This is some very
powerful stuff, but not something that most authors will want to handle. Rather, most of us probably will snatch
the quick and easy, yet powerful JavaScript programs that proliferate across the Web and embed them in our own
documents. We will tell you how in Chapter 12.

2.13 Forging Ahead

Clearly, this chapter represents the tip of the iceberg. If you've read this far, hopefully your appetite has been
whetted for more. By now you've got a basic understanding of the scope and features of HTML and XHTML;
proceed through subsequent chapters to expand your knowledge and learn more about each feature.

page 26

HTML & XHTML: The Definitive Guide

Chapter 3. Anatomy of an HTML Document

Most HTML and XHTML documents are very simple, and writing one shouldn't intimidate even the most timid of
computer users. First, although you might use a fancy WYSIWYG editor to help you compose it, a document is
ultimately stored, distributed, and read by a browser as a simple ASCII text file.l That's why even the poorest
user with a barebones text editor can compose the most elaborate of web pages. (Accomplished webmasters often
elicit the admiration of "newbies" by composing astonishingly cool pages using the crudest text editor on a cheap
laptop computer and performing in odd places like on a bus or in the bathroom.) Authors should, however, keep
several of the popular browsers on hand and alternate among them to view new documents under construction.
Remember, browsers differ in how they display a page, not all browsers implement all of the language standards,
and some have their own special extensions.

(1 Informally, both the text and the markup tags are ASCII characters. Technically, unless you specify otherwise,
text and tags are made up of eight-bit characters as defined in the standard ISO-8859-1 Latin character set. The
standards do support alternative character encoding, including Arabic and Cyrillic. See Appendix F for details.

3.1 Appearances Can Deceive

Documents never look alike when displayed by a text editor and when displayed by a browser. Take a look at any
source document from the World Wide Web. At the very least, return characters, tabs, and leading spaces,
although important for readability of the source text document, are ignored for the most part. There also is a lot
of extra text in a source document, mostly from the display tags and interactivity markers and their parameters
that affect portions of the document, but don't themselves appear in the display.

Accordingly, new authors are confronted with having to develop not only a presentation style for their web pages,
but a different style for their source text. The source document's layout should highlight the programming-like
markup aspects of HTML and XHTML, not their display aspects. And it should be readable not only by you, the
author, but by others as well.

Experienced document writers typically adopt a programming-like style, albeit very relaxed, for their source text.
We do the same throughout this book, and that style will become apparent as you compare our source examples
with the actual display of the document by a browser.

Our formatting style is simple, but it serves to create readable, easily maintained documents:

e Except for the document structural tags like <htm1>, <head>, and <body>, any element we use to
structure the content of a document is placed on a separate line and indented to show its nesting level
within the document. Such elements include lists, forms, tables, and similar tags.

e Any element used to control the appearance or style of text is inserted in the current line of text. This
includes basic font style tags like (bold text) and document linkages like <a> (hypertext anchor).

e Avoid, where possible, the breaking of a URL onto two lines.

e Add extra newline characters to set apart special sections of the source document, for instance, around
paragraphs or tables.

The task of maintaining the indentation of your source file ranges from trivial to onerous. Some text editors, like
Emacs, manage the indentation automatically; others, like common word processors, couldn't care less about
indentation and leave the task completely up to you. If your editor makes your life difficult, you might consider
striking a compromise, perhaps by indenting the tags to show structure, but leaving the actual text without
indentation to make modifications easier.

No matter what compromises or stands you make on source code style, it's important that you adopt one. You'll

be very glad you did when you go back to that document you wrote three months ago searching for that really cool
trick you did with... Now, where was that?

page 27

HTML & XHTML: The Definitive Guide

3.2 Structure of an HTML Document

HTML and XHTML documents consist of text, which defines the content of the document, and tags, which define
the structure and appearance of the document. The structure of an HTML document is simple, consisting of an
outer <htm1> tag enclosing the document head and body:!!

[2] The structure of an XHTML document is slightly more complicated, as we detail in Chapter 16.

<html>

<head>

<title>Barebones HTML Document</title>

</head>

<body>

This illustrates, in a very <i>simp</i>le way,

the basic structure of an HTML document.

</body>

</html>

Each document has a head and a body, delimited by the <head> and <body> tags. The head is where you give your
document a title and where you indicate other parameters the browser may use when displaying the document.
The body is where you put the actual contents of the document. This includes the text for display and document
control markers (tags) that advise the browser how to display the text. Tags also reference special-effects files,
including graphics and sound, and indicate the hot spots (hyperlinks and anchors) that link your document to
other documents.

3.3 Tags and Attributes

For the most part, tags - the markup elements of HTML and XHTML - are simple to understand and use, since
they are made up of common words, abbreviations, and notations. For instance, the <i> and </1> tags tell the
browser respectively to start and stop italicizing the text characters that come between them. Accordingly, the
syllable "simp" in our barebones example above would appear italicized on a browser display.

The HTML and XHTML standards and their various extensions define how and where you place tags within a
document. Let's take a closer look at that syntactic sugar that holds together all documents.

3.3.1 The Syntax of a Tag

Every tag consists of a tag name, sometimes followed by an optional list of tag attributes, all placed between
opening and closing brackets (< and >). The simplest tag is nothing more than a name appropriately enclosed in
brackets, such as <head> and <i>. More complicated tags contain one or more attributes, which specify or modify
the behavior of the tag.

According to the HTML standard, tag and attribute names are not case-sensitive. There's no difference in effect
between <head>, <Head>, <HEAD>, or even <HeaD>; they are all equivalent. With XHTML, case is important: all
current standard tag and attribute names are in lowercase.

For both HTML and XHTML, the values that you assign to a particular attribute may be case-sensitive, depending
on your browser and server. In particular, file location and name references - or uniform resource locators
(URLSs) - are case-sensitive. Section 6.2

Tag attributes, if any, belong after the tag name, each separated by one or more tab, space, or return characters.
Their order of appearance is not important.

A tag attribute's value, if any, follows an equal sign (=) after the attribute name. You may include spaces around
the equal sign, so that width=6,width = 6,width =6, and width= 6 all mean the same. For readability,
however, we prefer not to include spaces. That way, it's easier to pick out an attribute/value pair from a crowd of
pairs in a lengthy tag.

With HTML, if an attribute's value is a single word or number (no spaces), you may simply add it after the equal
sign. All other values should be enclosed in single or double quotation marks, especially those values that contain
several words separated by spaces. With XHTML, all attribute values must be enclosed in double-quotes. The
length of the value is limited to 1024 characters.

Most browsers are tolerant of how tags are punctuated and broken across lines. Nonetheless, avoid breaking tags

across lines in your source document whenever possible. This rule promotes readability and reduces potential
errors in your HTML documents.

page 28

HTML & XHTML: The Definitive Guide

3.3.2 Sample Tags

Here are some tags with attributes:

<ul compact>

<ul compact="compact">

<input type=text name=filename size=24 maxlength=80>
<link title="Table of Contents">

The first example is the <a> tag for a hyperlink to O'Reilly & Associates' World Wide Web-based catalog of
products. It has a single attribute, href, followed by the catalog's address in cyberspace - its URL.

The second example shows an HTML tag that formats text into an unordered list of items. Its single attribute -
compact, which limits the space between list items - does not require a value.

The third example demonstrates how the second example must be written in XHTML. Notice the compact
attribute now has a value, albeit redundant, and that its value is enclosed in double quotes.

The fourth example shows an HTML tag with multiple attributes, each with a value that does not require
enclosing quotation marks. Of course, with XHTML, each attribute value must be enclosed in double quotes.

The last example shows proper use of enclosing quotation marks when the attribute value is more than one word
long.

What is not immediately evident in these examples is that while HTML attribute names are not case-sensitive
(href works the same as HREF and HreF in HTML), most attribute values are case-sensitive. The value fiTename
for the name attribute in the <input> tag example is not the same as the value Filename, for instance.

3.3.3 Starting and Ending Tags

We alluded earlier to the fact that most tags have a beginning and an end and affect the portion of content
between them. That enclosed segment may be large or small, from a single text character, syllable, or word, such
as the italicized "simp" syllable in our barebones example, to the <htm1> tag that bounds the entire document.
The starting component of any tag is the tag name and its attributes, if any. The corresponding ending tag is the
tag name alone, preceded by a slash. Ending tags have no attributes.

3.3.4 Proper and Improper Nesting

Tags can be put inside the affected segment of another tag (nested) for multiple tag effects on a single segment of
the document. For example, a portion of the following text is both bold and included as part of an anchor defined
by the <a> tag:

<body>

This is some text in the body, with a

1ink, a portion of which

is set 1in bold

</body>

According to the HTML and XHTML standards, you must end nested tags starting with the most recent one and
work your way back out. For instance in the example, we end the bold tag () before ending the link tag ()
since we started in the reverse order: <a> tag first, then tag. It's a good idea to follow that standard, even
though most browsers don't absolutely insist you do so. You may get away with violating this nesting rule for one
browser, sometimes even with all current browsers. But eventually a new browser version won't allow the
violation and you'll be hard pressed to straighten out your source HTML document. And, be aware that the
XHTML standard explicitly forbids improper nesting.

3.3.5 Tags Without Ends

According to the HTML standard, a few tags do not have an ending tag. In fact, the standard forbids use of an end
tag for these special ones, although most browsers are lenient and ignore the errant end tag. For example, the

 tag causes a line break; it has no effect otherwise on the subsequent portion of the document and, hence,
does not need an ending tag.

The HTML tags that do not have a corresponding end tags are:

<area> <base> <basefont>

 <col> <frame>
<hr> <input>
<isindex> <Tink> <meta>
<param>

XHTML always requires end tags. Section 16.3.3

page 29

HTML & XHTML: The Definitive Guide

3.3.6 Omitting Tags

You often see documents in which the author seemingly has forgotten to include an ending tag in apparent
violation of the HTML standard. Sometimes you even see a missing <body> tag. But your browser doesn't
complain, and the document displays just fine. What gives? The HTML standard lets you omit certain tags or
their endings for clarity and ease of preparation. The HTML standard writers didn't intend the language to be
tedious.

For example, the <p> tag that defines the start of a paragraph has a corresponding end tag </p>, but the </p>
ending tag rarely is used. In fact, many HTML authors don't even know it exists! Section 4.1.2

Rather, the HTML standard lets you omit a starting tag or ending tag whenever it can be unambiguously inferred
by the surrounding context. Many browsers make good guesses when confronted with missing tags, leading the
document author to assume that a valid omission was made.

We recommend that you most always add the ending tag. It'll make life easier for yourself as you transition to
XHTML, as well as on the browser and anyone who might need to modify your document in the future.

3.3.7 Ignored or Redundant Tags

HTML browsers sometimes ignore tags. This usually happens with redundant tags whose effects merely cancel or
substitute for themselves. The best example is a series of <p> tags, one after the other with no intervening
content. Unlike the similar series of repeating return characters in a text-processing document, most browsers
skip to a new line only once. The extra <p> tags are redundant and usually ignored by the browser.

In addition, most HTML browsers ignore any tag that they don't understand or that was incorrectly specified by
the document author. Browsers habitually forge ahead and make some sense of a document, no matter how badly
formed and error-ridden it may be. This isn't just a tactic to overcome errors; it's also an important strategy for
extensibility. Imagine how much harder it would be to add new features to the language if the existing base of
browsers choked on them.

The thing to watch out for with nonstandard tags that aren't supported by most browsers is their enclosed
contents, if any. Browsers that recognize the new tag may process those contents differently than those that don't
support the new tag. For example, Internet Explorer and Netscape Navigator now both support the <style> tag,
whose contents serve to set the variety of display characteristics of your document. However, previous versions of
the popular browsers, many of which are still in use by many people today, don't support styles. Hence, older
browsers ignore the <style> tag and render its contents on the user's screen, effectively defeating the tag's
purpose in addition to ruining the document's appearance. Section 8.1.2

3.4 Well-Formed Documents and XHTML

XHTML is HTML's prissy cousin. What would pass most beauty contests as a very proper and complete HTML
document, done according to the book including end-paragraph tags, would get rejected by the XML judges as a
malformed file.

To conform with XML, XHTML insists that documents be "well-formed." Among other things, that means every
tag must have an ending tag, even the ones like
 and <hr> that the HTML standard forbids the use of an end
tag. With XHTML, the ending is placed inside the start tag:
, for example. Section 16.3.3

It also means that tag and attribute names are case-sensitive, and according to the current XHTML standard,
must be in lowercase. Hence, only <head> is acceptable, and it is not the same as <HEAD> or <HeAd>, as it is with
the HTML standard. Section 16.3.4

And, too, well-formed XHTML documents, like HTML standard ones, conform to proper nesting. No argument
there. Section 16.3.1

In its defense, the XML standard and its offspring XHTML emphasize extensibility. That way, <p> can mean the
beginning of a paragraph in HTML, whereas another variant of the language may define the contents of the <P>
tag to be election-poll results, whose display is quite different, perhaps in tabular form with red, white, and blue
stripes and accompanying patriotic music.

More about this in Chapter 15 and Chapter 16, in which we detail XML and XHTML standards (and the Forces of
Conformity).

page 30

HTML & XHTML: The Definitive Guide

3.5 Document Content

Nearly everything else you put into your HTML or XHTML document that isn't a tag is by definition content, and
the majority of that is text. Like tags, document content is encoded using a specific character set, the ISO-8859-1
Latin character set, by default. This character set is a superset of conventional ASCII, adding the necessary
characters to support the Western European languages. If your keyboard does not allow you to directly enter the
characters you need, you can use character entities to insert the desired characters.

3.5.1 Advice Versus Control

Perhaps the hardest rule to remember when marking up an HTML or XHTML document is that all the tags you
insert regarding text display and formatting are only advice for the browser: they do not explicitly control how the
browser will display the document. In fact, the browser can choose to ignore all of your tags and do what it
pleases with the document content. What's worse, the user (of all people!) has control over the text-display
characteristics of his or her own browser.

Get used to this lack of control. The best way to use markup to control the appearance of your documents is to
concentrate on the content of the document, not on its final appearance. If you find yourself worrying excessively
about spacing, alignment, text breaks, and character positioning, you'll surely end up with ulcers. You will have
gone beyond the intent of HTML. If you focus on delivering information to users in an attractive manner, using
the tags to advise the browser as to how best to display that information, you are using HTML or XHTML
effectively, and your documents will render well on a wide range of browsers.

3.5.2 Character Entities

Besides common text, HTML and XHTML give you a way to display special text characters that you might not
normally be able to include in your source document or that have other purposes. A good example is the less-than
or opening bracket (<) symbol. In HTML, it normally signifies the start of a tag, so if you insert it simply as part of
your text, the browser will get confused and probably misinterpret your document.

For both HTML and XHTML, the ampersand character instructs the browser to use a special character, formally
known as a character entity. For example, the command &1t ; inserts that pesky less-than symbol into the
rendered text. Similarly, > ; inserts the greater-than symbol, and & inserts an ampersand. There can be no
spaces between the ampersand, the entity name, and the required, trailing semicolon. (Semicolons aren't special
characters; you don't need to use an ampersand sequence to display a semicolon normally.) Section 16.3.7

You also may replace the entity name after the ampersand with a pound symbol (#) and a decimal value
corresponding to the entity's position in the character set. Hence, the sequence < does the same thing as
&1t; and represents the less-than symbol. In fact, you could substitute all the normal characters within an HTML
document with ampersand-special characters, such as A for a capital "A" or a for its lowercase version,
but that would be silly. A complete listing of all characters, their names, and numerical equivalents can be found
in Appendix F.

Keep in mind that not all special characters can be rendered by all browsers. Some browsers just ignore many of
the special characters; with others, the characters aren't available in the character sets on a specific platform. Be
sure to test your documents on a range of browsers before electing to use some of the more obscure character
entities.

3.5.3 Comments

Comments are another type of textual content that appear in the source HTML document, but are not rendered
by the user's browser. Comments fall between the special <! -- and --> markup elements. Browsers ignore the
text between the comment character sequences.

Here's a sample comment:

<!-- This is a comment -->
<!-- This is a

multiple line comment

that ends on this Tine -->

There must be a space after the initial <! -- and preceding the final -->, but otherwise you can put nearly
anything inside the comment. The biggest exception to this rule is that the HTML standard doesn't let you nest
comments.(s)

[3] Netscape does let you nest comments, but the practice is tricky; you cannot always predict how other browsers
will react to nested comments.

page 31

HTML & XHTML: The Definitive Guide

Internet Explorer also lets you place comments within a special <comment> tag. Everything between the
<comment> and </comment> tag is ignored by Internet Explorer, but all other browsers will display the comment
to the user. Because of this undesirable behavior, we do not recommend using the <comment> tag for comments.
Instead, always use the <! -- and --> sequences to delimit comments.

Besides the obvious use of comments for source documentation, many web servers use comments to take
advantage of features specific to the document server software. These servers scan the document for specific
character sequences within conventional HTML comments and then perform some action based upon the
commands embedded in the comments. The action might be as simple as including text from another file (known
as a server-side include) or as complex as executing other commands on the server to generate the document
contents dynamically.

3.6 HTML Document Elements

Every HTML document should conform to the HTML SGML DTD, the formal Document Type Definition that
defines the HTML standard. The DTD defines the tags and syntax that are used to create an HTML document.
You can inform the browser which DTD your document complies with by placing a special SGML (Standard
Generalized Markup Language) command in the first line of the document:

<!DOCTYPE HTML PUBLIC "-//wW3C//DTD HTML 4.01//EN">

This cryptic message indicates that your document is intended to be compliant with the HTML 4.01 final DTD
defined by the World Wide Web Consortium (W3C). Other versions of the DTD define more restricted versions of
the HTML standard, and not all browsers support all versions of the HTML DTD. In fact, specifying any other
doctype may cause the browser to misinterpret your document when displaying it for the user. It's also unclear
what doctype to use when including in the HTML document the various tags that are not standards, but are very
popular features of a popular browser - the Netscape extensions, for instance, or even the deprecated HTML 3.0
standard, for which a DTD was never released.

Almost no one precedes their HTML documents with the SGML doctype command. Because of the confusion of
versions and standards, we don't recommend that you include the prefix with your HTML documents either.

On the other hand, we do strongly recommend that you include the proper doctype statement in your XHTML
documents, in conformance with XML standards. Read Chapter 15 and Chapter 16 for more about DTDs and the
new Extensible Markup Language standards.

3.6.1 The <html> Tag

As we saw earlier, the <htm1> and </htm1> tags serve to delimit the beginning and ending of a document. Since
the typical browser can easily infer from the enclosed source that it is an HTML document, you don't really need
to include the tag in your source HTML document.

<html>

Function:

Delimits a complete HTML document

Attributes:
DIR
LANG
VERSION
End tag:

</html>; may be omitted in HTML
Contains:

head_tag, body_tag, frames

page 32

HTML & XHTML: The Definitive Guide

That said, it's considered good form to include this tag so that other tools, particularly more mundane text-
processing ones, can recognize your document as an HTML document. At the very least, the presence of the
beginning and ending <htm1> tags ensures that the beginning or the end of the document haven't been
inadvertently deleted. Besides, XHTML requires the <htm1> tag.

Inside the <htm1> tag and its end tag are the document's head and body. Within the head, you'll find tags that
identify the document and define its place within a document collection. Within the body is the actual document
content, defined by tags that determine the layout and appearance of the document text. As you might expect, the
document head is contained within a <head> tag and the body is within a <body> tag, both of which are defined
later.

The <body> tag may be replaced by a <frameset> tag, defining one or more display frames that, in turn, contain
actual document content. See Chapter 11 for more information. By far, the most common form of the <htm1> tag
in HTML documents is simply:

<html>

document head and body content
</html>

When the <htm1> tag appears without the version attribute, the HTML document server and browser assume the
version of HTML used in this document is supplied to the browser by the server.

3.6.1.1 The dir attribute

The di r attribute specifies in which direction the browser should render text within the containing element.
When used within the <htm1> tag, it determines how text will be presented within the entire document. When
used within another tag, it controls the text's direction for just the content of that tag.

By default, the value of this tag is 1tr, indicating that text is presented to the user left-to-right. Use the other
value, rt1, to display text right-to-left for languages like Chinese or Hebrew.Of course, the results depend on your
content and the browser's support of HTML 4.Netscape and Internet Explorer Versions 4 and earlier ignore the
dir attribute. The HTML 4-compliant Internet Explorer Version 5 simply right-justifies di r=rt1 text, although if
you look in Figure 3-1, you'll notice the browser moves the punctuation (the period) to the other side of the
sentence:

<html dir=rtl>

<head>

<title>Display Directions</title>

</head>

<body>

This is how IE 5 renders right-to-left directed text.

</body>

</html>

Figure 3-1. Internet Explorer 5 implements the dir attribute
! Ditplap Directionz - Miciozoft Inleinel Exploies
Eile Edt Yiew Favomte: Joolz Help m

'j This 15 how [E 5 renders nght-to-left doected text
&] Done 4 My Computer

3.6.1.2 The lang attribute

When included within the <htm1> tag, the Tang attribute specifies the language you've generally used within the
document. When used within other tags, the Tang attribute specifies the language you used within that tag's
content. Ideally, the browser will use 1ang to better render the text for the user.

Set the value of the 1ang attribute to an ISO-639 standard two-character language code. You may also indicate a
dialect by following the ISO language code with a dash and a subcode name. For example, "en" is the ISO
language code for English; "en-US" is the complete code for US English. Other common language codes include
"fr" (French), "de" (German), "it" (Italian), "nl" (Dutch), "el" (Greek), "es" (Spanish), "pt" (Portuguese), "ar"
(Arabic), "he" (Hebrew), "ru" (Russian), "zh" (Chinese), "ja" (Japanese), and "hi" (Hindi).

3.6.1.3 The version attribute

The version attribute defines the HTML standard version used to compose the document. Its value, for HTML
Version 4.01, should read exactly:

version="-//w3C//DTD HTML 4.01//EN"

page 33

HTML & XHTML: The Definitive Guide

In general, version information within the <htm1> tag is more trouble than it is worth, and this attribute has been
deprecated in HTML 4. Serious authors should instead use an SGML <!doctype> tag at the beginning of their
documents, like this:

<!DOCTYPE HTML PUBLIC "-//wW3C/DTD HTML 4.01//EN"
"http://www.w3c.org/TR/html4/strict.dtd">

3.7 The Document Header

The document header describes the various properties of the document, including its title, position within the
Web, and relationship with other documents. Most of the data contained within the document header is never
actually rendered as content visible to the user.

3.7.1 The <head> Tag

The <head> tag serves to encapsulate the other header tags. Place it at the beginning of your document, just after
the <htm1> tag and before the <body> or <frameset> tag. Both the <head> tag and its corresponding ending
</head> can be unambiguously inferred by the browser and so can be safely omitted from a document.
Nonetheless, we do encourage you to include them in your documents, since they promote readability and
support document automation.

<head>

Function:

Defines the document header
Attributes:

DIR
LANG
PROFILE

End tag:

</head>; rarely omitted in HTML
Contains:

head_content
Used in:

html_tag

The <head> tag may contain a number of other tags that help define and manage the document's content. These
include, in any order of appearance: <base>, <isindex>, <1ink>, <meta>, <nextid>, <object>, <script>,
<style>, and <title>.

3.7.1.1 The dir and lang attributes

The dir and 1ang attributes help extend HTML and XHTML to an international audience. Section 3.6.1.1, Section
3.6.1.2

3.7.1.2 The profile attribute

Often, the header of a document contains a number of <meta> tags used to convey additional information about
the document to the browser. In the future, authors may use predefined profiles of standard document metadata
to better describe their documents. The profiTe attribute supplies the URL of the profile associated with the
current document.

The format of a profile and how it might be used by a browser are not yet defined; this attribute is primarily a
placeholder for future development.

page 34

HTML & XHTML: The Definitive Guide

3.7.2 The <title> Tag

The <title> tag does exactly what you might expect: the words you place inside its start and end tags define the
title for your document. (This stuff is pretty much self-explanatory and easier than you might think at first
glance.) The title is used by the browser in some special manner, most often placed in the browser window's title
bar or on a status line. Usually, too, the title becomes the default name for a link to the document if the document
is added to a link collection or to a user's "hot list."

<title>

Function:

Defines the document title
Attributes:

DIR
LANG

End tag:

</title>; never omitted
Contains:

plain_text
Used in:

head_content

The <title> tag is the only thing required within the <head> tag. Since the <head> tag itself and even the <htm1>
tag may be safely omitted, the <tit1e> tag could be the first line within a valid HTML document. Beyond that,
most browsers will even supply a generic title for documents lacking a <tit1e> tag, such as the document's
filename, so you don't even have to supply a title. That goes a bit too far even for our down-and-dirty tastes. No
respectable author should serve up a document missing the <title> tag and a title.

Browsers do not specially format title text and ignore anything other than text inside the title start and end tags.
For instance, they will ignore any images or links to other documents.

Here's an even barer barebones example of a valid HTML document to highlight the header and title tags; watch
what happens when Netscape displays it in Figure 3-2:

<html1>
<head>
<title>HTML and XHTML: The Definitive Guide</title>
</head>
</html>

Figure 3-2. What's in a <title>?

75 HTML and XHTML: The Definitive Guide - Netscape -[a[x]

Fie Edit “ew Search Go Bookmarks Tasks Help
Lo]

3.7.2.1 What's in a title?

Selecting the right title is crucial to defining a document and ensuring that it can be effectively used within the
World Wide Web.

Keep in mind that users can access each of your documents in a collection in nearly any order and independently
of one another. Each document's title should therefore define the document both within the context of your other
documents as well as on its own merits.

page 35

HTML & XHTML: The Definitive Guide

Titles that include references to document sequencing are usually inappropriate. Simple titles, like "Chapter 2" or
"Part VI" do little to help a user understand what the document might contain. More descriptive titles, such as
"Chapter 2: Advanced Square Dancing" or "Part VI: Churchill's Youth and Adulthood," convey both a sense of
place within a larger set of documents and specific content that invites the reader to read on.

Self-referential titles also aren't very useful. A title like "My Home Page" is completely content-free, as are titles
like "Feedback Page" or "Popular Links." You want a title to convey a sense of content and purpose so that users
can decide, based upon the title alone, whether to visit that page or not. "The Kumquat Lover's Home Page" is
descriptive and likely to draw in lovers of the bitter fruit, as are "Kumquat Lover's Feedback Page" and "Popular
Links Frequented by Kumquat Lovers."

People spend a great deal of time creating documents for the Web, often only to squander that effort with an
uninviting, ineffective title. As special software that automatically collects links for users becomes more prevalent
on the Web, the only descriptive phrase associated with your pages when they are inserted into some vast link
database will be the title you choose for them. We can't emphasize this enough: take care to select descriptive,
useful, context-independent titles for each of your documents.

3.7.2.2 The dir and lang attributes

The dir and Tang attributes help extend HTML and XHTML to an international audience. Section 3.6.1.1, Section
3.6.1.2

3.7.3 Related Header Tags

Other tags you may include within the <head> tag deal with specific aspects of document creation, management,
linking, automation, or layout. That's why we only mention them here and describe them in greater detail in
other, more appropriate sections and chapters of this book.

Briefly, the special header tags are:
<base> and <1ink>

Define the current document's base location and relationship to other documents. Section 6.7.1, Section
6.7.2

<isindex>

Deprecated in HTML 4, the <isindex> tag at one time could be used to create automatic document
indexing forms, allowing users to search databases of information using the current document as a
querying tool. Section 6.6.1

<nextid>

Not supported in HTML 4 or XHTML, the <nextid> tag makes creation of unique document labels
easier when using document automation tools. Section 6.8.2

<meta>

Provides additional document data not supplied by any of the other <head> tags. Section 6.8.1
<object>

Defines methods by which nonstandard objects can be rendered by the browser. Section 12.2.1
<script>

Defines one or more scripts that can be invoked by elements within the document. Section 12.3.1
<style>

Lets you create Cascading Style Sheet properties to control body-content display characteristics for the
entire document. Section 8.1.2

3.8 The Document Body

The document body is the meat of the matter; it's where you put the contents of your document. The <body> tag
delimits the document body.

3.8.1 The <body> Tag
Within HTML 4 and XHTML, the <body> tag has a number of attributes that control the color and background of

your document. Various browsers, have extended the tag to give even greater control over your document's
appearance.

page 36

HTML & XHTML: The Definitive Guide

<body>

Function:

Defines the document body

Attributes:
ALINK ONKEYUP
BACKGROUND ONLOAD
BGCOLOR ONMOUSEDOWN
BGPROPERTIES O ONMOUSEMOVE
CLASS ONMOUSEOUT
DIR ONMOUSEOVER
D ONMOUSEUP
LANG ONUNLOAD
LEFTMARGIN O STYLE
LINK TEXT
ONBLUE TITLE
ONCLICK TOPMARGIND
ONDBLCLICK VLINK
ONFOCUS
ONKEYDOWN
ONKEYPRESS
End tag:

</body>; may be omitted in HTML

Contains:

Used in:

body_ content

html_tag

page 37

HTML & XHTML: The Definitive Guide

Anything inside the <body> tag and its ending counterpart </body> is called body content. The simplest
document might have only a sequence of text paragraphs within the <body> tag. More complex documents will
include heavily formatted text, graphical figures, tables, and a variety of special effects.

Since the position of the <body> and </body> tags can be inferred by the browser, they can safely be omitted from
the document. However, like the <htm1> and <head> tags, we recommend that you include the <body> tags in
your document to make them more easily readable and maintainable.

The various attributes for the <body> tag can be loosely grouped into three sets: those that give you some control
over the document's appearance, those that associate programmable functions with the document itself, and
those that label and identify the body for later reference. We address the appearance attributes (al1nk,
background, bgcolor, bgproperties, leftmargin, 1ink, text, topmargin, and v1ink) in Chapter 5; the class
and styTe attributes for cascading style sheets in Chapter 8; JavaScript style sheets and the programmatic
attributes (the "on-event" ones) in Chapter 12; the language attributes (dir and Tang) earlier in this chapter in
Section 3.5.1 and Section 3.5.2; and the identification attributes (id and tit1e) in Chapter 4. Section 3.6.1.1,
Section 3.6.1.2, Section 4.1.1.4, Section 4.1.1.5

3.8.2 Frames

The HTML and XHTML standards define a special type of document in which you replace the <body> tag with
one or more <frameset> tags. This so-called frame document divides the display window into one or more
independent windows, each displaying a different document. We thoroughly describe this innovation in Chapter
11.

3.9 Editorial Markup

HTML 4.0 introduced two new tags that can help groups of authors collaborate in the development of documents
and maintain some semblance of editorial and version control. The insert (<ins>) and delete (<de1>) tags let you
designate portions of your document's body as either new or added content, or designate old stuff that should be
replaced. And with special attributes, you may indicate when you made the change (datetime) and a reference to
a document that may explain the change (cite).

3.9.1 The <ins> and Tags

The <ins> and <de1> tags let authors set off portions of body contents they intend to add to or delete from the
current version of their document. HTML 4/XHTML-compliant browsers display the contents of the <ins> or
 tags in some special way so readers can quickly scan the document for the changes.

Netscape 4 and earlier versions ignore the tags, as did Internet Explorer 4 and earlier versions. The newest
versions of Internet Explorer (Version 5) and Netscape (Version 6) use common editorial markings by
underlining inserted text and striking out deleted text (Figure 3-3).

Figure 3-3. Internet Explorer Version 5 displays <ins> and -tagged content
»’ Edsting m Progress - Microzoft Intemet Explorer _ O] x|

File Edt View Favoetes Tooks Help | @ |

E

WrordsEditors move wordsediters arcund, take some words away, and even
change wordmgs,

£] Done =1 My Computer

L]

3.9.1.1 The cite attribute
The ci te attribute lets you document the reasons for the insertion or deletion. Its value must be a URL that

points to some other document that explains the inserted text. How cite gets treated by a browser is a question
for the future.

page 38

HTML & XHTML: The Definitive Guide

<ins> and
Function:
Defines inserted and deleted document content
Attributes:
CITE ONKEYPRESS
CLASS ONKEYUP
DATETIME ONMOUSEDOWN
DIR ONMOUSEMOVE
ID ONMOUSEOUT
LANG ONMOUSEOVER
ONCLICK ONMOUSEUP
ONDBLCLICK STYLE
ONKEYDOWN TITLE
End tag:
</ins> and ; never omitted
Contains:
body_ content
Used in:
body_ content

page 39

HTML & XHTML: The Definitive Guide

3.9.1.2 The datetime attribute

Although the reason for the change is important, knowing when a change was made is often more important. The
datetime attribute for the <ins> and tags takes a single value: a specially encoded date and time stamp.

The rigorous format for the datetime value is YYYY-MM-DDThh:mm: ssTzD. The components are:
® YYvy is the year, such as 1998 or 2001.
e MM is the month; 01 for January through 12 for December.
e DD is the day; o1 through 31.
e Tisarequired character designating the beginning of the time segment of the stamp.

e hhisthe hour in 24-hour format; 00 (midnight) through 23 (11 P.M.). (Add a following colon if you
include the minutes.)

e mm are the minutes on the hour; 00 through 59. (Add a following colon if you include the seconds.)
e ssare the seconds; 0o through 59.

e TzDis the time zone designator. It can be one of three values: z, indicating Greenwich Mean Time, ! or
the hours, minutes, and seconds before (-) or after (+) Coordinated Universal Time (UTC) where time is
relative to the time in Greenwich, England.

[4] Greenwich Mean Time is also known as "Zulu," thus the value of "Z."

For example:
1998-02-22T714:262

decodes to February 22, 1998 at 2:26 P.M. Greenwich Mean Time. To specify Eastern Standard Time, the code for
the same time and date is:

1998-02-22T709:26-05:00

Notice that the local time zone may change depending on where the document gets edited, whereas the universal
time will stay the same.

3.9.1.3 The class, dir, event, id, lang, style, title, and events attributes

There are several nearly universal attributes for the many HTML and XHTML tags. These attributes give you a
common way to identify (tit1e) and label (id) a tag's contents for later reference or automated treatment; to
change the contents' display characteristics (class, style); and to reference the language used (1ang) and related
direction the text should flow (d1ir). There are also input events that may happen in and around the tagged
contents that you may react to via an on-event attribute and some programming. Section 3.6.1.1, Section 3.6.1.2,
Section 4.1.1.4, Section 4.1.1.5, Section 8.1.1, Section 8.3, Section 12.3.3

3.9.2 Using Editorial Markup

The uses of <ins> and <de1> are obvious to anyone who has used a "boilerplate” document or form, or who has
collaborated with others in the preparation of a document.

For example, law firms typically have a collection of online legal documents that are specially completed for each
client. Law clerks usually do the "fill in," and the final document gets reviewed by a lawyer. To highlight where the
clerk made changes in the document so that they are readily evident to the reviewer, use the <ins> tag to indicate
the clerk's added text and the <de1> tag to mark the text that was replaced. Optionally use the cite and datetime
attributes to indicate when and why the changes were made.

For example, the clerk might fill in a boilerplate document with the law firm's and representative's names,
indicating the time and source for the change:

The party of the first part, as represented by

<ins datetime=1998-06-22T08:30z
cite="http://www.mulT+dull.com/tom_duller.html">

Thomas Muller of Muller and Duller

</ins>

[insert representation here]

page 40

HTML & XHTML: The Definitive Guide

The editorial markup tags could also be used by editing tools to denote how documents were modified as authors
make changes over a period of time. With the correct use of the cite and datetime attributes, it would be
possible to recreate a version of a document from a specific point in time.

3.10 The <bdo> Tag

As we've mentioned earlier, the authors of the HTML 4 standard have made a concerted effort to include
standard ways web agents (browsers) are supposed to treat and display the many different human languages and
dialects. Accordingly, the HTML 4 standard and its progeny XHTML contain the universal dir and Tang
attributes that let you explicitly advise the browser that the whole document or specific tagged segments within it
are in a particular language. These language-related attributes, then, may affect some display characteristics; for
example, the dir attribute tells the browser to write the words across the display from either left to right
(dir=1tr), as for most Western languages, or right to left (dir=rt1), as for many Asian languages. Section 3.6.1.1,
Section 3.6.1.2

The various Unicode and ISO standards for language encoding and display may conflict with your best intentions.
In particular, the contents of some other documents, such as a MIME-encoded file, already may be properly
formatted and your document may misadvise the browser to undo that encoding. Hence, the HTML 4 and
XHTML standards have the <bdo> tag. With it, you override any current and inherited di r specifications. And
with the tag's required di r attribute, you definitively specify the direction in which the tag's contents should be
displayed.

For example, Figure 3-4 shows how Internet Explorer Version 5 handles the following HTML fragment
containing a <bdo> redirection:

<bdo dir=rt1>This would be readable if in Chinese, perhaps.</bdo>
Back to the western way of reading and writing.

Figure 3-4. Tricks with <bdo> redirected text flow

I Dizplay Redirectionz - Microzoft Intemat Explorer

File Edt View Favorkter Tool: Help m
. . &=
spahrep eserdhC o fi elbadasr eb dluew sihT Back to the Western way
of reading and wnhng

|

£] Dana =4 My Computes

Admittedly, the effects of the <bdo> tag are a bit esoteric and the opportunities to use it currently are rare,
particularly considering that the second most popular browser doesn't yet support it.

<bdo>

Function:

Overrides bidirectional algorithms for content display

Attributes:
CLASS LANG
DIR STYLE
ID TITLE
End tag:
</bdo>; never omitted
Contains:
text
Used in:

body_ content

page 41

HTML & XHTML: The Definitive Guide

Chapter 4. Text Basics

Any successful presentation, even a thoughtful tome, should have its text organized into an attractive, effective
document. Organizing text into attractive documents is HTML and XHTML's forte. The languages give you a
number of tools that help you mold your text and get your message across. They also help structure your
document so that your target audience has easy access to your words.

Always keep in mind while designing your documents (here we go again!) that the markup tags, particularly in
regard to text, only advise - they do not dictate - how a browser will ultimately render the document. Rendering
varies from browser to browser. Don't get too entangled with trying to get just the right look and layout. Your
attempts may and probably will be thwarted by the browser.

4.1 Divisions and Paragraphs

Like most text processors, a browser wraps the words it finds to fit the horizontal width of its viewing window.
Widen the browser's window and words automatically flow up to fill the wider lines. Squeeze the window and
words wrap downwards.

Unlike most text processors, however, HTML and XHTML use explicit division (<div>), paragraph (<p>), and
line-break (
) tags to control the alignment and flow of text. Return characters, although quite useful for
readability of the source document, typically are ignored by the browser - authors must use the
 tag to
explicitly force a common text line break. The <p> tag, while also performing the task, carries with it meaning and
effects beyond a simple line break.

The <div> tag is a little different. Originally codified in the HTML 3.2 standard, <div> was included in the
language to be a simple organizational tool - to divide the document into discrete sections - whose somewhat
obtuse meaning meant few authors used it. But recent innovations - alignment, styles, and the id attribute for
document referencing and automation - now let you more distinctly label and thereby define individual sections
of your documents, as well as control the alignment and appearance of those sections. These features breathe real
life and meaning into the <div> tag.

By associating an id and a class name with the various sections of your document, each delimited by a <div
id=name class=name> tag and attributes (you can do the same with other tags like <p>, t00), you not only label
those divisions for later reference by a hyperlink and for automated processing and management (collect all the
bibliography divisions, for instance), but you may also define different, distinct display styles for those portions of
your document. For instance, you might define one divisional class for your document's abstract (<div
class=abstract>, for example), another for the body, a third for the conclusion, and a fourth divisional class for
the bibliography (<div class=bib11i0>, for example).

Each class, then, might be given a different display definition in a document-level or externally related style sheet:
the abstract indented and in an italic typeface (such as div.abstract {Teft-margin: +0.5in; font-style:
italic}); the body in a left-justified roman typeface; the conclusion similar to the abstract; and the bibliography
automatically numbered and formatted appropriately.

We provide a detailed description of style sheets, classes, and their applications in Chapter 8.

4.1.1 The <div> Tag

As defined in the HTML 4.01 and XHTML 1.0 standards, the <div> tag divides your document into separate,
distinct sections. It may be used strictly as an organizational tool, without any sort of formatting associated with
it; it becomes more effective if you add the id and class attributes to label the division. The <d1iv> tag may also
be combined with the align attribute to control the alignment of whole sections of your document's content in
the display and with the many programmatic "on" attributes for user interaction.

4.1.1.1 The align attribute

The al1ign attribute for <d1iv> positions the enclosed content to either the Teft (default), center, or right of the
display. In addition, you can specify justify to align both the left and right margins of the text. The <div> tag
may be nested, and the alignment of the nested <d1iv> tag takes precedence over the containing <div> tag.
Further, other nested alignment tags, such as <center>, aligned paragraphs (see <p> in Section 4.1.2), or specially
aligned table rows and cells, override the effect of <div>. Like the al1ign attribute for other tags, it is deprecated
in the HTML and XHTML standards in deference to style sheet-based layout controls.

page 42

HTML & XHTML: The Definitive Guide

<div>
Function:
Defines a block of text
Attributes:
ALIGN ONKEYPRESS
CLASS ONKEYUP
DIR ONMOUSEDOWN
ID ONMOUSEMOVE
LANG ONMOUSEOUT
Nowrap O ONMOUSEOVER
ONCLICK ONMOUSEUP
ONDBLCLICK STYLE
ONKEYDOWN TITLE
End tag:
</div>; usually omitted in HTML
Contains:
body_ content
Used in:
block

4.1.1.2 The nowrap attribute

Supported only by Internet Explorer, the nowrap attribute suppresses automatic word wrapping of the text within
the division. Line breaks will only occur where you have placed carriage returns in your source document.

While the nowrap attribute probably doesn't make much sense for large sections of text that would otherwise be
flowed together on the page, it can make things a bit easier when creating blocks of text with many explicit line
breaks: poetry, for example, or addresses. You don't have to insert all those explicit
 tags in a text flow within
a <div nowrap> tag. On the other hand, all other browsers ignore the nowrap attribute and merrily flow your text
together anyway. If you are targeting only Internet Explorer with your documents, consider using nowrap where
needed, but otherwise, we can't recommend this attribute for general use.

4.1.1.3 The dir and lang attributes

The d1ir attribute lets you advise the browser as to which direction the text ought to be displayed, and the Tang
attribute lets you specify the language used within the division. Section 3.6.1.1 / Section 3.6.1.2

4.1.1.4 The id attribute
Use the id attribute to label the document division specially for later reference by a hyperlink, style sheet, applet,
or other automated process. An acceptable id value is any quote-enclosed string that uniquely identifies the

division and that later can be used to reference that document section unambiguously. Although we're
introducing it within the context of the <d1iv> tag, this attribute can be used with almost any tag.

page 43

HTML & XHTML: The Definitive Guide

When used as an element label, the value of the id attribute can be added to a URL to address the labelled
element uniquely within the document. You can label both large portions of content (via a tag like <div>) or small
snippets of text (using a tag like <i> or). For example, you might label the abstract of a technical report
using <div id="abstract">. A URL could jump right to that abstract by referencing report.html#abstract.
When used in this manner, the value of the id attribute must be unique with respect to all other id attributes
within the document, and all the names defined by any <a> tags with the name attribute. Section 6.3.3

When used as a style-sheet selector, the value of the id attribute is the name of a style rule that can be associated
with the current tag. This provides a second set of definable style rules, similar to the various style classes you can
create. A tag can use both the class and 1id attributes to apply two different rules to a single tag. In this usage, the
name associated with the id attribute must be unique with respect to all other style IDs within the current
document. A more complete description of style classes and IDs can be found in Chapter 8.

4.1.1.5 The title attribute

Use the optional tit1e attribute and quote-enclosed string value to associate a descriptive phrase with the
division. Like the id attribute, the titTe attribute can be used with almost any tag and behaves similarly for all
tags.

There is no defined usage for the value of the tit1le attribute, and many browsers simply ignore it. Internet
Explorer, however, will display the title associated with any element when the mouse pauses over that element.
Nifty. Used correctly, the tit1e attribute could be used in this manner to provide spot help for the various
elements within your document.

4.1.1.6 The class and style attributes

Use the styTe attribute with the <div> tag to create an inline style for the content enclosed by the tag. The class
attribute lets you apply the style of a predefined class of the <div> tag to the contents of this division. The value of
the class attribute is the name of a style defined in some document-level or externally defined style sheet. In
addition, class-identified divisions also lend themselves well for computer processing of your documents, such as
extraction of all divisions whose class name is "biblio," for example, for the automated assembly of a master
bibliography. Section 8.1.1 / Section 8.3

4.1.1.7 Event attributes

The many user-related events that may happen in and around a division, such as when a user clicks or double-
clicks the mouse within its display space, are recognized by the browser if it conforms to the current HTML or
XHTML standards. With the respective "on" attribute and value, you may react to that event by displaying a user
dialog box, or activating some multimedia event. Section 12.3.3

4.1.2 The <p> Tag

The <p> tag signals the start of a paragraph. That's not well-known even by some veteran webmasters, because it
runs counterintuitive to what we've come to expect from experience. Most word processors we're familiar with
use just one special character, typically the return character, to signal the end of a paragraph. In HTML and
XHTML, each paragraph should start with <p> and ends with the corresponding </p> tag. And while a sequence
of newline characters in a text processor-displayed document creates an empty paragraph for each one, browsers
typically ignore all but the first paragraph tag.

In practice, with HTML you can ignore the starting <p> tag at the beginning of the first paragraph, and the </p>
tag at the end of paragraphs: they can be implied from other tags that occur in the document, and hence safely
omitted.[!

I XHTML, on the other hand, requires explicit starting and ending tags.

For example:

<body>

This is the first paragraph, at the very beginning of the
body of this document.

<p>

The tag above signals the start of this second paragraph.
when rendered by a browser, it will begin slightly below the
end of the first paragraph, with a bit of extra white space
between the two paragraphs.

<p>
This is the last paragraph in the example.
</body>

Notice that we haven't included the paragraph start tag (<p>) for the first paragraph or any end paragraph tags at
all in the HTML example; they can be unambiguously inferred by the browser and are therefore unnecessary.

page 44

HTML & XHTML: The Definitive Guide

<p>
Function:
Defines a paragraph of text
Attributes:
ALIGN ONKEYUP
CLASS ONMOUSEDOWN
DIR ONMOUSEMOVE
ID ONMOUSEOUT
LANG ONMOUSEOVER
ONCLICK ONMOUSEUP
ONDBLCLICK STYLE
ONKEYDOWN TITLE
ONKEYPRESS
End tag:
</p>; often omitted in HTML
Contains:
text
Used in:
block

In general, you'll find that human document authors tend to omit postulated tags whenever possible while
automatic document generators tend to insert them. That may be because the software designers didn't want to
run the risk of having their product chided by competitors as not adhering to the HTML standard, even though
we're splitting letter-of-the-law hairs here. Go ahead and be defiant: omit that first paragraph's <p> tag and don't
give a second thought to paragraph ending </p> tags, provided, of course, that your document's structure and
clarity are not compromised. That is, as long as you are aware that XHTML frowns severely on such laxity.

4.1.2.1 Paragraph rendering

When encountering a new paragraph (<p>) tag, a browser typically inserts one blank line plus some extra vertical
space into the document before starting the new paragraph. The browser then collects all the words and, if
present, inline images into the new paragraph, ignoring leading and trailing spaces (not spaces between words, of
course) and return characters in the source text. The browser software then flows the resulting sequence of words
and images into a paragraph that fits within the margins of its display window, automatically generating line
breaks as needed to wrap the text within the window. For example, compare how a browser arranges the text into
lines and paragraphs (Figure 4-1) to how the preceding example is printed on the page. The browser may also
automatically hyphenate long words, and the paragraph may be full-justified to stretch the line of words out
towards both margins.

page 45

HTML & XHTML: The Definitive Guide

Figure 4-1. Browsers ignore common return characters in the source HTML document

& Browsers lgnore Camiage Retumns in the Sowrce Document - Netscape - |0 x]
fle Edit “iew Sesrch Go Bookmorks Tasks Help
AN

Thus 15 the frst paragraph, at the very beginrng of the body of this document

The tag abowe sipnals the start of this second paragraph When rendered by a browser, it will
begn slightly below the end of the first paragraph, with a bat of extra white space between the =
two parapraphs.

This 15 the last paragraph in the example,

The net result is that you do not have to worry about line length, word wrap, and line breaks when composing
your documents. The browser will take any arbitrary sequence of words and images and display a nicely
formatted paragraph.

If you want to control line length and breaks explicitly, consider using a preformatted text block with the <pre>
tag. If you need to force a line break, use the
 tag. Section 4.7.5 / Section 4.7.1

4.1.2.2 The align attribute

Most browsers automatically left-justify a new paragraph. To change this behavior, HTML 4 and XHTML give
you the align attribute for the <p> tag and provide four kinds of content justification: Teft, right, center, or
justify.

Figure 4-2 shows you the effect of various alignments as rendered from the following source:

<p align=right>
Right over here!

This is too.

<p align=left>
Slide back left.

<p align=center>
Smack in the middle.
</p>

Left is the default.

Figure 4-2. Effect of the align attribute on paragraph justification

-.Sliting Along - Microzofl Intermetl Exsplores _ O] =]
Fie Edi View Favoes oot Hel m
Bight over herel E
This iz too.
Shde bacle left
Smack m the middle,
Left 15 the default. ~
<] Done 2| My Computer

Notice in the HTML example that the paragraph alignment remains in effect until the browser encounters
another <p> tag or an ending </p> tag. We deliberately left out a final <p> tag in the example to illustrate the
effects of the </p> end tag on paragraph justification. Other body elements may also disrupt the current
paragraph alignment and cause subsequent paragraphs to revert to the default left alignment, including forms,
headers, tables, and most other body content-related tags.

Note that the align attribute is deprecated in HTML 4 and XHTML in deference to style sheet-based alignments.
4.1.2.3 The dir and lang attributes

The dir lets you advise the browser as to which direction the text within the paragraph ought to be displayed, and
the Tang attribute lets you specify the language used within that paragraph. The dir and 1ang attributes are

supported by the popular browsers, even though there are no behaviors defined for any specific language. Section
3.6.1.1 / Section 3.6.1.2

page 46

HTML & XHTML: The Definitive Guide

4.1.2.4 The class, id, style, and title attributes

Use the id attribute to create a label for the paragraph that can later be used to unambiguously reference that
paragraph in a hyperlink target, for automated searches, as a style-sheet selector, and with a host of other
applications. Section 4.1.1.4

Use the optional tit1e attribute and quote-enclosed string value to provide a descriptive phrase for the
paragraph. Section 4.1.1.5

Use the styTe attribute with the <p> tag to create an inline style for the paragraph's contents. The class attribute
lets you label the paragraph with a name that refers to a predefined class of the <p> tag declared in some
document-level or externally defined style sheet. And, class-identified paragraphs lend themselves well for
computer processing of your documents, such as extraction of all paragraphs whose class name is "citation," for
example, for automated assembly of a master list of citations. Section 8.1.1 / Section 8.3

4.1.2.5 Event attributes

Like with divisions, there are many user-initiated events, such as when a user clicks or double-clicks within its
display space, that are recognized by the browser if it conforms to the current HTML or XHTML standards. With
the respective "on" attribute and value, you may react to that event by displaying a user dialog box or activating
some multimedia event. Section 12.3.3

4.1.2.6 Allowed paragraph content

A paragraph may contain any element allowed in a text flow, including conventional words and punctuation, links
(<a>), images (), line breaks (
), font changes (, <i>, <tt>, <u>, <strike>, <big>, <small>, <sup>,
<sub>, and), and content-based style changes (<acronym>, <cite>, <code>, <dfn>, , <kbd>, <samp>,
, and <var>). If any other element occurs within the paragraph, it implies that the paragraph has ended,
and the browser assumes that the closing </p> tag was not specified.

4.1.2.7 Allowed paragraph usage

You may specify a paragraph only within a block, along with other paragraphs, lists, forms, and preformatted text.
In general, this means that paragraphs can appear where a flow of text is appropriate, such as in the body of a
document, an element in a list, and so on. Technically, paragraphs cannot appear within a header, anchor, or
other element whose content is strictly text-only. In practice, most browsers ignore this restriction and format the
paragraph as a part of the containing element.

4.2 Headings

Users have a hard enough time reading what's displayed on a screen. A long flow of text, unbroken by title,
subtitles, and other headers, crosses the eyes and numbs the mind, not to mention the fact that it makes it nearly
impossible to scan the text for a specific topic.

You should always break a flow of text into several smaller sections within one or more headings (like this book!).
There are six levels of headings that you can use to structure a text flow into a more readable, more manageable
document. And, as we discuss in Chapter 5 and in Chapter 8, there are a variety of graphical and text-style tricks
that help divide your document and make its contents more accessible as well as more readable to users.

4.2.1 Heading Tags

The six heading tags, written as <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>, indicate the highest (<h1>) to the lowest
(<h6>) precedence a heading may have in the document.

The enclosed text within a heading typically is uniquely rendered by the browser, depending upon the display
technology available to it. The browser may choose to center, embolden, enlarge, italicize, underline, or change
the color of headings to make each stand out within the document. And in order to thwart the most tedious
writers, users, as well, often can alter how a browser will render the different headings.

Fortunately, in practice most browsers use a diminishing character point size for the sequence of headers, so that
<h1> text is quite large and <h6> text is quite minuscule (see Figure 4-3, for example).

By tradition, authors have come to use <h1> headers for document titles, <h2> headers for section titles, and so
on, often matching the way many of us were taught to outline our work with heads, subheads, and sub-subheads.

Finally, don't forget to include the appropriate heading end tags in your document. The browser won't insert one

automatically for you, and omitting the ending tag for a heading can have disastrous consequences for your
document.

page 47

HTML & XHTML: The Definitive Guide

<h1>, <h2>, <h3>, <hg>, <h5>, <h6>
Function:
Define one of six levels of headers
Attributes:
ALIGN ONKEYUP
CLASS ONMOUSEDOWN
DIR ONMOUSEMOVE
ID ONMOUSEOUT
LANG ONMOUSEOVER
ONCLICK ONMOUSEUP
ONDBLCLICK STYLE
ONKEYDOWN TITLE
ONKEYPRESS
End tag:
</h1>, </h2>, </h3>, </h4>, </h5>, </h6>; never omitted
Contains:
text
Used in:
body_ content

Figure 4-3. Browsers typically use diminishing text sizes for rendering headings

ﬁ Diminizhing Headings - Microsoil Intemnet Explotes m E
| Ele Edt View Favoes ook Hep |

Level 1 Heading
Level 2 Heading

Level 3 Heading

Level 4 Heading
Level 5 Heading

Lewd § Heading

[££] Done L1 =] My Computer

page 48

HTML & XHTML: The Definitive Guide

4.2.1.1 The align attribute

The default heading alignment for most browsers is Teft. Like the <div> and <p> tags, you can alter this
alignment with the align attribute and one of the values 1eft, center, right, or justify. Figure 4-4 shows
these alternative alignments as rendered from the following source:

<hl align=ri %ht>R'i ght over here!</hl>

<h2 align=left>Slide back left.</h2>
<h3 align=center>Smack in the middle.</h3>

Figure 4-4. The headings align attribute in action

¥ Heading Alignments - Netscape (=] E
file Edié wiew Seerch Go Pocsmerks Tasks Help
]

Right over here!

