
Creating Web Sites: The Missing Manual

By Matthew MacDonald

...

Publisher: O'Reilly

Pub Date: October 2005

ISBN: 0-596-00842-2

Pages: 559

Table of Contents | Index

Think you have to be a technical wizard to build a great web site? Think again. For anyone who
wants to create an engaging web site--for either personal or business purposes--Creating Web
Sites: The Missing Manual demystifies the process and provides tools, techniques, and expert
guidance for developing a professional and reliable web presence.

Like every Missing Manual, you can count on Creating Web Sites: The Missing Manual to be
entertaining and insightful and complete with all the vital information, clear-headed advice, and
detailed instructions you need to master the task at hand. Author Matthew MacDonald teaches you
the fundamentals of creating, maintaining, and updating an effective, attractive, and visitor-friendly
web site--from scratch or from an existing site that's a little too simple or flat for your liking.

Creating Web Sites: The Missing Manual doesn't only cover how to create a well-designed,
appealing, smart web site that is thoroughly up to date and brimming with the latest features. It
also covers why it's worth the effort by explaining the rationale for creating a site in the first place
and discussing what makes a given web site particularly aesthetic, dynamic, and powerful. It further
helps you determine your needs and goals and make well informed design and content decisions.

Creating Web Sites: The Missing Manual includes a basic primer on HTML, working with JavaScript,
and incorporating services like Paypal's shopping cart, Amazon's associate program, and Google
AdSense and AdWords. It delivers advanced tricks for formatting, graphics, audio and video, as well
as Flash animation and dynamic content. And you'll learn how to identify and connect with your
site's audience through forms, forums, meta tags, and search engines.

This isn't just another dry, uninspired book on how to create a web site. Creating Web Sites: The
Missing Manual is a witty and intelligent guide for all of you who are ready to make your ideas and
vision a web reality.

Creating Web Sites: The Missing Manual

By Matthew MacDonald

...

Publisher: O'Reilly

Pub Date: October 2005

ISBN: 0-596-00842-2

Pages: 559

Table of Contents | Index

 Copyright

 The Missing Credits

 About the Author

 About the Creative Team

 Acknowledgements

 The Missing Manual Series

 Introduction

 What You Need to Get Started

 About This Book

 Macintosh and Windows

 About the Outline

 About These Arrows

 Downloadable Examples

 About MissingManuals.com

 Safari® Enabled

 Part One: Welcome to the Web

 Chapter 1. Preparing for the Web

 Section 1.1. Introducing the World Wide Web

 Section 1.2. Planning a Web Site

 Section 1.3. The Ingredients of a Web Site

 Chapter 2. Creating Your First Page

 Section 2.1. The Anatomy of a Web Page

 Section 2.2. The HTML Tag

 Section 2.3. The HTML Document

 Section 2.4. XHTML

 Chapter 3. Putting Your Page on the Web

 Section 3.1. How Web Hosting Works

 Section 3.2. Domain Names

 Section 3.3. Getting Web Space

 Section 3.4. Transferring Files

 Chapter 4. Power Tools

 Section 4.1. Choosing Your Tools

 Section 4.2. Working with Your HTML Editor

 Part Two: Building Better Web Pages

 Chapter 5. HTML Text Tags

 Section 5.1. Understanding Text and the Web

 Section 5.2. Basic Text Tags

 Section 5.3. HTML Tags for Lists

 Section 5.4. Inline Formatting

 Chapter 6. Style Sheets

 Section 6.1. Style Sheet Basics

 Section 6.2. Colors

 Section 6.3. Fonts

 Section 6.4. Text Alignment and Spacing

 Section 6.5. Borders

 Section 6.6. Class Selectors

 Chapter 7. Adding Graphics

 Section 7.1. Understanding Images

 Section 7.2. Images and Styles

 Section 7.3. Techniques with Graphics

 Section 7.4. Finding Free Art

 Chapter 8. Linking Pages

 Section 8.1. Understanding the Anchor

 Section 8.2. Image Links and Image Maps

 Section 8.3. Adding Bookmarks

 Section 8.4. When Good Links Go Bad

 Section 8.5. Link Checkers

 Chapter 9. Page Layout Tools:Tables and Styles

 Section 9.1. HTML Tables

 Section 9.2. Style-Based Layout

 Chapter 10. Frames

 Section 10.1. The Problem with Repeating Content

 Section 10.2. Frame Basics

 Section 10.3. Building Better Frames Pages

 Part Three: Connecting with Your Audience

 Chapter 11. Attracting Visitors

 Section 11.1. Your Web Site Promotion Plan

 Section 11.2. Spreading the Word

 Section 11.3. Adding Meta Tags

 Section 11.4. Directories and Search Engines

 Section 11.5. Tracking Visitors

 Chapter 12. Letting Visitors Talk to You (and Each Other)

 Section 12.1. Transforming a Site into a Community

 Section 12.2. Helping Visitors Email You

 Section 12.3. Adding Forums and Groups to Your Site

 Chapter 13. Making Money with Your Site

 Section 13.1. Money Making the Web Way

 Section 13.2. Google AdSense

 Section 13.3. Amazon Associates

 Section 13.4. PayPal Merchant Tools

 Part Four: Web Site Frills

 Chapter 14. JavaScript and DHTML: Adding Interactivity

 Section 14.1. Understanding JavaScript

 Section 14.2. JavaScript 101

 Section 14.3. Dynamic HTML

 Section 14.4. Scripts on the Web

 Chapter 15. Fancy Buttons and Menus

 Section 15.1. Creating Fancy Buttons

 Section 15.2. Creating Fancy Menus

 Chapter 16. Audio and Video

 Section 16.1. Understanding Multimedia

 Section 16.2. Background Music

 Section 16.3. Video Clips

 Section 16.4. Animations

 Part Five: Blogs

 Chapter 17. Blogs

 Section 17.1. Understanding Blogs

 Section 17.2. Getting Started with Blogger

 Part Six: Appendixes

 Appendix A. HTML Quick Reference

 Section A.1. HTML Tags

 Section A.2. HTML Character Entities

 Section A.3. HTML Color Names

 Appendix B. Useful Web Sites

 Section B.1. Chapter Links

 Colophon

 Index

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Printing History:

October 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Missing Manual, The Missing Manual logo, Pogue Press, the Pogue Press logo,
and "The book that should have been in the box" are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00842-2

[M]

The Missing Credits

About the Author

About the Creative Team

Acknowledgements

The Missing Manual Series

About the Author

Matthew MacDonald is an author, educator, and programmer extraordinaire. He
is the author of over a dozen books about .NET programming, and the author of Excel: The Missing
Manual. In a dimly remembered past life, he studied English literature and theoretical physics.

About the Creative Team

Peter Meyers (editor) works as an editor at O'Reilly Media on the Missing Manual series. He lives
with his wife and cat in New York City. Email: peter.meyers@gmail.com.

Michele Filshie (editor) is O'Reilly's assistant editor for Missing Manuals and editor of four Personal
Trainers (another O'Reilly series). Before coming to O'Reilly, Michele spent many happy years at
Black Sparrow Press. She lives in Sebastopol and loves to get involved in local politics. Email:
mfilshie@oreilly.com.

Jamie Barnett (copy editor) is a freelance copy editor and technical editor based in San Francisco
and has copy edited over a thousand articles for O'Reilly's Web sites. He wrote a couple of books a
while back, but likes the editing side better. He's also a painter and printmaker, under the nom de
brush El Rey. His Web site is at www.elreyart.com.

Jim Goodenough (tech reviewer) was born and raised in California and he currently lives in
Sebastopol with his wife Kati and his son Graham and daughter Anna. Jim is a Stanford graduate with
a BS and MS in Mechanical Engineering. Jim owns and operates his Web site design and maintenance
business named "Goodenough Web Site Services." Jim and Kati are avid SCUBA divers. Email:
jim@goodenoughwebsiteservices.com.

Rhea Howard (tech reviewer) is excited to have finally taken the plunge into Web site creation.
When she is not exploring the newly discovered intricacies of HTML and CSS, she is working in the
O'Reilly operations department and inching ever closer to finishing her BA. Rhea lives and works in
beautiful Sebastopol, CA. Email: rheah@oreilly.com.

Mark Levitt (tech reviewer) is a Senior Web Producer for O'Reilly Media's Online Publishing Group.
His background includes Computer Science, Interactive & Educational Media, and Web Development.
He has been known to eat cereal at all hours of the day. Email: markl@oreilly.com.

Rose Cassano (cover illustration) has worked as an independent designer and illustrator for 20
years. Assignments have ranged from the nonprofit sector to corporate clientele. She lives in
beautiful Southern Oregon, grateful for the miracles of modern technology that make working there a
reality. Email: cassano@highstream.net. Web: www.rosecassano.com.

Acknowledgements

No author could complete a book without a small army of helpful individuals. I'm deeply indebted to
the whole Missing Manual team, especially Sarah Milstein and Peter Meyers, who kept me on track
with relentless questions, solid feedback, and late night emails. I also owe a hearty thanks to Jim
Goodenough, Rhea Howard, and Mark Levitt, who performed the technical review, and numerous
others who've toiled behind the scenes indexing pages, drawing figures, and proofreading the final
copy.

Finally, I'd never write any book without the support of my wife Faria and these special individuals:
Nora, Razia, Paul, and Hamid. Thanks everyone!

The Missing Manual Series

Missing Manuals are witty, superbly written guides to computer products that don't come with printed
manuals (which is just about all of them). Each book features a handcrafted index; cross-references
to specific page numbers (not just "see Chapter 14"); and RepKover, a detached-spine binding that
lets the book lie perfectly flat without the assistance of weights or cinder blocks.

Recent and upcoming titles include:

Access for Starters: The Missing Manual by Kate Chase and Scott Palmer

AppleScript: The Missing Manual by Adam Goldstein

AppleWorks 6: The Missing Manual by Jim Elferdink and David Reynolds

Dreamweaver 8: The Missing Manual by David Sawyer McFarland

eBay: The Missing Manual by Nancy Conner

Excel: The Missing Manual by Matthew MacDonald

Excel for Starters: The Missing Manual by Matthew MacDonald

FileMaker Pro 8: The Missing Manual by Geoff Coffey and Susan Prosser

FrontSection 7.2.53: The Missing Manual by Jessica Mantaro

GarageBand 2: The Missing Manual by David Pogue

Google: The Missing Manual, Second Edition, by Sarah Milstein and Rael Dornfest

Home Networking: The Missing Manual by Scott Lowe

iLife '05: The Missing Manual by David Pogue

iMovie HD & iDVD 5: The Missing Manual by David Pogue

iPhoto 5: The Missing Manual by David Pogue

iPod & iTunes: The Missing Manual, Third Edition, by Jude Biersdorfer

iWork '05: The Missing Manual by Jim Elferdink

Mac OS X Power Hound, Panther Edition, by Rob Griffiths

Mac OS X: The Missing Manual, Tiger Edition, by David Pogue

Office 2004 for Macintosh: The Missing Manual by Mark H. Walker and Franklin Tessler

Photoshop Elements 4: The Missing Manual by Barbara Brundage

QuickBooks: The Missing Manual by Bonnie Biafore

Switching to the Mac: The Missing Manual, Tiger Edition, by David Pogue and Adam Goldstein

Windows 2000 Pro: The Missing Manual by Sharon Crawford

Windows XP Power Hound by Preston Gralla

Windows XP for Starters: The Missing Manual by David Pogue

Windows XP Home Edition: The Missing Manual, Second Edition, by David Pogue

Windows XP Pro: The Missing Manual, Second Edition, by David Pogue, Craig Zacker, and Linda
Zacker

Introduction
These days, it's almost impossible to find someone who hasn't heard of the Internet. Companies
create Web sites before they make business plans. Ordinary people build obsessively detailed pages
that describe their lives and swizzle-stick-collecting hobbies. Even the language has changed: blog is
a verb (see Chapter 17 for that story), and surfing doesn't necessarily involve California coastlines.

Everyone wants their own piece of Web real estate. Unfortunately, building a Web site isn't as easy as
it should be. Even though people have been building Web sites for years, Web site design has only
become more complicated. That's because tech gurus have been busy creating new standards to
solve problems, add features, and just fill in the gaps. If you want to create a modern Web site (one
that doesn't look as hokey as a 1960s yearbook portrait), you need to understand all these different
ingredients, and how they fit together.

That's where this book comes in. The bookstore shelves are chock full of Web design books that were
created years ago, but they leave out most of the contemporary innovations you need to make a
Web site look truly grand. In this book, you'll learn how to:

Create Web pages. HTML (HyperText Markup Language) is the pretty-easy-to-use but
maddeningly inflexible language that powers almost all pages on the Web today. You'll quickly
learn how to get the most out of HTML.

Make pages look beautiful using CSS (Cascading Style Sheets). CSS picks up where
HTML leaves off, adding formatting muscle that can transform the drabbest of sites into eye
candy. Best of all, once you understand the right way to use CSS, you'll be able to apply a new
look to your entire Web site by tweaking a single file.

Put your Web site online. The world's greatest Web site isn't much help if no one gets to see
it. That's why you'll spend ample time learning how to choose the best Web hosting company,
pick a domain name (like www.HotToTrotHorses.com), and get your masterpiece online. Don't
panicthere are plenty of cheap Web hosting companies ready to show off your site for pennies a
day.

Attract visitors. You'll learn how to make sure Web surfers can find your site using popular
search engines. You'll also get some tips for creating a community with discussion boards.

Get rich (or earn some spare change). The Web's a lynchpin of modern commerce. But
even ordinary people can make money selling products (using Pay-Pal) or showing other
people's ads (with Google). You'll learn how to get in on the action.

Pile on the frills. Every Web site worth its weight in salt has a few cool tricks. You'll learn how
to dazzle visitors with cool buttons, slick menus, and other flashy things, courtesy of JavaScript
and Dynamic HTML. You'll even learn how to (shudder) serenade visitors with background music

What You Need to Get Started

This book assumes you don't have anything more than a reasonably up-to-date computer and raw
ambition. Although there are dozens of high-powered Web editing programs to help you build a Web
site, you don't need one to use this book. In fact, if you use a Web editor before you understand how
Web sites work, you're liable to create more problems than you solve. That's because, as helpful as
these programs are, they shield you from learning all the Web design nitty-gritty that can sometimes
be the difference between an okay-looking Web site and a fantastic-looking one.

Once you master the basics, you're welcome to use a fancy Web page editor like FrontPage or
Dreamweaver. You'll learn how these two leading programs work and you'll see a great free (!)
alternativein Chapter 4.

Note: Under no circumstances do you need to know anything about complex Web programming technologies like Java and ASP.NET.

You also don't need to know anything about databases or XML. These topics are fascinating, but insanely difficult to implement without

some solid computer coding experience. In this book, you'll learn how to create the best possible Web site without becoming a

programmer. (However, you will learn just enough about JavaScript to use many of the free samples you can find online.)

About This Book

No one owns the Web. As a result, no one has the responsibility to teach people how to use it or how
to build a home for themselves online. That's where this book comes in. If the Web did have an
instruction manualone that painstakingly details the basic ingredients, time-saving tricks, and fancy
frills every Web site needsthis would be it.

Note: This book periodically recommends other books, covering topics that are too specialized or tangential for a manual about creating

Web sites. Careful readers may notice that not every one of these titles is published by Missing Manual parent O'Reilly Media. While

we're happy to mention other Missing Manuals and books in the O'Reilly family, if there's a great book out there that doesn't happen to

be published by O'Reilly, we'll still let you know about it.

Macintosh and Windows

One of the best things about the Web is that it truly is World Wide: Wherever you live, from Aruba to
Zambia, the Web eagerly awaits your company. The same goes for whatever kind of computer you're
using to design your Web site. From an early model Windows PC to the latest and greatest Mac, the
tactics, tools, and tricks described in this book can be implemented with pretty much whatever kind
of computer you might have. (Of course, there are a few programs that favor one operating system
over another, and you'll hear about those differences whenever they come up.) The good news is
that this book is usable and suitable for owners of computers of all stripes.

On occasion, you'll see a keyboard shortcut mentioned to help you perform a quick maneuver like
saving or printing a document. When these occur, you'll see the Windows keystroke listed first (with
+ symbols, as is customary in Windows documentation); the Macintosh keystroke follows in
parentheses (with -symbols, in time-honored Mac fashion). In other words, you might read, "The
keyboard shortcut for saving a file is Ctrl+S (-S)."

About the Outline

This book is divided into five parts, each containing several chapters.

Part 1: Welcome to the Web. In this part, you'll start planning the Web site you want
(Chapter 1). You'll learn the basics behind HTML, the language of the Web (Chapter 2); and
you'll put your page online with a reputable hosting company (Chapter 3). Finally, you'll look at
how you can simplify your life by using Web page editing software (Chapter 4).

Part 2: Building Better Web Pages. This part shows you how to use Web page essentials like
pictures, links, and tables. You'll learn your way around the CSS standard, which lets you add
fancy colors, fonts, and borders (Chapter 6). You'll master slick layouts (Chapter 9 and Chapter
10), and create an entire Web site with linked pages.

Part 3: Connecting with Your Audience. The third part explains how to get your site noticed
in popular Web search engines like Google (Chapter 11), and how to foster a community by
making your site more interactive with features like discussion boards (Chapter 12). Finally,
you'll consider how you can get on the path to Web riches by showing ads or selling your own
products (Chapter 13).

Part 4: Web Site Frills. Now that you can create a professional, working Web site, why not
deck it out with fancy features like glowing buttons and pop-out menus? You won't learn the
brain-bending details of how to become a JavaScript programmer, but you will learn enough to
find great scripts online, and use them in your own creations.

Part 5: Blogs. In this short part, you'll take a look at blogs (or Web logs) and the free software
that helps you create them. (Blogs are a type of Web page that consists of regular, dated
postingslike an online journal. In recent years, blogs have become a self-publishing
phenomenon and a great place to rant, rave, and spill company gossip.)

At the end of this book, you'll find two appendixes. The first gives you a quick reference for HTML
that explains its tags and points you to more detailed discussions in the various chapters of this book.

The second appendix lists a pile of useful Web links culled from the chapters in this book, which can
help you learn more, get free stuff (like pictures, Web software, and handy examples), and sign up
for services (like Google's ad program and PayPal's shopping cart tools). Don't worryyou don't need
to type this information in by hand. It's all waiting for you on the "Missing CD" page at
www.missingmanuals.com.

About These Arrows

Throughout this book, you'll find sentences like this one: "Open the My Computer C:
Windows folder." That's shorthand for a much longer instruction that directs you to open three nested
folders in sequence, like this: "On your hard drive, there's an icon called My Computer. Open that.
Inside My Computer, there's a folder for your C: drive. Open that. Inside your C: drive is your
Windows folder. Open that." Similarly, this kind of arrow shorthand helps to simplify the business of
choosing commands in menus, such as File New Window, as shown in Figure I-1.

Downloadable Examples

As you read this book, you'll see a number of examples that demonstrate different Web page
designs. Most of these examples are available for your downloading pleasure, and playing with them
is a great way to learn more. Just surf to the site www.missingmanuals.com and click the "Missing
CD" page link. There you'll find a list of files that includes the examples, organized by chapter.

Figure
I-1. In

this book,

arrow

notations

help to

simplify

folder and

menu

instructions.

For

example,

"Choose

File

New

Window" is

a more

compact

way of

saying

"From the

File menu,

choose

New; from

the

submenu

that

appears,

choose

Window,"

as shown

here.

About MissingManuals.com

At www.missingmanuals.com, you'll find news, articles, and updates to the books in the Missing
Manual and Power Hound series.

But the Web site also offers corrections and updates to this book (to see them, click the book's title,
and then click Errata). In fact, you're invited and encouraged to submit such corrections and updates
yourself. In an effort to keep the book as up to date and accurate as possible, each time we print
more copies of this book, we'll make any confirmed corrections you've suggested. We'll also note
such changes on the Web site, so that you can mark important corrections into your own copy of the
book, if you like.

In the meantime, we'd love to hear your own suggestions for new books in the Missing Manual and
Power Hound lines. There's a place for that on the Web site, too, as well as a place to sign up for free
email notification of new titles in the series.

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means it's available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books: it's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

http://safari.oreilly.com

Part One: Welcome to the Web
Chapter 1, Preparing for the Web

Chapter 2, Creating Your First Page

Chapter 3, Putting Your Page on the Web

Chapter 4, Power Tools

Chapter 1. Preparing for the Web
The Web's an exciting place. Every day, it chews through millions of financial transactions, serves up
late-breaking news and scandalous rumors, and provides a thriving meeting place for every type of
community, from political anarchists to Beanie Baby collectors.

Since you're reading this book, you've probably decided to move in and join the Web.
Congratulations! Just as you need to prepare when it's time to find a home in the real world, you'll
also need to undertake some basic planning before you can make the move to your new online
neighborhood. In this chapter, you'll get a good look at the Web and what it takes to establish your
own Web site. You'll also learn how the Web really works (behind the scenes), and what ingredients
you need to build your site.

1.1. Introducing the World Wide Web

Although it doesn't show its age, the Internet is older than you might think. The computer visionaries
who created the Internet began developing the idea in the early 1960s. In 1969, the first transmission
over the Internet took place, between a computer at the University of California at Los Angeles and
one at the Stanford Research Institute. As far as pioneering moments go, it wasn't much to brag
aboutthe computer crashed when it reached the G in the word "LOGIN." Still, the revolution was
underway.

The early Internet was mostly traveled by academic and government types. It flourished as a tool for
research and collaboration, allowing scientists everywhere to share information. In 1993 the first Web
browser hit the scene. In the following years, the Internet was colonized by new types of people,
including book shoppers, news junkies, hobbyists, and a lot of lonely computer programmers.

Tip: History buffs can follow the saga of the early Internet in much more detail at www.isoc.org/internet/history and

www.walthowe.com/navnet/history.html.

Of course, the early Internet doesn't have much in common with today's Internet. In 1969, the
Internet community consisted of four computers, all of which were beastly, complex machines that no
one but a government lab or academic institution could love (or afford). In 1981, there were still
fewer than 200 mainframe computers on the Internet, and most of the people using them were
computer experts or scientists going about their day-to-day work. Today, well over eight million Web
sitesand many more Web surfersare online. No wonder there's so much junk email flying around with
shady sales pitches for anatomical self-improvement.

FREQUENTLY ASKED QUESTION

The Web vs. the Internet

Is there a difference between the Web and the Internet?

Newscasters, politicians, and regular people often use these terms interchangeably.
However, technically, the concepts are differentand confusing them is likely to put
computer techies and other self-respecting nerds on edge.

The Internet is a network of connected computers that spans the globe. These
computers are connected together to share information, but there are a number of ways
to get the job done, including emailing, instant messaging, transferring files through FTP
(short for File Transfer Protocol), and downloading MP3 songs through peer-to-peer
applications (which of course you don't do). The World Wide Web is one of the many
ways to exchange information across the Internet. And how does this information get
exchanged? You guessed itpeople use special programs called Web browsers to visit Web
sites and Web pages spread across the globe.

1.1.1. Browsers

As you no doubt already know, a Web browser is a piece of software that you use to navigate (or, in
techy speak, surf) through Web pages. Without browsers, the Web would still exist, there just
wouldn't be any way for you to turn on your computer and take a look at it.

A browser is surprisingly simplein fact, the bulk of its work consists of two tasks. First of all, it can
request a Web page, which happens when you type in a Web site address (like www.google.com) or
click something on the current Web page. At this point, the browser sends a request for a Web page
to another computer. This far off computer, called a Web server, is typically much more powerful
than a home computer, because it needs to handle multiple browsers that are all clamoring for its
attention at the same time. The Web server deals with the request by firing the desired Web page
back to the browser.

When the browser gets the Web page it wants, it puts its second skill into action and renders, or
draws, the Web page. Technically, this means the browser converts the plain text it received from the
Web server into a display document, based on formatting instructions that a Web site author has
embedded into the page. The end result is a graphically rich page with different typefaces, colors,
and links. Figure 1-1 shows the process.

Figure
1-1. A
Web

browser is

designed to

do two

things really

wellcontact

remote

computers

to ask for

Web

pages, and

then display

them in a

graphical

window.

Technically,

browsers

are called

client-side

programs,

which

means they

run on your

humble

personal

computer.

The server-

side is the

part of the

equation

that takes

place on

the Web

server,

where the

Web page

content is

actually

stored (or,

in a

dynamic

Web

application,

generated

on the fly).

1.1.1.1. Choosing your Web browser

Depending on your personality type, choosing a Web browser is either a) a bore or b) an important
expression of your personality, individuality, and overall computer savvy. If you fall into the latter
camp, you've probably already settled on your favorite browser. But if you're searching for something
a little different, or you're curious what else is out there, the following quick overview sums up your
options.

Even if you're not interested in changing your browser, it's a good idea to be familiar with the most
common options out there. That's because when you design your Web site, you'll need to prepare for
a wide audience of people with different browsers. To make sure your nifty graphics don't turn funky
when viewed in other browsers, it's a good idea to test your Web site on other computers, using
other screen resolutions, and with other Web browsers. At a bare minimum, all Web authors need a
copy of Internet Explorer, which is by far the most commonly used browser, so that you can see
what your hard work will look like to 95 percent of the world.

Internet Explorer is the world's most used (and sometimes most reviled) Web browser. For
better or for worse, Internet Explorer sets the standard that other browsers need to follow. The
clear advantage of using Internet Explorer (or IE, as it's known for short) is that you'll never run
into a Web page you can't readwith a market share of over 90 percent, IE is simply too
successful to ignore. The downside is that the developers at Microsoft have grown complacent,
which means you might not see dramatic innovations in IE in future versions. Success can also
attract a little too much interestif you use IE, unethical marketers have a bull's eye on your
computer with the latest spyware (see the sidebar "Spyware: When Good Browsers Go Bad" on
Section 1.1.2).

To download an updated version of Internet Explorer, visit www.microsoft.com/windows/ie.

Note: Mac owners with OS X will probably give Internet Explorer a pass. Not only does the Macintosh include a built-in Web

browser of its own (see Safari, later in this list), Microsoft has now halted development of IE on the Mac. However, many Mac-

heads running earlier operating systems like OS 9 report that Internet Explorer is still one of the best choices. For a full roundup of

Mac browsers, check out http://darrel.knutson.com/mac/www/browsers.html.

Firefox is the modern response to Internet Explorera Web browser that's lean, secure, and
knows how to block those annoying pop-up ads. You can easily extend Firefox with eye-catching
themes (customizations that let you revamp the way Firefox buttons and icons look) and
extensions (handy tools that enhance Firefox with extra features). Firefox is currently enjoying
wide popularity with computer geeks, and a growing number of disillusioned Internet Explorer
veterans are also trying it out. Best of all, Firefox is completely free, and kept rigorously up-to-
date by an army of volunteer programmers, including many who designed the original Netscape
browser.

Give Firefox a go at www.mozilla.org/products/firefox.

Netscape Navigator is one of the first Web pioneers, and was once a formidable challenger to
Internet Explorer. These days, Netscape is well past its prime. Although it's still the choice of a
few nostalgic Web surfers, most find its installation process, user interface, and far-from-
blistering speed as clunky as a '57 Chevy with a broken rear axle. Netscape development has
slowed dramatically, with Firefox becoming the new successor.

Download Netscape at http://channels.netscape.com/ns/browsers/download.jsp.

Opera is a slimmed down, easy to install browser that has existed for several years as an
antidote to the bloated size and pointless frills of Internet Explorer. Opera's chief disadvantage
is that you need to pay for an ad-free version (the free version shows a small banner
advertisement), unlike the other browsers in this list. You'll also need to adjust to its somewhat
cluttered interface, which inspires either love or an intense headache. However, Opera has a
small but loyal following, and it's clearly survived the browser wars.

Check out Opera at www.opera.com.

Safari is the only browser in this list that's limited to Macs. Safari is an Appledesigned Web
browser that's provided with the OS X operating system. It's quick, elegant, and sports a nifty
Google toolbar for quick searches.

Go on Safari at www.apple.com/safari.

Along with the browsers listed above, there are some specialty niche browsers. The most important
of these is Lynx, one of the earliest Web browsers and one that's changed the least. Lynx is an
entirely text-based browser that's perfectly suited for terminals that don't support graphics. (You can
sometimes find these beasts lurking about computer labs in universities and colleges.) Lynx also
supports the visually impaired, who can use Lynx in conjunction with a device that reads the text of a
Web page aloud.

http://darrel.knutson.com/mac/www/browsers.html
http://channels.netscape.com/ns/browsers/download.jsp

TROUBLESHOOTING MOMENT

Spyware: When Good Browsers Go Bad

Even though a Web browser is deceptively simple, many browsers are bloated up with
plug-ins, extra frills (like the ability to send email), or even (shudder) spyware. Spyware
is among the most hideous forms of computer software you'll encounter. Essentially, a
spyware program is an unwanted plug-in that attaches itself, leech-like, to your browser
or operating system without your permission. It then harasses you with advertisements,
or just bogs down your computer with unnecessary operations (like recording your
surfing habits and sending them to a Big-Brother-like marketing company). Spyware
thrives like a weed, particularly on the Windows operating system.

Spyware is notoriously difficult to remove. If you see the telltale signsa sudden
slowdown in Web access, Web page requests that get redirected to the wrong place, or
pop-up ads that materialize out of nowhere, even when you aren't using your Web
browseryou should have your computer checked out. The best remedy is a spyware
removal tool that scans for delinquent programs and removes them, much like a virus
scanner. Good bets include Spybot Search & Destroy (www.safer-networking.org),
Microsoft's AntiSpyware tool (www.microsoft.com/athome/security/spyware), and
Lavasoft's Ad-Aware (www.lavasoftusa.com/software/adaware).

1.1.2. Web Servers

On the other end of the line, the Web server receives browser requests and sends back the correct
Web page. For a busy Web site, this basic task can require a lot of work. As a result, Web servers
tend to be industrial-strength computers. Even though the average Windows PC with the right setup
can host a Web site, it's rarely worth the effort (see the sidebar "Becoming a Web Host"). Instead,
most normal people get another company to give them a little space on an existing Web server,
usually for a monthly fee. In other words, you need to rent some space on the Web.

Often, you can rent this space from the same company you use for Internet access, or it may already
be included with your Internet connection package for free. Alternatively, you can turn to a dedicated
Web hosting company. Either way, you're going to take the Web sites you build and copy them to
some far off computer that will make sure your talents can be enjoyed by a worldwide audience.

In Chapter 3, you'll learn more about how a Web browser navigates the Web to find a specific Web
page. But for now, keep focusing on the big picture so you can start planning your first Web site.

FREQUENTLY ASKED QUESTION

Becoming a Web Host

Can I run a Web server?

In theory, you definitely can. The Web was designed to be an open community, and no
one is out to stop you. But in practice, it's not at all easyno matter how many computer-
savvy relatives you may have.

Several monumental challenges prevent all but the most ambitious people from running
their own Web servers. The first problem is that you need to have a reliable computer
that runs 24 hours a day. That computer also needs to run special Web hosting software
that's able to serve up Web pages when browsers request them.

The next problem is that your computer requires a special type of connection to the
Internet, called a fixed IP address. The IP address (described on Section 3.1.2) is a
numeric address that identifies your computer on the Web.

In order to have your computer run a Web site and make sure others can find it, you
need to make sure your IP address is fixedin other words, you need to lock it down so
it's not constantly changing. Most ISPs (Internet Service Providers) randomly assign new
IP addresses as they're needed and change them at a whim, which means most people
can't use their computers to host a permanent Web site.

If you're still interested, you can call your ISP to ask them if they provide a fixed IP
address service. The typical cost is usually far above what you'd pay for ordinary Web
access.

1.2. Planning a Web Site

The last thing you need is to be buried under an avalanche of theory before you've had the joy of
performing your first few Web creation tricks. However, every new Web site author can save time and
effort by doing a little bit of planning before diving in to create a complete Web site. In the following
sections, you'll consider some quick guidelines to get you on the right path.

1.2.1. Types of Sites

You don't have much chance of creating a successful Web site if you haven't decided what it's for.
Some people have a very specific goal in mind (like getting hired for a job or promoting a book) while
others are just planning to unleash their self-expression. Either way, take a look at the following list to
get a handle on the different types of Web sites you might want to create:

Personal sites are all about you. As the world gets more Web-savvy, it seems everyone is
building online homes. Whether it's to share pictures of Junior with the relatives, chronicle a trip
to Kuala Lumpur, or just post your latest thoughts and obsessions, it's no longer unusual to have
a personal Web site. In fact, everyone from tweens to grandmothers are jumping in.

If your plan is to create a personal Web site, think about what its format should be, and how
you'll use it. Do you want to post regularly updated news tidbits in a chronological format (in
which case, you might be interested in creating a blog, covered below)? Or perhaps you want to
create something more ambitious, like an online picture album or a site featuring your family's
history. Either way, you should decide what you want your Web site to focus on before you start
slapping together Web pages.

Online diaries or blogs (Figure 1-2) are personal Web sites that are rapidly gaining popularity.
The typical diary Web site provides a list of entries in reverse chronological order, which means
whenever you surf to the site, you see the latest news at the top of the page. These online
diaries, also known as blogs (short for Web logs) are a great way to while away the hours and
keep in touch with friends in far-off places. But before you choose this type of site, make sure
you have plenty of free time. Nothing says "dead site" like a blog that hasn't been updated in
eight months. By contrast, personal Web sites that aren't in a date-specific format can linger on
quite happily without regular updates.

Figure
1-2.
Blogs are a

great way

to keep in

touch,

allowing

you to

share

pictures

and day-to-

day

reflections

with an

unlimited

audience. If

blogs

satisfy your

Web

needs, you

might not

need to

learn HTML

or add

anything

else to your

Web site.

Instead,

skip

straight to

Chapter 17

to learn

about the

blogging

software

that makes

it easy.

If you just want to create a blog, you can sacrifice your independence and join the masses on a
Web site like The Open Diary (a huge online diary community at www.opendiary.com) or MSN
Spaces (a free blogging from Microsoft at http://spaces.msn.com). Alternatively, you can set
out to create and host your own blog. However, if you plan on blogging regularly, you should at
least consider a blogging tool , which makes it easy to post quick updates even when you aren't
at your computer. Depending on the tool you use, you might not even need to know HTML (a
standard for writing Web pages, as described in Chapter 2) or have your own Web space. If this
sounds like your cup of tea, skip straight to Chapter 17 .

Note: Blogs aren't just for your personal life. They've become tremendously popular with computer geeks and IT workers as a way

to share information and chat about a variety of topics, computer-related or otherwise. Microsoft programmers are the latest

audience to get in on the trend (see www.microsoft.com/communities/blogs).

Résumé sites can be powerful career-building tools. Rather than photocopy a suitcase full of
paper résumés, why not send emails and distribute business cards that point to your online
résumé? Best of all, with a little planning you can add more details to your résumé Web site, like
links to companies where you've worked, online portfolio samples, and even background music
playing "YMCA" (which is definitely not recommended).

Topical sites focus on a particular subject that interests you. If you're more interested in
building a Web site about your favorite music, art, books, food, or Beanie Babies than you are in
talking about your own life, then a topical Web site is for you.

Before you set out to create a topical Web site, consider whether other people with a similar
interest will be interested in visiting your site, and take a look at existing sites on the topic. The
best topical Web sites invite others with the same interest to join in. (If your Web site is really
successful, you might want to use the techniques in Chapter 12 to let visitors talk to you and
each other.) The worst Web sites present the same dozen links you can find anywhere else.
Remember, the Web is drowning in information. The last thing it needs is another Pamela
Anderson Fan Emporium .

Event sites aren't designed to weather the yearsinstead, they revolve around a specific event. A
common example is a wedding Web site. The event hosts create it to provide directions,
background information, links to gift registries, and a few romantic photos. When the wedding is
over, the Web site disappearsor morphs into something different (like a personal Web site
chronicling the honeymoon). Other events that might be treated in a similar way include family
reunions, costume parties, or do-it-yourself protest marches.

Promotion sites are ideal when you have a personally produced CD or a hot-off-the-presses
book to boast about. They're geared to get the word out about a specific item, whether it's
handmade pottery or your own shareware program. Sometimes, these Web sites evolve into
small business Web sites, where you actually sell your wares (see the " Small business" item
next).

Small business (or e-commerce) sites show off the most successful use of the modern
Webselling everything from portable music players to prescription drugs. E-commerce sites are
so widespread that it's hard to believe that when the Web was first created, making a buck was
far from anyone's mind.

Creating a full-blown e-commerce Web site like Amazon or eBay is far beyond the abilities of a single
person. These Web sites need the support of complex applications and computer-genius-level
programming languages. Fortunately, if you've come to the Web to make some money, you don't
need to give up hope yet! Innovative companies like PayPal and Yahoo now provide subscription
services that can help you build shopping-cart-style Web sites and accept credit card payments. You
can also show Google AdSense ads to start raking in the cash. You'll learn about these great tricks in
Chapter 13 .

1.2.2. Understanding Your Audience

Once you've firmed up your Web site's raison d' tre , you should start to have a better idea about
who your visitors will be. Knowing and understanding your audience is crucial to making sure your

Web site is effective. (And don't even try to suggest you're creating a Web site just for yourselfif you
were, there's no reason to get your hard work onto the Internet at all!)

Not only do you need to understand your audience, but you also need to single out the lowest
common denominator in that audience. Good Web designers avoid using fancy frills unless everyone
can experience them. Nothing is more disappointing than creating a Web site using the latest graphical
wizardry, only to find out that the site's illegible on a friend's less powerful computer. To avoid these
letdowns and reach as many people as possible, you need to keep your visitors' PC capabilities in mind
as you build and improve your Web pages.

Unfortunately, there's no single set of specifications you can use to build your Web pageseveryone has
a slightly different setup. The best thing to do is try out your Web site on different computers, which
can be time-consuming. Some paid services can do this for you (see, for example,
www.netmechanic.com , which tests your Web site with different browsers and sends you pictures),
but they aren't cheap. You can minimize your risk by keeping this point about visitor diversity in mind
while you create your Web site. Look for the design tips throughout the book, and watch out for these
common problem areas:

Computer monitors aren't all created equal. Some computers use a smaller screen resolution
(number of pixels), so they can't show as much content. If you create the perfect Web site for
your wide-screen monitor, you might find that it's unbearably cramped (or even worse, partly
amputated) on another monitor.

Colors cause a similar problem. Graphics that look rich and nuanced on your monitor might turn
ugly on computers that don't support as many colors.

Non-standard fonts are another headache. Imagine you create a Web page for a rent-a-clown
service using a font named FunnyKidzScript. When you check your page out on another
computer that doesn't have the same font, your text will revert to a completely different
typeface. At best, it's not what you intended; at worst, it's indecipherable.

Large graphics are another trap that's easy to fall into if you're testing your Web site on a
speedy computer with a fast Internet connection. When dial-up Web surfers try to see your
work, they'll be stuck waiting for the goods, and might just give up. Fortunately, there's a lot you
can do to slim down your graphics (which you'll learn in Chapter 7).

Plug-ins, movies, and browser-specific features are temptations you need to treat with
caution. In the world of the Web, anything that limits how many visitors can enjoy your work is a
danger. Steer clear of cutting-edge features that aren't widely supported.

The creators of the most popular Web sites have carefully considered all these issues. For example,
think about the number of people whose computers won't let them buy a book on Amazon, make a bid
on eBay, or conduct a search on Google. (Are you thinking of a number that's close to 0?)

It's been widely remarked that the average Web designer goes through three stages of maturity: 1)
"I'm just learning, so I'll keep it simple;" 2) "I'm a Web guru, and I'll prove it by piling on the features;"
3) "I've been burned by browser compatibility problems, so I'll keep it simple."

1.2.3. The Lifespan of Your Site

The Web is a constantly changing place. Today's Web isn't the same as last year'sor even the Web of

15 seconds ago.

Here are two valuable truths about Web site lifetimes:

The best Web sites are constantly improving . Their creators add support for new browser
features, tweak their looks to match new style trends, andmost importantly of allconstantly add
new content.

When a Web site stops changing, it's on life support . Many great Web sites have crumbled
through neglect.

Think about your favorite Web sites. Odds are, they change daily. A good Web site isn't one you
consult once and then move on. It's a site that you can bookmark and return to periodically. In a
sense, a Web site is like a television channel. If you aren't putting up new information, your Web site's
showing reruns.

This problem poses a significant challenge. Making a Web site is hard enough, and keeping it up to
date is even more challenging. Here are a few tips that can help you out:

Think in stages . When you put your first Web site online, it won't be complete. Instead, think of
it as version 1, and start planning a few changes for the next version. Bit by bit, and stage by
stage, you can add everything that you want to your Web site.

Select the parts you can modify regularly, and leave the rest alone . There's no way you
can review and revise an entire Web site weekly or even monthly. Instead, your best strategy is
to identify the sections that change regularly. For example, on a personal Web site, you might
put news on a separate page, and update just that page. On a small business Web site, you
might concentrate your changes on the home page to advertise new products and upcoming
specials.

Design a Web site that's easy to change . This is the hardest principle to follow, because it
requires not only planning, but a dash of experience. As you become a more experienced Web
maven, you'll learn how to simplify your life by making it easier to update pages. One method is
to start out by separating information into several pages, so you can add new content without
needing to reorganize everything. Another technique is to use style sheets to separate the
formatting from your content (see Chapter 6). That way, you can easily insert new material
without having to re-format it from scratch to make sure it matches the rest of your page.

1.2.4. Practice Good Design

Every year, hundreds of Web sites win awards for being abjectly awful. Sometimes, they have
spinning globes and hot pink text on a lime green background. Other times, they have clunky
navigation systems and grotesque flashing backgrounds. But no matter what the design sins, Web
sites that are badhideously badare strangely common.

Maybe it's because creating a Web site really isn't that hard. Or maybe it's because we all have an
impulse to play with color, texture, and sound, and sometimes new-fangled Web tools encourage our
ugliest instincts. For a glimpse at some of the all-too-familiar mistakes go to
www.angelfire.com/super/badwebs (see Figure 1-3). You can also visit Web sites like
www.webpagesthatsuck.com and www.worstoftheweb.com , which tally not only yearly winners in the

worst-of-show category, but also pick out new offenders every month.

This book won't teach you to become a professional Web designer. However, it will guide you in the
time-honored Art of Not Making Bad Web Sites. Throughout this book, you'll find helpful tips,
suggestions, and warnings about usability and design. Look specifically for the "Design Time" boxes. In
the meantime, here are a few general principles that can help make sure you never wind up on a
worst-of-the-Web list (unless you absolutely want to).

Stay simple (and don't annoy your visitors) . You can cram a lot of frills and goodies into a
Web page. But unless they serve a purpose, just say no. You'll find that exercising restraint can
make a few fancy touches seem witty and sophisticated. (Whereas adding a lot of fancy touches
can make your site seem heady and delusional.) If you pare down the graphical tricks and
distractions, you'll also make sure that the content of your Web site isn't overshadowed, and
your visitors aren't driven away in annoyance.

Be consistent . No matter how logical you think your Web site is, the majority of visitors
probably won't think the same way. To cut down on the confusion, from one page to another,
use similar organization, similar headings, similar graphics and links, a single navigation bar, and
so on. These touches help make visitors feel right at home.

Know your audience . Every type of Web site has its own unwritten conventions. You don't
need to follow the same design in an e-commerce Web store as you do in a promotional page for
an experimental electric harmonic band. To help decide what is and isn't suitable, be sure to
check out lots of other sites that deal with the same sort of material as yours.

Figure 1-3. Here's a Web

site that gets it all

wrongdeliberately. With a

combination of scrolling titles, a

crazily blinking background, and

unreadable text,

www.angelfire.com/super/badwebs

does a good job at demonstrating

everything you should try to avoid

in your own Web pages. Check out

this actual web site to see for

yourself.

1.3. The Ingredients of a Web Site

The trickiest part about building a Web site is coordination. To get it right, you not only need the right
tools to create Web pages, but you also need to coordinate with other companies to get your Web
site onto the World Wide Web and (optionally) to give it a catchy address like www.StylinViolins.com.
In this section, you'll create a quick Web shopping list that maps out what you needand tells you
where you'll learn about it in the rest of this book.

Web pages. Every Web site is built with individual pages. In order to create a basic Web page,
you need to understand HTML (HyperText Markup Language), the language of the Web. You'll
create your first Web page next, in Chapter 2.

Web space. Creating Web pages is fun, but in order to let other people take a look at them,
you need to put them on a Web server. In Chapter 3, you'll consider your options for getting
your first Web page online, either through a fee-based service or a free alternative.

A domain name. There's a world of difference between the Web site address
www.inetConnections.com/Users/~jMallone012/web and www.JackieMallone.com. You can get
your own personalized domain name, if it's available. It's not free, but the cost is usually quite
low. If you want to put your Web site address on a business card or a brochure for a small
business, there's really no better choice. In Chapter 3, you'll learn how to buy your own domain
name.

Note: The domain name is the first part of the Web address, which identifies the Web server that's storing and serving up your

site. In the URL www.ebay.com/help/index.html, the domain name is www.ebay.com. You'll learn much more about domain

names and URLs (short for Universal Resource Locator) and how they work in Chapter 3.

Web design tools. Creating Web pages from scratch is a great way to learn, but it's far too
slow and painful to create a complete Web site that way. To get to the next level, you'll need to
step up to a professional Web design tool. If you have a commercial program like FrontPage or
Dreamweaver, you're in good hands. Even if you don't, there are many good free and
shareware products that can help you out. Chapter 4 explains your options and helps you get
started.

Hyperlinks. On its own, a Web page can do only so much. The real magic begins when you
bind multiple Web pages together using links. Chapter 8 introduces the versatile hyperlink,
which allows visitors to surf around your Web site.

Indispensable extras. Once you've mastered the basics of Web pages and Web sites, there's
still more ground to conquer. You can get your site listed in a search engine catalog (Chapter
11), establish your own forum (Chapter 12), and sell items (Chapter 13). Still hungry for more
frills? Why not animate your page with a sprinkling of JavaScript (Chapter 14), create eye-
catching buttons (Chapter 15), and add audio and video (Chapter 16)? All these features take
you beyond ordinary HTML and well on the road to becoming a genuine Web guru.

Chapter 2. Creating Your First Page
Every Web site is a collection of one or more Web pages. You jump from page to page by clicking
various elements in your Web browser, like links, pictures, or buttons. It may not sound very high-
tech, but putting an entire Web site together and polishing it up is a significant undertaking.
However, the first step to Web mastery is just building a single Web page. That's the task you'll
tackle in this chapter.

Web pages are the basic unit of Web design. The ideal Web page contains enough information to fill
up a browser window, but not so much that the reader needs to scroll from morning until lunchtime
to get to the end. In other words, the ideal Web page strikes a balanceit avoids the lonely feeling
caused by too much white space, and the stress induced by an avalanche of information.

The best way to get a handle on what a Web page should hold is to look at your favorite Web sites.
On a news site like www.nytimes.com, every news article is a separate page (and longer stories are
subdivided into several pages). On an e-commerce shop like www.amazon.com, every product has its
own page. Similarly, a personal Web site like www.MyUndyingLoveForPigTrotters.com may be divided
into separate Web pages with titles like "About Me," "Vacation Photos," "Résumé," and "Top Secret
Recipes for Pig Parts."

For now, don't worry too much about how to divide up your Web siteit's a task you'll revisit in
Chapter 8 when you start linking Web pages together. Instead, your first goal is to understand how a
basic Web page works, and how to create one of your own.

2.1. The Anatomy of a Web Page

Web pages are written in HTML (HyperText Markup Language), which is the language of the Web. It
doesn't matter whether your Web page contains a series of plain text blog entries, a dozen pictures
of your pet lemur, or a heavily formatted screenplayodds are if you're looking at it in a browser, it's
an HTML page.

HTML plays two key roles:

HTML tells a Web browser how to format a page . Although there are plenty of computer
programs that can format text (take Microsoft Word, for instance), it's almost impossible to find
a single standard that's supported on every type of computer, operating system, and Web-
enabled device. HTML fills the gap by supplying information that any browser can interpret.
These formatting details include specifications about colors, headings, text alignment, and so
on.

HTML links different documents together . These links can take several forms. You can use
hyperlinks (discussed in Chapter 8) to let people surf from one Web page to another. You can
also use HTML instructions to call up pictures (Chapter 7) or even other Web pages (Chapter 10
) and combine them into a single Web page.

HTML is such an important standard that you'll spend a good portion of this book digging through
most of its features, frills, and shortcomings. Every Web page you'll build along the way is a bona fide
HTML document.

2.1.1. Cracking Open an HTML Document

On the inside, an HTML page is actually nothing more than a plain-vanilla text file. That means every
Web page consists entirely of letters, numbers, and just a few special characters (like spaces,
punctuation, and everything else you can spot on your keyboard). This file is quite different than
what you would find if you cracked open a typical binary file on your computer. (A binary file contains
genuine computer languagea series of 1s and 0s. If another program is foolish enough to try and
convert this binary information into text, you end up with gibberish.)

To understand the difference, take a look at Figure 2-1 , which examines a Word document under the
microscope. Compare that with what you see in Figure 2-2 , which dissects an HTML document
containing the same content.

To take a look at an HTML document, all you need is an ordinary text editor, like Notepad, which is
included on all Windows computers. To run Notepad, click the Start button and select Programs
Accessories Notepad. Then choose File Open and begin hunting around for the HTML file you
want. On the Mac, try TextEdit, which you can find at Applications TextEdit. Choose File
Open and then find the HTML file. If you've downloaded the companion content for this book (all of
which you'll find on the "Missing CD" page at www.missingmanuals.com), try opening the
popsicles.htm file, shown in Figure 2-2 .

Figure
2-1. Word

documents

are stored as

binary

information,

as are

documents in

most file

formats used

by most

computer

programs.

Top: Even if

your

document

looks

relatively

simple in the

Word window,

it doesn't look

nearly as

pretty when

you bypass

Word and

open the file in

an ordinary

text editor like

Notepad or

TextEdit.

Bottom:

Depending on

the program

you use, the

string of ones

and zeroes in

the file is

usually

converted into

a meaningless

stream of

intimidating

gibberish. The

actual text is

there

somewhere,

but it's buried

in computer

gobbledygook.

Unfortunately, most text editors don't let you open a Web page directly from the Internet. In order to
do that, they'd need to be able to send a request over the Internet to a Web server, which is a job
that's best left to the Web browser. However, most browsers do give you the chance to look at the
raw HTML for a Web page. Here's what you need to do:

Open your preferred browser .1.

Navigate to the Web page you want to examine .2.

In your browser, look for a menu command that allows you to view the source
content of the Web page. In Internet Explorer (or Opera), select View Source. In
Firefox and Netscape, use View Page Source. In Safari, View View Source
does the trick. Isn't diversity a wonderful thing ?

3.

Once you make your selection, a new window appears showing you the HTML used to create the Web
page. This window may represent a built-in text viewer that's included with the browser, or it may
just be Notepad or TextEdit. Either way, you'll see the raw HTML.

Figure
2-2.
HTML

documents

are stored

as ordinary

text.

Top: What

you see in

the Web

browser is

much

easier to

understand

than what

you see in

an ordinary

text editor.

Bottom:

You can

easily spot

all the text

from the

original,

along with

a few extra

pieces of

information

inside

angled

brackets (<

>). These

are HTML

tags.

Tip: Firefox has a handy feature that lets you home in on part of the HTML in a complex page. Just select the text you're interested in on

the page, right-click it, and then choose View Selection Source.

Most Web pages are considerably more complex than the popsicles.htm example shown in Figure 2-2
, so you'll need to wade through many more HTML tags. But once you've acclimated yourself to the
jumble of information, you'll have an extremely useful way to peer under the covers of any Web
page. In fact, professional Web developers often use this trick to check out the snazziest work of
their competitors.

POWER USERS' CLINIC

Going Beyond HTML

The creators of HTML designed it perfectly for putting research papers and other
unchanging documents on the Web. They didn't envision a world of Internet auctions, e-
commerce shops, and browser-based games. To add all these features to the modern
Web browsing experience, crafty people have supplemented HTML with some tricky
workarounds. And although it's more than a little confusing to consider all the ways you
can extend HTML, doing so is the best way to really understand what's possible on your
own Web site.

Here's an overview of the two most common ways to go beyond HTML:

Embedded applications . Most modern browsers support Java applets , which
are small programs than run inside your Web browser, and display information in a
window inside a Web page. (To try one out and play some head-scratching Java
Checkers against a computer opponent, surf to
http://thinks.com/java/checkers/checkers.htm .) Internet Explorer can also host
special tools called ActiveX controls . ActiveX is a Microsoft-backed technology for
sharing useful widgets between different programs and Web pages. (To see an
ActiveX control in use, check out TrendMicro's free virus scanner at
http://housecall.trendmicro.com .) Both Java applets and ActiveX controls are
miniature programs that can be used in a Web page (if the browser supports it),
but neither are written in HTML.

Browser plug-ins . Browsers are designed to deal with HTML, and they don't
recognize other types of content. For example, browsers don't have the ability to
interpret an Adobe PDF document, which is a specialized format used to preserve
the formatting of documents. However, depending on how your browser is
configured, you may find that when you click a hyperlink that points to a PDF file, a
PDF reader launches. The automatic launch happens if you've installed a plug-in
from Adobe that runs the Acrobat software (which displays PDF files). (To see for
yourself, request the sample chapter
www.oreilly.com/catalog/exceltmm/chapter/ch04.pdf from Excel: The Missing
Manual .) Another example of a common plug-in is Macromedia Flash, which shows
animations on a Web page. If you surf to a page that includes a Flash animation
and you don't have the plug-in, you'll be asked if you want to download it. (Check
out www.orsinal.com to play some of the best free Flash games around.)

Unfortunately, there's no surefire way to tell what extensions are at work on a particular
page. In time, you'll learn to spot many of the telltale signs, because each type of
content looks distinctly different.

2.1.2. Creating Your Own HTML Files

Here's one of the best-kept secrets of Web page writing: You don't need a live Web site to start
creating your own Web pages. That's because you can easily build and test Web pages using only
your own computer. In fact, you don't even need an Internet connection.

http://thinks.com/java/checkers/checkers.htm
http://housecall.trendmicro.com

The basic approach is simple:

Fire up your favorite text editor .1.

Start writing HTML content .

Of course, this part is a little tricky because you haven't explored the HTML standard yet. Hang
onhelp is on the way in the next section.

2.

When you've finished your Web page, save the document (a simple File Save
usually does it) .

By convention, HTML documents typically have the file extension .htm or .html , as in
LimeGreenPyjamas.html . Strictly speaking, these extensions aren't necessary, because
browsers are perfectly happy displaying Web pages with any file extension. You're free to
choose any file extension you want for your Web pages. The only rule is that the file has to
contain valid HTML content. However, using the .htm or .html file extensions is still a good idea;
not only does it save confusion, it also helps your computer recognize that the file contains
HTML in other situations. For example, when you double-click a file with the .htm or .html
extension, it opens in your Web browser automatically.

3.

To take a look at your work, open the file in a Web browser .

If you've used the extension .htm or .html , it's usually as easy as double-clicking the file. If not,
you may need to type in the full file path in your Web browser's address bar, as shown in Figure
2-3 .

Remember, when you compose your HTML document in a text editor, you won't be able to see
what the formatting actually looks like. All you'll see is the plain text and the HTML formatting
instructions.

4.

Tip: If you change and save the file after you open it in your Web browser, you can take a look at your recent changes by hitting the

Refresh button.

2.2. The HTML Tag

Now that you know how to peer into existing HTML files and create your own, the next step is to
understand what goes inside the average HTML file. It all revolves around a single concepttags .

HTML tags are the formatting instructions that tell the browser how to transform ordinary text into
something that's visually appealing. If you were to take all the tags out of an HTML document, you'd
be left with nothing more than plain, unformatted text.

Note: Technically, HTTP (HyperText Transport Protocol) is the low-level communication system that allows two computers to exchange

data over the Internet. If you were to apply the analogy of a phone conversation, the telephone line would use HTTP, and the juicy tidbits

of gossip you're exchanging with your Aunt Martha would be the HTML documents.

Figure
2-3. The

address bar

indicates

where the Web

page you're

viewing is

really located

(in geek-speak

this is known

as the file

path). If you

see "http://"

your page is

on a Web

server

somewhere

out on the

Internet (top).

If you're

looking at a

Web page on

your own

computer,

you'll just see

an ordinary file

path instead

(middle,

showing a

Windows PC),

or you'll see a

URL that starts

with the prefix

"file:///"(bottom,

showing a

Mac). It all

depends on

the browser

and operating

system you're

using.

2.2.1. What's in a Tag

You can recognize a tag by looking for the angle brackets, which are two special characters that look
like this: < >. The angle brackets contain a code. This code is for the browser's eyes only, and it's
never shown to Web surfers (unless they use the View Source trick to peek at the HTML).
Essentially, the code is an instruction that conveys some information to the browser about how it
should format the text that follows the code.

For example, one simple tag is the tag, which stands for bold. When the browser encounters this
tag, it switches on boldface formatting, which affects all the text that appears after this tag. Here's
an example:

This text isn't bold. This text is bold .

In a browser, you don't see the . You're just left with the end result, which looks something like
this:

This text isn't bold. This text is bold .

As you can see, the browser has a fairly simple job. It scans through an HTML document, looking for
tags and switching on and off various formatting settings. It sends everything else (everything that
isn't a tag) straight to the Web browser window.

Note: Adding tags to ordinary text is known as marking up a document, and the tags themselves are known as HTML markup . When

you look at raw HTML, you may be interested in looking at the content (the text that's nestled between the tags), or the markup (the

HTML tags themselves).

Many tags come in pairs. That means there's a starting tag and an ending tag. The end tag marks
the end of the instruction that was given by the start tag. In the bold text example, that means the
end tag switches off the bold formatting, returning the text to normal.

End tags are easy to recognize. They always look the same as the start tag, except they start with
the characters </ instead of <. So the end tag for bold formatting is . Here's an example:

This isn't bold. Pay attention! Now we're back to normal .

Which the browser displays as:

This isn't bold. Pay attention ! Now we're back to normal.

This example demonstrates another important principle in how a browser works. The browser always
processes the tags in order, based on where they show up in your text. To get the bold formatting in
the right place, you need to make sure you position the and tags appropriately.

2.2.2. Container Tags and Standalone Tags

It's considered good HTML style to always use tags in pairs. If you don't, it could conceivably confuse
some browsers (and anyway, it's lazy). To get into the right habit, it helps to think of the start and
end tags as a container into which you insert some text. In other words, when you use the and
 tags, you aren't exactly telling the browser to turn bold formatting on and offmore accurately,
you're telling it to bold a specific piece of text.

Of course, life wouldn't be much fun (and computer books wouldn't be nearly as thick) without
exceptions. When you get right down to it, there are really two types of tags:

Container tags

The container tag is, by far, the most common type of tag. With a container tag, you're usually
applying some sort of formatting that affects only the content that's nestled in between the
start and the end tags. The tag is a container tag, and should always be accompanied by a
.

Standalone tags

There are some tags that don't come in pairs. These standalone tags don't turn formatting on or
off. Instead, they insert something on the page, like an image. One example is the <hr> tag,
which inserts a horizontal line on the page. Standalone tags are often called empty tags because
there's no way to put any text inside them.

Figure 2-4 puts it in perspective.

Figure
2-4.
Top: This

snippet of

HTML

shows both

a container

tag and a

standalone

tag.

Bottom:

The

browser

shows the

resulting

Web page.

Note: Standalone tags sometimes include a slash character, like this <hr /> (sort of like an opening and a closing tag rolled into one). This

syntax is handy, because it clearly indicates that you have a standalone tag on your hands. It isn't official HTML, but it's used for a new

standard called XHTML, which you'll learn about at the end of this chapter (Section 2.4).

2.2.3. Nesting Tags

In the previous example, you saw how to apply a simple tag for bold formatting. Between the
 and tags, you place the text that you want to make bold. However, text isn't the only
thing that you can put between a start and an end tag. You can also nest one tag inside another. In
fact, nesting tags is one of the basic building block techniques of Web pages. Nesting lets you apply
more detailed formatting (for example, bold, underlined, italicized text), by piling in all the tags you
need in the same place. Nesting is also required for more complicated structures (like bulleted lists).

To see nesting in action, you need another tag to work with. For the next example, consider both the
familiar tag and the <i> tag, which lets you italicize text.

The question is what happens if you want to make a piece of text bold and italicized? HTML doesn't
include a tag for this purpose, so you need to combine the two. Here's an example:

This <i>word</i> has italic and bold formatting.

When the browser chews through this scrap of HTML, it produces text that looks like this:

This word has italic and bold formatting.

Incidentally, it doesn't matter if you reverse the order of the <i> and tags. The following HTML
produces exactly the same result.

This <i>word</i> has italic and bold formatting.

However, you should always make sure that you close tags in the reverse order that you opened
them. In other words, if you apply italic formatting and then bold formatting, you should always
switch off bold formatting first, and then italic formatting next. Here's an example that breaks this
rule:

This <i>word</i> has italic and bold formatting.

FREQUENTLY ASKED QUESTION

Telling the Browser to Ignore a Tag

What if I really do want the text "" to appear on my Web page ?

The tag system works great until you actually want to use an angle bracket (< or >) in
your text. Then you're in a tricky position.

For example, imagine you want to write the following bit of text as part of remarkable
insight you've achieved:

The expression 5 < 2 is clearly false,
because 5 is bigger than 2.

When the browser reaches the less than (<) symbol, it becomes utterly bewildered. Its
first instinct is to assume you're starting a tag, and the text following "2 is clearly false…
" is part of a long tag name. Obviously, this isn't what you intended. The end result is
unpredictable, but usually the text after the < character disappears into a nonexisting
tag.

To solve this problem, you need to replace angle brackets with the corresponding HTML
character entity . Character entities always begin with an ampersand (&) and end with a
semicolon (;). The character entity for the less than symbol is < because the lt stands
for "less than." Similarly, > is the character entity for the greater than symbol.

Here's the corrected example:

The expression 5 < 2 is clearly false,
because 5 is bigger than 2.

In your text editor, this doesn't look like what you want. However, when the browser
interprets this document, it automatically changes the < into a < character, without
confusing it with a tag. You'll learn more about character entities on Section 2.3.5.3 (at
the end of this chapter).

Most Web browsers are savvy enough to figure out what you're trying to do and give you the right
result. However, in some cases, violating this rule can cause different browsers to render the same
document in different ways. To avoid these glitches, always close your tags in the reverse order that
you open them.

Finally, it's worth noting that HTML gives you many more complex ways to nest tags. For example,
you can nest one tag inside another, and then nest another tag inside that one, and so on,

indefinitely. Just to give you some ideas, consider the following example, which uses a combination of
italic, bold, and underline formatting with the <i>, , and <u> tags.

<u>The easiest way to confuse a Web surfer is with <i>too much
formatting</i>.</u>

If you follow through all the tags, you'll discover that this example produces the following dizzying
line of text:

The easiest way to confuse a Web surfer is with too much formatting .The easiest way to confuse a Web surfer is with too much formatting .

To break down complex snippets of HTML like this, it's often handy to use a tree model . You'll use
the tree model later in this chapter to analyze a complete HTML document.

Tip: If you're a graphic-design type, you're probably itching to get your hands on more powerful formatting tags to change alignment,

spacing, and fonts. Unfortunately, in the Web world you can't always control everything you want. Chapter 5 has the lowdown, and

Chapter 6 introduces the best solution (style sheets).

2.3. The HTML Document

So far, you've been considering HTML snippetsportions of a complete HTML document. In this section,
you'll learn how to put it all together and create your first genuine Web page.

To create a true HTML document, you need a minimum of three container tags: <html>, <head>,
and <body>. These three tags work together to describe the basic structure of your page.

<html >

This tag wraps everything else in your Web page. It tells the browser that you're using HTML.

<head >

This tag designates the header portion of your document. The header can include some optional
information about your Web page, including the title (which is displayed in your browser's title
bar), search keywords, and a style sheet (which you'll learn about in Chapter 6).

<body >

This tag holds the meat of your Web page, including the actual content you want to display to
the world.

There's only one right way to combine these tags. Here's the correct arrangement:

 <html>

 <head>

 …

 </head>

 <body>

 …

 </body>

 </html>

Every Web page uses this basic framework. The ellipsis (…) shows where you'll want to insert
additional information. The spaces in between the lines aren't required; they're just to help you see
the tag structure more easily.

Note: Almost all browsers let you bend these rules, and create a document that lacks these three basic tags. Of course, if you wanted to

learn the wrong way to write Web pages, you probably wouldn't be reading this book!

To transform this barebones template into a real document, you just need to start adding some
content. For example, let's say you're starting a basic résumé page. Here's a very basic first go at it:

 <html>

 <head>
 </head>

 <body>
 I am Lee Park. Hire me for your company, because my work is off the
 hizzle.
 </body>

 </html>

The only change is the addition of text in the <body> section. A single tag is also used, just to
dress it up a little. Before you go any further, you may want to try creating this sample file in your
own text editor, and opening it in your favorite Web browser (see Figure 2-5). You're then ready to
try out all the upcoming HTML tricks.