Slide back left.

Smack in the middle.

The justify value for align is not supported yet by any browser, and don't hold your breath. The al1ign attribute
is deprecated in HTML 4 and XHTML in deference to style sheet-based controls.

4.2.1.2 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within that paragraph ought to be
displayed, and 1ang lets you specify the language used within the heading. Section 3.6.1.1 / Section 3.6.1.2

4.2.1.3 The class, id, style, and title attributes

Use the 1id attribute to create a label for the heading that can later be to used to unambiguously reference that
heading in a hyperlink target, for automated searches, as a style-sheet selector, and with a host of other
applications. Section 4.1.1.4

Use the optional tit1e attribute and quote-enclosed string value to provide a descriptive phrase for the heading.
Section 4.1.1.5

Use the styTe attribute with the heading tags to create an inline style for the headings' contents. The class
attribute lets you label the heading with a name that refers to a predefined class declared in some document-level
or externally defined style sheet. Section 8.1.1 / Section 8.3

4.2.1.4 Event attributes

Each user-initiated event that may happen in and around a heading each are recognized by the browser if it
conforms to the HTML or XHTML standards. With the respective "on" attribute and value, you may react to that
event by displaying a user dialog box or activating some multimedia event. Section 12.3.3

4.2.2 Appropriate Use of Headings

It's good form to repeat your document's title in the first heading tag, since the title you specify at the beginning
of your document doesn't appear in the user's main display window. The title should match the one in the
document's <head>. The following HTML segment is a good example of repeating the document's title in the
header and in the body of the document:

<html>

<head>

<title>Kumquat Farming in North America</title>

</head>

<body>

<h3>Kumquat Farming in North America</h3>

<p>

Perhaps one of the most enticing of all fruits is the...

page 49

HTML & XHTML: The Definitive Guide

While the browser may place the title somewhere in the document window and may also use it to create
bookmarks or hotlist entries, all of which vaguely are somewhere on the user's desktop, the level three title
heading in the example will always appear at the very beginning of the document. It serves as a visible title to the
document regardless of how the browser handles the <tit1e> tag contents. And, unlike the <tit1e> text, the
heading title will appear at the beginning of the first page should the user elect to print the document. Section
3.7.2

In the example, we chose to use a level three heading (<h3>) whose rendered font typically is just a bit larger than
the regular document text. Levels one and two are larger still and often a bit overbearing. You should choose a
level of heading that you find useful and attractive and use that level consistently throughout your documents.

Once you have established the top-level heading for your document, use additional headings at the same or lower
level throughout to add structure and "scanability" to the document. If you use a level three heading for the
document title, break your document into several sections using level four headings. If you have the urge to
subdivide your text further, consider using a level two heading for the title, level three for the section dividers,
and level four for the subsections.

4.2.3 Using Headings for Smaller Text

For most graphical browsers, the fonts used to display <h1>, <h2>, and <h3> headers are larger, <h4> is the same,
and <h5> and <h6> are smaller than the regular text size. Authors typically use the latter two sizes for boilerplate
text, like a disclaimer or a copyright notice. It's become quite popular to use the smaller text in Tables of Contents
or home pages that display a site's contents. Experiment with <h5> and <h6> to get the effect you want. See how a
typical browser renders the copyright reference in the following sample HTML segment (see Figure 4-5):

resulting in years of successful kumquat production
throughout North America.

</p>

<h6>This document copyright 1995 by the Kumquat Growers of
America. All rights reserved. </h6>

</body>

</html>

Figure 4-5. HTML authors typically use heading level six for boilerplate text

-‘Huiﬂqﬂde Special - Microsoft Internet Exploser

File Edl View Favedss Teols Hsl m

rezulting in years of successfil kumguat produchon Broughout Morth Amenca

This decumuend (epyrighd 1995 by fae Eumapead Goeners of Americe. A vighds peverved.

&] Dans _‘] My Camputes

4.2.4 Allowed Heading Content

A heading may contain any element allowed in text, including conventional text, link anchors (<a>), images
(), line breaks (
), font embellishments (, <i>, <tt>, <u>, <strike>, <big>, <small>, <sup>, <sub>,
and), and content-based style changes (<acronym>, <cite>, <code>, <dfn>, , <kbd>, <samp>,
, and <var>). In practice, however, font or style changes may not take effect within a heading, since the
heading itself prescribes a font change within the browser.

There is widespread abuse of the heading tags as a mechanism for changing the font of an entire document.
Technically, paragraphs, lists, and other block elements are not allowed within a heading and may be mistaken by
the browser to indicate the implied end of the heading. In practice, most browsers apply the style of the heading
to all contained paragraphs. We discourage this practice since it is not only a violation of HTML and XHTML
standards but usually ugly to look at. Imagine if your local paper printed all the copy in headline type!

Designating large sections of text as heading content defeats the purpose of the tag. If you really want to change
the entire font or type size of your document, consider instead defining a unique style for the <body> tag of your
document. This style will be applied to all the content within the <body> and will make later modification of your
document style much easier. See Chapter 8 for details.

And we strongly recommend that you carefully test your pages with more than one browser and at several

different resolutions. As to be expected, your <h6> text may be readable at 320 x 480 resolution, but disappear on
a 600 x 800 display.

4.2.5 Allowed Heading Usage

page 50

HTML & XHTML: The Definitive Guide

Formally, the HTML and XHTML standards allow headings only within body content. In practice, most browsers
recognize headings almost anywhere, formatting the rendered text to fit within the current element. In all cases,
the occurrence of a heading signifies the end of any preceding paragraph or other text element, so you can't use
the heading tags to change font sizes in the same line. Rather, use styles to achieve those acute display effects.
Section 8.1.1

4.2.6 Adding Images to Headings

It is possible to insert one or more images within your headings, from small bullets or icons to full-sized logos.
Combining a consistent set of headings with corresponding icons across a family of documents is not only visually
attractive, but an effective way of aiding users' perusal of your document collection. Section 5.2.6

Adding an image to a heading is easy. For example, the following text puts an "information" icon inside the "For
More Information" heading, as you can see in Figure 4-6:

<h2>

For More Information</h2>

In general, images within headings look best at the beginning of the heading, aligned with the bottom or middle
of the heading text.

Figure 4-6. An image within a heading

-IHaaning Image - Miciezoft Inbernet Explorer - [O] =]
Fie Edt View Favoes Took Heb m

-

For More Information

Fer more informaton about a promising career n kumguat harvesting, contact your local
chapter of the International Association of Eumonat Harwesters. To locate a chapter near you, |
look in your local telephone directory, vl

&7 Done 2 My Campuites

4.3 Changing Text Appearance

A number of tags change the appearance of and associate hidden meaning with text. In general, these tags can be
grouped into two flavors: content-based styles and physical styles.

In addition, the W3C standard for Cascading Style Sheets is now well-supported by the popular browsers,
providing another, more comprehensive way for authors to control the look and layout of their document text.
Netscape has also implemented style sheets through JavaScript. We describe the tag-based text styles in this
chapter. See Chapter 8 for details about Cascading Style Sheets, and Chapter 12 for JavaScript-based style sheets.

4.3.1 Content-Based Styles

Content-based style tags inform the browser that the enclosed text has a specific meaning, context, or usage. The
browser then formats the text in a manner consistent with that meaning, context, or usage.

Because font style is specified via semantic clues, the browser can choose a display style that is appropriate for the
user. Since such styles vary by locale, using content-based styles helps ensure that your documents will have
meaning to a broader range of readers. This is particularly important when a browser is targeted at blind or
handicapped readers whose display options are radically different from conventional text or are extremely limited
in some way.

The current HTML and XHTML standards do not define a format for each of the content-based styles except that
they must be rendered in a manner different from the regular text in a document. The standard doesn't even
insist that the content-based styles be rendered differently from one another. In practice, you'll find that many of
these tags have fairly obvious relationships with conventional print, having similar meanings and rendered styles,
and are rendered in the same style and fonts by most browsers.

page 51

HTML & XHTML: The Definitive Guide

4.3.2 Physical Styles

We use the word "intent" a lot when we talk about content-based style tags. That's because the meaning conveyed
by the tag is more important than the way a browser displays the text. In some cases, however, you might want
the text to appear explicitly in some special way - italic or bold, for example - perhaps for legal or copyright
reasons. In those cases, use a physical style for the text.

While the tendency with other text-processing systems is to control style and appearance explicitly, with HTML
or XHTML you should avoid explicit, physical tags except on rare occasions. Provide the browser with as much
contextual information as possible. Use the content-based styles. Even though current browsers may do nothing
more than display their text in italic or bold, future browsers and various document-generation tools may use the
content-based styles in any number of creative ways.

4.4 Content-Based Style Tags

It takes discipline to use the content-based styles, since it is easier to simply think of how your text should look,
not necessarily what it may also mean. Once you get started using content-based styles, your documents will be
more consistent and better lend themselves to automated searching and content compilation.

Content-Based Style Tags
Function:
Alter the appearance of text based upon the meaning, context, or usage of the text
Attributes:
CLASS ONKEYUP
DIR ONMOUSEDOWN
D ONMOUSEMOVE
LANG ONMOUSEOUT
ONCLICK ONMOUSEOVER
ONDBLCLICK ONMOUSEUP
ONKEYDOWN STYLE
ONKEYPRESS TITLE
End tags:
Never omitted
Contains:
text
Used in:
text

4.4.1 The <abbr> Tag

The <abbr> tag indicates that the enclosed text is an abbreviated form of a longer word or phrase. The browser
might use this information to change the way it renders the enclosed text. Since none of the popular browsers yet
support this tag first introduced in HTML 4.0, we can't predict how they might implement it.

page 52

HTML & XHTML: The Definitive Guide

4.4.2 The <acronym> Tag

The <acronym> tag indicates that the enclosed text is an acronym, an abbreviation formed from the first letter of
each word in a name or phrase, such as HTML and IBM. The popular browsers don't yet support this addition to
content-based style tags, so we can't show you how they might render text tagged <acronyms.

4.4.3 The <cite> Tag

The <cite> tag usually indicates that the enclosed text is a bibliographic citation like a book or magazine title. By
convention, the citation text is rendered in italic. See Figure 4-7 for how Internet Explorer renders this source
text:

while kumquats are not mentioned in Melville's

<cite>Moby Dick</cite>, it is nonetheless apparent

that the mighty cetacean represents the bitter

"kumquat-ness" within every man. Indeed, when Ahab
spears the beast, its flesh is tough, much Tike the noble fruit.

Figure 4-7. Internet Explorer renders <cite> in italic

A Cite Rendering - Miciosalt Internet Explores | O]

File Edi View Favede: Took Hep n

While kumquats are not mertioned in Meballe's Meby Dick, it is
nonetheless apparent that the mighty cetacean represents the bitter
Turnguat-ness” wathin every man Indeed, when Ahab spears the
beast, its flesh 5 tough, much ldee the noble frut

he

&] Daone 21 My Camputer

Use the <cite> tag to set apart any reference to another document, especially those in the traditional media, such
as books, magazines, journal articles, and the like. If an online version of the referenced work exists, you also
should enclose the citation within the <a> tag and make it a hyperlink to that online version.

The <cite> tag also has a hidden feature: it enables you or someone else to automatically extract a bibliography
from your documents. It is easy to envision a browser that compiles tables of citations automatically, displaying
them as footnotes or as a separate document entirely. The semantics of the <cite> tag go far beyond changing the
appearance of the enclosed text; they enable the browser to present the content to the user in a variety of useful
ways.

4.4.4 The <code> Tag

Software code warriors have become accustomed to a special style of text presentation for their source programs.
The <code> tag is for them. It renders the enclosed text in a monospaced, teletype-style font like Courier, familiar
to most programmers and readers of O'Reilly's series of books, including this one.

This following bit of en<code>ed text is rendered in monospaced font style by Netscape as shown in Figure 4-8:

The array reference <code>a[i]</code> is identical to
the pointer reference <code>*(a+i)</code>.

Figure 4-8. Use <code> to present computer-speak

1] Code's Rendering - Notzcape Hi[=] E3
Fie Edlt Yiew Zearch Go Bookmarks Tasks Help

T
The array reference a[1] is wentical to the pomter reference = (ati)

You should use the <code> tag only for text that represents computer source code or other machine-readable
content. While the <code> tag usually just makes text appear in a monospaced font, the implication is that it is
source code and future browsers may add other display effects. For example, a programmer's browser might look
for <code> segments and perform some additional text formatting like special indentation of loops and
conditional clauses. If the only effect you desire is a monospaced font, use the <tt> tag instead.

page 53

HTML & XHTML: The Definitive Guide

4.4.5 The <dfn> Tag

Use <dfn> to tag those defining instances of special terms or phrases. It may not result in any formatting changes
by the browser. Instead, <dfn> might assist in creating a document index or glossary.

For example, use the <dfn> tag to introduce a new phrase to the reader:

when analyzing annual crop yields, <dfn>rind spectroscopy</dfn> may prove useful.
By comparing the relative levels of saturated hydrocarbons in fruit from adjacent
trees, rind spectroscopy has been shown to be 87% effective in predicting an
outbreak of trunk dropsy in trees under four years old.

Notice that we delimit only the first occurrence of "rind spectroscopy” with a <dfn> tag in the example. Good style
tells us not to clutter the text with highlighted text. As with the many other content-related and physical style
tags, the fewer the better.2! As a general style, especially in technical documentation, set off new terms when they
are first introduced to help your readers better understand the topic at hand, but resist tagging the terms
thereafter.

[21If you need convincing that less is better when applying the content-based and physical style tags, try reading a
college textbook in which someone has highlighted what they considered important words and phrases with a
yellow pen.

4.4.6 The Tag

The tag tells the client browser to present the enclosed text with emphasis. For nearly all browsers, this
means the text is rendered in italic. For example, the popular browsers will emphasize by italicizing the words
"always" and "never" in the following HTML source:

Kumquat growers must always refer to kumquats
as "the noble fruit," never as just a "fruit."

Adding emphasis to your text is a tricky business. Too little, and the emphatic phrases may be lost. Too much, and
you lose the urgency. Like any seasoning, emphasis is best used sparingly.

Although invariably displayed in italic, the tag has broader implications as well and someday browsers may
render emphasized text with a different special effect. The <i> tag explicitly italicizes text; use it if all you want is
italic. Besides emphasis, also consider using when presenting new terms or as a fixed style when referring to
a specific type of term or concept. For instance, one of O'Reilly's book styles is to specially format file and device
names. might be used to differentiate those terms from simple italic for emphasis.

4.4.7 The <kbd> Tag

Speaking of special style for technical concepts, there is the <kbd> tag. As you probably already suspect, it is used
to indicate text that is typed on a keyboard. Its enclosed text typically is rendered by the browser in monospaced
font style.

The <kbd> tag is most often used in computer-related documentation and manuals, such as in this example:

Type <kbd>quit</kbd> to exit the utility, or type
<kbd>menu</kbd> to return to the main menu.

4.4.8 The <samp> Tag

The <samp> tag indicates a sequence of literal characters that should have no other interpretation by the user.
This tag is most often used when a sequence of characters is taken out of its normal context. For example, the
following source:

The <samp>ae</samp> character sequence may be converted
to the æ ligature if desired.

is rendered by Netscape as shown in Figure 4-9.

Figure 4-9. Setting off sample text using the <samp> tag

[S ample Rendering - Metscape [[O] =]
Fie Edt ‘iew Sesarch Go Bookmarks Tezkz Help
- "]

The ae character sequence may be converted to the & ligahare if desired.

page 54

HTML & XHTML: The Definitive Guide

The special HTML reference for the "ae" ligature entity is &ae1ig; and is converted to its appropriate e ligature
character by most browsers. For more information, see Appendix F.

The <samp> tag is not used very often. It should be used in those few cases where special emphasis needs to be
placed on small character sequences taken out of their normal context.

4.4.9 The Tag

Like the tag, the tag is for emphasizing text, except with more gusto. Browsers typically display
the tag differently than the tag, usually by making the text bold (versus italic), so that users can
distinguish between the two. For example, in the following text, the emphasized "never" appears in italic with
Internet Explorer, while the "forbidden" is rendered in bold characters (see Figure 4-10):

one should never make a disparaging remark

about the noble fruit. In particular, mentioning

kumquats in conjunction with vulgar phrases is

expressly forbidden by the Association
bylaws.

If common sense tells us that the tag should be used sparingly, the tag should appear in
documents even more infrequently. text is like shouting. text is nothing short of a scream. Like a
well-chosen epithet voiced by an otherwise taciturn person, restraint in the use of makes its use that
much more noticeable and effective.

Figure 4-10. Strong and emphasized text are rendered differently by Internet Explorer

ZJ Emphatic and Stiong Woiding - Microsolt Inleinet Explores Hi=] E3

Fie Edt View Favoiter Took Help m

=
Cne should mever make a disparagng remark about the noble frut
In parbcular, menfioning kumcouats in conpnchon with welgar phrases
iz expressly forbidden by the Association bylaws.

|

] Dane =4 My Computer

4.4.10 The <var> Tag

The <var> tag, another computer-documentation trick, indicates a variable name or a user-supplied value. The
tag is often used in conjunction with the <code> and <pre> tags for displaying particular elements of computer
programming code samples and the like. <var>-tagged text typically is rendered in italics, as shown in Figure 4-
11, which displays Internet Explorer's rendering of the following example:
The user should type
<pre>

cp <vars>source-file</var> <var>dest-file</var>
</pre>
replacing the <var>source-file</var> with the name of

the source file, and <var>dest-file</var> with the name
of the destination file.

Figure 4-11. The <var> tag typically appears in preformatted (<pre>) computer code
A Pre and Var Rendering - Microsolt Internet Explorer =1
File Edt Miew Favomes Took Hep m

F=|

The user should type
cp sourcea-rils dast-rfila

replacing the sowrce-file wath the name of the sowrce Ble, and dest-file
veith the name of the destmanon file,

B4

£] Done 2l My Computer

page 55

HTML & XHTML: The Definitive Guide

Like the other computer programming and documentation-related tags, the <var> tag not only makes it easy for
users to understand and browse your documentation, but automated systems might someday use the
appropriately tagged text to extract information and useful parameters mentioned in your document. Once again,
the more semantic information you provide to your browser, the better it can present that information to the
user.

4.4.11 The class, id, style, and title Attributes
Although each content-based tag has a defined style, you can override the style by defining a look for each tag.
This new look can be applied to the content-based tags using either the style or class attributes. Section 8.1.1 /

Section 8.3

You also may assign a unique id-entifier to the content-based style tag, as well as a less-rigorous tit1e, using the
respective attributes and their accompanying quote-enclosed string values. Section 4.1.1.4 / Section 4.1.1.5

4.4.12 The dir and lang Attributes

The dir attribute advises the browser as to which direction the text within the content-based style tag ought to be
displayed, and 1ang lets you specify the language used within the tag. Section 3.6.1.1 / Section 3.6.1.2

4.4.13 Event Attributes

Things happen in and around a content-based tag's content, and, with the respective "on" attribute and value, you
may react to that event by displaying a user dialog or activating some multimedia event. Section 12.3.3

4.4.14 Summary of Content-Based Tags

The various graphical browsers render text inside content-based tags in similar fashion; text-only browsers like
Lynx have consistent styles for the tags. Table 4-1 summarizes these browsers' display styles for the native tags.
However, style sheet definitions may override these native display styles.

Table 4-1, Content-Based Tags

Tag Netscape Internet Explorer Lynx
<abbr> n/a n/a n/a
<acronym> n/a n/a n/a
<cite> italic italic monospace
<code> monospace monospace monospace
<dfn> n/a italic n/a
 italic italic monospace
<kbd> monospace monospace bold monospace
<samp> monospace monospace monospace
 bold bold monospace
<var> italic italic monospace

page 56

HTML & XHTML: The Definitive Guide

4.4.15 Allowed Content

Any content-based style tag may contain any item allowed in text, including conventional text, anchors, images,
and line breaks. In addition, other content-based and physical style tags can be embedded within the content.

4.4.16 Allowed Usage

Any content-based style tag may be used anywhere an item allowed in text is used. In practice, this means you can
use the , <code>, and other similar tags anywhere in your document except inside <title>, <1isting>, or
<xmp> tagged segments. You can use text style tags in headings, too, but their effect may be overridden by the
effects of the heading tag itself.

4.4.17 Combining Content-Based Styles

It may have occurred to you to combine two or more of the various content-based styles to create interesting and
perhaps even useful hybrids. Thus, an emphatic citation might be achieved with:

<cite>Moby Dick</cite>

In practice, Dr. Frankenstein, the browser usually ignores the monster; as you can test by typing and viewing the
example yourself, Moby Dick gets the citation without emphasis.

The HTML and XHTML standards do not require the browser to support every possible combination of content-
based styles and does not define how the browser should handle such combinations. Someday, maybe. For now,
it's best to choose one tag and be satisfied.

4.5 Physical Style Tags

There are nine physical styles provided by the current HTML and XHTML standards, including bold, italic,
monospaced, underlined, strike-through, larger, smaller, superscripted, and subscripted text. In addition, to our
dismay, Netscape still supports "blinking" text.(s] All physical style tags require an ending tag.

4.5.1 The Tag

The tag is the physical equivalent of the content-based style tag, but without the latter's extended
meaning. The tag explicitly boldfaces a character or segment of text that is enclosed between it and its
corresponding () end tag. If a boldface font is not available, the browser may use some other representation,
such as reverse video or underlining.

4.5.2 The <big> Tag

The <big> tag makes it easy to increase the size of text. It couldn't be simpler: the browser renders the text
between the <b1ig> tag and its matching </b1ig> ending tag one font size larger than the surrounding text. If that
text is already at the largest size, <big> has no effect. Section 4.6.3

Even better, you can nest <big> tags to enlarge the text. Each <big> tag makes the text one size larger, up to a
limit of size seven, as defined by the font model.

Be careful with your use of the <big> tag, though. Because browsers are quite forgiving and try hard to
understand a tag, those that don't support <big> often interpret it to mean bold.

4.5.3 The <blink> Tag

Text contained between the <b1ink> tag and its end tag </b11ink> does just that: blink on and off. Netscape for
Macintosh, for example, simply and reiteratively reverses the background and foreground colors for the <b11ink>
enclosed text. Neither the HTML nor the XHTML standard include <b11nk>; it is supported as an extension only
by Netscape Navigator.

We cannot effectively reproduce the animated effect in these static pages, but it is easy to imagine and best left to
the imagination, too. That's because blinking text has two primary effects: it gets your reader's attention, and then
promptly annoys them to no end. Blinking text should be used sparingly in any context.

[3] Once programmed, always a feature, we guess. Internet Explorer has its warts, too.

As we discuss each physical tag in detail, keep in mind that they convey an acute styling for the immediate text.
For more comprehensive, document-wide control of text display, use style sheets (see Chapter 8).

page 57

HTML & XHTML: The Definitive Guide

Physical Style Tags
Function:
Specify a physical style for text
Attributes:
CLASS ONKEYUP
DIR ONMOUSEDOWN
ID ONMOUSEMOVE
LANG ONMOUSEOUT
ONCLICK ONMOUSEOVER
ONDBLCLICK ONMOUSEUP
ONKEYDOWN STYLE
ONKEYPRESS TITLE
End tags:
Never omitted
Contains:
text
Used in:
text

4.5.4 The <i> Tag
The <i> tag is like the content-based style tag. It and its necessary (</i>) end tag tell the browser to render

the enclosed text in an italic or oblique typeface. If the typeface is not available to the browser, highlighting,
reverse video, or underlining might be used.

4.5.5 The <s> Tag (Deprecated)

The <s> tag is an abbreviated form of the <strike> tag supported by both Internet Explorer and Netscape. It is
now a deprecated tag in HTML 4 and XHTML, meaning don't use it; it will eventually go away.

4.5.6 The <small> Tag
The <smal1> tag works just like its <big> counterpart (see previous description), except it decreases the size of
text instead of increasing it. If the enclosed text is already at the smallest size supported by the font model,

<smal11> has no effect.

Like <big>, you may also nest <smal1> tags to sequentially shrink text. Each <sma11> tag makes the text one size
smaller than the containing <sma11> tag, down to a limit of size one.

page 58

HTML & XHTML: The Definitive Guide

4.5.7 The <strike> Tag (Deprecated)

Most browsers will put a line through ("strike through") text that appears inside the <strike> tag and its
</strike> end tag. Presumably, it is an editing markup that tells the reader to ignore the text passage,
reminiscent of the days before typewriter correction tape. You'll rarely, if ever, see the tag in use today, and
probably never will: it is deprecated in HTML 4 and XHTML, just one version away from complete elimination
from the standard.

4.5.8 The <sub> Tag

The text contained between the _{tag and its} end tag gets displayed half a character's height lower,
but in the same font and size as the current text flow. Both <sub> and its <sup> counterpart are useful for math
equations and in scientific notation, as well as with chemical formulee.

4.5.9 The <sup> Tag

The ^{tag and its} end tag superscripts the enclosed text; it gets displayed half a character's height
higher, but in the same font and size as the current text flow. This tag is useful for adding footnotes to your
documents, along with exponential values in equations. In combination with the <a> tag, you can create nice,
hyperlinked footnotes:

The Tarval quat

weevil^{<small>74</small>} is a

This example assumes that footnotes.html contains all your footnotes, appropriately delimited as named
document fragments.

4.5.10 The <tt> Tag
In a manner like the <code> and <kbd> tags, the <tt> tag and necessary </tt> end tag direct the browser to

display the enclosed text in a monospaced typeface. For those browsers that already use a monospaced typeface,
this tag may make no discernible change in the presentation of the text.

4.5.11 The <u> Tag (Deprecated)
This tag tells the browser to underline the text contained between the <u> and the corresponding </u> tag. The
underlining technique is simplistic, drawing the line under spaces and punctuation as well as the text. This tag is

deprecated in HTML 4 and XHTML and will be eliminated in the next version of the standard. The same effect
can be achieved by using style sheets, covered in Chapter 8.

4.5.12 The dir and lang Attributes

The dir attribute lets you advise the browser as to which direction the text within the physical tag ought to be
displayed, and T1ang lets you specify the language used within the tag. Section 3.6.1.1 / Section 3.6.1.2

4.5.13 The class, id, style, and title Attributes

Although each physical tag has a defined style, you can override that style by defining your own look for each tag.
This new look can be applied to the physical tags using either the style or class attributes. Section 8.1.1 /
Section 8.3

You also may assign a unique id to the physical style tag, as well as a less rigorous title, using the respective
attribute and accompanying quote-enclosed string value. Section 4.1.1.4 / Section 4.1.1.5

4.5.14 Event Attributes
Like with content-based style tags, user-initiated mouse and keyboard events can happen in and around a
physical-style tag's contents. Many of these events are recognized by the browser if it conforms to current

standards, and, with the respective "on" attribute and value, you may react to the event by displaying a user dialog
box or activating some multimedia event. Section 12.3.3

4.5.15 Summary of Physical Style Tags

The various graphical browsers render text inside the physical style tags in similar fashion. Table 4-2 summarizes
these browser's display styles for the native tags. Style sheet definitions may override these native display styles.

page 59

HTML & XHTML: The Definitive Guide

Table 4-2, Physical Style Tags

Tag Meaning Display Style
 Bold contents bold
<big> Increased font size bigger text
<bTink> Alternating fore- and background colors blinking text
<i> Italic contents italic
<small> Decreased font size smaller text
<s>, <strike> Strike-through text strike
<sub> Subscripted text subSCript
<sup> Superscripted text superscript
<tt> Teletypewriter style monospaced
<u> Underlined contents underlined

The following HTML source example illustrates some of the various physical tags as rendered by Netscape for
Figure 4-12:

Explicitly boldfaced, <i>italicized</i>, or
<tt>teletype-style</tt> text should be used
<big><big>sparingly</big></big>.

Otherwise, drink <strike>lots</strike> 1x10⁶
drops of H_{<small><small>2</small></small>}0.

Figure 4-12. Use physical text tags with caution

8] Physical Style Tag: - Metscape | _ 3] =]
Fier Edt ‘iew Search Go Bookmarks Tezks Help
R |

Ezplcitly holdfaced, iiafcized, or telerype—seyle text should be used
sparingly Otherwise, drink lots 1x10° drops of 3O,

4.5.16 Allowed Content

Any physical style tag may contain any item allowed in text, including conventional text, anchors, images, and
line breaks. You also can combine physical style tags with other content-based ones.

4.5.17 Allowed Usage

Any physical style tag may be used anywhere an item allowed in text can be used. In general, this means
anywhere within a document except in the <title>, <1isting>, and <xmp> tags. You could use a physical style
tag in a heading, but the browser will probably override and ignore its effect in lieu of the heading tag.

4.5.18 Combining Physical Styles
You probably will have better luck, Dr. Frankenstein, combining physical tags than you might have combining

content-based tags to achieve multiple effects. For instance, Netscape renders the following in bold and italic
typeface:

<i>Thar she blows!</i>

page 60

HTML & XHTML: The Definitive Guide

In practice, other browsers may elect to ignore such nesting. The HTML 4 standard does require the browser to
"do its best" to support every possible combination of styles, but does not define how the browser should handle
such combinations. Although most browsers make a good attempt at doing so, do not assume that all
combinations will be available to you.

4.6 HTML's Expanded Font Handling

We agonized over including this section in a prominent position within this chapter, or relegating it to the end. It
belongs here because the various tags associated with the extended font model for HTML were part of the 3.2
standard. And they remain very popular with HTML authors, besides being well-supported by all the popular
browsers. Yet they have been deprecated in the HTML 4 and XHTML 1.0 standards, warranting banishing the
whole section to the end of the chapter with all the implicit red flags.

We suspect the W3C wants authors to use style sheets, not acute tags, for explicit control of font styles, colors,
and sizes of the text characters. That's why these extended font tags and related attributes have fallen into
disfavor. We put this section here because we doubt that the majority of HTML authors will stop using, nor that
the popular browsers will any time soon abandon support for, tags that are in such widespread use. Just be aware
of their precarious position in the language.

4.6.1 The Extended Font Size Model

Instead of absolute point values, the Extended Font Model of HTML 3.2 as supported by the popular browsers
uses a relative model for sizing fonts. Sizes range from 1, the smallest, to 7, the largest; the default (basefont) font
size is 3.

It is almost impossible to state reliably the actual font sizes used for the various virtual sizes. Most browsers let
the user change the physical font size, and the default sizes vary from browser to browser. It may be helpful to
know, however, that each virtual size is successively 20 percent larger or smaller than the default font size 3.
Thus, font size 4 is 20 percent larger, font size 5 is 40 percent larger, and so on, while font size 2 is 20 percent
smaller and font size 1 is 40 percent smaller than font size 3.

4.6.2 The <basefont> Tag (Deprecated)

The <basefont> tag lets you define the basic size for the font that the browser will use to render normal
document text. We can't recommend that you use it since it has been deprecated in the HTML 4 and XHTML
standards.

<basefont>

Function:

Define base font size for relative font size changes

Attributes:
COLOR NAME
FACE SIZE
ID

End tag:

</basefont>; often omitted in HTML
Contains:

Nothing
Used in:

block, head_content

page 61

HTML & XHTML: The Definitive Guide

The <basefont> tag has a single attribute recognized by all current browsers, size, whose value determines the
document's base font size. It may be specified as an absolute value from 1 to 77, or as a relative value by placing a
plus or minus sign before the value. In the latter case, the base font size is increased or decreased by that relative
amount. The default base font size is 3.

Internet Explorer supports two additional attributes for the <basefont> tag: color and name. HTML 4 also
defines the face attribute as a synonym for the name attribute. These attributes control the color and typeface
used for the text in a document and are used just like the analogous color and face attributes for the tag,
described later.

HTML 4 also defines the id attribute for the <basefont> tag, allowing you to label the tag uniquely for later
access to its contents. Section 4.1.1.4

Authors typically include the <basefont> tag in the head of an HTML document, if at all, to set the base font size
for the entire document. Nonetheless, the tag may appear nearly anywhere in the document, and it may appear
several times throughout the document, each with a new size attribute. With each occurrence, the <basefont>
tag's effects are immediate and hold for all subsequent text.

In an egregious deviation from the HTML and SGML standards, the browsers interpret the ending </basefont>
tag not to terminate the effects of the most recent <basefont> tag. Instead, the </basefont> end tag resets the
base font size to the default value of 3, which is the same as writing <basefont size=3>.

The following example source and Figure 4-13 illustrate how Internet Explorer responds to the <basefont> tag
and </basefont> end tag:

UnTless the base font size was reset above,

Inernet Explorer renders this part in font size 3.
<basefont size=7>

This text should be rather Targe (size 7).
<basefont size=6> Oh,

<basefont size=4> no!

<basefont size=2> I'm

<basefont size=1> shrinking!

</basefont>

Ahhhh, back to normal.

Figure 4-13. Playing with <basefont>

i Bazefont Hijinks - Microzoft Intemnet Exploier
Eie Edii Yiew Favoses Jool: Heb

I

Unless the base font size was reset above, Internet Ezplorer renders this part m font size 3

This text should be rather
large (s1ze 7). Oh, s

Ahhhhh, back to nomal

] Done £ My Computer

L« |

We recommend against using </basefont>; use <basefont size=3> instead.

4.6.3 The Tag (Deprecated)

The tag lets you change the size, style, and color of text. We don't recommend that you use it because it
has been deprecated in the HTML 4 and XHTML standards. But should you decide to ignore our advice, then use
it like any other physical or content-based style tag for changing the appearance of a short segment of text.

To control the color of text for the entire document, see the attributes for the <body> tag described in Section
5.3.1.

page 62

HTML & XHTML: The Definitive Guide

Function:
Set the font size for text
Attributes:
CLASS LANG
COLOR SIZE
DIR STYLE
FACE TITLE
1D
End tag:
; always used
Contains:
text
Used in:
text

4.6.3.1 The size attribute

The value of the size attribute must be one of the virtual font sizes (1-7) described earlier, defined as an absolute
size for the enclosed text or preceded by a plus or minus sign (+ or -) to define a relative font size that the browser
adds to or subtracts from the base font size (see the <basefont> tag, section 4.6.2). The browsers automatically
round the size to 1 or 7 if the calculated value exceeds either boundary.

In general, use absolute size values when you want the rendered text to be an extreme size, either very large or
very small, or when you want an entire paragraph of text to be a specific size.

For example, using the largest font for the first character of a paragraph makes for a crude form of illuminated

manuscript (see Figure 4-14):

<p>
Call me Ishmael.

Figure 4-14. Exaggerating the first character of a sentence with the size attribute for

'! Character Sizing - Miciozoll Intermnet Explores

File Edt View Favodes ook Hep n
]
Callms[shmar.l.
i
&] Done ;Jh'hllzﬂmputﬁ

Also, use an absolute font when inserting a delightfully unreadable bit of "fine" print - boilerplate or legalese - at
the bottom of your documents (see Figure 4-15):

<p>

A1l rights reserved. Unauthorized redistribution of this document is

prohibited. Opinions expressed herein are those of the authors, not the
Internet Service Provider.

page 63

HTML & XHTML: The Definitive Guide

Figure 4-15. Use the tiniest font for boilerplate text

4§ Boilerplate Special - Microsoll Internet Explorer
Fle Edt View Favodter Took Help n

Al rights mesarved. Unauthoriod redinmiboation of thar dooznat i mrobdbisd, Opidoes sapresred
Jumeir e thore of the wrbors | not the baenet Semnce Toovide

&] Dane 24 by Computer

Except for the extremes, use relative font sizes to render text in a size different than the surrounding text, to
emphasize a word or phrase, for example (see Figure 4-16):

<p>
Make sure you always sign and date the form!

Figure 4-16. Use relative sizes for most text embellishments

#Y Aelative Sizing - Metacape
Fle Edi View Go Communicator Help

[TETCI ST o T

Make sure you always sign and date the form!

o == Document: Done e VR OO T e [

If your relative size change results in a size greater than 77, the browser uses font 7. Similarly, font sizes less than
one are rendered with font 1.

Notice that specifying size=+1 or size=-1is identical in effect to the <big> and <smal1> respectively. However,
nested relative changes to the font size are not cumulative as they are for the alternative tags. Each tag is
relative to the base font size, not the current font size. For example (see Figure 4-17):

<p>
The ghost moaned, "ooo0oo0000000000."

Contrast this with the <big> tag, which increases the size one level as you nest the tags. Section 4.5.2

Figure 4-17. Relative font sizes accumulate

[Accumulating Font Sizes - Melscape =] E3
Ele Edl Mew Zearch Go BDookmarks Iasks Help
LI

The ghost moaned, "oc00000O000000 "

4.6.3.2 The color attribute

The color attribute for the tag sets the color of the enclosed text. The value of the attribute may be
expressed in either of two ways: as the red, green, and blue (RGB) components of the desired color or as a
standard color name. Enclosing quotes are recommended, but not required.

The RGB color value, denoted by a preceding pound sign, is a six-digit hexadecimal number. The first two digits
are the red component, from 00 (no red) to FF (bright red). Similarly, the next two digits are the green
component and the last two digits are the blue component. Black is the absence of color, #000000; white is all
colors, #FFFFFF.

For example, to create basic yellow text, you might use:
Here comes the sun!

Alternatively, you may set the enclosed font color using any one of the many standard color names. See Appendix
G, for a list of common ones. For instance, you could also have made the previous sample text yellow with the
following source:

Here comes the sun!

page 64

HTML & XHTML: The Definitive Guide

4.6.3.3 The face attribute

Internet Explorer and Netscape Navigator also let you change the font style in a text passage with the face
attribute for the tag.ll The quote-enclosed value of face is one or more display font names separated with
commas.

l4] For the HTML purist, the once-powerful user who had ultimate control over their browser, this is egregious
indeed. Form over function; look over content - what next? Embedded video commercials you can't stop?

The font face displayed by the browser depends on which fonts are available on the individual user's system. The
browser parses the list of font names, one after the other, until it matches one with a font name supported by the
user's system. If none match, the text display defaults to the font style set by the user in their browser's
preferences. For example:

This text is in the default font. But,

heaven only knows
what font face is this one?

If the Internet Explorer user has the Braggadocio, Machine, or none of the listed font typefaces installed in their
system, they will be able to read the "heaven only knows" message in the respective or default font style.
Otherwise, the message will be garbled because the Zapf Dingbats font contains symbols, not letters. Of course,
the alternative is true, too; you may intend that the message be a symbol-encoded secret.

4.6.3.4 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the tag ought to be displayed
and 1ang lets you specify the language used for the tag's contents. Section 3.6.1.1 / Section 3.6.1.2

4.6.3.5 The class, id, style, and title attributes

You can associate additional display rules for the tag using style sheets. The rules can be applied to the
 tag using either the style or class attributes. Section 8.1.1 / Section 8.3

You also may assign a unique id to the tag, as well as a less rigorous title, using the respective attribute
and accompanying quote-enclosed string value. Section 4.1.1.4 / Section 4.1.1.5

4.7 Precise Spacing and Layout

Cascading Style Sheets notwithstanding, the original concept of HTML is for specifying document content
without indicating format; to delineate the structure and semantics of a document, not how that document is to
be presented to the user. Normally, you should leave word wrapping, character and line spacing, and other
presentation details up to the browser. That way, the document's content - its rich information, not good looks - is
what matters. When looks matter more, such as for commercial presentations, look to style sheets for layout
control (see Chapter 8).

4.7.1 The
 Tag

The
 tag interrupts the normal line filling and word wrapping of paragraphs within an HTML or XHTML
document. It has no ending tag with HTML,'s! but simply marks the point in the flow where a new line should
begin. Most browsers simply stop adding words and images to the current line, move down and over to the left
margin, and resume filling and wrapping.

(5] With XHTML, put the end inside the start tag:
. See Chapter 16 for details.

This effect is handy when formatting conventional text with fixed line breaks, such as addresses, song lyrics, or
poetry. Notice, for example, the lyrical breaks when the following source is rendered by Internet Explorer:

<h3>

Heartbreak Hotel</h3>

<p>

Ever since my baby left me

I've found a new place to dwell.

It's down at the end of Tonely street

C?11ed <cite>Heartbreak Hotel</cite>.
</p>

The results are shown in Figure 4-18.

page 65

HTML & XHTML: The Definitive Guide

Function:
Insert a line break into a text flow
Attributes:
CLASS STYLE
CLEAR TITLE
ID
End tag:
None in HTML; </br> or <br ... /> in XHTML
Contains:
Nothing
Used in:
text

Figure 4-18. Give lyrics their breaks (
)

) Lyrical Breaks - Microzoft Intemet Explorer = O] =]
Flle Edt Wiew Fgvokes Took Hebp n
B
Hearthreak Hotel
Ever since my baby loft me
I've found a new place to dwell
It's dewn at the end of lonely street
Called Heartbreak Hotel
ke |
2] Dane ,':j Il Comprder

Also notice how the
 tag causes text simply to start a new line, while the browser, when encountering the <p>
tag, typically inserts some vertical space between adjacent paragraphs. Section 4.1.2

4.7.1.1 The clear attribute

Normally, the
 tag tells the browser to stop the current flow of text immediately and resume at the left
margin of the next line or against the right border of a left-justified inline graphic or table. Sometimes you'd
rather the current text flow resume below any tables or images currently blocking the left or right margins.

HTML 4 and XHTML provide that capability with the cTear attribute for the
 tag. It can have one of three
values: Teft, right, or al1, each related to one or both of the margins. When the specified margin or both
margins are clear of images, the browser resumes the text flow.

Figure 4-19 illustrates the effects of the clear attribute when the browser renders the following HTML fragment:

This text should wrap around the image, flowing between the
image and the right margin of the document.

<br clear=left>

This text will flow as well, but will be below the image,
extending across the full width of the page. There will

be white space above this text and to the right of the
image.

page 66

HTML & XHTML: The Definitive Guide

Figure 4-19. Clearing images before resuming text flow after the
 tag

[#] Clearing after a Break - Metscape
Eie Bt Miew Zearch Go Dookmarks Tasks Hep

Thas test should wrap arcund the wmage,
flowmng between the mage and the nght
margin of the document.

Thus text will few as well, but wall be below the mage extending across the full
width of the page There will be whute space above Hus text and to the nght of the
Hnage.

Inline images are just that - normally in line with text, but usually only a single line of text. Additional lines of text
flow below the image unless that image is specially aligned by right or 1eft attribute values for the tag
(similarly for <table>). Hence, the clear attribute for the
 tag only works in combination with left- or right-
aligned images or tables.Section 5.2.6.4 / Section 10.2.1.1

The following XHTML code fragment illustrates how to use the
 tag and its clear attribute as well as the
 tag's alignment attributes to place captions directly above, centered on the right, and below an image that
is aligned against the left margin of the browser window:

Paragraph tags separate leading and following
text flow from the captions.

<p>

I'm the caption on top of the image.

This one's centered on the right.

<br clear="1eft" />

This caption should be directly below the image.
</p>

<p>

Figure 4-20 illustrates the results of this example code.

You might also include a <br clear=all> tagjust after an tag or table that is at the very end of a section of
your document. That way, you ensure that the subsequent section's text doesn't flow up and against that image
and confuse the reader. Section 5.2.6

Figure 4-20. Captions placed on top, center-right, and below an image

a Captionz Get a Break - Microzoft Internet Explorer

File Edt Wiew Favoste: Took Hep n

Paragraph tags separate leading and followmg text flow from the captions.

I'm the caption on top of the i

Thas one's centered on the nght.

This caption should be directly below the image.

€] Done = My Computer

page 67

HTML & XHTML: The Definitive Guide

4.7.1.2 The class, id, style, and title attributes

You can associate additional display rules for the
 tag using style sheets. The rules can be applied to the

tag using either the style or class attributes. Section 8.1.1 / Section 8.3

You also may assign a unique id to the
 tag, as well as a less rigorous title, using the respective attribute and
accompanying quote-enclosed string value. Section 4.1.1.4 / Section 4.1.1.5

4.7.2 The <nobr> Tag

Occasionally, you may have a phrase you want to appear unbroken on a single line in the user's browser window,
even if that means the text extends beyond the visible region of the window. Computer commands are good
examples. Typically, you type in a computer command - even a multiword one - on a single line. Because you
cannot predict exactly how many words will fit inside an individual's browser window, the sequence of computer-
command words may end up broken into two or more lines of text. Command syntax is confusing enough; it
doesn't need the extra cross-eyed effect of being wrapped onto two lines.

With standard HTML and XHTML, the way to make sure text phrases stay intact across the browser display is to
enclose those segments in a <pre> tag and format it by hand. That's acceptable and nearly universal for all
browsers. However, <pre> alters the display font from the regular text, and manual line breaks inside the <pre>
tag are not always rendered correctly. Section 4.7.5

<nobr> D0

Function:
Create a region of non-breaking text
Attributes:
None
End tag:
</nobr>; always used
Contains:
text
Used in:
block

The modern browsers offer the <nobr> tag alternative to <pre> so you can be sure enclosed text stays intact on a
single line while retaining normal text style.l*! The effect is to make the browser treat the tag's contents as though
they were a single, unbroken word. The tag contents retain the current font style, and you can change to another
style within the tag.

(6] Be aware that <nobr> and its colleague <wb > are extensions to the language and not part of the HTML
standard.

Here's the <nobr> tag in action with our computer command example:

when prompted by the computer, enter

<nobr>

<tt>find . -name *.htm]l -exec rm \{\}\;</tt>.

</nobr>

After a few moments, the Toad on your server will begin
to diminish and will eventually drop to zero.

Notice in the example source and its display (Figure 4-21) that we've included the special <tt> tag inside the
<nobr> tag. If the <nobr>-tagged text cannot fit on a partially filled line of text, the extended browser precedes it
with a line break, as shown in the figure. The <nobr> segment may then extend beyond the right window
boundary. Section 4.5.10

The <nobr> tag does not suspend the browser's normal line-filling process; it still collects and inserts images and

- believe it or not - asserts forced line breaks caused by the
 or <p> tags, for example. The <nobr> tag's only
action is to suppress an automatic line break when the current line reaches the right margin.

page 68

HTML & XHTML: The Definitive Guide

Figure 4-21. The <nobr> extension suppresses text wrapping
) Mo Breaks - Microzoft Intermet Explorer [_ O] =]
File Edt Wiew Favoiter Took Hep m

When prompted by the computer, enter

find . -neme Y\ *.html —exec om %414 e After afew
moments, the load on vour server will begin to dimimish and will
eventually drop to zero,

x|

& Dona 2 My Computen

In addition, you might think this tag is needed only to suppress line breaks for phrases, not a sequence of
characters without spaces that can exceed the browser window's display boundaries. Today's browsers do not
hyphenate words automatically, but someday soon they probably will. It makes sense to protect any break-
sensitive sequence of characters with the <nobr> tag.

4.7.3 The <wbr> Tag

The <wbr> tag is the height of text-layout finesse, offered as an extension to the languages by the popular
browsers. Used with the <nobr> tag, <wbr> advises the extended browser when it may insert a line break in an
otherwise nonbreakable sequence of text. Unlike the
 tag, which always causes a line break even within a
<nobr>-tagged segment, the <wbr> tag works only when placed inside a <nobr>-tagged content segment and
causes a line break only if the current line already had extended beyond the browser's display window margins.

<wbr> [0

Function:

Define potential line break point if needed
Attributes:

None
End tag:

None in HTML; </wbr> or <wbr ... /> in XHTML
Contains:

Nothing
Used in:

text

Now, <wbr> may seem incredibly esoteric to you, but scowl not. There may come a time when you want to make
sure portions of your document appear on a single line, but you don't want to overrun the browser window
margins so far that readers will have to camp on the horizontal scrollbar just to read your fine prose. By inserting
the <wbr> tag at appropriate points in the nonbreaking sequence, you let the browser gently break the text into
more manageable lines:

<p>

<nobr>

This is a very long sequence of text that is

forced to be on a single 1line, even if doing so causes

<wbr>

the browser to extend the document window beyond the

size of the viewing pane and the poor user must scroll right

<wbr>

to read the entire Tline.

</nobr>

You'll notice in our rendered version (Figure 4-22) that both <wbr> tags take effect. By increasing the horizontal
window size or by reducing the font size, you may fit all of the segment before the first <wbr> tag within the
browser window. In that case, only the second <wbr> would have an effect; all the text leading up to it would
extend beyond the window's margins.

page 69

HTML & XHTML: The Definitive Guide

Figure 4-22. Gentle line breaks with <wbr>

-! Gentle Breaks - Microzoft Internat Explorer

File Edt Wiew Favoer Todk Hep m

Thiz iz a very long sequence of tes that i3 ferced te be on a smple line
the browser to extend the document window beyend the size of the w
to read the entire line.

. | o

&) Done 2 My Computes

4.7.4 Better Line-Breaking Rules

Unlike some browsers, and to their credit, Netscape Navigator and Internet Explorer do not consider tags to be a
line-break opportunity. Consider the unfortunate consequences to your document's display if, while rendering the
example segment below, the browser puts the comma adjacent to the "du" or the period adjacent to the word "df "
on a separate line. Netscape and Internet Explorer will not:

Make sure you type <tt>du</tt>, not <tt>df</tt>.

4.7.5 The <pre> Tag

The <pre> tag and its required end tag (</pre>) define a segment inside which the browser renders text in exactly
the character and line spacing defined in the source document. Normal word wrapping and paragraph filling are
disabled, and extraneous leading and trailing spaces are honored. The browser displays all text between the <pre>
and </pre> tags in a monospaced font.

Authors most often use the <pre> formatting tag when the integrity of columns and rows of characters must be
retained; for instance, in tables of numbers that must line up correctly. Another application for <pre> is to set
aside a blank segment - a series of blank lines - in the document display, perhaps to clearly separate one content
section from another, or to temporarily hide a portion of the document when it first loads and is rendered by the
user's browser.

Tab characters have their desired effect within the <pre> block, with tab stops defined at every eight character
positions. We discourage their use, however, since tabs aren't consistently implemented among the various
browsers. Use spaces to ensure correct horizontal positioning of text within <pre>-formatted text segments.

A common use of the <pre> tag is to present computer source code, as in the following example:

<p> i i
The processing program 1s:

<pre>
main(int argc, char **argv)
{ FILE *f;

int i;

if (argc != 2)
fprintf(stderr, "usage: %s &1t;file>\n",

argv[0]);
process(argv[1]);
exit(0);

</pre>

The result is displayed by Netscape Navigator as shown in Figure 4-23.

page 70

HTML & XHTML: The Definitive Guide

<pre>
Function:
Render a block of text without any formatting
Attributes:

CLASS ONKEYUP
DIR ONMOUSEDOWN
1D ONMOUSEMOVE
LANG ONMOUSEOUT
ONCLICK ONMOUSEOVER
ONDBLCLICK ONMOUSEUP
ONKEYDOWN STYLE
ONKEYPRESS TITLE
WIDTH
End tag:
</pre>; never omitted
Contains:
pre_content
Used in:

block

Figure 4-23. Use the <pre> tag to preserve the integrity of columns and rows

[Pre: Formatted Text - Netscape
Fie Edil Wiew Search Go Bookmarks [asks Help
A

The processing program is:
main{int arge, char *Tacgv)

i FILE *%£:
int i:

1x rarcc U= g
fprinty (stderr,
argv[0]):

Mugage

exit (0] :

i3 <filex\n",

M= =3

page 71

HTML & XHTML: The Definitive Guide

4.7.5.1 Allowable content

The text within a <pre> segment may contain physical and content-based style changes, along with anchors,
images, and horizontal rules. When possible, the browser should honor style changes, within the constraint of
using a monospaced font for the entire <pre> block.

Tags that cause a paragraph break (heading, <p>, and <address> tags, for example), must not be used within the
<pre> block. Although some browsers will interpret paragraph-ending tags as simple line breaks, this behavior is
not consistent across all browsers.

Since style markup and other tags are allowed in a <pre> block, you must use entity equivalents for the literal
characters: &1t; for <, > for >, and & for the ampersand.

You place tags into the <pre> block as you would in any other portion of the HTML document. For instance, study
the reference to the "process" function in the previous example. It contains a hyperlink (using the <a> tag) to its
source file named process.c.

4.7.5.2 The width attribute

The <pre> tag has an optional attribute, width, that determines the number of characters to fit on a single line
within the <pre> block. The browser may use this value to select a font or font size that fits the specified number
of characters on each line in the <pre> block. It does not mean that the browser will wrap and fill text to the
specified width. Rather, lines longer than the specified width simply extend beyond the visible region of the
browser's window.

The width attribute is only advice for the user's browser; it may or may not be able to adjust the view font to the
specified width.

4.7.5.3 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the <pre> segment ought to be
displayed, and 1ang lets you specify the language used within that tag. Section 3.6.1.1 / Section 3.6.1.2

4.7.5.4 The class, id, style, and title attributes

Although the browsers usually display <pre> content in a defined style, you can override that style and add
special effects, such as a background picture, by defining your own style for the tag. This new look can be applied
to the <pre> tags using either the style or class attributes. Section 8.1.1 / Section 8.3

You also may assign a unique id to the <pre> tag, as well as a less rigorous title, using the respective attribute and
accompanying quote-enclosed string value. Section 4.1.1.4 / Section 4.1.1.5

4.7.5.5 Event attributes

Like with most other tagged segments of content, user-related events can happen in and around <pre> content,
such as when a user clicks or double-clicks within its display space. Many of these events are recognized by
current browsers. With the respective "on" attribute and value, you may react to that event by displaying a user
dialog box or activating some multimedia event. Section 12.3.3

4.7.6 The <center> Tag (Deprecated)

The <center> tag is another of those whose effects are obvious: content, including text, graphics, tables, and so
on, are each centered inside the browser's window. For text, this means that each line, individually, gets centered
after the text flow is filled and wrapped. The <center> alignment remains in effect until canceled with its
</center> end tag.

Line-by-line is a common, albeit primitive, way to center text, and it should be used judiciously. That's because
the browsers do not attempt to balance a centered paragraph or other block-related elements, such as elements in
a list. So keep your centered text short and sweet. Titles make good centering candidates; a centered list usually is
difficult to follow.

Beyond that, you'll rarely see conventional text centered, except for some lyrical prose, so readers may react badly
to large segments of centered prose in your documents. Rather, HTML authors more commonly use <center> to
center a table or image in the display window (there is no explicit center alignment option for inline images or
tables, but there are styles-related ways to achieve the effect).

page 72

HTML & XHTML: The Definitive Guide

<center>
Function:
Center a section of text
Attributes:
ALIGN ONKEYUP
CLASS ONMOUSEDOWN
DIR ONMOUSEMOVE
ID ONMOUSEOUT
LANG ONMOUSEOVER
ONCLICK ONMOUSEUP
ONDBLCLICK STYLE
ONKEYDOWN TITLE
ONKEYPRESS
End tag:
</center>; never omitted
Contains:
body_ content
Used in:
block

Because users will have varying window widths, display resolutions, and so on, you may also want to employ the
<nobr> and <wbr> extension tags (see previous descriptions) to keep your centered text intact and looking good.
For example:

<center>

<nobr>

Copyright 1995 by QuatCo Enterprises.<wbr>

All rights reserved.

</nobr>
</center>

The <nobr> tags in the sample source help ensure that the text remains on a single line, and the <wbr> tag
controls where the line may be broken if it exceeds the browser's display window width.