Note: Even if you have high-powered HTML editing software (like FrontPage or Dreamweaver), don't use it yet. To get started learning

HTML, it's best that you do it by hand so you understand every detail that's going into your Web page. Later on, when you've mastered the

basics and are ready to create more sophisticated Web pages, you'll probably want to switch to other tools (see Chapter 4).

Figure
2-5.
Welcome

to the Web.

This page

isn't much

in the way

of HTML

goodies

(and it

probably

won't get

Lee hired),

but it does

represent

one of the

simplest

possible

HTML

pages you

can create.

2.3.1. Adding a Title

The first improvement you can make to the simple résumé page is to add a title. Without it, most
browsers show the URL or file path (where the Web page is stored) in the title bar. Once you add a
title that information disappears, and is replaced with your custom text (see Figure 2-6).

Figure
2-6.
When

displaying a

Web page

that doesn't

have a title,

the Web

browser

title bar just

tells you

where the

page is

located

(see Figure

2-5).

When

displaying

a Web

page with a

title (shown

here), you'll

see the title

and a bit of

extra text

that the

Web

browser

tacks onto

the end).

The title information isn't a part of the content of your Web page. Instead, it's added using a <title>
tag in the <head> section. Here's the example shown in Figure 2-6 :

 <html>

 <head>
 <title>Hire Me!</title>
 </head>
 <body>
 I am Lee Park. Hire me for your company, because my work is off the
 hizzle.
 </body>

 </html>

Tip: Titles are important. When a Web surfer bookmarks your page, the title is what shows up in the browser's Bookmark (or Favorites)

menu. Titles are also used by many search engines to identify your page.

2.3.2. Line Breaks and Text Flow

As you start to create more detailed Web pages, you'll quickly discover that building a Web page isn't
as straightforward as, say, creating a page in Microsoft Word. For example, you may decide to
enhance the résumé page by creating a list of skills. Here's a reasonable first try:

 <html>

 <head>
 <title>Hire Me!</title>
 </head>

 <body>
 I am Lee Park. Hire me for your company, because my work is off the
 hizzle.

 My skills include:
 *Fast typing (nearly 12 words/minute).
 *Extraordinary pencil sharpening.
 *Inventive excuse making.
 * Negotiating with officers of the peace.
 </body>

 </html>

The problem occurs when you open this seemingly innocent document in your Web browser (Figure
2-7).

The problem is that HTML ignores extra white space. That includes tabs, line breaks, and extra
spaces (anything more than one consecutive space). The first time this happens to you, you'll
probably stare dumbfounded at the computer screen and wonder why Web browsers are designed
this way. But it actually makes a fair bit of sense when you consider the fact that HTML needs to

work as a universal standard .

Say you were to customize your hypothetical Web page (like the one shown in Figure 2-7) with the
perfect spacing, indenting, and line width for your computer monitor. The problem is it may not look
as good on someone else's monitor. For example, some of the text may scroll off the right side of
their page, making it difficult to read. And different monitors are only part of the problemtoday's Web
pages need to display on different types of devices . Lee Park's future boss might conceivably view
his résumé on anything from the latest iBook laptop to a fixed-width terminal or a Web-enabled cell
phone.

Figure
2-7.
HTML

disregards

line breaks

and

consecutive

spaces, so

neatly

organized

text files

can easily

turn into a

jumble of

text like

this.

To deal with this wide range of display options, HTML lets you define the structure of your text with
tags. Instead of telling the browser, "Here's where you go to the next line and here's where you add
four extra spaces," HTML tells the browser, "Here are two complete paragraphs and here's a bulleted
list." It's then up to the browser to display your Web page according to the instructions contained in
your HTML.

To correct the résumé example, you need to use three new container tags:

<p >

Indicates a paragraph. Web browsers don't indent paragraphs, but they do add a little space in
between consecutive paragraphs.

Indicates the start of an unordered list (which is usually displayed with a bullet next to each
item). This is the perfect way to detail Lee's skills.

Indicates an individual item in a bulleted list. Each list item is indented, and has a bullet (•)
preceding it. The tag can only be used inside a tag. In other words, every list item
needs to be a part of a bulleted list.

Here's the corrected Web page (shown in Figure 2-8), with the new tags highlighted in bold:

 <html>

 <head>
 <title>Hire Me!</title>
 </head>

 <body>
 <p>I am Lee Park. Hire me for your company, because my work is off the
 hizzle.</p>
 <p>My skills include:</p>

 Fast typing (nearly 12 words/minute).
 Extraordinary pencil sharpening.
 Inventive excuse making.
 Negotiating with officers of the peace.

 </body>

 </html>

Figure
2-8.
With the

right tags

(as shown

in the code

above this

figure), the

browser

understands

the

structure of

your HTML

document,

and knows

how to

display it.

Figure 2-9 shows how you can analyze the HTML document so far using a tree model. The tree model
is a handy way to get familiar with the anatomy of a Web page, because it shows the overall
structure at a glance. However, as your Web pages get more complicated, they'll probably include too
much information to comfortably see in a tree model diagram.

You can turn the browser's habit of ignoring line breaks to your advantage. To help make your Web
documents more readable, add line breaks and spaces wherever you want. Web gurus often use
indentation to make the structure of nested tags easier to understand. In the résumé example, you
can already see this trick in action. Notice how the list items (the lines starting with the tag) are
indented. This has no effect on the browser, but it makes it easier to see the structure of the HTML
document, and how it will be rendered in the browser.

Figure
2-9.
Here's

another

way to look

at the

HTML

you've

created.

The tree

model is

designed to

show you,

at a glance,

how tags

are nested.

By

following

the arrows,

you can

see that the

top-level

<html> tag

contains

<head>

and

<body>

tags. Inside

the <head>

tag is the

title, and

inside the

<body> tag

are two

paragraphs

and a

bulleted list

with four

items. If

you stare at

the tree

model long

enough,

you'll start

to

understand

why all

these tags

are called

container

tags.

Of course, if you're a masochist, you don't need to use any spaces. The previous example is exactly
equivalent to the following much-less-readable HTML document that omits white space entirely:

<html><head><title>Hire Me!</title></head><body><p>I am Lee Park. Hire me for your

company, because my work is off the hizzle.</p><p>My skills

include:</p>Fast typing (nearly 12 words/minute). Extraordinary pencil

sharpening.Inventive excuse making. Negotiating with officers of the

peace.</body></html>

Of course, it's nearly impossible for a human to write HTML like this without making a mistake.

2.3.3. Where Are All the Pictures?

Whether it's a stock chart, a logo for your underground garage band, or doctored photos of your
favorite celebrities, the Web would be a pretty drab place without pictures. But so far, you've only
seen how to put text into an HTML document. What happens when you need an image?

Although it may surprise you, there's actually no way to store a picture inside an HTML file. There are
plenty of good reasons why you wouldn't want to anywayyour Web page files would become really
large, it would be hard to modify your pictures or do other things with them, and you'd have a
fiendish time editing your pages in a text editor because the image data would make a mess. The
solution is to store your pictures as separate files, and then link them to your HTML document. This
way, the pictures will show up exactly where you want them in your Web page when it's displayed by
a browser. The pictures just aren't stored in the HTML file.

GEM IN THE ROUGH

Have Something to Hide?

When you're working with a complex Web page, you may want to temporarily remove a
tag or a section of content. This is a handy trick when you have a page that doesn't
quite work right, and you want to try and find out where the problem lies. One way to
do this is with the good ol' fashioned cut-and-paste features in your text editor.
However, HTML has a simpler solutioncomments .

To create an HTML comment, you use the <!-- character sequence to mark the start of
the comment, and the --> character sequence to mark the end. Everything in between
these two markers, whether it's content or tags, is completely ignored by the browser.
The comment markers can appear on the same line, or you can use them to hide an
entire section of your HTML document.

Here's an example that hides two list items. When you open this document in your Web

browser, the list will show only the last two items ("Inventive excuse making" and
"Negotiating with officers of the peace").

<!-- Fast typing (nearly 12 words/minute).

 Extraordinary pencil sharpening.
-->
 Inventive excuse making.
 Negotiating with officers of the
 peace.

When you want to return the list to its original glory, just remove the comment markers.

The linking tool that performs this trick is the tag (short for image). The image tag is a
standalone tag that points to an image file, which the browser then retrieves and inserts into the Web
page. The image file can be placed in the same folder as your Web page (which is the easiest option)
or located on a completely different Web site.

Although you'll learn everything you ever wanted to know about Web graphics in Chapter 7 , it's
worth considering a simple example right now. To try this out, you need a Web-ready image handy.
(The most common supported file types are JPEG, GIF, and PNG.) If you've downloaded this book's
companion content (from the "Missing CD" page at www.missingmanuals.com), you can use the
sample picture leepark.jpg . Assuming this file is in the same folder as your Web page file, you need
the following image tag to display the picture:

This example introduces something new. Although is a standalone tag, it isn't self-sufficient.
In order for the tag to mean anything, you also need to supply the file name. To incorporate this
extra information into the image tag, HTML uses attributes . Attributes are extra pieces of
information that appear after the tag name, but before the closing > character. In many cases, you
can use multiple attributes, in which case you separate each attribute using a space.

The attribute itself has two partsa name (this is the code that tells the browser what the attribute
does) and a value (this is the piece of information you're supplying). In the example, the
attribute you're using is named src , which is shorthand for source. The value of the source attribute
tells the browser where to find the image file you want to use.

Once you've unraveled the image tag, you're ready to use it in an HTML document. Just place it
inside an existing paragraph, wherever it makes sense.

 <html>

 <head>
 <title>Hire Me!</title>
 </head>

 <body>
 <p>I am Lee Park. Hire me for your company, because my work is off the
 hizzle.
 </p>
 <p>My skills include:</p>

 Fast typing (nearly 12 words/minute).
 Extraordinary pencil sharpening.
 Inventive excuse making.
 Negotiating with officers of the peace.

 </body>

 </html>

Figure 2-10 shows exactly where the picture is displayed.

Note: You'll learn many more tricks for Web graphics, including how to change their size and wrap text around them, in Chapter 7 .

2.3.4. The 10 Most Important Tags (and a Few More)

You've now reached the point where you can create a basic HTML document, and you're well on your
way to HTML mastery with several tags under your belt. You know the fundamentalsall that's left is
to expand your knowledge by learning more tags.

HTML has a relatively small set of tags. In fact, there are just over 60 in all. You'll most likely use
fewer than 25 tags on a regular basis.

Note: You can't define your own tags and use them in an HTML document because Web browsers won't know how to interpret them.

Figure
2-10.
Here's a

Web page

that embeds

a picture,

thanks to

the linking

power of the

image tag

(shown on

Section

2.3.3). To

display this

document,

the Web

browser

performs a

separate

request to

get the

image file.

As a result,

depending

on your

connection

speed you

may see the

text of the

Web page

appear

before the

graphic has

been fully

downloaded,

in which

case it won't

yet be

displayed.

Table 2-1 provides a quick overview of some the most fundamental building blocks in HTML, several
of which you've already seen.

Table 2-1. The Basic HTML Tags

Tag Name Type Description

, <i>,
<u>

Bold, Italic,
Underline

Container
These three tags apply character stylingeither bold, italic,
or underline formatting.

<p> Paragraph Container

As your high school English teacher probably told you, the
paragraph is the basic unit for organizing text. When you
use more than one paragraph tag in a row, the browser
inserts a certain amount of space in between the two
paragraphsjust a bit more than a full blank line. Full details
appear in Chapter 5 .

 Line Break Standalone

Sometimes, all you want is text separated by simple line
breaks, not separate paragraphs. This keeps your text
closer together than when you use paragraph tags. You'll
learn more about text layout in Chapter 5 .

<h1>,<h2>,

<h3>,<h4>,

<h5>,<h6>

Heading Container

If you need a title to stand out, the heading tags are a
good choice. They display text in large, bold letters. The
lower the number, the larger the text, so <h1> is for the
largest heading. By the time you get to <h5>, the
heading size has dwindled down to the normal text size,
and <h6>, although bold, is actually smaller than normal
text.

<hr>
Horizontal
Line

Standalone

A horizontal line can help you split one section from
another. The line automatically matches the width of the
browser window. (Or, if you put it inside another element
like a cell in a table, it takes on the width of its
container.)

 Image Standalone
To display an image inside a Web page, use this tag.
Make sure you specify the src attribute to indicate the file
name of the picture you want the browser to show.

<a> Anchor Container
The anchor tag is the starting point for creating hyperlinks
that allow Web surfers to jump from one page to another.
You'll learn about this indispensable tag in Chapter 8 .

<ui>,
Unordered
List, List
Item

Container

These tags let you build basic bulleted lists. The browser
automatically puts individual list items on separate lines
and indents each one. For a quick change of pace, you
can substitute with to get an automatically
numbered list instead of bullets (ol stands for ordered
list).

In order to make the résumé really look respectable, you can use a few tricks from Table 2-1 . Figure
2-11 shows this revised version of the Web page:

 <html>

 <head>

 <title>Hire Me!</title>
 </head>
 <body>
 <h1>Hire Me!</h1>
 <p>I am Lee Park. Hire me for your company, because my work is off the
 hizzle. As proof of my staggering computer skills and monumental work
 ethic, please enjoy this electronic resume.</p>
 <h2>Indispensable Skills</h2>
 <p>My skills include:</p>

 Fast typing (nearly 12 words/minute).
 Extraordinary pencil sharpening.
 Inventive excuse making.
 Negotiating with officers of the peace.

 <p>And I also know HTML!</p>
 <h2>Previous Work Experience</h2>
 I have had a long and illustrious career in a variety of trades. Here are
 some highlights:

 2000-2003 - Worked as a typist at <i>Flying Fingers</i>
 2003-2004 - Performed cutting-edge Web design at <i>Riverdale
 Farm</i>
 2004-2005 - Starred in Chapter 2 of <i>Creating Web Pages: The
 Missing Manual</i>

 <hr>
 </body>

 </html>

2.3.5. Common Mistakes

Now that you've seen some Web pages that get it right, it's worth considering a few common
mistakes that can mangle the best of pages.

2.3.5.1. Missing a closing tag

You know the rulecontainer tags should always appear in pairs. That means if you use a tag like <h1>
to switch on heading 1 style, make sure you use </h1> soon after to turn it off. The problem occurs if
your closing tag isn't quite kosher. For example, maybe you left out the ever important slash
character (/). Try to guess what the result of this mistake will be:

<h1>The Tile That Never Ends

<h1>

The first tag turns on the heading style, and the second tag tries to turn it on again , which has no
effect. The end result is that the heading 1 style is never switched off, and the entire Web page is
rendered in gigantic bold letters. Ouch.

Here's what you really want:

<h1>The Tile That Never Ends</h1>

Figure
2-11.
Here's a

look at an

HTML

document

that adds a

little more

style in the

form of

more

headings,

lists, and a

horizontal

line.

2.3.5.2. Endless tags

As you can see, a minor typo can wreak a great deal of havoc. If you leave out the slash, you'll be
faced with the unmistakable Entire Web Page In Giant Bold Letters syndrome. If you make another
common mistake and leave out one of the angle brackets, you'll encounter the equally common
Disappearing Page disorder.

Here's the mistake:

<p
The invisible paragraph.</p>

In this case, the starting <p> tag is missing the closing > character. As a result, the browser tries to
interpret the entire line of text "<pThe invisible paragraph.</p>" as some sort of tag it's never seen
before. And you know what browsers do with tags they don't recognize? They ignore them
completely. As a result, the contents of that paragraph won't appear in your Web page at all. If you
expected to see something that's mysteriously absent, an improperly closed tag is probably at the
root of it.

Incidentally, a similar problem can occur with attributes if you include only one quotation mark
instead of two. Here's an example that shows this mistake with the src attribute in the image tag,
which is the only attribute you've seen so far.

Because the closing quotation mark is missing, the rest of the HTML document (until the next
quotation mark is found) is interpreted as an incredibly long file name. As a result, the browser won't
display the picture, and a great deal of text will vanish.

FREQUENTLY ASKED QUESTION
The Difference Between and

Should I use uppercase or lowercase tags ?

HTML isn't case-sensitive. That means that your tags can use any mix of lowercase
letters or uppercase letters without disrupting the browser.

Of course, just because something's allowed doesn't mean it's necessarily a good idea.
Although Web browsers won't make a distinction, most professional Web designers use
only lowercase (as does this book) for a number of reasons:

Newer Web standards like XHTML (see page XXXX) aren't as lenient. They'll force
you to use lowercase tags.

Following suit, Web authoring tools like FrontPage and Dreamweaver always use
lowercase tags.

That said, a few Web fans still like uppercase tags because they sometimes stand out
better in a sea of HTML. So feel free to go uppercase if you like, but just be warned that
the rest of the world won't follow suit.

2.3.5.3. Handling special characters with caution

In HTML, certain characters have a special meaningnamely angle brackets (< >) and the ampersand
(&). You can't enter these characters directly into a Web page, because the browser will assume
you're trying to give it a super-special instruction. Instead, you need to replace these characters with
the equivalent HTML character entities , as described in the box "Telling the Browser to Ignore a Tag"
on Section 2.2.3 . Table2-2 shows the basic HTML character entities.

Table 2-2. HTML Character Entities

To Get This: Type This:

< <

To Get This: Type This:

> >

& &

" &"

Strictly speaking, you don't need all of these entities. Quotation marks are always acceptable, except
inside attribute names. Browsers are usually intelligent enough to handle the ampersand (&)
character appropriately, but it's better style to use the entity & because that way there's no
chance the browser will confuse the ampersand with another character entity. Finally, the character
entities for the angle brackets are absolutely, utterly necessary.

Here's some flawed text that won't display correctly:

I love the greater than (>) and less than (<) symbols. Problem is, when I type them my

browser thinks I'm trying to use a tag.

And here's the correction with the HTML character entities. When the browser processes this text and
displays it, it replaces the entities with the characters you really want.

I love the greater than (

>
) and less than (

<
) symbols. Problem is, when I type them my browser thinks I'm trying to use a tag.

Tip: Character entities are also a handy way to insert symbols like non-English characters, the copyright mark, and the Euro currency

symbol. You'll learn more in Chapter 5 .

> >

& &

" &"

Strictly speaking, you don't need all of these entities. Quotation marks are always acceptable, except
inside attribute names. Browsers are usually intelligent enough to handle the ampersand (&)
character appropriately, but it's better style to use the entity & because that way there's no
chance the browser will confuse the ampersand with another character entity. Finally, the character
entities for the angle brackets are absolutely, utterly necessary.

Here's some flawed text that won't display correctly:

I love the greater than (>) and less than (<) symbols. Problem is, when I type them my

browser thinks I'm trying to use a tag.

And here's the correction with the HTML character entities. When the browser processes this text and
displays it, it replaces the entities with the characters you really want.

I love the greater than (

>
) and less than (

<
) symbols. Problem is, when I type them my browser thinks I'm trying to use a tag.

Tip: Character entities are also a handy way to insert symbols like non-English characters, the copyright mark, and the Euro currency

symbol. You'll learn more in Chapter 5 .

2.4. XHTML

The current version of HTML (as implemented by all modern browsers and taught in this book) is
HTML 4.01. HTML 4.01 became an official standard at the end of 1999, so it's definitely not a new kid
on the block. This raises an interesting questionin all the years since HTML 4.01 hit the Web, why
haven't there been more changes?

The fact is, HTML 4.01 has essentially finished its evolution. There isn't much more that can be
improvedat least not without radically changing the way the language is now. In the years since 1999,
developers have largely concentrated on extending HTML with browser plug-ins for new types of
content (like Flash movies) and building massive Web applications that can generate HTML on the fly.

That doesn't mean the world of Web standards has been quiet. The next big thing is XHTML, a
revised version of HTML that incorporates some of the philosophy of another standard called XML
(Extensible Markup Language). XHTML is a stricter form of HTML, so it doesn't allow sloppy mistakes
(like improperly nested tags) that browsers tolerate happily. However, the real goal of XHTML isn't to
hassle lazy Web developers. Instead, because XHTML is more consistent, it makes life easier for Web
search engines and scaled-down Web browsers on specialized platforms (like telephones, pocket
computers, and even kitchen appliances). And because XHTML has XML underpinnings, it's great for
hardcore computer programmers that want to create and analyze Web pages using development
tools.

So why aren't we all focusing on XHTML? Even though XHTML has been around for several years,
HTML 4.01 is still the undisputed popularity champ. It's more compatible with older browsers and
works well with piles of popular Web editors. Most Web page creators still pass on XHTML because it
doesn't add any new features. At the time of this writing, top sites like Amazon, eBay, and Google
are still XHTML-free. In fact, XHTML is used only when companies have powerful Web application
software that's smart enough to serve up different types of Web pages (HTML or XHTML) depending
on how capable the requesting browser is.

2.4.1. Creating a Valid XHTML Page

In this book, you won't explore XHTML. However, if you're interested, it's just a short step up from
HTML.

2.4.1.1. The basics

First of all, whereas a few HTML conventions are guidelines (that is, they're optional), in XHTML,
they're unbreakable rules. These rules are recommended in this chapter and followed throughout this
book, but they're not actually enforced by HTML:

Always include the <html>, <head>, <title>, and <body> tags.

Use proper nesting so that different start and end tags don't overlap (see Section 2.2.3).

Write all of your HTML tag names and attributes in lowercase letters.

Understand the difference between block elements and inline elements (see Section 5.2). Inline
elements (like images and links) must always be placed inside a block element (like the
paragraph).

Along with these rules are a few new wrinkles that you don't follow in ordinary HTML.

First of all, you need a namespace that indicates that you're using XHTML tags. Adding this ingredient
is easyjust replace this <html> tag at the beginning of your document:

 <html>

with this:

 <html xmlns="http://www.w3.org/1999/xhtml" >

Second, you need to add a space and a slash character to the end of every empty tag. That means
instead of this:

 <hr>

use this:

 <hr />

And instead of this:

use this:

Tip: The single space immediately before the / > characters ensures that the tag still works with browsers that don't understand XHTML.

To make life even more interesting, there are some rules for specific tags. For example, the
tag always needs to provide some alternate text, which is used in cases where the picture can't be
downloaded (see Section 7.1.2). Here's a valid tag that's ready for XHTML:

2.4.1.2. The document type definition

All XHTML documents must start with something called a document type definition (DTD). This is a
cryptic code that's inserted at the very top of your document, just before the <html> tag. The DTD
tells the world what type of XHTML you're using. The key difference between different flavors of
XHTML is whether they support old-fashioned HTML features that XHTML gurus frown upon.

For example, if you have pure XHTML that's unadulterated by any old-fashioned HTML trickery, you
can use the strict DTD. That means you'll insert this at the top of your page:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

In order to be considered strict XHTML, your page can't use the quirky formatting hacks that are
present in HTML. Instead, it needs to use the more powerful and better organized style sheet
standard (which is introduced in Chapter 6). Most of the examples in this book can be converted into
strict XHTML, because they use style sheets. For the most part, you won't see any old-fashioned
HTML tricks unless they're difficult to duplicate by other means.

If you decide you want the flexibility to use some of the unpopular parts of HTML, you can use the
transitional DTD, which looks like this:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The word transitional hints at the fact that this approach is only a temporary fix. Later versions of
XHTML won't give you this option.

Finally, you can use the frameset DTD when you want to create a Web page that uses frames (see
Chapter 10).

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Frames are a handy feature for splitting a browser window so it shows more than one page at a time.
Many Web gurus refuse to deal with frames due to their quirks and limitations, preferring to build
high-powered Web applications that custombuild each page instead. However, frames still play an
important role for do-it-yourself designers.

2.4.1.3. A valid XHTML page

Here's a version of the résumé page reworked as a strict XHTML 1.0 document. The changes are
highlighted in bold.

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">

 <head>
 <title>Hire Me!</title>
 </head>

 <body>
 <p>I am Lee Park. Hire me for your company, because my work is off the
 hizzle.</p>

 <p>My skills include:</p>

 Fast typing (nearly 12 words/minute).
 Extraordinary pencil sharpening.
 Inventive excuse making.
 Negotiating with officers of the peace.

 </body>

 </html>

When you request this page in a browser, you won't notice any changes from the HTML version.
However, you are now officially on the cutting edge (for a few minutes, anyway).

Note: XHTML pages still use the file extension .htm or .html.

You won't find much more about XHTML in this book. However, if the standard intrigues you, check
out the quick tutorial at www.w3schools.com/xhtml. If you'd like to test your pages to see if they
meet the rules of XHTML, you can use the handy online validator at www.htmlhelp.com/cgi-
bin/validate.cgi.

Chapter 3. Putting Your Page on the Web
In the previous chapter you learned the basics of HTML by considering a simple one-page résumé.
There's still a lot more you can do to perfect that page, but before going any further it's worth taking
a careful look at one of the most important pieces of the Web puzzlegetting your pages online.

In this chapter, you start by taking a closer look at how Web servers work. Once you're armed with
these high-tech nerd credentials, you'll be ready to search for your own Web hostthe company that's
going to let you park your Web site on its Web server. All you need to do is figure out your
requirements, assess the possibilities, and then start shopping!

3.1. How Web Hosting Works

As you learned in Chapter 1, the Web isn't stored on any single computer, and no company owns the
Web. Instead, the individual pieces (Web sites) are scattered across millions of computers (Web
servers). Only a subtle illusion makes all these Web sites seem to be part of a single environment. In
reality, the Internet is just a set of standards that let independent computers talk to each other.

So how does your favorite browser navigate this tangled network of computers to find the Web page
you want? It's all in the URLthe Web site address you type into your browser.

3.1.1. Understanding the URL

A URL (Uniform Resource Locator) consists of several pieces. Some of these pieces are optional,
because they can be filled in by the browser or Web server automatically. Others are always
required. Figure 3-1 dissects the URL http://www.SellMyJunkForMillions.com/Buyers/listings.htm.

Figure
3-1.
The

average

URL

consists of

four pieces.

The first

part (the

protocol)

indicates

how the

page is

going to be

retrieved.

The

second part

(the

domain)

indicates

the Web

server

you're

accessing.

The third

and fourth

parts

indicate the

http://www.SellMyJunkForMillions.com/Buyers/listings.htm

path and

file on the

Web server

where the

Web page

is located.

Altogether, the URL packs a lot of information into one place, including:

The protocol is the way you communicate over the Web. Technically, it's the way that request
and response messages are transmitted across your Internet connection. Web pages always use
HTTP (HyperText Transport Protocol), which means the protocol is always http:// or https://.
(The latter establishes a super-secure connection over HTTP that encrypts sensitive information
you type in, like credit card numbers or passwords.) In most browsers, you can get away
without typing this part of the URL. For example, when you type www.google.com, your
browser will automatically convert it to the full URL http://www.google.com.

Tip: Although http:// is the way to go when surfing the Web, depending on your browser you may also use other protocols for

other tasks. Common examples include ftp:// (File Transfer Protocol) for uploading and downloading files and file:/// for retrieving

a file directly from your own computer's hard drive.

The domain identifies the Web serverthe computer that hosts the Web site you want to see. As
a convention, these computers usually have names that start with www to identify them as Web
servers, although this isn't always the case. As you'll discover in this chapter, the friendly
seeming domain name is really just a façade hiding a numeric address.

The path identifies the location on the Web server where the Web page is stored. This part of
the URL can have as many levels as is needed. For example, the path /MyFiles/Sales/2005/
refers to a MyFiles folder that contains a Sales folder that, in turn, contains a folder named 2005.
Windows fans, take notethe slashes in the path portion of the URL are ordinary forward slashes,
not the backward slashes used in Windows file paths (like c:\MyFiles\Current). This convention
is designed to match the file paths used by Unix-based computers, which were the first
machines to host Web sites. It's also the convention used in modern Macintosh operating
systems (OS X and later).

Tip: Some browsers are smart enough to correct the common mistake of typing the wrong type of slash. However, you shouldn't

rely on this happening, because similar laziness can break the Web pages you create. For example, if you use the tag to

link to an image (as demonstrated on Section 2.3.3) and you use the wrong type of slash, your picture won't appear.

The file name is the last part of the path. Often, you can recognize it by the file extension
.htm or .html, both of which stand for HTML.

Tip: Web pages often end with .htm or .html, but they don't need to. Even if you look in the URL and see the extension

.blackpudding, odds are you're still looking at an HTML document. In most cases, the browser ignores the extension as long as

the file contains information that the browser can interpret. However, just to keep yourself sane, this is one convention that you

shouldn't break.

https://
http://www.google.com

The bookmark is an optional part of a URL that identifies a specific position in a page. You can
recognize a bookmark because it always starts with the hash character (#), and is placed after
the file name. For example, the URL http://www.LousyDeals.com/index.html#New includes the
bookmark #New. When clicked, it takes the visitor to the section of the index.html page where
the New bookmark is placed. You'll learn about bookmarks in Chapter 8.

The query string is an optional part of the URL that some Web sites use to send extra
instructions from one Web page to another. You can identify the query string because it starts
with a question mark (?) character, and is placed after the file name. To see a query string in
action, surf to www.google.com and perform a search for "pet platypus." When you click the
Search button, you're directed to a URL like http://www.google.ca/search?
hl=en&q=pet+platypus&meta=. This URL is a little tricky to analyze, but if you search for the
question mark in the URL you'll discover that you're on a page named "search." The information
to the right of the question mark indicates that you're performing an English language search
for pages that match both the "pet" and "platypus" keywords. When you request this URL, a
specialized Google Web application analyzes the query string to determine what type of search
it needs to perform.

Note: You won't use the query string in your own Web pages, because it's designed for heavy-duty Web applications like the one that

powers Google. However, by understanding the query string, you get a bit of insight into how other Web sites work.

3.1.2. How Browsers Analyze the URL

Clearly, the URL packs a lot of useful information into one place. But how does a browser actually use
the URL to request the Web page you want? To understand how this works, it helps to take a peek
behind the scenes (see Figure 3-2).

Figure
3-2. A
simple

Web

request

usually

http://www.google.ca/search?

involves a

bevy of

computers

contacting

each other.

The first

computer

(the DNS

server)

gives you

the all-

important

IP address,

allowing

you to track

down the

second

computer

(the Web

server),

which gets

you the

Web page

you want.

The following list of steps shows a breakdown of what the browser needs to do when you type
http://www.SellMyJunkForMillions.com/Buyers/listings.htm into the address bar and hit Enter:

First, the browser needs to figure out what Web server to contact. It does this by
extracting the domain from the URL.

In this example, the domain is www.SellMyJunkForMillions.com.

1.

In order to find the Web server named www.SellMyJunkForMillions.com, the browser
needs to convert the domain name into a more computer-friendly number, which is
called the IP address. Every computer on the WebWeb servers and regular PCs
alikehas an IP address. To find the IP address for the Web server, the browser looks
up the Web server's domain name in a giant catalog called the DNS (Domain Name
Service).

An IP address looks like a set of four numbers separated by periods (or, in techy speak, dots).
For example, the www.SellMyJunkForMillions.com Web site may have the IP address
17.202.99.125.

Note: The DNS catalog isn't stored on your computer, so your browser actually needs to grab this information from the Internet.

You can see the advantage that this approach provides. In ordinary circumstances, a company's domain name will never change,

because that's what customers use and remember. But an IP address may change, because the company may need to move

their Web site from one Web server to another. As long as the company remembers to update the DNS, this won't cause any

2.

http://www.SellMyJunkForMillions.com/Buyers/listings.htm

disruption. Fortunately, you won't need to worry about managing the DNS yourself, because that process is automatically handled

for you by the company that hosts your Web site.

Using the IP address, the browser sends the request to the Web server.

The actual route that the message takes is difficult to predict. It may cross through a number of
other Web servers on the way.

3.

When the Web server receives the request, it looks at the path and file name in the
URL.

In this case, the Web server sees that the request is for a file named listings.htm in a folder
named Buyers. It looks up that file, and then sends it back to the Web browser. If the file
doesn't exist, it sends back an error message instead.

4.

The browser gets the HTML page it's been waiting for (the listings.htm file), and
renders it for your viewing pleasure.

The URL http://www.SellMyJunkForMillions.com/Buyers/listings.htm is a typical example.
However, in the wild, you'll sometimes come across URLs that seem a lot simpler. For instance,
consider http://www.amazon.com. It clearly specifies the domain name (www.amazon.com),
but it doesn't include any information about the path or file name. So what's a Web browser to
do?

When your URL doesn't include a file name, the browser just sends the request as is, and lets
the Web server decide what to do. The Web server sees that you aren't requesting a specific
file, and so it sends you the site's default Web page, which is often named index.htm or
index.html. However, the Web administrator can configure the Web server to use any Web page
file name as the default.

Now that you understand how URLs work, you're ready to integrate your own pages into the
fabric of the Web.

5.

http://www.SellMyJunkForMillions.com/Buyers/listings.htm
http://www.amazon.com

3.2. Domain Names

Shakespeare may have famously written "What's in a name? That which we call a rose / By any other
name would smell as sweet." But he may not see things the same way if he has to type in
www.thesweetsmellingredflowerwiththorns.biz into his browser instead of www.rose.com . Short,
snappy domain addresses attract attention and are easier to remember. Today, cheap personalized
domain addresses are within the reach of every Web site creator. If you decide to get one of your
own, it's worth taking the time to get it right.

3.2.1. Searching for a Name

Your first step should be to start checking domain name availability. You can start this process even if
you haven't chosen a Web hosting company. In fact, the Web abounds with tools that let you check if
a domain name is available. These tools will also stop you if you try to use illegal characters (only
letters, numbers, and dashes are allowed in a domain name).

POWER USERS' CLINIC

Internet vs. Intranet

As you already know, the Internet is a huge network of computers that spans the globe.
An intranet is a lot smallerit's a network inside a specific company, organization, or
home that joins together a much smaller number of computers. In fact, an intranet
could have as few as two computers.

An intranet makes sense anytime you need to have a Web site that's only available to a
small number of people in one location. For example, a company can use an intranet
Web site to share marketing bulletins (or the latest office gossip). In your own home,
you could use an intranet to let your housemates browse your Web creations from
multiple computers. The only limitation is that a Web site on an intranet is only
accessible to the computers on that network. Other Web surfers won't be able to visit it.

Setting up a Web site for an intranet is easier than setting it up for the Internet, because
you don't need to register the domain name. Instead, you can use the network
computer name. For example, if your computer has the network name "SuperServer,"
you could access a Web page with a URL like http://SuperServer/MySite/MyPage.htm .

To set up your own intranet, you need to start by setting up a local network, and then
you need to make sure you have some Web hosting software. These tasks are outside
the scope of this book, but if you're eager to give this do-it-yourself project a try, you'll
need to start by setting up a home network. Check out Home Networking: The Missing
Manual for complete instructions.

Just about every Web hosting company provides its own version of a domain name search tool.
Figure 3-3 shows an example from www.domaindirect.com .

http://SuperServer/MySite/MyPage.htm

After you've performed a search, the Web hosting company gives you an option to purchase one of
the available domains. But don't register anything yet. Most people sign up for a Web hosting
package and domain name all at once, for the easiest setup and best value.

Note: You may think you could check if a domain is free just by typing it into your Web browser. But this method of checking takes

longer, and it doesn't give you a definitive result. Someone can buy a domain name without setting up a Web site, so even if you can't

find a Web site using your browser, the domain may not be available.

3.2.2. Getting the Right Name

You'll find that most short, clever word combinations have long since disappeared from the Web.
Even if they aren't in use, they've been purchased by domain squatters, who hope to sell them later
to a desperate high bidder. Give up on www.worldsbestchocolate.com it's gone. However, you may
find success with names that are a little longer or more specific (www.worldsbestdarkchocolate.com
), use locations or the names of people (www.bestvermontchocolate.com or
www.anniesbestchocolate.com), or introduce made-up words (www.chocolatech.com). All of these
domain names are available at the time of this writing.

Figure 3-3. Top:

Using this free domain

search tool, you can

check if your preferred

domain name is available.

Notice that you don't type

in the www at the start of

the domain name (it's

already indicated to the

left of the box).

Bottom: The results aren't

good. The first choice,

www.freecheese.com is

gone. All that's left are the

less-catchy

www.freecheese.biz and

country-specific domains.

You can click the "Click

Here for More Results"

link to see related

domains that are

available (in this case, if

you asked to see more

results, you'd find that

www.allfreecheese.com

and

www.bestfreecheese.com

are available).

Anyone who's chosen the wrong domain name knows that there are some clear-cut traps you want
to avoid. Here are some mistakes to watch out for:

Dashes . It may be tempting to get exactly the domain name you want by adding extra
characters, like dashes, in between the words. For example, you have no chance at getting
www.reliablebusiness.com , but www.reliable-business.com is still there for the taking. Don't do
it. For some reason, dashes seem to confuse everyone. People are likely to leave them out,

confuse them with underscores, or have trouble finding them on the keyboard.

Phrases that look confusing in lowercase . Domain names aren't case-sensitive, and when
you type a domain name into a browser, the browser converts it to all lowercase. The problem
is that some phrases can blend together in lowercase, particularly if you have words that start
with vowels. Take a look at what happens when the documentation company Prose Xact puts
their business name into a lowercase domain name: www.prosexact.com . You get the picture.

Note: Even though domain names don't distinguish case, that doesn't stop business from using capital letters in business cards,

promotions, and marketing material to make the domain name more readable. Whether customers type www.google.com or

wWw.gOOgLE.cOm into their browsers, they'll get to the same site.

Names that don't match the business . It's a classic business mistake. You set up a flower
shop in New York called Roses are Red. Unfortunately, the domain www.rosesarered.com is
already taken so you go for the next best choice, www.newyorkflorist.com . Huh? What you've
actually done is created two separate names, and a somewhat schizophrenic identity for your
business. To avoid these problems, if you're starting a new business, try to choose your
business name and your domain name at the same time so they match. If you already have a
business name, settle on an URL that has an extra word or two, like
www.rosesareredflorist.com . This name may not be as snappy as www.newyorkflorist.com ,
but it avoids the inevitable confusion of creating a whole new identity.

Settling for.org . The last few letters of the domain (the part after the last period) is called the
top-level domain . Everyone wants a .com for their business, and as a result they're the hardest
domain name to get. Of course, there are other top-level domains like .net, .org, .biz, and so
on. The problem is, every Web surfer expects a .com. If you have the domain name
www.SuperShop.biz , odds are someone will type www.SuperShop.com while trying to find your
site. That mistake can easily lead your fans to a competitor (or to a vastly inferior Web site). In
other words, it's sometimes worth taking a second-choice name to get your first choice of top-
level domain (a.com).

Note: The top-level domain .org was originally intended for non-profit organizations. It's now free for anyone to use and abuse. However,

if you're setting up a non-profit of your own, the .org domain may make more sense than .com and be almost as recognizable.

Domain name searches are an essential bit of prep work. Experimenttry to come up with as many
variations and unusual name combinations as possible. Aim to record at least a dozen available name
possibilities, so you can give yourself lots of choice. Once you've compiled the list, why not make a
few late night phone calls to pester friends and relatives for their first reactions?

3.2.3. Registering Your Name

Once you've found an available name, you can register it, but you probably want to wait until you're
ready to sign up for a Web hosting plan (which you'll read about in the next section), since most Web
hosting companies offer free or discounted domain name registration when you rent space from
them. That's also the easiest way to set up your domain name, because it's all taken care of
automatically.

However, there are some cases where you may want to register a domain name separately from
your Web hosting package. Here are some examples:

You don't actually want to create a Web site. You just want to register a name so that no one
else can grab it (a tactic known as domain parking). Sometime in the future, you may develop
the Web site for that name.

You already have Web space, possibly through your ISP (Internet Service Provider). All you
need to make your Web site seem more professional is to get a custom domain name. This
option can get a little tricky, and you may need to use a procedure called domain forwarding
(which you'll read about in a moment).

Your Web hosting company can't register the type of domain you want. This can occur if you
need a domain name with a country-specific top-level domain.

If you don't fall into one of these special categories, skip ahead to the section "Getting Web Space" to
start searching for the right Web host. Otherwise, keep reading for more details about registering
and managing a domain name on its own.

Note: All Web hosting companies allow you to register more than one domain for the same Web site. That means you can register both

www.FancyPants.com and www.FancyPants.org , and have them point to the same Web site. Of course, you'll need to pay an extra

domain name registration fee.

FREQUENTLY ASKED QUESTION

International Domain Names

Some domain names end with a country code. Should I get one?

A .com address is a Web site creator's best friend. Other top-level domains (.net, .org,
.biz, and so on), generally aren't worth the trouble. However, there is one exception:
regional domain names. If you can't get the .com you need, it just might make sense to
go with a country-specific top-level domain like .us (USA) or .ca (Canada).

For example, if you're offering piano lessons in England, www.pianolessons.co.uk isn't a
bad choice. However, if you're planning to sell products to an international
audience,www.HotRetroRecords.co.uk is likely to frighten away otherwise interested
buyers, who may assume it's too much trouble to deal with a British seller.

There are special rules about who can registrar country-specific names. Due to these
restrictions, many Web hosting companies can't sell certain country-specific domains. To
search for domain names with a specific country code, use Google to find the right
registrar. For example, to find a registrar for Australian domains, search for "Australia
domain names."

3.2.3.1. Domain parking

Domain parking (Figure 3-4) is just another name for domain registration. Essentially, domain
parking means you've registered a domain name but haven't yet purchased any other services, like
renting Web storage space.

Figure
3-4.
Domain

parking

(left) and

domain

forwarding

(center) are

two scaled-

down

alternatives

to buying a

complete

Web

hosting

package.

This

registrar

offers both

these

options,

along with

a full Web

hosting

package

(right).

Most people use domain parking to put a domain name away on reserve. In the increasingly crowded
world of the Web, many people use domain parking to protect their names (for example,
www.matthewmalone.com). Domain parking is also useful if you want to secure several potential
business names that you may use in the future.

Tip: If you do reserve a domain name, it's a good idea to do your research, and pick a company that you'd like to use to host your Web

site. Switching domain names from one Web hosting firm to another is possible, but it's a bit of a pain. Contact the Web host you're

working with for specific instructions about how to pull this off.

The real appeal of domain parking is that it's cheap. You pay a nominal registration fee (as little as
$10/year) and you get to keep the domain name for as long as you're willing to pay for it.

3.2.3.2. Domain forwarding

Domain forwarding is a budget option. It makes sense if you already have complimentary Web space
that you want to use. For example, you may have free Web space through your ISP, your school,
your job, from a (shudder) free Web hosting service (discussed on Section 3.3.6), or from a crazy
uncle with a Web server in the basement. In these situations, you can save some money because you
don't need to pay a Web hosting company. However, you may still want to use a snappy URL for your
Web site. In this situation, you can buy the URL separately, and use domain forwarding to point your
brand new URL to your site on your Web space.

For example, if you have Web space on an ISP, you might be stuck with a URL like
http://member.magicisp.com/members/personalwebspace/~henryj420/home , which clearly isn't
as catchy as www.HenryTheFriendly.com . However, you can buy the domain name
www.HenryTheFriendly.com and use domain forwarding to point it to your Web space.

FREQUENTLY ASKED QUESTION

A Host Here, a Domain There

Can I buy my domain name and Web space from different companies, and still make
them work together?

The best approach is to get both from the same company, but that's not always
possible. Maybe you bought your domain name before you set up your Web site, and
you don't want to pay the cost of transferring the domain. Or maybe you have a
country-specific domain name (like www.CunningPets.co.uk) that your Web hosting
company can't register.

To make this multiple-company tango work, you'll need some technical support from
your Web hosting company. Contact their help desk and let them know what you plan to
do. They'll give you specific instructions about what steps to take, and they'll configure
their name servers (more on what those are in a moment) to have the right information
for your domain.

The next step is to change the registration information for your domain. Here are the
steps that you'll need to follow:

Find out the name of the domain name servers (DNS servers) at your Web hosting
company. These are the computers that convert domain names into the numeric IP
addresses (see Section 3.1.2 for full details on how DNS servers work). The
technical support staff can give you this information.

1.

Go to the company where you've registered the domain name, and update your
domain registration settings. Change the name server setting to match the name
servers you found out about in step 1. The figure in this sidebar shows an example
with the name servers named ns1.brinkster.com and ns2. brinkster.com .

2.

Due to the way that DNS servers work, the change can take 24 hours to take effect.

When you make this change, you're essentially saying that your Web host company is
now responsible for giving out the IP address of your Web site. When someone types
your domain name into a browser, the browser will contact the name server at your
Web hosting company to get the IP address. From that point on, it's smooth sailing.

Once you've modified your domain name registration, you'll still have the same two bills
to pay. You'll pay your hosting fees to the Web hosting company and the yearly domain
name registration fee to the company where you registered your domain name.

http://member.magicisp.com/members/personalwebspace/~henryj420/home

Tip: Even if the URL from your ISP isn't that bad, it's still a good idea to buy a custom domain. Otherwise, if the ISP changes its

configuration or if you switch from one ISP to another, your Web visitors won't be able to find your Web site anymore. But if you use

domain forwarding, you simply need to update the domain settings with the new URL, and your custom domain keeps working. No one

will even notice the change.

First you need to register a domain name that comes with forwarding as an included service (see
Figure 3-4). Then, you can log in and set the forwarding settings (see Figure 3-5).

Figure 3-5. Here,

the catchy domain

www.HenryTheFriendly.com

seamlessly forwards all

visitors to a much more

awkward URL where the

Web site is actually located.

Usually, domain forwarding

is implemented in such a

way that the address bar

keeps showing the original

domain name (in this case,

www.HenryTheFriendly.com

) even when the visitor is

directed to the second site.

With domain forwarding, most Web hosting firms give you the added ability to forward subdomains .
Subdomains look like your domain name, but instead of starting with www they start with another
word or phrase you choose. For example, if you get a forwarding account for
www.PremiumPencils.com , you could choose to create a subdomain named
help.PremiumPencils.com for customer support or resume.PremiumPencils.com for quick access to
your electronic résumé (see Figure 3-6).

Domain forwarding can come in handy in other scenarios. For example, say you have an account with
a Web hosting company and you want to use it to create several separate Web sites (like a personal
site, a business site, a site for someone else in your family, and so on). Conceptually, it's easyyou
just need to place each Web site in a separate folder. However, this tactic can muck up your URLs. If
you have the business domain name www.PremiumPencils.com and you want to create a personal
site for your upcoming marriage, you're stuck with something like
www.PremiumPencils.com/WeddingForDebbie . A low-cost alternative is to buy one Web hosting
account, and buy several domain names (like www.PremiumPencils.com and
www.DebbiesWedding.com) with domain forwarding. Then, just direct each domain name to the
appropriate subfolder. Prestothe wedding guests will never be asked to stock up on office stationery.

Figure 3-6.
Thanks to

subdomains, you can

provide easy access to

several different pages

in your Web site, or

even several different

Web sites. All you

need to do is forward

each domain to a

different URL, as

shown here with the

subdomains

resume.prosetech.com

and

help.prosetech.com.

3.3. Getting Web Space

All you need to achieve Web superstardom is a domain name and a small amount of space on a Web
server. There's no one-size-fits-all solution when it comes to finding a Web host. Instead, you'll
choose the right Web hosting company based on your budget, what you want your Web site to be
able to do, and your own capricious whims (let's face itsome Web hosts just have way cooler names
than others).

Finding the right Web host can take a bit of searching, and it may require making a few phone calls
or just surfing around the Web. Before you start tapping away, it helps to take a look at the big
picture.

3.3.1. The Big Picture

Nowadays, Web hosting packages come in three main flavors:

Simplified Web site creation. In this case, the Web hosting company offers special software
that promises to help you create a Web site in two or three easy steps. These tools range from
terrible to awful (see Figure 3-7). After all, if you're content to create the same cookie-cutter
Web site as everyone else, you probably aren't interested in HTML, and you wouldn't have
picked up this book in the first place. Instead, go for standard Web site hosting and unleash
your inner Web artiste.

Figure
3-7. Page

design

wizards give

you a quick

and easy way

to make

mediocre

pages. In this

example

(generated

for an AOL

Hometown

site), a tool-

generated

page has

plain

formatting

and an ad

banner you

can't remove.

Another

major

limitation is

the page-

creation

software.

Although it's

quite good for

a browser-

based

program, it's

still slow and

awkward,

and lacks

most of the

features and

conveniences

you'll get if

you use a

regular

PCbased

Web editor,

which you'll

learn about in

Chapter 4.

Note: There's one case where simplified Web site creation makes senseif all you want to do is create a blog (a personal site that

consists of short, chronological postings about anything that interests you). Chapter 17 shows how you can create a blog on your

own Web site, or how you can set one up at a free blogging host so you don't need to buy a domain name or pay for Web space.

Standard Web site hosting. Here, you're given a slot of space on a Web server to manage as
you see fit. You create the Web page files you want using your own computer, and then copy
these files to the Web server so that others can see them. This type of Web hosting is all you
need to use this book.

Web application hosting. This option makes sense if you're a programmer at heart, and you
need a Web server that can run your Web applications. A Web application can be quite neatit
can perform complex calculations, read vast amounts of information from a database, and spit
out made-to-measure HTML on the fly. However, programming a Web application is far from
easy. In this book, you'll focus on creating ordinary Web sites, and using third-party services
when you need more complex features like an e-commerce shopping cart. That means Web
application hosting is overkill.

Web hosting packages usually charge a monthly fee. For basic Web hosting, this fee starts at the
reasonable sum of $5$10 per month. Of course, it can escalate quickly, depending on what features
you want.

3.3.2. Assessing Your Needs

You need to ask yourself one important questionwhat features do you need? Web hosts are quick to
swamp their ads and Web sites with techie jargon, but they don't tell you which services are truly
useful. Here's a quick overview that describes what Web hosts sell (and what you need to know
about each offering). If you'd like to keep track of which features you need, there's a checklist you
can fill out on Section 3.3.2.1, or you can download it from the "Missing CD" page at
www.missingmanuals.com.

Web space is how much space you're renting to store your Web site. Although HTML pages are
extremely small, you may need more space to fit in images or files you want others to
download. A modest Web site can easily survive with 20 MB (megabytes) of space, unless
you're stuffing it full of pictures or videos. Many Web hosts throw in much more, often as much
as 500 MB or 1 GB (gigabyte), knowing you'll probably never use it.

Note: For the numerically challenged, a Gigabyte (GB) is the same as 1024 Megabytes (MB). To put it in perspective, modern

hard drives can offer 200 GB of space or more, which gives you room for thousands of Web sites.

Bandwidth (or Web traffic, as it's sometimes called) is the maximum amount of information
you can deliver to everybody who surfs to your Web site in a month. Usually, you can make do
with the lowest bandwidth numbers offered by your Web hosting company (with 1 GB being
more than enough). For more information, see "The Riddle of Bandwidth" on Section 3.3.2.

A domain name is a custom Web site address, as in www.HenryTheFriendly.com. If you decide
to get a custom domain name, you don't necessarily need to get it from the same company that
hosts your Web site. However, it does make life easier, and a custom domain name is often
thrown in for a discounted price when you sign up for a Web hosting plan.

POWER USERS' CLINIC

The Riddle of Bandwidth

Most Web hosting companies set their pricing, at least in part, based on your Web
space and bandwidth needs. This can be a problem, because the average Web site
creator has no idea how to calculate these numbers. It's even harder to come up
with realistic estimates.

Fortunately, you can save a lot of time and effort by understanding one dirty little
secret: for the average personal or small business Web site, you don't need much
disk space or bandwidth. You can probably take the smallest amounts on offer from
any Web hosting company and live quite happily. The only real exception is if your
Web site is ridiculously popular, if you're showcasing a huge catalog of digital
photos, or if you want to store extremely large files and let visitors download them.

If you still insist on calculating bandwidth, here's how it works. Let's say you've got
a Web site with 100 relatively modest pages that are each about 50 KB (kilobytes),
including graphics. Right away, you can calculate your Web space requirementit's
50 KB * 100, or 5 MB.

To calculate the bandwidth, you need to make estimates about how many visitors
will surf through your site, and how much content they'll request over each visit.
Suppose your Web site is doing well, and receives about 10 visitors in a day. Say an
average visitor browses through 20 pages before leaving. In a day, your bandwidth
usage is 10 visitors * 20 pages * 50 KB, or 10 MB. Over a 30-day month, that's 300
MB, still less than a third of the 1 GB bare minimum that most Web hosting
companies offer.

So why do Web hosting companies focus on Web space and bandwidth numbers?
It's partly to satisfy large customers who really do have greater requirements, but
it's also to confuse everyone else into buying more than they need.

Here's another scenario: you create a Web site and add links that allow visitors to
download MP3 files of your underground all-percussion garage band. You offer up
three songs, each of which is a 4 MB MP3 file. Now the equation changes. Assuming
a steady stream of 10 visitors a day, and assuming each visitor downloads all three
songs, you've hit a bandwidth of 10 visitors * 3 songs * 4 MB, or 120 MB. Now your
monthly bandwidth usage tops 3 GB. You're probably still in the clear, because
many Web hosting companies offer 7 or 10 GB in their starter packages. However,
you'll want to pay more attention to the bandwidth number.

If bandwidth is important for you, you need to know what will happen if you
surpass your bandwidth limit in a month. Some Web hosting companies cut your
Web site off entirely at this point (or just show your visitors an explanatory page
saying the site is temporarily inactive). Other Web hosting companies tack on extra
fees. So ask.

Email addresses. Odds are, you already have some of these. But you may want an email
address that matches your Web site address, especially if you're paying for a customized
domain name. For example, if you own www.HenryTheFriendly.com, you'd probably like to use

an email address like Hank@HenryTheFriendly.com. Web hosting companies give you different
options heresome may just forward the email to another email address (which you'd need to
supply them with), while better packages will give you a dedicated email inbox with plenty of
space for receiving and storing messages.

Upload-abilityhow easy it is to transfer files to the Web serveris another important detail. As
you saw in the previous chapter, you can perfect your Web pages on your own computer before
you upload them. But once your Web site's ready for prime time, you need a convenient way to
copy all the files to your Web server. For greatest convenience, look for FTP (File Transfer
Protocol) support, which lets you easily copy a number of files at once. Some Web hosts may
also provide integration with popular Web design tools like FrontPage and Dreamweaver,
allowing you to upload pages without leaving your Web editing program.

Frills. In an effort to woo you to their side, Web hosting companies often pack in a slew of frills.
For example, sometimes they'll boast about their amazing, quick-and-easy, Web site creation
tools. Translation: they'll let you use a clumsy piece of software on their Web site to build yours.
You'll end up with a cookie-cutter result and not much opportunity to express yourself. Steer
clear of these pointless features. More usefully, a Web hosting company can provide Web site
statisticsdetailed information about how many visitors are flocking to your site on a daily or
monthly basis. Some Web hosting companies also offer support for server-side scripts
(essentially, miniature programs that can run in your Web site) with catchy acronyms like CGI,
JSP, PHP, and ASP.NET. Although these features are powerful, they require programmer
credentials. They're all beyond the scope of this book.

Note: Although server-side applications aren't covered in this book, you will learn about client-side scripts in Chapter 14. Client-side

scripts run right inside your Web site visitor's browser, and are much more limited in ability than server-side scripts. They're commonly

used for special effects like animated buttons. The nice thing about client-side scripts is that even programming novices can drop a

simple script into their Web pages and enjoy the benefits. But you don't need to worry about any of this right now, because unlike server-

side scripts, client-side scripts don't require any special support from your Web hosting company.

3.3.2.1. A Web host checklist

 ________ Web space. 20 MB is acceptable if you're getting free Web space from your ISP,
but insist on at least 50 MB if you're paying for it with a monthly fee. If you want to offer photos,
audio, or other large files, go for 250 MB to be safe.

 ________ Bandwidth. You don't need much. 1 GB works for normal Web sites, but look for
5 GB or more if you want to provide large files or are expecting to create a popular Web
destination.

 Domain name. This is your identitywww.You.com. Ideally, the domain name should be
thrown in for free.

 Email addresses. These go with the domain name. Look for at least one POP mailbox. It's
better to have five or more, because it allows you to give separate email addresses to family
members, or use them for different purposes. Also look for Web-based access to your email.

Note: POP stands for Post Office Protocol, which is the standard your computer uses to communicate with the email server. When you

have a POP email account, you're able to use desktop email programs like Microsoft Outlook and Microsoft Entourage. (Hotmail and

other Web-based mail systems don't provide the same support.)

 FTP access. This ensures easy uploading of your files.
 Tech support. The best companies provide 24-hour tech support, ideally through a toll-free

number or a live chat feature that lets you ask a tech support person questions through your
browser.

 Statistics. These are useful if you want to check out how popular your Web site really is. If
you want to analyze traffic patterns and more detailed statistics, look for a Web host that
provides access to raw server logs. You can download these and use them with a high-powered
analysis tool.

 FrontPage extensions. Useful if you're using FrontPage to create your Web site, and want
to take advantage of a few extra frills.

3.3.3. Choosing Your Host

Now that you have your requirements in mind, it's time to start shopping for a Web host. The
following sections take you through your options.

3.3.4. Your ISP (Internet Service Provider)

As you may have already realized, your ISPthe company that provides your access to the
Internetmay have its own Web hosting services. In fact, these services are sometimes included in the
basic subscription price, meaning you may already have a dedicated amount of Web space that you
don't even know about. If you're in this situation, congratulationsyou don't need to take any extra
steps. If you're unsure, a quick call to your ISP will fill you in. Make sure you ask for "personal Web
space." Many ISPs also provide large-scale Web hosting packages for a monthly fee.

Note: In some cases, your ISP may provide Web hosting that you decide not to use. For example, they may not give you enough space,

or they may force you to use their limited Web site creation software (which is a definite drag). In these cases, you'll want to use one of

the other Web hosting solutions described below.

Obviously, ISPs differ in whether or not they provide Web space. You're more likely to get a small
amount of Web space if you have a high-speed broadband connection (cable or DSL) rather than a
dial-up account. Often, the space is as little as 5 or 10 MB, which is much smaller than what you
receive from a Web hosting company. And no matter what ISP you have, you won't get a customized
domain name as part of your package (although you can purchase one separately).

Before continuing any further, it might be worth it to make a quick call to your ISP or visit their Web
site to see if they provide Web hosting services. In the meantime, Table 3-1 lists some popular ISPs
and their support for Web hosting (at the time of this writing).

Table 3-1. ISPs and Personal Web Space

ISP Personal Web Space Verdict

America Online
(AOL)

Provides a wizard-based hosting service that anyone can use for free,
called AOL Hometown (http://hometown.aol.com). Existing AOL
customers have added features, like FTP. Web space is limited, and
ugly advertisement banners are mandatory.

North
worth the
trouble.

United Online
(NetZero, Juno,
and BlueLight)

No. No.

Comcast Yes.
Suitable
for small
sites.

Earthlink Yes. Also offers a premium Web hosting service for a monthly fee.
Suitable
for small
sites.

Verizon Yes. Also offers a premium Web hosting service for a monthly fee.
Suitable
for small
sites.

SBC Yahoo!
The only free service is through GeoCities, which has no FTP access
and forces you to use advertisements. Better Web hosting is
available for an additional fee.

No.

AT&T Yes (depending on your plan).
Suitable
for small
sites.

BellSouth Yes (depending on your plan).
Suitable
for small
sites.

Road Runner Yes.
Suitable
for small
sites.

MSN

Provides a free service called MSN Spaces (http://spaces.msn.com)
that lets you build a blog (Chapter 17) or a personal site with
pictures. The service doesn't let you upload your own Web pages.
Microsoft also offers real Web hosting, but it's a little pricey.

Too
limited.

3.3.5. Web Hosting Companies

Technically, anyone that provides Web space is a Web host, but there's a class of companies that
specialize in Web hosting and don't do anything else. You can find these companies all over the
Internet, or in computer magazines. The disadvantage is that Web hosting companies always charge
by the month. You won't get anything for free.

The sad truth is that it's almost impossible to research Web hosting companies online, because the

http://hometown.aol.com
http://spaces.msn.com

Web is swamped with more Web hosting advertisements than those for cut-rate pharmaceuticals.
Fortunately, there are many good choices.

Table 3-2 lists just a few good ones to get you started. If you're curious, be sure to check out these
Web sites and start comparison shopping.

Table 3-2. A Few of the Internet's Many Web Hosting Firms

Name URL

Brinkster www.brinkster.com

Insider Hosting www.insiderhosting.com

Pair Networks www.pair.com

Sonic.net www.sonic.net

Tip: For a recent PC World article that's packed full of Web host advice (and based on 6,000 reader reviews), surf to

www.pcworld.com/reviews/article/0,aid,120341,00.asp.

As you consider different Web hosting companies, you'll need to sort through a dizzying array of
options on different Web sites. In the following sections, you'll learn how to dig through the
marketing haze and find the important information on the Web sites of two Web hosting companies.

3.3.5.1. A Web host walkthrough (#1)

Figure 3-8 shows how you can assess the home page for the popular Web hosting company
Aplus.Net. The company offers Web hosting, dedicated servers, and Web design services. All three
options are designed to help you get online, but the Web hosting option is what you're really looking
for. The dedicated server option is a premium form of Web hosting. It means that your Web site will
run on a separate computer that doesn't host anyone else's Web site. This is primarily of interest to
large business customers with high-powered Web sites that chew up computer hardware resources.
Most personal and small business Web sites run on shared servers without any noticeable slowdown.
The Web design option is mainly of interest to HTML-phobes. It allows you to pay a Web design team
to craft all the HTML pages and graphics for your Web site. But where's the fun in that?

The choices don't end there. Figure 3-9 invites you to narrow down your choice based on the type of
operating system you want for your Web server. Unless you're a programmer planning to create
special software to run on the server, there's no reason to care what type of operating system runs
on the Web server. Assuming the Web hosting company does its job and distributes the Web sites
they host over multiple computers, your Web site will be just as fast and reliable on any system.
When was the last time you asked yourself what operating system runs eBay (Windows) or Amazon
(Linux)?

At the end of your search, you've discovered that the cheapest option is currently $6/month for a 50
MB Web site with 1 GB of bandwidth. A free domain and five email addresses are thrown in for good

measure. The virus and spam protection is much less interestingit simply indicates that your email
will have automatic filtering to catch dubious messages. The Web Control Panel refers to the page
where you can configure your Web site settingsbut every Web hosting company offers that. For the
final assessment, click "more info" and you'll see mostly the same list with a few more details,
including FTP support (Section 3.4.2).

Figure
3-8.
There's a

lot of

information

packed

onto this

page. The

Live Chat

box at the

bottom far

right shows

that

Aplus.Net

has solid

tech

support (in

this case

Hank), and

offers a

way for you

to get quick

answers to

specific

questions.

Click the

"learn

more" link

in the Web

hosting box

(bottom

left) to drill

down and

take a look

at different

Web

hosting

plans.

Figure
3-9.
Choices,

choices.

Unix

hosting is

the

cheapest

option on

Aplus.net.

(Unix refers

to the type

of

computer

that powers

your Web

site; on

your own

PC, you

can stick

with

whatever

operating

system you

normally

use.) The

cheapest

plan offered

(Solo) is

$6/month

for a 50 MB

Web site.

3.3.5.2. A Web host walkthrough (#2)

Overall, the Aplus.Net search turned up a solid offer at a fair price. Discerning Web shoppers may be
hoping to save a few dollars or get a little bit more space.

Figure 3-10 shows another Web hosting companyBrinkster. Brinkster's target audience includes
personal Web site creators, small businesses, and developers, rather than large institutional
customers. As a result, you won't find premium features like dedicated server hosting. However, you
just may find a better deal for your Web site.

Figure
3-10.
The

Brinkster

homepage

includes a

tool for

searching

for domain

names

(lower left

box), as

most Web

hosting

companies'

Web sites

do.

However,

don't start

thereit

makes more

sense to find

a package

and then get

your domain

name. The

personal

package is

probably a

good bet for

most small

Web sites.

At

$4.95/month,

it has space

for a 500 MB

Web site, a

huge helping

of bandwidth

(7 GB), and

a free

domain

name and

email

addresses

thrown in for

good

measure.

And look at

the

happiness

it's brought

this group of

hip twenty-

somethings!

To get the full details, click the More button in the Personal Package box. You'll see the details in
Figure 3-11.

Now that you've taken a tour of two Web hosting company Web sites, you're ready to evaluate some
more. Or, if you're really impatient, you can set up your Web site using one of the hosting companies
you've seen. It doesn't take anything more than a couple of mouse clicks, and you'll be completely
online in only a few hours.

Tip: If your Web host is letting you down, don't panic. It's not too hard to switch hosts. The key thing to remember is when you change

hosts, you're essentially abandoning one Web server and setting up shop on another one. It's up to you to copy your Web pages to the

new Web serverno one will do it for you. As long as you have a copy of your Web site on your personal computer (which you always

should), this part is easy. If you're still a little skeptical of the company you choose, look for a 30-day, money-back guarantee.