Centering is useful for creating distinctive section headers, although you may achieve the same effect with an
explicit align=center attribute in the respective heading tag. You might also center text using align=center in
conjunction with the <div> or <p> tags. In general, the <center> tag can be replaced by an equivalent <div
align=center> or similar tag and its use should be discouraged.

Indeed, like and other HTML 3.2 standard tags that have fallen in disfavor in the wake of style sheets, the
<center> tag is deprecated in the HTML 4 and XHTML standards. Nonetheless, its use in HTML documents is
nearly universal, and the popular browsers are sure to support it for many revisions to come. Still, be aware of its
eventual demise.

page 73

HTML & XHTML: The Definitive Guide

4.7.6.1 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the <center> segment ought to
be displayed, and Tang lets you specify the language used within the tag. Section 3.6.1.1 / Section 3.6.1.2

4.7.6.2 The class, id, style, and title attributes

Use the styTe attribute to specify an inline style for the <center> tag, or use the class attribute to apply a
predefined style class to the tag. Section 8.1.1 Section 8.3

You may assign a unique id to the <center> tag, as well as a title, using the respective attribute and
accompanying quote-enclosed string value. Section 4.1.1.4 / Section 4.1.1.5

4.7.6.3 Event attributes

Like with most other tagged segments of content, user-related events can happen in and around the <center>
tag, such as when a user clicks or double-clicks within its display space. Many of these events are recognized by
the current browsers. With the respective "on" attribute and value, you may react to that event by displaying a
user dialog box or activating some multimedia event. Section 12.3.3

4.7.7 The <listing> Tag (Obsolete)

The <11isting> tag is an obsolete tag, explicitly removed from the HTML 4 standard, meaning that you shouldn't
use it. We include it here for historical reasons, since it is supported by some browsers and has the same effect on
text formatting as the <pre> tag with a specified width of 132 characters.

<listing>
Function:
Render a block of text without any formatting
Attributes:

crass 0

styLe 00

End tag:

</listing>; never omitted
Contains:

literal_text
Used in:

block

The only difference between <pre> and <11 sting> is that no other markup is allowed within the <11isting> tag.
So you don't have to replace the literal <, >, and & characters with their entity equivalents in a <11sting> block
as you must inside a <pre> block.

Since the <1isting> tag is the same as a <pre width=132> tag, and because it might not be supported in later
version of the language, we recommend that you stay away from using <1isting>.

page 74

4.7.8 The <xmp> Tag (Obsolete)

HTML & XHTML: The Definitive Guide

Like the <11isting> tag, the <xmp> tag is obsolete and should not be used. We include it here mostly for historical

reasons.
<xmp>
Function:
Render a block of text without any formatting
Attributes:
cLass 0O
styLe O
End tag:
</xmp>; never omitted
Contains:
literal_text
Used in:
block

The <xmp> tag formats text just like the <pre> tag with a specified width of 80 characters. However, unlike the
<pre> tag, you don't have to replace the literal <, >, and & characters with their entity equivalents within an
<xmp> block. The name <xmp> is short for "example"; the language's designers intended that the tag be used to
format examples of text originally displayed on 80-column wide displays. Because the 80-column display has
mostly gone the way of green screens and teletypes, and since the effect of a <xmp> tag is basically the same as
<pre width=80>, don't use <xmp>; it may disappear in subsequent versions of HTML.

4.7.9 The <plaintext> Tag (Obsolete)

Throw the <pTaintext> tag out of your bag of HTML tricks; it's obsolete, like <11sting> and <xmp>. Included
here for historical reasons, authors once used <plaintext> to tell the browser to treat the rest of your document's
text just as written with no markup allowed. There was no ending tag for <pTlaintext> (of course, no markup!),

but there was an end to <plaintext>. Forget about it.

<plaintext>

Function:
Render a block of text without any formatting
Attributes:
None
End tag:
None
Contains:
literal_text
Used in:
block

page 75

4.8 Block Quotes

HTML & XHTML: The Definitive Guide

A common element in conventional documents is the block quote, a lengthy copy of text from another document.
Traditionally, short quotes are set off with quotation marks, while block quotes are made entirely of separate

paragraphs within the main document, typically with special indentation and sometimes italicized - features that
you may change through style or class definitions (see Chapter 8).

4.8.1 The <blockquote> Tag

All of the text within the <bTockquote> and </blockquote> tags is set off from the regular document text, usually
with indented left and right margins, and sometimes in italicized typeface. Actual rendering varies from browser

to browser, of course.

<blockquote>
Function:
Define a block quotation
Attributes:
CITE ONKEYUP
CLASS ONMOUSEDOWN
DIR ONMOUSEMOVE
ID ONMOUSEOUT
LANG ONMOUSEOVER
ONCLICK ONMOUSEUP
ONDBLCLICK STYLE
ONKEYDOWN TITLE
ONKEYPRESS
End tag:
</blockquote>; never omitted
Contains:
body_ content
Used in:
block

The HTML and XHTML standards allow any and all markup within the <blockquote>, although some physical
and content-based styles may conflict with the font used by the browser for the block quote. Experimentation will

reveal those little warts.

page 76

HTML & XHTML: The Definitive Guide

The <blockquote> tag is often used to set off long quotations from other sources. For example:

we acted incorrectly in arbitrarily changing the Kumquat
Festival date. Quoting from the Kumquat Growers' Bylaws:
<blockquote>
The date of the Kumquat Festival may only be changed by
a two-thirds vote of the General Membership, provided
that a 60 percent quorum of the Membership
is present.
</blockquote>
(Emphasis mine) Since such a quorum was not present, the
vote 1is invalid.

gets displayed by Internet Explorer as an indented block of text. Figure 4-24 displays the results.

Figure 4-24. Blockquotes get their own space

A} A Block of Quote - Microsoft Intemet Explorer H[=1E3

Fil= Edt View Favoibe: Teok Help m

We acted meorrectly m arbitranly changing the Eumquat Festival
date. Ouoting from the Eumeuat Growers' Bylaws:

The date of the Eumguat Festival may only be changed
b a twro-thirds wrote of the General Membership,
provided that a 60 percent quorum of the
Membership 15 present

(Emphasis mine) Since such a quorum was net present, the vate iz
mwalid,

&1 Dane 4 My Computer

4.8.1.1 The cite attribute

The cite attribute lets you indicate the source of a quote. The attribute's value should be a quote-enclosed URL
that points to the online document and, if possible, the exact location in the document where the quote came
from.

For instance, you could cite the specific section in the Kumquat Grower's Bylaws in our example. Presumably,
someday the browser may actually let you click and view that specific citation via its embedded URL. Today, you
must embed an explicit hyperlink to the document; see Chapter 6:

<blockquote cite="http://www.kumquat.com/growers/bylaws#s23.4">
4.8.1.2 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the <blockquote> segment
ought to be displayed, and Tang lets you specify the language used within that tag. Section 3.6.1.1 / Section 3.6.1.2

4.8.1.3 The class, id, style, and title attributes

Use the styTe attribute to specify an inline style for the <blockquote> tag, or use the class attribute to apply a
predefined style class to the tag. Section 8.1.1 / Section 8.3

You may assign a unique id to the <bTockquote> tag, as well as a title, using the respective attribute and
accompanying quote-enclosed string value. Section 4.1.1.4 / Section 4.1.1.5

4.8.1.4 Event attributes
Like with most other tagged segments of content, user-related events can happen in and around the
<bTockquote> tag, such as when a user clicks or double-clicks within its display space. Many of these events are

recognized by the current browsers. With the respective "on" attribute and value, you may react to that event by
displaying a user dialog box or activating some multimedia event. Section 12.3.3

page 77

HTML & XHTML: The Definitive Guide

4.8.2 The <q> Tag

Introduced in HTML 4.0, the <g> tag is virtually identical to its <bTockquote> counterpart. The difference is in
their display and application. Use <g> for short quotes that may be in line with surrounding plain text. Although
not yet supported by the popular browsers, the HTML and XHTML standards dictate that the <g>-enclosed text
begin and end with double-quote marks. Use the <bTockquote> tag, on the other hand, for longer segments that
the browser will set off - usually as an indented block - from the surrounding content, such as that shown in
Figure 4-24.

<q>
Function:
Define a short quotation
Attributes:
CITE ONKEYUP
CLASS ONMOUSEDOWN
DIR ONMOUSEMOVE
ID ONMOUSEOUT
LANG ONMOUSEOVER
ONCLICK ONMOUSEUP
ONDBLCLICK STYLE
ONKEYDOWN TITLE
ONKEYPRESS
End tag:
</q>; never omitted
Contains:
body_ content
Used in:
text

4.8.2.1 The cite attribute

The ci te attribute works with the <g> tag just like it does for the <bTockquote> tag: it lets you indicate the source
of a quote. The attribute's value should be a quote-enclosed URL that points to the online document and, if
possible, the exact location in the document where the quote came from.

4.8.2.2 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the <g> segment ought to be
displayed, and 1ang lets you specify the language used within that tag. Section 3.6.1.1 / Section 3.6.1.2

page 78

HTML & XHTML: The Definitive Guide

4.8.2.3 The class, id, style, and title attributes

Use the styTe attribute to specify an inline style for the <g> tag, or use the class attribute to apply a predefined
style class to the tag. Section 8.1.1 / Section 8.3

You may assign a unique id to the <g> tag, as well as a title, using the respective attribute and accompanying
quote-enclosed string value. Section 4.1.1.4 / Section 4.1.1.5

4.8.2.4 Event attributes

Like with most other tagged segments of content, user-related events can happen in and around the <g> tag, such
as when a user clicks or double-clicks within its display space. Many of these events are recognized by the current
browsers. With the respective "on" attribute and value, you may react to that event by displaying a user dialog box
or activating some multimedia event. Section 12.3.3

4.9 Addresses

Addresses are a very common element in text documents, so there is a special tag that sets addresses apart from
the rest of a document's text. While this may seem a bit extravagant - addresses have few formatting peculiarities
that would require a special tag - it is an example of content, not format, which is the intent and purpose of
HTML and XHTML markup.

By defining text that constitutes an address, the author lets the browser format that text in a different manner, as
well as process that text in ways helpful to users. It also makes the content readily accessible to automated
readers and extractors. For instance, an online directory might include addresses the browser collects into a
separate document or table, or automated tools might extract addresses from a collection of documents to build a
separate database of addresses.

4.9.1 The <address> Tag

The <address> and its required end (</address>) tag tell a browser that the enclosed text is an address. The
browser may format the text in a different manner than the rest of the document text, or use the address in some
special way. You also have control over the display properties through the style and class attributes for the tag
(see Chapter 8).

The text within the <address> tag may contain any element normally found in the body of a document, excluding
another <address> tag. Style changes are allowed, but may conflict with the style chosen by the browser to render
the address element.

We think most, if not all, documents should have their authors' addresses included somewhere convenient to the
user, usually at the end. At the very least, the address should be the author's or webmaster's email address, along
with a link to their home page. Street addresses and phone numbers are optional; personal ones are usually not
included for reasons of privacy.

For example, the address for the webmaster responsible for a collection of commercial web documents often
appears in source documents as follows, including the special mailto: URL protocol that lets users activate the
browser's email tool:
<address>

webmaster

0'Reilly & Associates, Inc.

Cambridge, Massachusetts

</address>

Figure 4-25 displays the results.

Figure 4-25. The <address> tag in action

A Special Addresses - Microsolt Internet Explores H=]
Fle Edi WView Favoses Took Hep m
=]

Webmaster

Cambridge, Massachusetis
¥

&] Daone =1 My Compater

page 79

HTML & XHTML: The Definitive Guide

<address>
Function:
Define an address
Attributes:
CLASS ONKEYUP
DIR ONMOUSEDOWN
ID ONMOUSEMOVE
LANG ONMOUSEOUT
ONCLICK ONMOUSEOVER
ONDBLCLICK ONMOUSEUP
ONKEYDOWN STYLE
ONKEYPRESS TITLE
End tag:
</address>; never omitted
Contains:
body_ content
Used in:
address_content

Whether it is short and sweet or long and complete, make sure every document you create has an address
attached to it. If something is worth creating and putting on the Web, it is worth comment and query by your
readership. Anonymous documents carry little credibility on the Web.

4.9.1.1 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the <address> segment ought
to be displayed, and Tang lets you specify the language used within that tag. Section 3.6.1.1 / Section 3.6.1.2

4.9.1.2 The class, id, style, and title attributes

Use the styTe attribute to specify an inline style for the <address> tag, or use the class attribute to apply a
predefined style class to the tag. Section 8.1.1 / Section 8.3

You may assign a unique id to the <address> tag, as well as a title, using the respective attribute and
accompanying quote-enclosed string value. Section 4.1.1.4 / Section 4.1.1.5

4.9.1.3 Event attributes
Like with most other tagged segments of content, user-related events can happen in and around the <address>
tag, such as when a user clicks or double-clicks within its display space. Many of these events are recognized by

the current browsers. With the respective "on" attribute and value, you may react to that event by displaying a
user dialog box or activating some multimedia event. Section 12.3.3

page 80

HTML & XHTML: The Definitive Guide

4.10 Special Character Encoding

For the most part, characters within documents that are not part of a tag are rendered as is by the browser.
However, some characters have special meaning and are not directly rendered, while other characters can't be
typed into the source document from a conventional keyboard. Special characters need either a special name or a
numeric character encoding for inclusion in a document.

4.10.1 Special Characters

As has become obvious in the discussion and examples leading up to this section, three characters in source
documents have very special meaning: the less-than sign (<), the greater-than sign (>), and the ampersand (&).
These characters delimit tags and special character references. They'll confuse a browser if left dangling alone or
with improper tag syntax. So you've got to go out of your way to include their actual, literal characters in your
documents./”!

171 The only exception is that these characters may appear literally within the <11 sting> and <xmp> tags, but
this is a moot point, since the tags are obsolete.

Similarly, you've got to use a special encoding to include double quotation mark characters within a quoted string,
or when you want to include a special character that doesn't appear on your keyboard but is part of the ISO Latin-
1 character set implemented and supported by most browsers.

4.10.2 Inserting Special Characters

To include a special character in your document, enclose either its standard entity name or a pound sign (#) and
its numeric position in the Latin-1 standard character set'®! inside a leading ampersand and an ending semicolon,
without any spaces in-between.

[81 The popular ASCII character set is a subset of the more comprehensive Latin-1 character set. Composed by the
well-respected International Organization for Standardization (ISO), the Latin-1 set is a list of all letters, numbers,
punctuation marks, and so on, commonly used by Western language writers, organized by number and encoded
with special names. Appendix F contains the complete Latin-1 character set and encoding.

Whew. That's a long explanation for what is really a simple thing to do, as the following example illustrates. The
example shows how to include a greater-than sign in a snippet of code by using the character's entity name. It also
demonstrates how to include a greater-than sign in your text by referencing its Latin-1 numeric value:

if a > b, then t =0
if a > b, then t = 0

Both examples cause the text to be rendered as:
if a > b, then t =0

The complete set of character entity values and names are in Appendix F. You could write an entire document
using character encoding, but that would be silly.

page 81

HTML & XHTML: The Definitive Guide

Chapter 5. Rules, Images, and Multimedia

While the body of most documents is text, an appropriate seasoning of horizontal rules, images, and other
multimedia elements make for a much more inviting and attractive document. These features are not simply
gratuitous geegaws that make your documents look pretty, mind you. Multimedia elements bring HTML and
XHTML documents alive, providing a dimension of valuable information often unavailable in other media, such
as print. In this chapter, we describe in detail how you can insert special multimedia elements into your
documents, when their use is appropriate, and how to avoid overdoing it.

You also might want to jump ahead and skim Chapter 12. There we describe some catch-all tags, the HTML 4 and
XHTML standard <object> and Netscape's <embed>, which let you insert all kinds of content and data file types,
including multimedia, into your documents.

5.1 Horizontal Rules

Horizontal rules give you a way to separate sections of your document visually. That way, you give readers a clean,
consistent, visual indication that one portion of your document has ended and another portion is beginning.
Horizontal rules effectively set off small sections of text, delimit document headers and footers, and provide extra
visual punch to headings within your document.

5.1.1 The <hr> Tag

The <hr> tag tells the browser to insert a horizontal rule across the display window. Like the
 tag, <hr> forces
a simple line break, although unlike
, <hr> causes the paragraph alignment to revert to the default (left-
justified). The browser places the rule immediately below the current line, and content flow resumes below the
rule. Section 4.7.1

The rendering of a horizontal rule is at the discretion of the browser. Typically, it extends across the entire
document. Graphical browsers may render the rule with a chiseled or embossed effect; character-based browsers
most likely use dashes or underscores to create the rule.

There is no additional space above or below a horizontal rule. If you wish to set it off from the surrounding text,
you must explicitly place the rule in a new paragraph, followed by another paragraph containing the subsequent
text. For example, note the spacing around the horizontal rules in the following source and in Figure 5-1:

This text is directly above the rule.

<hr>

And this text is immediately below.

<p>

whereas this text will have space before the rule.

<p>

<hr>

<p>
And this text has space after the rule.

A paragraph tag following the rule tag is necessary if you want the content beneath the rule line aligned in any
style other than the default left.

Figure 5-1. Paragraph tags give your text extra elbow room

[Playing by the Rules - Netscape H=E

Fier Bt ‘“iew Search Go Bookmarks Tasks Help
RO TTTTTGE

This tezt 1z directly abowve the rule.

And this text 12 mnmediately below.

Whereas this text will have space before the nule.

Ane thiz text has space after the rule,

page 82

HTML & XHTML: The Definitive Guide

<hr>
Function:
Break a text flow and insert a horizontal rule
Attributes:
ALIGN ONMOUSEDOWN
CLASS ONMOUSEMOVE
coLor D ONMOUSEOUT
DIR ONMOUSEOVER
ID ONMOUSEUP
LANG SIZE
NOSHADE STYLE
ONCLICK TITLE
ONDBLCLICK WIDTH
ONKEYDOWN
ONKEYPRESS
ONKEYUP
End tag:
None in HTML; </hr> or <hr ... /> with XHTML
Contains:
Nothing
Used in:
body_ content

5.1.1.1 The size attribute

Normally, browsers render horizontal rules two to three pixels thick with a chiseled, 3D appearance, making the
rule look incised into the page.

(1] A pixel is one of the many tiny dots that make up the display on your computer. While display sizes vary, a good
rule of thumb is that one pixel equals one point on a 75 dot-per-inch display monitor. A point is a unit of measure
used in printing and is roughly equal to !/;. of an inch (there are 72.27 points in an inch, to be exact). Typical
typefaces used by various browsers are usually 12 points tall, yielding six lines of text per inch.

You may thicken the rules with the size attribute. The required value is the thickness, in pixels. You can see the
effects of this attribute in Figure 5-2 as constructed from the following source:

<p>

This is conventional document text,

followed by a IE's 2-pixel tall rule Tine.

<hr>

The next three rule lines are 12, 36, and 72 pixels tall.
<hr size=12><hr size=36><hr size=72>

page 83

HTML & XHTML: The Definitive Guide

The s1ize attribute is deprecated in HTML 4 and XHTML, since its effects can be achieved with appropriate use of
style sheets.

Figure 5-2. Internet Explorer and Netscape let you vary the horizontal rule size

r! Stretching the Hules - Microzoft Intemnet Explorer

Eile Edé View Fawter Taok Heb n

This is convenhonal document text, followed by [E's 2-pixel tall mule bne.

The next three rule lines are 12, 36, and 72 pisels tall

k2

&1 Done =4 My Computer

5.1.1.2 The noshade attribute

You may not want a 3D rule line, preferring a flat, 2D rule. Just add the noshade attribute to the <hr> tag to
eliminate the effect. No value is required with HTML. Use noshade="noshade" with XHTML. Note the difference
in appearance of a "normal” 3D rule versus the noshade 2D one in Figure 5-3. (We've also exaggerated the rule's
thickness for obvious effect, as evident in the source HTML fragment.)

<hr size=32>
<p>
<hr size=32 noshade>

The noshade attribute is deprecated in HTML 4 and XHTML, since its effects can be achieved with appropriate
use of style sheets.

Figure 5-3. Netscape's 3D rule versus the noshade 2D option

3] Rules Plain and Simple - Netscape M= E3 |

Eie Edt Yiew Search Go Bookmarks Tasks Help

s

5.1.1.3 The width attribute

The default rule is drawn across the full width of the view window. You can shorten or lengthen rules with the
width attribute, creating rule lines that are either an absolute number of pixels wide or extend across a certain
percentage of the current text flow. Most browsers automatically center partial-width rules; see the align
attribute (Section 5.1.1.4) to left- or right-justify horizontal rules.

Here are some examples of width-specified horizontal rules (see Figure 5-4):

The following rules are 40 and 320 pixels wide

no matter the actual width of the browser window

<hr width=40>

<hr width=320>

whereas these next two rules will always extend across
10 and 75 percent of the window, regardless of its width:
<hr width="10%">

<hr width="75%">

page 84

HTML & XHTML: The Definitive Guide

Figure 5-4. The long and short of absolute and relative rule widths

[The Long and Short of Rules - Hetscape Hi=] E
Fie Edil Yiew Search Go Bookmarks Tasks Help
e~
The fallewing rules are 40 and 320 pizels wide no matter the actual wadth of
the browser window

Whereas these nezt two niles will abways extend across 10 and 75 percent of
the window, regardless of its width:

Notice, too, that the relative (percentage) value for the width attribute is enclosed in quotation marks; the
absolute (integer) pixel value is not. In fact, the quotation marks aren't absolutely necessary with standard
HTML, 2 but since the percent symbol normally means that an encoded character follows, failure to enclose the
percent width value in quotation marks may confuse other browsers and trash a portion of your document.

21 With XHTML, double quotes are required around all attribute values.

In general, it isn't a good idea to specify the width of a rule as an exact number of pixels. Browser windows vary
greatly in their width, and what might be a small rule on one browser might be annoyingly large on another. For
this reason, we recommend specifying rule width as a percentage of the window width. That way, when the width
of the browser window changes, the rules retain their same relative size.

The width attribute is deprecated in HTML 4 and XHTML, since its effects can be achieved with appropriate use
of style sheets.

5.1.1.4 The align attribute

The al1ign attribute for a horizontal rule can have one of three values: 1eft, center, or right. For those rules
whose width is less than the current text flow, the rule will be positioned relative to the window margins
accordingly. The default alignment is center.

A varied rule alignment makes for nice section dividers. For example, the source shown below alternates a 35
percent-wide rule from right to center to the left margin (see Figure 5-5):

<hr width="35%" align=right> <h3>Fruit Packing Advice</h3>
<hr width="35%" align=center> <h3>shipping Kumquats</h3>

<hr width="35%" align=left> <h3>Juice Processing</h3>

The align attribute is deprecated in HTML 4 and XHTML, since its effects can be achieved with appropriate use
of style sheets.

Figure 5-5. Varying horizontal rule alignment makes for subtle section dividers

3 Helative Rules - Miciosoft Internet Explorer [[O] %]
Eile Edt View Favode: Jools Help m
=]
Fruit Packing Advice
Shipping Kumaquats
Juice Processing
L
&] Done 2 My Computen

page 85

HTML & XHTML: The Definitive Guide

5.1.1.5 The color attribute

Supported only by Internet Explorer, the color attribute lets you set the color of the rule line. The value of this
attribute is either the name of a color or a hexadecimal triplet that defines a specific color. For a complete list of
color names and values, see Appendix G.

By default, a rule is set to the same color as the document background, with the chiseled edges slightly darker and
lighter than the background color. You lose the 3D effect when you specify another color, either in a style sheet or
with the color attribute.

5.1.1.6 Combining rule attributes

You may combine the various rule attributes; their order isn't important. To create big rectangles, for example,
combine the size and width attributes (see Figure 5-6):

<hr size=32 width="50%" align=center>
In fact, some combinations of rule attributes are necessary - align and width, for example. A1ign alone appears
to do nothing because the default rule width stretches all the way across the display window.

Figure 5-6. Combining rule attributes for special effects

2§ Box 0" Rules - Mictosolt Internel Explorer H=

Fil= Edt View Favomes Took Hep

=

fe

&] Done 24 My Computer

5.1.1.7 The class, dir, event, id, lang, style, and title attributes

There are several nearly universal attributes for the many content tags. These attributes give you a common way
to identify (tit1e) and label (id) a tag's contents for later reference or automated treatment, to change the
contents' display characteristics (c1ass, style), and to reference the language (1ang) used and related direction
the text should flow (dir). Of course, how language and the direction of text affect a horizontal rule is unclear.
Nonetheless, they are standard attributes for the tag. Section 3.6.1.1 / Section 3.6.1.2 / Section 4.1.1.4 / Section
4.1.1.5 / Section 8.1.1 / Section 8.3

In addition, there are all the user events that may happen in and around the horizontal rule that the browser
senses and that you may react to via an on-event attribute and some programming. Section 12.3.3

5.1.2 Using Rules to Divide Your Document

Horizontal rules provide a handy visual navigation device for your readers. To use <hr> effectively as a section
divider, first determine how many levels of headings your document has and how long you expect each section of
the document to be. Then decide which of your headings warrant being set apart by a rule.

A horizontal rule can also delimit the front matter of a document, separating the table of contents from the
document body, for example. Use a horizontal rule also to separate the document body from a trailing index,
bibliography, or list of figures.

Experienced authors also use horizontal rules to mark the beginning and end of a form. This is especially handy
for long forms that make users scroll up and down the page to view all the fields. By consistently marking the
beginning and end of a form with a rule, you help users stay within the form, better ensuring they won't
inadvertently miss a portion when filling out its contents.

5.1.3 Using Rules in Headers and Footers

A fundamental style approach to creating document families is to have a consistent look and feel, including a
standard header and footer for each document. Typically, the header contains navigational tools that help users
easily jump to internal sections as well as related documents in the family, while the footer contains author and
document information as well as feedback mechanisms like an email link to the webmaster.

page 86

HTML & XHTML: The Definitive Guide

To ensure that these headers and footers don't infringe on the main document contents, consider using rules
directly below the header and above the footer. For example (see also Figure 5-7):

<body>

Kﬁmquat Growers Handbook - Growing Season Guidelines
<nr>

<h1l>Growing Season Guidelines</hl>

Growing season for the noble fruit varies throughout the
United States, as shown in the following map:

<p>

<p>

<hr>

<i>Provided as a public service by the

Kumquat Lovers of America</i>

Figure 5-7. Clearly delineate headers and footers with horizontal rules

By consistently setting apart your headers and footers using rules, you help users locate and focus upon the main
body of your document.

5.2 Inserting Images in Your Documents

One of the most compelling features of HTML and XHTML is their ability to include images with your document
text, either as an intrinsic component of the document (inline images), as separate documents specially selected
for download via hyperlinks, or as a background for your document. When judiciously added to the body content,
images - static and animated icons, pictures, illustrations, drawings, and so on - can make your documents more
attractive, inviting, and professional looking, as well as informative and easy to browse. You may also specially
enable an image so that it becomes a visual map of hyperlinks. When used to excess, however, images make your
document cluttered, confusing, and inaccessible, as well as unnecessarily lengthening the time it takes for users to
download and view your pages.

page 87

HTML & XHTML: The Definitive Guide

5.2.1 Understanding Image Formats

Neither HTML nor XHTML prescribe an official format for images. However, the popular browsers specifically
accommodate certain image formats: GIF and JPEG, in particular (see following sections for explanations). Most
other multimedia formats require special accessory applications that each browser owner must obtain, install,
and successfully operate to view the special files. So it's not too surprising that GIF and JPEG are the de facto
image standards on the Web.

Both image formats were already in widespread use before the Web came into being, so there's lots of supporting
software out there to help you prepare your graphics for either format. However, each has its own advantages and
drawbacks, including features that some browsers exploit for special display effects.

5.2.1.1 GIF

The Graphics Interchange Format (GIF) was first developed for image transfer among users of the CompuServe
online service. The format has several features that make it popular for use in HTML and XHTML documents. Its
encoding is cross-platform, so that with appropriate GIF decoding software (included with most browsers), the
graphics you create and make into a GIF file on a Macintosh, for example, can be loaded into a Windows-based
PC, decoded, and viewed without a lot of fuss. The second main feature is that GIF uses special compression
technology that can significantly reduce the size of the image file for faster transfer over a network. GIF
compression is "lossless," too; none of an image's original data is altered or deleted, so the uncompressed and
decoded image exactly matches its original. And GIF images can be easily animated.

Even though GIF image files invariably have the .gif (or .GIF) filename suffix, there actually are two GIF
versions: the original GIF87 and an expanded GIF89a, which supports several new features, including
transparent backgrounds, interlaced storage, and animation, that are popular with web authors (see section
5.2.1.2). The currently popular browsers support both GIF versions, which use the same encoding scheme that
maps 8-bit pixel values to a color table, for a maximum of 256 colors per image. Most GIF images have even fewer
colors; there are special tools to simplify the colors in more elaborate graphics. By simplifying the GIF images,
you create a smaller color map and enhance pixel redundancy for better file compression and consequently faster
downloading.

However, because of the limited number of colors, a GIF-encoded image is not always appropriate, particularly
for photorealistic pictures (see JPEG discussion in Section 5.2.1.3). GIFs make excellent icons, reduced color
images, and drawings.

Because most graphical browsers explicitly support the GIF format, it is currently the most widely accepted
image-encoding format on the Web. It is acceptable for both inline images and externally linked ones. When in
doubt as to which image format to use, choose GIF.i:! It will work in almost any situation.

[31 We cannot resist the temptation to point out that choosy authors choose GIF.
5.2.1.2 Interlacing, transparency, and animation

GIF images can be made to perform three special tricks: interlacing, transparency, and animation. With
interlacing, a GIF image seemingly materializes on the display, rather than progressively flowing onto it from top
to bottom. Normally, a GIF encoded image is a sequence of pixel data, in order row-by-row, from top to bottom of
the image. While the common GIF image renders onscreen like pulling down a window shade, interlaced GIFs
open like a venetian blind. That's because interlacing sequences every fourth row of the image. Users get to see a
full image - top to bottom, albeit fuzzy - in a quarter of the time it takes to download and display the remainder of
the image. The resulting quarter-done image usually is clear enough so that users with slow network connections
can evaluate whether to take the time to download the remainder of the image file.

Not all graphical browsers, although able to display an interlaced GIF, are actually able to display the
materializing effects of interlacing. With those that do, users still can defeat the effect by choosing to delay image
display until after download and decoding. Older browsers, on the other hand, always download and decode
images before display and don't support the effect at all.

Another popular effect available with GIF images - GIF89a-formatted images, actually - is the ability to make a
portion of them transparent so that what's underneath - usually the browser window's background - shows
through. The transparent GIF image has one color in its color map designated as the background color. The
browser simply ignores any pixel in the image that uses that background color, thereby letting the display
window's background show through. By carefully cropping its dimensions and by using a solid, contiguous
background color, a transparent image can be made to seamlessly meld into a page's surrounding content or float
above it.

page 88

HTML & XHTML: The Definitive Guide

Transparent GIF images are great for any graphic you want to meld into the document and not stand out as a
rectangular block. Transparent GIF logos are very popular, as are transparent icons and dingbats - any graphic
that should appear to have an arbitrary, natural shape. You may also insert a transparent image inline with
conventional text to act as a special character glyph within conventional text.

The downside to transparency is that the GIF image will look lousy if you don't remove its border when it is
included in a hyperlink anchor (<a> tag), or is otherwise specially framed. And content flow happens around the
image's rectangular dimensions, not adjacent to its apparent shape. That can lead to unnecessarily isolated
images or odd-looking sections in your web pages.

The third unique trick available with GIF89a-formatted images is the ability to do simple frame-by-frame
animation. Using special GIF animation software utilities, you may prepare a single GIF89a file to contain a
series of GIF images. The browser displays each image in the file, one after the other, something like the page-
flipping animation booklets we had (even drew!) as kids. Special control segments between each image in the GIF
file let you set the number of times the browser runs through the complete sequence (looping), how long to pause
between each image, whether the image space gets wiped to background before the browser displays the next
image, and so on. By combining these control features with those normally available for GIF images, including
individual color tables, transparency, and interlacing, you can create some very appealing and elaborate
animations. 4

[4] Songline Studios has published an entire book dedicated to GIF animation: GIF Animation Studio, by Richard
Koman.

Simple GIF animation is powerful for one other important reason: you don't need to specially program your
HTML documents to achieve animation. But there is one major downside that limits their use except for small,
icon-sized, or thin bands of space in the browser window: GIF animation files get large fast, even if you are careful
not to repeat static portions of the image in successive animation cells. And if you have several animations in one
document, download delays may - and usually will - annoy the user. If there is any feature that deserves close
scrutiny for excess, it's GIF animation.

Any and all GIF tricks - interlacing, transparency, and animation - don't just happen; you need special software to
prepare the GIF file. Many image tools now save your creations or acquired images in GIF format, and most now
let you enable transparency, as well as let you make interlaced GIF files. There also are a slew of shareware and
freeware programs specialized for these tasks, as well as for creating GIF animation. Look into your favorite
Internet software archives for GIF graphics and conversion tools and also see Chapter 17 for details on creating
transparent images.

5.2.1.3 JPEG

The Joint Photographic Experts Group (JPEG) is a standards body that developed what is now known as the
JPEG image-encoding format. Like GIFs, JPEG images are platform-independent and specially compressed for
high-speed transfer via digital communication technologies. Unlike GIF, JPEG supports tens of thousands of
colors for more detailed, photorealistic digital images. And JPEG uses special algorithms that yield much higher
data-compression ratios. It is not uncommon, for example, for a 200-kilobyte GIF image to be reduced to a 30-
kilobyte JPEG image. To achieve that amazing compression, JPEG does lose some image data. However, you can
adjust the degree of "lossiness" with special JPEG tools, so that although the uncompressed image may not
exactly match the original, it will be close enough that most people cannot tell the difference.

Although JPEG is an excellent choice for photographs, it's not a particularly good choice for illustrations. The
algorithms used for compressing and uncompressing the image leave noticeable artifacts when dealing with large
areas of one color. Therefore, if you're trying to display a drawing, the GIF format may be preferable.

The JPEG format, usually designated by the .jpg (or .JPG) filename suffix, is nearly universally understood by
today's graphical browsers. On rare occasions, you'll come across an older browser that cannot directly display
JPEG images.

5.2.2 When to Use Images

Most pictures are worth a thousand words. But don't forget that no one pays attention to a blabbermouth. First
and foremost, think of your document images as visual tools, not gratuitous trappings. They should support your
text content and help readers navigate your documents. Use images to clarify, illustrate, or exemplify the
contents. Content-supporting photographs, charts, graphs, maps, and drawings are all natural and appropriate
candidates. Product photographs are essential components in online catalogs and shopping guides, for example.
And link-enabled icons and dingbats, including animated images, can be effective visual guides to internal and
external resources. If an image doesn't do any of these valuable services for your document, throw it out already!

page 89

HTML & XHTML: The Definitive Guide

One of the most important considerations when adding images to a document is the additional delay they add to
the retrieval time for a document over the network, particularly for modem connections. While a common text
document might run, at most, 10 or 15 thousand bytes, images can easily extend to hundreds of thousands of
bytes each. And the total retrieval time for a document is not only equal to the sum of all its component parts, but
also to compounded networking overhead delays.

Depending on the speed of the connection (bandwidth, usually expressed as bits or bytes per second) as well as
network congestion that can delay connections, a single document containing one 100-kilobyte image may take
anywhere from around 15 seconds through a 57.6 kilobit-per-second modem connection in the wee hours of the
morning when most everyone else is asleep, to well over ten minutes with a 9600 bit-per-second modem at noon.
You get the picture?

That said, of course, pictures and other multimedia are driving Internet providers to come up with faster, better,
more robust ways to deliver Web content. Soon, 57.6 kilobit-per-second modem connections will go the way of
the horse and carriage (as 9600 bit-per-second modems already have), to be replaced by technologies like cable
modems and ADSL. Indeed, soon most connections will attain data rates approaching or exceeding what used to
be available only to the biggest users (besides costing an arm and a leg), over a megabit per second.

Still, as the price lowers, use goes up, so there is the issue of congestion. If you are competing for access to an
overburdened server, it doesn't matter how fast your connection may be.

5.2.3 When to Use Text

Text hasn't gone out of style. For some users, it is the only portion of your document they can access. We argue
that, in most circumstances, your documents should be usable by readers who cannot view images or have
disabled their automatic download in their browser to improve their connection. While the urge to add images to
all of your documents may be strong, there are times when pure text documents make more sense.

Documents being converted to the Web from other formats rarely have embedded images. Reference materials
and other serious content often is completely usable in a text-only form.

You should create text-only documents when access speed is critical. If you know that many users will be vying for
your pages, you should accommodate them by avoiding the use of images within your documents. In some
extreme cases, you might provide a home (leading) page that lets readers decide between duplicate collections of
your work: one containing the images, and another stripped of them. (The popular browsers include special
picture icons as place holders for yet-to-be downloaded images, which can trash and muddle your document's
layout into an unreadable mess.)

Text is most appropriate - supporting images only, without frills or nonessential graphics - if your documents are
to be readily searchable by any of the many web indexing services. Images are almost always ignored by these
search engines. If the major content of your pages is provided with images, very little information about your
documents will find its way into the online web directories.

5.2.4 Speeding Image Downloads

There are several ways to ameliorate the overhead and delays inherent with images, besides being very choosy
about which to include in your documents:

Keep it simple

A full-screen, 24-bit color graphic, even when reduced in size by digital compression with one of the
standard formats like GIF or JPEG, is still going to be a network bandwidth hog. Acquire and use the
various image management tools to optimize image dimensions and number of colors into the fewest
number of pixels. Simplify your drawings. Stay away from panoramic photographs. Avoid large empty
backgrounds in your images, as well as gratuitous borders and other space-consuming elements. Also
avoid dithering (blending two colors among adjacent pixels to achieve a third color); this technique can
significantly reduce the compressibility of your images. Strive for large areas of uniform colors, which
compress readily in both GIF and JPEG format.

Reuse images

This is particularly true for icons and GIF animations. Most browsers cache incoming document
components in local storage for the very purpose of quick, network connection-less retrieval of data. For
smaller GIF animation files, try to prepare each successive image to update only portions that change in
the animation, rather than redraw the entire image (this speeds up the animation, too).

page 90

HTML & XHTML: The Definitive Guide

Divide up large documents

This is a general rule that includes images. Many small document segments, organized through
hyperlinks (of course!) and effective tables of contents tend to be better accepted by users than a few
large documents. In general, people would rather "flip" several pages than dawdle waiting for a large one
to download. (It's related to the TV channel-surfing syndrome.) One accepted rule of thumb is to keep
your documents under 50 kilobytes each, so even the slowest connections won't overly frustrate your
readers.

Isolate necessarily large graphics

Provide a special link to large images, perhaps one that includes a thumbnail of the graphic, thereby
letting readers decide if and when they want to spend the time downloading the full image. And since the
downloaded image isn't mixed with other document components like inline images, it's much easier for
the reader to identify and save the image on their system's local storage for later study. (For details on
non-inline image downloads, see Section 5.6.2.)

Specify image dimensions

Finally, another way to improve performance is by including the image's rectangular height and width
information in its tag. By supplying those dimensions, you eliminate the extra steps the extended
browsers must take to download, examine, and calculate an image's space in the document. There is a
downside to this approach, however, that we explore in Section 5.2.6.12.

5.2.5 JPEG or GIF?

You may choose to use only JPEG or GIF images in your HTML documents if your sources for images or your
software toolset prefers one over the other format. Both are nearly universally supported by today's browsers, so
there shouldn't be any user-viewing problems.

Nevertheless, we recommend that you acquire the facilities to create and convert to both formats to take
advantage of their unique capabilities. For instance, use GIF's transparency feature for icons and dingbats.
Alternatively, use JPEG for large and colorful images for faster downloading.

5.2.6 The Tag

The tag lets you reference and insert a graphic image into the current text flow of your document. There is
no implied line or paragraph break before or after the tag, so images can be truly "inline" with text and
other content.

The format of the image itself is not defined by the HTML or XHTML standard, although the popular graphical
browsers support GIF and JPEG images. The standards don't specify or restrict the size or dimensions of the
image, either. Images may have any number of colors, but how those colors are rendered is highly browser-
dependent.

Image presentation in general is very browser-specific. Images may be ignored by nongraphical browsers.
Browsers operating in a constrained environment may modify the image size or complexity. And users,
particularly those with slow network connections, may choose to defer image loading altogether. Accordingly, you
should make sure your documents make sense and are useful, even if the images are completely removed.

5.2.6.1 The src attribute

The src attribute for the tag is required (unless you use dynsrc with Internet Explorer-based movies; see
section 5.2.7.1). Its value is the image file's URL, either absolute or relative to the document referencing the
image. To unclutter their document storage, authors typically collect image files into a separate folder they often
name something like "pics" or "images." Section 6.2

For example, this HTML fragment places an image of a famous kumquat packing plant into the narrative text (see
Figure 5-8):

Here we are, on day 17 of the tour, in front of the kumquat

packing plant:

<p>

<p>

what an exciting moment, to see the boxes of fruit moving

In the example, the paragraph (<p>) tags surrounding the tag cause the browser to render the image by
itself with some vertical space after the preceding text and before the trailing text. Text may also abut the image,
as we describe in Section 5.2.6.4.

page 91

HTML & XHTML: The Definitive Guide

Function:

Inserts an image into a document

Attributes:
ALIGN ONDBLCLICK
ALT ONERROR
BORDER ONKEYDOWN
CLASS ONKEYPRESS
contrOLS O ONKEYUP
DIR ONLOAD
pynsrc O ONMOUSEDOWN
HEIGHT ONMOUSEMOVE
HSPACE ONMOUSEOUT
ID ONMOUSEOVER
ISMAP ONMOUSEUP
LANG SRC
LONGDESC starT O
Loop O STYLE
LOWSRC Ll TITLE
NAME USEMAP
ONABORT VSPACE
ONCLICK WIDTH
End tag:
None in HTML; or with XHTML
Contains:
Nothing
Used in:

text

page 92

HTML & XHTML: The Definitive Guide

Figure 5-8. Image integrated with text

A Integrated Image - Microsoft Intemet Explorer Hi=1E3

File Edt View Favome: Tool Hep n

-

Here we are, on day 17 of the tour, m front of the kumquat
packing plant

What an exciting moment, to see the bewxes of fruit moving

-

&1 Done 24 My Compuber

5.2.6.2 The lowsrc attribute

To the benefit of users, particularly those with slow Internet connections, Netscape provides the Towsrc
companion to the src attribute in the tag as a way to speed up document rendering. The Towsrc attribute's
value, like src, is the URL of an image file that the browser loads and displays when it first encounters the
tag. When the document has been completely loaded and can be read by the user, Netscape retrieves the image
specified by the src attribute.

The Towsrc image is a low-resolution, abbreviated version of the final src image that loads faster by comparison
to quickly give the reader an idea of its content until the final, higher-resolution image eventually replaces it
onscreen. But the Towsrc attribute can also be used for some very special effects.

Netscape uses the Towsrc image's dimensions to reserve space in the document for both the Towsrc and src
images, unless you explicitly allocate that space with the height and width attributes described later in this
chapter. Hence, if the dimensions of the image specified in the src attribute are different than those for the
Towsrc image or your explicitly included height and width values, the src image will be reduced, enlarged,
stretched, or compressed to fit in the allotted space. Moreover, the Towsrc and src images needn't be identical, so
you might take advantage of the delayed rendering of the src image for simple animation.

The Towsrc attribute is for Netscape only. Other browsers ignore it and only load the image specified by the src
attribute. Netscape won't load either image if the user chooses not to auto-load images. In that case, both images
will load in order when the user clicks the images button or clicks the image icon placeholder. No browser loads
the Towsrc image only; you must include a src image, otherwise nothing will appear except the missing image
icon.

5.2.6.3 The alt and longdesc attributes

The alt attribute specifies alternative text the browser may show if image display is not possible or disabled by
the user. It's an option, but one we highly recommend you exercise for most images in your document. This way,
if the image is not available, the user still has some indication of what it is that's missing.

In addition, the latest browsers display the alternative description in a text box when users pass their mouse over
the image. Accordingly, you might embed short, parenthetical information that pops up when users pass over a
small, inline icon, such as shown in Figure 5-9.

The value for the alt attribute is a text string of up to 1024 characters if you include spaces or other punctuation.
The string must be enclosed in quotation marks. The alternative text may contain entity references to special
characters, but it may not contain any other sort of markup; in particular, no style tags are allowed.

Graphical browsers don't normally display the a1t attribute if the image is available and the user has enabled
picture downloading. Otherwise, they insert the a1t attribute's text as a label next to an image placeholder icon.
Well-chosen alt labels thereby additionally support those users with a graphical browser who have disabled their
automatic image download because of a slow connection to the Web.

page 93

HTML & XHTML: The Definitive Guide

Figure 5-9. Contemporary graphical browers display alt in a temporary pop-up window

_ﬁ:—:ﬂlemative Text - Netzcape % - 15 ﬂ
Fle Ede YView Go Communicator Heb =15
E i FEIirgE FaaE

Headline News

=
The ¥ Iternational Eumouat Crowers Association made headlines today
when leused n Kansas Cityr, MO USA the KOG A has over 10 rulbon members workdwids I

2

o e /OBl Book MestsdkB: = S L, WS £3] W

Nongraphical, text-only browsers like Lynx put the alt text directly into the content flow just like any other text
element. So, when used effectively, the a1t tag sometimes can transparently substitute for missing images. (Your
text-only browser users will appreciate not being constantly reminded of their second-class web citizenship.) For
example, consider using an asterisk as the alt attribute alternative to a special bullet icon:

<h3>Introduction</h3>

A graphical browser displays the bullet image, while in a nongraphical browser the a1t asterisk takes the place of
the missing bullet. Similarly, use alt text to replace special image bullets for list items. For example, the
following code:

<1i> Kumquat recipes
<1i> Annual harvest dates

displays the new. gif image with graphical browsers, and the text "(New!)" with text-only browsers. The alt
attribute uses even more complex text (see Figure 5-10):

Here we are, on day 17 of the tour, in front of the kumquat
packing plant:
<p>
<img src="pics/packing_plant.gif"

alt="[Image of our tour group outside the main packing plant]">
<p>
what an exciting moment, to see the boxes of fruit moving

Figure 5-10. Text-only browsers like Lynx display an image's alt attribute text

Here we are, on day 17 of the tour, in froat of the kumguat packing
plant:

[Image of our bteur group cutcide the main packing plant]

Uhat an exciting moment. to see the boxes of Fruit mouing

Comnands: Use arrow keus to mowe, '?" for help, 'q' to quit, '<-' to go back

The Tongdesc attribute is similar to the a1t attribute, but allows for larger descriptions. The value of Tongdesc is
the URL of a document containing a description of the image. If you have a description longer than 1024
characters, use the Tongdesc attribute to link to it. Neither HTML 4 nor XHTML specify what the content of the
description must be, nor do any browsers currently implement Tongdesc; all bets are off when deciding how to
create those long descriptions.

5.2.6.4 The align attribute

The standards don't define a default alignment for images with respect to other text and images in the same line
of text: you can't always predict how the text and images will look.ss HTML images normally appear in line with a
single line of text. Common print media like magazines wrap text around images, with several lines next to and
abutting the image, not just a single line.

[5] Most of the popular graphical browsers insert an image so its base aligns with the baseline of the text - the same
alignment specified by the attribute value of bottom. But document designers should assume that alignment
varies between browsers and always include the desired type of image alignment.

page 94

HTML & XHTML: The Definitive Guide

Fortunately, document designers can exert some control over the alignment of images with the surrounding text
through the al1ign attribute for the tag. The HTML and XHTML standards specify five image-alignment
attribute values: 1eft, right, top, middle, and bottom. The Teft and right values flow any subsequent text
around the image, which is moved to the corresponding margin; the remaining three align the image vertically
with respect to the surrounding text. Netscape adds four more vertical alignment attributes to that list: texttop,
absmiddle, baseline, and absbottom, while Internet Explorer adds center.

The following list contains descriptions for the inline image alignments; see Figure 5-11 for examples.

CtopT)
Cbhobtom Y e e
CkopT 7 texttep?
~middley ... ahsmiddley---centery-----
_bottomy ...« ____ __baseliney ___=absbottom}y
CtopT
--middley----- - - --absmiddley---centery-----
__bottomy..0=.._.. __baseliney ___=absbottom}y
Alignment Standard Netscape Explorer
top L] L L
textbop
middle ® ® ®
absmiddle ® ®
denter @ &
bottam 9 [] []
baseline [] []
abshottom & &
top
The top of the image is aligned with the top edge of the tallest item in the current line of text. If there are
no other images in the current line, the top of the image is aligned with the top of the text.
texttop

The align=texttop attribute and value tells Netscape to align the top of the image with the top of the
tallest text item in the current line. It is different from the top option, which aligns the top of the image
with the top of the tallest item, image or text, in the current line. If the line contains no other images that
extend above the top of the text, texttop and top have the same effect.

absmiddle
If you set the al1ign attribute of the tag to absmidd1e, the browser will fit the absolute middle of
the image to the absolute middle of the current line. For Netscape and early versions of Internet
Explorer, this is different from the common midd1e option, which aligns the middle of the image with
the baseline of the current line of text (the bottom of the characters). Version 3 and later of Internet
Explorer, on the other hand, treat absmidd1e the same as midd1e and center.

center

The center image alignment value gets treated the same as absmidd1e by both Internet Explorer and
Netscape, but note that the browsers treat absmiddle and midd1e differently.

page 95

middle

HTML & XHTML: The Definitive Guide

Netscape and Internet Explorer treat the middle image alignment value differently: Netscape aligns the
middle of the image to the baseline of the text, regardless of other inline elements, such as another inline
image (Figure 5-12). Internet Explorer aligns the middle of the image to the middle of the tallest item in
the current line, text or image (Figure 5-13). Notice the alignments and differences in Figure 5-12 and
Figure 5-13, particularly when only one image contains the al1ign attribute. Both figures display the
HTML fragment:

Line of text

goes on ...
<br clear=left>
<p>

Line of text

goes on ...

Also note that Internet Explorer Version 3 and later treats middle, absmiddle, and center the same,
whereas earlier Internet Explorer versions and Netscape distinguish between midd1e and absmiddle
alignments. (If you are confused as to exactly what each alignment value means, please raise your hand.)

Figure 5-12. Netscape aligns middle of image to baseline of text

[Text Alignments - Netscape M=

Fie Ect Yew Search Go Bookmarks Tasks Help
LT

Line of test -] Ldgoeson .

Line of test -] |zoeson .

Read Buid IC- 2000033112 &5

M B & F Channels = Teools = Business

Figure 5-13. Internet Explorer aligns middle of image to middle of tallest line element

a Text Alignmentz - Microzoft Internet Explorer E=1 E
File Edt View Favoete: ook Hep “
T =
17
Line of text Ad poes onn ..

Ling of text "] |goesen .

&] Dana 24 My Computer

page 96

HTML & XHTML: The Definitive Guide

bottom and baseline (default)

With Netscape and early versions of Internet Explorer, the bottom and basel1ine image alignment
values have the same effect as if you didn't include any alignment attribute at all: the browsers align the
bottom of the image in the same horizontal plane as the baseline of the text. This is not to be confused
with the absbottom, which takes into account letter "descenders" like the tail on the lowercase "y."
Internet Explorer Version 3 and later, on the other hand, treat bottom the same as absbottom. (Did we
see a hand up in the audience?)

absbottom

The align=absbottom attribute tells the browsers to align the bottom of the image with the true bottom
of the current line of text. The true bottom is the lowest point in the text taking into account descenders,
even if there are no descenders in the line. A descender is the tail on a "y," for example; the baseline of
the text is the bottom of the "v" in the "y" character.

Use the top or middle alignment values for best integration of icons, dingbats, or other special inline effects with
the text content. Otherwise, align=bottom (the default) usually gives the best appearance. When aligning one or
more images on a single line, select the alignment that gives the best overall appearance to your document.

5.2.6.5 Wrapping text around images

The Teft and right image alignment values tell the browser to place an image against the left or right margin,
respectively, of the current text flow. The browser then renders subsequent document content in the remaining
portion of the flow adjacent to the image. The net result is that the document content following the image gets
wrapped around the image.

The kumquat is the smallest of the citrus fruits, similar in appearance to a

tiny orange. The similarity ends with its_appearance, however. while oranges
are generally sweet, kumquats are extremely bitter. Theirs is an acquired taste, to be sure.

Figure 5-14 shows text flow around a left-aligned image.

Figure 5-14. Text flow around a left-aligned image

A3 Image Lelt - Microzoft Intemet Explones

|| He Edt View Favortes Took Heb | |

The kumauat 15 the smallest of the citrus
frusts, sardlar m appearance to a bny orange.
The sumilarity ends wath its appearance,
however. While cranges are generally sweet,
lournieuats are extremely batter. Theirs 12 an

acquired taste, to be sure,

L =
|&] Done ! [22§ My Computer p

You can place images against both margins simultaneously (Figure 5-15) and the text will run down the middle of
the page between them:

The kumquat is the smallest of the citrus fruits, similar in appearance to a

tiny orange. The similarity ends with its_appearance, however. while oranges
are generally sweet, kumquats are extremely bitter. Theirs is an acquired taste, to be sure.

Figure 5-15. Running text between left- and right-aligned images

74| Text Betwined - Netscape =

Fle Edt “iew Sesrch Go Bookmarks Tasks Help

The kumaquat is the smallest of the citrus
fruats, sirmilar i appearance 1o a by
ange. The similanty ends with its

appearance, however. While oranges
are generally sweet, kurmequats are
extremely bitter. Thears s an acquared

taste, to be sure.

page 97

HTML & XHTML: The Definitive Guide

While text is flowing around an image, the left (or right) margin of the page is temporarily redefined to be
adjacent to the image as opposed to the edge of the page. Subsequent images with the same alignment will stack
up against each other. The following source fragment achieves that staggered image effect:

Marcia!

Jan!

Cindy!

The results of this example are shown in Figure 5-16.
Figure 5-16. Three very lovely girls

/3 Stacking Pics - Miciosolt Internet Explorer =
Eile Edt Wiew Fawosbe: Jookk Help

Marcial
—
?

b _“3’)3&. M

4 |

&] Dane 2 My Computes

tILI_ILEE

When the text flows beyond the bottom of the image, the margin returns to its former position, typically at the
edge of the browser window.

5.2.6.6 Centering an image

Have you noticed that you can't horizontally center an image in the browser window with the align attribute?
The midd1e and absmiddle values center the image vertically with the current line, but the image is horizontally
justified depending on what content comes before it in the current flow and the dimensions of the browser
window.

You can horizontally center an inline image in the browser window, but only if it's isolated from surrounding
content, such as by paragraph, division, or line break tags. Then, either use the <center> tag, or use the
align=center attribute or center-justified style in the paragraph or division tag to center the image. For example:
Kumquats are tasty treats

<center>

</center>

that everyone should strive to eat!

Use the paragraph tag with its align=center attribute if you want some extra space above and below the
centered image:

Kumquats are tasty treats

<p align=center>

</p>

that everyone should strive to eat!

5.2.6.7 Align is deprecated

The HTML 4 and XHTML standards have deprecated the al1ign attribute for all tags, including , in
deference to style sheets. Nonetheless, the attribute is very popular among HTML authors and remains well
supported by the popular browsers. So, while we do expect that someday al1ign will disappear, it won't be
anytime soon. Just don't say we didn't warn you.

5.2.6.8 The border attribute

Browsers normally render images that also are hyperlinks (an image included in an <a> tag) with a two-pixel-
wide colored border, indicating to the reader that the image can be selected to visit the associated document. Use
the border attribute and a pixel-width thickness value to remove (border=0) or widen that image border. Be
aware that this attribute, too, is deprecated in HTML 4 and XHTML in lieu of style sheets, but continues to be
well supported by the popular browsers.

page 98

HTML & XHTML: The Definitive Guide

Figure 5-17 shows you the thick and thin of image borders, as rendered by Internet Explorer from the following
XHTML source:

Figure 5-17. The thick and thin of image borders

Y Image Borders - Microsoft Intemnet Explorer
File Edt Wiew Favoder Took Help “
£

&1 =4 My Compuer

5.2.6.9 Removing the image border

You can eliminate the border around an image hyperlink altogether with the border=0 attribute within the
tag. For some images, particularly image maps, the absence of a border can improve the appearance of your
pages. Images that are clearly link buttons to other pages may also look best without a border.

Be careful, though, that by removing the border, you don't diminish your page's usability. No border means
you've removed a common visual indicator of a link, making it less easy for your readers to find the links on the
page. Browsers will change the mouse cursor as readers pass it over an image that is a hyperlink, but you should
not assume they will, nor should you make readers test your borderless images to find hidden links.

We strongly recommend that you use some additional way with borderless images to let your readers know to
click the images. Even including simple text instructions will go a long way to making your pages more accessible
to readers.

5.2.6.10 The height and width attributes

Ever watch the display of a page's contents shift around erratically while the document is loading? That happens
because the browser readjusts the page layout to accommodate each loaded image. The browser determines the
size of an image and, hence, the rectangular space to reserve for it in the display window, by retrieving the image
file and extracting its embedded height and width specifications. The browser then adjusts the page's display
layout to insert that picture in the display.'s! This is not the most efficient way to render a document, since the
browser must sequentially examine each image file and calculate its screen space before rendering adjacent and
subsequent document content. That can significantly increase the amount of time it takes to render the document
and disrupt reading by the user.

[6] Another reminder that images are separate files, which are loaded individually and in addition to the source
document.

A more efficient way for authors to specify an image's dimensions is with the height and width attributes.
That way, the browser can reserve space before actually downloading an image, speeding document rendering
and eliminating the content shifting. Both attributes require an integer value that indicates the image size in
pixels; and the order in which they appear in the tag is not important.

page 99

HTML & XHTML: The Definitive Guide

5.2.6.11 Resizing and flood-filling images

A hidden feature of the height and width attributes is that you don't need to specify the actual image
dimensions; the attribute values can be larger or smaller than the actual size of the image. The browser
automatically scales the image to fit the predefined space. This gives you a down-and-dirty way of creating
thumbnail versions of large images and a way to enlarge very small pictures. Be careful, though: the browser still
must download the entire file, no matter what its final rendered size is, and you will distort an image if you don't
retain its original height versus width proportions.

Another trick with height and width provides an easy way to flood-fill areas of your page and can also improve
document performance. Suppose you want to insert a colored bar across your document.!!

[71 This is one way to create colored horizontal rules in Netscape 3 or earlier versions, which don't support the
color attribute of the <hr> tag.

Rather than create an image to the full dimensions, create one that is just one pixel high and wide and set it to the
desired color. Then use the height and width attributes to scale it to the larger size:

The smaller image downloads much faster than a full-scale image, and the width and height attributes create the
desired bar after the tiny image arrives at the browser (see Figure 5-18).

Figure 5-18. This bar was made from a one-pixel image

[From a Pizel Seed - Netscape _ o] =]
Eie Bt “iew Sesarch (o Bookmarks Tasks Help

LY
4 I *

One last trick with the width attribute is to use a percentage value instead of an absolute pixel value. This causes
the browser to scale the image to a percentage of the document window width. Thus, to create a colored bar 20
pixels high and the width of the window, you could use:

As the document window changes size, the image will change size as well.

If you provide a percentage width and omit the height, the browser will retain the image's aspect ratio as it
grows and shrinks. This means that the height will always be in the correct proportion to the width and the image
will display without distortion.

5.2.6.12 Problems with height and width

Although the height and width attributes for the tag can improve performance and let you perform neat
tricks, there is a knotty downside to using them. The browser sets aside the specified rectangle of space to the
prescribed dimensions in the display window even if the user has turned off automatic download of images. What
the user often is left with is a page full of semi-empty frames with meaningless picture placeholder icons inside.
The page looks terribly unfinished and is mostly useless. Without accompanying dimensions, on the other hand,
the browser simply inserts a placeholder icon inline with the surrounding text, so at least there's something there
to read in the display.

We don't have an answer to this dilemma, other than to insist that you use the alt attribute with some descriptive
text so that users at least know what they are missing (see Section 5.2.6.3). We do recommend that you include
these size attributes because we encourage any practice that improves network performance.

5.2.6.13 The hspace and vspace attributes

Graphical browsers usually don't give you much space between an image and the text around it. And unless you
create a transparent image border that expands the space between them, the typical two-pixel buffer between an
image and adjacent text is just too close for most designers' comfort. Add the image into a hyperlink, and the
special colored border will negate any transparent buffer space you labored to create, as well as draw even more
attention to how close the adjacent text butts up against the image.

page 100

HTML & XHTML: The Definitive Guide

The hspace and vspace attributes can give your images breathing room. With hspace, you specify the number of
pixels of extra space to leave between the image and text on the left and right sides of the image; the vspace value
is the number of pixels on the top and bottom:

The kumquat is the sma]?est of the citrus fruits, similar

in appearance to a tiny orange. The similarity ends with 1its
appearance, however. while oranges are generally sweet,
kumquats are extremely bitter. Theirs is an acquired taste,
to be sure. Most folks, at first taste, wonder how you could
ever eat another, let alone enjoy it!

<p>

The kumquat is the smallest of the citrus fruits, similar

in appearance to a tiny orange. The similarity ends with its
appearance, however. While oranges are generally sweet,
kumquats are extremely bitter. Theirs is an acquired taste,
to be sure. Most folks, at first taste, wonder how you could
ever eat another, let alone enjoy it!

Figure 5-19 shows the difference between two wrapped images.

Figure 5-19. Improve image/text interfaces with vspace and hspace extensions

a Breathing Hoom with hepace and wipace - Microzoft Internet Exploner
File Edt YView Fgvoies Jook Hep n

F

The kumeuat 12 the smallest of the citrus
frusts, sundar in appearance to a hny orange.
The similarity ends with its appearance,
however While eranges are generally
sweet, kumquats are extremely batter,
Theirs 15 an acquired taste, to be sure. hMost
folkes, at first taste, wonder how you could ever eat another, let alone enjoy it

The kumaguat 15 the smallest of the crrus
fiudts, sivdlar i appearance to a iy
orange, The simdarity ends with s
appearance, however, While oranges are
generally sweet, kumouats are extremely
Eatter. Theirs 15 an aceuired taste, te be
sure, Most folks, at Brst taste, wonder
hewr wou could ever eat ancther let alene enjory it EI

&] Done 2 My Computter

We're sure you'll agree that the additional space around the image makes the text easier to read and the overall
page more attractive.

5.2.6.14 The ismap and usemap attributes

The ismap and usemap attributes for the tag tell the browser that the image is a special mouse-selectable
visual map of one or more hyperlinks, commonly known as an image map. The i smap style of image maps,
known as a server-side image map, may be specified only within an <a> tag hyperlink. Section 6.3.1

For example:

The browser automatically sends the x,y position of the mouse (relative to the upper-left corner of the image) to
the server when the user clicks somewhere on the ismap image. Special server software (the /cgi-
bin/images/map2 program in the example) may then use those coordinates to determine a response.

The usemap attribute provides a client-side image map mechanism that effectively eliminates server-side
processing of the mouse coordinates and its incumbent network delays and problems. Using special <map> and
<area> tags, HTML authors provide a map of coordinates for the hyperlink-sensitive regions in the usemap image
along with related hyperlink URLSs. The value of the usemap attribute is a URL that points to that special <map>
section. The browser on the user's computer translates the coordinates of a click of the mouse on the image into
some action, including loading and displaying another document. Section 6.5.3 / Section 6.5.4

page 101

HTML & XHTML: The Definitive Guide

For example, the following source specially encodes the 100 x 100-pixel map2.gif image into four segments, each
of which, if clicked by the user, links to a different document. Notice we've included, validly, the ismap image map
processing capability in the example tag so that users of other, usemap-incapable browsers have access to
the alternative, server-side mechanism to process the image map:

/<‘i mg src="pics/map2.gif" ismap usemap="#map2">

;hép name="map2">

<area coords="0,0,49,49" href="1inkl.htm1">

<area coords="50,0,99,49" href="1ink2.html">

<area coords="0,50,49,99" href="Tink3.html">

<area coords="50,50,99,99" href="Tink4.htm1">
</map>
Geographical maps make excellent ismap and usemap examples: browsing a nationwide company's pages, for
instance, the users might click on their home towns on a map to get the addresses and phone numbers for nearby
retail outlets. The advantage of the usemap client-side image map processing is that it does not require a server or
special server software and so, unlike the i smap mechanism, can be used in non-web (networkless) environments,
such as local files or CD-ROM.

Please read our more complete discussion of anchors and links, including image maps within links, in Section 6.5.
5.2.6.15 The class, dir, event, id, lang, style, and title attributes

Several nearly universal attributes give you a common way to identify (tit1e) and label (id) the image tag's
contents for later reference or automated treatment, to change the contents' display characteristics (class,
style), and to reference the language (1ang) used and related direction the text should flow (d1ir). And, of course,
there are all the user events that may happen in and around the tagged contents that the browser senses and that
you may react to via an on-event attribute and some programming. Section 8.1.1 / Section 8.3

Of these many HTML 4 and XHTML attributes, id is the most important. It lets you label the image for later
access by a program or browser operation (see Chapter 12). Section 4.1.1.4

The remaining attributes have questionable meaning in context with . Granted, there are a few style sheet
options available that may influence an image's display, and a title is good to include, although alt is better. And
it's hard to imagine what the influence of language (1ang) or its presentation direction (di r) might have on an
image. Section 3.6.1.1 / Section 3.6.1.2 / Section 4.1.1.5

5.2.6.16 The name, onAbort, onError, onLoad and other event attributes

There are four attributes currently supported by Netscape that enable you to use JavaScript to manipulate
the image. The first is the name attribute. Now redundant with the standard id attribute,®! name lets you label the
image so that it can be referenced by a JavaScript applet.

8l HTML Version 4.01 adopts the name attribute into the standard, even though only Netscape currently supports
it with .

For example:

lets you later refer to that picture of a kumquat as simply "kumquat" in a JavaScript applet perhaps to erase or
otherwise modify it. You cannot individually manipulate an image with JavaScript if it is not named or doesn't
have an associated id.

The other three attributes let you provide some special JavaScript event handlers. The value of the attribute is a
chunk of JavaScript code, enclosed in quotation marks; it may consist of one or more JavaScript expressions,
separated by semicolons.

Netscape invokes the onAbort event handler if the user stops loading an image, usually by clicking the browser's
"stop" button. You might, for instance, use an onAbort message to warn users if they stop loading some essential
image, such as an image map (see Section 6.5):

<img src="pics/kumquat.gif" usemap="#mapl"

onAbort="window.alert('Caution: This image contains important hyperlinks. Please load the
entire image.')">

The onError attribute is invoked if some error occurs during the loading of the image, but not for a missing image
or one that the user chose to stop loading. Presumably, the applet could attempt to recover from the error or load
a different image in its place. Netscape executes the JavaScript code associated with the tag's onLoad
attribute right after the browser successfully loads and displays the image.

See Section 13.3.3 for more information about JavaScript and event handlers.

page 102

HTML & XHTML: The Definitive Guide

5.2.6.17 Combining attributes

You may combine any of the various standard and extension attributes for images where and when they make
sense. The order for inclusion of multiple attributes in the tag is not important, either. Just be careful not
to use redundant attributes or you won't be able to predict the outcome.

5.2.7 Video Extensions

The special controls, dynsrc, Toop, and start attribute extensions for the tag are unique to Internet
Explorer and are not HTML 4 or XHTML standard attributes. They let you embed an inline movie into the body
content, just like an image.

Equivalent behavior is available in Netscape via an extension program known as a plug-in. Plug-ins place an
additional burden on the user, in that each user must find and install the appropriate plug-in before being able to
view the inline video. The Internet Explorer tag extensions, on the other hand, make video display an
intrinsic part of the browser. Section 12.2

However, the Internet Explorer movie extensions currently are very limited. They are not supported by any other
browser and can be used only with Audio Video Interleave (AVI) formatted movie files, since that's the player
format built into Internet Explorer and enabled through Microsoft's Windows operating system software.
Moreover, recent innovations in browser technology, objects, and applets in particular may make Internet
Explorer's approach of extending the already overloaded tag obsolete.

5.2.7.1 The dynsrec attribute

Use the dynsrc attribute extension in the tag to reference an AVI movie for inline display by Internet
Explorer. Its required value is the URL of the movie file enclosed in quotation marks. For example, this text
displays the tag and attribute for an AVI movie file entitled intro.avi:

The browser sets aside a video viewport in the HTML display window and plays the movie, with audio if it's
included in the clip and if your computer is able to play audio. Internet Explorer treats dynsrc movies similar to
inline images: in line with current body content and according to the dimension of the video frame. And, like
common images, the dynsrc referenced movie file gets displayed immediately after download from the server.
You may change those defaults and add some user controls with other attributes, as described later.

Because all other browsers currently ignore the special Internet Explorer attributes for movies, they may become
confused by an tag that does not contain the otherwise required src attribute and an image URL. We
recommend that you include the src attribute and a valid image file URL in all tags, including those that
reference a movie for Internet Explorer users. The other browsers display the still image in place of the movie;
Internet Explorer does the reverse and plays the movie, but does not display the image. Note that the order of
attributes does not matter. For example:

Internet Explorer loads and plays the AVI movie intro.avi; other graphical browsers will load and display the
mustill.gif image instead.

5.2.7.2 The controls attribute

Normally, Internet Explorer plays a movie inside a framed viewport once, without any visible user controls.
Although no longer supported with Internet Explorer version 5 or later, with older versions of the browser the
user may restart, stop, and continue the movie by clicking inside that viewport with the mouse. Use the controls
attribute (no value) to add visible controls to the movie viewport so that the user may, with the mouse, play, fast-
forward, reverse, stop, and pause the movie, like on a VCR. If the movie clip includes a soundtrack, Internet
Explorer provides an audio volume control as well. For example:

adds the various playback controls to the video window of the intro.avi movie clip, as shown in Figure 5-20.

With Internet Explorer version 5 and later, users stop movie playback with the browser's stop button, and may
restart it by right-clicking on the movie image and selecting "Play" from the dialog menu options.

page 103

HTML & XHTML: The Definitive Guide

Figure 5-20. The controls attribute added video playback controls to inline movies

IE Mowie Controls - Microsoft Internet Explorer _ O]]
File Edm ¥iew Go Favorites Help

slal= || RID) glele] ale o |a] &[s]e) E3

Internet Explorer lets you inline movies.

5.2.7.3 The loop attribute

Internet Explorer normally plays a movie clip from beginning to end once after download. The Toop attribute for
the movie tag lets you have the clip play repeatedly for an integer number of times set by the attribute's
value, or forever if the value is infinite. The user may still cut the loop short by clicking on the movie image, by
pressing the stop button, if given controls (see Section 5.2.7.2), or by moving on to another document.

The following intro.avi movie clip will play from beginning to end, then restart at the beginning and play through
to the end nine more times:

Whereas the following movie will play over and over again, incessantly:

Looping movies aren't necessarily meant to annoy. Some special effects animations, for instance, are a sequence
of repeated frames or segments. Rather than string the redundant segments into one, long movie that extends its
download time, simply loop the single, compact segment.

5.2.7.4 The start attribute

Normally, an Internet Explorer movie clip starts playing as soon as it's downloaded. You can modify that behavior
with the start attribute in the movie's tag. By setting its value to mouseover, you delay playback until the
user passes the mouse pointer over the movie viewport. The other valid start attribute value, fileopen, is the
default: start playback just after download. It is included because both values may be combined in the start
attribute to cause the movie to play back automatically once after download, and then whenever the user passes
the mouse over its viewport. Add a value-separating comma, with no intervening spaces, or else enclose them in
quotes, when combining the start attribute values.

For example, our by-now-infamous intro.avi movie will play once when its host HTML document is loaded by the
user, and whenever he or she passes the mouse over the movie's viewport:

5.2.7.5 Combining movie attributes

Treat Internet Explorer inline movies as you would any image, mixing and matching the various movie-specific as
well as the standard and extended tag attributes and values supported by the browser. For example, you
might align the movie (or its image alternative, if displayed by another browser) to the right of the browser
window:

Combining attributes to achieve a special effect is good. We also recommend you combine attributes to give

control to the user, when appropriate. For instance, if you set up a movie to loop incessantly, you should also
include the controls attribute so the user can stop the movie without having to leave the HTML document.

As we stated in Section 5.2.7.4, by combining attributes you can also delay playback until the user passes the
mouse over its viewport. Magically, the movie comes alive and plays continuously:

<img dynsrc="movies/magic.avi" start=mouseover
Toop=infinite src="pics/magic.gif">

page 104

HTML & XHTML: The Definitive Guide

5.3 Document Colors and Background Images

The HTML 4 and XHTML standards provide a number of attributes for the <body> tag that let you define text,
link, and document background colors, in addition to defining an image to be used as the document background.
Internet Explorer extends these attributes to include document margins and better background image control.
And, of course, the latest style sheet technologies integrated into the current browsers let you manipulate all these
various display parameters.

5.3.1 Additions and Extensions to the <body> Tag

The attributes that control the document background, text color, and document margins are used with the <body>
tag. Section 3.8.1

5.3.1.1 The bgcolor attribute

One standard, although deprecated, way you can change the default background color in the browser window to
another hue is with the bgcolor attribute for the <body> tag. Like the color attribute for the tag, the
required value of the bgcolor attribute may be expressed in either of two ways: as the red, green, and blue (RGB)
components of the desired color or as a standard color name. Appendix G provides a complete discussion of RGB
color encoding along with a table of acceptable color names you can use with the bgcolor attribute.

Setting the background color is easy. To get a pure red background using RGB encoding, try:
<body bgcolor="#FF0000">

For a more subtle background, try:
<body bgcolor="peach">

5.3.1.2 The background attribute

If a splash of color isn't enough, you may also place an image into the background of a document with the
background attribute in its <body> tag.

The required value of the background attribute is the URL of an image. The browser automatically repeats (tiles)
the image both horizontally and vertically to fill the entire window.

You normally should choose a small, somewhat dim image to create an interesting but unobtrusive background
pattern. Besides, a small, simple image traverses the network much faster than an intricate, full-screen image.

Figure 5-21 shows you how the extended browsers render a single brick to create a wall of bricks for the document
background:

<body background="pics/onebrick.gif">

Figure 5-21. One brick becomes many in a Netscape background

[One Brick Becomes Many Bricks - Netzcape
Fil: Edit ‘iew Sesrch Qo Eookmerks Iesks Help

Background images of various dimensions and sizes create interesting vertical and horizontal effects on the page.
For instance, a tall skinny image might set off your document heading:

<body background:"ﬁics/vertica1_founta1n.gif">
<h3>Kumquat Lore</h3>
For centuries, many myths and Tegends have arisen around the kumquat.

page 105

HTML & XHTML: The Definitive Guide

If the vertical_fountain.gif is a narrow, tall image whose color grows lighter towards its base and whose length
exceeds the length of the document body, the resulting document might look like the one shown in Figure 5-22.

Figure 5-22. A tall and skinny background

‘a Long and Skinng - Microsalt Intemnet Exploter
Fle Edi View Favoies Took Help ﬂ
=

Kumquat Lore

Fer centunes, many myths and legends have arisen arcund the lowmeuat,
Long imbued with mysheal healing powers, the kumauat has healed the
sick, cast favor upon the good-hearted, and brought nan to those whe
refiize to acknowledge its amazing powers.

|

&] Done 2 My Compuies

You can achieve a similar effect horizontally with an image that is much wider than it is long (see Figure 5-23).

Figure 5-23. A long and skinny background

2} Vertical Fountain - Microsoft Inteinet Explorer

File Edi View Faworke: Took Help m
e e
Kumquat Lore

For centuries, many myths and legends have arizen around the kumeguat. Long
mbued with mystcal healing powers, the kumauat has healed the sick, cast favor
upon the good-hearted, and brought mum to those who refuze to aclnowledge it

AMMATING POWELs,

2] Done =l My Compuier

The background attribute is deprecated in HTML 4 and XHTML, since you can achieve similar effects using style
sheets.

5.3.1.3 The bgproperties attribute

The bgproperties attribute extension for the <body> tag is exclusive to Internet Explorer and works only in
conjunction with the background attribute extension. The bgproperties attribute has a single value, fixed. It
freezes the background image to the browser window, so it does not scroll with the other window contents.
Hence, the example H20mark.gif background image serves as a watermark for the document:

<body background="pics/H20mark.gif" bgproperties="fixed">
5.3.1.4 The text attribute
Once you alter a document's background color or add a background image, you also might need to adjust the text

color to ensure that users can read the text. The HTML 4/XHTML text standard attribute for the <body> tag
does just that: it sets the color of all nonanchor text in the entire document.

Give the text attribute a color value in the same format as you use to specify a background color (see bgcolor in
Section 6.3.1.1) - an RGB triplet or color name, as described in Appendix G. For example, to produce a document
with blue text on a pale yellow background, use:

<body bgcolor="#777700" text="blue">
Of course, it's best to select a text color that contrasts well with your background color or image.

The text attribute is deprecated in HTML 4 and XHTML, since you can achieve similar effects using style sheets.

page 106

HTML & XHTML: The Definitive Guide

5.3.1.5 The link, vlink, and alink attributes

The Tink, v1ink, and al1ink attributes of the <body> tag control the color of hypertext (<a> tag) in your
documents. All three accept values that specify a color as an RGB triplet or color name, just like the text and
bgcolor attributes.

The T1ink attribute determines the color of all hyperlinks the user has not yet followed. The v1ink attribute sets
the color of all links the user had followed at one time or another. The al1nk attribute defines a color for active
link text - one that is currently selected by the user and is under the mouse cursor with the mouse button
depressed.

Like text color, you should be careful to select link colors that can be read against the document background.
Moreover, the link colors should be different from the regular text as well as from each other.

These attributes are deprecated in HTML 4 and XHTML, since you can achieve similar effects using style sheets.
5.3.1.6 The leftmargin attribute

Peculiar to Internet Explorer, the Teftmargin attribute extension for the <body> tag lets you indent the left
margin relative to the left edge of the browser's window, much like a margin on a sheet of paper. Other browsers
ignore this attribute and normally left-justified body content abuts the left edge of the document window.

The value of the Teftmargin attribute is the integer number of pixels for that left-margin indent; a value of is the
default. The margin is filled with the background color or image.

For example, Internet Explorer renders the following text justified against a margin 50 pixels away from the left
edge of the browser window (see Figure 5-24):

<body leftmargin=50>

Internet Explorer Tets you indent the

&1t;--left margin

away from the left edge of the window.
</body>

Figure 5-24. Internet Explorer's leftmargin attribute for indenting body content

-’ Indentz with IE - Microzoft Intermet Explorer | _ (O] =]

File Edt VYiew Favoiles Teok Heb m
E

Internet Explorer lets you ndent the
=_-Jeft margin
away from the left edge of the window.

b4|

&] Dane = My Computer

5.3.1.7 The topmargin attribute

Like Teftmargin, the topmargin attribute extension currently is exclusive to Internet Explorer. It may be
included in the <body> tag to set a margin of space at the top of the document. The margin space is filled with the
document's background color or image.

Body content begins flowing below the integer number of pixels you specify as the value for topmargin; a value of
is the default.

For example, Internet Explorer renders the following text at least 50 pixels down from the top edge of the browser
window (see Figure 5-25):

<body topmargin=50>

<p align=center>
AAA
Internet Explorer can give your documents
a Tittle extra headroom.

</p>

</body>

page 107

HTML & XHTML: The Definitive Guide

Figure 5-25. Internet Explorer's topmargin attribute for lowering body content

Z§ Headroom with IE - Microzoft Intemet Explorer N [=]E3
File Edt View Favoddes Took Hep n
. »
o ' RSP By A B« RN~ B
Back Stop Rekezh Home Search Faworke: Histooy

Internet Explorer can give your doouments a littls extea headroom.

Ad

£ Dana =) My Computer

5.3.1.8 The style and class attributes

You also can set all the various style-related <body> features and then some with Cascading Style Sheets. But
although you may include the sty1e attribute with the <body> tag to create an inline style for the entire body
content, we recommend that you set the styles for the entire document body at the document level (<style> tag
inside the document head) or via a collection-level (imported) style sheet. Use the class attribute and name value
to apply the appropriate style of a predefined class of the <body> tag to the contents. (Since there can only be one
body per document, what is the point of setting a class name otherwise?) We cover the use of style and class
definitions in Chapter 8.

5.3.1.9 Mixing and matching body attributes

Although background and bgcolor attributes can appear in the same <body> tag, a background image will
effectively hide the selected background color unless the image contains substantial portions of transparent areas,
as we described earlier in this chapter. But even if the image does hide the background color, go ahead and
include the bgcolor attribute and some appropriate color value. That's because users can turn off image
downloading, which includes background images, and so they may find your page otherwise left naked and
unappealing. Moreover, without a bgcolor attribute or a downloaded (for whatever reason) background image,
the browsers merrily ignore your text and link color attributes, too, reverting instead to its own default values, or
the ones chosen by the user.

5.3.2 Extending a Warning

The various color and image extensions work wonderfully, particularly the colorful ones, assuming that all users
have a 256-color display, lots of available memory, unlimited network bandwidth, and good visual acuity. In
reality, many users have monochrome or limited color displays, limited memory for caching images, extremely
restricted network bandwidth, and poor vision.

Because of these limitations, you should seriously consider not using any of these extensions in your documents.
Much like early users of the Macintosh felt compelled to create documents using ransom-note typography ("I've
got 40 fonts on this thing, and I'm going to use them all!"), many authors cannot avoid adding some sort of
textured background to every document they create ("I've got 13 wood grains and 22 kinds of marbling, and I'm
going to use them all!").

In reality, except for the very clever ones, texture-mapped backgrounds add no information to your documents.
The value of your document ultimately lies in its text and imagery, not the cheesy blue swirly pattern in the
background. No matter how cool it looks, your readers are not benefiting and could be losing readability.

We advise you not to use the color extensions except for comparatively frivolous endeavors or unless the
extension really adds to the document's value, such as for business advertising and marketing pages.

page 108

HTML & XHTML: The Definitive Guide

5.3.2.1 Problems with background images

Here are some of the things that can go wrong with background images:

The time to load the document is increased by the amount of time needed to load the image. Until the
background image is completely downloaded, no further document rendering is possible.

The background image takes up room in the browser's local cache, displacing other images that might
actually contain useful information. This makes other documents, which might not even have
backgrounds, take that much longer to load.

The colors in the image may not be available on the user's display, forcing the browser to dither the
image. This replaces large areas of a single color with repeating patterns of several other closer, but not
cleaner, colors and can make the text more difficult to read.

Because the browser must actually display an image in the background, as opposed to filling an area with
a single color, scrolling through the document can take much longer.

Even if it's clear onscreen, text printed on top of an image invariably is more difficult, if not impossible,
to read.

Fonts vary widely between machines; the ones you use with your browser that work fine with a
background pattern often end up jagged and difficult to read on another machine.

5.3.2.2 Problems with background, text, and link colors

There also are a slew of problems you will encounter if you play with background colors, including;:

The color you choose, while just lovely in your eyes, may look terrible to the user. Why annoy them by
changing what users most likely have already set as their own default background color?

While you may be a member of the "light text on a dark background" school of document design, many
people also favor the "dark text on a light background" style that has been consistently popular for over
three thousand years. Instead of bucking the trend, assume that users have already set their browser to a
comfortable color scheme.

Some users are color-blind. What may be a nifty-looking combination of colors to you may be completely
unreadable to others. One combination in particular to avoid is green for unvisited links and red for
visited links. Millions of men are afflicted with red/green color blindness.

Your brilliant hue may not be available on the user's display, and the browser may be forced to choose
one that's close instead. For displays with very few colors (like those of several million 16-color VGA
Windows-based machines currently in use) the close colors for the text and the background might be the
same color!

For the same reasons above, active, unvisited, and visited links may all wind up as the same color on
limited-color displays.

By changing text colors, particularly those for visited and unvisited links, you may completely confuse
the user. By changing those colors, you effectively force them to experiment with your page, clicking a
few links here and there to learn your color scheme.

Most page designers have no formal training in cognitive psychology, fine arts, graphic arts, or industrial
design, yet feel fully capable of selecting appropriate colors for their documents. If you must fiddle with
the colors, ask a professional to pick them for you.

5.3.2.3 And then again

There is no denying the fact that these extensions result in some very stunning HTML documents. And they are
fun to explore and play with. So, rather than leave this section on a sour note of caution, we encourage you to go
ahead and play - just play carefully.

page 109

HTML & XHTML: The Definitive Guide

5.4 Background Audio

There is one other form of inline multimedia generally available to web surfers - audio. Most browsers treat audio
multimedia as separate documents, downloaded and displayed by special helper applications, applets, or plug-
ins. Internet Explorer, on the other hand, contains a built-in sound decoder and supports a special tag that lets
you integrate an audio file with your document that plays in the background as a soundtrack for your page.
Section 12.1 / Section 12.2

We applaud the developers of Internet Explorer for providing a mechanism that more cleanly integrates audio
into HTML and XHTML documents. And the possibilities with audio are very enticing. But at the same time, we
caution authors that the special tags and attributes for audio don't work with other browsers, and whether this is
the method that the majority of browsers will eventually support is not at all assured. So, beware.

5.4.1 The <bgsound> Tag

Use the <bgsound> tag to play a soundtrack in the background. This tag is for Internet Explorer documents only.
All other browsers ignore the tag. It downloads and plays an audio file when the host document is first
downloaded by the user and displayed. The background sound file also will replay whenever the user refreshes
the browser display.

<bgsound> 0

Function:

Plays a soundtrack in the document background

Attributes:
LOOP
SRC

End tag:

None in HTML
Contains:

Nothing
Used in:

body_ content

5.4.1.1 The src attribute

The src attribute is required for the <bgsound> tag. Its value references the URL for the related sound file. For
example, when the Internet Explorer user first downloads a document containing the tag:

<bgsound src="audio/welcome.wav">
they will hear the welcome.wav audio file - perhaps an inviting message - play once through their computer's
sound system.

Currently, Internet Explorer can handle three different sound format files: wav, the native format for PCs; au, the
native format for most Unix workstations; and MIDI, a universal music-encoding scheme (see also Table 5-1).

page 110

HTML & XHTML: The Definitive Guide

Table 5-1, Common Multimedia Formats and Respective Filename Extensions

Format Type Extension Platform of Origin
GIF Image gif Any
JPEG Image Jjpg,jpeg, jpe Any
XBM Image xbm Unix
TIFF Image tif, tiff Any
PICT Image pic, pict Any
Rasterfile Image ras Sun
MPEG Movie mpg, mpeg Any
AVI Movie avi Microsoft
QuickTime Movie qt, mov Apple
AU Audio au, snd Sun
WAV Audio wav Microsoft
AIFF Audio aif, aiff Apple
MIDI Audio midi, mid Any
PostScript Document s, eps, ai Any
Acrobat Document pdf Any
PNG Image png Any

5.4.1.2 The loop attribute

Like Internet inline movies, the Toop attribute for the browser's <bgsound> tag lets you replay a background
soundtrack for a certain number of times (or over and over again forever), at least until the user moves on to
another page or quits the browser.

The value of the Toop attribute is the integer number of times to replay the audio file, or infinite, which makes
the soundtrack repeat endlessly.

For example:

<bgsound src="audio/tadum.wav" Toop=10>

repeats the ta-dum soundtrack ten times, whereas:
<bgsound src="audio/noise.wav" Toop=infinite>

continuously plays the noise soundtrack.

page 111

HTML & XHTML: The Definitive Guide

5.4.2 Alternative Audio Support

There are other ways to include audio in your documents, using more general mechanisms that support other
embedded media as well. The most common alternative to the <bgsound> tag is the <embed> tag, originally
implemented by Netscape and supplanted by the <object> tag in the HTML 4 and XHTML standards. Take a
look in Chapter 12 for details.

5.5 Animated Text

In what appears to be an effort to woo advertisers, Internet Explorer has added a form of animated text to HTML.
The animation is simple - text scrolling horizontally across the display - but effective for moving banners and
other elements that readily and easily animate an otherwise static document. On the other hand, like the <b1ink>
tag, animated text can easily become intrusive and abusive for the reader. Use with caution, please, if at all.

5.5.1 The <marquee> Tag

The <marquee> tag defines the text that scrolls across the Internet Explorer user's display.

<marquee> 0

Function:

Create a scrolling text marquee

Attributes:
ALIGN LOOP
BEHAVIOR SCROLLAMOUNT
BGCOLOR SCROLLDELAY
CLASS STYLE
DIRECTION VSPACE
HEIGHT WIDTH
HSPACE
End tag:
</marquee>; never omitted
Contains:
plain_text
Used in:

body_ content

The <marquee> tag is for Internet Explorer only and is not a standard tag. The text between the <marquee> tag
and its required </marquee> end tag scrolls horizontally across the display. The various tag attributes control the
size of the display area, its appearance, its alignment with the surrounding text, and the scrolling speed.

The <marquee> tag and attributes are ignored by other browsers, but its contents are not. They are displayed as
static text, sans any alignment or special treatments afforded by the <marquee> tag attributes.

page 112

HTML & XHTML: The Definitive Guide

5.5.1.1 The align attribute

Internet Explorer places <marquee> text into the surrounding body content just as if it were an embedded image.
As a result, you can align the marquee within the surrounding text.

The align attribute accepts a value of top, middle, or bottom, meaning that the specified point of the marquee
will be aligned with the corresponding point in the surrounding text. Thus:

<marquee align=top>

aligns the top of the marquee area with the top of the surrounding text. Also see the height and width, hspace,
and vspace attributes (later in this chapter), which control the dimensions of the marquee.

5.5.1.2 The behavior, direction, and loop attributes

Together, these three attributes control the style, direction, and duration of the scrolling in your marquee.

The behavior attribute accepts three values:
scrol1 (default)

The value of scrol11 causes the marquee to act like the grand marquee in Times Square: the marquee
area is empty initially; the text then scrolls in from one side (controlled by the direction attribute),
continues across until it reaches the other side of the marquee, and then scrolls off until the marquee is
once again empty.

sTide
This value causes the marquee to start empty. Text then scrolls in from one side (controlled by the
direction attribute), stops when it reaches the other side, and remains onscreen.

alternate

Specifying alternate as the value for the behavior attribute causes the marquee to start with the text
fully visible at one end of the marquee area. The text then scrolls until it reaches the other end,
whereupon it reverses direction and scrolls back to its starting point.

If you do not specify a marquee behavior, the default behavioris scrol1.

The direction attribute sets the direction for marquee text scrolling. Acceptable values are either Teft (the
default) or right. Note that the starting end for the scrolling is opposite to the direction: 1eft means that the text
starts at the right of the marquee and scrolls to the left. Remember also that rightward-scrolling text is counter-
intuitive to anyone who reads left to right.

The Toop attribute determines how many times the marquee text scrolls. If an integer value is provided, the
scrolling action is repeated that many times. If the value is infin1te, the scrolling repeats until the user moves
on to another document within the browser.

Putting some of these attributes together:

<marquee align=center Tloop=infinite>
Kumquats aren't filling
.......... Taste great, too!
</marquee>

The example message starts at the right side of the display window (default), scrolls leftward all the way across
and off the Internet Explorer display, and then starts over again until the user moves on to another page. Notice
the intervening periods and spaces for the "trailer"; you can't append one marquee to another.

Also, the s11ide-style of scrolling looks jerky when repeated and should only be scrolled once. Other scrolling
behaviors work well with repeated scrolling.

5.5.1.3 The bgcolor attribute
The bgcolor attribute lets you change the background color of the marquee area. It accepts either an RGB color
value or one of the standard color names. See Appendix G for a full discussion of both color-specification

methods.

To create a marquee area whose color is yellow, you would write:
<marquee bgcolor=yellow>

page 113

HTML & XHTML: The Definitive Guide

5.5.1.4 The height and width attributes

The height and width attributes determine the size of the marquee area. If not specified, the marquee area
extends all the way across the Internet Explorer display and will be just high enough to enclose the marquee text.

Both attributes accept either a numeric value, indicating an absolute size in pixels, or a percentage, indicating the
size as a percentage of the browser window height and width.

For example, to create a marquee that is 50 pixels tall and occupies one-third of the display window width, use:
<marquee height=50 width="33%">

While it is generally a good idea to ensure the height attribute is large enough to contain the enclosed text, it is
not uncommon to specify a width that is smaller than the enclosed text. In this case, the text scrolls the smaller
marquee area, resulting in a kind of "viewport" marquee familiar to most people.

5.5.1.5 The hspace and vspace attributes

The hspace and vspace attributes let you create some space between the marquee and the surrounding text. This
usually makes the marquee stand out from the text around it.

Both attributes require an integer value specifying the space needed in pixels. The hspace attribute creates space
to the left and right of the marquee; the vspace attribute creates space above and below the marquee. To create
10 pixels of space all the way around your marquee, for example, use:

<marquee vspace=10 hspace=10>

5.5.1.6 The scrollamount and scrolldelay attributes
These attributes control the speed and smoothness of the scrolling marquee.

The scrollamount attribute value is the number of pixels needed to move text each successive movement during
the scrolling process. Lower values mean smoother, but slower scrolling; higher numbers create faster, jerkier
text motion.

The scrolldelay attribute lets you set the number of milliseconds to wait between successive movements during
the scrolling process. The smaller this value, the faster the scrolling.

You can use a low scrol1delay to mitigate the slowness of a small, smooth scrolTamount. For example:
<marquee scrollamount=1 scrolldelay=1>

scrolls the text one pixel for each movement, but does so as fast as possible. In this case, the scrolling speed is
limited by the capabilities of the user's computer.

5.6 Other Multimedia Content

The Web is completely open minded about the types of content that can be exchanged by servers and browsers. In
this section, we look at a different way to reference images, along with audio, video, and other document formats.

5.6.1 Embedded Versus Referenced Content

Images currently enjoy a special status among the various media that can be included within an HTML or
XHTML document and displayed inline with other content by all but a few browsers. Sometimes, however, as we
discussed earlier in this chapter, you may also reference images externally, particularly large ones in which details
are important, but not immediately necessary to the document content. Other multimedia elements, including
digital audio and video, can be referenced as separate documents external to the current one.

You normally use the anchor tag (<a>) to link external multimedia elements to the current document. Just like
other link elements selected by the user, the browser downloads the multimedia object and presents it to the user,
possibly with the assistance of an external application or plug-in. Referenced content is always a two-step
process: present the document that links to the desired multimedia object, then present the object if the user
selects the link. Section 6.3.1

In the case of images, you can choose how to present images to the user: inline and immediately available via the
 tag, or referenced and subsequently available via the <a> tag. If your images are small and critical to the
current document, you should provide them inline. If they are large or are only a secondary element of the
current document, make them available as referenced content via the <a> tag.

If you choose to provide images via the <a> tag, it is sometimes a courtesy to your readers to indicate the size of

the referenced image in the referencing document and perhaps provide a thumbnail sketch. Users can then
determine whether it is worth their time and expense to retrieve it.

page 114

HTML & XHTML: The Definitive Guide

5.6.2 Referencing Audio, Video, and Images

You reference any external document, regardless of type or format document via a conventional anchor (<a>)
link:

The Kumquat Grower's Anthem is a rousing tribute to
the thousands of 'quat growers around the world.

Just like any referenced document, the server delivers the desired multimedia object to the browser when the
user selects the link. If the browser finds the document is not HTML or XHTML, but some other format, it
automatically invokes an appropriate rendering tool to display or otherwise convey the contents of the object to
the user.

You can configure your browser with special helper applications that handle different document formats in
different ways. Audio files, for example, might be passed to an audio-processing tool, while video files are given to
a video-playing tool. If a browser has not been configured to handle a particular document format, the browser
will inform you and offer to simply save the document to disk. You can later use an appropriate viewing tool to
examine the document.

Browsers identify and specially handle multimedia files from one of two different hints: either from the file's
Multipurpose Internet Mail Extension (MIME) type provided by the server or from a special suffix in the file's
name. The browser prefers MIME because of its richer description of the file and its contents, but will infer the
file's contents (type and format) of the object by the file suffix: .gif or .jpg, for GIF and JPEG encoded images, for
example, or .au for a special sound file.

Since not all browsers look for a MIME type, nor will they all be correctly configured with helper applications by
their users, you should always use the correct file suffix in the names of multimedia objects. See Table 5-1 earlier
in this chapter.

5.6.3 Appropriate Linking Styles

Creating effective links to external multimedia documents is critical. The user needs some indication of what the
object is and perhaps the kind of application the linked object needs to execute. Moreover, most multimedia
objects are quite large, so common courtesy tells us to provide users with some indication of the time and expense
involved in downloading it.

In lieu of, or in addition to, the anchor and surrounding text, a small thumbnail of large images or a familiar icon
that indicates the referenced object's format is useful.

5.6.4 Embedding Other Document Types

The Web can deliver nearly any type of electronic document, not just graphics, sound, and video files. To display
them, however, the client browser needs a helper application installed and referenced. Recent browsers also
support plug-in accessory software and, as described in Chapter 12, may extend the browser for some special
function, including inline display of multimedia objects.

For example, consider a company whose extensive product documentation was prepared and stored in some
popular layout application such as FrameMaker, Quark XPress, or PageMaker. The Web offers an excellent way
for distributing that documentation over a worldwide network, but converting to HTML or XHTML would be too
costly at this time.

The solution is to prepare a few HTML or XHTML documents that catalog and link the alternative files and
invoke the appropriate display applet. Or, make sure that the users' browsers have the plug-in software or are
configured to invoke the appropriate helper application. Adobe's Acrobat Reader is a very popular plugin, for
example. If the document is in Acrobat (.pdf) format, then if a link to an Acrobat document is chosen, the tool is
started and accordingly displays the document, often right in the browser's window.

page 115

HTML & XHTML: The Definitive Guide

Chapter 6. Links and Webs

Up to this point, we've dealt with HTML and XHTML documents as standalone entities, concentrating on the
language elements you use for structure and to format your work. The true power of these markup languages,
however, lies in their ability to join collections of documents together into a full library of information and to link
your library of documents with other collections around the world. Just as readers have considerable control over
how the document looks onscreen, with hyperlinks they also have control over the order of presentation as they
navigate through your information. It's the "HT" in HTML and XHTML - hypertext - and it's the twist that spins
the Web.

6.1 Hypertext Basics

A fundamental feature of hypertext is that you can hyperlink documents; you can point to another place inside
the current document, inside another document in the local collection, or inside a document anywhere on the
Internet. The documents become an intricately woven web of information. (Get the name analogy now?) The
target document is usually somehow related to and enriches the source; the linking element in the source should
convey that relationship to the reader.

Hyperlinks can be used for all kinds of effects. They can be used inside tables of contents and lists of topics. With
a click of the mouse on their browser screen or a press of a key on their keyboard, readers select and
automatically jump to a topic of interest in the same document or to another document located in an entirely
different collection somewhere around the world.

Hyperlinks also point readers to more information about a mentioned topic. "For more information, see
Kumgquats on Parade," for example. Authors use hyperlinks to reduce repetitive information. For instance, we
recommend you sign your name to each of your documents. Rather than include full contact information in each
document, a hyperlink connects your name to a single place that contains your address, phone number, and so
forth.

A hyperlink, or anchor in standard parlance, is marked by the <a> tag and comes in two flavors. As we describe in
detail later, one type of anchor creates a hot spot in the document that, when activated and selected (usually with
a mouse) by the user, causes the browser to link. It automatically loads and displays another portion of the same
or another document altogether, or triggers some Internet service-related action, such as sending email or
downloading a special file. The other type of anchor creates a label, a place in a document that can be referenced
as a hyperlink.[!

1 Both types of anchors use the same tag; perhaps that's why they have the same name. We find it's easier if you
differentiate them and think of the one type that provides the hotspot and address of a hyperlink as the "link," and
the other type that marks the target portion of a document as the "anchor."

There also are some mouse-related events associated with hyperlinks, which, through JavaScript, let you
incorporate some exciting effects.

6.2 Referencing Documents: The URL

As we discussed earlier, every document on the World Wide Web has a unique address. (Imagine the chaos if they
didn't.) The document's address is known as its uniform resource locator (URL).!>!

[21 "URL" usually is pronounced "you are ell," not "earl."

Several tags include a URL attribute value, including hyperlinks, inline images, and forms. All use the same URL
syntax to specify the location of a web resource, regardless of the type or content of that resource. That's why it's
known as a uniform resource locator.

Since they can be used to represent almost any resource on the Internet, URLs come in a variety of flavors. All
URLs, however, have the same top-level syntax:

scheme: scheme_specific_part

The scheme describes the kind of object the URL references; the scheme_specific_part is, well, the part that is
peculiar to the specific scheme. The important thing to note is that the scheme is always separated from the
scheme__specific_part by a colon with no intervening spaces.

6.2.1 Writing a URL

Write URLs using the displayable characters in the US-ASCII character set. For example, surely you have heard
what has become annoyingly common on the radio for an announced business website, "h, t, t, p, colon, slash,
slash, w, w, w, dot, blah-blah, dot, com." That's a simple URL, written:

http://www.blah-blah.com

page 116

HTML & XHTML: The Definitive Guide

If you need to use a character in a URL that is not part of this character set, you must encode the character using a
special notation. The encoding notation replaces the desired character with three characters: a percent sign and
two hexadecimal digits whose value corresponds to the position of the character in the ASCII character set.

This is easier than it sounds. One of the most common special characters is the space (Macintosh owners, take
special notice), whose position in the character set is 20 hexadecimal. You can't type a space in a URL (well, you
can, but it won't work). Rather, replace spaces in the URL with %20:

http://www.kumquat.com/new%20pricing.html

This URL actually retrieves a document named new pricing.html from the www.kumgquat.com server.
6.2.1.1 Handling reserved and unsafe characters

In addition to the nonprinting characters, you'll need to encode reserved and unsafe characters in your URLs as
well.

Reserved characters are those that have a specific meaning within the URL itself. For example, the slash character
separates elements of a pathname within a URL. If you need to include a slash in a URL that is not intended to be
an element separator, you'll need to encode it as %2F: (!

(3] Hexadecimal numbering is based on 16 characters: through 9 followed by A through F, which in decimal are
equivalent to values through 15. Also, letter case for these extended values is not significant; "a" (10 decimal) is the
same as "A", for example.

http://www.calculator.com/compute?3%2f4

This URL actually references the resource named compute on the www.calculator.com server and passes the
string 3/4 to it, as delineated by the question mark (?). Presumably, the resource is a server-side program that
performs some arithmetic function on the passed value and returns a result.

Unsafe characters are those that have no special meaning within the URL, but may have a special meaning in the

context in which the URL is written. For example, double quotes ("") delimit URL attribute values in tags. If you
were to include a double quotation mark directly in a URL, you would probably confuse the browser. Instead, you
should encode the double quotation mark as %22 to avoid any possible conflict.

Other reserved and unsafe characters that should always be encoded are shown in Table 6-1.

Table 6-1, Reserved and Unsafe Characters and Their URL Encodings

Character Description Usage Encoding

; Semicolon Reserved %38
/ Slash Reserved %2F
? Question mark Reserved %3F

Colon Reserved %3A
@ At sign Reserved %40
= Equal sign Reserved %3D
& Ampersand Reserved %26
< Less than sign Unsafe %3C
> Greater than sign Unsafe %3E
" Double quotation mark Unsafe %22
Hash symbol Unsafe %23

page 117

HTML & XHTML: The Definitive Guide

Character Description Usage Encoding
% Percent Unsafe %25
{ Left curly brace Unsafe %7B
} Right curly brace Unsafe %7D
| Vertical bar Unsafe %7C
\ Backslash Unsafe %5C
A Caret Unsafe %5E
~ Tilde Unsafe %7E
[Left square bracket Unsafe %58
] Right square bracket Unsafe %5D

Back single quotation mark Unsafe %60

In general, you should always encode a character if there is some doubt as to whether it can be placed as-is in a
URL. As a rule of thumb, any character other than a letter, number, or any of the characters $-_.+!*"'() should
be encoded.

It is never an error to encode a character, unless that character has a specific meaning in the URL. For example,
encoding the slashes in an http URL causes them to be used as regular characters, not as pathname delimiters,
breaking the URL.

6.2.2 The http URL

The http URL is by far the most common within the World Wide Web. It is used to access documents from a web
server, and it has two formats:

http://server: port/path#fragment
http://server:port/path? search

Some of the parts are optional. In fact, the most common form of the http URL is simply like this:
http://server/path

which designates the unique server and the directory path and name of a document.
6.2.2.1 The http server

The server is the unique Internet name or Internet Protocol (IP) numerical address of the computer system that
stores the web resource. We suspect you'll mostly use more easily remembered Internet names for the servers in
your URLs.[4]

[4]1 Each Internet-connected computer has a unique address, a numeric (IP) address, of course, because computers
deal only in numbers. Humans prefer names, so the Internet folks provide us with a collection of special servers
and software (Domain Name System or DNS) that automatically resolve Internet names into IP addresses.
InterNIC, a nonprofit agency, registers domain names mostly on a first-come, first-serve basis, and distributes
new names to DNS servers worldwide.

page 118

HTML & XHTML: The Definitive Guide

The name consists of several parts, including the server's actual name and the successive names of its network
domain, each part separated by a period. Typical Internet names look like www.oreilly.com or
hoohoo.ncsa.uiuc.edu.ls!

151 The three-letter suffix of the domain name identifies the type of organization or business that operates that
portion of the Internet. For instance, "com" is a commercial enterprise; "edu” is an academic institution; and "gov"
identifies a government-based domain. Outside the United States, a less-descriptive suffix is often assigned,
typically a two-letter abbreviation of the country name such as "jp" for Japan and "de" for Deutschland. Many
organizations around the world now use the generic three-letter suffixes in place of the more conventional two-
letter national suffixes.

It has become something of a convention that webmasters name their servers www for quick and easy
identification on the Web. For instance, O'Reilly & Associates' web server's name is www, which, along with the
publisher's domain name, becomes the very easily remembered web site wwuw.oreilly.com. Similarly, Sun
Microsystems' web server is named www.sun.com; Apple Computer's is www.apple.com, and even Microsoft
makes their web server easily memorable as www.microsoft.com. The naming convention has very obvious
benefits, which you, too, should take advantage of if you are called upon to create a web server for your
organization.

You may also specify the address of a server using its numerical IP address. The address is a sequence of four
numbers, zero to 255, separated by periods. Valid IP addresses look like 137.237.1.87 or 192.249.1.33.

It'd be a dull diversion to tell you now what the numbers mean or how to derive an IP address from a domain
name, particularly since you'll rarely if ever use one in a URL. Rather, this is a good place to hyperlink: pick up
any good Internet networking treatise for rigorous detail on IP addressing, such as Ed Krol's The Whole Internet
User's Guide and Catalog (O'Reilly & Associates).

6.2.2.2 The http port

The port is the number of the communication port to which the client browser connects to the server. It's a
networking thing: servers perform many functions besides serve up web documents and resources to client
browsers: electronic mail, FTP document fetches, filesystem sharing, and so on. Although all that network activity
may come into the server on a single wire, it's typically divided into software-managed "ports" for service-specific
communications - something analogous to boxes at your local post office.

The default URL port for web servers is 80. Special secure web servers (Secure HTTP, SHTTP or Secure Socket
Layer, SSL) run on port 443. Most web servers today use port 80; you need to include a port number along with
an immediately preceding colon in your URL if the target server does not use port 80 for web communication.

When the Web was in its infancy, pioneer webmasters ran their Wild Wild Web connections on all sorts of port
numbers. For technical and security reasons, system-administrator privileges are required to install a server on
port 80. Lacking such privileges, these webmasters chose other, more easily accessible, port numbers.

Now that web servers have become acceptable and are under the care and feeding of responsible administrators,
documents being served on some port other than 80 or 443 should make you wonder if that server is really on the
up and up. Most likely, the maverick server is being run by a clever user unbeknownst to the server's bona fide
system administrators.

6.2.2.3 The http path

The document path is the Unix-style hierarchical location of the file in the server's storage system. The pathname
consists of one or more names separated by slashes. All but the last name represent directories leading down to
the document; the last name is usually that of the document itself.

It has become a convention that for easy identification, HTML document names end with the suffix .html
(otherwise they're plain ASCII text files, remember?). Although recent versions of Windows allow longer suffixes,
their users often stick to the three-letter .htm name suffix for HTML documents.

Although the server name in a URL is not case-sensitive, the document pathname may be. Since most web servers
are run on Unix-based systems and Unix file names are case-sensitive, the document pathname will be case-
sensitive, too. Web servers running on Windows machines are not case-sensitive, so the document pathname is
not, but since it is impossible to know the operating system of the server you are accessing, always assume that
the server has case-sensitive pathnames and take care to get the case correct when typing your URLs.

Certain conventions regarding the document pathname have arisen. If the last element of the document path is a
directory, not a single document, the server usually will send back either a listing of the directory contents or the
HTML index document in that directory. You should end the document name for a directory with a trailing slash
character, but in practice, most servers will honor the request even if the character is omitted.

page 119

HTML & XHTML: The Definitive Guide

If the directory name is just a slash alone or sometimes nothing at all, you will retrieve the first (top-level)
document or so-called home page in the uppermost root directory of the server. Every well-designed http server
should have an attractive, well-designed "home page"; it's a shorthand way for users to access your web collection
since they don't need to remember the document's actual filename, just your server's name. That's why, for
example, you can type http://www.oreilly.com into Netscape's "Open" dialog box and get O'Reilly's home page.

Another twist: if the first component of the document path starts with the tilde character (~), it means that the
rest of the pathname begins from the personal directory in the home directory of the specified user on the server
machine. For instance, the URL http://www.kumquat.com/~chuck / would retrieve the top-level page from
Chuck's document collection.

Different servers have different ways of locating documents within a user's home directory. Many search for the
documents in a directory named public _html. Unix-based servers are fond of the name index.html for home
pages. When all else fails, servers tend to cough up the first text document in the home page directory.

6.2.2.4 The http document fragment

The fragment is an identifier that points to a specific section of a document. In URL specifications, it follows the
server and pathname and is separated by the pound sign (#). A fragment identifier indicates to the browser that it
should begin displaying the target document at the indicated fragment name. As we describe in more detail later
in this chapter, you insert fragment names into a document either with the universal id tag attribute or with the
name attribute for <a> tag. Like pathnames, a fragment name may be any sequence of characters.