Figure
3-11.
Everything

checks out

in the

listing here,

including

FTP

access.

You'll also

notice

features

that every

Web

hosting

company

provides

(like virus

scanning

and a

control

panel for

managing

your site)

and some

that aren't

that useful

at all (like

the

Website

Builder).

3.3.6. Free Web Hosts

Not yet swayed by any of the hundreds of Web hosting companies on the Web? Not tempted by the
offer of a little Web space from your ISP? If you're hoping to save a monthly fee at all cost, there is a
solution, but it may not be worth the aggravation. The Web has a significant number of free Web
hosts. These free hosts are companies that give you a small parcel of Web space without charging
anything. Sometimes it's because they hope to get you to upgrade to a cost-based service in the
future when you outgrow the strict limitations of the free package. Other times, they may just be
interested in the advertisement revenue. That's because free Web sites universally force you to
include an obnoxious ad banner at the top your Web pages.

If you're still interested in joining The Dark Side of the Web, Table 3-3 lists some well-known free
Web hosts.

Table 3-3. Free Web Hosts

Web Host Service Verdict

Yahoo GeoCities
http://geocities.yahoo.com

Fair space and bandwidth, but you're stuck with
an ad bar and forced to use limited page-creation
software. You can upgrade to FTP access (which
gives you the ability to upload your own HTML
creations) for a monthly fee.

Not worth the
trouble.

Angelfire
http://angelfire.lycos.com

Fair space and bandwidth, along with FTP support
(allowing you to avoid those dodgy Web site
creation tools). The ad bar is mandatory, unless
you upgrade to a monthly fee plan.

Acceptable, if
you can stand
the ad bar.

Tripod www.tripod.lycos.com

Fair space and bandwidth, along with FTP support
and a mandatory ad bar. Similar to Angelfire,
along with the option to upgrade to a fee-based
plan.

Acceptable, if
you can stand
the ad bar.

Tip: Looking to save some money but craving a custom domain name? You could use a free hosting service in conjunction with domain

forwarding. But if you shop around, you may be surprised to find a few better deals. If you use the hosting company www.catalog.com,

you can get a year of free Web hosting for a flat $35 fee. That price gives a respectable 50 MB with 3 GB of bandwidth, five email

accounts, and, best of all, a custom domain name. A subsidiary company, www.onesite.com, offers more or less the same deal, but the

first year is free, and students get an impressive five years of free hosting. The only catch? If you decide to transfer your domain name to

another Web hosting company, you will pay an onerous cancellation fee.

http://geocities.yahoo.com
http://angelfire.lycos.com

3.4. Transferring Files

Once you've signed up for Web hosting, you're ready to transfer some files to your Web space. To
perform this test, you can use Lee Park's résumé from the previous chapter (which you can download
from the "Missing CD" page at www.missingmanuals.com). The final version has the filename
resume5.htm .

3.4.1. Browser-Based Uploading

Browser-based uploading is fairly easy, but it's not always convenient. The idea is you go to a special
Web page on your host's site, where you can specify the files you want to transfer. Many Web hosting
companies provide both browser-based uploading and FTP-based uploading. If you're using a budget
plan or a free Web host, you may not have the FTP option at all. To perform browser-based
uploading, follow these steps:

Surf to the Web site of your Web hosting company .1.

Log in to your account with the user name and password you created when you
signed up .

Usually you'll find a login box somewhere on the first page.

2.

Browse through the icons until you find the right page for managing files .

Each Web hosting provider has its own slightly different site layout. Figure 3-12 shows what
things look like at Brinkster.

Figure
3-12.
Every Web

hosting

provider's

site looks a

3.

little

different,

but you'll

eventually

find a set of

text boxes

that allows

you to

upload

pages.

These text

boxes

always work

in the same

way. First

you click the

Browse

button (top

image),

which

shows an

Open File

dialog box

(middle).

Then you

browse to

the file you

want, select

it and click

Open. If you

have

several files

to upload at

once,

repeat this

process

using

different text

boxes.

When

you've

chosen all

the files you

want (or just

run out of

text boxes),

click OK,

and wait

until the

files are

copied and

you get a

confirmation

message

(bottom).

Specify the files you want to upload. You need to specify each file individually, by
clicking the Browse button next to the text box .

In order for the résumé example to work properly, make sure you upload both the
resume5.htm file and the linked picture, leepark.jpg , to the same place.

4.

Log out when you're finished .

Now you can test your work by entering your domain name followed by the Web page name.
For example, if you uploaded the résumé example to your Web site
www.supersavvyworker.com , try requesting www.supersavvyworker.com/resume5.htm in
your browser. You don't need to waitonce you upload the file to your Web server, it's available
almost instantly to any browser that requests it.

5.

Unfortunately, the possibilities for mistakes with browser-based uploading are endless. The most
common problem occurs when you have a large number of files to copy at once. Not only is it time
consuming to pick out each one, it's all too easy to forget something. Other headaches include trying
to upload files to different folders, and having to use another window to rename or delete files.

3.4.2. FTP

Ideally, your Web hosting company will provide FTP access. FTP access lets you transfer groups of
files from your computer to the Web server (or vice versa), in much the same way that you copy files
from one folder to another in Windows Explorer or the Mac's Finder.

Before you can upload files using FTP, you need the address for the FTP server, as well as a user
name and password. These are usually the same as the user name and password of your Web
hosting account, but not always.

To upload files using FTP, you can use a standalone FTP program. However, in these modern times
you probably don't need to. Internet Explorer includes its own built-in FTP browser that handles the
task comfortably. Here's how it works:

Start by typing the FTP address into the Internet Explorer address bar. Make sure the
URL starts with ftp:// .

In other words, if you're trying to visit ftp.myhost.com , enter the URL ftp://ftp.myhost.com ,
not http://ftp.myhost.com , which incorrectly sends your browser off looking for Web pages.

1.

The next step is to log in by choosing File Login (see Figure 3-13) .

Once you've logged in, you'll see the folders and files on the Web server, which you can copy,
delete, rename, and move in much the same way you work with your local folders and files.
Seeing as you haven't uploaded anything yet, the folder may be empty, or it may contain a
generic index.htm file that shows an "under construction" message.

2.

http://ftp.myhost.com

Tip: As in Windows Explorer, you can choose to view files and folders using the traditional large icon view, or a more compact list

(just make your selection from the View menu).

Figure
3-13.
When you

first enter the

FTP site

address,

Internet

Explorer will

probably try

to log you in

anonymously,

and fail, at

which point it

will show an

error

message.

Click OK, and

then select

File

Login As

from Internet

Explorer's

menu to

enter your

user name

and

password. If

you turn on

the "Save

password"

checkbox,

(circled), you

don't need to

repeat this

process on

subsequent

visits.

The next step is to copy your files to the Web server. The easiest way to do this is to
drag the files from another open window, and drop them on the FTP window .

Figure 3-14 shows the steps you need to upload the résumé example.

3.

Figure
3-14. To

get Lee Park

onto the

Web, start

by opening

another

window onto

your file

system by

using

Windows

Explorer or

clicking on

My

Computer.

Then browse

to the

appropriate

folder on

your own

computer.

When you've

found the

resume5.htm

and

leepark.jpg

files (that

you

downloaded

earlier),

select them,

and then

drag them

into the FTP

window to

start the

uploading

process.

Tip: Drag-and-drop isn't the only way to transfer files. You can use all the familiar Windows shortcuts, including the Cut, Copy, and Paste

commands in the Edit menu, and the Ctrl+C (copy) and Ctrl+V (paste) keyboard shortcuts.

If you're working on a Mac, you'll need to use a separate FTP program. Fortunately, you've got loads
of free options, including the super-easy-to-use Rbrowser (available at www.rbrowser.com). Things
work pretty much the same way they do for your Windows brethren. First, fire up Rbrowser. You'll be
asked to log in (Figure 3-15). Once that's out of the way, you can transfer your files by dragging
them from a folder on your Mac to the Rbrowser window.

Figure 3-15. To log

in to Rbrowser, you need to

supply the name of the FTP

server (in the Host/URL box),

and your user name and

password. Don't worry about

setting an initial pathyou can

always browse to the right

subfolder in your Web site

once you've made the

connection. Finally, click

Connect to seal the deal.

Chapter 4. Power Tools
In Chapter 2, you built your first HTML page with nothing but a plain text editor and a lot of nerve.
This is how all Web page gurus begin their careers. In order to really understand HTML (and establish
your HTML street cred), you need to start from scratch.

However, very few Web authors stick with plain text editors or use them to create anything other
than simple test pages. That's because the average HTML page is filled with tedious details. If you're
forced to write every paragraph, line break, and formatting tag by hand, you'll probably make a
mistake somewhere along the way. Even if you don't, it's hard to visualize what the end result will
look like when you spend all day staring at angle brackets. This is especially true when you start to
tackle more complex pages, such as those that introduce a slew of graphics or organize the layout of
a page with tables.

There's a definite downside to outgrowing Notepad or TextEditnamely, it can get expensive.
Professional Web design tools can cost hundreds of dollars. At one point, software companies planned
to include basic Web editors in common operating systems like Windows and Mac OS. In fact, some
older versions of Windows shipped with a scaled-down version of FrontPage called FrontPage Express.
That's not the case today, so if you want an HTML editor, you'll have to find one on your own.
Fortunately, there are free alternatives for even the most cash-strapped Web designer.

In this chapter, you'll learn how HTML editors work, and how to evaluate them to find the one that's
right for you. You'll also tour some of the better free and shareware offerings that are currently out
there. When it comes to the basics, most Web page editors are surprisingly similar. That means you'll
learn how to get started with your tool of choice, whether it's FrontPage, Dreamweaver, or a nice
piece of freeware called Nvu.

4.1. Choosing Your Tools

Tools like Notepad and TextEdit aren't all that bad for starting out. They keep it simple, and they
don't mess with your HTML (unlike a word processing program). Seeing the result of your work is just
a browser refresh away. So why are you destined to outgrow your favorite text editor?

Nobody's perfect . With a text editor, it's just a matter of time before you make a mistake,
like typing instead of . Unfortunately, you might not realize your mistake even when
you view your page in your browser. (Remember, some browsers compensate for some types of
mistakes; other browsers don't.) A good HTML editor can highlight problems and help you get
rid of faulty HTML.

Edit-Save-Refresh. Repeat 1,000 times . Text editors are convenient for small pages. But
what if you're trying to size a graphic perfectly, or line up a table column? You need to jump
back and forth between your text editor and your Web browser (saving and refreshing each
time). This process can literally take hours. With a good HTML editor, you get conveniences like
drag-and-drop editing to fine tune your Web page. You make a few adjustments, and your
editor tweaks your HTML appropriately.

Help, I'm drowning in HTML ! One of the nicest little frills in an HTML editor is color coding.
Color coding helps make sure those pesky HTML tags stand out against a sea of text. Without
this feature, you'll be cross-eyed in hours.

Just type . To create a bulleted list, of course. You haven't forgotten
already, have you? The truth is, most Web authors don't memorize every tag there is. With a
Web editor, you don't need to. If you forget something, there's usually a help link or a menu
command to fill it in. Without a tool to guide you, you're on your own.

Of course, there are also risks to using a graphical HTML editor. That's why you started out with a
simple text editor, and why you'll spend a good portion of this book learning more about HTML. If you
don't understand HTML properly, there are a number of traps waiting for you.

For example, you might use a slick HTML editor to apply fancy fonts to your text. Imagine your
surprise when you take a look at your page on another computer (where the same fonts aren't
installed) and your page reverts to an ugly or illegible typeface. (Chapter 6 has more about this
problem.) Similarly, your editor can unwittingly lead you to insert HTML that's not supported by all
browsers, or graphics that won't display properly on other computers. Finally, even with the best
HTML editor you'll spend a significant amount of time looking at raw HTML to see exactly what's
going on, clean up a mess, or copy and paste useful bits to other pages.

4.1.1. Types of HTML Editors

There's a wide range of different HTML editors, but they all tend to fall into one of three categories.

Text-based editors require you to work with the text and tags of raw HTML. The difference

between an ordinary text editor and a text-based HTML editor is convenience. Unlike Notepad or
TextEdit, text-based HTML editors usually include buttons to quickly insert common tags or tag
combinations, and a one-click way to save your file and open it in a separate browser window.
Essentially, text-based HTML editors are text editors with some useful Web features stapled on.

Split window editors also make you write HTML by hand. The difference is that a separate
window shows the results of your work as you type . In other words, you get a live preview,
which means you don't need to keep stopping to see what you've accomplished.

WYSIWYG (What You See Is What You Get) editors work more like word processors. That
means you don't need to write the HTML tags. Instead, you type in some text, format it, and
insert pictures just like you would in a word-processing program. Behind the scenes, the editor
generates the HTML markup you need.

Any of these types of HTML editors makes a good replacement to a simple text editor. The type you
choose depends mainly on how many features you want, how you prefer to work, and how much
money you're willing to shell out. The best HTML editors blur the lines between these different types,
and give you the freedom to switch back and forth between different views.

It's important to understand that no matter what type of HTML editor you use, you still need to know
a fair bit about HTML to get the result you want. Even if you have a WYSIWYG editor, you'll almost
always want to fine-tune the HTML by hand. Also, understanding the quirks of HTML will help you
determine what you can and can't doand what strategies you need to get the most sophisticated
results. Even in a WYSIWYG editor, you'll inevitably use a code view to look at the HTML underbelly of
your Web pages.

4.1.2. Finding a Free HTML Editor

Unless you're one of the lucky few who already has a copy of a cutting-edge Web editor like
FrontPage or Dreamweaver, you're probably wondering how you can find a good HTML editor for as
little money as possible. After all, the Web's all about getting goodies for free. And while you can't
find an industrial strength FrontPage-killer for free, you can get a good basic editor without opening
your wallet.

Note: Shareware , as you no doubt already know, is software that's free to try, play with, and pass along to friends. If you like it, you're

politely asked to pay for it (or not-so-politely locked out when the trial period expires). Freeware is software that has no cost at allif you

like it, it's yours! Usually, you won't get niceties like technical support. Some freeware is supported by donations.

FREQUENTLY ASKED QUESTION

Save As HTML

My word processing/page layout/spreadsheet program has a feature for saving Web
pages. Should I use it ?

Over the last decade, the Internet has become the hottest marketing buzzword around.
Every computer program imaginable is desperate to boast about new Web features. For
example, virtually every modern word processor has a feature for exporting your
documents to HTML. Don't use it.

Unfortunately, HTML export features don't work very well. Often, the problem is that
these features take a document that's designed for one medium (usually print) and try
to wedge it into another (the Web). But word processor documents just don't look like
Web pagesthey tend to have larger margins, fancier fonts, more text, more generous
spacing around that text, no links, and a radically different layout.

Another problem is the fact that HTML export features often create wildly complex
markup. At the end of this process, you end up with an ungainly Web page that's nearly
impossible to edit because it's choked with custom HTML. And unless you take a close
look at the underlying HTML, you won't know whether your exported Web page will be
displayed properly on other computers and browsers.

The lesson? If you can, steer clear of these features. You're better off copying and
pasting your document content into an HTML file as plain text, and then formatting it
with standard HTML tags on your own.

If you'd like to do your own research (always a good idea), and don't mind installing several dozen
programs onto your computer until you find what you like, head to one of the following shareware
Web sites to look for HTML editors (Figure 4-1):

http://downloads-zdnet.com . This leading computer publisher has provided a vast catalog of
shareware since before the Internet existed. You can search, browse through thoughtfully
organized category listings, or read editor reviews. It's highly recommended.

www.download.com . Another high-tech media companyCNETprovides this top-tier Web site for
shareware.

www.tucows.com . This fan favorite is cluttered with ads, but still boasts a solid shareware
collection

You'll quickly find out that there's a sea of free HTML editors out there. Many have awkward and
clunky button and menu arrangements. Some have outright errors. Finding one that's right for you
might take a little time.

Figure
4-1. Top:

ZDNet has a

rich catalog of

http://downloads-zdnet.com

shareware.

Start by

typing "HTML

editor" in the

search box

and click

GO.(If you're

looking for

Mac software,

you should

also change

the list

selection from

"In Windows"

to "In

Downloads"

and add the

word "Mac" to

your search.)

Bottom: In the

table of lists,

click the

heading

"Downloads."

This sorts the

results so the

most sure

you read the

license

details next to

each item to

find out

whether its

trialware (like

Dreamweaver

and

HomeSite) or

completely

free (like

HTML-Kit and

CoffeeCup).

Then, select

the item and

follow the

instructions to

download and

install it on

your

computer.

Here are three worthwhile candidates:

Nvu is a newcomer that's already shaping up as the best free HTML editor around, and the only
one with versions for Windows, Mac, and Linux. It lets you edit HTML documents using a
WYSIWYG mode or a text-only mode.

HTML-Kit is a popularbut slightly eccentric free HTML editor for Windows. It lets you use a text-
only mode or a split-preview mode.

CoffeeCup Free HTML Editor is a scaled-down version of the full-blown Windows product
CoffeCup HTML Editor 2005. The full-blown version offers both a text-only mode and a WYSIWYG
mode, but the WYSIWYG mode is switched off in the free version.

In the following sections, you'll take a quick look at each of these free editors.

4.1.2.1. Nvu

Nvu (pronounced "n-view," as in "new view") is the only free HTML editor in this roundup that works
on Windows, Mac, and Linux. It's also the most current (providing regular releases), and it boasts an
easy-to-understand layout and a set of nifty features. Nvu is a new kid on the blockits first official
release took place in June 2005 (before then, it had been available as a beta, or test, release).

Nvu was created using some of the pieces from the Mozilla browser (godfather to the increasingly
popular Firefox browser), with features that were copied from FrontPage shamelessly grafted on. It's
an open source project, which means that not only is it free to download and copy, but if you're a
programmer type, you're welcome to browse through the source code and even submit your own
improvements. As a Web-head, you're most likely to fall in love with Nvu's multiple views, which give
you several useful ways to look at your HTML, including a color-coded HTML tag view and a WYSIWYG
preview (see Figure 4-2). Nvu's biggest limitation is that it doesn't give you any way to see more
than one view at once, which means that if you want to edit in Source view, you won't see the results
of your work until you switch to one of the other views.

Nvu is packed full of common-sense features that you get in most professional programs, like last-
action undo (select Edit Undo), a spell checker (Edit Check), an option for inserting special
characters (Insert Characters and Symbols), and a helpful tip of the day. To download Nvu, surf
to www.nvu.com .

Note: Since Nvu works so well, and is growing ever more popular, you'll find occasional tips on how to use it throughout this book.

Figure
4-2.
Top: Nvu's

normal

view lets

you edit

formatted

text instead

4.2. Working with Your HTML Editor

Once you've chosen an HTML editor, the next step is to take it for a spin. In this section, you'll learn
how to create a sample HTML document and get it online, all without leaving the comfort of your
editor.

Software companies have spent the last decade copying features from their competitors and as a
result, common tasks in FrontPage, Dreamweaver, and Nvu are startlingly similar. That means that
no matter which program you use, the following sections will teach you the basics. Once you're
comfortable with your editor, you can move on to the rest of the book and learn more about how
HTML works.

Tip: Although future chapters won't lead you step by step through any of these HTML editors, look for sidebars and tips to point out

occasional shortcuts, tricks, and techniques for your favorite editor.

UP TO SPEED
Mid-Level HTML Editors

A few years ago, there were a number of mid-level HTML editors in hot competition.
Today, most have died out. The mid-level HTML editors that remain often aren't worth
the expense. Instead, your best bet is to save up for one of the two leading edge HTML
editorsMacromedia Dreamweaver or Microsoft FrontPage. Of the two, FrontPage is the
more affordable, while Dreamweaver is more often used by professional Web
developers. You may be able to find academic (or "student and teacher") editions of
both programs. These editions are scaled down but still powerful, and they have a much
lower price tag. You'll need to prove you're a student or starving academic to get in on
the action.

One mid-level option that's actually worth considering is Macromedia HomeSite, a less
powerful Web design tool that Macromedia purchased from another company to
complement its line of professional Web development software. HomeSite is priced at
about $100, which makes it more affordable than FrontPage or the lofty Dreamweaver.
However, there's a good case to be made for sticking with the nifty (and free) Nvu editor
until you're ready to move up to a more full-featured program.

4.2.1. Starting Out

Here's what you need to get started with your editor of choice:

The first step is to launch your program by double-clicking the appropriate icon or1.

making a quick trip to the Start menu .

Your HTML editor appears.

1.

Some HTML editors start you off with a tip of the day (Nvu) or a start page
(Dreamweaver). Close these windows to get to the main program window .

You may also need to remove a few more distractions. In FrontPage, you'll see a pesky Getting
Started panel on the right-hand sideclose this by clicking the X in the top-right corner. In
Dreamweaver, you may want to shunt the panels out of the way (see Figure 4-5).

2.

Now, choose File Open and select one of the HTML file samples you worked on in
Chapter 2 (also available on the "Missing CD" page at www.missingmanuals.com) .

This step is easyopening a document in an HTML editor is exactly the same as opening a
document in any other self-respecting program.

3.

Figure
4-5. Top:

Dreamweaver

is packed with

features, many

of which sit at

your fingertips

in specialized

panels, which

latch on to the

right side and

bottom of the

main window.

In this figure,

you see the

view that

appears

automatically

when you

open

Dreamweaver.

But until

you've learned

the basics, it's

easiest to

push the

clutter out of

the way by

clicking the

arrows circled

here.

Bottom: You

can also hide

all panels at

once by

choosing View

 Hide

Panels. (Just

choose View

 Show

Panels when

you're

psychologically

ready for them

to return.) In

this figure, the

special

features are

hidden,

enlarging your

main window

view.

4.2.2. Multiple Views

As you've already learned, there are several different ways to look at an HTML document, depending
on whether you want the convenience of a word processor or the complete control of working directly
with HTML code. Most HTML editors give you a choice of how you want to work, and let you switch
rapidly from one view to another. To switch views, you need to find a small series of buttons, which
are usually displayed just above or just below the document you're working on. Figure 4-6 helps you
spot these buttons.

Figure
4-6. They

may give

them different

names or put

them in a

different

order, but

most HTML

editors use

similar

buttons to let

you switch

views,

including

FrontPage

(top),

Dreamweaver

(middle), and

Nvu (bottom).

In this

example, all

three

windows are

in the

WYSIWYG

design view.

(See Section

4.1.1 for a

description of

WYSIWYG

design view.)

Most HTML editors start you out in a WYSIWYG view that shows the formatted HTMLin other words,
an approximation of what the page will look like in a Web browser. When you switch to the HTML code
view, you'll see the real story the familiar text-only display of color-coded tags and text. These views
are the two staples of HTML editing. However, the most useful choice just might be split view, which
shows both views at once (see Figure 4-7).

Figure
4-7. One

handy option

is the split

view, which

splits the

window into

two panes.

This figure

shows a

Dreamweaver

screen after

the Split

button

(circled) has

been clicked.

Most

commonly,

you'll use this

view so you

can edit the

HTML tags

and see a

preview that's

updated as

you type.

However, you

could also

work the

other way, by

editing the

WYSYWIG

preview, and

seeing what

HTML tags

are inserted

(which is a

great way to

learn HTML).

Both

Dreamweaver

and

FrontPage

provide a split

view option,

but Nvu

doesn't.

Some HTML editors also give you an interesting hybrid view that shows a WYSIWYG preview with
extra tag information. In Nvu, this is the HTML Tags view, which shows a formatted preview window
with the corresponding tags shown in floating yellow boxes (see Figure 4-2 , bottom). You can
achieve a similar look in FrontPage by choosing View Reveal Tags.

4.2.3. Creating a Web Page

The best way to understand how your HTML editor works is to create a new HTML document.

Use HTML view, as described above, so that you can have complete control over the HTML markup.
Just enter all the tags and text content from beginning to end, just as though you were using Notepad
or TextEdit (pop back to Chapter 2 for a refresher on HTML code writing basics). Along the way, you'll
notice a few shortcuts. For example, when you start to type a tag in FrontPage or Dreamweaver, a
drop-down menu appears with suggestions. You can choose a valid HTML tag from the list, or just
keep typing. Also, when you add the start tag for a container element (like <h1> for a heading),
FrontPage (or Dreamweaver) automatically inserts the end tag (like </h1>) so you won't forget it.

Creating and formatting a page in WYSIWYG view is a more interesting challenge, because you need
to a know where to find the various formatting options in your editor.

FrontPage, Dreamweaver, and Nvu help you out by packing a fair bit of HTML smarts right into their
toolbars. To add a tag in the WYSYWIG view, you first select a piece of text you want to format, and
then click the appropriate toolbar button. You can then switch to the HTML tag view to verify that you
got the result you expected. For example, to make text bold, select it and look for a toolbar button
with the letter B. Clicking this button inserts the tag just before your selection and the tag
just after it. Figure 4-8 shows you the most useful toolbar buttons in Nvu.

Figure
4-8.
Nvu gives

you one-

stop

shopping

for lots of

HTML

goodies.

But

remember,

there's a

difference

between

finding a

feature on

a toolbar

and really

knowing

how to use

it. If you

want to

know the

tricks and

traps you'll

run into

when using

images,

fonts, and

tables,

you'll need

to keep

reading.

Tip: It's up to you whether you want to write your Web pages in HTML view or using the WYSIWYG preview mode. The WYSIWYG view

is always quicker and more convenient at first, but it can leave you with a lot of HTML to check and review, adding to future

complications.

To practice your WYSIWYG editing, you can re-create one of the examples from Chapter 2 (the mini-
résumé you see on Section 2.3.4 works well). But instead of entering the tags by hand, just enter the
text and format it using the toolbar and menu options in your editor. Here are a few steps to get you
started on this challenge:

Start by choosing File New to create the Web page .

Your editor asks you what type of file you want to create.

1.

In FrontPage, just click the "Blank page" link to start from scratch. In Dreamweaver,
choose Basic page as your category, and HTML as the subcategory. In Nvu, choose
the option "A blank document," and then click Create .

A blank document appears, showing the bare HTML skeleton. If you take a look at your new
document in the HTML code view, you'll see the basic <html>, <head>, and <body> tags.

2.

Tip: Some HTML editors, like FrontPage, include all sorts of templates for quickly creating various site designs. The options in

Dreamweaver aren't bad, but they're quite complex, and require styles, which are introduced in Chapter 6 . The options in

FrontPage are fairly limitingalthough they look nice, there isn't much room for diversity. You're best off to avoid them until you've

learned enough to create your own unique designs.

Switch to WYSIWYG design view, and type the title "Hire Me!"

The text appears at regular size.

3.

Select the text, and find a toolbar or menu option that can convert your text to a
heading by adding the <h1> and </h1> tags .

In FrontPage, the quickest approach is to select Heading 1 from the drop-down Style list. In
Dreamweaver, there are several worthwhile choices. You can choose Text Paragraph
Format Heading 1 for a fairly labor-intensive approach, or use the shortcut key Ctrl+1 for
instant gratification. You can also use the toolbar, as explained in Figure 4-9 , or the Properties
window (choose Window Properties if it isn't visible). In Nvu, your only option is to choose
Format Paragraph Heading 1. This tag didn't make it into the toolbar.

4.

Hit the Enter key to move to the next paragraph .

Your typeface reverts to normal, and you can begin typing the rest of the document. The next
challenge is creating the bulleted list. FrontPage, Dreamweaver, and Nvu all let you do so by
using buttons on their toolbars.

It's easy to lose yourself in a thicket of tags. To make it easier to orient yourself, FrontPage,
Dreamweaver, and Nvu all include a quick tag selector bar at the top or bottom of your
document (Figure 4-10).

5.

For a change of pace, try inserting a picture .

Nvu provides easy access with an Image button on the toolbar. FrontPage and Dreamweaver
have similar buttons, but it's easier to head straight to the menu (choose Insert Picture
From File in Front Page or Insert Image in Dreamweaver).

Note: For this test, the picture should be in the same directory as your Web page. Otherwise, some editors may add an

tag that's linked to a specific location on your hard drive. This is a problem, because Web surfers can't access your hard drive,

and so they won't see the picture. To double-check that everything's in order, look at the tag in HTML view, and make sure

the src attribute doesn't start with file:/// . If it does, edit it by hand so it looks like the tag you used in Chapter 2 (Section

2.3.3).

6.

Figure
4-9. The

Dreamweaver

toolbar is

actually eight

toolbars in

one.

Top: To get to

the toolbar

you want,

click the

toolbar name

on the left

(indicated

here by the

arrow).

Middle: Next,

choose the

new toolbar

you want to

see. In this

figure, it's the

text toolbar.

Bottom: The

Text toolbar

has a button

for applying

the HTML

tags for a

level 1

heading (the

h1 button that

the arrow is

pointing to in

this image).

When you're prompted to pick an image file, browse to the leepark.jpg sample, and
select it. (You can download this image from the "Missing CD" page at
www.missingmanuals.com .)

The program inserts the appropriate tag. Once the picture is inserted into your
document, you'll really start to appreciate the benefits of the WYSIWYG view. In all of the HTML
editors covered here, you can drag the edges of the picture to move or resize it.

7.

Figure
4-10.
The tag

selector

(circled) is

handy if

you're

looking for

a specific

section of a

Web page

you need to

edit. Once

you've

scrolled to

the right

place,

double-

check the

tag selector

to see if

you're

where you

think you

are. The

tag selector

lists all the

tags that

are in

action at

your

current

location. In

this

example,

the cursor

is

positioned

inside the

 tag (for

bold

formatting),

which itself

is placed

inside a

<p>

(paragraph)

tag, which

is nested

inside the

<body> tag

that wraps

the

complete

HTML

document.

You can

quickly

select any

one of

these tags

by clicking

it in the bar.

4.2.4. Managing a Web Site

HTML editors aren't limited to viewing a single Web page at a time. They almost always give you the
ability to look at more than one document at once. In FrontPage, Dreamweaver, and Nvu, multiple
open files are represented in the same waythe program adds tabs at the top of the document
window. Figure 4-11 shows an example with FrontPage.

Along with the ability to edit more than one Web page at once, many HTML editors also let you
manage an entire Web site.

Note: A Web site is simply a collection of one or more Web pages, along with any related files (like pictures). It's often useful to manage

all these files together in an HTML editor. This way, it's easier to add links from one page to another (see Chapter 8) and keep things

consistent. You also get the ability to upload all your Web pages with just a couple of clicks.

Figure
4-11.
In

FrontPage,

you can

use File

 Open

to open as

many

documents

at once as

you want.

You'll see

one tab for

each open

document

(in this

example,

there are

two). To

move from

one

document

to the next,

just click

the

appropriate

tab. To

close a

document,

click the X

on the right

side of the

tabs.

4.2.4.1. Defining a site in FrontPage

To create a Web site in FrontPage, follow these steps:

Select File Open Site .

The Open Site dialog box appears. It looks like an ordinary Open File dialog box, except that for
one differenceit doesn't show any files. Instead, you can only see folders.

1.

Browse to the folder you want to open, select it, and then click Open. For example,
you could use the Chapter 2 folder that's included with the downloadable samples to
see all the different résumé files .

A dialog box appears asking if you want to add FrontPage information to your Web site (see
Figure 4-12).

2.

Figure
4-12. In
order to use

FrontPage's

Web site

management

features, you

need to let it

add specialized

subfolders to

your Web site

folder. You can

see these

subfolders in

Windows

Explorerthey

have names

like _private,

_vti_cnf, and

_vti_pvt.

FrontPage also

adds a

subfolder

named images

that you can

use to store

pictures you

want to use in

your Web site.

This figure

shows the

dialog box that

appears when

you first open a

new folder in

FrontPage as a

Web site.

Click Yes to add FrontPage information .

Once FrontPage adds the subfolders, a Folder List panel appears on the right site of the window
with a list of all the files in your Web site (see Figure 4-13).

3.

Figure
4-13.
The Folder

List (the left

column of

this figure)

makes it

easy to see

the

contents of

your Web

site at a

glance. To

open a

document,

just double-

click it. You

can also

select a file

and right-

click it to

see

additional

options for

renaming

or deleting

files.

4.2.4.2. Uploading a site in FrontPage

One of FrontPage's most popular features is its support for updating a Web site without needing to
use a separate FTP program (see Section 3.4.2 for the rundown on what FTP programs do). To take
advantage of this support, you need to follow the steps described above to make sure FrontPage
understands your folder is part of a complete Web site. Then, you can upload your Web site by
following these steps:

Choose File Publish Site .

The first time you publish your site, a Remote Web Site Properties dialog box appears. You use
this window to set your connection options, like the name of your FTP server (see Figure 4-14).