The fragment name and the preceding hash symbol are optional; omit them when referencing a document
without defined fragments.

Formally, the fragment element only applies to HTML or XHTML documents. If the target of the URL is some
other document type, the fragment name may be misinterpreted by the browser.

Fragments are useful for long documents. By identifying key sections of your document with a fragment name,
you make it easy for readers to link directly to that portion of the document, avoiding the tedium of scrolling or
searching through the document to get to the section that interests them.

As a rule of thumb, we recommend that every section header in your documents be accompanied by an equivalent
fragment name. By consistently following this rule, you'll make it possible for readers to jump to any section in
any of your documents. Fragments also make it easier to build tables of contents for your document families.

6.2.2.5 The http search parameter

The search component of the http URL, along with its preceding question mark, is optional. It indicates that the
path is a searchable or executable resource on the server. The content of the search component is passed to the
server as parameters that control the search or execution function.

The actual encoding of parameters in the search component is dependent upon the server and the resource being
referenced. The parameters for searchable resources are covered later in this chapter, when we discuss searchable
documents. Parameters for executable resources are discussed in Chapter 9.

Although our initial presentation of http URLSs indicated that a URL can have either a fragment identifier or a
search component, some browsers let you use both in a single URL. If you so desire, you can follow the search
parameter with a fragment identifier, telling the browser to begin displaying the results of the search at the
indicated fragment. Netscape, for example, supports this usage.

We don't recommend this kind of URL, though. First and foremost, it doesn't work on a lot of browsers. Just as
important, using a fragment implies that you are sure that the results of the search will have a fragment of that
name defined within the document. For large document collections, this is hardly likely. You are better off
omitting the fragment, showing the search results from the beginning of the document, and avoiding potential
confusion among your readers.

6.2.2.6 Sample http URLs

Here are some sample http URLs:

http://www.oreilly.com/catalog.html
http://www.oreilly.com/

http://www.kumquat.com:8080/
http://www.kumquat.com/planting/guide.html#soil_prep
http://www.kumquat.com/find_a_quat?state=Florida

The first example is an explicit reference to a bona fide HTML document named catalog.html that is stored in the
root directory of the www.oreilly.com server. The second references the top-level home page on that same server.
That home page may or may not be catalog.html. Sample three, also, assumes that there is a home page in the
root directory of the www.kumquat.com server, and that the web connection is to the nonstandard port 8080.

page 120

HTML & XHTML: The Definitive Guide

The fourth example is the URL for retrieving the web document named guide.html from the planting directory on
the www.kumgquat.com server. Once retrieved, the browser should display the document beginning at the
fragment named soil _ prep.

The last example invokes an executable resource named find_a_ quat with the parameter named state set to the
value Florida. Presumably, this resource generates an HTML response that is subsequently displayed by the
browser.

6.2.3 The javascript URL

The javascript URL actually is a pseudo-protocol, not usually included in discussions of URLs. Yet, with advanced
browsers like Netscape and Internet Explorer, the javascript URL can be associated with a hyperlink and used to
execute JavaScript commands when the user selects the link. Section 12.3.4

6.2.3.1 The javascript URL arguments

What follows the javascript pseudo-protocol is one or more semicolon-separated JavaScript expressions and
methods, including references to multi-expression JavaScript functions that you embed within the <script> tag
in your documents (see Chapter 12 for details). For example:

javascript:window.alert('Hello, world!")
javascript:doFlash('red', 'blue'); window.alert('Do not press me!')

are valid URLs that you may include as the value for a link reference (see Section 6.3.1.2 and Section 6.5.4.3). The
first example contains a single JavaScript method that activates an alert dialog with the simple message.

The second javascript URL example contains two arguments: the first calls a JavaScript function, doF1ash, which
presumably you have located elsewhere in the document within the <script> tag and which perhaps flashes the
background color of the document window between the red and blue. The second expression is the same alert
method as in the first example, with a slightly different message.

The javascript URL may appear in a hyperlink sans arguments, too. In that case, the Netscape browser alone - not
Internet Explorer - opens a special JavaScript editor wherein the user may type in and test the various
expressions and methods.

6.2.4 The ftp URL

The ftp URL is used to retrieve documents from an FTP (File Transfer Protocol) server. (!

[6] FTP is an ancient Internet protocol that dates back to the Dark Ages, around 1975. It was designed as a simple
way to move files between machines and is popular and useful to this day. Some people who are unable to run a
true web server will place their documents on a server that speaks FTP instead.

It has the format:
ftp://user: password@server: port/path; type=typecode

6.2.4.1 The ftp user and password

FTP is an authenticated service, meaning that you must have a valid username and password in order to retrieve
documents from a server. However, most FTP servers also support restricted, nonauthenticated access known as
anonymous FTP. In this mode, anyone can supply the username "anonymous" and be granted access to a limited
portion of the server's documents. Most FTP servers also assume (but may not grant) anonymous access if the
username and password are omitted.

If you are using an ftp URL to access a site that requires a username and password, include the user and
password components in the URL, along with the colon (:) and "at" sign (@). More commonly, you'll be accessing
an anonymous FTP server, and the user and password components can be omitted.

If you keep the user component along with the "at" sign, but omit the password and the preceding colon, most
browsers will prompt you for a password after connecting to the FTP server. This is the recommended way of
accessing authenticated resources on an FTP server; it prevents others from seeing your password.

We recommend you never place an ftp URL with a username and password in any HTML document. The

reasoning is simple: anyone can retrieve the document, extract the username and password from the URL, log
into the FTP server, and tamper with its documents.

page 121

HTML & XHTML: The Definitive Guide

6.2.4.2 The ftp server and port

The ftp server and port are bound by the same rules as the server and port in an http URL, as described above.
The server must be a valid Internet domain name or IP address of an FTP server. The port specifies the port on
which the server is listening for requests.

If the port and its preceding colon are omitted, the default port of 21 is used. It is necessary to specify the port
only if the FTP server is running on some port other than 21.

6.2.4.3 The ftp path and transfer type

The path component represents a series of directories, separated by slashes leading to the file to be retrieved. By
default, the file is retrieved as a binary file; this can be changed by adding the typecode (and the preceding
; type=) to the URL.

If the typecode is set to d, the path is assumed to be a directory. The browser will request a listing of the directory
contents from the server and display this listing to the user. If the typecode is any other letter, it is used as a
parameter to the FTP type command before retrieving the file referenced by the path. While some FTP servers
may implement other codes, most servers accept i to initiate a binary transfer and a to treat the file as a stream of
ASCII text.

6.2.4.4 Sample ftp URLs

Here are some sample ftp URLs:

ftp://www.kumquat.com/sales/pricing
ftp://bob@bobs-box.com/results;type=d
ftp://bob:secret@bobs-box.com/Tisting;type=a

The first example retrieves the file named pricing from the sales directory on the anonymous FTP server at
www.kumquat.com. The second logs into the FTP server on bobs-box.com as user bob, prompting for a password
before retrieving the contents of the directory named results and displaying them to the user. The last example
logs into bobs-box.com as bob with the password secret and retrieves the file named listing, treating its contents
as ASCII characters.

6.2.5 The file URL

The file URL specifies a file stored on a machine without indicating the protocol used to retrieve the file. As such,
it has limited use in a networked environment. Its real benefit, however, is that it can reference a file on the user's
machine, and is particularly useful for referencing personal HTML document collections, such as those "under
construction” and not yet ready for general distribution, or HTML document collections on CD-ROM. It has the
following format:

file://server/path
6.2.5.1 The file server

The file server, like the http server described earlier, must be the Internet domain name or IP address of the
machine containing the file to be retrieved. No assumptions are made as to how the browser might contact the
machine to obtain the file; presumably the browser can make some connection, perhaps via a Network File
System or FTP, to obtain the file.

If the server is omitted, or the special name Tocalhost is used, the file is assumed to reside on the same machine
upon which the browser is running. In this case, the browser simply accesses the file using the normal facilities of
the local operating system. In fact, this is the most common usage of the file URL. By creating document families
on a diskette or CD-ROM and referencing your hyperlinks using the file://localhost/ URL, you create a
distributable, standalone document collection that does not require a network connection to use.

6.2.5.2 The file path

This is the path of the file to be retrieved on the desired server. The syntax of the path may differ based upon the
operating system of the server; be sure to encode any potentially dangerous characters in the path.

6.2.5.3 Sample file URLs

The file URL is easy:

file://Tocalhost/home/chuck/document.html
file:///home/chuck/document.html
file://marketing.kumquat.com/monthly_sales.htm]l

page 122

HTML & XHTML: The Definitive Guide

The first URL retrieves /home/chuck/document.html from the user's local machine. The second is identical to the
first, except we've omitted the localhost reference to the server; the server name defaults to the local server.

The third example uses some protocol to retrieve monthly_sales.html from the marketing.kumquat.com server.

6.2.6 The news URL

The news URL accesses either a single message or an entire newsgroup within the Usenet news system. It has two
forms:

news:newsgroup
news:message_ id

An unfortunate limitation in news URLs is that they don't allow you to specify a server for the newsgroup.
Rather, users specify their news-server resource in their browser preferences. At one time, not long ago, Internet
newsgroups were nearly universally distributed; all news servers carried all the same newsgroups and their
respective articles, so one news server was as good as any. Today, the sheer bulk of disk space needed to store the
daily volume of newsgroup activity is often prohibitive for any single news server, and there's also local
censorship of newsgroups. Hence you cannot expect that all newsgroups, and certainly not all articles for a
particular newsgroup, will be available on the user's news server.

Many users' browsers may not be correctly configured to read news. We recommend you avoid placing news
URLSs in your documents except in rare cases.

6.2.6.1 Accessing entire newsgroups

There are several thousand newsgroups devoted to nearly every conceivable topic under the sun and beyond.
Each group has a unique name, composed of hierarchical elements separated by periods. For example, the World
Wide Web announcements newsgroup is:

comp.infosys.www.announce
To access this group, use the URL:
news:comp.infosys.www.announce

6.2.6.2 Accessing single messages

Every message on a news server has a unique message identifier (ID) associated with it. This ID has the form:
unique_string@server

The unique_string is a sequence of ASCII characters; the server is usually the name of the machine from which
the message originated. The unique_string must be unique among all the messages that originated from the
server. A sample URL to access a single message might be:

news:12A7789B@news . kumquat.com

In general, message IDs are cryptic sequences of characters not readily understood by humans. Moreover, the
lifespan of a message on a server is usually measured in days, after which the message is deleted and the message
ID is no longer valid. The bottom line: single message news URLSs are difficult to create, become invalid quickly,
and are generally not used.

6.2.7 The nntp URL

The nntp URL goes beyond the news URL to provide a complete mechanism for accessing articles in the Usenet
news system. It has the form:

nntp://server:port/newsgroup/article

6.2.7.1 The nntp server and port

The nntp server and port are defined similarly to the http server and port, described earlier. The server must be
the Internet domain name or IP address of a nntp server; the port is the port on which that server is listening for
requests.

If the port and its preceding colon are omitted, the default port of 119 is used.

6.2.7.2 The nntp newsgroup and article

The newsgroup is the name of the group from which an article is to be retrieved, as defined in Section 6.2.6.

The article is the numeric id of the desired article within that newsgroup. Although the article number is easier to
determine than a message id, it falls prey to the same limitations of single message references using the news

URL, described in Section 6.2.6. Specifically, articles do not last long on most nntp servers, and nntp URLs
quickly become invalid as a result.

page 123

HTML & XHTML: The Definitive Guide

6.2.7.3 Sample nntp URLSs

A sample nntp URL might be:
nntp://news.kumquat.com/alt.fan.kumquats/417

This URL retrieves article 417 from the alt.fan.kumquats newsgroup on news.kumquat.com. Keep in mind that
the article will be served only to machines that are allowed to retrieve articles from this server. In general, most
nntp servers restrict access to those machines on that same local area network.

6.2.8 The mailto URL

The mailto URL causes an electronic mail message to be transmitted to a named recipient. It has the format:
mailto:address

The address is any valid email address, usually of the form:

user@server

Thus, a typical mailto URL might look like:

mailto:cmusciano@aol.com

Browsers like Netscape honor multiple recipients in the mailto URL, separated by a comma. For example:
mailto:cmusciano@aol.com,bkennedy@activmedia.com,booktech@ora.com

will address the message to all three recipients. There should be no spaces before or after the commas in the URL.
6.2.8.1 Defining mail header fields

Most browsers open an email composition window when the user selects a mailto URL. The recipient's address is
filled in, taken from the URL, but the message subject and various other header fields are left blank. Many
webmasters would like to fill in these fields as a courtesy to their readers, but the URL standard provides no way
to do this.

The modern browsers extend the mailto URL to fill this gap. By adding CGI-like parameters to the mailto header,

you can set the value of the subject with Netscape and Internet Explorer, and also cc (carbon copy) and bec (blind
carbon copy) fields for the mail message with Netscape. These URLs work with Netscape; only the first one works
correctly with Internet Explorer. Section 9.2.4.2

mailto:cmusciano@aol.com?subject=Loved your book!

mailto:cmusciano@aol.com?cc=booktech@oreilly.com
mailto:cmusciano@aol.com?bcc=archive@myserver.com

As you can probably guess, the first URL sets the subject of the message. Note that spaces are allowed; you don't
have to replace them with the hexadecimal equivalent %20. The second URL places the address
booktech@oreilly.comin the cc field of a Netscape message. Similarly, the last example sets the bcce field of the
message. You may also set several fields in one URL by separating the field definitions with ampersands. For
example:

mailto:cmusciano@aol.com?subject=Loved your book!&cc=booktech@
oreilly.com&bcc=archive@myserver.com

sets the subject and carbon-copy address. (This line would normally appear as a single line but is broken here due
to the width of the page.)

Internet Explorer Version 3 does not recognize the bee and cc fields in the mailto URL and will either complain
about them if they appear alone or append them to a preceding subject.

6.2.9 The telnet URL

The telnet URL opens an interactive session with a desired server, allowing the user to log in and use the
machine. Often, the connection to the machine automatically starts a specific service for the user; in other cases,
the user must know the commands to type to use the system. The telnet URL has the form:

telnet://user: passworddserver: port/

6.2.9.1 The telnet user and password

The telnet user and password are used exactly like the user and password components of the ftp URL, described
previously. In particular, the same caveats apply regarding protecting your password and never placing it within a
URL.

Just like the ftp URL, if you omit the password from the URL, the browser should prompt you for a password just
before contacting the telnet server.

page 124

HTML & XHTML: The Definitive Guide

If you omit both the user and password, the telnet occurs without supplying a user name. For some servers, telnet
automatically connects to a default service when no username is supplied. For others, the browser may prompt
for a username and password when making the connection to the telnet server.

6.2.9.2 The telnet server and port

The telnet server and port are defined similarly to the http server and port, described above. The server must be
the Internet domain name or IP address of a telnet server; the port is the port on which that server is listening for
requests. If the port and its preceding colon are omitted, the default port of 23 is used.

6.2.10 The gopher URL

Gopher is a web-like document retrieval system that achieved some popularity on the Internet just before the
World Wide Web took off, making Gopher obsolete. Some Gopher servers still exist, though, and the gopher URL
lets you access Gopher documents. The gopher URL has the form:

gopher://server: port/path
6.2.10.1 The gopher server and port

The gopher server and port are defined similarly to the http server and port, described previously. The server
must be the Internet domain name or IP address of a gopher server; the port is the port on which that server is
listening for requests.

If the port and its preceding colon are omitted, the default port of 70 is used.
6.2.10.2 The gopher path

The path can take one of three forms:

type/selector
type/selector%09search
type/selector’¥09searchs09gopherplus

The type is a single character value denoting the type of the gopher resource. If the entire path is omitted from the
gopher URL, the type defaults to 1.

The selector corresponds to the path of a resource on the Gopher server. It may be omitted, in which case the top-
level index of the Gopher server is retrieved.

If the Gopher resource is actually a Gopher search engine, the search component provides the string for which to
search. The search string must be preceded by an encoded horizontal tab (%09).

If the Gopher server supports Gopher+ resources, the gopherplus component supplies the necessary information
to locate that resource. The exact content of this component varies based upon the resources on the gopher
server. This component is preceded by an encoded horizontal tab (%09). If you want to include the gopherplus
component but omit the search component, you must still supply both encoded tabs within the URL.

6.2.11 Absolute and Relative URLSs

You may write a URL in one of two ways: absolute or relative. An absolute URL is the complete address of a
resource and has everything your system needs to find a document and its server on the Web. At the very least, an
absolute URL contains the scheme and all required elements of the scheme_specific_part of the URL. It may also
contain any of the optional portions of the scheme_specific_part.

With a relative URL, you provide an abbreviated document address that, when automatically combined with a
"base address" by the system, becomes a complete address for the document. Within the relative URL, any
component of the URL may be omitted. The browser automatically fills in the missing pieces of the relative URL
using corresponding elements of a base URL. This base URL is usually the URL of the document containing the
relative URL, but may be another document specified with the <base> tag. Section 6.7.1

6.2.11.1 Relative schemes and servers

A common form of a relative URL is missing the scheme and server name. Since many related documents are on
the same server, it makes sense to omit the scheme and server name from the relative URL. For instance, assume
the base document was last retrieved from the server www.kumquat.com. The relative URL, then:

another-doc.html

is equivalent to the absolute URL:
http://www.kumquat.com/another-doc.html

Table 6-2 shows how the base and relative URLSs in the example are combined to form an absolute URL.

page 125

HTML & XHTML: The Definitive Guide

Table 6-2, Forming an Absolute URL

Protocol Server Directory File

Base URL http www.kumquat.com /

Relative URL \l, \l, another-doc.html

« |«

N N J N

Absolute URL http www.kumquat.com / another-doc.html

6.2.11.2 Relative document directories

Another common form of a relative URL omits the leading slash and one or more directory names from the
beginning of the document pathname. The directory of the base URL is automatically assumed to replace these
missing components. It's the most common abbreviation, because most authors place their collection of
documents and subdirectories of support resources in the same directory path as the home page. For example,
you might have a special/ subdirectory containing FTP files referenced in your document. Let's say that the
absolute URL for that document is:

http://www.kumquat.com/planting/guide.html

A relative URL for the file README.txt in the special/ subdirectory, looks like this:
ftp:special/README. txt

You'll actually be retrieving:
ftp://www.kumquat.com/planting/special/README.txt

Visually, the operation looks like that in Table 6-3.

Table 6-3, Forming an Absolute FTP URL

Protocol Server Directory File
Base URL http www.kumquat.com /planting guide.html
Relative URL ftp \L special README .txt
Absolute URL ftp www.kumquat.com /planting/special README .txt

Common "dot-slash” pathname notations also let you express the current directory ("./") and directory above the
current directory (parent; "../") in a relative URL. The current directory notation is rarely used, since it is
redundant. But the parent notation lets you set the target URL to directories in other branches of the filesystem
hierarchy.

For example, if the directory portion of the current URL is /planting/special/, and you want to reference an
HTML document named new_ ground.html in planting/standard/, you may simply form the relative URL as:

../standard/new_ground.html
You'll actually be retrieving:
http://www.kumquat.com/planting/standard/new_ground.htm]l

Note that parent notation has limits. For instance, most web servers will not let you navigate above the base
directory: http://www.kumquat.com/../ probably won't deliver any document or directory listing to your
browser.

page 126

HTML & XHTML: The Definitive Guide

6.2.11.3 Using relative URLs

Relative URLSs are more than just a typing convenience. Because they are relative to the current server and
directory, you can move the entire set of documents to another directory or even another server and never have to
change a single relative link. Imagine the difficulties if you had to go into every source document and change the
URL for every link every time you move it. We'd loathe using hyperlinks! Use relative URLs wherever possible.

6.3 Creating Hyperlinks

Use the HTML/XHTML <a> tag to create links to other documents and to name anchors for fragment indentifiers
within documents.

6.3.1 The <a> Tag

You will use the <a> tag most commonly with its href attribute to create a hypertext link, or hyperlink, for short,
to another place in the same document or to another document. In these cases, the current document is the
source of the link; the value of the href attribute, a URL, is the target.”!

[71You may run across the terms "head" and "tail," which reference the target and source of a hyperlink. This
naming scheme assumes that the referenced document (the head) has many tails that are embedded in many
referencing documents throughout the Web. We find this naming convention confusing and stick to the concept of
source and target documents throughout this book.

The other way you can use the <a> tag is with the name attribute to mark a hyperlink target, or fragment identifier,
in a document. This method, although part of the HTML 4 and XHTML standards, is slowly succumbing to the id
attribute which lets you mark nearly any element, including paragraphs, divisions, forms, and so on, as a
hyperlink target.

The standards let you use both the name and href attributes within a single <a> tag, defining a link to another
document and a fragment identifier within the current document. We recommend against this, since it overloads
a single tag with multiple functions, and some browsers may not be able to handle it.

Instead, use two <a> tags when such a need arises. Your source will be easier to understand and modify and will
work better across a wider range of browsers.

6.3.1.1 Allowed content

Between the <a> tag and its required end tag, you may put only regular text, line breaks, images, and headings.
The browser renders all of these elements normally, but with the addition of some special effects to indicate that
it is a hyperlink to another document. For instance, the popular graphical browsers typically underline and color
the text and draw a colored border around images that are enclosed by <a> tags.

While the allowed content may seem restricted (the inability to place style markup within an <a> tag is a bit
onerous, for instance), most browsers let you put just about anything within an <a> tag that makes sense. To be
compliant with the HTML 4 and XHTML standards, place the <a> tag inside other markup tags, not the opposite.
For example, while most browsers make sense of either variation on this anchor theme:

To subscribe to
<cite>Kumquat online</cite>,

To subscribe to
<cite>Kumquat online</cite>,

only the first example is technically correct, and the second is most certainly incorrect for XHTML.
6.3.1.2 The href attribute

Use the href attribute to specify the URL of the target of a hyperlink. Its value is any valid document URL,
absolute or relative, including a fragment identifier or a JavaScript code fragment. If the user selects the contents
of the <a> tag, the browser will attempt to retrieve and display the document indicated by the URL specified by
the href attribute or execute the list of JavaScript expressions, methods, and functions. Section 6.2

A simple <a> tag that references another document might be:

The growing
season for kumquats in the Northeast.

which appears in the Netscape display as shown in Figure 6-1.

page 127

HTML & XHTML: The Definitive Guide

Function:
Define anchors within a text flow
Attributes:

<a>

ACCESSKEY ONKEYPRESS
CHARSET ONKEYUP
CLASS ONMOUSEDOWN
COORDS ONMOUSEMOVE
DIR ONMOUSEOUT
HREF ONMOUSEOVER
HREFLANG ONMOUSEUP
ID REL
LANG REV
NAME SHAPE
ONBLUR STYLE
ONCLICK TABINDEX
ONDBLCLICK TARGET
ONFOCUS TITLE
ONKEYDOWN TYPE
End tag:
; always present
Contains:
a_content
Used in:

text

page 128

HTML & XHTML: The Definitive Guide

Figure 6-1. Hyperlink to another HTML document

[H Simply Linked - Metscape _ (O] x|
Fie Edt Mew Zearch Go Dookmarks Tasks Help
L

n The s owing seazon for kumauats in the Mortheast,

Notice that the phrase "growing season" is specially rendered by the browser, letting the user know that it is a link
to another document. Users also typically have the option to specially set the text color of the link and have the
color change when a link is taken; blue initially and then red after it has been selected at least once, for instance.

More complex anchors might include images:

New pruning tips!
<p>

Kumquats throughout history

Most graphical browsers like Netscape and Internet Explorer place a special border around images that are part
of an anchor, as shown in Figure 6-2. Remove that hyperlink border with the border=0 attribute and value within
the tag reference for the image. Section 5.2.6.8

Figure 6-2. Internet Explorer puts a special border around an image that is inside an anchor

B Edi Wew G0 Favoiss Hip i [

—| —

-~

6.3.1.3 The name and id attributes

Use the name and 1id attributes with the <a> tag to create a fragment identifier within a document. Once created,
the fragment identifier becomes a potential target of a link.

Prior to HTML 4.0, the only way to create a fragment identifier was to use the name attribute with the <a> tag.
With the advent of the id attribute in HTML 4.0, and its ability to be used with almost any tag, any HTML or
XHTML element can be a fragment identifier. The <a> tag retains the name attribute for historic purposes and
honors the id attribute as well. These attributes can be used interchangeably, with id being the more "modern"
version of the name attribute. Both name and id can be specified in conjunction with the href attribute, allowing a
single <a> to be both a hyperlink and a fragment indentifier.

An easy way to think of a fragment identifier is as the HTML analog of the goto statement label common in many
programming languages. The name attribute within the <a> tag or the id attribute within the <a> or other tags
places a label within a document. When that label is used in a link to that document, it is the equivalent of telling
the browser to goto that label.

The value of the id or name attribute is any character string, enclosed in quotation marks. The string must be a
unique label, not reused in any other name or id attribute in the same document, although it can be reused in
different documents. Here are name and id examples:

<h2>Pruning Your Kumquat Tree</h2>
<h2 id="Pruning">Pruning Your Kumquat Tree</h2>

Notice we set the anchor in a section header of a presumably large document. It's a practice we encourage you to
use for all major sections of your work for easier reference and future smart processing, such as automated
extraction of topics.

page 129

HTML & XHTML: The Definitive Guide

The following link, when taken by the user:

jumps directly to the section of the document we named in the previous examples.
The contents of the anchor <a> tag with the name or id attribute are not displayed in any special way.

Technically, you do not have to put any document content within the <a> tag with the name attribute, since it
simply marks a location in the document. In practice, some browsers ignore the tag unless some document
content - a word or phrase, even an image - is between the <a> and tags. For this reason, it's probably a good
idea to have at least one displayable element in the body of any <a> tag.

6.3.1.4 The event attributes

There are a number of event handlers built into the modern browsers. These handlers watch for certain
conditions and user actions, such as a click of the mouse or when an image finishes loading into the browser
window. With client-side JavaScript, you may include selected event handlers as attributes of certain tags and
execute one or more JavaScript commands and functions when the event occurs.

With the anchor (<a>) tag, you may associate JavaScript code with a number of mouse- and keyboard-related
events. The value of the event handler is - enclosed in quotation marks - one or a sequence of semicolon-
separated JavaScript expressions, methods, and function references that the browser executes when the event
occurs. Section 12.3.3

A popular, albeit simple, use of the onMouseOver event with a hyperlink is to print an expanded description of the
tag's destination in the JavaScript-aware browser's status box (Figure 6-3). Normally, the browser displays the
frequently cryptic destination URL there whenever the user passes the mouse pointer over an <a> tag's contents:

<a href="http://www.ora.com/kumquats/homecooking/recipes.html#quat5"

onMouseOver="status='A yummy recipe for kumquat soup.'; return true;">

We argue that the contents of the tag itself should explain the link, but there are times when window space is tight
and an expanded explanation is helpful, such as when the link is in a table of contents.

See Chapter 12 for more about JavaScript.

Figure 6-3. Use JavaScript to display a message in the browser's status box

-

s

Ti=ng | A yurnmy reaioe for kumgust soup.

6.3.1.5 The rel and rev attributes

The rel and rev attributes express a formal relationship and direction between source and target documents. The
rel attribute specifies the relationship from the source document to the target, and the rev attribute specifies the
relationship from the target to the source. Both attributes can be placed in a single <a> tag, and the browser may
use them to specially alter the appearance of the anchor content or to automatically construct document
navigation menus. Other tools also may use these attributes to build special link collections, tables of contents,
and indexes.

The value of either the rel or rev attribute is a space-separated list of relationships. The actual relationship
names and their meanings are up to you: they are not formally addressed by the HTML or XHTML standards. For
example, a document that is part of a sequence of documents might include its relationship in a link:

The relationship from the source to the target is that of moving to the next document; the reverse relationship is
that of moving to the previous document.

These document relationships are also used in the <11ink> tag in the document <head>. The <11 nk> tag
establishes the relationship without actually creating a link to the target document; the <a> tag creates the link
and imbues it with the relationship attributes. Section 6.7.2

page 130

HTML & XHTML: The Definitive Guide

Commonly used document relationships include:

next

Links to the next document in a collection
prev

Links to the previous document in a collection
head

Links to the top-level document in a collection
toc

Links to a collection's table of contents
parent

Links to the document above the source
child

Links to a document below the source
index

Links to the index for this document
glossary

Links to the glossary for this document

Few browsers take advantage of these attributes to modify the link appearance. However, these attributes are a
great way to document links you create, and we recommend that you take the time to insert them whenever
possible.

6.3.1.6 The style and class attributes

Use the style and class attributes for the <a> tag to control the display style for the content enclosed by the tag
and to format the content according to a predefined class of the <a> tag. Section 8.1.1 Section 8.3

6.3.1.7 The lang and dir attributes

Like almost all other tags, the <a> tag accepts the Tang and di r attributes, denoting the language used for the
content within the <a> tag and the direction in which that language is rendered. Section 3.6.1.1 Section 3.6.1.2

6.3.1.8 The target attribute

The target attribute lets you specify where to display the contents of a selected hyperlink. Commonly used in
conjunction with frames or multiple browser windows, the value of this attribute is the name of the frame or
window in which the referenced document should be loaded. If the named frame or window exists, the document
is loaded in that frame or window. If not, a new window is created, given the specified name, and the document is
loaded in that new window. For more information, including a list of special target names, see Section 11.7.

6.3.1.9 The title attribute

The title attribute lets you specify a title for the document to which you are linking. The value of the attribute is
any string, enclosed in quotation marks. The browser might use it when displaying the link, perhaps flashing the
title when the mouse passes over the link. The browser might also use the tit1e attribute when adding this link
to a user's hotlist.

The title attribute is especially useful for referencing an otherwise unlabeled resource, such as an image or a
non-HTML document. For example, the browser might include the following title on this otherwise wordless
image display page:

<a href="pics/kumquat.gif"
title="A photograph of the Noble Fruit">

Ideally, the value specified should match the title of the referenced document, but it's not required.
6.3.1.10 The charset, hreflang, and type attributes
According to the HTML 4 and XHTML standards, the charset attribute specifies the character encoding used in

the document that is the destination of the link. The value of this attribute must be the name of a standard
character set: "euc-jp," for example. The default value is "ISO-8859-1".

page 131

HTML & XHTML: The Definitive Guide

The hreflang attribute may be specified only when the href attribute is used. Like the Tang attribute, its value is

an ISO standard two-character language code. Unlike the 1ang attribute, the hreflang attribute does not address

the language used by the contents of the tag. Instead, it specifies the language used in the document referenced by
the href attribute. Section 3.6.1.2

The type attribute specifies the content type of the resource referenced by the <a> tag. Its value is any MIME
encoding type. For example, you might inform the browser that you are linking to a plain ASCII document with:

The browser might use this information when displaying the referenced document, or might even present the link
differently based upon the content type.

6.3.1.11 The coords and shape attributes

These are two more attributes defined in the HTML and XHTML standards for the <a> tag that are not supported
by the current, popular browsers. Like the attributes of the same names for <area> tag, the coords and shape
attributes define a region of influence for the <a> tag. These attributes should only be used with the <a> tag when
that tag is part of the content of a <map> tag, as described later in this chapter. Section 6.5.3 Section 6.5.4.2
Section 6.5.4.7

6.3.1.12 The accesskey and tabindex attributes

Traditionally, users of graphical browsers select and execute a hyperlink by pointing and clicking the mouse
device on the region of the browser display defined by the anchor. What is less well known is that you may choose
a hyperlink, among other objects in the browser window, by pressing the Tab key and then activate that link by
pressing the Return or Enter key. With the tabindex attribute, you may reorder the sequence in which the
browser steps through to each object when the user presses the Tab key. The value of this attribute is an integer
greater than zero. The browser starts with the object whose tab index is 1 and moves through the other objects in
increasing order.

With the accesskey attribute, you may select an alternative "hot-key" that, when pressed, activates the specific
link. The value of this attribute is a single character that is pressed in conjunction with an "alt" or "meta" key,
depending on the browser and computing platform. Ideally, this character should appear in the content of the <a>
tag; if so, the browser may choose to display the character differently to indicate that it is a hot-key.

See an expanded description for both these attributes in Chapter 9.

6.3.2 Linking to Other Documents

You make a hyperlink to another document with the <a> tag and its href attribute, which defines the URL of the
target document. The contents of the <a> tag are presented to the user in some distinctive manner in order to
indicate that the link is available.

When creating a link to another document, you should consider adding the title, rel, and rev attributes to the
<a> tag. They help document the link you are creating and allow the browser to embellish the display anchor
contents.

6.3.3 Linking Within a Document

Creating a link within the same document or to a specific fragment of another document is a two-step process.
The first step is to make the target fragment; the second is to create the link to the fragment.

linking within a document

Use the <a> tag with its name attribute to identify a fragment. Here's a sample fragment identifier:
<h3>Section 7</h3>

Alternatively, use the id attribute and embed the hyperlink target directly in a defining tag, such as with a
header:!

181 We prefer the 1d way, although not all browsers support it, yet.
<h3 id="Section_7">Section 7</h3>
A hyperlink to the fragment is an <a> tag with the href attribute, in which the attribute's value - the target URL -

ends with the fragment's name, preceded by the pound sign (#). A reference to the previous example's fragment
identifier, then, might look like:

See Section 7
for further details.

page 132

HTML & XHTML: The Definitive Guide

By far the most common use of fragment identifiers is in creating a table of contents for a lengthy document.
Begin by dividing your document into several logical sections, using appropriate headers and consistent
formatting. At the start of each section, add a fragment identifier for that section, typically as part of the section
title. Finally, make a list of links to those fragment identifiers at the beginning of your document.

Our sample document extolling the life and wonders of the mighty kumquat, for example, is quite long and
involved, including many sections and subsections of interest. It is a document to be read and read again. In order
to make it easy for kumquat lovers everywhere to find their section of interest quickly, we've included fragment
identifiers for each major section and placed an ordered list of links - a hotlinked table of contents, as it were - at
the beginning of each of the Kumquat Lover's documents, a sample of which appears below along with sample
fragment identifiers that appear in the same document. The ellipsis symbol (...) means that there are intervening
segments of content, of course:

<h3>Table of Contents</h3>
<o1>
Soil Preparation
Digging the Hole
/<1i>Planting the Tree
</0I>

<h3 id=soi T_prep>Soil Preparation</h3>
<h3 id=dig_hole>Digging the Hole</h3>

<h3 id=planting>Planting the Tree</h3>

The kumquat lover can thereby click the desired link in the table of contents and jump directly to the section of
interest, without lots of tedious scrolling.

Notice also that this example uses relative URLSs - a good idea if you ever intend to move or rename the document
without breaking all the hyperlinks.

6.4 Creating Effective Links

A document becomes hypertext by tossing in a few links in the same way that water becomes soup when you
throw in a few vegetables. Technically, you've met the goal, but the outcome may not be very palatable.

Inserting anchors into your documents is something of an art, requiring good writing skills, HTML/XHTML
prowess, and an architectural sense of your documents and their relationships to others on the Web. Effective
links flow seamlessly into a document, quietly supplying additional browsing opportunities to the reader without
disturbing the current document. Poorly designed links scream out, interrupt the flow of the source document,
and generally annoy the reader.

While there are as many linking styles as there are authors, here are a few of the more popular ways to link your
documents. All do two things: they give the reader quick access to related information, and they tell the reader
how the link is related to the current contents.

6.4.1 Lists of Links

Perhaps the most common way to present hyperlinks is in ordered or unordered lists in the style of a table of
contents or list of resources.

Two schools of style exist. One puts the entire list item into the source anchor; the other abbreviates the item and
puts a shorthand phrase in the source anchor. In the former, make sure you keep the anchor content short and
sweet; in the latter, use a direct writing style that makes it easy to embed the link.

If your list of links becomes overly long, consider organizing it into several sublists grouped by topic. Readers can
then scan the topics (set off, perhaps, as <h3> headers) for the appropriate list and then scan that list for the
desired document.

The alternative list style is much more descriptive, but also more wordy, so you have to be careful that it doesn't
end up cluttered:

<p>
Kumquat-related documents include:

<1i>A concise guide to
profitable kumquat farming,
including a variety of business plans, Tists of fruit
packing companies, and farming supply companies.
<1i1>101 different ways to
use a kumquat, including stewed kumquats and kumquat pie!

page 133

HTML & XHTML: The Definitive Guide

<1i>The kumquat is a hardy tree, but even the greenest of
thumbs can use a few
growing tips to increase
their yield.

<1i>The business of kumquats is an expanding one, as
shown by this 10 year overview of the

kumquat industry.

It sometimes gets hard to read a source HTML document, and it will become even more tedious with XHTML.
Imagine the clutter if we'd used anchors with fragment identifiers for each of the subtopics in the list item
explanations. Nonetheless, it all looks pristine and easily navigable when displayed by the browser, such as with
Internet Explorer as shown in Figure 6-4.

This more descriptive style of presenting a link list tries hard to draw readers into the linked document by giving a
fuller taste of what they can expect to find. Because each list element is longer and requires more scanning by the
reader, you should use this style sparingly and dramatically limit the number of links.

Use the brief list style when presenting large numbers of links to a well-informed audience. The second, more
descriptive style is better suited to a smaller number of links for which your readership is less well-versed in the
topic at hand.

Figure 6-4. Wordy but effectively descriptive link list

A Wordy - Microzoft Intermet Exploser B

File Edil WYew Fawailes Tod: Help

0
H

|'=

Fumeuat-related documents melude;

s A concise guide to proftable loumouat farming, nchiding & wanety of business plans, lists
of fut packing companies, and farming supply companies,

o 101 different ways to voe a lonouat, meludmg stewed loumauats and kumouat pael

» The kumaguat 15 a hardy tree, but even the greenest of thumbs canuse a few srowing s
te inerease thew meld

s The business of kumaquats 8 an expanding one, as shown by this 10 year avermew of the
namioiat pdustry,

-

] Dere =1 My Comnpulei

6.4.2 Inline References

If you aren't collecting links into lists, you're probably sprinkling them throughout your document. So-called
inline links are more in keeping with the true spirit of hypertext, since they enable readers to mark their current
place in the document, visit the related topic in more depth or find a better explanation, and then come back to
the original and continue reading. That's very personalized information processing.

The biggest mistake made by novice authors, however, is to overload their documents with links and treat them as
if they are panic buttons demanding to be pressed. You may have seen this style of linking; HTML pages with the
word "here" all over the place, like the panic-ridden example in Figure 6-5 (we can't bring ourselves to show you
the source for this travesty).

Figure 6-5. Links should not wave and yell like first-graders, "Here! Me! Me!"

A} Content Free - Microzoft Intermet Explorer

Fie Edi Mew Favoiles Look Help 3

Fumauats can brng nches as well as health and happiness to all who partake of the delicious
prospects. ﬁﬁf&?&”ﬁmm DD growe on treesl

FPress --= WE ME! =- to read about kumeouat farming methods and how to grow vour own
Or if you'd rather pack a pecle of 'quats nght from the scurce, press --= FEREE! BIEl <. to
locate a farm near wou.

k|

] Done = My Computes

page 134

HTML & XHTML: The Definitive Guide

As links, phrases like "click here" and "also available" are content-free and annoying. They make the person who
is scanning the page for an important link read all the surrounding text to actually find the reference.

The better, more refined style for an inline link is to make every one contain a noun or noun/verb phrase relating
to the topic at hand. Compare how kumquat farming and industry news references are treated in Figure 6-6 to the
"Here! Me! Me!" example in Figure 6-5.

Figure 6-6. Kinder, gentler inline links work best

[Informalive Links - Metzcape [_ O] x]

Fie Edt Ywew Search Go Bookmarks Teshs Help

o
Eumaguats can bring nches as well as health and happmess to all who partake of the
delicious frut. Bead all about the lumouat industry's pact ten vears and its fxture
prospects. Toull discover that nches DO grow on trees|
Bead about bunguat fannins methods and hew be grow vour ewn. Or if you'd
rather pick a peck of ‘quats night from the source, we can help locate & guat fam
near you.

A quick scan of Figure 6-6 immediately yields useful links to "kumquat farming methods" and "kumquat
industry's past ten years." There is no need to read the surrounding text to understand where the link will take
you. Indeed, the immediately surrounding content in our example, as for most inline links, serves only as
syntactic sugar in support of the embedded links.

Embedding links into the general discourse of a document takes more effort to create than link lists. You've got to
actually understand the content of the current as well as the target documents, be able to express that
relationship in just a few words, and then intelligently incorporate that link at some key place in the source
document. Hopefully this key place is where you might expect the user is ready to interrupt their reading and ask
a question or request more information. To make matters even more difficult, particularly for the traditional tech
writer, this form of author-reader conversation is most effective when presented in active voice (he, she, or it does
something to an object versus the object having something done to it). The effort expended is worthwhile, though,
resulting in more informative, easily read documents. Remember, you'll write the document once, but it will be
read thousands, if not millions, of times. Please your readers, please.

6.4.3 Linking Do's and Don'ts

Here are some hints for creating links:
Keep the link content as concise as possible

Long links or huge inline graphic icons for links are visually disruptive and potentially confusing.
Never place two links immediately adjacent to one another

Most browsers make it difficult to tell where one link stops and the next link starts. Separate them with
regular text or line breaks.

Be consistent

If you are using inline references, make all of your links inline references. If you choose to use lists of
links, stick to either the short or long form; don't mix styles in a single document.

Try reading your document with all the nonanchor text removed

If some links suddenly make no sense, rewrite them so that they stand on their own. (Many people scan
documents looking only for links; the surrounding text becomes little more than a gray background to
the visually more compelling links.)

6.4.4 Using Images and Links

It has become fashionable to use images and icons instead of words for link contents. For instance, instead of the
word "next," you might use an icon of a little pointing hand. A link to the home page is not complete without a
picture of a little house. Links to searching tools must now contain a picture of a magnifying glass, question mark,
or binoculars. And all those flashing, GIF-animated little advertisements!

page 135

HTML & XHTML: The Definitive Guide

Resist falling prey to the "Mount Everest syndrome" of inserting images simply because you can. Again, it's a
matter of context. If you or your document's readers can't tell at a glance what relationship a link has with the
current document, you've failed. Use cute images for links sparingly, consistently, and only in ways that help
readers scan your document for important information and leads. Also be ever mindful that your pages may be
read by someone from nearly anywhere on Earth (perhaps beyond, even) and that images do not translate
consistently across cultural boundaries. (Ever hear what the "okay" hand sign common in the United States
means to a Japanese person?)

Creating consistent iconography for a collection of pages is a daunting task, one that really should be done with
the assistance of someone formally schooled in visual design. Trust us, the kind of mind that produces nifty code
and writes XHTML well is rarely suited to creating beautiful, compelling imagery. Find a good visual designer;
your pages and readers will benefit immeasurably.

6.5 Mouse-Sensitive Images

Normally, an image placed within an anchor simply becomes part of the anchor content. The browser may alter
the image in some special way (usually with a special border) to alert the reader that it is a hyperlink, but users
click the image in the same way they click a textual hyperlink.

The HTML and XHTML standards provide a feature that lets you embed many different links inside the same
image. Clicking different areas of the image causes the browser to link to different target documents. Such mouse-
sensitive images, known as image maps, open up a variety of creative linking styles.

There are two ways to create image maps, known as server-side and client-side image maps. The former, enabled
by the ismap attribute for the tag, requires access to a server and related image map processing
applications. The latter is created with the usemap attribute for the tag, along with corresponding <map>
and <area> tags. Since translation of the mouse position in the image to a link to another document happens on
the user's machine, client-side image maps don't require a special server connection and can even be
implemented in non-web environments, such as on a local hard drive or on a CD-ROM-based document
collection. Section 6.5.3 Section 6.5.4 Section 5.2.6

6.5.1 Server-Side Image Maps

You add an image to an anchor simply by placing an tag within the body of the <a> tag. Make that
embedded image into a mouse-sensitive one by adding the ismap attribute to the tag. This special
attribute tells the browser that the image is a special map containing more than one link. (The ismap attribute is
ignored by the browser if the tag is not within an <a> tag.) Section 5.2.6

When the user clicks some place within the image, the browser passes the coordinates of the mouse pointer along
with the URL specified in the <a> tag to the document server. The server uses the mouse pointer coordinates to
determine which document to deliver back to the browser.

When 1smap is used, the href attribute of the containing <a> tag must contain the URL of a server application or,
for some HTTP servers, a related map file that contains the coordinate and linking information. If the URL is
simply that of a conventional document, errors may result and the desired document will most likely not be
retrieved.

The coordinates of the mouse position are screen pixels counted from the upper-left corner of the image
beginning with (0,0). The coordinates are added to the end of the URL, preceded by a question mark.

For example, if a user clicks 43 pixels over and 15 pixels down from the upper-left corner of the image displayed
from the following link:

the browser sends the following search parameters to the HTTP server:
/cgi-bin/imagemap/toolbar.map?43,15

In the example, toolbar.map is a special image map file inside the cgi-bin/imagemap directory and containing
coordinates and links. A special image map process uses that file to match the passed coordinates (43,15 in the
example) and return the selected hyperlink document.

page 136

HTML & XHTML: The Definitive Guide

6.5.1.1 Server-side considerations

With mouse-sensitive ismap-enabled image maps, the browser is required to pass along only the URL and mouse
coordinates to the server. Converting these coordinates into a specific document is handled by the document
server. The conversion process differs between servers and is not defined by the HTML or XHTML standards.

You need to consult with your web server administrators and perhaps even read your server's documentation to
determine how to create and program an image map. Most servers come with some software utility, typically
located in a cgi-bin/imagemap directory, to handle image maps. And most of these use a text file containing the
image map regions and related hyperlinks that is referenced by your image map URL to process the image map

query.

Here's an example image map file that describes the sensitive regions in our example image:
Imagemap file=toolbar.map

default dflt.html
circ 100,30,50 Tinkl.html
rect 180,120,290,500 Tink2.html
poly 80,80,90,72,160,90 1ink3.htm]l

Each sensitive region of the image map is described by a geometric shape and defining coordinates in pixels, such
as the circle with its center point and radius, the rectangle's upper-left and lower-right edge coordinates, and the

loci of a polygon. All coordinates are relative to the upper-left corner of the image (0,0). Each shape has a related
URL.

An image map processing application typically tests each shape in the order it appears in the image file and
returns the document specified by the corresponding URL to the browser if the user's mouse x,y coordinates fall
within the boundaries of that shape. That means it's okay to overlap shapes; just be aware which takes
precedence. Also, the entire image need not be covered with sensitive regions: if the passed coordinates don't fall
within a specified shape, the default document gets sent back to the browser.

This is just one example for how an image map may be processed and the accessory files required for that process.
Please huddle with your webmaster and server manuals to discover how to implement a server-side image map
for your own documents and system.

6.5.2 Client-Side Image Maps

The obvious downside to server-side image maps is that they require a server. That means you need access to the
required HTTP server or its /cgi-bin/ directory, which isn't always available. And server-side image maps limit
portability, since not all image map processing applications are the same.

Server-side image maps also mean delays for the user while browsing, since the browser must get the server's
attention to process the image coordinates. That's even if there's no action to take, such as a section of the image
that isn't hyperlinked and doesn't lead anywhere.

Client-side image maps suffer from none of these difficulties. Enabled by the usemap attribute for the tag,
and defined by special <map> and <area> extension tags, client-side image maps let authors include in their
documents a map of coordinates and links that describe the sensitive regions of an image. The browser on the
client computer translates the coordinates of the mouse position within the image into an action, such as loading
and displaying another document. And special JavaScript-enabled attributes provide a wealth of special effects
for client-side image maps. Section 12.3.3

To create a client-side image map, include the usemap attribute as part of the tag.lo! Its value is the URL of a
<map> segment in an HTML document that contains the map coordinates and related link URLSs. The document
in the URL identifies the HTML document containing the map; the fragment identifier in the URL identifies the
map to be used. Most often, the map is in the same document as the image itself, and the URL can be reduced to
the fragment identifier: a pound sign (#) followed by the map name.

[o] Alternatively, according to the HTML 4 standard, you may reference a client-side image map by including the
usemap attribute with the <object> and form <input> tags, too. See Chapter 12 for details.

For example, the following source fragment tells the Netscape or Internet Explorer browser that the map.gif
image is a client-side image map and that its mouse-sensitive coordinates and related link URLs are found in the
map section of the document named map :

page 137

HTML & XHTML: The Definitive Guide

6.5.3 The <map> Tag

For client-side image maps to work, you must include somewhere in your document a set of coordinates and
URLSs that define the mouse-sensitive regions of a client-side image map and the hyperlink to take for each region
that is clicked by the user. Include those coordinates and links as values of attributes in conventional <a> tags or
special <area> tags; the collection of <area> specifications or <a> tags are enclosed within the <map> tag and its
end tag </map>. The <map> segment may appear anywhere in the body of the document.

<map>
Function:
Encloses client-side image map (usemap) specifications

Attributes:

NAME

Contains:
map__content
Used in:
body_ content

More specifically, the <map> tag may contain either a sequence of <area> tags or conventional HTML/XHTML
content including <a> tags. You cannot mix and match <area> tags with conventional content. Conventional
content within the <map> tag may be displayed by the browser; <area> tags will not. If you are concerned about
compatability with older browsers, use only <map> tags containing <area> tags.

If you do place <a> tags within a <map> tag, they must include the shape and coords attributes that define a region
within the objects that reference the <map> tag.

6.5.3.1 The name attribute

The value of the name attribute in the <map> tag is the name used by the usemap attribute in an or <object>
tag to locate the image map specification. The name must be unique and not used by another <map> in the
document, but more than one image map may reference the same <map> specifications. Section 5.2.6.14

6.5.4 The <area> Tag

The guts of a client-side image map are the <area> tags within the map segment. These <area> tags define each
mouse-sensitive region and the action the browser should take if it is selected by the user in an associated client-
side image map.

The region defined by an <area> tag acts just like any other hyperlink: when the user moves the mouse pointer
over the region of the image, the pointer icon will change and the browser may display the URL of the related
hyperlink in the status box at the bottom of the browser window.(>] Regions of the client-side image map not
defined in at least one <area> tag are not mouse-sensitive.

o] That is, unless you activate a JavaScript event handler that writes the contents of the status box. See the
onMouse event handlers in Section 6.5.4.6.

6.5.4.1 The alt attribute
Like its cousin for the tag, the alt attribute for the <area> tag lets attaches a text label to the image, except
in this case the label is associated with a particular area of the image. The popular browsers display this label to

the user when the mouse passes over the area, and it may also be used by a nongraphical browser to present the
client-side image map as a list of links identified by the a1t labels.

page 138

HTML & XHTML: The Definitive Guide

Function:

Attributes:
ACCESSKEY ONKEYPRESS
ALT ONKEYUP
CLASS ONMOUSEDOWN
COORDS ONMOUSEMOVE
DIR ONMOUSEOUT
HREF ONMOUSEOVER
D ONMOUSEUP
LANG SHAPE
NOHREF STYLE
NotaB O TABINDEX
ONBLUR TABORDER o
ONCLICK TARGET O
ONDBLCLICK TITLE
ONFOCUS
ONKEYDOWN
End tag:
None in HTML; </area> or <area ... /> in XHTML
Contains:
Nothing
Used in:

Defines coordinates and links for a region on a client-side image map

<area>

map_content

page 139

HTML & XHTML: The Definitive Guide

6.5.4.2 The coords attribute

The required coords attribute of the <area> tag defines coordinates of a mouse-sensitive region in a client-side
image map. The number of coordinates and their meaning depend upon the region's shape as determined by the
shape attribute, discussed later in this chapter. You may define hyperlink regions as rectangles, circles, and
polygons within a client-side image map. The appropriate values for each shape are listed.

circleorcirc

coords="x,y,r ", where x and y define the position of the center of the circle (0, 0 is the upper-left
corner of the image) and r is its radius in pixels.

polygon or poly

coords="x1,y1,x2,y2,x3,Y3, .. .", where each pair of x,y coordinates define a vertex of the polygon,
with 0, 0 being the upper-left corner of the image. At least three pairs of coordinates are required to
define a triangle, higher order polygons require a larger number of vertices. The polygon is automatically
closed, so it is not necessary to repeat the first coordinate at the end of the list to close the region.

rectangle or rect

coords="x1,y1,x2,y2 ", where the first coordinate pair is one corner of the rectangle and the other pair
is the corner diagonally opposite, with "0,0" being the upper-left corner of the image. Note that a
rectangle is just a shortened way of specifying a polygon with four vertices.

For example, the following XHTML fragment defines a single mouse-sensitive region in the lower-right quarter of
a100 x 100 image and another circular region smack in the middle:
<map name="mapl">

<area shape="rect" coords="75,75,99,99" nohref="nohref" />

<area shape="circ" coords="50,50,25" nohref="nohref" />
</map>
If the coordinates in one <area> tag overlap with another region, the first <area> tag takes precedence. The
browsers ignore coordinates that extend beyond the boundaries of the image.

6.5.4.3 The href attribute

Like the href attribute for the anchor (<a>) tag, the href attribute for the <area> tag defines the URL of the
desired link if its region in the associated image mabp is clicked. The value of the href attribute is any valid URL,
relative or absolute, including JavaScript code.

For example, the browser will load and display the link4.html document if the user clicks in the lower-left quarter
of a 100 x 100-pixel image, as defined by the first image map <area> tag in the following HTML example:
<map name="map">

<area coords="75,75,99,99" href="1ink4.html1">

<area coords="0,0,25,25" href="javascript:window.alert

('oooh, tickles!')"

</map>
The second <area> tag in the example uses a JavaScript URL, which, when the user clicks in the upper-left
quadrant of the image map, executes a JavaScript alert method that displays the silly message in a dialog box.

6.5.4.4 The nohref attribute

The nohref attribute for the <area> tag defines a mouse-sensitive region in a client-side image map for which no
action is taken even though the user may select it. You must include either an href or a nohref attribute for each
<area> tag.

6.5.4.5 The notab, taborder, and tabindex attributes

As an alternative to the mouse, a user may choose a document "hotspot," such as a hyperlink embedded in an
image map, by pressing the Tab key. Once chosen, the user activates the hyperlink by pressing the Return or
Enter key. By default, the browser steps to each hotspot in the order in which they appear in the document.
Originally introduced by Internet Explorer with the taborder attribute, and now standardized as the tabindex
attribute, you may change that default order. The value of the attribute is an integer indicating the position of this
area in the overall tab sequence for the document.

Supported by Internet Explorer only and not part of either the HTML 4 or XHTML standards, notab areas get
passed over as the user presses the Tab key to move the cursor around the document. Otherwise, this area will be
part of the tabbing sequence. The attribute is useful, of course, in combination with the nohref attribute.

The notab and taborder attributes were supported by Internet Explorer version 4. The browser's version 5
supports tabindex as well.

page 140

HTML & XHTML: The Definitive Guide

6.5.4.6 The event attributes

The same mouse-related JavaScript event handlers that work for the anchor (<a>) tag also work with client-side
image map hyperlinks. The value of the event handler is - enclosed in quotation marks - one or a sequence of
semicolon-separated JavaScript expressions, methods, and function references that the browser executes when
the event occurs. Section 12.3.3

For example, a popular, albeit simple, use of the onMouseover event is to print a more descriptive explanation in
the browser's status box whenever the user passes the mouse pointer over a region of the image map:

<area href="http://www.oreilly.com/kumquats/homecooking/recipes.html#quat5"
onMouseOver="self.status="A recipe for kumquat soup.';return true">

We should point out that the current versions of the popular browsers automatically display the a1t attribute's
string value, ostensibly accomplishing the same task. So we recommend that you include the alt attribute and
value in lieu of hacking JavaScript. And, in context with a text-based hyperlink, we argue that the contents of the
tag itself should explain the link. But images can be deceptive, so we urge you to take advantage of both the alt
attribute and event handlers to provide text descriptions with your image maps.

6.5.4.7 The shape attribute

Use the shape attribute to define the shape of an image map's mouse-sensitive region: a circle (circor circle),
polygon (poly or polygon), or rectangle (rect or rectangle).

The value of the shape attribute affects how the browser interprets the value of the coords attribute. If you don't
include a shape attribute, the value default is assumed. According to the standard, default means that the area
covers the entire image. In practice, the browsers default to a rectangular area and expect to find four coords
values. And if you don't specify a shape and don't include four coordinates with the tag, the browser ignores the
area altogether.

In fact, Netscape is the only browser that even recognizes the shape value default to provide a catch-all area for
clicks that fall outside all the other defined hotspots. Since areas are in a "first-come, first-served" order in the
<map> tag, you should place the default area last. Otherwise, it covers up any and all areas that follow in your
image map.

The browsers are lax in their implementation of the shape names. Netscape 4, for example, doesn't recognize
"rectangle" but does recognize "rect" for a rectangular shape. For this reason, we recommend that you use the
abbreviated names.

6.5.4.8 The target attribute

The target attribute gives you a way to control where the contents of the selected hyperlink in the image map get
displayed. Commonly used in conjunction with frames or multiple browser windows, the value of this attribute is
the name of the frame or window in which the referenced document should be loaded. If the named frame or
window exists, the document is loaded in that frame or window. If not, a new window is created, given the
specified name, and the document is loaded in that new window. For more information, including a list of special
target names, see Section 11.7.

6.5.4.9 The title attribute

The title attribute lets you specify a title for the document to which the image map's area links. The value of the
attribute is any string, enclosed in quotes. The browser might use the title when displaying the link, perhaps
flashing the title when the mouse passes over the area. The browser might also use the tit1e attribute when
adding this link to a user's hotlist.

The title attribute is especially useful for referencing an otherwise unlabeled resource, such as an image or a
non-HTML document. Ideally, the value specified should match the title of the referenced document, but it's not
required.

6.5.4.10 The class, dir, id, lang, and style attributes

The class and styTe attributes allow you to supply display properties and class names to control the appearance
of the area, although their value seems limited for this tag. The id attribute allows you to create a name for the

area that might referenced by a hyperlink. Section 4.1.1.4 Section 8.1.1 Section 8.3

The Tang and di r attributes define the language used for this area and the direction in which text is rendered.
Again, their use is not apparent with this tag. Section 3.6.1.1 Section 3.6.1.2

page 141

HTML & XHTML: The Definitive Guide

6.5.5 A Client-Side Image Map Example

The following example HTML fragment draws together the various components of a client-side image map
discussed earlier in this section. It includes the tag with the image reference and usemap attribute with a
name that points to a <map> that defines four mouse-sensitive regions (three plus a default) and related links:

<body>
%%hg src="pics/map.gif" usemap="#mapl" border=0>

<map name="mapl">

<area shape=rect coords="0,20,40,100"
href="k_juice.html"
onMouseOver="self.status="How to prepare kumquat juice.'

;return true'>

<area shape=rect coords="50,50,80,100"
href="k_soup.htm1"
onMouseoOver="self.status="'A recipe for hearty kumquat soup.'
;return true">

<area shape=rect coords="90,50,140,100"
href="k_fruit.html"
onMouseOver="self.status="'Care and handling of the native

kumquat.'

;return true'>

<area shape=default
href:“gav?scrgpt:window.a1ert('choose the cup or one of the

owls.')"
onMouseover="self.status="'Select the cup or a bowl for more
information.'
;return true'>
</map>

See Figure 6-7 for the results.

Figure 6-7. A simple client-side image map with JavaScript-enabled mouse event

Javascript Rlert:
Choose the cup or one of the bowls.

6.5.6 Handling Other Browsers

Unlike its server-side i smap counterpart, the client-side image map tag () doesn't need to be
included in an <a> tag. But it may be, so that you can gracefully handle browsers that are unable to process client-
side image maps.

For example, Mosaic or early versions of Netscape simply load a document named main.html if the user clicks the
map.gif image referenced in the following source fragment. The extended browsers, on the other hand, will divide
the image into mouse-sensitive regions, as defined in the associated <map> and link to a particular name anchor
within the same main.html document if the image map region is selected by the user:

/

;hép name="mapl">

<area coords="0,0,49,49" href="main.htm1#1ink1">

<area coords="50,0,99,49" href="main.htm1#1ink2">

<area coords="0,50,49,99" href="main.html1#1ink3">

<area coords="50,50,99,99" href="main.html#1ink4">
</map>
To make an image map backward-compatible with all image map-capable browsers, you may also include client-
side and server-side processing for the same image map. Capable browsers will honor the faster client-side
processing; all other browsers will ignore the usemap attribute in the tag and rely upon the referenced
server process to handle user selections in the traditional way.

page 142

HTML & XHTML: The Definitive Guide

For example:

<map name="map2">
<area coords="0,0,49,49" href="Tinkl.html1">
<area coords="50,0,99,49" href="1ink2.html">
<area coords="0,50,49,99" href="Tink3.html">
<area coords="50,50,99,99" href="1ink4.html">
</map>

6.5.7 Effective Use of Mouse-Sensitive Images

Some of the most visually compelling pages on the Web have mouse-sensitive images: maps with regions that
when clicked, for example, lead to more information about a country or town or result in more detail about the
location and who to contact at a regional branch of a business. We've seen a mouse-sensitive image of a fashion
model whose various clothing parts lead to their respective catalog entries, complete with detailed description
and price tag for ordering.

The visual nature of mouse-sensitive images coupled with the need for an effective interface means you should
strongly consider having an artist, a user-interface designer, and even a human-factors expert evaluate your
mouse-sensitive imagery. At the very least, engage in a bit of user testing to make sure people know where to click
to move to the desired document. Make sure the "mouseable" areas of the image indicate this to the user using a
consistent visual mechanism. Consider using borders, drop shadows, or color changes to indicate those areas that
can be selected by the user.

Finally, always remember that the decision to use mouse-sensitive images is an explicit decision to exclude text-
based and image-restricted browsers from your pages. This includes browsers connecting to the Internet via slow
modem connections. For these people, downloading your beautiful images is simply too expensive. To keep from
disenfranchising a growing population, make sure any page that has a mouse-sensitive image has a text-only
equivalent easily accessible from a link on the image-enabled version. Some thoughtful webmasters even provide
separate pages for users preferring full graphics versus mostly text.

6.6 Creating Searchable Documents

Another extensible form of an HTML link that does not use the <a> tag is one that causes the server to search a
database for a document that contains a user-specified keyword or words. An HTML document that contains such
a link is known as a searchable document.

6.6.1 The <isindex> Tag (Deprecated)

No longer supported in the HTML 4 or XHTML standards, authors at one time used the <isindex> tag to pass
keywords along with a search-engine's URL to the server. The server then matched the keywords against a
database of terms to select the next document for display. Today's authors mostly use forms to pass information
to the server and supporting programs. See Chapter 9 for details.

When a browser encounters the <isindex> tag, it adds a standard search interface to the document (rendered by
Internet Explorer in Figure 6-8):

<html>

<head>

<title>Kumquat Advice Database</title>
<base href="cgi-bin/quat-query">
<isindex>

</head>

<body>

<h3>Kumquat Advice Database</h3>

<p>
Search this database to Tearn more about kumquats!

</body>

</html>

The user types a list of space-separated keywords into the field provided. When the user presses the Enter key,
the browser automatically appends the query list to the end of a URL and passes the information to the server for
further processing.

page 143

HTML & XHTML: The Definitive Guide

<isindex>
Function:
Indicates that a document can be searched
Attributes:
action'0 LANG
CLASS PROMPT
DIR STYLE
ID TITLE
End tag:
None in HTML; </isindex> or <isindex ... /> with XHTML
Contains:
Nothing
Used in:
head_content

While the HTML and XHTML standards only allow the deprecated <isindex> tag to be placed in the document
header, most browsers let the tag appear anywhere in the document and insert the search field in the content flow
where the <isindex> tag appears. This convenient extension lets you add instructions and other useful elements
before presenting the user with the actual search field.

Figure 6-8. A searchable document

rﬂ Kumgquat Advice Database - Microzoft Intermet Explores

File Ecit Wiew Favorte: ook Heb n

You can search thiz index. Type the keyword(s) you want to search for:
flller Fuats

Kumquat Advice Database

Search this databasze to leam more about kumdquatz|

[+

&1 Dane 21 My Compades

6.6.1.1 The prompt attribute

The browser provides a leading prompt just above or to the left of the user-entry field. Internet Explorer's default
prompt, for example, is "You can search this index. Type the keyword(s) you want to search for:" (Figure 6-8).
That default prompt is not the best for all occasions, so it is possible to change it with the prompt attribute.

When added to the <isindex> tag, the value of the prompt attribute is the string of text that precedes the keyword
entry field placed in the document by the browser.

For example, compare Figure 6-8 with Figure 6-9, in which we added the following prompt to the previous source
example:

<isindex prompt="To learn more about kumquats, enter a keyword:">

page 144

HTML & XHTML: The Definitive Guide

Figure 6-9. The prompt attribute creates custom prompts in searchable documents

A3 Fumquat Advice Database - Microsoft Internet Explores _ (O] %

File Edi Wiew Fawoiter Tools Help m

e

Te learn more about bumquats, enter & ke:.mrord:l'?ud dly quets] ki

|4

£ Dane 2| My Computen

Older browsers will ignore the prompt attribute, but there is little reason not to include a better prompt string for
your more up-to-date readership.

6.6.1.2 The query URL

Besides the <isindex> tag in the header of a searchable document, the other important element of this special tag
is the query URL. By default, it is the URL of the source document itself - not good if your document can't handle
the query. Rather, most authors use the <base> attribute to point to a different URL for the search. Section 6.7.1

The browser appends a question mark to the query URL, followed by the specified search parameters.
Nonprintable characters are appropriately encoded; multiple parameters are separated by a plus sign (+).

In the previous example, if a user types "insect control" in the search field, the browser would retrieve the URL:
cgi-bin/quat-query?insect+control

6.6.1.3 The action attribute

For Internet Explorer only, you can specify the query URL for the index with the action attribute. The effect is
exactly as if you had used the href attribute with the <base> tag: the browser links to the specified URL with the
search parameters appended to the URL.

While the action attribute provides the desirable feature of divorcing the document's base URL from the search
index URL, it will cause your searches to fail if the user is not using Internet Explorer. For this reason, we do not
recommend that you use the action attribute to specify the query URL for the search.

6.6.1.4 The class, dir, id, lang, style, and title attributes

The class and styTe attributes allow you to supply display properties and class names to control the appearance
of the tag, although their value seems limited for <isindex>. The id and tit1e attributes allow you to create a
name and title for the tag; the name might referenced by a hyperlink. Section 4.1.1.4 Section 4.1.1.5 Section 8.1.1
Section 8.3

The dir and Tang attributes define the language used for this tag and the direction in which text is rendered.
Again, their use is not apparent with <isindex>. Section 3.6.1.1 Section 3.6.1.2

6.6.1.5 Server dependencies

Like image maps, searchable documents require support from the server to make things work. How the server
interprets the query URL and its parameters is not defined by the HTML or XHTML standards.

You should consult your server's documentation to determine how you can receive and use the search parameters
to locate the desired document. Typically, the server breaks the parameters out of the query URL and passes them
to a program designated by the URL.

6.7 Relationships

Very few documents stand alone. Instead, a document is usually part of a collection of documents, each connected
by one or several of the hypertext strands we describe in this chapter. One document may be a part of several
collections, linking to some documents and being linked to by others. Readers move between the document
families as they follow the links that interest them.

You establish an explicit relationship between two documents when you link them. Conscientious authors use the
rel attribute of the <a> tag to indicate the nature of the link. In addition, two other tags may be used within a
document to further clarify the location and relationship of a document within a document family. These tags,
<base> and <11ink>, are placed within the body of the <head> tag. Section 3.7.1

page 145

HTML & XHTML: The Definitive Guide

6.7.1 The <base> Header Element

As we previously explained, URLs within a document can be either absolute (with every element of the URL
explicitly provided by the author) or relative (with certain elements of the URL omitted and supplied by the
browser). Normally, the browser fills in the blanks of a relative URL by drawing the missing pieces from the URL
of the current document. You can change that with the <base> tag.

<base>

Function:

Define the base URL for other anchors in the document

Attributes:
HREF
TARGET

End tag:

None in HTML; </base> or <base ... /> with XHTML
Contains:

Nothing
Used in:

head_content

The <base> tag should appear only in the document header, not its body contents. The browser thereafter uses
the specified base URL, not the current document's URL, to resolve all relative URLSs, including those found in
<a>, , <1ink>, and <form> tags. It also defines the URL that will be used to resolve queries in searchable

documents containing the <isindex> tag. Section 6.2

6.7.1.1 The href attribute

The href attribute must have a valid URL as its value, which the browser then uses to define the absolute URL
against which relative URLs are based within the document. For example, the <base> tag in this XHTML
document head:

<head>

<base href="http://www.kumquat.com/" />
</head>

tells the browser that any relative URLs within this document are relative to the top-level document directory on
www.kumquat.com, regardless of the address and directory of the machine from which the user had retrieved the
current document.

Contrary to what you may expect, you can make the base URL relative, not absolute. The browser should (but
doesn't always) form an absolute base URL out of this relative URL by filling in the missing pieces with the URL
of the document itself. This property can be used to good advantage. For instance, in this next HTML example:
<head>

<base href="/info/">
</head>

the browser makes the <base> URL into one relative to the server's /info/ directory, which probably is not the
same directory of the current document. Imagine if you had to re-address every link in your document with that
common directory. Not only does the <base> tag help you shorten those URLSs in your document that have a
common root, it also lets you constrain the directory from which relative references are retrieved without binding
the document to a specific server.

page 146

HTML & XHTML: The Definitive Guide

6.7.1.2 The target attribute

When working with documents inside frames, the target attribute with the <a> tag ensures that a referenced URL
gets loaded into the correct frame. Similarly, the target attribute for the <base> tag lets you establish the default
name of one of the frames or windows in which the browser is to display redirected hyperlinked documents.
Section 11.1

If you have no other default target for your hyperlinks within your frames, you may want to consider using <base

target=_top>. This ensures that links that are not specifically targeted to a frame or window will thereby load in

the top-level browser window. This eliminates the embarrassing and common error of having references to pages

on other sites appear within a frame on your pages, instead of within their own pages. A minor bit of HTML, to be
sure, but it makes life much easier for your readership.

6.7.1.3 Using <base>

The most important reason for using <base> is to ensure that any relative URLs within the document will resolve
into a correct document address, even if the document itself is moved or renamed. This is particularly important
when creating a document collection. By placing the correct <base> tag in each document, you can move the
entire collection between directories and even servers without breaking all of the links within the documents.

You also need to use the <base> tag for a searchable document (<isindex>) if you want user queries posed to a
URL different from the host document.

A document that contains both the <isindex> tag and other relative URLs may have problems if the relative
URL:s are not relative to the desired index-processing URL. Since this is usually the case, don't use relative URLSs
in searchable documents that use the <base> tag to specify the query URL for the document.

6.7.2 The <link> Header Element
Use the <11 nk> tag to define the relationship between the current document and another in a Web collection.

The <11ink> tag belongs in the <head> content, nowhere else. The attributes of the <1ink> tag are used like those
of the <a> tag, but their effects serve only to document the relationship between documents. The <11ink> tag has
no content and only XHTML supports the closing </11nk> tag.

6.7.2.1 The href attribute

As with its other tag applications, the href attribute specifies the URL of the target <11ink> tag. It is a required
attribute, and its value is any valid document URL. The specified document is assumed to have a relationship to
the current document.

6.7.2.2 The rel and rev attributes

The rel and rev attributes express the relationship between the source and target documents. The rel attribute
specifies the relationship from the source document to the target; the rev attribute specifies the relationship from
the target document to the source document. Both attributes can be included in a single <11ink> tag.

The value of either attribute is a space-separated list of relationships. The actual relationship names are not
specified by the HTML standard, although some have come into common usage as listed in Section 6.3.1.5. For
example, a document that is part of a sequence of documents might use:

<Tlink href="part-14.html" rel=next rev=prev>

when referencing the next document in the series. The relationship from the source to the target is that of moving
to the next document; the reverse relationship is that of moving to the previous document.

6.7.2.3 The title attribute

The title attribute lets you specify the title of the document to which you are linking. This attribute is useful
when referencing a resource that does not have a title, such as an image or a non-HTML document. In this case,
the browser might use the <11 nk> title when displaying the referenced document. For example:

<link href="pics/kumquat.gif"
title="A photograph of the Noble Fruit">

tells the browser to use the indicated title when displaying the referenced image.

The value of the attribute is an arbitrary character string, enclosed in quotation marks.

page 147

HTML & XHTML: The Definitive Guide

<link>
Function:
Define a relationship between this document and another document
Attributes:
CHARSET ONKEYUP
CLASS ONMOUSEDOWN
DIR ONMOUSEMOVE
HREF ONMOUSEOUT
HREFLANG ONMOUSEOVER
ID ONMOUSEUP
LANG REL
MEDIA REV
ONCLICK STYLE
ONDBLCLICK TARGET
ONKEYDOWN TITLE
ONKEYPRESS TYPE
End tag:
None in HTML; </link> or <link ... /> with XHTML
Contains:
Nothing
Used in:
head_content

6.7.2.4 The type attribute

The type attribute provides the MIME content type of the linked document. Supported by both Internet Explorer
and Netscape, the HTML 4 and XHTML standard type attribute can be used with any linked document. It is often
used to define the type of linked style sheets. In this context, the value of the type attribute is usually text/css.
For example:

<link href="styles/classic.css" rel=stylesheet type="text/css">

creates a link to an external style sheet within the <head> of a document. See Chapter 8 for details.
6.7.2.5 How browsers might use <link>

Although the standards do not require browsers to do anything with the information provided by the <11ink> tag,
it's not hard to envision how this information might be used to enhance the presentation of a document.

page 148

HTML & XHTML: The Definitive Guide

As a simple example, suppose you consistently provide <11 nk> tags for each of your documents that define next,
prev, and parent links. A browser could use this information to place a standard toolbar at the top or bottom of
each document containing buttons that would jump to the appropriate related document. By relegating the task

of providing simple navigational links to the browser, you are free to concentrate on the more important content
of your document.

As a more complex example, suppose a browser expects to find a <11nk> tag defining a glossary for the current
document, and that this glossary document is itself a searchable document. Whenever a reader clicked on a word
or phrase in the document, the browser could automatically search the glossary for the definition of the selected
phrase, presenting the result in a small pop-up window.

As the Web evolves, expect to see more and more uses of the <1ink> tag to define document relationships
explicitly.

6.7.2.6 Other <link> attributes

The HTML 4 and XHTML standards also include the ubiquitous collection of attributes related to style sheets and
user events, and language for the <11 nk> tag. You can refer to the corresponding section describing these
attributes for the <a> tag for a complete description of their usage. Section 6.3.1

Since you put the <1ink> tag in the <head> section, whose contents do not get displayed, it may seem that these
attributes are useless. It is entirely possible that some future browser may find some way to display the <1ink>

information to the user, possibly as a navigation bar or a set of hot-list selections. In those cases, the display and
rendering information would prove useful. Currently, no browser provides these capabilities.

6.8 Supporting Document Automation

There are two additional header tags that have the primary function of supporting document automation, and
interacting with the web server itself and document-generation tools.

6.8.1 The <meta> Header Element

Given the rich set of header tags for defining a document and its relationship with others that go unused by most
authors, you'd think we'd all be satisfied.

<meta>
Function:
Supply additional information about a document
Attributes:
cHARSET O LANG
CONTENT NAME
DIR SCHEME
HTTP_EQUIV
End tag:
None in HTML; </meta> or <meta ... /> with XHTML
Contains:
Nothing
Used in:
head_content

page 149

HTML & XHTML: The Definitive Guide

But no. There's always someone with special needs. They want to be able to give even more information about
their precious document, information that might be used by browsers, readers of the source, or by document-
indexing tools. The <meta> tag is for you who need to go beyond the beyond.

The <meta> tag belongs in the document header and has no content. Instead, attributes of the tag define
name/value pairs that associate the document. In certain cases, these values are used by the web server serving
the document to further define the document content type to the browser.

6.8.1.1 The name attribute

The name attribute supplies the name of the name/value pair defined by the <meta> tag. Neither the HTML nor
the XHTML standard specify any predefined <meta> names. In general, you are free to use any name that makes
sense to you and other readers of your source document.

One common name used is keywords, which defines a set of keywords for the document. When encountered by
any of the popular search engines on the Web, these keywords will be used to categorize the document. If you
want your documents to be indexed by a search engine, consider putting this kind of tag in the <head> of each
document:

<meta name="keywords" content="kumquats, cooking, peeling, eating">

If the name attribute is not provided, the name of the name/value pair is taken from the http-equiv attribute.
6.8.1.2 The content attribute

The content attribute provides the value of the name/value pair. It can be any valid string, enclosed in quotes, if
it contains spaces. It should always be specified in conjunction with either a name or http-equiv attribute.

As an example, you might place the author's name in a document with:
<meta name="Authors" content="Chuck Musciano & Bill Kennedy">

6.8.1.3 The http-equiv attribute

The http-equiv attribute supplies a name for the name/value pair and instructs the server to include the
name/value pair in the MIME document header that is passed to the browser before sending the actual
document.

When a server sends a document to a browser, it first sends a number of name/value pairs. While some servers
might send a number of these pairs, all servers send at least one:

content-type: text/html

This tells the browser to expect to receive an HTML document.

When you use the <meta> tag with the http-equiv attribute, the server will add your name/value pairs to the
content header it sends to the browser. For example, adding:

<meta http-equiv="charset" content="is0-8859-1">
<meta http-equiv="expires" content="31 Dec 99">

causes the header sent to the browser to contain:

content-type: text/html
charset: is0-8859-1
expires: 31 Dec 99

Of course, adding these additional header fields makes sense only if your browser accepts the fields and uses
them in some appropriate manner.

6.8.1.4 The charset attribute

Internet Explorer provides explicit support for a charset attribute in the <meta> tag. Set the value of the attribute
to the name of the character set to be used for the document. This is not the recommended way to define a
document's character set. Rather, we recommend always using the http-equiv and content attributes to define
the character set.

6.8.1.5 The scheme attribute

This attribute specifies the scheme to be used to interpret the property's value. This scheme should be defined
within the profile specified by the profi1e attribute of the <head> tag. Section 3.7.1

page 150

HTML & XHTML: The Definitive Guide

6.8.2 The <nextid> Header Element

This tag is not defined in the HTML 4 or XHTML standards and should not be used. We describe it here for
historical reasons.

<nextid>

Function:
Define the next valid document entity identifier
Attributes:
n
End tag:
None
Contains:
Nothing
Used in:

head_content

The idea behind the <next1id> tag is to provide some way of automatically indexing fragment identifiers.
6.8.2.1 The n attribute

The n attribute specifies the name of the next generated fragment identifier. It is typically an alphabetic string
followed by a two-digit number. A typical <nextid> tag might look like this:

<html>

<head>

<nextid n=DOC54>
</head>

An automatic-document generator might use the nextid information to successively name fragment identifiers
DOC54, DOC55, and so forth within this document.

page 151

HTML & XHTML: The Definitive Guide

Chapter 7. Formatted Lists

Making information more accessible is the single most important quality of HTML and its progeny XHTML. The
languages' excellent collection of text style and formatting tools help you organize your information into
documents readers quickly understand, scan, and extract, possibly with automated browser agents.

Beyond embellishing your text with specialized text tags, HTML and XHTML also provide a rich set of tools that
help you organize content into formatted lists. There's nothing magical or mysterious about lists. In fact, the
beauty of lists is their simplicity. They're based on common list paradigms we encounter every day, such as an
unordered laundry list, ordered instruction lists, and dictionary-like definition lists. All are familiar, comfortable
ways of organizing content. All provide powerful means for quickly understanding, scanning, and extracting
pertinent information from your web documents.

7.1 Unordered Lists

Like a laundry or shopping list, an unordered list is a collection of related items that have no special order or
sequence. The most common unordered list you'll find on the Web is a collection of hyperlinks to other
documents. Some common topic, like "Related Kumquat Lovers' Sites," allies the items in an unordered list, but
they have no order among themselves.

7.1.1 The Tag

The tag signals to the browser that the following content, ending with the </u1> tag, is an unordered list of
items. Inside, each item in the unordered list is identified by a leading <11i> tag. Otherwise, nearly anything
HTML/XHTML-wise goes, including other lists, text, and multimedia elements. Section 7.3

Typically, the browser adds a leading bullet character and formats each item on a new line, indented somewhat
from the left margin of the document. The actual rendering of unordered lists, although similar for the popular
browsers (see Figure 7-1), is not dictated by the standards, so you shouldn't get bent out of shape trying to attain
exact positioning of the elements.

Here is an example XHTML unordered list, which Internet Explorer renders with bullets, as shown in Figure 7-1:

Popular Kumquat recipes:

<1li>Pickled Kumquats</1i>
<1i>"'Quats and 'Kraut (a holiday favorite!)</Ti>
<T1i>"'Quatshakes</Ti>

There are so many more to please every palate!

Figure 7-1. A simple unordered list

23 Mo Special Drder - Microzoft Intermet Explorer

Fie Edt View Favoes Took Help m

Pepular Eumquat recipes:
s Dickled Eumguats
e 'Cuats and Fraut (a2 hobday Bavontel)
» 'Cuatshakes

There are so many more bo please every palate|

1_::] Done :;J: My Computier

Tricky HTML authors sometimes use nested unordered lists, with and without <11i>-tagged items, to take
advantage of the automatic, successive indenting. You can produce some fairly slick text segments that way. Just
don't depend on it for all browsers, including future ones. Rather, it's best to use the border property with a style
definition in the paragraph (<p>) or division (<div>) tag to indent nonlist sections of your document (see
Chapter 8).

page 152

HTML & XHTML: The Definitive Guide

Function:
Define an unordered list
Attributes:
CLASS ONKEYUP
COMPACT ONMOUSEDOWN
DIR ONMOUSEMOVE
ID ONMOUSEOUT
LANG ONMOUSEOVER
ONCLICK ONMOUSEUP
ONDBLCLICK STYLE
ONKEYDOWN TITLE
ONKEYPRESS TYPE
End tag:
; never omitted
Contains:
list_content
Used in:
block

7.1.1.1 The type attribute

The graphical browsers automatically bullet each <1i>-tagged item in an unordered list. Netscape and Internet
Explorer use a solid circle, for example. Browsers that support HTML 3.2 and later versions, including 4.0 and
4.01, as well as XHTML 1.0, let you use the type attribute to specify which bullet symbol you'd rather have
precede items in an unordered list. This attribute may have a value of either disc, circle, or square. All the
items within that list will thereafter use the specified bullet symbol, unless an individual item overrides the list
bullet type, as described later in this chapter.

With the advent of standard Cascading Style Sheets, the W3C has deprecated the type attribute in HTML 4 and
in XHTML. Expect it to disappear.

7.1.1.2 Compact unordered lists

If you like wide open spaces, you'll hate the optional compact attribute for the <u1> tag. It tells the browser to
squeeze the unordered list into an even smaller, more compact text block. Typically, the browser reduces the line
spacing between list items. And it may reduce the indentation between list items, if it does anything at all with

indentation (usually it doesn't).

Some browsers ignore the compact attribute, so you shouldn't depend on its formatting attributes. Also, the
attribute is deprecated in the HTML 4 and XHTML standards, so it hasn't long to live.

page 153

HTML & XHTML: The Definitive Guide

7.1.1.3 The class and style attributes

The style and class attributes bring Cascading Style Sheet-based display control to lists, providing far more
comprehensive control than you would get through individual attributes like type. Combine the style attribute
with the tag, for instance, to assign your own bullet icon image, rather than use the default circle, disc, or
square. The class attribute lets you apply the style of a predefined class of the <u1> tag to the contents of the
unordered list. The value of the class attribute is the name of a style defined in some document-level or
externally defined style sheet. For more information, see Chapter 8. Section 8.1.1 / Section 8.3

7.1.1.4 The lang and dir attributes

The Tang attribute lets you specify the language used within a list, and d1 r lets you advise the browser as to which
direction the text ought to be displayed. The value of the Tang attribute is any of the ISO standard two-character
language abbreviations, including an optional language modifier. For example, adding 1ang=en-uk tells the
browser that the list is in English ("en") as spoken and written in the United Kingdom (UK). Presumably, the
browser may make layout or typographic decisions based upon your language choice. Section 3.6.1.2

The dir attribute tells the browser which direction to display the list contents, from left-to-right (dir=1tr) like
English or French, or from right-to-left (dir=rt1), such as with Hebrew or Chinese. Section 3.6.1.1

~.1.1.5 The id and title attributes

Use the id attribute to specially label the unordered list. An acceptable value is any quote-enclosed string that
uniquely identifies the list and can later be used to unambiguously reference the list in a hyperlink target, for
automated searches, as a style sheet selector, and for a host of other applications. Section 4.1.1.4

Use the optional title attribute and quote-enclosed string value also to identify the list. Unlike an 1id attribute, a
titTe does not have to be unique. Section 4.1.1.5

id and tit1e attributes
7.1.1.6 The event attributes

The many user-related events that may happen in and around a list, such as when a user clicks or double-clicks
within its display space, are recognized by current browsers. With the respective "on" attribute and value, you
may react to that event by displaying a user dialog box or activating some multimedia event. Section 12.3.3

7.2 Ordered Lists

Use an ordered list when the sequence of the list items is important. A list of instructions is a good example, as
are tables of contents and lists of document footnotes or endnotes.

7.2.1 The Tag

The typical browser formats the contents of an ordered list just like an unordered list, except that the items are
numbered instead of bulleted. The numbering starts at one and is incremented by one for each successive ordered
list element tagged with <11i>. Section 7.3

HTML 3.2 introduced a number of features that provide a wide variety of ordered lists. You can change the start
value of the list and select any of five different numbering styles. Here is a sample XHTML ordered list:

<h3>Pickled Kumquats</h3>
Heqe's an easy way to make a delicious batch of pickled 'quats:
<0 I>
<1li>Rinse 50 pounds of fresh kumquats</Ti>
<1i>Bring eight gallons white vinegar to rolling boil</1i>
<1li>Add kumquats gradually, keeping vinegar boiling</1i>
<1i>Boil for one hour, or until kumquats are tender</1i>
/<11>P1ace in sealed jars and enjoy!</Ti>
</0I>

This is rendered by Netscape as shown in Figure 7-2.

page 154

HTML & XHTML: The Definitive Guide

Function:
Define an ordered list
Attributes:
CLASS ONMOUSEDOWN
COMPACT ONMOUSEMOVE
DIR ONMOUSEOUT
ID ONMOUSEOVER
LANG ONMOUSEUP
ONCLICK START
ONDBLCLICK STYLE
ONKEYDOWN TITLE
ONKEYPRESS TYPE
ONKEYUP
End tag:
; never omitted
Contains:
list_content
Used in:
block

Figure 7-2. An ordered list

IIT]. Dicless “p - Fhel!:r..ﬂ:l::

Fie Edil Wew Search Go Bookmerks Tasks Help

s —
Pickled Kumquats

Here's an easy way to make a delicious batch of piclded 'quats:

1. Binge 50 pounds of fresh leumequats

2. Brng eight gallons white vinegar to rolling boil

3. Add kumeuats gradually, keeping winegar boiling
4, Beil for one howr, or untl kumeguats are tender
5. Place m sealed jars and enjov!

page 155

HTML & XHTML: The Definitive Guide

7.2.1.1 The start attribute

Normally, browsers automatically number ordered list items beginning with the Arabic numeral 1. The start
attribute for the <o1> tag lets you change that beginning value. To start numbering a list at 5, for example:
<ol start=5>

<Ti> This is item number 5.</T1i>

<Ti> This is number six!</1i>

<1i> And so forth...</Ti>
</0l>

7.2.1.2 The type attribute

By default, browsers number ordered list items with a sequence of Arabic numerals. Besides being able to start
the sequence at some number other than 1, you also can use the type attribute with the <o1> tag to change the
numbering style itself. With the <o1> tag, the type attribute may have a value of A for numbering with capital
letters, a for numbering with lowercase letters, I for capital Roman numerals, i for lowercase Roman numerals,
or 1 for common Arabic numerals. (See Table 7-1.)

Table 7-1, HTML Type Values for Numbering Ordered Lists

Type Value Generated Style Sample Sequence
A Capital letters A/ B,C,D
a Lowercase letters a,b,c,d
I Capital Roman numerals LILIIL, IV
i Lowercase Roman numerals 1, ii, iii, iv
1 Arabic numerals 1,2,3,4

The start and type attribute extensions work in tandem. The start attribute sets the starting value of the item
integer counter at the beginning of an ordered list. The type attribute sets the actual numbering style. For
example, the following ordered list starts numbering items at 8, but because the style of numbering is set to i, the
first number is the lowercase Roman numeral "viii." Subsequent items are numbered with the same style, and
each value is incremented by 1 as shown in this HTML example: (!

(1] Notice that we don't include the </11> end tag in the HTML example, but do in all the XHTML ones? Some
end tags are optional with HTML, but must be included in all XHTML documents.

<ol start=8 type="i'">
<1i> This is the Roman number 8.
<1i> The numerals increment by 1.
 And so forth...

</0l>

The results are shown in Figure 7-3.

Figure 7-3. The start and type attributes work in tandem

X In Tandem - Miciozofl Inteinet Exploie
File Edt WYiew Favote: Took Help n

v, This is the Boman number £
The mumerals mcrement by 1.
x. And so forth

B

ba

£] Dane =4 My Computer

The type and value of individual items in a list can be different from the list as a whole, described in Section 7.3.1.
As mentioned earlier, the start and type attributes are deprecated in HTML 4 and XHTML. Consider using style
sheets instead.

page 156

HTML & XHTML: The Definitive Guide

7.2.1.3 Compact ordered lists

Like the unordered list, the ordered list has an optional compact attribute that is deprecated in the HTML 4 and
XHTML standards. Unless you absolutely need to use it, don't.

7.2.1.4 The class, dir, id, lang, event, style, and title attributes

These attributes are applicable as well with ordered lists and have identical effects as for unordered lists. Section
7.1.1.3 / Section 7.1.1.4 / Section 7.1.1.5 / Section 7.1.1.6

7.3 The Tag

It should be quite obvious to you by now that the <11i> tag defines an item in a list. It's the universal tag for list
items in ordered (<o1>) and unordered (<u1>) lists, as we discussed earlier, and for directories (<dir>) and
menus (<menu>), which we discuss in detail later in this chapter.

Function:
Define an item within an ordered, unordered, directory, or menu list
Attributes:
CLASS ONMOUSEDOWN
DIR ONMOUSEMOVE
ID ONMOUSEOUT
LANG ONMOUSEOVER
ONCLICK ONMOUSEUP
ONDBLCLICK STYLE
ONKEYDOWN TITLE
ONKEYPRESS TYPE
ONKEYUP VALUE
End tag:
; often omitted in HTML
Contains:
flow
Used in:
list_content

Because the end of a list element can always be inferred by the surrounding document structure, most authors
omit the ending </11> tags for their list elements. That makes sense because it becomes easier to add, delete, and
move elements around within a list. However, XHTML requires the end tag, so it's best to get used to including it
in your documents.

page 157

HTML & XHTML: The Definitive Guide

Although universal in meaning, there are some differences and restrictions to the use of the <11 > tag for each list
type. In unordered and ordered lists, what follows the <11> tag may be nearly anything, including other lists and
multiple paragraphs. Typically, if it handles indentation at all, the browser successively indents nested list items,
and the content in those items is justified to the innermost indented margin.

Directory and menu lists are another matter. They are lists of short items like a single word or simple text blurb
and nothing else. Consequently, <11> items within <di r> and <menu> tags may not contain other lists or other
block elements, including paragraphs, preformatted blocks, or forms.

Clean documents, fully compliant with the HTML and XHTML standards, should not contain any text or other
document item inside the unordered, ordered, directory, or menu lists that is not contained within an <11i> tag.
Most browsers are tolerant of violations to this rule, but then you can't hold the browser responsible for
compliant rendering for exceptional cases, either.

7.3.1 Changing the Style and Sequence of Individual List Items

Just as you can change the bullet or numbering style for all of the items in an unordered or ordered list, you also
can change the style for individual items within those lists. With ordered lists, you also can change the value of
the item number. As you'll see, the combinations of changing style and numbering can lead to a variety of useful
list structures, particularly when included with nested lists. Do note, however, that the standards have deprecated
these attributes in deference to their CSS counterparts.

7.3.1.1 The type attribute

Acceptable values for the type attribute in the <11i> tag are the same as the values for the appropriate list type:
items within unordered lists may have their type set to circle, square, or disc, while items in an ordered list
may have their type set to any of the values shown previously in Table 7-1.

Careful. With earlier browsers, such as Netscape Navigator and Internet Explorer versions 4 and earlier, a change
in the bullet or numbering type in one list item similarly affected subsequent items in the list. Not so for HTML 4-
compliant browsers, such as Netscape version 6 and Internet Explorer version 5! The type attribute effects are
acute and limited to only the current <11i> tag. Subsequent items revert to the default type; each must contain the
specified type.

Figure 7-4 shows the effect changing the type for an individual item in an ordered list has on subsequent items,
as rendered by Internet Explorer from the following source:

<1i type=A>Changing the numbering type</Ti>
<1i type=I>Uppercase Roman numerals</Ti>
<1i type=i>Lowercase Roman numerals</Ti>
<1i type=1>Plain ol' numbers</1i>
<1i type=a>Doesn't alter the order.</Ti>

<1i> <-- But, although numbering continues sequentially,</1i>
<1i> types don't persist. See? I should've been a "g"!</1i>
</ol1>

Figure 7-4. Changing the numbering style for each item in an ordered list

a He-Typing ltems - Microsoft Internet Explorer
Eite Edt View Favorter Tool: Help m
. : B
& Changng the numberng type
I Uppercase Roman numerals
. Lowercase Foman numerals
4. Plain ol numbers
e Doesn't alter the order,
£, <=-- But, although numbenng contimes sequentally,
7. types don't persist See? I should've been a g’
E|
&1 Done 2 My Compades

type changes the display style of the number, but not the value of the number.
You may use the style sheet-related style and class attributes to effect individual type changes in ordered and

unordered lists that may or may not affect subsequent list items. Please see Chapter 8 for details, particularly
Section 8.4.7.5.

page 158

HTML & XHTML: The Definitive Guide

7.3.1.2 The value attribute

The value attribute changes the number of a specific list item and those that follow it. Since the ordered list is the
only type with sequentially numbered items, the value attribute is valid only when used within an <11i> tag inside
an ordered list.

To change the current and subsequent numbers attached to each item in an ordered list, simply set the value
attribute to any integer. The following source uses the value attribute to jump the numbering on items in an
XHTML ordered list:

Item number 1</1i>

And the second</T1i>

<1i value=9> Jump to number 9</1i>

<1li>And continue with 10...</1i>
</ol1>

The results are shown as rendered by Netscape in Figure 7-5.

Figure 7-5. The value attribute lets you change individual item numbers in an ordered list

[# Renumbering ltems - Hetzcape _|Of =

Fie Edt ‘ew Search Go Bookmarks Tasks Help
[r

1. Item mamber 1
2. And the second
8 Jump to number 9
10. And connmue wath 10...

7.3.1.3 The style and class attributes

The sty1e attribute for the <11i> tag creates an inline style for the elements enclosed by the tag, overriding any
other style rule in effect. The class attribute lets you format the content according to a predefined class of the
<11i> tag; its value is the name of that class. Section 8.1.1 / Section 8.3

7.3.1.4 The class, dir, id, lang, event, style, and title attributes

These attributes can be applied to individual list items and have similar effects for ordered and unordered lists.
Section 7.1.1.3 / Section 7.1.1.4 / Section 7.1.1.4 / Section 7.1.1.6

7.4 Nesting Lists

Except inside directories or menus, lists nested inside other lists are fine. Menu and directory lists can be
embedded within other lists.

Indents for each nested list are cumulative, so take care not to nest lists too much; the list contents could quickly
turn into a thin ribbon of text flush against the right edge of the browser document window.

7.4.1 Nested Unordered Lists

The items in each nested unordered list may be preceded by a different bullet character at the discretion of the
browser. For example, Internet Explorer Version 2 for Macintosh used an alternating series of hollow, solid
circular, and square bullets for the various nests in the following source fragment as shown in Figure 7-6 (other
browsers to date haven't been as inventive):

<1li>Morning Kumquat Delicacies

<1i>Hot Dishes

Kumquat omelet</1i>
<Tli>Kumquat waffles

Country style</1i>
<1li>Belgian</11i>

</1i>
Kumquats and toast</Ti>

</1i>

page 159

HTML & XHTML: The Definitive Guide

<1i>Cold Dishes

Kumquats and cornflakes</1i>
<1li>PickTed Kumquats</1i>
<1i>Diced Kumquats</Ti>

</1i>

</Ti>

Figure 7-6. Bullets change for nested unordered list items
Mested Unonrdered st

EnoEERRRCIE CIEEEECEE

« Moming Kumaquat Delicacies
ol io% Dishé-sqm
o Kumqual mne].el
o Kumgquat waffles
o Country skyle
a Belgian
o Kumguats and toast
» Cold Dishes
n Kumguats and cormflakes
o Pickled Kumaquats
o Diced Kumgquats

L

You can change the bullet style for each unordered list and even for individual list items (see the type attribute
discussion earlier in this chapter), but the repertoire of bullets is limited. For example, Internet Explorer for
Windows uses a solid disc regardless of the nesting level.

7.4.2 Nested Ordered Lists

By default, browsers number the items in ordered lists beginning with the Arabic numeral 1, nested or not. It
would be great if the standards numbered nested ordered lists in some rational, consecutive manner. For
example, the items in the second nest of the third main ordered list might be successively numbered "3.2.1,"
"3.2.2," "3.2.3," and so on.

With the type and value attributes, however, you do have a lot more latitude in how you create nested ordered
lists. An excellent example is the traditional style for outlining, which uses the many different ways of numbering
items offered by the type attribute (see Figure 7-7):
<ol type="A">
<1i>A History of Kumquats</1i>
<ol type="1">
Early History</T1i>
<ol type="a">
<1i>The Fossil Record</Ti>
Kumquats: The Missing Link?</Ti>
</ol1>
Mayan Use of Kumquats</1i>
<1li>Kumquats in the New world</1i>
</ol1>
Future Use of Kumquats</1i>
</ol1>

Figure 7-7. The type attribute lets you do traditional outlining with ordered lists

[Dutlining - Metscape BEE

Fie Eit Yew Ssarch Go Bookmarks Tasks Heip
]
A A History of Kumcuats
1. Early History
a The Fossil Record
b. Eumquats: The MMissing Link?
2. Mayan Tse of Eumeuats
3 Eumguats in the Mew Warld
E. Future Use of Kumquats

page 160

HTML & XHTML: The Definitive Guide

7.5 Definition Lists

HTML and XHTML also support a list style entirely different from the ordered and unordered lists we've
discussed so far: definition lists. Like the entries you find in a dictionary or encyclopedia, complete with text,
pictures, and other multimedia elements, the definition list is the ideal way to present a glossary, list of terms, or
other name/value lists.

7.5.1 The <dl> Tag

The definition list is enclosed by the <d1> and </d1> tags. Within the tags, each item in a definition list is
composed of two parts: a term followed by its definition or explanation. Instead of <1i>, each item name in a
<d1> list is marked with the <dt> tag, followed by the item's definition or explanation as it is marked by the <dd>
tag.

Unless you change the display attributes with style sheet rules, browsers typically render the item or term name at
the left margin and render the definition or explanation below it and indented. If the definition terms are very
short (typically less than three characters), the browser may choose to place the first portion of the definition on
the same line as the term. See how the source XHTML definition list below gets displayed by Netscape in Figure
7-8:

<3%>Common Kumquat Parasites</h3>
<d1>
<dt>Leaf mites</dt>
<dd>The leaf mite will ravage the Kumquat tree, stripping it
of any and all vegetation.</dd>
<dt>Trunk dropsy</dt>
<dd>This microscopic larvae of the common opossum
chigger will consume the structural elements of the
tree trunk, causing it to collapse inward.</dd>

</d1>
Figure 7-8. A definition list as presented by Netscape
[Defining Text - Helscape [(O] x]
Fle Edit “ew Search Go Bookmarks Tesks Hep
TR ITEII
Common Kumquat Parasites
Leaf mites
The leaf mute will rawage the Fumguat tree, stripping it of any and all vegetation,
Trunk dropsy
Thiz trdcroscopic larvae of the cotnmen opossum chigger will consume the strucharal
elements of the ree trunk, causmg it to collapse inward,

As with other list types, you can add more space between the definition list items by inserting paragraph <p> tags
at the end of their content or by defining a spacious style for the respective tags.

7.5.1.1 More compact definition lists

The <d1> tag supports the compact attribute, advising the browser to make the list presentation as small as
possible. Few browsers, if any, honor this attribute, and it has been deprecated in HTML 4 and XHTML.

7.5.1.2 The class, dir, id, lang, style, title, and event attributes

The many other attributes for the <d1> tag should be quite familiar by now. The style and class attributes, of
course, let you control the display style; the id and tit1e tag attributes let you uniquely label its contents; the dir
and Tang attributes let you specify its native language; and the many on-event attributes let you react to user-
initiated mouse and keyboard actions on the contents. Not all are implemented by the currently popular browsers
for this tag or for many others. Section 3.6.1.1 / Section 3.6.1.2 / Section 4.1.1.4 / Section 4.1.1.5 / Section 8.1.1 /
Section 8.3 / Section 12.3.3

page 161

HTML & XHTML: The Definitive Guide

<dl>
Function:
Define a definition list
Attributes:
CLASS ONKEYUP
COMPACT ONMOUSEDOWN
DIR ONMOUSEMOVE
ID ONMOUSEOUT
LANG ONMOUSEOVER
ONCLICK ONMOUSEUP
ONDBLCLICK STYLE
ONKEYDOWN TITLE
ONKEYPRESS
EndTag:
</dl>; never omitted
Contains:
dl content
Used in:
block

7.5.2 The <dt> Tag

This <dt> tag defines the term component of a definition list. It is valid only when used within a definition <d1>
list preceding the term or item, before the <dd> tag and the term's definition or explanation.

Traditionally, the definition term that follows the <dt> tag is short and sweet - a word or few. Technically, it can
be any length. If long, the browser may exercise the option of extending the item beyond the display window, or
wrap it onto the next line where the definition begins.

Since the end of the <dt> tag immediately precedes the start of the matching <dd> tag, it is unambiguous and so
not required. However, the XHTML standard insists that it be present. So get used to including it in your
documents.

7.5.2.1 Formatting text with <dt>
In practice, browsers are either too lenient or too dumb to enforce the rules, so some tricky HTML authors misuse
the <dt> tag to shift the left margin right and left, respectively, for fancy text displays. (Remember, tab characters

and leading spaces don't usually work with regular text.) We don't condone violating the HTML, and certainly not
the XHTML standard, and caution you once again about tricked-up documents. Use style sheets instead.

page 162

HTML & XHTML: The Definitive Guide

<dt>
Function:
Define a definition list term
Attributes:
CLASS ONKEYUP
DIR ONMOUSEDOWN
1D ONMOUSEMOVE
LANG ONMOUSEOUT
ONCLICK ONMOUSEOVER
ONDBLCLICK ONMOUSEUP
ONKEYDOWN STYLE
ONKEYPRESS TITLE
End tag:
</dt>; may be omitted in HTML
Contains:
text
Used in:
dl_content

7.5.2.2 The class, dir, id, lang, style, title, and event attributes

The <dt> tag supports the standard HTML 4/XHTML tag attributes. The style and class attributes, of course,
let you control the display style; the id and tit1e tag attributes let you uniquely label its contents; the dir and
Tang attributes let you specify its native language; and the many on-event attributes let you react to user-initiated
mouse and keyboard actions on the contents. Not all are implemented by the currently popular browsers for this
tag or for many others. Section 3.6.1.1 / Section 3.6.1.2 / Section 4.1.1.4 / Section 4.1.1.5 / Section 8.1.1 / Section
8.3 / Section 12.3.3

7.5.3 The <dd> Tag

The <dd> tag marks the start of the definition portion of an item in a definition list. According to the HTML and
XHTML standards, <dd> belongs only inside a definition <d1> list, immediately following the <dt> tag and term
and preceding the definition or explanation.

The content that follows the <dd> tag may be any HTML construct, including other lists, block text, and
multimedia elements. Although treating it otherwise identically as conventional content, browsers typically
indent definition list <dd> definitions. And since the start of another term and definition (<dt>) or the required
end tag of the definition (</d1>) unambiguously terminates the preceding definition, the </dd> tag is not needed
and its absence makes your source text more readable. However, and once again, XHTML insists that the end tag
appear in your documents, so you may as well get used to adding </dd> to your documents.

page 163

HTML & XHTML: The Definitive Guide

<dd>
Function:
Define a definition list term
Attributes:
CLASS ONKEYUP
DIR ONMOUSEDOWN
1D ONMOUSEMOVE
LANG ONMOUSEOUT
ONCLICK ONMOUSEOVER
ONDBLCLICK ONMOUSEUP
ONKEYDOWN STYLE
ONKEYPRESS TITLE
End tag:
</dd>; always omitted in HTML
Contains:
flow
Used in:
dl_content

7.5.3.1 The class, dir, id, lang, style, title, and event attributes

The <dt> tag supports the standard tag attributes. The style and class attributes, of course, let you control the
display style; the id and tit1e tag attributes let you uniquely label its contents; the dir and Tang attributes let
you specify its native language; and the many on-event attributes let you react to user-initiated mouse and
keyboard actions on the contents. Not all are implemented by the currently popular browsers for this tag or for

many others. / Section 3.6.1.1 / Section 3.6.1.2 / Section 4.1.1.4 / Section 4.1.1.5 / Section 8.1.1 / Section 8.3 /
Section 12.3.3

7.6 Appropriate List Usage
In general, use unordered lists for:

e Hotlists and other link collections

e Short, nonsequenced groups of text

e Emphasizing the high points of a presentation

page 164

HTML & XHTML: The Definitive Guide

In general, use ordered lists for:
e Tables of contents
e Instruction sequences
e Sets of sequential sections of text

e Assigning numbers to short phrases that can be referenced elsewhere

In general, use definition lists for:
e Glossaries
e Custom bullets (make the item after the <dt> tag an icon-sized bullet image)

e Any list of name/value pairs
7.7 Directory Lists

The directory list is a specialized form of the unordered list. It has been deprecated in the HTML 4 and XHTML
standards. We don't recommend that you use it at all. Section 7.1.1

7.7.1 The <dir> Tag (Deprecated)

The designers of HTML originally dedicated the <di r> tag for displaying lists of files. As such, the browser, if it
treats <dir> and differently at all (most don't), expects the various list elements to be quite short, possibly
no longer than 20 characters or so. Some browsers display the elements in a multicolumn format and may not use
a leading bullet.

As with the unordered list, define directory list items with the <1i> tag. When used within a directory list,
however, the <11i> tag may not contain any block element, including paragraphs, other lists, preformatted text, or
forms.

The following example puts the directory tag to its traditional task of presenting a list of filenames:

ng distribution tape has the following files on it:

<dir>
<1li><code>README</code></11i>
<code>Makefile</code></11i>
<code>main.c</code></1i>
<code>config.h</code></11i>
<Ti><code>util.c</code></1i>

</dir>

Notice that we use the <code> tag to ensure that the filenames would be rendered in an appropriate manner (see
Figure 7-9 as rendered by the now ancient Mosaic browser).

Figure 7-9. An example <dir> list

File Edit Options Navigate Hotlists Help

CeEREEED e REIR |8

The distnbution tape has the followmg files on it
@ FEADME

-
)

@ Makefile
@ nain. o
@ config.h
Qutil.c

7.7.1.1 The <dir> attributes

The attributes for the <di r> tag are identical to those for <u1> with the same effects.

page 165

HTML & XHTML: The Definitive Guide

<dir>
Function:
Define a directory list
Attributes:
CLASS ONKEYUP
DIR ONMOUSEDOWN
ID ONMOUSEMOVE
LANG ONMOUSEOUT
ONCLICK ONMOUSEOVER
ONDBLCLICK ONMOUSEUP
ONKEYDOWN STYLE
ONKEYPRESS TITLE
End tag:
</dir>; never omitted
Contains:
list_content
Used in:
block
~.8 Menu Lists

The menu list is yet another specialized form of the unordered list. It, too, like <d1i r> is deprecated in the HTML 4
and XHTML standards, so we don't recommend using it. Section 7.1.1

7.8.1 The <menu> Tag (Deprecated)

The <menu> tag displays a list of short choices to the reader, such as a menu of links to other documents. The
browser may use a special (typically more compact) representation of items in a menu list compared with the
general unordered list, or even use some sort of graphical pull-down menu to implement the menu list. If the list
items are short enough, the browser may even display them in a multicolumn format and may not precede each
list item with a bullet.

Like an unordered list, define the menu list items with the <1i> tag. When used within a menu list, however, the
<11> tag may not contain any block element, including paragraphs, other lists, preformatted text, or forms.

Compare the source text below and the ancient Mosaic display (Figure 7-10) with the directory (Figure 7-9) and
unordered (Figure 7-1) list displays presented earlier in the chapter:

Some popular kumquat recipes include:

<menu>
<1li>Pickled Kumquats</1i>
<1li>"Quats and 'Kraut (a holiday favorite!)</Ti>
<Ti>"Quatshakes</Ti>

</menu>

There are many more to please every palate!

page 166

HTML & XHTML: The Definitive Guide

<menu>
Function:
Define a menu list
Attributes:
CLASS ONKEYUP
DIR ONMOUSEDOWN
1D ONMOUSEMOVE
LANG ONMOUSEOUT
ONCLICK ONMOUSEOVER
ONDBLCLICK ONMOUSEUP
ONKEYDOWN STYLE
ONKEYPRESS TITLE
End tag:
</menu>; never omitted
Contains:
list_content
Used in:
block
Figure 7-10. Sample <menu> list
File Edit Options MNavigate Hotlists Help

FEjeR|xsl[«lojsl J®=][1] [$

Some popular kumeguat recipes melade:

Q@ Fickled Fumguats
@ ‘Ouatz and 'Kraut (a holiday favorite!)
@ 'Ouatshakes

There are many more to please every palate|

page 167

HTML & XHTML: The Definitive Guide

Chapter 8. Cascading Style Sheets

Style sheets are the way publishing professionals manage the overall "look" of their publications - backgrounds,
fonts, colors, and so on - from a single page to huge collections of documents. Most desktop publishing software
support style sheets, as do the popular word processors. All desktop publishers and graphic designers worth their
salt are out there making web pages. So the cry-to-arms was inevitable: "Whaddaya mean HTML has no style
sheets?!"