1.

Figure
4-14.
Your Web

hosting

company

should tell

you the

exact

choices to

make in the

Remote

Web Site

Properties

dialog box.

Typically,

you'll need

the name

of your FTP

server, the

directory

(folder) on

the server

used for

your Web

site, and

your FTP

account

and

password.

You only

need to

complete

this step

once. If

you're

successful,

FrontPage

will use this

information

the next

time you

choose to

publish

your Web

site.

Fill in the information about how you want to connect to your Web server, and then
click OK .

You can also set some advanced options using the Publishing tab of this dialog box. Most

2.

usefully, you can set whether FrontPage uploads only changed or new pages (which is the
standard setting), or always uploads everything in the copy of the Web site stored on your PC.

2.

At this point, FrontPage may prompt you for a user name and password to connect to
your FTP server. Enter the correct information and then click OK .

FrontPage stores the user name you enter for future use, but it's up to you to remember the
password and supply it each time you connect.

Once you're connected, FrontPage shows a side-by-side file list that compares the contents of
your Web site as stored on your PC with the contents that's located on the Web server.

FREQUENTLY ASKED QUESTION
FrontPage Folders

How can I get rid of the subfolders FrontPage adds to my Web site ?

Few Web authors like it when an HTML editor adds unexpected and unwanted stuff
to a Web site. Unfortunately, FrontPage doesn't give you a choice. If you use its
Open Site feature, FrontPage adds several extra subfolders inside the folder where
your site is stored. These folders have names like _private, _vti_cnf , and _vti_pvt .
(Web trivia: The VTI acronym stands for Vermeer Technologiesthe company that
originally created FrontPage and sold it to Microsoft.)

These FrontPage folders have several purposes. First, they keep track of what files
you've uploaded to your Web server. That makes it incredible easy to update a
Web site, because FrontPage simply needs to transfer the changed files to the Web
server, not the entire site. The FrontPage folders also track information about the
pages and resources of your Web site, which helps with features like link checking
(a nifty trick you'll learn about on Section 8.4.1).

If you want to use these features, there's no way to get rid of the FrontPage
subfolders. Just learn to accept themhonestly, they won't interfere with the rest of
your Web site.

If you're not planning to use the Web site uploading feature in FrontPage, you may
not need to copy the FrontPage subfolders to your Web server. It all depends if
you're using one of a small set of FrontPage-specific features that need these
folders. (If you're using these features, you had better know about it already,
because you'll need a Web hosting company that supports the FrontPage server
extensions .) For more information, surf to Microsoft's support site at
http://support.microsoft.com and search for 281532 , which is the number of the
knowledge base article that describes what features require the FrontPage server
extensions. If you aren't using any of these, you don't need to upload these
subfolders.

Finally, if you don't want to have the FrontPage folders on your Web server or on
your personal computer, you can't use the Open Site feature. Instead, you can
open your HTML files in FrontPage individually. This probably isn't worth the
trouble, because you'll sacrifice some handy features that can help you manage a
large Web site.

3.

4.

http://support.microsoft.com

To bring your Web server up to date, select the "Local to remote" option and click the
Publish Web Site button. This starts the publishing process (see Figure 4-15) .

The "Remote to local" option is handy if a file on the Web server is more recent than the copy
on your own computer. This might happen if you're editing the same Web site on more than one
computer. The Synchronize option is like the "Remote to local" and "Local to remote" operations
rolled into one. It examines each file, and makes sure any old versions on your computer or the
Web server are updated.

4.

Figure
4-15.
When you

publish a

Web site,

FrontPage

scans your

files and

copies over

ones

that've

been

added or

changed

since the

last time

you

published

your Web

site. A

progress

indicator

(circled)

shows you

what file is

currently

being

copied, and

estimates

how much

longer the

whole

operation

will take.

Tip: You may have trouble uploading a Web site using FrontPage if you've already copied some of the files manually using an FTP

program. To fix this problem, delete the files from your Web server, and use FrontPage to transfer the whole Web site. FrontPage will

then copy every file from your local Web site folder to your Web server.

4.2.4.3. Defining a site in Dreamweaver

Dreamweaver gives you two different ways to work with a Web site. The simplest approach is to use
the integrated file browser to look at the files in any folder on your computer (see Figure 4-16).

Although using the Files panel is convenient, it's also limiting. The problem is that Dreamweaver
doesn't have any way to tell what file and folders make up your Web site. In order to support Web
site uploading and a few other tools, you may want to define your folder as a Web site. To do this,
follow these steps:

Click the Manage Sites link in the Files panel, or just select Site Manage Sites .

The Manage Sites dialog box appears, with a list of all the Web sites you've configured so far.
Initially, this list is empty.

Figure
4-16.
You can

browse your

file system

without

leaving

Dreamweaver

by using the

Files panel.

1.

To define a new Web site, click the New button and choose Site .

Dreamweaver walks you through a Site Definition wizard that asks you several questions.

2.

Enter a descriptive Web site name and click Next .

The site name is just the name you use to keep track of your Web site. It also appears in the
Files panel.

3.

4.

Choose "No, I do not want to use a server technology" and then click Next .

A server technology is the framework on a Web server that runs complex Web applications like
database searches. Because you aren't creating a full-blown application (just ordinary HTML
files), you don't need this support.

4.

Choose "Edit local copies directly on my machine."

Some Web servers give you the ability to modify files stored on the server. However, even if
you have this specialized support, it's probably better to edit your files on your local computer,
and only update them on the live Web server when you're ready. This gives you several
advantages. First, you won't derail your Web site if you make a minor mistake. Second, you
have a valuable backup if anything happens to your Web server. And third, you have the ability
to experiment with changes and different designs that may take days to finish, without affecting
the live version of your Web site.

5.

In the "Where on your computer do you want to store your files" text box, type in the
full file path for your Web site folder (usually something like C:\Creating Web Sites\
Chapter 2), and then click Next .

If you aren't sure where your Web site folder is, you can click the folder icon next to the text
box to browse for it.

6.

The next step asks how you want to connect to your Web server. Fill in your
connection information, and then click Next .

The option you choose depends on the support offered by your Web hosting company, but FTP is
a common choice (see Figure 4-17). Depending on what option you choose, there are a
number of extra settings you have to supply.

7.

Figure
4-17. In
the "Sharing

files" step of

the Wizard,

you choose

how you want

to transfer your

files to the

remote Web

Server. Your

remote server

is the location

where you plan

to publish your

Web site.

Typically, this

is a Web site

that you'll

communicate

with using a

communication

method like

FTP, but it

could also be

an ordinary

directory on a

local network.

Choose "Do not allow check in and check out" and then click Next .

Check in and check out features allow you to collaborate with a group of coworkers to edit
different parts of a Web site simultaneously. For information about this and other advanced
Dreamweaver features, check out Dreamweaver MX 2004: The Missing Manual .

8.

The last step summarizes the information you've entered. Click Done .

You return to the Manage Sites dialog box.

9.

Click Done .

You return to the Dreamweaver main window.

10.

4.2.4.4. Uploading a site in Dreamweaver

Once you've defined your Web site, you'll see it in the Files panel. You can then browse your remote
Web server, or transfer files back and forth. Dreamweaver doesn't make things quite as intuitive as
FrontPage, but it's still pretty convenient.

To transfer files from your local computer to the Web server, you use an operation that
Dreamweaver jargon calls a put . It works like this:

In the Files panel, choose your Web site from the drop-down menu at the top left .1.

Now, choose "Local view" from the drop-down menu at the top right .

The Files panel shows a list of the files on your computer (see Figure 4-18).

Figure
4-18.
This

example

shows the

local view

of the Lee

Park site.

The local

view lists

all the files

that are in

the Web

site folder

on your

computer.

Using the

icons in this

window,

you can

quickly

transfer

files to and

from the

remote

Web

server.

2.

Select the files you want to transfer to the Web server .

You can select multiple files by holding down Ctrl while you click each file's icon.

3.

Once you've selected the files, click the Put arrow (a blue arrow icon pointing up), or
right-click the files and then choose Put from the shortcut drop-down menu .

Dreamweaver asks if you want to copy dependent files.

4.

Choose Yes if you want to copy linked files. For example, if you're copying a Web
page that uses the tag to show graphics, you should click Yes to make sure
the graphics are also uploaded. If there aren't any dependent files, your choice has

5.

no effect .

Dreamweaver connects to your Web server and transfers the files.

5.

To perform the reverse trick, and transfer files from your Web server to your computer, you need to
use a get operation. Follow these steps:

In the Files panel, choose your Web site from the drop-down menu at the top left .1.

Next, choose "Remote view" from the drop-down menu at the top right .

Dreamweaver doesn't automatically show a list of files on the Web server, because getting that
list could take a little time. So you need to specifically ask Dreamweaver for an updated view of
the files on your Web server, which you'll learn how to do in the next step.

2.

Click the refresh button, which looks like a circular arrow icon .

Dreamweaver connects to the Web server, retrieves the list of files in your Web site, and
displays it.

3.

Select the files you want to transfer to your computer .

You can select multiple files by holding down Ctrl while you click each file's name.

4.

Once you've selected the files, click the Get arrow (a green arrow icon pointing
down), or right-click the files and choose Get from the shortcut drop-down menu .

Dreamweaver asks if you want to copy dependent files.

5.

Choose Yes if you want to copy linked files. For example, if you're copying a Web
page that uses the tag to show graphics, you should click Yes to make sure
the graphics are also downloaded. If there aren't any dependent files, your choice
has no effect .

Dreamweaver connects to your Web server and copies the files to the folder on your computer
that contains your Web site.

6.

Part Two: Building Better Web Pages
Chapter 5, HTML Text Tags

Chapter 6, Style Sheets

Chapter 7, Adding Graphics

Chapter 8, Linking Pages

Chapter 9, Page Layout Tools: Tables and Styles

Chapter 10, Frames

Chapter 5. HTML Text Tags
Getting text into a Web page is easy. All you need to do is open an HTML file, drop in your content,
and add the occasional formatting tag. Unfortunately, getting text to look exactly the way you want is
a completely different story.

One of the first things you'll notice when you start working on a site is how little control HTML gives
you. When you create a Web page, you're at the mercy of your viewers' Web browsers, their bizarre
preference settings, and a dozen other details beyond your control. Under these conditions, writing a
perfect page feels like trying to compose a 90-minute symphony with a triangle and a pair of
castanets.

Faced with these limitations, what's an enterprising Web developer to do? The first step is to learn
the basic tags you can use to structure your text by marking up paragraphs, sections, and lists.
That's the task you'll tackle in this chapter. The second stepwhich you won't dive into until the next
chapteris to apply style sheets, a powerful page formatting technology that lets you unleash your
markup skills across multiple pages or even your entire site.

5.1. Understanding Text and the Web

Sooner or later, every Web site creator discovers that designing for the Web is pretty different than
designing something that's going to be printed out. Before you can unleash your inner graphic
designer, there are a few conceptual hurdles to clear.

To understand the problem you're facing, it helps to consider the difference between an HTML page
and a document you might create in a program like Microsoft Word. Word processing programs help
you prepare your content so that you can print it out. In that environment, you know all the details
about your output medium (things like the paper size, whether or not the printer supports color,
what fonts are available, and so on). As a result, your word processor gives you absolute control over
every detail.

HTML is a more freewheeling standard. When you create an HTML document, you have no idea who's
going to look at it or what kind of monitor, screen settings, Web browser, and so on they'll be using
to view it. The way your document appears could change dramatically, depending on whether the
person viewing your page turns on large text, shrinks the browser window to microscopic
proportions, or switches off pictures. And if people surf to your site using a trendy pocket-sized PC,
they'll get a completely different view compared to those who have the latest widescreen computer
monitor.

Tip: HTML was designed to avoid compatibility problems by giving you less control. Instead of allowing you to place everything in an

exact spot, HTML forces you to use tags to shape the basic structure of your work (for example, to indicate paragraphs, headings, and

lists). However, it's up to the Web browser to decide how to display these details on a given computer. In other words, HTML was

designed as a compromise that sacrifices control for the sake of simplicity, flexibility, and compatibility.

UP TO SPEED

Understanding Resolution

A resolution of 800 x 600 means that the entire monitor shows a grid that's 800 pixels
wide and 600 pixels high. A pixel is the smallest unit of measurement on a computer
monitor, and is otherwise known as a "dot." In other words, a resolution of 800 x 600
gives programs 480,000 pixels to play with, while a mediocre 640 x 480 resolution offers
only 307,200. Clearly, higher resolutions can fit in a lot more content.

It's important to realize screen resolution isn't directly tied to the size of your monitor. In
other words, a 17" monitor can have a higher resolution (and show more information)
than a 19" monitor. However, it makes sense for larger monitors to use higher
resolutions. That's because on a small monitor, high resolutions look cramped. Monitors
support a wide range of resolutions, and you can choose the best compromise between
showing lots of content (a higher resolution) and making sure that content isn't too
small (a lower resolution).

5.1.1. The Problem of Layout

One of the most important considerations in print design is the physical size of the document. For
example, you need to use much larger text on a poster than a business card. In the world of the
Web, you don't have the luxury of worrying about size. Web surfers can shrink your window at will,
changing it drastically (see Figure 5-1). You need to accept this reality, and make sure your Web
page looks good regardless of who's viewing it or what kind of browser they're using.

Figure
5-1.
Left: At 800

x 600 pixels

(a common

monitor

resolution),

you get a

great view

of this

article.

Right: At

the smaller,

but still

supported

resolution

of 640 x

480, the

Web page

is still

readable,

albeit much

more

cramped.

Designing

for variable

window

sizes is one

of the

endless

headaches

that

confronts

every Web

artist.

In some rare cases, you might know how big a browser window your visitors will use. For example, if
you're designing a private Web site for an internal company network, where computers are all
configured the same way, you can depend on everyone having the same view. But in most cases,
you'll need to aim for a design that satisfies a broad range of viewers.

The first step in your quest for design equilibrium is to determine the smallest window size you want
to support. See the box "How Big Is Your Window?" below for some good tips on choosing the right
size for your pages.

Once you know the window sizes you're aiming for, the next step is to resize your Web browser
window to match these dimensions. That way, as you're creating your pages, you can preview each
page in a browser and make sure it looks okay. Fortunately, many HTML editors have a feature that
opens your page in a browser window set to a fixed size. For example, in FrontPage you can choose
File Preview in Browser, which has options for common window sizes.

DESIGN TIME

How Big Is Your Window?

Here are three good guidelines that the Web's most successful sites follow:

Your page should be usable in a window that's 640 x 480 pixels. In other words,
maybe folks whose monitors are set to this resolution will have to scroll a bit (up or
down, or left or right) to see your initial screen, but for the most part everything
you want them to see will be viewable. Most ancient Windows-95era computers
came with monitors whose screens could display a maximum of 640 x 480 pixels;
designing with these people in mind means you won't be alienating any of these
antique PC owners.

Your page should look its best at 800 x 600 pixels. This is the most common full-
screen size for today's generation of computers, although higher resolutions (like
1024 x 768) are becoming increasingly common.

Your page should still look respectable at sizes above 800 x 600 pixels.

For an example, surf over to read an article on the New York Times Web site
(www.nytimes.com). If you adjust the size of your browser window so that it measures
640 x 480, you'll be able to see the full width of an article along with the links for moving
from one page to the next. (Any narrower, and some text is cut off.) At 800 x 600, you
see the outskirts of the page, which includes related links and advertising banners. At
1024 x 768, life doesn't change very muchyou just wind up with an extra margin of blank
space on the right-hand side.

To achieve this kind of good-for-all-viewers result, you'll need to use the layout features
described in Chapter 9 . However, you can start following good design principles right
away, by testing your pages at all these sizes.

5.1.2. Logical Structure vs. Physical Formatting

Before you start tagging up your Web pages, there's one other concept you should understandthe
difference between structuring a document (arranging it into sections like headings, paragraphs, and
lists) and formatting a document (making the sections look different). Novice Web masters who don't
understand this difference always end up formatting when they should be structuring, which leads to
messy HTML that's difficult to edit.

In keeping with this distinction, HTML has two types of tags:

Logical tags (sometimes called idiomatic tags) describe the type of content. For example,
logical tags identify headings, paragraphs, quotations, code snippets, and emphasized text.
However, logical tags don't determine the specific formatting details about how your content is
displayed in the browser.

Physical tags (sometimes called typographic tags) are all about formatting. Examples include
tags that apply italics, boldface, underlining, and different fonts. Physical tags don't tell you
anything about the content of the text within them.

These two types of tags represent two different ways of thinking about HTML. When you use logical
tags, you define the structure of your document. For example, you use logical tags to organize the
résumé document in Chapter 2 into separate sections, including a heading, several paragraphs, and a
bulleted list.

POWER USERS' CLINIC

Using JavaScript to Resize a Window

If you can't (or don't want) to use your HTML editor's preview tool, there is a devious
workaround. You can add a block of JavaScript code into your Web page that takes
charge and automatically resizes your browser window. (JavaScript is a simple scripting
language that allows you to give browsers additional instructions. You'll learn more about
it in Chapter 14 .)

Assuming your browser supports JavaScript (and almost all do), you can embed
JavaScript code using a <script> tag. Here's an example, with the JavaScript code
highlighted:

 <html>

 <head>
 <title>Resizable Page</title>
 <script type="text/javascript">
 self.resizeTo(640, 480);
 </script>
 </head>
 <body>
 <p>Put your normal Web page here…</p>
 </body>

 </html>

In this example, the self.resizeTo() command changes the size of the window while
the page is loading. The first number in parentheses is the width, and the second
number is the height. Replace these numbers with your own numbers to test different
window sizes. Just remember to remove the <script> block when you're finished testing.

You could use the same devious trick in your finished page to resize a window without
your visitors' permission. But don't. This tactic is guaranteed to drive visitors away from
your site in record time.

When you use logical tags, it's up to the browser to decide what formatting to use. The perfect
example of a logical tag is <address>, which is occasionally used to identify contact information (like
a Web or postal address):

 <address>IHateSpam@webremailers.com</address>

Most browsers format addresses in italics, just as though you used the <i> tag. But the important
point is that a browser doesn't need to format address tagged-content in italics. Instead, you're using
the <address> tag to identify the type of content.

On the other hand, when you use a physical tag, you specify the exact formatting you want to
appearin other words, you're micromanaging your Web page. It's like telling the browser: "Listen up.
Put this word in italics; and put that phrase in bold face." In fact, two of the most popular physical
tags are the and <i> tags (for bold and italics) that you learned about in Chapter 2 .

Tip: This book focuses on the HTML tags that are most widespread today. That means you'll learn about the most popular logical and

physical tags, which makes it easier to carry on a conversation with other Web-heads.

Logical tags have ruled the roost ever since HTML was invented. The creators of HTML imagined a
world where document writers didn't want the hassle of formatting, particularly because different
types of browsers would present the same document in different ways, depending on the capabilities
of the Web surfer's computer. Even better, logical tags let programs other than Web browsers
analyze HTML documents. For example, someone could create an automated search program that
scans Web pages, and extracts just the top-level headings to give you a barebones outline. Or
browses Amazon to find book reviews. Or creates a junk-mail list by reading <address> tags. A
comparable program that came across a Web page filled with nothing but physical tags wouldn't be
nearly as interesting. For example, who cares how much text is in bold on eBay?

Tip: The vision of a Web where tags indicate what a page contains (prices, size information, email addresses, and so on) rather than

how a page looks, is called the semantic Web . According to the visionaries who first built the Internet, the semantic Web could usher in

a golden age of information access and super-smart searching. Many of the same gurus are still at work planning the semantic Web with

new XML-based standards. For a preview of the possible future, surf to http://logicerror.com/semanticWeb .

5.1.3. CSS (Cascading Style Sheets)

All of this discussion raises a good questionif Web page writers are supposed to describe the content
and structure of their pages, what's left to make sure the page looks good? The HTML powers-that-
be could create more tags just for formatting, but that would force page creators to do more work,
make HTML more complicated, and choke the average Web page in a swamp of ugly details about
fonts, colors, and alignment. Even worse, because the content and the formatting information would

be glued together, it would be hard to change. Imagine a page in which you not only had to tag every
paragraph, but you also had to indicate which font you wanted to use. What a headache. To avoid
problems like these, HTML only has a few, idiosyncratic formatting tags like the aforementioned <i>
and tags. Web purists hate them.

The solution that HTML gurus finally hit on was to separate the formatting information from the
document's content, and place these two pieces into separate files. Here's how it works. First of all,
the HTML documents you create in this scenario continue to look more or less the samejust like the
ones you learned how to create in Chapter 2 . They keep the same tags for paragraphs, headings,
and lists, but not much more. This is good news alreadyit means you don't need to change your
approach or throw out the basic tags once you've mastered them.

Next, you create a separate document using a standard called CSS (Cascading Style Sheets). The
style sheet defines how every type of element in your HTML document should be formatted. For
example, it contains instructions like "make every heading bright red" and "give all paragraphs a 15-
pixel margin."

Once you've perfected your Web site's look and feel, you link your Web page to the style sheet and
the transformation takes place (see Figure 5-2).

Figure
5-2.
Left: This

page is plain

but ready for

style sheets.

It's been

carefully

separated

into logical

sections.

Right: With

the

application

of a style

sheet, the

formatting

and layout

changes

dramatically.

You'll see an

example of

this in

Chapter 9

(Section

9.2.4).

There are many benefits to the style sheet system. First of all, you can reuse the same style sheet
for many Web pages. Because getting your formatting right can be a long and tedious chore, this is a
major timesaver. Even better, when you're ready for a new look, you don't need to mess with your

HTML documentsinstead, just tweak the style sheet and every linked page gets an instant facelift.

Tip: Now that you've understood the role of style sheets, you'll understand why this chapter concentrates on structuring your text, rather

than formatting it. There are some formatting features built into HTML, but they aren't as powerful as style sheets, and they're a lot

messier. Now that you're thinking with style sheets in mind, you're ready to steer clear of those headaches, and concentrate on

becoming comfortable with the staples of the HTML dietthe tags for structuring text.

5.2. Basic Text Tags

Some text tags are so important they'll crop up in virtually every HTML document. Many of these
tags are used to create block elements chunks of content that are separated (by a line break and a
little bit of extra space) on a Web page. Headings and paragraphs are two examples of block
elements. When you end a block element, the browser automatically adds a line break and a little
extra space before the next bit of content.

For example, consider this fragment of HTML:

 <h1>Bread and Water</h1>This economical snack is really
 all you need to sustain life.

This snippet has a title in large, bold letters followed immediately by some ordinary text. You might
expect to see both parts (the heading and the ordinary text) appear on the same line. However, the
<h1> tag is a block element. When you close it, the browser does a little housecleaning, and adds a
line break and some extra space. The text starts on a new line, as you can see in Figure 5-3 .

Figure
5-3. Block

elements are

always

separated by

a distance of

approximately

one and a

half lines (in

this figure,

the space

between

"Bread and

Water" and

the sentence

below).

Tip: Block elements are nice because they make it easy to format a document. For example, the spaces that exist between block

elements helps insure that one section of text doesn't run into another section. However, there's also a clear downside. In some cases,

you won't be happy with the automatic spacing between block elements. For example, in dense, information-laden pages, the standard

spacing looks far too generous. To tighten up your text and shrink the spaces in between block elements, you need style sheets (see

Chapter 6).

Interestingly, the previous example is equivalent to this more explicit HTML:

 <h1>Bread and Water</h1><p>This economical snack is really
 all you need to sustain life.</p>

Although it's basically the same, the second version is the one that's technically correct, and it's the
approach you'll see in this book. The reason that it's better is because it's clearer that the text after
the heading actually occupies a separate paragraph. In the first example, the text after the heading
is floating free without any container. The second example makes it clear that the document really
contains a heading followed by a paragraph. Conceptually, this makes more sense.

Tip: Remember, sticking to good style has other benefits. For example, it will help you if you decide to upgrade to XHTML someday (see

Section 2.4), and it will make it easier for search engines and other computer programs to scan and analyze your pages.

Not all HTML elements are block elements. There are also inline elements , which are tags that should
be placed inside other block elements. Examples of inline elements include the tag for
inserting images and the
 tag for inserting line breaks. You can insert inline elements in other
paragraphs, headings, or lists.

Now that you've learned how block elements work, it's time to take a closer look at your basic toolkit
of tags.

5.2.1. Paragraphs

You've already seen the basic <p> paragraph tag. It's a container tag that defines a paragraph of
text.

 <p>It was the best of times, it was the worst of times…</p>

As you've no doubt noticed by now in your travels across the Internet, HTML paragraphs don't get
indented like they do in print media. That's just the way of the Web, although you can change this
with style sheets (Section 6.3.3.3). Figure 5-4 shows an example of paragraph tags in action.

Figure
5-4.
When you

put several

paragraphs

in a row,

each

paragraph

is

separated

with a

space of

about one

and a half

lines.

However,

browsers

ignore

empty

paragraph

tags

completely,

and don't

add any

extra space

for them.

You should get into the habit of thinking of the text in your Web pages as a series of paragraphs. In
other words, before you type some text, add the <p></p> tags to serve as a container. It's the first
level of structure your page gets.

Usually, when you type a long paragraph in an HTML file, you'll split it up over multiple lines so that
you can read what you've written without having to scroll from one side of your window to the other.
But remember, even if you split your text into separate lines in the HTML file, it doesn't mean the
text gets displayed that way in the browser. Browsers treat a line break (like the one you see at the
end of this line) as a single space, and they stubbornly ignore multiple spaces that you enter by
hitting the Space bar. As a result, when a browser displays a paragraph, it wraps the text to fit the
width of the current browser window. If you want to insert a real break between your lines, check out
the next section.

UP TO SPEED

Getting More Space

The way that browsers ignore spaces can be exasperating. What if you really do want to
add several spaces in a row? The trick is the non-breaking space which is a special
HTML character entity (see Section 2.3.5.3) that forces browsers to insert a space.

When the browser sees this entity, it interprets it as a space that can't be ignored. So if
you create a paragraph like this:

<p>Hello Bye</p>

You end up with this text:

Hello Bye

Most WYSIWYG HTML editors automatically add non-breaking spaces when you press
the space key in design view, which is why those spaces don't disappear. But try not to
use non-breaking spaces more than you need to. (If you really want indented
paragraphs, you'll get a better solution with style sheets, which you'll learn about in
Chapter 6 .) And never, ever use spaces to try and align columns of textthat always
ends badly, with the browser scrambling your attempts. Instead, you'll need to use the
layout features described in Chapter 9 .

5.2.2. Line Breaks

Sometimes you want to start a new line but not a whole new paragraph. The most common reason is
when you want to avoid the extra spacing the browser puts between paragraphs. In this situation,
the line break tag
 comes in handy.

Tip: Remember, if you're following the XHTML standard (Section 2.4), all empty tags need to include a slash character. That means

instead of
, you write the equivalent code
.

Line breaks are exceedingly simplethey simply tell the browser to move to the start of the following
line. They aren't container tags or block elements, so you can use them on their own, anywhere (see
Figure 5-5).

Line breaks aren't block elements, so they should always be placed inside of a block element, like a
paragraph:

<p>This paragraph appears

on two lines</p

Don't overuse line breaks. Remember, when you resize the browser window, your text is
reformatted to fit. If you try to perfect your paragraphs with line breaks, you'll just end up with pages
that look bizarre at different sizes. A good rule of thumb is to avoid line breaks in ordinary
paragraphs. Instead, use them the to force breaks in addresses, outlines, poems, and other types of
text whose spacing you want to tightly control. Don't use them for bulleted and numbered lists you'll

learn about tags for those on Section 5.2.7 .

Figure
5-5. The

 line

break tag is

great for

separating

addresses. If

you want to

skip down

several lines,

you can use

a series of

 tags in a

row (but it's a

better idea to

use empty

paragraphs,

as described

in the box

"The Mystery

of Empty

Paragraphs").

In some cases, you might want to prevent a line break. This is a fairly specialized trick, but it can
come in handy if you're afraid of the browser mangling product names, or other phrases that contain
a space, that you want to appear on a single line. The trick is to use a non-breaking space character
(which looks like ;) instead of just hitting the Space bar. The browser still displays the space in
the Web page, but won't wrap the words on either side of it (see Figure 5-6).

Figure 5-6. Paragraphs

two and three in this figure show

how tagging "Microsoft Office

2003" differently affects the line

break. The second version is

actually coded as

Microsoft Office 2003.

As a result, the browser won't split

this term over a line break.

HOW'D THEY DO THAT?

The Mystery of Empty Paragraphs

In authoring tools like Dreamweaver and FrontPage, every time you press Enter, when
you're in design view, a new paragraph is created. This seems a little counterintuitive, as
you've seen how empty paragraph tags normally get ignored by the browser (see Figure
5-4).

The trick is that both these programs add what's called a non-breaking space . This
character is entered using the HTML entity (see Section 2.3.5.3 for an
introduction to HTML entities). Unlike regular spaces, a non-breaking space is never
ignored by the browser. That means if you put three non-breaking spaces in a row, you
wind up with three spaces when you view the page in a browser. (If you use regular
spaces, you'll only see one, because extra spaces are summarily dismissed.)

The trick is that you can also put a non-breaking space into a <p> tag. When you do,
the paragraph tag becomes an empty paragraph, which is sometimes useful for spacing
out your work. Here's an example of a paragraph with the non-breaking space:

<p> </p>

Incidentally, Dreamweaver and FrontPage do allow you to use more ordinary
 line
break tags instead of empty paragraphs. To do this, press Shift+Enter instead of Enter.
Nvu doesn't use the empty paragraph trick, so pressing Enter always inserts a line
break.

5.2.3. Headings

Headings are section titlesfor example, the word "Headings just above this paragraph. They display in
bold lettering, at various sizes. The size of the heading depends on the heading level . There are six
heading levels, starting at <h1> (the biggest) and dwindling down to <h6> (the smallest). Both
<h5> and <h6> are actually smaller than regularly sized text, and aren't used too often. Figure 5-7
shows all the heading levels you can use.

Figure
5-7. Most

HTML editors

give you a

single-click

way to apply

headings. In

FrontPage

and Nvu, you

can find a

dropdown

menu that

lets you

choose

whether the

current

section of text

is a

paragraph or

one of the

various

headings.

This figure

shows a

FrontPage

example, but

in

Dreamweaver

you can find a

similar drop-

down menu in

the Properties

panel.

Headings aren't just useful for formattingthey also delineate the structure of your document. To
make sure your document makes sense, it's a good idea to start with the largest headings (level one)
and work your way down. For instance, don't jump straight to a level three heading just because you
like the way it looks.

Tip: It's probably occurred to you that if everyone uses the same heading levels in the same order, the Web will become as bland as a

bagel in a chain supermarket. Don't panicit's not as bad as it seems. When you add style sheets into the mix (Chapter 6), you'll see that

you can completely change the look of any and every heading you use. So for now, stick to using the right levels in the correct order.

5.2.4. Horizontal Lines

Paragraphs and line breaks aren't the only way to separate sections of text. Another neat trick is the
<hr> tag, which translates to "horizontal rule." A horizontal rule is a horizontal line that stretches
from one side of its container to the other, separating everything above and below it.

Tip: Usually, you'll put a horizontal break in between paragraphs, which means it stretches from one side of the page to the other.

However, you can also put a rule in a smaller container, like a table cell, in which case it won't turn out nearly as big.

Rules are block elements, so you can stick them in between paragraphs (see Figure 5-8).

Figure
5-8. In
this

example,

there are

two

paragraphs,

with an

<hr> tag in

between,

which is the

tag that

inserts the

solid line

you see

here.

5.2.5. Preformatted

Preformatted text is a unique concept in HTML that breaks the rules you've read about so far. As
you've seen, Web browsers ignore multiple spaces and flow your text to fit the width of the page.
Although you can change this to a certain extent by using line breaks and non-breaking spaces, some
types of documents are still hard to deal with.

For example, imagine you want to display a bit of poetry or a snippet of code from a programming
language. Using non-breaking spaces to try and line everything up is time-consuming and difficult to

read. The <pre> tag gives you a different option. Inside the <pre> tag, the browser pays close
attention to every space and line break you use, and it duplicates that precisely on the Web page it
displays. Additionally, the Web browser puts all your text into a monospaced font (typically Courier).
Figure 5-9 shows an example.

Tip: In a monospaced font, every letter occupies the same amount of space. HTML documents and books like this one use proportional

fonts, where letters like W and M are much wider than l and i. Monospaced fonts are useful in preformatted text, because it allows you to

line up rows of text exactly. However, it doesn't look as polished.