From its origins, HTML focused on content over style. Authors are encouraged to worry about providing high
quality information and leave it to the browser to worry about presentation. We strongly urge you, too - as we do
throughout this book - to adopt that philosophy in your documents, especially those destined for the World Wide
Web. Don't mistake style for substance.

However, while use of the tag and related attributes like color produce acute presentation effects, style
sheets, when judiciously applied, bring consistency and order to whole document collections, as well as to
individual documents. Remember, too, that presentation is for the benefit of the reader. Even the original
designers of HTML understood the interplay between style and readability. For instance, readers can quickly
identify section heads in a document when they are enclosed in header tags like <h2>, which the modern browsers
present in large and often bold type. Style sheets extend that presentation with several additional effects,
including colors, a wider selection of fonts, even sounds so that users can even better distinguish elements of your
document. But most importantly, style sheets let you control the presentation attributes for all the tags in a
document - for a single document or a whole collection of many documents, and from a single master.

In early 1996, the World Wide Web Consortium put together a draft proposal defining Cascading Style Sheets
(CSS) for HTML. This draft proposal quickly matured into a recommended standard, which the commercial
browser manufacturers were quick to exploit. In mid-1998, the W3C extended the original specification to create
CSS2 which includes presentation standards for a variety of media besides the familiar onscreen browser, along
with a several other enhancements.

Up to now, however, no browser or web agent fully complies with the CSS2 standard. Since we realize that
eventual compliance with the W3C standard is likely, we'll cover all the components of the standard in this
chapter, even if they are not yet supported by any browser. As always, we'll denote clearly what is real, what is
proposed, and what is actually supported.

What we can't do is tell you everything the CSS2 standard provides. Like JavaScript, the Cascading Style Sheet
standard deserves a Definitive Guide of its own. Rather, we focus here on the elements of style sheets that impact
HTML and XHTML in general and the popular GUI-based browsers, Internet Explorer and Netscape Navigator,
in particular. These encompass the majority of the CSS2 standard. What's left out are discussions of other media.
We tell you how to tailor your documents to other media, but we don't go into the specifics, such as the CSS2
properties that control paging devices like printers or aural style sheets that govern the presentation of content
through speech synthesis. Don't get us wrong; these are fascinating and important topics. They just go beyond our
charter.

8.1 The Elements of Styles

At the simplest level, a style is nothing more than a rule that tells the browser how to render!! a particular tag's
contents. Each tag has a number of style properties associated with it, whose values define how that tag is
rendered by the browser. A rule defines a specific value for one or more properties of a tag. For example, most
tags have a color property, the value of which defines the color Netscape or Internet Explorer may use to display
the contents of the tag. Other properties include fonts, line spacing, margins, borders, sound volume, and voice,
which we describe in detail later in this chapter.

I'We explicitly avoided the term "display" here because it connotes visual presentation, whereas the CSS2
standard works hard to suggest many different ways of presenting the tagged contents of a document.

There are three ways to attach a style to a tag: inline styles, document-level styles, and external style sheets. You
may use one or more style sheets for your documents. The browser either merges the style definitions from each
style or redefines the style characteristic for a tag's contents. Styles from these various sources are applied to your
document, combining and defining style properties that cascade from external style sheets through local
document styles, ending with inline styles. This cascade of properties and style rules gives rise to the standard's
name: Cascading Style Sheets.

We cover the syntactic basics of the three style sheet techniques here. We delve more deeply into the appropriate
use of inline, document-level, and external style sheets at the end of this chapter.

page 168

HTML & XHTML: The Definitive Guide

8.1.1 Inline Styles: The style Attribute

The inline style is the simplest way to attach a style to a tag - just include a sty1e attribute with the tag along with
a list of properties and their values. The browser uses those style properties and values to render the contents of
just this instance of the tag.

For instance, the following style tells the browser to display the level-1 header text, "I'm so bluuuuoooo!", not only
in the <h1> tag style characteristic of the browser, but also in the color blue and italicized (if the browser is
capable):

<hl style="color: blue; font-style: italic">I'm so bluuuuoooo!</hl>

This type of style definition is called "inline" because it occurs with the tag as it appears in the document. The
scope of the style covers the contents of that tag only. Since inline styles are sprinkled throughout your document,
they can be difficult to maintain. Use the sty1e attribute sparingly and only in those rare circumstances when you
cannot achieve the same effects otherwise.

8.1.2 Document-Level Style Sheets

The real power of style sheets becomes more evident when you place a list of presentation rules within the head of
a document. Enclosed within their own <style> and </style> end tags, so-called "document-level" style sheets
affect all the same tags within that document, except for tags that contain an overriding inline sty1e attribute.!!

2l XHTML-based document-level style sheets get specially enclosed in CDATA sections of your documents. See
Chapter 16 for details.

<style>

Function:

Define a document-level style sheet

Attributes:
DIR
LANG
MEDIA
TITLE
TYPE
End tag:
</style>; rarely omitted in HTML
Contains:
styles
Used in:

head_content

The <style> tag must appear within the <head> of a document. Everything between the <style> and </style>
tags is considered part of the style rules to be applied to the document. To be perfectly correct, the contents of the
<style> tag are not HTML or XHTML and are not bound by the normal rules for markup content. The <style>
tag, in effect, lets you insert foreign content into your document that the browser uses to format your tags.

page 169

HTML & XHTML: The Definitive Guide

For example, a styles-conscious browser will display the contents of all <h1> tags as blue, italic text in a document
that has the following document-level style sheet definition in its head:!!

(31 This is an HTML example. An XHTML document would enclose styles in a CDATA section instead of in HTML
comments. See Section 16.3.7 for details.

<head>

<title>AT1 True Blue</title>

<style type="text/css">
<l--
/* make all Tevel-1 headers blue */
hl {color: blue; font-style: italic}
-=>

</style>

</head>

<body>

<h1>I'm so bTuuuuoooo!</hl>

<h1>I am ba-1oooooo, tooooo!</hl>

8.1.2.1 The type attribute

The type attribute defines the types of styles you are including within the tag. Cascading style sheets are all type
text/css ; JavaScript style sheets use the type text/javascript. You may omit the type attribute and hope the
browser will figure out the kind of styles you are using. We prefer to include the type attribute so that there is no
opportunity for confusion. Section 12.4

8.1.2.2 The media attribute

HTML and XHTML documents can wind up in the strangest places these days, even on cellular phones. To help
the browser figure out the best way to render your documents, the HTML 4 and XHTML standards let you
include the media attribute within the <style> tag. The value of this attribute is the medium for which this
document is intended; the default value is screen . Other defined values are tty, tv, projection, handheld,
print,braille, aural,and all.

A document intended for multiple media can use a quote-enclosed, comma-separated list of media types as the
value of this attribute. For example:

<style type="text/css" media="screen,print">

tells the browser that your document is layed out using CSS for display on both print pages and on a computer or
other intelligent display screen.

By specifying media, the browser applies the styles you define within the <style> tag only if the document is
being displayed on that medium. Thus, the browser would not apply our example set of styles designed for
media="screen,print" if the user is, for instance, connected to the Web with a handheld computer.

The CSS2 standard also lets you define media-specific style sheets through its extension to the @import at-rule
and through the @med1a at-rule. More about this in Section 8.1.4.

8.1.2.3 The dir, lang, and title attribute

As with any HTML/XHTML element, you can associate a descriptive title with the <style> tag. If the browser
chose to display this title to the user, it would use the values of the dir and Tang attributes to correctly render the
title. Section 3.6.1.1 / Section 3.6.1.2 / Section 4.1.1.5

8.1.3 External Style Sheets

You may also place style definitions, like our document-level style sheet example for the <h1> tags, into a text file
with the MIME type of text/css and import this "external” style sheet into your documents. Because an external
style sheet is a separate file and is loaded by the browser over the network, you can store it anywhere, reuse it
often, and even use others' style sheets. But most important, external style sheets give you the power to influence
the display styles not only of all related tags in a single document, but for an entire collection of documents.

For example, suppose we create a file named gen_styles.css containing the style rule:

hl {color: blue; font-style: italic}

For each and every one of the documents in our collections, we can tell the browser to read the contents of the
gen_styles.css file, which in turn will color all the <h1> tag contents blue and render the text in italic. Of
course, that will be true only if the user's machine is capable of these style tricks, they are using a styles-conscious
browser like Netscape or Internet Explorer, and the style isn't overridden by a document-level or inline style
definition.

You can load external style sheets into your document in two different ways: linked or imported.

page 170

HTML & XHTML: The Definitive Guide

8.1.3.1 Linked external style sheets

One way to load an external style sheet is to use the <11ink> tag:

<head>

<title>Style Tinked</title>

<link rel=stylesheet type="text/css"
href="http://www.kumquats.com/styles/gen_styles.css"
title="The blues">

</head>

<body>

<h1>I'm so bTuuuuoooo!</hl>

<hl> I am ba-Tooooo00, tooooo!<hl>

Recall that the <11 nk> tag creates a relationship between the current document and some other document on the
Web. In the example, we tell the browser that the document named in the href attribute is a stylesheet and that
its contents conform to the CSS2 standard, as indicated by the type attribute. We also provide a tit1e for the
style sheet, making it available for later reference by the browser. Section 6.7.2

The <1ink> tag must appear in the <head> of a document. The URL of the style sheet may be absolute or relative
to the document's base URL. The type may also be text/javascript, indicating (for Netscape only) that the style
rules are written in JavaScript instead of CSS2 syntax. Section 12.4

8.1.3.2 Imported external style sheets

The second technique for loading an external style sheet imports the files with a special command (aka "at-rule")
within the <style> tag:
<head>
<title>Imported style sheet</title>
<style>
<!l--
@import url(Chttp://www.kumquats.com/styles/gen_styles.css);
@import "http://www.kumquats.com/styles/spec_styles.css";
body {background: url(backgrounds/marble.gif)}
-=>
</style>
</head>
The @import at-rule expects a single URL parameter that names the network path to the external style sheet. The
URL may be a string enclosed in double-quotes and ending with a semicolon, or be the contents of the ur1l
keyword, enclosed in parentheses and with a trailing semicolon. The URL may be absolute or relative to the
document's base URL.

The @import at-rule must appear before any conventional style rules, either in the <style> tag or in an external
style sheet. Otherwise, the standard insists that the browser ignore the errant @import. By first importing all the
various style sheets, then processing document-level style rules, the CSS2 standard cascades: the last one
standing wins. Section 8.4.1.4

The @import at-rule can appear in a document-level style definition or even in another external style sheet, letting
you create nested style sheets.

8.1.4 Media-Specific Styles

Besides the media attribute for the <style> tag, the CSS2 standard has two other features that let you apply
different style sheets depending on the agent or device that will render your document. This way, for instance,
you can have one style or whole style sheet take effect when your document gets rendered on a computer screen,
and another set of styles for when the contents get punched out on a braille printer. And what about those cell
phones on the Web?

Like the media attribute for the style tag that affects the entire style sheet, you can specify whether the user's
document processori4! will load and use an imported style sheet.

[41 A.k.a. "user agent." Web documents get rendered on all kinds of devices these days, including the popular
browser, braille printers, televisions, and projectors, to name just a few.

Do that by adding a media-type keyword or a series of comma-separated keywords to the end of the @import at-
rule. For instance, the following example lets the user-agent decide to import and use the speech-synthesis style
sheet or a common PC display and print style sheet if it is able to render the specified media types:

@import urlChttp://www.kumquats.com/styles/visual_styles.css) screen,print;
@import "http://www.kumquats.com/styles/speech_styles.css" aural;

The CSS2 media types include a11, aural (speech synthesizers, for example), braille (tactile), embossed (braille
printers), handheld, print, projection, screen, tty (fixed-width fonts), and tv.

page 171

HTML & XHTML: The Definitive Guide

Another CSS2 way to select media is through the explicit @nedia at-rule, which lets you include media-specific
rules within the same style sheet, either at the document level or in an external style sheet. At the document level,
like @import, the @media at-rule must appear within the <style> tag contents. And the at-rules may not appear
within another rule. Unlike @import, @media may appear subsequent to other style rules, and indeed its style-rule
contents may override previous rules according to the cascading standard.

The contents of @media include one or more comma-separated media-type keywords followed by a curly-braces
({}) enclosed set of style rules. For example:
body {background: white}

@media tv, projection {
t})ody {background: 1t_blue}

The general style rule for the document's body background color of white gets changed to light blue by the one
within the @med1a at-rule, but only if the document gets rendered on a television or projection system instead of
some other medium. (Notice the extra set of curly braces that contain the @med1 a style rules?)

8.1.5 Linked Versus Imported Style Sheets

At first glance, it may appear that linked and imported style sheets are equivalent, using different syntax for the
same functionality. This is true if you use just one <11ink> tag in your document. However, special CSS2-standard
rules come into play if you include two or more <11ink> tags within a single document, even though the current
browsers don't abide by the rules yet.

With one <11nk> tag, the browser should load the styles in the referenced style sheet and format the document
accordingly, with any document-level and inline styles overriding the external definitions. With two or more
<Tink> tags, the browser should present the user with a list of all the <11 nk>ed style sheets. The user then selects
one of the linked sheets, which the browser loads and uses to format the document; the other <11ink>ed style
sheets get ignored.

On the other hand, the styles-conscious browser merges, as opposed to separating, multiple @imported style
sheets to form a single set of style rules for your document. The last imported style sheet takes precedence if there
are duplicate definitions among the style sheets. Hence, if the external gen_styles. css style sheet specification
tells the browser to make <h1> contents blue and italic, and spec_styles.css tells the browser to make <h1> text
red, then the <h1> tag contents will appear red and italic. And if we later define another color, say yellow, for <h1>
tags in a document-level style definition, the <h1> tags will all be yellow, and italic. Cascading effects. See?

In practice, the popular browsers treat linked style sheets just like imported ones by cascading their effects. The
browsers do not currently let you choose from among linked choices. Imported styles override linked external
styles, just as the document-level and inline styles override external style definitions. To bring this all together,
consider the example:
<html>
<head>
<1link rel=stylesheet href=sheetl.css type=text/css>
<1link rel=stylesheet href=sheet2.css type=text/css>
<style>
<!l--

@import url(sheet3.css);

@import url(sheet4.css);
-—>
</style>
</head>
Using the CSS2 model, the browser should prompt the user to choose sheetl.css or sheet2.css. It should then
load the selected sheet, followed by sheet3.css and sheet4.css. Duplicate styles defined in sheet3.css or
sheet4.css and in any inline styles will override styles defined in the selected sheet. In practice, the popular
browsers cascade the style sheet rules as defined in the example order sheet1 through sheet4.

8.1.6 Limitations of Current Browsers

Internet Explorer 4 and Netscape Navigator 4 and beyond support the <11 nk> tag to apply an external style sheet
to a document. Neither Netscape Navigator nor Internet Explorer support multiple <1ink>ed style sheets as
proposed by the CSS2 standard. Instead, they cascade all the <11 nk>ed style sheets, with rules in later sheets
overriding rules in earlier sheets.

Netscape Navigator ignores all at-rules and their contents, including @import and @med1a, but does process other

style rules that you may include before or after the at-rule within the <style> tag. Internet Explorer honors the
@import as well as the @med1a at-rules, for both document-level and external sheets, allowing sheets to be nested.

page 172

HTML & XHTML: The Definitive Guide

Achieving media-specific styles through external style sheets with current Netscape browsers is hopeless. Assume,
therefore, that most people who have Netscape will render your documents on a common PC screen, so make that
medium the default one. Then embed all other media-specific styles, such as those for print or braille, within
@med1ia at-rules, so that Internet Explorer and other CSS-compliant agents will properly select styles based on the
rendering medium. The only other alternative is to create media-specific <sty1e> tags within each document.
Run, do not walk, away from that idea.

We just hope the CSS2 standard will prevail soon so that style sheets, already mystifying to most, will become at
least that much less confusing.

8.1.7 Style Comments

Comments are welcome inside the <style> tag and in external style sheets, but don't use standard HTML
comments; style sheets aren't HTML. Rather, enclose style comments beginning with the sequence /* and ending
with */, as we did in the example in Section 8.1.2. (Those of you who are familiar with the C programming
language will recognize these comment markings.) Use this comment syntax for both document-level and
external style sheets. Comments may not be nested.

We recommend documenting your styles whenever possible, especially in external style sheets. Whenever the
possibility exists that your styles may be used by other authors, comments make it much easier to understand
your styles.

8.1.8 Handling Style-less Browsers

In our document-level style examples, you probably noticed that we placed the style definition inside a comment
tag (<!-- and -->). That's because although the older, style-less browsers will ignore the <sty1e> tag itself, they
will display the style definitions. Needless to say, your documents will not go over well when the first half of the
display contains all your style rules.

The newer, styles-conscious browsers ignore HTML comments within a <styTe> tag. Style-less browsers may be
with us for some time to come, so it's probably best to place your document-level style rules inside comments.
HTML comments should not be used in external style sheets.

For XHTML, document-level styles must be enclosed in a CDATA section instead of in HTML comments. See
Section 16.3.7 for details.

8.1.9 Style Precedence

You may import more than one external style sheet and combine them with document-level and inline style
effects in many different ways. Their effects cascade (hence, the name, of course). You may specify the font type
for our example <h1> tag, for instance, in an external style definition, whereas its color may come from a
document-level style sheet.

Style sheet effects are not cumulative, however: of the many styles which may define different values for the same
property - colors for the contents of our example tag, for instance - the one that takes precedence can be found by
following these rules, listed here in order.

Sort by origin

A style defined "closer" to a tag takes precedence over a more "distant" style. So an inline style takes
precedence over a document-level style, which takes precedence over the effects of an external style.

If more than one applicable style exists, sort by class

Properties defined as a class of a tag (see Section 8.3) take precedence over a property defined for the tag
in general.

If multiple styles still exist, sort by specificity

The properties for a more specific contextual style (see Section 8.2.3) take precedence over properties
defined for a less specific context.

If multiple styles still exist, sort by order

The property specified latest takes precedence.
The relationship between style properties and conventional tag attributes is almost impossible to predict. Style
sheet-dictated background and foreground colors - whether defined externally, at the document level, or inline -

override the various color attributes that may appear within a tag. But the align attribute of an inline image
usually takes precedence over a style-dictated alignment.

page 173

HTML & XHTML: The Definitive Guide

There is an overwhelming myriad of style and tag presentation-attribute combinations. You need a crystal ball to
predict which combination wins and which loses the precedence battle. The rules of redundancy and style versus
attribute precedence are not clearly elucidated in the W3C CSS2 standard, nor is there a clear pattern of
precedence implemented in the styles-conscious browsers. This is particularly unfortunate since there will be an
extended period, perhaps several years, in which users may or may not use a styles-conscious browser. Authors
will have to implement both styles and non-style presentation controls to achieve the same effects.

Nonetheless, our recommendation is to run - as fast as you can - away from one-shot, inline, localized kinds of
presentation effects like those afforded by the tag and color attribute. They have served their temporary
purpose; it's now time to bring consistency (without the pain!) back into your document presentation. Use styles.
It's the HTML way.

8.2 Style Syntax

The syntax of a style, its "rule" as you may have gleaned from our previous examples, is very straightforward.

8.2.1 The Basics

A style rule is made up of at least three basic parts: a selector, which is the name of the markup element that the
style rule affects, followed by a curly brace ({}) enclosed, semicolon-separated list of one or more style
property:value pairs:

selector {propertyl:valuel; property2:valuel value2 value3; ...}

For instance, we might define the color for the contents of all the level-1 header elements of our document:
hl {color: green}

In this example, h1 is the selector which is also the name of the level-1 header element, color is the style property,
and green is the value. Neat and clean. Try it. It really works!

Properties require at least one value, but may include two or more values. Separate multiple values with a space,
as is done for the three values that define property?2 in our first example. Some properties require that multiple
values be separated with commas.

Current styles-conscious browsers ignore letter case in any element of a style rule. Hence, H1 and h1 are the same
selector, and COLOR, color, Co10R, and cOLor are equivalent properties. At one time, convention dictated that
HTML authors write selector names in uppercase characters, such as H1, P, and STRONG. This convention is still
common and is used in the W3C's own CSS2 document.

Current standards dictate, however, particularly for XML-compliant documents, that element names be
capitalized exactly as defined by their respective DTDs. With XHTML, for instance, all element names (h1, p, or
strong, for instance) are lowercase, so their respective CSS2 selectors must be in lowercase. We'll abide by these
latter conventions.

Any valid element name (a tag name minus its enclosing < and > characters and attributes) can be a selector. You
may include more than one tag name in the list of selectors, as we explain in the following sections.

8.2.2 Multiple Selectors

When separated by commas, all the elements named in the selector list are affected by the property values in the
style rule. This can make life very easy for authors. For instance:

hl, h2, h3, h4, h5, h6 {text-align: center}
does exactly the same thing as:

hl {text-align: center}
h2 {text-align: center}
h3 {text-align: center}
h4 {text-align: center}
h5 {text-align: center}
h6 {text-align: center}

Both styles tell the browser to center the contents of headers levels 1-6. Clearly, the first version is easier to type,
understand, and modify. And it takes less time and fewer resources to transmit across a network, albeit a trivial
consideration in this instance.

page 174

HTML & XHTML: The Definitive Guide

8.2.3 Contextual Selectors

Normally, the styles-conscious browser applies document-level or imported styles to a tag's contents wherever
they appear in your document, without regard to context. However, the CSS2 standard defines a way to have a
style applied only when a tag occurs within a certain context within a document, such as when it is nested within
other tags.

To create a contextual selector, list the tags in the order in which they should be nested in your document,
outermost tag first. When that nesting order is encountered by the browser, the style properties will be applied to
the last tag in the list.

For example, here's how you might use contextual styles to define the classic numbering sequence used for
outlines: upper-case Roman numerals for the outer level, capital letters for the next level, Arabic numerals for the
next, and lower-case letters for the innermost level:

ol 1i {list-style: upper-roman}

ol ol 1i {list-style: upper-alpha}

ol ol ol 1i {Tist-style: decimal}

ol ol ol ol Ti {Tist-style: lower-alpha}

According to the example style sheet, when the styles-conscious browser encounters the <11i> tag nested within
one <o1> tag, it uses the upper-roman value for the 1ist-style property of the <1i> tag. When it sees an <1i>
tag nested within two <o1> tags, the same browser will use the upper-alpha Tist-style. Nest an <11i> tag within
three and four <o1> tags, and you'll see the decimal and Tower-alpha 1ist-styles used, respectively. That's
exactly what Netscape Navigator does, as shown in Figure 8-1 (Internet Explorer does the same thing). Compare
Figure 8-1 with using the ordered list tag's type attribute to achieve similar effects as shown in Figure 7-7.

Figure 8-1. Nested ordered list styles

ﬁ Outhning with Style - Metzcape [_ [O] =]
Eie Bot View Zearch Go Bookmarks Tasks Help
I
1 A History of Eumauats
A Early Histery
1. The Fossil Becord
2 Rumquats The Missing Link?
B Mayan Use of Kumaquats
. Eumquats in the Wew Wotld
I Future Tzes of Eumguats
A Gifts
B Compensation
1. Auther royalbies

Similarly, you may impose a specific style on tags related only by context. For instance, this contextual style
definition will color the emphasis tag's () contents red only when it appears inside a level-1 header tag
(<h1>), and not elsewhere in the document:

hl em {color: red}

If there is potential ambiguity between two contextual styles, the more specific context prevails.

Like individual tags, you may also have several contextual selectors mixed with individual selectors, each and all
separated by commas, sharing the same list of style declarations. For example:

hl em, p strong, address {color: red}

means that you'll see red whenever the tag appears within an <h1> tag, or when the tag appears
within a <p> tag, and for the contents of the <address> tag.

The nesting need not be exact to match the rule. For example, if you nest the tag within a <u1> tag
within a <p> tag, you'll still match the rule for p strong that we defined above. If a particular nesting matches
several style rules, the most specific rule is used. For example, if you defined two contextual selectors:

p strong {color: red}
p ul strong {color: blue}

and use the sequence <p> in your document, the second, more specific rule applies, coloring the
contents of the tag blue.

page 175

HTML & XHTML: The Definitive Guide

8.2.4 Universal, Child, and Adjacent Selectors

The CSS2 standard defines additional patterns for selectors, besides commas and spaces, as illustrated in the
following examples:

* {color: purple; font: zapfDingBats}

ol > 1i {font-size: 200%; font-style: italic}

hl + h2 {margin-top: +4mm}

In the first example, the universal asterisk selector applies the style to all elements of your document, so that any
text gets displayed in ZapfDingBat characters.s' The second example selects a particular child/parent
relationship, in this case items in an ordered list.

15] Assuming, of course, that the style is not overridden by a subsequent rule.

The third example illustrates the adjacent selector type which selects for one tag immediately following another in
your document. In this case, the special selector adds vertical space to instances in which your document has a
level-2 header immediately following a level-1 header.

8.2.5 Pseudo-Elements

There are elemental relationships in your documents you cannot explicitly tag. The drop-cap is a common print
style, but how do you select the first letter in a paragraph? There are ways, but you have to identify each and every
instance separately. There is no tag for the first line in a paragraph. And there are occasions where you might
want the browser to automatically generate content, such as to add the prefix "Item #" and automatically number
each item in an ordered list.

CSS2 introduces four new pseudo-elements that let you define special relationships and styles for their display:
first-line, first-letter, before and after. Declare each as a colon-separated suffix of a standard markup element. For
example:

p:first-Tine {font-size: 200%; font-style: italic}

means that the browser should display the first line of each paragraph italicized and twice as large as the rest of
the text. Similarly:

p:first-letter {font-size: 200%; float: left}

tells the browser to make the first letter of a paragraph twice as large as the remaining text and float the letter to
the left, allowing the first two lines of the paragraph to float around the larger initial letter.!s!

(6] The properties that can be specified for the first-letter and first-11ne pseudo-classes are the font
properties, color and background properties, text-decoration, vertical-align, text-transform,
Tine-height, and clear. In addition, the first-Tetter pseudo-class accepts the margin properties,
padding properties, border properties, and f1oat. The first-11ne pseudo-class also accepts the word-
spacingand Tetter-spacing properties.

The :before and :after pseudo-elements let you identify where in your document you insert generated content,
such as list numbers, special lead-in headers, and so forth. Hence, these pseudo-elements go hand-in-hand with
the CSS2 content and counter properties. To whet your appetite, consider this example:

ol {counter-reset: item} o

ol Ti:before {content: "Item #" counter(item) ;
counter-increment: item}

Too bad none of the current browsers support pseudo-elements.

8.3 Style Classes

CSS2 classes let you create, at the document level or in an external style sheet, several different styles for the same
elements, each distinguished by a class name. To apply the style class, name it as the value of the class attribute
in its corresponding tag.

8.3.1 Regular Classes

In a technical paper you might want to define one paragraph style for the abstract, another for equations, and a
third for centered quotations. None of the paragraph tags may have an explicit context in the document so you
could distinguish it from the others. Rather, you may define each as a different style class:

<style>

<!--

p.abstract {font-style: italic; margin-left: 0.5cm; margin-right: 0.5cm}
p.equation {font-family: Symbol; text-align: center}

hl, p.centered {text-align: center; margin-left: 0.5cm; margin-right: 0.5cm}
-=>

</style>

page 176

HTML & XHTML: The Definitive Guide

Notice first in the example that defining a class is simply a matter of appending a period-separated class name as
a suffix to the tag name as the selector in a style rule. Unlike the XHTML-compliant selector, which is the name of
the standard tag and must be in lowercase, the class name can be any sequence of letters, numbers, and hyphens,
but must begin with a letter.”! Careful, though, case does matter, so that abstract is not the same as AbsTRact.
And classes, like selectors, may be included with other selectors, separated by commas, as in the third example.
The only restriction on classes is that they cannot be nested: p.equation.centered is not allowed, for example.

7] Due to its support of JavaScript style sheets, Netscape cannot handle class names that happen to match
JavaScript keywords. The class "abstract,” for instance, generates an error in Netscape.

Accordingly, the first rule in the example creates a class of paragraph styles named "abstract" whose text will be
italic and indented from the left and right margins by a half-centimeter. Similarly, the second paragraph style-
class "equation"” instructs the browser to center the text and to use the Symbol typeface to display the text. The
last style rule creates a style with centered text and half-centimeter margins, applying this style to all level one
headers as well as creating a class of the <p> tag named centered with that style.

To use a particular class of a tag, you add the class attribute to the tag, as in this example, as rendered by
Internet Explorer in Figure 8-2:

<p class=abstract>

T?is is the abstract paragraph. See how the margins are indented?
</p>

<h3>The equation paragraph follows</h3>

<p class=equation>

a=b+1

</p>

<p class=centered>

T?is paragraph's text should be centered.

</p>

Figure 8-2. Use classes to distinguish different styles for the same tag

£} Clazey Siylez - Microzoft Internet Explorer [_ O] =]
File Edt View Favotes Took Help m
Thiz iz the abstract paragraph, See how the margias are indented?
The equation paragraph Follows
a=g+1
This paragraph's text should be centered EI
] Done 2 Mp Compusier

For each paragraph, the value of the class attribute is the name of the class to be used for that tag.

8.3.2 Generic Classes

You may also define a class without associating it with a particular tag, and apply that class selectively through
your documents for a variety of tags. For example:

.italic {font-style: italic}
creates a generic class named italic. To use it, simply include its name with the class attribute. So, for instance,
use <p class=italic> or <hl class=italic> to create an italic paragraph or header.

Generic classes are quite handy and make it easy to apply a particular style to a broad range of tags. Netscape
Navigator and Internet Explorer support CSS2 generic classes.

8.3.3 ID Classes

Almost all HTML tags accept the id attribute, which assigns an identifier to the element that is unique within the
document. This identifier can be the target of a URL, used by automated document processing tools and can also
be used to specify a style rule for the element.

page 177

HTML & XHTML: The Definitive Guide

To create a style class that can be applied with the id attribute, follow the same syntax used for style classes,
except with a # character before the class name instead of a period. This style creates such classes:

<style>

<!--

#yellow {color : yellow}

hl#blue {color : blue}

-—>

</style>

Within your document, you could use <hl id=blue> to create a blue heading, or add id=ye17Tow to almost any tag
to turn it yellow. You can mix and match both class and id attributes, giving you a limited ability to apply two
independent style rules to a single element.

There is a dramatic drawback to using classes defined this way: the value of the id attribute must be unique
within the document. You cannot legally reuse the class, although the browser might let you get away with it.

For this reason, we strongly discourage creating and using these kinds of classes. Stick to the conventional style of
classes to create correct, robust documents.

8.3.4 Pseudo-Classes

In addition to conventional style classes, the CSS2 standard defines pseudo-classes, which allow you to define the
display style for certain tag states. Pseudo-classes are like regular classes, with two notable differences: they are
attached to the tag name with a colon instead of a period, and they have predefined names, not arbitrary ones you
may give them.

There are seven pseudo-classes, three of which are explicitly associated with the <a> tag.
8.3.4.1 Hyperlink pseudo-classes

The popular CSS2-compliant browsers distinguish three special states for the hyperlinks created by the <a> tag:
not visited, being visited, and visited. The browser may change the appearance of the tag's contents to indicate its
state, such as with underlining or color. Through pseudo-classes, you can control how these states get displayed
by defining styles for a: 1ink (not visited), a:active (being visited), and a: visited.

The :11ink pseudo-class controls the appearance of links that are not selected by the user and have not yet been
visited. The :active pseudo-class defines the appearance of links that are currently selected by the user and are
being processed by the browser. The :visited pseudo-class defines those links that have already been visited by
the user.

To completely define all three states of the <a> tag, you might write:

a:Tink {color: blue}
a:active {color: red; font-weight: bold}
a:visited {color: green}

Unvisited links will be shown in blue. When the user selects a link, the browser will change its text color to red
and make it bold. Once visited, the link will revert to conventional green text.

8.3.4.2 Interaction pseudo-classes

The CSS2 standand defines two new pseudo-classes, which along with :active, relate to user actions and advise
the interactive agent, such as a browser, how to display the affected element as the user interacts with the
element. In other words, these two pseudo-classes are dynamic: hover and focus.

For instance, when you drag the mouse over a hyperlink in your document, the browser may change the mouse
pointer icon. Hovering can be associated with a style that is only in effect while the mouse is over the element. For
example, if you add the : hover pseudo-class to our example list of hyperlink style rules:

a:thover {color: yellow}

the text associated with unvisited links will be rendered in blue, turn yellow when you point to it with the mouse,
go red while you visit it, and turn green after you're done visiting.

Similarly, the :focus pseudo-class lets you change the style for an element when it becomes the object of
attention. An element may be under focus when you tab to it, click on it, or, dependng on the browser, advance
the cursor to it. Regardless of how the focus got to the element, the style rules associated with the focus pseudo-
class are only applied while the element has the focus.

page 178

HTML & XHTML: The Definitive Guide

8.3.4.3 Nesting and language pseudo-classes

The new CSS2 : first-child pseudo-class lets you specify how an element may be rendered when it is the first
child of the containing element. For instance, the following rule selects only those paragraphs which are the first
child of a division; there can be no intervening elements. Then, and only then, will the paragraph's text contents
be rendered in italics:

div > p:first-child {font-style: italic}

Accordingly, the first paragraph in the following HTML fragment would be rendered in italics by a CSS2-
compliant browser since it is the first child element of its division. Conversely, the second paragraph comes after
a level-2 header, which is the first child of the second division. So, that second paragraph in the example gets
rendered in plain text because it is not the first child of its division:
<div>
<p>
I get to be in italics.
</p>
</div>
<div>
<h2> New Division</h2>
<p>
I'min plain text because my paragraph is a second child of the division.
Finally, the CSS2 standard defines a new pseudo-class that lets you select an element based on its language. For
instance, you might include the Tang=fr attribute in a <d1iv> tag to instruct the browser that the division contains
French language text. The browser may specially treat the text. Or, you may impose a specific style with the
pseudo-class :1ang. For example:

div:lang(it) {font-family: Roman}

says that text in divisions of a document that contain the Italian language should use the Roman font family.
Appropriate, don't you think? Notice that you specify the language in parentheses immediately after the Tang
keyword. Use the same two-letter ISO standard code for the pseudo-class : Tang as you do for the lang attribute.
Section 3.6.1.2

8.3.4.4 Browser support of pseudo-classes

None of the popular browsers support the : 1ang, : first-child, or : focus pseudo-classes yet. All of the popular
browsers support the : 1ink, :active, and :visited pseudo-classes for the hyperlink tag (<a>). Even though
:active also may be used for other elements, none of the browsers yet support applications beyond the <a> tag.
The :hover pseudo-class is great for special effects on links and other elements, but only Internet Explorer
supports it and only for hyperlinks.

8.3.5 Mixing Classes

You may mix pseudo-classes with regular classes by appending the pseudo-class name to the selector's class
name. For example, here are some rules that define plain, normal, and fancy anchors:

.plain:Tink, a.plain:active, a.plain:visited {color: blue}
:link {color: blue}

:visited {color: green}

:active {color: red}

.fancy:Tink {font-style: italic}

.fancy:visited {font-style: normal}

.fancy:active {font-weight: bold; font-size: 150%}

sV T VI VI PN P V)

The plain version of <a> is always blue, no matter the state of the link. Normal links start out blue, turn red when
active, and convert to green when visited. The fancy link inherits the color scheme of the normal <a> tag, but
adds italic text for unvisited links, converts back to normal text after being visited, and actually grows 50 percent
in size and becomes bold when active.

A word of warning about that last property of the fancy class: specifying a font size change for a transient display
property will result in lots of browser redisplay activity when the user clicks on the link. Given that some browsers
run on slow machines, this redisplay may be annoying to your readers. Given also that implementing that sort of
display change is something of a pain, it is unlikely that most browsers will support radical appearance changes in
<a> tag pseudo-classes.

8.3.6 Class Inheritance

Classes inherit the style properties of their generic base tag. For instance, all the properties of the plain <p> tag
apply to a specially defined paragraph class, except where the class overrides a particular property.

page 179

HTML & XHTML: The Definitive Guide

Classes cannot inherit from other classes, only from the unclassed version of the tag they represent. In general,
therefore, you should put as many common styles into the rule for the basic version of a tag and create classes
only for those properties that are unique to that class. This makes maintenance and sharing of your style classes
easier, especially for large document collections.

8.4 Style Properties

At the heart of the CSS2 specification are the many properties that let you control how the styles-conscious
browser presents your documents to the user. The standard collects these properties into six groups: fonts, colors
and backgrounds, text, boxes and layout, lists, and tag classification. We'll stick with that taxonomy and preface
the whole shebang with a discussion of property values and inheritance before diving into the properties
themselves.

You'll find a summary of the style properties in Appendix C.

8.4.1 Property Values
There are five distinct kinds of property values: keywords, length values, percentage values, URLSs, and colors.
8.4.1.1 Keyword property values

A property may have a keyword value that expresses action or dimension. For instance, the effects of under1ine
and 1ine-through are obvious property values. And you can express property dimensions with keywords like
smal1 and xx-Targe. Some keywords are even relational: bolder, for instance, is an acceptable value for the
font-weight property. Keyword values are not case-sensitive: under1ine, UNDERLINE, and underline are all
acceptable keyword values.

8.4.1.2 Length property values

So-called Tength values (a term taken from the CSS2 standard) explicitly state the size of a property. They are
numbers, some with decimals, too. Length values may have a leading + or - sign to indicate that the value is to be
added to or subtracted from the immediate value of the property. Length values must be followed immediately by
a two-letter unit abbreviation - with no intervening spaces.

There are three kinds of length-value units: relative, pixels, and absolute. Relative units specify a size that is
relative to the size of some other property of the content. Currently, there are only two relative units: em, which is
the width of m in the current font (written as em); and x-height, which is the height of the letter "x" in the current
font (abbreviated ex). The pixels unit, abbreviated px, is equal to the size of a pixel on the browser's display.
Absolute property value units are more familiar to us all. They include inches (abbreviated 1in), centimeters (cm),

millimeters (mm), points (pt, !/72 of an inch), and picas (pc, twelve points).

All of the following are valid length values, although not all units are recognized by the styles-conscious browsers:
lin

1.5cm

+0.25mm

-3pt

-2.5pc

+100em

-2.75ex

250px

8.4.1.3 Percentage property values
Similar to the relative length-value type, a percentage value describes a proportion relative to some other aspect

of the content. It has an optional sign and decimal portion to its numeric value, and must have the percent sign
(%) suffix. For example:

Tine-height: 120%

computes the separation between lines to be 120 percent of the current line height (usually relative to the text
font height). Note that this value is not dynamic, though: changes made to the font height after the rule has been
processed by the browser will not affect the computed line height.

8.4.1.4 URL property values

Some properties also accept, if not expect, a URL as a value. The syntax for using a URL in a style property is
different from conventional HTML/XHTML:

url(service://server. com/pathname)

page 180

HTML & XHTML: The Definitive Guide

The keyword ur1 is required, as are the opening and closing parentheses. Do not leave any spaces between ur1
and the opening parenthesis. The ur1 value may contain either an absolute or a relative URL. However, note that
the URL is relative to the immediate style sheet's URL, the one in which it is declared. This means that if you use
a url value in a document-level or inline style, the URL is relative to the HTML document containing the style
document. Otherwise, the URL is relative to the @imported or <1ink>ed external style sheet's URL.

8.4.1.5 Color property values

Color values specify colors in a property (surprised?). You can specify a color as a color name or a hexadecimal
RGB triple, as is done for common attributes, or as a decimal RGB triple unique to style properties. Both color
names and hexadecimal RGB triple notation are described in Appendix G.

Unlike regular HTML or XHTML, style sheets will accept three-digit hexadecimal color values. The single digit is
doubled to create a conventional six-digit triple. Thus, the color #78c is equivalent to #7788cc. In general, three-
digit color values are handy only for simple colors.

The decimal RGB triple notation is a bit different:
rgb(red, green, blue)

The red, green, and b1ue intensity value are integers in the range zero to 255 or integer percentages. As with a
URL value, do not leave any spaces between rgb and the opening parenthesis.

For example, in decimal RGB convention, the color white is rgh (255, 255, 255) or rghb(100%, 100%, 100%), and
a medium yellow is rgb (127, 127, 0) or rgb(50%, 50%, 0%).

8.4.2 Property Inheritance

In lieu of a specific rule for a particular element, properties and their values for tags within tags are inherited
from the parent tag. Thus, setting a property for the <body> tag effectively applies that property to every tag in the
body of your document, except for those that specifically override it. So, to make all the text in your document
blue, you need only say:

body {color: blue}

rather than create a rule for every tag you use in your document.

This inheritance extends to any level. If you later created a <div> tag with text of a different color, the styles-
conscious browser will display all the text contents of the <div> tag and all its enclosed tags in that new color.
When the <div> tag ends, the color reverts to that of the containing <body> tag.

In many of the following property descriptions, we refer to the tag containing the current tag as the "parent
element" of that tag.

8.4.3 Font Properties

The loudest complaint we hear is that HTML and its progeny XHTML lack font styles and characteristics that
even the simplest of text editors implement. The various attributes address part of the problem, but they
are tedious to use since each text font change requires a different tag.

Style sheets change all that, of course. The CSS2 standard provides seven font properties that modify the
appearance of text contained within the affected tag: font-family, font-size, font-size-adjust, font-styTe,
font-variant, font-stretch, and font-weight. In addition, there is a universal font property that lets you
declare all of the font changes with a single property.

Please be aware that style sheets cannot overcome limitations of the client system nor can the browser conjure
effects if the fonts it uses do not provide the means.

8.4.3.1 The font-family property

The font-family property accepts a comma-separated list of font names, one of which will be selected by the
styles-conscious browser for display of the tag's text. The browser uses the first font named in the list that also is
installed and available for display on the client machine.

Font name values are for specific font styles, such as Helvetica or Courier, or a generic font style as defined by the
CSS2 standard: serif, sans-serif, cursive, fantasy, and monospace. Each browser defines which actual font

name is to be used for each generic font. For instance, Courier is the most popular choice for a monospace font.

Since fonts vary wildly among browsers, when specifying a font style, you should always provide several choices,
ending with a suitable generic font.

page 181

HTML & XHTML: The Definitive Guide

For example:
hl {font-family: Helvetica, Univers, sans-serif}

causes the browser to look for and use Helvetica, and then Univers. If neither font is available for the client
display, the browser will use the generic sans serif typeface.

Enclose font names that contain spaces - New Century Schoolbook, for example - in quotation marks. For
example:

p {font-family: Times, "New Century Schoolbook"™, Palatino, serif}

That extra set of double quotation marks in an inline style rule will cause problems. Accordingly, use single
quotation marks in an inline style:

<p style="font-family: Times, 'New Century Schoolbook', Palatino, serif'>

In practice, you need not use quotation marks: the browser will ignore spaces before and after the font name, and
convert multiple internal spaces to a single space. Thus:

p {font-family: Times, New Century Schoolbook, Palatino, serif}
<p style="font-family: Times, New Century Schoolbook, Palatino, serif">

are both legal, but we recommend that you use quotation marks anyway, just in case things change.
8.4.3.2 The font-size property

The font-size property lets you prescribe absolute or relative length values, percentages, and keywords to define
the font size. For example:

p {font-size: 12pt}

p {font-size: 120%}

p {font-size: +2pt}

p {font-size: medium}

p {font-size: larger}

The first rule is probably the most used because it is the most familiar: it sets the font size to a specific number of
points (12 in this example). The second example rule sets the font size to be 20 percent larger than the parent
element's font size. The third increases the font's normal size by two points.

The fourth example selects a predefined size set by the browser, identified by the medium keyword. Valid absolute-
size keywords are xx-smal11, x-smal1, smal1, medium, 1arge, x-1arge, and xx-1arge, and usually correspond to
the seven font sizes used with the size attribute of the tag.

The last font-size rule selects the next size larger than the font associated with the parent element. Thus, if the
size were normally med1ium, it would be changed to Targe. You can also specify smaller, with the expected results.

None of the current browsers handle the incremented font-size correctly. Rather, they ignore the
increment/decrement sign and use its value as an absolute size. So, for instance in the middle example in this
section, the font-size would end up as two points, not two points larger than the normal size.

8.4.3.3 The font-stretch property

Besides different sizes, font families sometimes contain condensed and expanded versions in which the
characters are squeezed or stretched, respectively. Use the font-stretch property to choose more compressed or
stretched-out characters from your font.

Use the property value of normal to, of course, select the normal-sized version of the font. The relative values
wider and narrower select the next wider or next narrower variant of the font's characters, respectively, but not
wider or narrower than the most ("ultra") expanded or contracted one in the family.

The remaining font-stretch property values choose specific variants from the font family. Starting from the most
condensed and ending with the most expanded, the values are ultra-condensed, extra-condensed, condensed,
semi-condensed, semi-expanded, expanded, extra-expanded, and ultra-expanded.

The font-stretch property, of course, assumes that your display fonts support stretchable fonts. Even so, the
current popular browsers ignore this property.

page 182

HTML & XHTML: The Definitive Guide

8.4.3.4 The font-size-adjust property

Without too many details, the legibility and display size of a font depends principally on its aspect ratio: the ratio
of its rendered size to its x-height, which is a measure of the font's lowercase glyph height. Fonts with aspect
ratios approaching 1.0 tend to be more legible at smaller sizes than fonts with aspect ratios approaching zero.

Also, because of aspect ratios, the actual display size of one font may be apparently smaller or larger than another
font at the same size. So, when one font is not available for rendering, the substituted font may distort the
presentation.

The font-size-adjust property lets you readjust the substituted font's aspect ratio so that it will better fit the
display. Use the property value of none to ignore the aspect ratio. Otherwise, include your desired aspect ratio (a
decimal value less than one), typically the aspect ratio for your first-choice display font. The styles-conscious
browser thereby will compute and display the substituted font at a size adjusted to your specified aspect ratio:

s = (n/a) * fs

where s is the new, computer font-size for display of the substituted font, calculated as the font-size-adjust
value n divided by the substituted font's aspect ratio a times the current font-size fs. For example, let's imagine
that your first-choice font Times New Roman, which has an aspect ratio of 0.45, is not available, so the browser
then substitutes Comic Sans MS, which has an aspect ratio of 0.54. So that the substitution maintains nearly
equivalent sizing for the font display, say at a 18 px font-size, with the font-size-adjust property set to 0.45,
the CSS2-compliant browser would display or print the text with the substituted Comic Sans MS font at the
smaller (0.45/0.54 x 18 px) = 15 px.

Sorry that we can't show you how the popular browsers would do this because they don't support it.

8.4.3.5 The font-style property

Use the font-style property to slant text. The default style is normal and may be changed to italic or oblique.
For example:

h2 {font-style: italic}

makes all level-2 header text italic. As of this writing, Netscape 4 supports only the italic value for font-style;
Internet Explorer 4 and 5 support both values, although it is usually hard to distinguish italic from oblique.

8.4.3.6 The font-variant property

The font-variant property lets you select a variant of the desired font. The default value for this property is
normal, indicating the conventional version of the font. You may also specify sma11-caps to select a version of the
font in which the lowercase letters have been replaced with small capital letters.

This property is not supported by Netscape; Internet Explorer versions 4 and 5 incorrectly implements sma11-
caps as all uppercase letters.

8.4.3.7 The font-weight property

The font-weight property controls the weight or boldness of the lettering. The default value of this property is
normal. You may specify bold to obtain a bold version of a font, or use the relative bolder and Tighter values to
obtain a version of the font that is bolder or lighter than the parent element's font.

To specify varying levels of lightness or boldness, set the value to a multiple of 100, between the values 100
(lightest) and 900 (boldest). The value 400 is equal to the normaT version of the font, and 700 is the same as
specifying bold.

Internet Explorer and Netscape Navigator support the normal and bo1d values. Only Internet Explorer supports
the Tighter and bolder values, as well. Both browsers support the numeric boldness values.

8.4.3.8 The font property

More often than not, you'll find yourself specifying more than one font-related property at a time for a tag's text
content display. A complete font specification can get somewhat unwieldy; for example:

font property

p {font-family: Times, Garamond, serif;
font-weight: bold;
font-size: 12pt;
Tine-height: 1l4pt}

page 183

HTML & XHTML: The Definitive Guide

To mitigate this troublesome and potentially unreadable collection, use the comprehensive font property and
group all the attributes into one set of declarations:

p {font: bold 12pt/l4pt Times, Garamond, serif}
The grouping and ordering of font attributes is important within the font property. The font style, weight, and
variant attributes must be specified first, followed by the font size and the line height separated by a slash

character, and ending with the list of font families. Of all the properties, the size and family are required; the
others may be omitted.

Here are some more sample font properties:

em {font: italic 14pt Times}
hl {font: 24pt/48pt sans-serif}
code {font: 12pt Courier, monospace}

The first example tells the styles-conscious browser to emphasize text using a 14-point italic Times face. The
second rule has <h1> text displayed in the boldest 24-point sans-serif font available, with an extra 24 points of
space between the lines of text. Finally, text within a <code> tag is set in 12-point Courier or the browser-defined
monospace font.

We leave it to your imagination to conjure up examples of the abuses you could foster with the font styles.
Perhaps a recent issue of Wired magazine, notorious for avant-garde fonts and other print-related abuses, would
be helpful in that regard?

8.4.4 Color and Background Properties

Every element in your document has a foreground and a background color. In some cases, the background is not
one color, but a colorful image. The color and background style properties control these colors and images.

The children of an HTML/XHTML element normally inherit the foreground color of their parent. For instance, if
you make <body> text red, the styles-conscious browser also will display header and paragraph text in red.

Background properties behave differently, however - they are not inherited. Instead, each element has a default
background that is transparent, allowing the parent's background to show through. Thus, setting the background
image of the <body> tag does not cause that image to be reloaded for every element within the body tag. Instead,
the browser loads the image once and displays it behind the rest of the document, serving as the background for
all elements which do not themselves have an explicit background color or image.

8.4.4.1 The background-attachment property

If you specify a background image for an element, use the background-attachment property to control how that
image is attached to the browser's display window. With the default value scrol11, the browser moves the
background image with the element as the user scrolls through the document. A value of fixed prevents the
image from moving.

Netscape does not support this style property.
8.4.4.2 The background-color property

The background-color property controls the (you guessed it!) background color of an element. Set it to a color
value or to the keyword transparent. The default value is transparent. The effects should be obvious.

While you may have become accustomed to setting the background color of an entire document through the
special attributes for the <body> tag, the background-color style property can be applied to any element. For
example, to set the background color of one item in a bulleted list, you could use:

<1i style="background-color: blue">

Similarly, all the table header cells in a document could be given a reverse video effect with:
th {background-color: black; color: white}

If you really want your emphasized text to stand out, paint its background red:

em {background-color: red}

Netscape does not support this CSS2 property explicitly, but you may achieve the same effects through its support
of the general background property, as discussed in Section 8.4.4.6.

page 184

HTML & XHTML: The Definitive Guide

8.4.4.3 The background-image property

The background-image property puts an image behind the contents of an element. Its value is either a URL or
the keyword none. The default value is none.

As with background colors, you can place a background image behind the entire document or behind selected
elements of a document. With this style property, effects like placing an image behind a table or selected text are
now simple:

<table style="background-image: url(backgrounds/woodgrain.gif)">
Ti.marble {background-image: url(backgrounds/marble.gif)}

The first example uses an inline style to place a woodgrain finish behind a table. The second defines a list item
class that places a marble background behind <11> tags that use the class=marb1e attribute. For example, in
XHTML:

<h2>Here's what's for dinner tonight:</h2>

<1i class="marble">Liver with Onions</Ti>)
<1i class="marble">Mashed Potatoes and Gravy</1i>
<1i class="marble">Green Beans</1i>)
<1i class="marble">Choice of Milk, Tea, or Coffee</1i>

<h2>And for dessert:</h2>

Creamed Quats in Milk (yum! yum!)</Ti>

will produce a result like that in Figure 8-3.

Figure 8-3. Placing a background image behind an element

ﬁ Sitylich Backgrounds - Netzcape _ [O] =]
Fie Ecit Ywew Smsarch Go Bookmarks Tezks Help
WY

Here's what's for dinner tonight:

& Lorer with Omons

& hiashed Potatoes and Gravy

® Cireen Feans

& Choice of Milk, Tea, or Coffes

And for dessert:

® Creamed Quats i Mille (YUM! YTUMI)

If the image is larger than the containing element, it will be clipped to the area occupied by the element. If the
image is smaller, the image will be repeated to tile the area occupied by the element, as dictated by the value of
the background-repeat attribute.

You control the position of the image within the element with the background-position property. The scrolling
behavior of the image is managed by the background-attachment property.

While it may seem that a background color and a background image are mutually exclusive, you should usually
define a background color even if you are using a background image. That way, if the image is unavailable, such as
when the user doesn't automatically download images, the browser will display the background color instead. In
addition, if the background image has transparent areas, the background color will be used to fill in those areas.

8.4.4.4 The background-position property

By default, the styles-conscious browser renders a background image starting in the upper-left corner of the
allotted display area and tiled (if necessary) down and over to the lower-right corner of that same area. With the
background-pos1ition property, you can offset the starting position of the background image down and to the
right of that default point by an absolute (length) or relative (percentage or keyword) offset. The resulting image
fills the area from that offset starting point to the lower-right corner of the display space.

You may specify one or two values for the background-position property. If you use a single value, it applies to

both the vertical and horizontal positions. With two values, the first is the horizontal offset, and the second is the
vertical offset.

page 185

HTML & XHTML: The Definitive Guide

Length values (with their appropriate units; see Section 8.4.1.2) indicate an absolute distance from the upper-left
corner of the element behind which you display the background image. For instance:

table {background-image: url(backgrounds/marble.gif);
background-position: 10px 20px}

offsets the marble background 10 pixels to the right and 20 pixels down from the upper-left corner of any
<table> element in your document.

Percentage values are a bit trickier, but somewhat easier to use. Measured from to 100 percent from left to right
and top to bottom, the center of the element's content display space is at 50%, 50%. Similarly, the position one-
third of the way across the area and two-thirds of the way down is at 33%, 66%. So, to offset the background for
our example dinner menu to the center of the element's content display space, we use:

background-position: 50% 50%

Notice that the browser places the first marble.gif tile at the center of the content display area and tiles to the
right and down the window, as shown in Figure 8-4.

Figure 8-4. Marbled background offset to the center of the display

B Hackground lmage Bebhind 2 Mers - Hacieolt bnlemet Esphoe - [Of =]
Fis Ed Vew Go Favosler Help
. - o
G« 2 0 [A @6 & & B .mE
Biach Fammd Sip Reimdh Hoow Sewch Fardes Pt Fond Mk
-

Here's what's for dinner tonight:

* Liver with Onions

* Mashed Potatoes and Gravy

* Green Beans

* Choice of Milk, Tea, or Coffee

And for dessert:
* Creamed Quats in Milk (YTIM! YUM!) 7

So why use a number when a single word will do? You can use the keywords 1eft, center, and right, as well as
top, center, and bottom, for 0%, 50%, and 100%, respectively. To center an image in the tag's content area write:

background-position: center center

You can mix and match length and percentage values, ¢!
[8] That is, if the browser supports the value units. So far, Internet Explorer and Netscape support only a meager
repertoire of length units - pixels and percents.

so that:
background-position: lcm center

places the image one centimeter to the right of the tag's left edge, centered vertically in the tag's area.
8.4.4.5 The background-repeat property

Normally, the browser tiles a background image to fill the allotted space, repeating the image both down and to
the right. Use the background-repeat property to alter this "repeat” (default value) behavior. To have the image
repeat horizontally but not vertically, use the value repeat-x. For only vertical repetition, use repeat-y. To
suppress tiling altogether, use no-repeat.