Figure
5-9.
There's no

mystery in

how this e. e.

cummings

poem will

turn out.

Because it's

in a <pre>

block, you

get the exact

spacing and

line breaks

that appear

in your

HTML file.

The <pre>

tag also

works well

for blocks of

programming

code.

5.2.6. Quotes

It may be a rare Web page that spouts poetry, but the architects of the HTML standard created a
block element named <blockquote>, which is designed especially for long quotations. When you use
this element, your text is indented on the left and right edges.

Here's an example:

<p>Some words of wisdom from "A Tale of Two Cities":</p>

<blockquote>It was the best of times, it was the worst of times, it was the age of

wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of

incredulity, it was the season of Light, it was the season of Darkness, it was the

spring of hope, it was the winter of despair, we had everything before us, we had

nothing before us, we were all going direct to Heaven, we were all going direct the

other wayin short, the period was so far like the present period, that some of its

noisiest authorities insisted on its being received, for good or for evil, in the

superlative degree of comparison only.</blockquote>

<p>It's amazing what you can fit into one sentence.</p>

Figure 5-10 shows how this appears in the browser.

Figure
5-10.
Here, the

<blockquote>

tag indents

the middle

paragraph.

Occasionally the <blockquote> tag is used purely for the indented formatting that it gives you. Of
course, this compromises the spirit of the tag, and you'd be better off to use style sheets to achieve a
similar effect. However, it's a fairly common technique, so it's more or less accepted.

The <blockquote> tag is a block element, which means it always appears separately from other block
elements like paragraphs and headings. HTML also defines an element for shorter quotations that are
nested inside another blockthe <q> element, which stands for quotation:

<p>As Charles Dickens once wrote, <q>It was the best of times, it was the worst of

times</q>.</p>

Most browsers won't format the <q> element, so you might want to add some italics of your own.
You can do this by applying a style sheet rule that formats the <q> element (see Chapter 6).

And if you're dreaming of the semantic Web (Section 5.1.3), you can add a URL that points to the
source of your quote (assuming it's on the Web) using the cite attribute:

<p>As Charles Dickens once wrote, <q cite="http://www.literature.org/authors/dickens-

charles/two-cities">It was the best of times, it was the worst of times</q>.</p>

The information in the cite attribute isn't shown in the page, but other applications that analyze your
Web page can retrieve this information.

5.2.7. Divisions

The last block element you'll learn about<div>is one of the least interesting, at least at first glance.
That's because on its own, it doesn't actually do anything. <div> is used to group together one or
more block elements. That means you could group together several paragraphs, a paragraph and
heading, and so on. Here's an example:

 <div>
 <h1>…</h1>
 <p>…</p>
 <p>…</p>
 </div>
 <p>…</p>

Given the fact that <div> doesn't do anything, you're probably wondering why it exists. In turns out
that the lowly <div> becomes a lot more interesting when it's combined with style sheets (Chapter 6
). That's because you can apply formatting directly to a <div> tag. For example, if a <div> tag
contains three paragraphs, that means you can format three paragraphs for the price of one.

The <div> tag also has an important relativethe tag. The difference is that <div> groups
together block elements. The tag is placed inside a block element, around some section of
text. Here's an example:

<p>In this paragraph, some of the text is wrapped in a span tag. That gives you

the ability to format it in some fancy way later on.</p>

Once again, the tag doesn't accomplish anything on its own. However, with style sheets, you
can use it to format just a portion of a paragraph, which is very handy.

DESIGN TIME

Webifying Your Text

As you learned earlier in this chapter, text on the Web isn't like text in print. But
sometimes it's hard to shake old habits. Here are some unwritten rules that can help
make sure you're making good use of text in your Web pages:

Split your text into small sections . Web pages (and the viewers who are
responsible for clicking them into existence) don't take kindly to long paragraphs.

Create short pages . If a page is longer than two screenfuls, split it into two
pages. Not only does this make your pages easier to read, it also gives you more
Web pages, which helps the next point.

Divide your content into several pages . The next step is to link these pages
together (see Chapter 8). This gives readers the flexibility to choose what they
want to read, and in what order.

Put your most important information in the first screenful . This technique
is called designing above the fold . The basic idea is to make sure there's
something eye-catching or interesting that the reader can look at without scrolling.

Proofread, proofread, proofread . Because typos and bad grammar shatter
your site's veneer of professionalism and Web-coolness.

Don't go wild with formatting until you understand style sheets . If you do,
you'll leave a big mess that you only need to clean up later on.

5.3. HTML Tags for Lists

Once you've mastered paragraphs and headings, it's time to move to HTML's other set of tags for
organizing textthe list tags. HTML gives you three types of lists you can create:

Ordered lists give each item in a list a number or a letter (as in 1, 2, 3 or A, B, C). They're
handy when sequence is important, like when you're listing off a series of steps that tell your
relatives how to drive to your house.

Unordered lists are also known as bulleted lists, because next to each item is a bullet. You can
control what the bullet looks like, to some degree. You're reading a bulleted list right now.

Definition lists are handy for displaying terms followed by definitions or descriptions. For
example, the dictionary is one huge definition list. In a Web page, the terms are left-aligned,
and the definition is indented underneath.

In the following sections you'll learn how to create all three types.

5.3.1. Ordered Lists

In an ordered list, each item is numbered consecutively, starting at some value (usually 1). The neat
part about ordered lists in HTML is that you don't need to supply the numbers. Instead, the browser
automatically adds one to the left of each list item (sort of like the autonumber feature in Microsoft
Word). This is handy for two reasons. First, it allows you to wildly insert and remove list items
without screwing up your numbering. Second, the numbers and list items are carefully lined up,
which isn't as easy if you're doing it on your own.

To create an ordered list, you use the tag, which is a block element. (stands for ordered
list.) Then, inside the tag, you place an tag for each list item you want, in order.

For example, here's an ordered lists with three items:

 <p>To wake up in the morning:</p>

 Rub eyes.
 Assume erect position.
 Turn on light.

In a browser, you'd see this:

To wake up in the morning:

Rub eyes.1.

Assume erect position.2.

Turn on light.3.

In other words, a space is inserted between the preceding paragraph and the list, as with all block
elements. Next, each list item is given a number.

Ordered lists get more interesting when you mix in the start and type attributes. The start attribute
allows you to start the list at a value other than 1. Here's an example that starts the counting at 5:

 <p>To wake up in the morning:</p>
 <ol start="5">
 …

The next numbers will be 5, 6, and 7. Unfortunately, there's no way to count backward (or to
automatically continue counting from a previous list elsewhere on the page).

You aren't limited to numbers in your ordered list. The type attribute lets you choose the style of
numbering. You can use letters and roman numerals, as described in Table 5-1. Figure 5-11 shows a
few examples.

Table 5-1. Types of ordered lists

type Attribute Description Example

1 Numbers 1, 2, 3, 4…

a Lowercase letters a, b, c, d…

A Uppercase letters A, B, C, D…

i Lowercase roman numerals i, ii, iii, iv…

I Uppercase roman numerals I, II, III, IV…

Figure 5-11. The

type attribute in action. For

example, the code to start

off the first list would be: <ol

type="I">

5.3.2. Unordered Lists

Unordered lists are quite similar to ordered lists. The outer tag is , and each item inside is
wrapped in a tag. The browser indents each item in the list, and automatically draws the bullets.

The most interesting frill that comes with unordered lists is the type attribute, which lets you change
the style of bullet. You can use disc (a black dot, which is the default), circle (an empty circle), or
square (an empty square). Figure 5-12 shows the difference.

Tip: Most HTML editors have handy links for quickly creating the different types of lists. In Dreamweaver, look for the "ul" and "ol" icons

in the Text toolbar, or select Text List. In FrontPage, choose Format Bullets and Numbering to get started.

Figure 5-12.
Three flavors of the

same list.

5.3.3. Definition Lists

Definition lists are perfect for creating your own online glossary. Each list item actually has two
partsa term (which isn't indented) and a definition (which is indented underneath the term.

Definition lists use a slightly different tagging system than ordered and unordered lists. First, the
whole list is wrapped in a <dl> tag. Inside the <dl> tag (which stands for dictionary list), you place
pairs of terms and definitions. The term is wrapped in the <dt> tag (dictionary term), and the
definition is placed in a <dd> tag (dictionary definition).

Here's an example:

 <dl>
 <dt>eat</dt>
 <dd>To perform successively (and successfully) the functions of mastication,
 humectation, and deglutition.</dd>
 <dt>eavesdrop</dt>
 <dd>Secretly to overhear a catalogue of the crimes and vices of another or
 yourself.</dd>
 <dt>economy</dt>
 <dd>Purchasing the barrel of whiskey that you do not need for the price of
 the cow that you cannot afford.</dd>
 </dl>

In a browser you'd see this:

eat

To perform successively (and successfully) the functions of mastication, humectation,

and deglutition.

eavesdrop

Secretly to overhear a catalogue of the crimes and vices of another or yourself.

economy

Purchasing the barrel of whiskey that you do not need for the price of the cow that

you cannot afford.

5.3.4. Nesting Lists

Lists work well on their own, but you can also get fancier by placing one complete list inside another.
This technique is called nesting lists, and it allows you to build multilayered outlines and detailed
sequences of instructions.

To nest a list, just declare the new list inside an tag in the previous list. For example, the
following daily to-do list has three levels:

 Monday

 Plan schedule for week
 Complete Project X
 <ul style="square">
 Preliminary Interview
 Wild Hypothesis
 Final Report

 Abuse underlings

 Tuesday

 Revise schedule
 Procrastinate (time permitting). If necessary, put off
 procrastination until another day.

 Wednesday
 …

Tip: When using nested lists, it's a good idea to use indents in your HTML document so you can see the different levels at a glance.

Otherwise, you'll find it difficult to determine where each list item belongs.

In a nested list, the different list styles really start to become useful for distinguishing each level.
Figure 5-13 shows the result of this example.

Figure 5-13.
In a nested list, each

subsequent list level is

indented. Although you

aren't limited in the

number of levels you

can use, you will

eventually run out of

room and force your

text up against the right

margin.

5.4. Inline Formatting

As you learned earlier in this chapter, it's best not to format HTML too heavily. Instead, to get the
maximum control and make it easy to update your Web site's look later on, you should head straight
to style sheets (as described in the next chapter). However, there are a few formatting tags in HTML
that are so commonly used that you should know them. These are inline character stylestags you can
use inside another block element, like a paragraph, heading, or list.

5.4.1. Italics, Bold, and Underline

You've already seen these tags in Chapter 2. They're staples in HTML, allowing you to quickly format
snippets of text in a few simple ways. Here's an example that uses all three<i> for italics, for
bold, and <u> for underline:

 <p
 Stop! The mattress label says <u>do not remove under penalty
 of law</u> and you <i>don't</i> want to mess with mattress companies.
 </p>

It's displayed like this in a browser:

Stop! The mattress label says do not remove under penalty of law and you don't want to messStop! The mattress label says do not remove under penalty of law and you don't want to mess
with mattress companies.

5.4.2. Emphasis and Strong

The tag (for emphasized text) is the logical equivalent of the physical tag <i>. In just about
every browser these two tags have the same effectthey italicize text. Philosophically, the tag
is a better choice, because it's more generic. When you use , you're simply indicating that you
want to emphasize a piece of text, but you aren't saying how to emphasize it. You can use a style
sheet later on to change how emphasized text is displayed. Possibilities include making it a different
color, a different font, or a different size.

Tip: Technically, you can use style sheets to redefine the <i> tag in the same way. However, it seems confusing to have the <i> tag do

anything except apply italics. After all, that's its name.

The tag is the logical equivalent of the tag. If you aren't using style sheets, this simply
applies bold formatting to a piece of text. Overall, the <i> and tags are more commonly used

than and , but the latter are preferred because they're more flexible.

Here's the previous example rewritten to use the and tags:

 <p>
 Stop! The mattress label says <u>do not remove under penalty
 of law</u> and you don't want to mess with mattress companies.
 </p>

There's no logical equivalent for the <u> underline tag, although you can always use one of the
generic tags discussed earlier, like (see Section 5.4.2).

5.4.3. Subscript, Superscript, and Strikethrough

You can use the <sub> tag for subscripttext that's smaller and placed at the bottom of the current
line. The <sup> tag is for superscriptsmaller text at the top of the current line. Finally, wrapping text
in a <strike> tag tells the browser to cross it out. Figure 5-14 shows an example.

Figure 5-14.
Strikeout text, superscript,

and subscript and in

action.

5.4.4. Teletype

Text within a <tt> element displays using a fixed-width (monospaced) font, like Courier.
Programmers sometimes use it for snippets of code in a paragraph.

 <p>To solve your problem, use the <tt>Fizzle()</tt> function.</p>

Which renders like this:

To solve your problem, use the Fizzle() function.

Teletype text (or typewriter text) looks exactly like the text in a <pre> block (see Section 5.2.5), but

<tt> text is meant to be placed inside another block element. Unlike preformatted text, spaces and
line breaks in <tt> text are ignored, as they are in every other HTML tag.

5.4.5. Special Characters

Not all characters are available directly on your keyboard. For example, what if you want to add a
copyright symbol (©), a paragraph mark (¶), or an accented e (é)? Good news: they're all supported
by HTML, along with about 250 relatives, including mathematical symbols and Icelandic letters.
However, to add them, you'll need to use some sleight of hand. The trick is to use HTML character
entitiesspecial codes that the browser recognizes as requests for unusual characters. Table 5-2 has
some common options, with a sprinkling of accent characters. For the complete list, see
http://webmonkey.wired.com/webmonkey/reference/special_characters.

Table 5-2. Common Special Characters

Character Name of character What to type

© Copyright ©

® Registered trademark ®

¢ Cent sign ¢

£ Pound sterling £

¥ Yen sign ¥

Euro sign € (but € is better supported)

° Degree sign °

± Plus or minus ±

÷ Division sign ÷

x Multiply sign ×

µ Micro sign µ

¼ Fraction one-fourth ¼

½ Fraction one-half ½

¾ Fraction three-fourths ¾

¶ Paragraph sign ¶

§ Section sign §

« Left angle quote, guillemot left «

» Right angle quote, guillemot right »

http://webmonkey.wired.com/webmonkey/reference/special_characters

Character Name of character What to type

¡ Inverted exclamation ¡

¿ Inverted question mark ¿

æ Small ae diphthong (ligature) æ

ç Small c, cedilla ç

è Small e, grave accent è

é Small e, acute accent é

ê Small e, circumflex accent ê

ë Small e, dieresis or umlaut mark ë

ö Small o, dieresis or umlaut mark ö

É Capital E, acute accent É

Tip: The euro symbol is a relative newcomer to HTML. Although you can use the character entity € you'll have the best support

using the numeric code € because it works with older browsers like Internet Explorer 4 and Netscape Navigator 6.

Many HTML editors have features for easily inserting special characters, without forcing you to look
up the character entity in a list (see Figure 5-15).

Figure
5-15. Top:

In Nvu, just

choose Insert

Characters and

Symbols.

Middle:

Dreamweaver

forces you to

do more work

and choose

Insert

HTML

Special

Characters

 Other to

see a relatively

small set of

special

¡ Inverted exclamation ¡

¿ Inverted question mark ¿

æ Small ae diphthong (ligature) æ

ç Small c, cedilla ç

è Small e, grave accent è

é Small e, acute accent é

ê Small e, circumflex accent ê

ë Small e, dieresis or umlaut mark ë

ö Small o, dieresis or umlaut mark ö

É Capital E, acute accent É

Tip: The euro symbol is a relative newcomer to HTML. Although you can use the character entity € you'll have the best support

using the numeric code € because it works with older browsers like Internet Explorer 4 and Netscape Navigator 6.

Many HTML editors have features for easily inserting special characters, without forcing you to look
up the character entity in a list (see Figure 5-15).

Figure
5-15. Top:

In Nvu, just

choose Insert

Characters and

Symbols.

Middle:

Dreamweaver

forces you to

do more work

and choose

Insert

HTML

Special

Characters

 Other to

see a relatively

small set of

special

characters.

Bottom:

Choose Insert

 Symbol

to see

FrontPage's

more

comprehensive

list. Note that

FrontPage

inserts

Unicode

characters (not

just character

entities). As a

result, if you

insert a special

character in

FrontPage, it

might not

appear

correctly in

older operating

systems.

Chapter 6. Style Sheets
Last chapter, you learned HTML's dirty little secretit doesn't have much formatting muscle. If you
want your Web pages to look sharp, you need to add style sheets into the mix.

Style sheets are separate documents that are filled with formatting rules. The browser reads these
rules and uses them to format your Web page. For example, a style sheet rule might say, "make all
headings bold and fuchsia and draw a box around each one."

There's several reasons that you place formatting instructions in a style sheet instead of directly in a
Web page. The most obvious one is reuse. For example, thanks to style sheets, you can create a
single rule that you can use with every level three heading in every Web page on your Web site. The
second reason is that style sheets help you make tidy, manageable HTML. Because they do all the
formatting, your HTML code doesn't need to. All your HTML needs to do is organize the page into
logical sections. (For a quick recap of the difference between structuring and formatting a Web page,
refer back to Section 5.1.2.)

The formatting choices in style sheets are much more extensive (and much more overwhelming)
than those in HTML alone. Using style sheets, you can control colors, borders, margins, alignment,
and (to a limited degree) fonts. You'll use style sheets in this chapter and throughout this book. As
you'll see, style sheets give you options that can jazz up the dullest HTML.

6.1. Style Sheet Basics

Style sheets are officially known as the cascading style sheet (CSS) standard. CSS is a system for
defining rules about how one or more Web pages should be formatted. When you use CSS in a Web
page, the browser reads both the page's HTML and the style sheet rules. It then uses the style sheet
rules to format the page. Figure 6-1 diagrams the process.

Figure
6-1.
When you

surf to a

page that

uses a style

sheet, the

following

things

happen. 1)

Your

browser

requests the

HTML page

from the

Web server.

2) The

browser

finds an

instruction in

the HTML

page that

indicates

that the

page uses a

style sheet.

The

browser

then grabs

that style

sheet with a

separate

request. 3)

The browser

chews

through the

HTML in the

Web page,

and uses

the rules in

the style

sheet to

adjust its

appearance.

This system gives Web weavers the best of both worldsa rich way to format pages and a way to
avoid mucking up your HTML beyond recognition. In an ideal world, the HTML document describes
only the structure of a Web page (what's a header, what's a paragraph, what's a list, and so on), and
the style sheet explains how to give that Web page a hot new look.

6.1.1. The Three Types of Styles

Before you even get started learning how to write CSS rules, you first have to think about where
you're going to place those instructions. CSS gives you three different ways to apply style sheets to a
Web page:

An external style sheet is a style sheet that's stored in a separate file. This is the most
powerful approach, because it completely separates the formatting rules from your HTML pages.
It also gives you an easy way to apply the same rules to many pages.

An internal style sheet is a style sheet that's embedded inside an HTML document (it goes
right inside the <head> element). You still have the benefit of separating the style information
from the HTML, and if you really want, you can copy the embedded style sheet from one page
to another (although it gets difficult to keep all of those copies synchronized). Really, the only
time you'll use an internal style sheet is if you want to give someone a Web page in a single
filefor example, if you're emailing someone a Web page.

An inline style is a method for inserting style sheet language directly inside an HTML tag.
You've already learned that it's a bad idea to embed formatting inside a Web page document,
because these details are ugly and long. However, you might occasionally use this approach to
apply one-time formatting in a hurry. It's not all that clean or structured, but it does work.

UP TO SPEED

The "Other Way" to Format a Web Page

Style sheets aren't the only way to format a Web pagethey're just the most capable
tool. But you've also got a few formatting options built right into the HTML tags you
learned about in Chapter 5 . For example, you can change a page's background color or
center text without touching a style sheet. For the most part, this book doesn't use
these formatting options, for several good reasons:

They're patchy and incomplete . Many features (like paragraph indenting and
borders) are completely missingno HTML tags exist to achieve these effects. Even
worse, the model isn't consistentfor example, you might be able to line up text in
one type of tag, but not the text that's contained in another type of tag. This
makes the model difficult to learn and remember.

According to the HTML standard, these formatting options are deprecated
. That means that even though these formatting tweaks are still supported by most
browsers, they're considered obsolete by the official rulemakers of the HTML
standardthat'd be the good people who work at World Wide Web Consortium
(W3C). Many people didn't like these fancy flourishes in the first place, but they
were wedged in by over-eager software companies such as Microsoft and
Netscape. Newer devices (for example, browsers on tiny mobile phones) are more
likely to ignore these instructions altogether. Even worse, if you use them, your
hard-core Web designer friends won't sit with you at restaurants.

They don't allow you to easily reuse formatting changes . So after you
format one page, you need to start all over again to fix the next page. And so on,
and so on, and so on.

They won't work in XHTML . Right now you might not be concerned about
creating XHTML pages (Section 2.4), but by using style sheets, you'll simplify your
life if you ever decide to switch your Web site over to this new Web standard.

Why learn something you don't need ? Seeing as style sheets offer so much
more power and flexibility, and now that style sheets are supported (with certain
limitations) on virtually every browser around (old and new), it doesn't make sense
to waste time with something you'll outgrow anyway.

CSS does have one strike against it. If you plan to support Paleolithic browsers like
Netscape 4, you'll run into quirks with many parts of the CSS standard. In that case,
you'd be better off sticking with pure HTML.

These three levels give you the flexibility to either follow the CSS philosophy wholeheartedly (with
external style sheets), or to use the occasional compromise (with internal style sheets or inline
styles). Because the style sheet language is always the same, even if you use the "lazier" approach,
like internal style sheets, you can always cut-and-paste your way to an external style sheet when
you're ready to get more structured.

6.1.2. Browser Support for CSS

Before you embrace style sheets, you need to make sure that they work on all the browsers your
visitors are using. But determining what browsers support cascading style sheets isn't as easy a
question as it should be. The first problem is that there is actually more than one version of the CSS
standardthere's both CSS1 and CSS2. This book concentrates exclusively on CSS1, because support
for CSS2 is lacking in most browsers. (Internet Explorer is a notable laggard in this department.) But
the real problem is that browsers don't necessarily support the entire CSS standard, and when they
do, they don't always support it in exactly the same way. The discrepancies range from minor to
troubling. As a result, in this book you'll focus on CSS properties that are known to be well supported
among all the major browsers. (That said, don't forget to test your pages in a wide variety of
browsers to be sure they're appearing correctly.)

As a basic rule of thumb, you can count on good all-around CSS support in Netscape Navigator 6,
Internet Explorer 5 for Windows, Internet Explorer 4.5 for Macintosh, Opera 3.6, and any version of
Firefox or Safari. In later browser versions, the support just gets stronger.

Many people who've used the Web for a few years still remember an earlier generation of
browsersnamely, Netscape 4.x and Internet Explorer 4.x. Both of these browsers are unreliable
when it comes to some of the fancier features in CSS. However, you're unlikely to run into these
browsers anymore outside of a museum. If you're in doubt, just take a look at some recent browser
statistics to see who's online.

Table 6-1 shows the log resultsa record of which visitors are using which browsers over a period of
several monthsat a popular HTML teaching site, W3Schools. Given the fact that W3Schools doesn't
cater to power users or computer professionals, this table's a pretty good yardstick for the kinds of
browsers your visitors are likely to be using. Every browser in this table supports CSS.

Table 6-1. Current browser usage

2005 IE 6 IE 5 Opera 7/8 Firefox Mozilla Opera 8 Netscape 7

July 67.0% 6.7% 0.4% 19.7% 2.6% 0.8% 0.5%

June 65.0% 6.8% 0.5% 20.7% 2.9% 0.7% 0.6%

May 64.8% 6.8% 0.6% 21.0% 3.1% 0.7% 0.7%

April 63.5% 7.9% 1.0% 20.9% 3.1% 0.4% 0.9%

March 63.6% 8.9% 1.6% 18.9% 3.3% 0.3% 1.0%

Tip: For more up-to-date information, surf to www.w3schools.com/browsers/browsers_stats.asp .

Of course, statistics can be misleading. Web sites can attract wildly divergent groups of people, and
you know your audience best. If you're still concerned about whether a specific CSS feature is
supported in a specific browser version, see the sidebar "A Browser Compatibility Reference." Also,
look for the Oldest Supported Browsers column in the property tables shown throughout this chapter.
For example, if the Oldest Supported Browsers column indicates Internet Explorer 5, you can bet that

the property won't work (or works erratically) in Internet Explorer 4.5.

FREQUENTLY ASKED QUESTION

A Browser Compatibility Reference

How can I tell if a CSS feature is supported in a particular browser ?

If you're a hard-core Web maven, you may be interested in one of the Web browser
compatibility charts for CSS that are on the Web. Two good resources are
www.corecss.com/properties/full-chart.php and www.quirksmode.org . These charts
specify which CSS features are supported in different browser versions.

But chart-reader beware: These tables also include many rarely used or new and poorly
supported features (such as CSS2 features). For example, you probably don't care that
virtually no browser supports the pitch range property, which is used in conjunction with
text-reading devices. Unfortunately, the CSS charts can cause panic in those who don't
know the standards. However, they can be handy if you need to check out support for a
potentially risky feature.

6.1.3. The Anatomy of a Rule

Style sheets contain one thing: rules . Each rule is a formatting instruction that applies to a part of
your Web page. A style sheet can contain a single rule, or it can hold dozens (or even hundreds) of
them.

Here's a simple rule that tells the browser to display all <h1> headings in blue:

 h1 { color: blue }

CSS rules don't look like anything you've seen in HTML. But you'll have no trouble with them once
you realize all rules are built out of three ingredients: selectors, properties , and values . Here's the
format that every rule follows:

 selector { property: value }

And here's what each part means:

The selector identifies what you want to format. The browser hunts down all the parts of the
Web page that match the selector. For now, you'll concentrate on selectors that match every
occurrence of a specific tag. But as you'll learn later in this chapter (Section 6.6), you can
create more sophisticated selectors that pick out just specific sections of your page.

The property identifies the type of formatting you're applying. Here's where you choose whether
you want to change colors, fonts, alignment, or something else.

The value sets the property. This is where you bring it all home. For example, if your property is
color, the value could be light blue or dead-salmon pink.

Of course, it's rarely enough to format just one property. Usually, you'll want to change several
characteristics at the same time. You can do this with style sheets by creating a selector like this:

 h1 { text-align: center;
 color: black; }

This example changes the color and centers the text inside an <h1> tag. That's why selectors use the
funny curly braces ({ and })so you can put as many formatting instructions inside them as you want.
Each rule is separated from the next using a semicolon (;). It's up to you whether you want to
include a semicolon at the end of the last rule. Although it's not necessary, Webheads often include
one so that it's easy to add another formatting property onto the end of the selector when needed.

Tip: As in an HTML file, CSS files let you use spacing and line breaks pretty much wherever you want. However, people usually put

each formatting instruction on a separate line (as in the example above) in order to make style sheets easy to read.

Conversely, you might want to create a formatting instruction that affects several different tags. For
example, imagine you want to make sure the first three heading levels all use blue formatting. Rather
than writing three separate rules, you can create a selector that includes all three tags, separated by
commas. Here's an example:

 h1, h2, h3 { color: blue }

Believe it or not, selectors, properties, and values are the essence of CSS. Once you understand
these three ingredients, you're on your way to style sheet gurudom.

Here are a few side effects of the style sheet system that you might not have realized yet:

A single rule can format a whole whack of HTML. With the selectors you're considering right now
(called type selectors), every part of your page that uses the tag is affected.

It's up to you how much you format. You can choose to fine-tune every HTML tag in your Web
page, or you can write rules that affect only a single tag, using the techniques you'll see at the
end of this chapter (Section 6.6).

You can create two different rules for the same element. For example, you could create a rule
that changes the font of every heading level (<h1>, <h2>, <h3>, and so on), and then add
another rule that changes the color of just <h1> elements. Just make sure you don't try to set
the same property multiple times with conflicting values, or the results will be more difficult to
predict.

Some tags have built-in style rules. For example, text in a tag is always displayed with bold
text, and text in an <h1> heading is always displayed in a large font. But you can override any
or all of these rules using style rules. For example, you could explicitly set the font size of an
<h1> heading so that it appears smaller than the following text. Similarly, you can take the
underline off of a link.

Don't worry about learning the specific properties and values yet. Later in this chapter, after you see
how style sheets work, you'll get acquainted with all the different types of formatting instructions you
can use.

6.1.4. Applying a Style Sheet

Now it's time to see style sheets in action. Before you go any further, dig up the resume.htm file you
worked on in Chapter 2 (it's also available from the "Missing CD" page at www.missingmanuals.com
). You'll use it to test out a new style sheet. Just follow these steps:

First, create the style sheet. You can do this by creating a new file in any text editor
like Notepad or TextEdit .

Creating a style sheet is no different than creating an HTML pageit's all text. Many HTML editors
have built-in support for authoring style sheets (see the box "Creating Style Sheets with HTML
Editors" on Section 6.1.4.1 for more information).

Note: Remember, Word is not a candidate for Best HTML Editor of the Year. In fact, if you make the mistake of editing an HTML

page in Word, you're likely to end up with problems (like invalid characters), so don't do it.

1.

Type the following rule into your style sheet :

 h1 { color: fuchsia }

This rule instructs the browser to display all <h1> tags in bright fuchsia lettering.

2.

Save the style sheet with the name resume.css .

Like an HTML document, a style sheet can have just about any file name. However, as a matter
of convention, style sheets almost always use the extension .css. Make sure you save the style
sheet in the same folder as the HTML page.

3.

Next, open the resume.htm file .

If you don't have the resume.htm file handy, you can test this style sheet with any HTML file that
has at least one <h1> tag.

4.

In order to use the style sheet with your HTML file, you need to add a link to the
HTML file. This link is a special <link> tag, which you must place in the <head>

5.

section of the Web page. Here's the revised <head> section with the <link> tag you
need to add :

 <head>
 <link rel="stylesheet" href="resume.css" type="text/css" >
 <title>Hire Me!</title>
 </head>

The link tag includes three directions. The rel attribute indicates that the link points to a style
sheet. The type attribute describes how the document is encoded. You should copy both of
these attributes exactly as shown above, as they never change. The href attribute is the
important bitit indicates the location of the style sheet. ("href" stands for hypertext reference.)
Assuming the style sheet is located in the same folder as the HTML file, all you need to supply is
the file name. (If the files were located in different folders you'd need to specify the location of
the .css file using a file path notation system that you'll learn about on Section 8.1.2 .)

5.

Save the HTML file, and open it in a browser .

Here's what happens. The browser begins processing the HTML document and finds the <link>
attribute, which tells the browser to find the associated style sheet and apply all its rules. The
browser than reads the first (and only) rule in the style sheet. In order to apply this rule, it
starts by analyzing the selector, which targets all <h1> tags. The browser then finds all the
<h1> tags, and applies the fuchsia formatting.

6.

The style sheet in this example isn't terribly impressive. In fact, it probably seems like a lot of work
to get a simple pink heading. However, once you've got this basic model in place, you can quickly
take advantage of it. For example, you could edit the style sheet to change the color. Or, you could
add new rules to format other parts of the document. Simply save the new style sheet and refresh
the page to see the new rules come into effect.

To see this at work, try changing the style sheet so that it has these rules:

 body {
 font-family: Verdana,Arial,sans-serif;
 font-size: 83%;
 }

 h1 {
 border-style: double;
 color: fuchsia;
 text-align: center;
 }

 h2 {
 color: fuchsia;
 margin-bottom: 0px;
 font-size: 100%;
 }

 li {
 font-style: italic;
 }

 p {
 margin-top: 2px;
 }

These rules change the font style for the entire document (through the <body> tag), tweak the two
heading levels, italicize the list items, and shave off some of the spacing between paragraphs.
Although you won't recognize all these rules at first glance, the overall model hasn't changed. Figure
6-2 shows the result.

Figure
6-2.
Left: By

now, you

can

recognize a

plain vanilla

page.

Right: With

a style

sheet, the

entire page

gets

revamped.

GEM IN THE ROUGH

Creating Style Sheets with HTML Editors

Some HTML editors have handy features for creating style sheets. You won't find this frill
in the free Nvu editor, but it does turn up in FrontPage and Dreamweaver.

To create a style sheet in FrontPage, choose File New to show the "New page" task
window on the right. Then, click the "More page templates" link to show the Page
Templates dialog box. Choose the Templates tab (which is confusingly called the Style
Sheets tab in some older versions of FrontPage). You'll see a list of predefined
templateschoose one of these and you'll start off with a pile of color-coordinated rules
you can apply to a Web page right away. (And of course, you're free to change or
replace the rules as you see fit.)