A common use of this property is to place a watermark or logo in the background of a page without repeating the
image over and over. For instance:

body {background-image: url(backgrounds/watermark.gif);
background-position: center center;
background-repeat: no-repeat

will place the watermark image in the background at the center of the page.

A popular trick is to create a vertical ribbon down the right-hand side of the page:
body {background-image: url(backgrounds/ribbon.gif);

background-position: top right;
background-repeat: repeat-y

page 186

HTML & XHTML: The Definitive Guide

8.4.4.6 The background property

Like the various font properties, the many background CSS2 properties can get cuambersome to write and hard to
read later. So, like the font property, there also is a general background property.

The background property accepts values from any and all of the background-color, background-image,
background-attachment, background-repeat, and background-position properties, in any order. If you do
not specify values for some of the properties, that property is explicitly set to its default value. Thus:

background: red

sets the background-color property to red and resets the other background properties to their default values. A
more complex example:

background: url(backgrounds/marble.gif) blue repeat-y fixed center

sets all the background image and color properties at once, resulting in a marble image on top of a blue
background (blue showing through any transparent areas). The image repeats vertically, starting from the center
of the content display area, and does not scroll when the user scrolls the display. Notice that we included just a
single position value (center) and the browser used it for both the vertical and horizontal positions.

Although Netscape Navigator version 6 provides full support, the browser's version 4 supports only the
background property and does not honor any of the individual background ones. For this reason, you may want
to use the background property to achieve the broadest acceptance of your background image and color
properties.

8.4.4.7 The color property

The color property sets the foreground color for a tag's contents - the color of the text lettering, for instance. Its
value is either the name of a color, a hexadecimal RGB triple, or a decimal RGB triple, as outlined in Section
8.4.1.5. Thus, the following are all valid property declarations:

color: mauve

color: #ff7bd5

color: rgb(255, 125, 213)
color: rgb(100%, 49%, 84%)

Generally, you'll use the color property with text, but you may also modify non-textual content of a tag. For
example, the following example produces a green horizontal rule:

hr {color: green}

If you don't specify a color for an element, it inherits the color of its parent element.

8.4.5 Text Properties

Cascading style sheets make a distinction between font properties, which control the size, style, and appearance
of text, and text properties, which control how text is aligned and presented to the user.

8.4.5.1 The letter-spacing property

The Tetter-spacing property puts additional space between text letters as they are displayed by the browser. Set
the property with either a length value or the default keyword normal, indicating that the browser should use
normal letter spacing. For example:

blockquote {letter-spacing: 2px}

puts an additional two pixels between adjacent letters within the <blockquote> tag. Figure 8-5 illustrates what
happens when you put 5 pixels between characters.

This property currently is supported by Internet Explorer and by the latest Netscape Version 6.

Figure 8-5. The letter-spacing property lets you stretch text out

A} Spaced Dut - Microzoft Internet Explores H=lE

Fle Edi View Fawoites Took Help m
-

My normal self

I'm spaced out 5 pixels between characters

-]

&] Dane = iy Computes

page 187

HTML & XHTML: The Definitive Guide

8.4.5.2 The line-height property

Use the Tine-height property to define the spacing between lines of a tag's text content. Normally, browsers
single-space text lines - the top of the next line is just a few points below the last line. By adding to that line
height, you increase the amount of space between lines.

The Tine-height value can be an absolute or relative length, a percentage, a scaling factor, or the keyword
normal. For example:

p {line-height: 14pt}

p {line-height: 120%}

p {line-height: 2.0}

The first example sets the line height to exactly 14 points between baselines of adjacent lines of text. The second
computes the line height to 120 percent of the font size. The last example uses a scaling factor to set the line
height to twice as large as the font size, creating double-spaced text. The value normal, the default, is usually
equal to a scaling factor of 1.0 to 1.2.

Keep in mind that absolute and percentage values for Tine-height compute the line height based upon the value
of the font-size property when the 1ine-height property is defined. The computed property value will be
inherited by children of the element. Subsequent changes to font-size by either the parent or child elements will
not change the computed 1ine-height.

Scaling factors, on the other hand, defer the line-height computation until the text is actually displayed. Hence,
varying font-sizes affect 1ine-height locally. In general, it is best to use a scaling factor for the T1ine-height
property so that the line height will change automatically when the font size is changed.

Although usually considered separate from font properties, you may include this text-related 1ine-height
property's value as part of the shorthand notation of the font property. Section 8.4.3.8

8.4.5.3 The text-align property

Text justified with respect to the page margins is a rudimentary feature of nearly all text processors. The text-
align property brings that capability to HTML for any block-level tag. (The W3C standards people prefer that
you use CSS2 text-align styles rather than the explicit al1ign attribute for those block-level tags like <div> and
<p>.) Use one of four values: Teft, right, center, or justify. The default value is, of course, Teft. For example:

div {text-align: right}

tells the styles-conscious browser to align all the text inside <d1iv> tags against the right margin. The justify
value tells the browser to align the text to both the left and right margins, spreading the letters and words in the
middle to fit.

8.4.5.4 The text-decoration property
The text-decoration property produces text embellishments, some of which also are available with the original
physical style tags. Its value is one or more of the keywords underline, overline, 1ine-through, and b1ink. The

value none is the default and tells the styles-conscious browser to present text normally.

The text-decoration property is handy for defining different link appearances. For example:
a:visited, a:Tlink, a:active {text-decoration: underline overline}

puts lines above and below the links in your document.
This text property is not inherited, and non-textual elements are not affected by the text-decoration property.

Like the <b11ink> tag, Netscape Navigator supports the b11nk text-decoration property value, but not Internet
Explorer.

8.4.5.5 The text-indent property
Although less common today;, it still is standard practice to indent the first line of a paragraph of text.[!
[9] But not, obviously, in this book.

And some text blocks, such as definitions, typically "out-dent" the first line, creating what is called a hanging
indent.

The CSS2 text-indent property lets you apply these features to any block tag and thereby control the amount of
indentation of the first line of the block. Use length and percentage values; negative values create the hanging
indent. Percentage values compute the indentation as a percentage of the parent element's width. The default
value is zero.

page 188

HTML & XHTML: The Definitive Guide

To indent all the paragraphs in your document, for example:
p {text-indent: 3em}

The length unit em scales the indent as the font of the paragraph changes in size on different browsers.

Hanging indents are a bit trickier because you have to watch out for the element borders. Negative indentation
does not shift the left margin of the text; it simply shifts the first line of the element left, possibly into the margin,
border, or padding of the parent element. For this reason, hanging indents only work as expected if you also shift
the left margin of the element to the right by an amount equal to or greater than the size of the hanging indent.
For example:

p.wrong {text-indent: -3em}

p.hang {text-indent: -3em; margin-left: 3em}

p.large {text-indent: -3em; margin-left: 6em}

creates three paragraph styles. The first creates a hanging indent that extends into the left margin. The second
creates a conventional hanging indent. And the third creates a paragraph whose body is indented more than the
hanging indent. All three styles are shown in use in Figure 8-6.

Figure 8-6. The effects of text-indent and margin-left on a paragraph

I Indentations - Metecape [_ O] =]
Fie Edit ‘“iew Search Go Bookmarkz [esks Help
WL
aragraph uses class=wrong, which shifts the first ine of text cut past the left margm.
Mot too pretty.

This paragraph wses class=hang, Which creates a hanging indent. As you can gee,
the first lne i3 out at the left margin, whereas subsequent lines get indented
This s the mest common hanging-tdent style.

This paragraph uses class=large, which makes the hanging indent ecqual ta
cnly half of the paragraph's Ieft margm. The remainder of the
paragraph 15 mdented & ems from the left margin

8.4.5.6 The text-shadow property

The text-shadow property lets you give your text a three-dimensional appearance through the time-honored use
of shadowing. Values for the property include a required offset, and optional blur-radius and color. The property
may include more than one set of values, separated with commas, to achieve a stack of shadows, with each
subsequent set of values layered on top the previous one, but always beneath the original text.

The property's required offset is comprised of two length values. The first specifies the horizontal offset; the
second specifies the vertical offset. Positive values place the shadow to the right and below the respective length
distance from the text. Negative values move the shadow left and up, respectively.

The optional blur-radius also is a length value that specifies the boundaries for blurring, which effect depends on
the rendering agent. The other shadow value is color. This, of course, may be an RGB triple or color name, as for
other properties, and specifies the shadow color. Otherwise, text-shadow uses the color value of the color
property.

hl {text-shadow; 10px 10px 2px yellow}

p:first-letter {text-shadow: -5px -5px purple, 10px 10px orange}

The first text-shadow example puts a 2-pixel blurred-yellow shadow behind, 10 pixels below, and 10 pixels to the
right of level-1 headers in your document. The second example puts two shadows behind the first letter of each
paragraph. The purple shadow sits five pixels above and five pixels to the left of that first letter. The other
shadow, like in the first example although orange in this case, goes 10 pixels to the right and 10 pixels below the
first letter of each paragraph.

Sorry, we can't show you any of these effects since none of the popular browsers support this property, nor do
they support the first-letter pseudo-element.

page 189

HTML & XHTML: The Definitive Guide

8.4.5.7 The vertical-align property
The vertical-align property controls the relative position of an element with respect to the line containing the

element. Valid values for this property include:
baseline
Align the baseline of the element with the baseline of the containing element.
middle
Align the middle of the element with the middle (usually the x-height) of the containing element.
sub
Subscript the element.
super
Superscript the element.
text-top
Align the top of the element with the top of the font of the parent element.
text-bottom
Align the bottom of the element with the bottom of the font of the parent element.
top
Align the top of the element with the top of the tallest element in the current line.
bottom
Align the bottom of the element with the bottom of the lowest element in the current line.
In addition, a percentage value indicates a position relative to the current baseline, so that a position of 50% puts

the element halfway up the line height above the baseline. A position value of -100% puts the element an entire
line-height below the baseline of the current line.

Netscape supports all but the sub, super, and baseline values only when this property is applied to the
tag. Internet Explorer supports only sub and super when applied to text elements.

8.4.5.8 The word-spacing property

Use the word-spacing property to add additional space between words within a tag. You can specify a length
value or the keyword normal to revert to normal word spacing. For example:

h3 {word-spacing: 25px}

places an additional 25 pixels of space between words in the <h3> tag.

Netscape 6 supports the word-spacing property, but Internet Explorer does not.
8.4.5.9 The text-transform property

The text-transform property lets you automatically convert portions or all of your document's text into uppercase
or lowercase lettering. Acceptable values are capitalize, uppercase, lowercase, or none.

Capitalize renders each first letter of each word in the text into uppercase, even if the source document's text is
in lowercase. Uppercase and Towercase values repectively render all the text in the corresponding case. None, of
course, cancels any transformations.

For example:

hl {text-transform: uppercase}

makes all the letters in level-1 headers, presumably titles, appear in uppercase text, whereas:

h2 {text-transform: capitalize}

makes sure that each word in level-2 headers begins with a capital letter, appropriate for section heads, for

instance.

Note that while uppercase and lowercase affect the entire text, capitalize affects only the first letter of each
word in the text. Consequently, transforming the word htMl with capitalize will make it appear HtMI.

The text-transform property is supported by both Internet Explorer and Netscape Navigator.

page 190

HTML & XHTML: The Definitive Guide

8.4.6 Box Properties

The CSS2 model assumes that HTML and XHTML elements always fit within a rectangular box. Using the
properties defined in this section, you can control the size, appearance, and position of the boxes containing the
elements in your documents.

8.4.6.1 The CSS2 formatting model

Each element in a document can fit in a rectangular box. The CSS2 authors call this box the "core content area”
and surround it with three more boxes: the padding, the border, and the margin. Figure 8-7 shows these boxes

and defines some useful terminology.

Figure 8-7. The CSS2 formatting model and terminology

et left right rigphit
aper fiter fiiner oper
apa afga alga adga
leit left leit right right right
AN borger | padding padding | border margin
i * ¥ ¥ r ' ri o
' top mangin
fop border
i : top padding inner
g] T |
- k i 1 ' fop
i : conlenl | '
: : --------- :-l ! 2 b nner
: ; : ¢ bottomy pagding Dot
bortom border
4,
bortom margin
= =ted, bottany

The top, bottom, left-outer, and right-outer edges bound the content area of an element and all of its padding,
border, and margin spaces. The inner-top, inner-bottom, left-inner, and right-inner edges define the sides of the
core content area. The extra space around the element is the area between the inner and outer edges, including
the padding, border, and margin. A browser may omit any and all of these extra spaces for any element, and for
many, the inner and outer edges are the same.

When elements are vertically adjacent, the bottom margin of the upper elements and the top margin of the lower
elements overlap, so that the total space between the elements is the greater of the adjacent margins. For
example, if one paragraph has a bottom margin of one inch, and the next paragraph has a top margin of one-half
inch, the greater of the two margins, one inch, will be placed between the two paragraphs. This practice is known
as margin collapsing and generally results in better document appearance.

Horizontally adjacent elements do not have overlapping margins. Instead, the CSS2 model adds together adjacent
horizontal margins. For example, if a paragraph has a left margin of 1 inch and is adjacent to an image with a
right margin of 0.5 inch, the total space between the two will be 1.5 inches. This rule also applies to nested
elements, so that a paragraph within a division will have a left margin equal to the sum of the division's left
margin and the paragraph's left margin.

As shown in Figure 8-7, the total width of an element is equal to the sum of seven items: the left and right
margins, the left and right borders, the left and right padding, and the element's content itself. The sum of these
seven items must equal the width of the containing element. Of these seven items, only three (the element's width
and its left and right margins) can be given the value auto, indicating that the browser can compute a value for
that property. When this becomes necessary, the browser follows these rules:

e Ifnone of these properties is set to auto and the total width is less than the width of the parent element,
the margin-right property will be set to auto and made large enough to make the total width equal to
the width of the parent element.

e If exactly one property is set to auto, that property will be made large enough to make the total width
equal to the width of the parent element.

page 191

HTML & XHTML: The Definitive Guide

e Ifwidth, margin-left and margin-right are set to auto, the CSS2-compliant browser will set both
margin-Tleft and margin-right to zero and set width large enough to make the total equal to the width

of the parent element.

e Ifboth the left and right margins are set to auto, they will always be set to equal values, centering the
element within its parent.

There are special rules for floating elements. A floating element (such as an image with align=1eft specified) will
not have its margins collapsed with the margins of containing or preceding elements, unless the floating element
has negative margins. Figure 8-8 shows how this bit of HTML might be rendered:

<body>

<p>

Some sample text...

</body>

Figure 8-8. Handling the margins of floating elements

e margine Some sample text that has no other
T purpose than to show how floating
. me | clements are moved to the side of
: . the parent element while

R + honoring margins, borders, and

: padding. Note how adjacent
vertical margins are collapsed between non-
floating ‘block” elements.

F margin

=
i 53
L&

The browser moves the image, including its margins, as far as possible to the left and towards the top of the
paragraph without overlapping the left and top margins of the paragraph or the document body. The left margins
of the paragraph and the containing body are added, while their top margins are collapsed.

8.4.6.2 The border properties

The border surrounding an element has a color, a thickness, and a style. You can use various properties to control
these three aspects of the border on each of the four sides of an element. Shorthand properties make it easy to
define the same color, thickness, and style for the entire border, if desired. Border properties are not inherited;
you must explicitly set them for each element that has a border.

8.4.6.3 The border-color property

Use the border-color property to set the border color. If not specified, the browser draws the border using the
value of the element's color property.

The border-color property accepts from one to four color values. The number of values determines how they are
applied to the borders (summarized in Table 8-1). If you include just one property value, all four sides of the
border are set to the specified color. Two values set the top and bottom borders to the first value and the left and
right borders to the second value. With three values, the first is the top border, the second sets the right and left
borders, and the third color value is for the bottom border. Four values specify colors for each side, clockwise
from the top, then right, bottom, and left borders, in that order.

Table 8-1, Order of Effects for Multiple Border, Margin, and Padding Property Values

Number of Values Affected Border(s), Margin(s), or Padding
1 All items have the same value.
2 First value sets top and bottom; second value sets left and right.
3 First value sets top ; second sets both left and right; third value sets bottom.
4 First value sets top ; second sets right; third sets bottom; fourth value sets left.

page 192

HTML & XHTML: The Definitive Guide

8.4.6.4 The border-width property

The border-width property lets you change the width of the border. Like the border-color property, it accepts
from one to four values that are applied to the various borders in a similar manner (Table 8-1).

Besides a specific length value, you may also specify the width of a border as one of the keywords thin, medium, or
thick. The default value, if the width is not explicitly set, is medium. Some typical border widths are:
border: 1px

border: thin thick medium
border: thick 2mm

The first example sets all four borders to exactly one pixel. The second makes the top border thin, the right and
left borders thick, and the bottom border medium. The last example makes the top and bottom borders th1ick,
while the right and left borders will be two millimeters wide.

If you are uncomfortable defining all four borders with one property, you can use the individual border-top-
width, border-bottom-width, border-Teft-width, and border-right-width properties to define the thickness
of each border. Each property accepts just one value; the default is med1ium.

Netscape Navigator and Internet Explorer 5 support this property even when used alone; Internet Explorer 4
honors this property only if borders are enabled through other border properties.

8.4.6.5 The border-style property

According to the CSS2 model, there are a number of embellishments that you may apply to your HTML element
borders.

The border-styleproperty values include none (default), dotted, dashed, solid, double, groove, ridge, inset,
and outset. The border-style-conscious browser applies one to four values for the property to each of the borders
in the same order as for the border colors and widths, as described in Table 8-1.

The browser draws dotted, dashed, so1id, and double borders as flat lines atop the tag's background. The
groove, ridge, inset, and outset values create three-dimensional borders: the groove is an incised line, the
ridge is an embossed line, the inset border makes the entire tag area appear set into the document, and the
outset border makes the entire tag area appear raised above the document. The effect of the three-dimensional
nature of these last four styles upon the tag's background image is undefined and left up to the browser. Netscape
supports three-dimensional effects.

Neither Internet Explorer nor Netscape supports the dotted or dashed values.
8.4.6.6 Borders in shorthand

Since specifying a complex border can get tedious, the CSS2 standard provides five shorthand properties that
accept any or all of the width, color, and style values for one or all of the border edges. The border-top, border-
bottom, border-Tleft, andborder-right properties affect their respective borders' sides; the comprehensive
border property controls all four sides of the border simultaneously. For example:

border-top: thick solid blue

border-left: lex inset

border-bottom: blue dashed
border: red double 2px

The first property makes the top border a thick, solid, blue line. The second sets the left border to use an inset
effect that is as thick as the x-height of the element's font, while leaving the color the same as the element's color.
The third property creates a blue dashed line at the bottom of the element, using the default medium thickness.
Finally, the last property makes all four borders a red double line two pixels thick.

That last property raises two issues. First, you cannot supply multiple values to the border property to selectively
affect certain borders like you can with the individual border-color, border-width, and border-style
properties. The border property always affects all four borders around an element.

Secondly, a bit of reflection should reveal that it is not possible to create a double-line border just two pixels thick.
In cases like this, the browser is free to adjust the thickness to render the border properly.

While we usually think of borders surrounding block elements like images, tables, and text flows, borders can also
be applied to inline tags. This lets you put a box around a word or phrase within a text flow. The implementation
of borders on inline tags that span multiple lines is undefined and left to the browser.

Both Netscape and Internet Explorer support the border property, but only Internet Explorer supports the
individual side properties.

page 193

HTML & XHTML: The Definitive Guide

8.4.6.7 The clear property

Like its cousin attribute for the
 tag, the c1ear property tells the browser whether to place a tag's contents
adjacent to a "floating" element or on the first line below. Text flows around floating elements like images and
tables with an align=Teft or align=right attribute or any HTML element with its f1oat property set to
anything but none. Section 4.7.1 / Section 8.4.6.8

The value of the clear property can be none, Teft, right, or both. A value of none, the default, means that the
browser acts normally and places the tag's contents adjacent to floating elements on either side if there is room to
do so. The value 1eft prevents contents from being placed adjacent to a floating element on its left; right
prevents placement against a floating element on the right; and both prevents the tag's contents from appearing
adjacent to any floating element.

The effect of this style is the same as having preceded the tag with a
 tag with its clear attribute. Hence:
hl {clear: Teft}

has the same effect as preceding every <h1> tag with <br clear=Teft>.
8.4.6.8 The float property

The float property designates a tag's display space as a floating element and causes text to flow around it in a
specified manner. It is generally analogous to the al1ign attribute for images and tables but can be applied to any
element, including text, images, and tables. Section 5.2.6.4 / Section 10.2.1.1

The float property accepts one of three values: Teft, right, or none, the default. Using none disables the f1oat
property; the others work like their al1gn attribute-value counterparts, telling the browser to place the content to
either side of the flow and allow other content to be rendered next to it.

Accordingly, the styles-conscious browser will place a tag's contents specified with float: Teft against the left
margin of the current text flow, and subsequent content will flow to its right, down and below the tag's contents.
The float: right pair puts the tag contents against the right edge of the flow and flows other content on its left,
down and below the tag's contents.

Although most commonly used with tables and images, it is perfectly acceptable to apply the f1oat property to a
text element. For example, the following would create a "run-in" header, with the text flowing around the header
text:

hl {float: left}

This property is supported by Internet Explorer only for images. Netscape honors it for textual elements as well.
8.4.6.9 The height property

As you might suspect, the height property controls the height of the associated tag's display region. You'll find it
most often used with images and tables, but it can be used to control the height of other document elements as
well.

The value of the height property is either a length value or the keyword auto, the default. Using auto implies
that the affected tag has an initial height that should be used when displaying the tag. Otherwise, the height of the
tag is set to the desired height. If an absolute value is used, the height is set to that length value. For example:

img {height: 100px}

tells the browser to display the image referenced by the tag scaled so that it is 100 pixels tall. If you use a
relative value, the base size to which it is relative is browser- and tag-dependent.

When scaling elements to a specific height, the aspect ratio of the object can be preserved by also setting the
width property of the tag to auto. Thus:

img {height: 100px; width: auto}
ensures that the images are always 100 pixels tall, with an appropriately scaled width. Section 8.4.6.12

This property is fully supported by Internet Explorer and Netscape 6. Netscape Navigator 4 honors it only when
used with the tag.

8.4.6.10 The margin properties
Like the border properties, the various margin properties let you control the margin space around an element,
just outside of its border (Figure 8-7). Margins are always transparent, allowing the background color or image of

the containing element to show through. As a result, you can specify only the size of a margin; it has no color or
rendered style.

page 194

HTML & XHTML: The Definitive Guide

The margin-left, margin-right, margin-top, and margin-bottom properties all accept a length or percentage
value indicating the amount of space to reserve around the element. In addition, the keyword auto tells the
styles-conscious browser to revert to the margins it normally would place around an element. Percentage values
are computed as a percentage of the containing element's width. The default margin, if not specified, is zero.

These are all valid margin settings:

body {margin-left: 1lin; margin-top: 0.5in; margin-right: 1lin}

p {margin-Teft: -0.5cm}

img {margin-Tleft: 10%}

The first example creates one-inch margins down the right and left edges of the entire document and a half-inch
margin across the top of the document. The second example shifts the <p> tag one-half centimeter left into the
left margin. The last example creates a margin to the left of the tag equal to ten percent of the parent
element's width.

Like the shorthand border property, you can use the shorthand margin property to define all four margins, using
from one to four values which affect the margins in the order described in Table 8-1. Using this notation, our
<body> margins in the previous example also could have been specified as:

body {margin: 0.5in lin}

The margin-Tleft and margin-right properties interact with the width property to determine the total width of
an element, as described in Section 8.4.6.1.

8.4.6.11 The padding properties

Like the margin properties, the various padding properties let you control the padding space around an element,

between the element's content area and its border (Figure 8-7). Padding is always rendered using the background
color or image of the element. As a result, you can specify only the size of the padding; it has no color or rendered
style.

The padding-left, padding-right, padding-top, and padding-bottomproperties all accept a length or
percentage value indicating the amount of space the styles-conscious browser should reserve around the element.
Percentage values are computed as a percentage of the containing element's width. The default padding is zero.

These are valid padding settings:

p {padding-Teft: 0.5cm}
img {padding-left: 10%}

The first example creates half a centimeter of padding between the contents of the <p> tag and its left border. The
last example creates padding to the left of the tag equal to ten percent of the parent element's width.

Like the shorthand margin and border properties, you can use the shorthand padding property to define all four
padding amounts, using one to four values to effect the padding sides as described in Table 8-1. The padding
property is not supported by Internet Explorer, but is supported by Netscape Navigator.

8.4.6.12 The width property

The width property is the companion to the height property and controls the width of an associated tag.
Specifically, it defines the width of the element's content area, as shown in Figure 8-7. You'll see it most often
used with images and tables, but you could conceivably use it to control the width of other elements as well.

The value for width property is either a length or percentage value or the keyword auto. The value auto is the
default and implies that the affected tag has an initial width that should be used when displaying the tag. If a
length value is used, the width is set to that value; percentage values compute the width to be a percentage of the
width of the containing element. For example:

img {width: 100px}
displays the image referenced by the tag scaled to 100 pixels wide.

When scaling elements to a specific width, the aspect ratio of the object is preserved if the height property of the
tag is set to auto. Thus:

img {width: 100px; height: auto}
makes the images all 100 pixels wide and scales their heights appropriately. Section 8.4.6.9

The width property interacts with the margin-left and margin-right properties to determine the total width of
an element, as described in Section 8.4.6.1.

page 195

HTML & XHTML: The Definitive Guide

8.4.7 List Properties

The CSS2 standard lets you also control the appearance of list elements - specifically, ordered and unordered
lists.

Browsers format list items just like any other block item, except that the block has some sort of marker preceding
the contents. For unordered lists, the marker is a bullet of some sort; for numbered lists, the marker is a numeric
or alphabetic character or symbol. The CSS2 list properties let you control the appearance and position of the
marker associated with a list item.

8.4.7.1 The list-style-image property

The Tist-style-image property defines the image that the browser uses to mark a list item. The value of this
property is the URL of an image file, or the keyword none. The default value is none.

The image is the preferred list marker. If it is available, the browser will display it in place of any other defined
marker. If the image is unavailable or if the user has disabled image loading, the marker defined by the 1ist-
style-type property (see Section 8.4.7.3) will be used.

Authors can use this property to define custom bullets for their unordered lists. While any image could
conceivably be used as a bullet, we recommend that you keep your marker GIF or JPEG images small to ensure
attractively rendered lists.

For example, by placing the desired bullet image in the file mybullet.gif on your server, you could use that image:
Ti {1ist-style-image: url(pics/mybullet.gif); Tist-style-type: square}

In this case, the image will be used if the browser successfully downloads mybullet.gif. Otherwise, the browser
will use a conventional square bullet.

This property is supported by Internet Explorer and by the latest version of Netscape Navigator (version 6).
However, they differ in where they position the list marker: Netscape 6 puts it outside, and Internet Explorer 5
puts it inside, the item. Read the next section for an explanation.

8.4.7.2 The list-style-position property

There are two ways to position the marker associated with a list item: inside the block associated with the item or
outside the block. Accordingly, the 1ist-style-position property accepts one of two values: inside or
outside.

The default value is outside, meaning that the item marker will hang to the left of the item like this:

e Thisis a bulleted list with an "outside" marker

The value inside causes the marker to be drawn with the list item flowing around it, much like a floating image:
e This is a bulleted list with an "inside" marker

Notice how the second line of text is not indented, but instead lines up with the left edge of the marker.

None of the popular browsers support this property.

8.4.7.3 The list-style-type property

The Tist-style-type property serves double-duty in a sense, determining how both ordered and unordered list

items are rendered by a styles-conscious browser. This property has the same effect on a list item as its type

attribute does. Section 7.3.1.1

When used with items within an unordered list, the 1ist-style-type property accepts one of four values: disc,

circle, square, or none. The browser marks the unordered list items with the corresponding specified dingbat.

The default value is disc; browsers change that default depending on the nesting level of the list.

When used with items within an ordered list, the 1ist-style-type property accepts one of six values: decimal,

Tower-roman, upper-roman, Tower-alpha, upper-alpha, or none. These values format the item numbers as

decimal values, lowercase Roman numerals, uppercase Roman numerals, lowercase letters, or uppercase letters,
respectively. Most browsers will use decimal numbering schemes if you don't set this property.

page 196

HTML & XHTML: The Definitive Guide

8.4.7.4 The list-style property

The Tist-style property is the shorthand version for all the other list-style properties. It accepts any or all of the
values allowed for the Tist-style-type, Tist-style-position, and 1ist-style-image properties, in any
order and with values appropriate for the type of list they are to affect. These are valid 1ist-style properties:
11 {list-style: disc}
1i {1list-style: Tower-roman inside}
Ti {1ist-style: urlChttp://www.kumquat.com/images/tiny-quat.gif)

square}
The first example creates list items that use a disc as the bullet image. The second causes numbered list items to
use lowercase Roman numerals, drawn inside the list item's block. In the last example, a square will be used as
the bullet image if the referenced image is unavailable.

8.4.7.5 Using list properties effectively

Although you may apply list properties to any element, they will affect only the appearance of elements whose
display property is set to 1ist-1item. Normally, the only tag with this property is the <11 > tag. Section 8.4.8.1

This shouldn't deter you from using these properties elsewhere, particularly with the <u1> and <o1> tags. Since
these properties are inherited by elements whose parents have them set, modifying a list property for the <u1>
and <o1> tags will subsequently modify it for all the <11> tags contained within that list. This makes it much
easier to define lists with a particular appearance.

For example, suppose you want to create a list style that uses lowercase Roman numerals. One way is to define a
class of the <11i> tag with the appropriate Tist-style-type defined:

Ti.roman {list-style-type: Tower-roman}
Within your list, you'll need to specify each list element using that class:

<01>

<1i class=roman>Item one</1i>

<1i class=roman>Item two</1i>

<1i class=roman>And so forth</1i>
</o1>

Having to repeat the class name is tedious and error-prone. A better solution is to define a class of the <o1> tag:
ol.roman {list-style-type: lower-roman}

Any <11> tag within the list will inherit the property and use lowercase Roman numerals:

<ol class=roman>
<1li>Item one</Ti>
<Ti>Item two</1i>
<1li>And so forth</Ti>

This is much easier to understand and manage. If at a later date you want to change the numbering style, you
need only change the <o1> tag properties, rather than find and change each instance of the <11> tag in the list.

You can use these properties in a much more global sense as well. Setting a list property on the <body> tag will
change the appearance of all lists in the document; setting it on a <d1iv> tag will change all the lists within that
division.

8.4.8 Classification Properties

Classification properties are the most esoteric of the CSS2 style properties. They do not directly control how a
styles-conscious browser will render HTML or XHTML elements. Instead, they tell the browser how to classify
and handle various tags and their contents as they are encountered.

For the most part, you should not set these properties on an element unless you are trying to achieve a specific
effect. Even then, it is unlikely that the property will be supported by most browsers.

8.4.8.1 The display property

Every element in an HTML or XHTML document can be classified, for display purposes, as a block item, an inline
item, or a list item. Block elements, like headings, paragraphs, tables, and lists, are formatted as a separate block
of text, separated from the previous and next block items. Inline items, like the physical and content-based style
tags and hyperlink anchors, are rendered within the current line of text within a containing block. List items,
specifically the <11i> tag, are rendered like a block item, with a bullet or number known as the marker.

The display property lets you change an element's display type to bTock, in1ine, 1ist-1item, or none. The first

three values change the element's classification accordingly; the value none turns off the element, preventing it or
its children from being displayed in the document.

page 197

HTML & XHTML: The Definitive Guide

Conceivably, you could wreak all sorts of havoc by switching element classifications, forcing paragraphs to be
displayed as list items and converting hyperlinks to block elements. In practice, this is just puerile monkey
business, and we don't recommend that you change element classifications without having a very good reason to
do so.

Netscape Navigator fully supports this property; Internet Explorer supports only the block and none values.
8.4.8.2 The white-space property

The white-space property defines how the styles-conscious browser treats whitespace (tabs, spaces, and carriage
returns) within a block tag. The keyword value normal - the default - collapses whitespace, so that one or more
spaces, tabs, and carriage returns are treated as a single space between words. The value pre emulates the <pre>
tag, in that the browser retains and displays all spaces, tabs, and carriage returns. And, finally, the nowrap value
tells the browser to ignore carriage returns and not insert automatic line breaks; all line-breaking must be done
with explicit
 tags.

Like the display property, the white-space property is rarely used for good instead of evil. Don't change how
elements handle whitespace without having a compelling reason for doing so.

This property is not supported by Internet Explorer; Netscape Navigator supports the pre and normal values.
8.5 Tag-less Styles: The Tag
Up to now, we have used Cascading Style Sheets to change the appearance of content that is within a designated

tag. In some cases, however, you may want to alter the appearance of only a portion of a tag's contents - usually
text. Designate these special segments with the tag.

Function:
Delimit arbitrary amount of text
Attributes:
CLASS ONKEYUP
DIR ONMOUSEDOWN
D ONMOUSEMOVE
LANG ONMOUSEOUT
ONCLICK ONMOUSEOVER
ONDBLCLICK ONMOUSEUP
ONKEYDOWN STYLE
ONKEYPRESS TITLE
End tag:
; never omitted
Contains:
html_content
Used in:
body_ content

page 198

HTML & XHTML: The Definitive Guide

The tag simply delimits a portion of content (constrained by normal tag nesting rules, of course).
Browsers treat the tag as another physical or content-based style tag. The only difference, of course, is
that the default meaning of the tag is to leave the text alone.

Although it may serve some other function in a future version of HTML, the tag was introduced so that
you can apply style, display, and event management to an arbitrary section of document content. Display and
event management are addressed later; to define a style for the tag, treat it like any other HTML tag;:

span {color: purple}
span.bigger {font-size: larger}

and use it like any other style tag:

Quat harvest projections are bigger than ever!

In a similar manner, the appearance of a tag can be changed using an inline style:

Quat harvest projections are bigger than ever!

Like any other physical or content-based style tag, tags can be nested and may contain other tags.

Although deprecated, the tag also supports the standard tag attributes. The style and class attributes, of
course, let you control the display style; the id and tit1e tag attributes let you uniquely label its contents; the dir
and Tang attributes let you specify its native language; and the many on-event attributes let you react to user-
initiated mouse and keyboard actions on the contents. Not all are implemented by the currently popular browsers
for this tag or for many others. Section 3.6.1.1 / Section 3.6.1.2 / Section 4.1.1.4 / Section 4.1.1.5 / Section 8.1.1 /
Section 8.3 / Section 12.3.3

8.6 Applying Styles to Documents

There are several issues you should consider before, during, and after you use styles in your web documents and
document collections. The first, overarching issue is whether to use them at all. Frankly, few of the style effects
are unique; most can be achieved, albeit less easily and with much less consistency, via the physical and content-
based style tags like <i> and and the various tag attributes like color and background.

8.6.1 To Style or Not to Style

We think the CSS2 standard is a winner, not only over just JavaScript-based standards, but mostly for the
convenience and effectiveness of all your mark-up documents, including HTML, XHTML, and any and most other
XML-compliant ones. The majority of browsers in use today support CSS2 styles. The benefits are clear. So, why
wouldn't you use styles?

Although we strongly urge that you learn and use CSS2 style sheets for your documents, we realize that creating
style sheets is an investment of time and energy that pays off over the long run. Designing a style sheet for a one-
or two-page document is probably not time-effective, particularly if you won't be reusing the style sheet for any
other documents. In general, however, we believe the choice is not if you should use CSS2 style sheets, but when.

8.6.2 Which Type of Style Sheet and When

Once you have decided to use Cascading Style Sheets (for pain or pleasure), the next question is which type of
style sheet - inline, document-level, or external - should you apply and when? Each has its pros and cons; each is
best applied under certain circumstances.

8.6.2.1 The pros and cons of external styles

Since style sheets provide consistency in the presentation of your documents, external style sheets are the best
and the easiest way to manage styles for your entire document collection. Simply place the desired style rules in a
style sheet and apply those styles to the desired documents. And since all the documents are affected by a single
style sheet, conversion of the entire collection to a new style is as simple as changing a single rule in the
corresponding external style sheet.

Even in cases where documents may differ in style, it is often possible to collect a few basic style rules in a single
sheet that can be shared among several otherwise different documents, including:

e Background color

e Background image
e Font sizes and faces
e Margins

e Text alignment

page 199

HTML & XHTML: The Definitive Guide

Another benefit of external style sheets is that other web authors who want to copy your style can easily access
that sheet and make their pages look like yours. Imitation being the sincerest form of flattery, you should not be
troubled when someone elects to emulate the look and feel of your pages. More to the point, you can't stop them
from linking to your style sheets, so you might as well learn to like it. Like conventional HTML documents, it is
not possible to encrypt or otherwise hide your style sheets so that others cannot view and use them.

The biggest problem with external style sheets is that they increase the amount of time needed to access a given
web page. Not only must the browser download the page itself, it must also download the style sheet before the
page can be displayed to the user. While most style sheets are relatively small, their existence can definitely be felt
when accessing the Web over a slow connection.

Without appropriate discipline, external style sheets can become large and unwieldy. When creating style sheets,
remember to include only those styles that are common to the pages using the sheet. If a set of styles is needed
only for one or two sheets, you are better off isolating them in a separate sheet or adding them to a document
using document-level styles. Otherwise, you may find yourself expending an exorbitant amount of effort
counteracting the effects of external styles in many individual documents.

8.6.2.2 The pros and cons of document-level styles

Document-level styles are most useful when creating a custom document. They let you override one or more rules
in your externally defined style to create a slightly different document.

You might also want to use document-level styles to experiment with new style rules before moving them to your
style sheets. By adding and changing rules using document-level styles, you eliminate the risk of adding a broken
style to your style sheets, breaking the appearance of all the documents that use that sheet.

The biggest problem with document styles is that you may succumb to using them in lieu of creating a formal,
external style sheet to manage your document collection. It is easy to simply add rules to each document, cutting
and pasting as you create new documents. Unfortunately, managing a collection of documents with document-
level styles is tedious and error-prone. Even a simple change can result in hours of editing and potential mistakes.

As a rule of thumb, any style rule that impacts three or more documents should be moved to a style sheet and
applied to those documents using the <1ink> tag or @import at-rule. Adhering to this rule as you create your
document families will pay off in the long run when it is time to change your styles.

8.6.2.3 The pros and cons of inline styles

And at the end of the cascade, inline styles override the more general styles. Get into the habit now of using inline
styles rarely and just for that purpose, too. Inline styles cannot be reused, making style management difficult.
Moreover, such changes are spread throughout your documents, making finding and altering inline styles error-
prone. (That's why we might eschew tag- and attribute-based styles in the first place, no?)

Any time you use an inline style, think long and hard as to whether the same effect might be accomplished using a
style class definition. For instance, you are better off defining:

<style type="text/css">

<!--
p.centered {text-align: center}
em.blue {color: blue}

-—>

</style>

and later using:

<p class=centered>
<em class=blue>

instead of:

<p style="text-align: center">
<em style="color: blue">

Your styles are easier to find and manage and can be easily reused throughout your documents.

page 200

HTML & XHTML: The Definitive Guide

Chapter 9. Forms

Forms, forms, forms, forms: we fill 'em out for nearly everything, from the moment we're born, 'til the moment
we die. Pretty mundane, really. So what's to explain all the hoopla and excitement over forms? Simply this: they
make HTML and, of course, XHTML truly interactive.

When you think about it, interacting with a web page is basically a lot of button pushing: click here, click there, go
here, go there - there's no real user feedback, and it's certainly not personalized. Applets provide extensive user-
interaction capability, but they can be difficult to write and are still not standardized for all browsers. Forms, on
the other hand, are supported by almost every browser and make it possible to create documents that collect and
process user input and to formulate personalized replies.

This powerful mechanism has far-reaching implications, particularly for electronic commerce. It finishes an
online catalog by giving buyers a way to immediately order products and services. It gives nonprofit organizations
a way to sign up new members. It lets market researchers collect user data. It gives you an automated way to
interact with your readers.

Mull over the ways you might want to interact with your readers while we take a look at both the client- and
server-side details of creating forms.

9.1 Form Fundamentals

Forms are comprised of one or more text input boxes, clickable buttons, multiple-choice checkboxes, and even
pull-down menus and image maps, all placed inside the <form> tag. You can have more than one form in a
document, and within each you may also put regular body content, including text and images. The text is
particularly useful for providing instructions to the users on how to fill out the form and for form element labels
and prompts. And, within the various form elements, you can use JavaScript event handlers for a variety of effects
like testing and verifying form contents and calculating a running sum.

A user fills out the various fields in the form, then clicks a special "Submit" button (or, sometimes, presses the
Enter or Return key) to submit the form to a server. The browser packages up the user-supplied values and
choices and sends them to a server or to an email address.['! The server passes the information along to a
supporting program or application that processes the information and creates a reply, usually in HTML. The reply
may be simply a thank you or it might prompt the user on how to fill out the form correctly or to supply missing
fields. The server sends the reply to the browser client, which then presents it to the user. With emailed forms, the
information is simply put into someone's mailbox; there is no notification of the form being sent.

(2] Some browsers, Netscape and Internet Explorer in particular, may also encrypt the information, securing it
from credit-card thieves, for example. However, the encryption facility must also be supported on the server-side
as well: contact the web server manufacturer for details.

The server-side, data-processing aspects of forms are not part of the HTML or XHTML standards; they are
defined by the server's software. While a complete discussion of server-side forms programming is beyond the
scope of this book, we'd be remiss if we did not include at least a simple example to get you started. To that
purpose, we've included at the end of this chapter a few skeletal programs that illustrate some of the common
styles of server-side forms programming.

9.2 The <form> Tag

Place a form anywhere inside the body of a document with its elements enclosed by the <form> tag and its
respective end tag </form>. You can, and we recommend you often do, include regular body content inside a form
to specially label user-input fields and to provide directions.

Browsers flow the special form elements into the containing paragraphs as if they were small images embedded
into the text. There aren't any special layout rules for form elements, so you need to use other elements, like
tables and style sheets, to control the placement of elements within the text flow.

You must define at least two special form attributes, which provide the name of the form's processing server and

the method by which the parameters are to be sent to the server. A third, optional attribute lets you change how
the parameters get encoded for secure transmission over the network.

page 201

HTML & XHTML: The Definitive Guide

<form>
Function:
Defines a form
Attributes:
ACCEPT
ACCEPT-CHARSET ONKEYPRESS
ACTION ONKEYUP
CLASS ONMOUSEDOWN
DIR ONMOUSEMOVE
ENCTYPE ONMOUSEOUT
D ONMOUSEOVER
LANG ONMOUSEUP
METHOD ONRESET
NAME ONSUBMIT
ONCLICK STYLE
ONDBLCLICK TARGET
ONKEYDOWN TITLE
End tag:
</form>; never omitted
Contains:
form__content
Used in:
block

9.2.1 The action Attribute

The required action attribute for the <form> tag gives the URL of the application that is to receive and process
the form's data.

Most webmasters keep their forms-processing applications in a special directory on their web server, usually
named cgi-bin, which stands for Common Gateway Interface-binaries.»! Keeping these special forms-processing
programs and applications in one directory makes it easier to manage and secure the server.

[21 The Common Gateway Interface (CGI) defines the protocol by which servers interact with programs that
process form data.

page 202

HTML & XHTML: The Definitive Guide

A typical <form> tag with the action attribute looks like this:
<form action="http://www.kumquat.com/cgi-bin/update">

</form>
The example URL tells the browser to contact the web server named www in the kumquat.com domain and pass
along the user's form values to the application named update located in the cgi-bin directory.

In general, if you see a URL that references a document in a directory named cgi-bin, you can be pretty sure that
the document is actually an application that creates the desired page dynamically each time it's invoked.

9.2.2 The enctype Attribute

The browser specially encodes the form's data before it passes that data to the server so that it does not become
scrambled or corrupted during the transmission. It is up to the server either to decode the parameters or to pass
them, still encoded, to the application.

The standard encoding format is the Internet Media Type " application/x-www-form-urlencoded.” You can
change that encoding with the optional enctype attribute in the <form> tag. The only optional encoding formats
currently supported are "multipart/form-data" and "text/plain."

The multipart/form-data alternative is required for those forms that contain file-selection fields for upload by the
user. The text/plain format should be used in conjunction with a mailto URL in the action attribute for sending
forms to an email address instead of a server. Unless your forms need file-selection fields or you must use a
mailto URL in the action attribute, you probably should ignore this attribute and simply rely upon the browser
and your processing server to use the default encoding type. Section 9.5.1.3

9.2.2.1 The application/x-www-form-urlencoded encoding

The standard encoding - application/x-www-form-urlencoded - converts any spaces in the form values to a plus
sign (+), nonalphanumeric characters into a percent sign (%) followed by two hexadecimal digits that are the
ASCII code of the character, and the line breaks in multiline form data into %0D%0A.

The standard encoding also includes a name for each field in the form. (A "field" is a discrete element in the form,
whose value can be nearly anything from a single number to several lines of text - the user's address, for
example.) If there is more than one value in the field, the values are separated by ampersands.

For example, here's what the browser sends to the server after the user fills out a form with two input fields
labeled name and address; the former field has just one line of text, while the latter field has several lines of input:

name=0'Reilly+and+Associates&address=101+Morris+Street%0D%0A
Sebastopol, %0D%0ACA+95472

We've broken the value into two lines for clarity in this book, but in reality, the browser sends the data in an
unbroken string. The name field is "O'Reilly and Associates" and the value of the address field, complete with
embedded newline characters, is:

101 Morris Street

Sebastopol,
CA 95472

9.2.2.2 The multipart/form-data encoding

The multipart/form-data encoding encapsulates the fields in the form as several parts of a single MIME-
compatible compound document. Each field has its own section in the resulting file, set off by a standard
delimiter. Within each section, one or more header lines define the name of the field, followed by one or more
lines containing the value of the field. Since the value part of each section can contain binary data or otherwise
unprintable characters, no character conversion or encoding occurs within the transmitted data.

This encoding format is by nature more verbose and longer than the application/x-www-form-urlencoded format.
As such, it can be used only when the method attribute of the <form> tag is set to post, as described in Section

9.2.4.

page 203

HTML & XHTML: The Definitive Guide

A simple example makes it easy to understand this format. Here's our previous example, when transmitted as
multipart/form-data:

—————————————————————————————— 146931364513459
content-Disposition: form-data; name="name"

0'Reilly and Associates
—————————————————————————————— 146931364513459
Content-Disposition: form-data; name="address"

101 Morris Street

Sebastopol,

CA 95472

—————————————————————————————— 146931364513459--

The first line of the transmission defines the delimiter that will appear before each section of the document. It
always consists of thirty dashes and a long random number that distinguishes it from other text that might appear
in actual field values.

The next lines contain the header fields for the first section. There will always be a Content-Disposition field
indicating the section contains form data and providing the name of the form element whose value is in this
section. You may see other header fields; in particular, some file-selection fields include a Content-Type header
field that indicates the type of data contained in the file being transmitted.

After the headers, there is a single blank line followed by the actual value of the field on one or more lines. The
section concludes with a repeat of the delimiter line that started the transmission. Another section follows
immediately, and the pattern repeats until all of the form parameters have been transmitted. The end of the
transmission is indicated by an extra two dashes at the end of the last delimiter line.

As we pointed out earlier, use multipart/form-data encoding only when your form contains a file-selection field.
Here's an example of how the transmission of a file-selection field might look:
------------------------------ 146931364513459

Content-Disposition: form-data; name="thefile"; filename="test"
Content-Type: text/plain

First Tine of the file

Last Tine of the file
------------------------------ 146931364513459--

The only notable difference is that the Content-Disposition field contains an extra element, filename, that
defines the name of the file being transmitted. There might also be a Content-Type field to further describe the
file's contents.

9.2.2.3 The text/plain encoding

Use this encoding only when you don't have access to a form-processing server and need to send the form
information by email (the form's action attribute is a mai1to URL). The conventional encodings are designed for
computer consumption; text/plain is designed with people in mind.

In this encoding, each element in the form is placed on a single line, with the name and value separated by an
equal sign. Returning to our name and address example, the form data would be returned as:

name=0'Reilly and Associates
address=101 Morris Street%0D%0ASebastopol,%0D%0ACA 95472

As you can seg, the only characters still encoded in this form are the carriage return and line feed characters in
multiline text input areas. Otherwise, the result is easily readable and generally parsable by simple tools.

9.2.3 The accept-charset Attribute

The accept-charset attribute was introduced in the HTML 4.0 standard. It lets you specify a list of character
sets that the server must support to properly interpret the form data. The value of this attribute is a quote-
enclosed list of one or more ISO character set names. The browser may choose to disregard the form or handle it
differently if the acceptable character sets do not match the character set in use by the user. The default value of
this attribute is unknown, implying that the form character set is the same as the document containing the form.

9.2.4 The method Attribute

The other required attribute for the <form> tag sets the method by which the browser sends the form's data to the
server for processing. There are two ways: the POST method and the GET method.

With the POST method, the browser sends the data in two steps: the browser first contacts the form-processing

server specified in the action attribute and, once contact is made, sends the data to the server in a separate
transmission.

page 204

HTML & XHTML: The Definitive Guide

On the server side, POST-style applications are expected to read the parameters from a standard location once
they begin execution. Once read, the parameters must be decoded before the application can use the form values.
Your particular server will define exactly how your POST-style applications can expect to receive their
parameters.

The GET method, on the other hand, contacts the form-processing server and sends the form data in a single
transmission step: the browser appends the data to the form's action URL, separated by the question mark
character.

The common browsers transmit the form information by either method; some servers receive the form data by
only one or the other method. You indicate which of the two methods - POST or GET - your forms-processing
server handles with the method attribute in the <form> tag. Here's the complete tag including the GET
transmission method attribute for the previous form example:

<form method=GET
action="http://www.kumquat.com/cgi-bin/update">

</%éém>
9.2.4.1 POST or GET?

Which one to use if your form-processing server supports both the POST and GET methods? Here are some rules
of thumb:

e For best form-transmission performance, send small forms with a few short fields via the GET method.

e Because some server operating systems limit the number and length of command-line arguments that
can be passed to an application at once, use the POST method to send forms that have many fields or
that have long text fields.

e Ifyou are inexperienced in writing server-side form-processing applications, choose GET. The extra
steps involved in reading and decoding POST-style transmitted parameters, while not too difficult, may
be more than you are willing to tackle.

e Ifsecurity is an issue, choose POST. GET places the form parameters directly in the application URL
where they easily can be captured by network sniffers or extracted from a server log file. If the
parameters contain sensitive information like credit card numbers, you may be compromising your
users without their knowledge. While POST applications are not without their security holes, they can at
least take advantage of encryption when transmitting the parameters as a separate transaction with the
server.

e If you want to invoke the server-side application outside the realm of a form, including passing it
parameters, use GET because it lets you include form-like parameters as part of a URL. POST-style
applications, on the other hand, expect an extra transmission from the browser after the URL,
something you can't do as part of a conventional <a> tag.

9.2.4.2 Passing parameters explicitly

The foregoing bit of advice warrants some explanation. Suppose you had a simple form with two elements named
x and y. When the values of these elements are encoded, they look like this:

x=27&y=33

If the form uses method=GET, the URL used to reference the server-side application looks something like this:
http://www.kumquat.com/cgi-bin/update?x=27&y=33

There is nothing to keep you from creating a conventional <a> tag that invokes the form with any parameter value
you desire, like so:

The only hitch is that the ampersand that separates the parameters is also the character-entity insertion

character. When placed within the href attribute of the <a> tag, the ampersand will cause the browser to replace
the characters following it with a corresponding character entity.

To keep this from happening, you must replace the literal ampersand with its entity equivalent, either & or
& ;. With this substitution, our example of the nonform reference to the server-side application looks like this:

Because of the potential confusion that arises from having to escape the ampersands in the URL, server
implementors are encouraged to also accept the semicolon as a parameter separator. You might want to check
your server's documentation to see if the server honors this convention. See Appendix F.

page 205

HTML & XHTML: The Definitive Guide

9.2.5 The target Attribute

With the advent of frames, it is possible to redirect the results of a form to another window or frame. Simply add
the target attribute to your <form> tag and provide the name of the window or frame to receive the results.

Like the target attribute used in conjunction with the <a> tag, you can use a number of special names with the
target attribute in the <form> tag to create a new window or to replace the contents of existing windows and
frames. Section 11.7.1

9.2.6 The id, name, and title Attributes

The id attribute lets you attach a unique string label to your form for reference by programs (applets) and
hyperlinks. Before id was introduced in HTML 4.0, Netscape Navigator used the name attribute to achieve similar
effects, although it cannot be used in a hyperlink. To be compatible with the broadest range of browsers, we
recommend that for now you include both name and 1id with <form>, if needed. In the future, you should use only
the id attribute for this purpose.

The title attribute defines a quote-enclosed string value to label the form. However, it entitles only the form
segment; its value cannot be used in an applet reference or hyperlink. Section 4.1.1.4 / Section 4.1.1.5

9.2.7 The class, style, lang, and dir Attributes

The styTe attribute creates an inline style for the elements enclosed by the form, overriding any other style rule
in effect. The class attribute lets you format the content according to a predefined class of the <form> tag; its
value is the name of that class. Section 8.1.1 / Section 8.3

The actual effects of style with <form> are hard to predict, however. In general, style properties affect the body
content - text, in particular - that you may include as part of the form's contents, but <form> styles do affect the
display characteristics of the form elements.

For instance, you may create a special font face and background color style for the form. The form's text labels,
but not the text inside a text input form element, will appear in the specified font face and background color.
Similarly, the text labels you put beside a set of radio buttons will be in the form-specified style, but not the radio
buttons themselves.

The Tang attribute lets you specify the language used within the form, with its value being any of the ISO standard
two-character language abbreviations, including an optional language modifier. For example, adding 1ang=en-uk
tells the browser that the list is in English ("en") as spoken and written in the United Kingdom (UK). Presumably,
the browser may make layout or typographic decisions based upon your language choice.

Similarly, the d1ir attribute tells the browser which direction to display the list contents, from left to right
(dir=1tr) like English or French, or from right to left (di r=rt1), such as with Hebrew or Chinese.

The dir and Tang attributes are supported by the popular browsers, even though there are no behaviors defined
for any specific language. Section 3.6.1.1 / Section 3.6.1.2

9.2.8 The Event Attributes

As for most other elements in a document, the <form> tag honors the standard mouse and keyboard event-related
attributes the compliant browser will recognize. We describe the majority of these attributes in detail in Chapter
12. Section 12.3.3

Forms have two special event-related attributes: onsubmit and onReset. The value of these event attributes is -
enclosed in quotation marks - one or a sequence of semicolon-separated JavaScript expressions, methods, and
function references. With onsubmi t, the browser executes these commands before it actually submits the form's
data to the server or sends it to an email address.

You may u