Dreamweaver goes one better than FrontPage. It also includes a list of prebuilt style
sheetsto see it, choose File New and then select the Templates tab in the New
Document dialog box (shown in this illustration). Not only will you see a list of style
sheets, but you'll also see a small preview window that shows you a sample of what the
rules in the style sheet look like.

6.1.4.1. Internal style sheets

The previous example demonstrated an external style sheet. External style sheets are everybody's
favorite way to use CSS, because they allow you to link a single lovingly crafted style sheet to as
many Web pages as you want. However, sometimes you don't have an entire Web site in mind, and
you'd be happy with a solution that's a little less ambitious.

An internal style sheet is a style sheet that's not linked, but instead is embedded in the <head> area

of a Web page. Yes, it bulks up your Web pages and it forces you to give each Web page a separate
style sheet. But occasionally, the convenience of having just one page with its own style rules makes
it worthwhile.

To change the earlier example so that it uses an internal style sheet, remove the <link> element and
add the style rules in a <style> element inside the <head> section of the Web page, as shown here:

 <head>
 <style type="text/css">
 h1 { color: fuchsia }
 </style>
 </head>

To ensure optimum compatibility with really old browsers, there's another trick Web gurus often
usethey put the style information in between comment tags:

 <head>
 <style type="text/css">
 <!--
 h1 { color: fuchsia }
 -->
 </style>
 </head>

This way, ancient browsers that have no understanding of style sheets (like Netscape 3), won't
inadvertently display the style information in the Web page because it's hidden in the page. (On the
other hand, browsers that are CSS-conversant see the instructions just fine.) Of course, you're
unlikely to run into this problem these days, but many Web authors still follow this best practice.

6.1.4.2. Inline styles

If you want to avoid writing a style sheet altogether, there's another approach you can use. Inline
styles allow you to insert the property and value portion of a style sheet rule right into an HTML tag.
(You don't need the selector because it's obvious that you want to format the current tag.) For
example, here's how you format a single heading with an inline style:

 <h1 style="color: fuchsia">Hire Me!</h1>

When you use this approach, it affects only the tag where the style rule is placed. If there are other
<h1> headings in the Web page, they aren't affected.

WORD TO THE WISE

Boosting Style Sheet Speed

External style sheets are more efficient in Web sites because of the way that browsers
use caching . (Caching is a performance-improving technique where browsers store a
copy of some downloaded information on the Web surfer's computer, so they don't need
to download it again.)

When you link to a style sheet, the browser makes a separate request to get that style
sheet file, as shown back in Figure 6-1 . However, if you have another Web page that
requests the same style sheet, the browser is intelligent enough to realize it already has
the right style sheet on hand. As a result, it doesn't make the request. Instead, it just
reuses the cached copy of the style sheet, which makes the page load a little bit faster.
(Of course, browsers only cache things for so long. If you surf to the same site
tomorrow, the browser will re-request the style sheet in case it's changed.)

If you put the style sheet into each Web page, the browser always downloads the full
Web page with the duplicate copy of the style sheet. It has no way to realize that you're
reusing the same rules. Although this probably won't make a huge difference, in a Web
site with lots of pages it could start to add up. Speed is just one more reason Web
veterans prefer external style sheets.

Inline styles may seem appealing at first glance, because they're clear and straight-forward. You
define the formatting information exactly where you want to use it. However, if you try to format a
whole Web page this way, you'll realize why Web gurus universally shun them. Quite simply, the
average CSS formatting rule is long. If you need to put it inside an HTML page alongside your
content, and copy it each time you use the tag, you'll quickly end up with a Web page that's mangled
beyond all recognition. For example, consider a more complex heading that needs several style rules:

 <h1 style="border-style: double; color: fuchsia; text-align: center">Hire
 Me!</h1>

Even if this occurs only once in the document, it's already becoming a loose and baggy monstrosity.
Try to avoid inline styles if you can.

Note: Novice Web designers often get into trouble with inline styles when they use WYSIWYG editors like FrontPage to format their

Web pages. Every time you change a formatting detail in FrontPage (like the color, alignment, and so on), it quietly adds a dollop of style

information to your HTML. That makes these files quite difficult to edit (and gives FrontPage a bit of a bad reputation). Now that you

know better, you'll be able to use a WYSIWIG editor and styles to make sure your HTML stays neat and tidy.

6.1.5. The Cascade

By now, you might be wondering what the " cascading" part of "cascading style sheets" means. It
refers to the way the browser decides which rules take precedence in case you've got multiple sets of

rules.

For example, if you indicate that <h1> headings should have blue letters using an external style
sheet, and then apply bold formatting with an inline style, you'll end up with the sum of both
changes: a bold blue-letter heading. However, it's not as clear what happens if the rules conflictfor
example, if one rule specifies blue text while another mandates red. Which color setting wins?

To determine the answer, you need to consult the following list to find out which rule has highest
priority. This list indicates the steps the browser follows when applying styles. The steps toward the
bottom are the most powerful: they're performed after the steps at the top, and so they overwrite
any earlier formatting.

Browser default1.

External style sheet2.

Internal style sheet (inside the <head> tag)3.

Inline style (inside an HTML element)4.

So, if an external style sheet property conflicts with an internal style sheet, the internal style sheet
wins.

Based on this behavior, you might think that you can use this cascading behavior to your advantage
by defining general rules in external style sheets, and overriding them with the occasional exception
using inline styles. However, there's actually a much better option. Rather than formatting every
matching tag, you can specifically format individual tags by using class selectors (see Section 6.6 for
details).

Note: The "cascading" in cascading style sheets is a little misleading, because in most cases you won't use more than one type of style

sheet (for the simple reason that it can quickly get confusing). Most Web artistes favor external style sheets primarily and exclusively.

6.1.6. Inheritance

Along with the idea of cascading styles, there's another closely related conceptstyle inheritance . In
order to understand style inheritance, you need to remember that in HTML documents, one tag can
contain other tags. For example, the (unordered list) tag contains (list item) tags.
Similarly, a <p> paragraph tag can contain character formatting tags like and <i>, and the
<body> tag contains the whole document.

Thanks to inheritance, when you apply formatting to an element that contains other elements, the
rule is applied to everything . For example, if you set the <body> element to use a specific font (as in
the résumé style sheet shown earlier), the font applies to every element inside the <body> element,
including all the headings, paragraphs, lists, and so on.

Note: There are some style properties that break the rules (for example, margin settings are never inherited) but most don't. Look for the

Can Be Inherited column in each table in this chapter to figure out whether a property will be inherited.

However, there's a trick. Sometimes, formatting rules may overlap. In this case, the most specific
rulethat is, the one closest to the tagwins. For example, settings in an <h1> element override
settings in a <body> element for all level 1 headings. Or consider this style sheet:

 body {
 color: black;
 text-align: center;
 }

 ul {
 color: fuschia;
 font-style: italic;
 }

 li {
 color: red;
 font-weight: bold;
 }

These rules can overlap. In a typical document (see Figure 6-3) a (list item) is placed inside a
list tag like , which in turn exists inside the <body> tag.

Crafty style sheet designers can use this behavior to their advantage. For example, you might apply
a font to the <body> element so that everything in your Web pageheadings, paragraph text, lists,
and so onhas the same font. Then, you can judiciously override this font for a few specific tags by
applying more formatting rules.

Although you probably won't see cascading styles in action very often, you'll almost certainly use
style inheritance.

Note: Now that you've learned how style sheets work, you're ready to start with the hard partlearning about the dozens of different

formatting properties you can change. In this chapter, you won't learn about every property. For example, there are some properties that

apply primarily to pictures and tables. You'll learn about these properties in later chapters.

6.2. Colors

It isn't difficult to inject some color into a Web page. There are really just two color-related properties
that you'll use, and they're listed in Table 6-2.

Table 6-2. Color Properties

Property Description Common Values
Oldest

Supported
Browsers

Can Be
Inherited

color

The color of the text. This
is a handy way to make
headings or emphasized
text stand out.

A color name, HTML color
code, or RGB color value.

IE 3, Netscape
4

Yes

background-
color

The color behind the text,
for just that tag.

A color name, HTML color
code, or RGB color value.
You can also use
transparent.

IE 4, Netscape
4

No[1]

[1] The background-color isn't inherited (Section 6.1.6), which means a tag doesn't get the same background color as the tag that

contains it. However, there's a trick. If you don't explicitly assign a background color to a tag, its color is transparent. That means

the color of the containing tag will still show through, which has the same effect.

The color property is easy to understandit's the color of your text. The background-color property is a
little more unusual. If you apply a background color to the <body> tag, the whole Web page is
affected, as you might expect. However, if you use the background color on an individual element,
the results are a bit stranger. In CSS, what's inside of each tag is treated as though it exists in an
invisible rectangle.

When you apply the background color to an element, the color applies just to this rectangle.

For example, the following style sheet applies different background colors to the page, headings,
paragraphs, and any bold text:

 body {
 background-color: yellow;
 }

 h1 {
 color: white;

 background-color: blue;
 }

 p {
 background-color: lime;
 }

 b {
 background-color: white;
 }

Figure 6-4 shows the result.

Figure
6-3.

When rules

collide, the

most

specific tag

wins. In this

example,

that means

that list

items are

displayed

in red,

because

the rule for

the tag

overrides

the

inherited

properties

from the

 and

<body>

tags.

However,

any part of

a rule that

doesn't

conflict with

another

rule is

used. In

this

example,

that means

the tag

gets italics,

bold, and

center

alignment,

all through

inheritance.

6.2.1. Specifying a Color

The trick to using colors is finding the appropriate code that indicates the exact shade of electric blue
you love. You have several ways to go about this. First of all, you can indicate your color of choice
with a plain English name, as you've seen in the examples so far. Unfortunately, this system only
works with a small set of 16 color names (aqua, black, blue, fuchsia, gray, green, lime, maroon,
navy, olive, purple, red, silver, teal, white, and yellow). Some browsers accept other names, but
none are guaranteed to be widely supported, so it's best to use another approach. CSS gives you two

more options: hexadecimal (or HTML) color values, and RGB (or red-green-blue) values.

Figure
6-4. If
you apply a

background

color to a

tag like

<h1>, it

colors just

that line. If

you use it

on an inline

tag like

or ,

it affects

only the

words in

the tag.

Both

results look

oddit's a

little like

someone

went wild

with a

highlighter.

A better

choice is to

apply the

background

color to the

whole page

by applying

it to the

<body>

tag, or just

to a large

box-like

portion,

using a tag

like <div>.

6.2.1.1. Hexadecimal color values

With hexadecimal color values you use a strange-looking code with a pound sign (#) at the
beginning. Technically, hexadecimal colors are made up of three numbers representing the red,

green, and blue component of the color (similar to the RGB colors you'll learn about in the next
section). However, these colors have been combined in a manner that's perfectly understandable to
computers, but utterly baroque to normal people. You'll find hexadecimal color notation kicking
around the Web a lot, because it's the original format that was designed for HTML. However, it's
about as intuitive as reading the ones and zeroes that power your computer.

Here's an example:

 body {
 background-color: #E0E0E0
 }

Even a computer nerd can't tell that this applies a light gray background. (See "Finding the Right
Color" for some tips on how to pick out hexadecimal color values, if you're determined to use this
system.)

6.2.1.2. RGB color values

The other approach to specifying color values is to use RGB (or red-green-blue) values. According to
this more logical approach, you simply specify how much of each color you want to "mix in" to create
your final color. Each component takes a number from 0 to 255. For example, a color that's
composed of red, green, and blue, each set to 0, appears white; on the other hand, all those values
set to 255 generates black.

Here's an example of a nice lime color:

 body {
 background-color: rgb(177,255,20)
 }

FREQUENTLY ASKED QUESTION

Web-Safe Colors

Will the colors I pick show up on other computers?

When colors began appearing as the latest fad in Web pages, the computing world was
very different. The average computer couldn't handle a really wide variety of colors.
Many computers were limited to a relatively small set of 256 colors, and had to deal with
other colors by dithering (a dubious process that combines little dots of several colors to
simulate a different color, leading to an unattractive speckled effect). To avoid dithering,
Web designers came up with a standard called Web-safe colors, which identifies a set of
216 colors that can be reliably used on any computing platform. Even better, they
always look almost exactly the same.

Today, the world is a little different, and you'd be hard pressed to find a computer that
can't display at least 16,000 colors (a standard called 16-bit color, or high color). Most
support a staggering 16.7 million (a standard called 32-bit color, or true color). In this
environment, it's rarely worth worrying about the Web-safe colors anymore, and the
standard is just another piece of computing history.

However, there is one exception. If you plan to create Web pages for very small devices
(like cell phones or palmtop computers), which have much leaner hardware, you might
change your mind and decide to pare down your Web pages and limit yourself to Web-
safe colors only. To check out the list of safe colors, surf to
www.w3schools.com/css/css_colors.asp.

Even if you aren't concerned about serving this still relatively small audience of tiny
devices, it's still a good idea to look at your Web pages on a variety of computers. That's
because different monitors don't always display the same colorssome tend to tint colors
unexpectedly, and Windows computers tend to produce darker colors than their
Macintosh counterparts (even when using the same monitor). Pick colors carefully,
because a color combination that looks great on your computer can look nauseating (or
worse, be illegible) on someone else's.

6.2.2. Finding the Right Color

Style sheets can handle absolutely any color you can imagine. But how do you find the color code for
the perfect shade of sunset orange (or dead salmon) that you need?

Sadly, there's no way this black and white book can show you your choices. But there are a great
number of excellent color-picking programs online. You have two options hereyou can download a
free color-picking program, or you can hunt around on the Web to find an online color-picking
program, which is often more convenient.

For example, try www.webtemplates.com/colors, where all you need to do is click a picture to
preview the color you want (and see its hexadecimal code). Other handy online color pickers include
http://mediagods.com/tools/rgb2hex.htm and www.colorschemer.com/online.html (where you can
see groups of colors that match).

http://mediagods.com/tools/rgb2hex.htm

Note: The RGB system lets you pick any of 16.7 million colors, which means that none of these Web sites will actually show you every

single possible RGB color code (if they do, make sure you don't hit print; even with ten colors per line, you'd wind up with thousands of

pages). Instead, most sites limit you to a representative sampling of colors. This works, because many colors are so similar that they're

nearly impossible to distinguish by eye.

If you're using an HTML editor like FrontPage, Dreamweaver, or Nvu, life gets a little easier. These
programs have built-in color picking tools (see Figure 6-5).

Figure
6-5. In
Nvu, you

simply

select your

text and

click an

icon to

adjust your

color

scheme.

You get a

decent

color-

picking

window,

where you

can choose

a color by

clicking

inside a

small

window that

blends a

range of

reds, blues,

and greens.

Once

you've

chosen a

basic color,

you can

fine tune

how dark it

is by

clicking on

the bar

underneath

the color-

picking

window.

Keep in

mind that

when you

apply a

color in this

way, it's

applied

using an

inline style

that's

inserted

right in the

tag

surrounding

the text

you've

selected.

Once

you've

finished

choosing

the color

you want,

you should

cut it out of

the tag and

paste it into

a rule in a

full-fledged

external

style sheet.

Tip: The RGB color standard is alive and well in many computer programs. For example, if you see a color you love in a professional

drawing program, odds are there's a way to get the red, green, and blue values for that color, which you can then use in a style sheet.

This gives you a great way to match the text in your Web page with a color in a picture. Now that's a trick that pleases the strictest

interior designer!

DESIGN TIME
Making Color Look Good

Nothing beats black on white for creating a crisp, clean, easy-to-read Web page with
real presence. Black text and white backgrounds also work best in Web pages that have
a lot of colorful pictures. It's no accident that almost every top Web site, from news sites
(www.cnn.com) to search engines (www.google.com) to e-commerce shops
(www.amazon.com) and auction houses (www.ebay.com) all use the winning
combination of black on white.

But what if you're just too colorful a person to leave your Web page in plain black and
white? The best advice is to follow the golden rule of color: use restrain. Unless you're
creating a sixties revival site or a Led Zeppelin tribute page, you don't want color to run
wild. Here are some ways that you can inject a splash of color without letting it take
over your Web page:

Go monochrome. That means use black, white, and one other dark color. For
example, Time magazine's Web site (www.time.com) uses its familiar bold red
color for headlines.

Use a lightly shaded background. Sometimes, a faint wash of color in the
background is all you need to perk up a site. For example, a gentle tan or gold can
suggest elegance or sophistication (see the Harvard library at
http://lib.harvard.edu). Or, light pinks and yellows can get shoppers ready to buy
sleepwear and other feminine accoutrements (see Victoria's Secret at
www.victoriassecret.com).

Use color in a box. Shaded boxes are a frequently used technique to highlight
important areas of a Web page (see Wikipedia at http://en.wikipedia.org). You'll
learn how to create boxes later in this chapter on Section 6.5.

Be careful about using white text. White text on a black or dark blue
background can be strikingand strikingly hard to read. The rule of thumb is avoid
it, unless you're trying to make your Web site seem futuristic, alternative, or
gloomy. (And even if you do fall into one of these categories, you might still get a

http://lib.harvard.edu
http://en.wikipedia.org

stronger effect with a white background and a few well-chosen graphics with
splashy electric colors.)

6.3. Fonts

Using the CSS font properties, you can choose a font family, the font weight (its boldness setting),
and font size (see Table 6-3). Be prepared, however, for a bit of Web-style uncertainty; this is one
case where life isn't as easy as it seems.

The inescapable problem you face when using CSS font properties is that no two computers have the
same set of fonts. A simple way to solve this would be to create Web browsers that could
automatically download new fonts they don't havebut this would be a Web nightmare. First, it could
swamp the average computer's hard drive with thousands of (potentially low-quality) fonts. Second,
it would infuriate the software companies who sell fonts. (Fonts aren't free, and so copying them
wantonly from one computer to another isn't kosher.)

Table 6-3. Font Properties

Property Description Common Values
Oldest

Supported
Browsers

Can Be
Inherited

font-family

A list of font names. The browser
scans through the list until it
finds a font that's on the
browser's PC. If no supported
font is found, it uses the standard
font it always uses.

A font name (like
Verdana, Times, or
Arial) or one of the
generic family names:
serif sans-serif
monospace

IE 3,
Netscape 4

Yes

font-size Sets the size of the font.

A specific size, or one
of these values: xx-
small x-small small
medium large x-large
xx-large smaller larger

IE 3,
Netscape 4

Yes

font-
weight

Sets the weight of the font (how
bold it appears).

normal bold bolder
lighter

IE 4,
Netscape 4

Yes

font-style Lets you apply italic formatting. normal italic
IE 4,
Netscape 4

Yes

font-
variant

Lets you apply small caps, which
turns lowercase letters into
smaller capitals (LIKE THIS).

normal small-caps
IE 4,
Netscape 6

Yes

text-
decoration

Applies a few miscellaneous text
changes, like underlining and
strikeout. Technically speaking,
these aren't part of the font

none underline
overline line-through

IE 4,
Netscape 4

Yes

Property Description Common Values
Oldest

Supported
Browsers

Can Be
Inherited

decoration these aren't part of the font
(they're added in by the
browser).

overline line-through Netscape 4

text-
transform

Transforms text so that it's all
capitals or all lowercase.

none uppercase
lowercase

IE 4,
Netscape 4

Yes

There may be practical solutions to these problems, but unfortunately, browser companies and the
people who make Web standards have never agreed on any. As a result, any font settings you
specify are just recommendations. If a browser doesn't have the font you request, it reverts to the
standard font that the browser uses whenever it's on a site that doesn't have special font
instructions.

Given that caveat, you're probably wondering why you should bother to configure font choices at all.
Well, here's one bit of good news. Instead of requesting a font and blindly hoping that the browser
has it, you can create a list of font preferences. That way, the browser will try to match your first
choice and, if that fails, your second choice, and so on. At the end of this list, you should use one of
the few standard fonts that almost all platforms are known to support in some variation. You'll see
this technique at work in the next section.

DESIGN TIME

Graphical Text

The only guaranteed cure for font woes is graphical text. With graphical text, you don't
type your content in an HTML file. Instead, you perfect it in a drawing program, and
then save it as a picture. Finally, you display the picture of the text in your page using
the tag.

Graphical text is clearly unsuitable for large amounts of text. First of all, it bloats the size
of your Web page horribly. It's also much less flexible. For example, graphical text can't
adjust itself to fit the width of the browser window or take into account your visitors'
browser preference settings. There's also no way for a Web surfer to search through
your page hunting for specific words (or for a Web search engine to figure out what's on
your Web site).

However, graphical text is commonly used for menus, buttons, and headings, where
these issues aren't nearly as important. You'll find this technique used on countless Web
sites. For just one example, look at the children's site in this illustration. There's only a
little real text herethe distinctive navigation buttons and headings are all graphics.

Often, graphical text isn't as obvious. For example, you may have never noticed that the
section headings on your favorite online newspaper are actually images. To figure out if
a Web site is using graphical text or the real deal, try to select the text. If you can't, the
text is really a picture.

You'll learn how to use graphics (including graphical text) in Chapter 7.

decoration these aren't part of the font
(they're added in by the
browser).

overline line-through Netscape 4

text-
transform

Transforms text so that it's all
capitals or all lowercase.

none uppercase
lowercase

IE 4,
Netscape 4

Yes

There may be practical solutions to these problems, but unfortunately, browser companies and the
people who make Web standards have never agreed on any. As a result, any font settings you
specify are just recommendations. If a browser doesn't have the font you request, it reverts to the
standard font that the browser uses whenever it's on a site that doesn't have special font
instructions.

Given that caveat, you're probably wondering why you should bother to configure font choices at all.
Well, here's one bit of good news. Instead of requesting a font and blindly hoping that the browser
has it, you can create a list of font preferences. That way, the browser will try to match your first
choice and, if that fails, your second choice, and so on. At the end of this list, you should use one of
the few standard fonts that almost all platforms are known to support in some variation. You'll see
this technique at work in the next section.

DESIGN TIME

Graphical Text

The only guaranteed cure for font woes is graphical text. With graphical text, you don't
type your content in an HTML file. Instead, you perfect it in a drawing program, and
then save it as a picture. Finally, you display the picture of the text in your page using
the tag.

Graphical text is clearly unsuitable for large amounts of text. First of all, it bloats the size
of your Web page horribly. It's also much less flexible. For example, graphical text can't
adjust itself to fit the width of the browser window or take into account your visitors'
browser preference settings. There's also no way for a Web surfer to search through
your page hunting for specific words (or for a Web search engine to figure out what's on
your Web site).

However, graphical text is commonly used for menus, buttons, and headings, where
these issues aren't nearly as important. You'll find this technique used on countless Web
sites. For just one example, look at the children's site in this illustration. There's only a
little real text herethe distinctive navigation buttons and headings are all graphics.

Often, graphical text isn't as obvious. For example, you may have never noticed that the
section headings on your favorite online newspaper are actually images. To figure out if
a Web site is using graphical text or the real deal, try to select the text. If you can't, the
text is really a picture.

You'll learn how to use graphics (including graphical text) in Chapter 7.

6.3.1. Specifying a Font

To select a font, you use the font-family attribute. Here's an example that changes the font for an
entire page:

 body {
 font-family: Arial;
 }

Arial is a sans-serif font that's found on just about every modern computer, including those that run
the Windows, Mac, Unix, and Linux operating systems. (See Figure 6-6 for more about the difference
between serif and sans-serif.)

Figure 6-6.
Serif fonts use

adornments, or

serifs, that make

them easier to read

in print. This book is

written using a serif

font. If you look

closely at the letter

"S," you'll see tiny

curlicues in the top-

right and bottom-left

corners. On the

other hand, sans-

serif fonts have a

spare, streamlined

look. Depending on

the font, they can

seem less bookish,

less formal, more

modern, and colder.

To be safe, when you specify a font, you should always use a font list that ends with a generic font
family name. Every browser supports generic family names, which include serif, sans-serif, and
monospace.

Here's the modified rule:

 body {
 font-family: Arial, sans-serif;
 }

Tip: If your font has a space in the name, make sure you enclose the whole font name in quotations.

At this point, you might be tempted to get a little creative with this rule by adding support for a less
common sans-serif format. Here's an example:

 body {
 font-family: Eras, Arial, sans-serif;
 }

If Eras is relatively similar to Arial, this technique might not be a problem. But if it's significantly
different, this is a bad idea.

The first problem is that by using on a non-standard font, you're creating a Web page whose
appearance may vary dramatically depending on the fonts on the Web surfer's computer. Whenever
pages vary, it becomes more difficult to really tweak them to perfection, because you don't know
exactly how they'll be displayed. Different fonts take up different amounts of space, and if text grows
or shrinks, the layout of other elements (like pictures) changes, too. Besides, is it really that pleasant
to read KidzzFunScript or SnoopDawg font for long periods of time?

A more insidious problem occurs if another browser has a font with the same name that looks
completely different. Even worse, browsers may access an online database of fonts to try and find a
similar font that is installed on the Web surfer's computer. This approach can quickly get ugly. At
worst, either of these problems can lead to illegible text.

Note: Most HTML editors won't warn you when you apply a non-standard font. So be on your guard. If your font isn't one of a small set of

widely distributed Web fonts (more on which those are in a moment), you shouldn't try to use it.

6.3.2. Finding the Right Font

To make sure your Web page displays correctly, you should use a standard font that's widely
available. But just what are these standard fonts? Unfortunately, Web gurus don't completely agree.

But if you want to be really conservative, you won't go wrong with any of these fonts:

Times

Arial and Helvetica

Courier

Of course, all of these fonts are insanely boring. If you want to take on more risk, you can use one of
the following fonts, which are found on almost all Windows and Mac computers (but not necessarily
on other operating systems like Unix):

Verdana

Georgia

Tahoma

Comic Sans

Arial Black

Impact

To compare these different fonts, see Figure 6-7.

Verdana, Georgia, and Tahoma can all help give your Web pages a more modern look. However,
Verdana and Tahoma usually need to be ratcheted down one notch in size (a technique described in

the next section).

For good resources that discuss different fonts, what platforms reliably support them, and the pros
and cons of each font family (for example, some fonts look nice on screen but generate lousy
printouts) see http://web.mit.edu/jmorzins/www/fonts.html and
www.upsdell.com/BrowserNews/res_fontsamp.htm.

Figure
6-7.
Have you

spotted

these fonts

at large on

the Web?

6.3.3. Font Sizes

Once you've sorted out the thorny issue of choosing your font, you may also want to change the size.
It's important that you select a text size that's readable and looks good. Resist the urge to shrink or
enlarge text to suit your personal preferences. Instead, aim to match the standard text size that you
see on other popular Web sites.

Despite what you might expect, you don't have complete control over the font size in your Web
pages. Most Web surfers use browsers that let them scale font sizes up or down, either to fit more
text on screen or (more commonly) to make text easy to read on a high-resolution monitor. In
Internet Explorer and FireFox, you'll find these options in the View Text Size menu.

The browser's font size settings don't completely override the size you've set in your Web page.
Instead, they just tweak it up or down. For example, if you choose to use a large font size (which
corresponds to a setting of about 15 points in a word processor) and an Internet Explorer surfer

http://web.mit.edu/jmorzins/www/fonts.html

selects View Text Size Larger, the text size grows about 20 percent in size (to 18 points).

The fact that your visitors have this kind of control is another reason you shouldn't use particularly
small or large font sizes in your Web pages. When they're combined with the browser preferences, a
size that's a little on the large size could become gargantuan, and text that's slightly small could turn
unreadable. The best defense for these problems is to test out your Web page with different browsers
and different font size preferences.

As you'll discover in the following sections, you have three choices for setting font sizes.

Tip: Getting the right font size is trickier than you might think, because different browsers will interpret your font sizes differently. If you

want to explore Web typography in even more detail, check out the incredibly in-depth information that's available at

http://usabletype.com/css. It's somewhat technical, but remarkably thorough.

6.3.3.1. Absolute sizes (keywords and percentages)

The simplest approach for specifying the size of your text is to use one of the size values listed in
Table 6-3. For example, to create a really big heading and ridiculously small text, you could use these
two rules:

 body {
 font-size: xx-small;
 }
 h1 {
 font-size: xx-large;
 }

These size keywords are often called absolute sizes, because they apply an exact size. Exactly what
size, you ask? Well, that's where it gets a bit complicated. These details actually aren't set in
stonedifferent browsers are free to interpret them in different ways. The basic rule of thumb is that
the font size medium corresponds to the standard text size that the browser uses. Every time you go
up a size level, you add about 20 percent in size. (For math geeks, that means every time you go
down a size you lose about 17 percent.)

A typical standard font size for most computers is 12 points (although text at this size typically
appears smaller on Mac computers than on Windows computers). That means large text is
approximately 15 points, x-large text is 18 points, and xx-large text is 27 points.

Figure 6-8 shows the basic sizes you can choose from.

There's one serious drawback to using the size keywordsthey really aren't absolute. As described
above, when you set a font to medium you're supposed to get a browser's standard text size.
Unfortunately, that's not how Internet Explorer sees it. Instead, IE displays its standard text size
when it sees font that's set to small. That means if you want to get a little smaller (which is useful for
some large fonts, like Verdana), you actually need to choose x-small. Unfortunately, other, more
standards-aware browsers (like Firefox) don't have this idiosyncrasy. As a result, pages that look

http://usabletype.com/css

perfect on Internet Explorer are likely to look smaller on Firefox when you use size keywords.

The best solution to correct this problem is to use percentage sizes instead of size keywords. For
example, if you want to make sure text is normal size, use this rule:

 body {
 font-size: 100%;
 }

And if you want to make text smaller, use something like this:

 body {
 font-family: Verdana,Arial,sans-serif;
 font-size: 83%;
 }

This sets text to be 83 percent of the standard size. It doesn't matter whether the standard size is
considered small (Internet Explorer) or medium (most other browsers). This particular example
creates nicely readable text with the Verdana font.

It's just as easy to upsize text:

 h1 {
 font-size: 120%;
 }

Figure
6-8. There

are seven

standard

sizes, ranging

from xx-large

to xx-small.

You can also

pick your own

size by

specifying a

pixel

measurement.

But keep in mind that 100 percent always refers to the standard size of normal paragraph text (not
the standard size of the element you're styling). So if you create a heading with 120 percent sized
text, your heading is going to be only a little bigger than normal paragraph text, which is actually
quite a bit smaller than the normal size of an <h1> heading.

Using percentage sizes is the safest, most reliable way to size text. Not only does it provide
consistent results across all browsers, it also works in conjunction with the browser size preferences
described earlier.

Tip: When you use absolute sizes, you create flexible pages. If the visitor ratchets up the text size using his browser's preferences, all

your other fonts are resized proportionately.

6.3.3.2. Relative sizes

Another approach for setting fonts is to use one of two relative size valueslarger or smaller. This is a
bit confusing, because as you just learned in the last section, absolute sizes are already
relativethey're all based on the browser setting for standard text.

The difference is that relative sizes are influenced by the font of the element that contains them. The
easiest way to understand how this works is to consider the following style sheet, which has two
rules:

 body {
 font-size: xx-small;
 }
 b {
 font-size: larger;
 }

The first rule applies an absolute xx-small size to the whole page. The second rule (the relative one)
inherits the xx-small size (see Section 6.1.4.2 for a recap about inheritance). However, it then steps
the font size up one notch to x-small.

Now consider what happens if you edit the body style to use a larger font, like this:

 body {
 font-size: x-small;
 }

Now all bold text will be shown one level up from x-small, which is small.

The only limit of the two relative sizes is that they can step up or down only one level. You can get
around this limitation by using font numbers. For example, a size of +2 is a relative size that
increments a font two levels. Here's an example:

 body {
 font-size: x-small;
 }

 b {
 font-size: +2;
 }

Now the bold text is shown in medium text, because medium is two levels up from x-small.

Relative sizes are a little trickier to get used to than absolute sizes. You're most likely to use them if
you have a style sheet that has a lot of different sizes. For example, you might use a relative size for
bold text if you want to make sure bold text is always a little bit bigger than the text around it. If you
were to use an absolute size instead, the bold text would appear large in relation to a small-sized
paragraph, but it wouldn't stand out in a large-sized heading.

6.3.3.3. Exact sizes (pixels)

Most of the time, you should rely on absolute and relative sizing. However, if you really must have
more control, you can customize your font size precisely by specifying a pixel size. Pixel sizes can
range wildly, with 12px and 14px being about normal for body text. To specify a pixel size, use the
number immediately followed by the letters px, as shown here:

 body {
 font-size: 11px;
 }
 h1 {
 font-size: 24px;
 }

Tip: Don't put a space between the number and the letters px. If you do, your rule may work in Internet Explorer but thoroughly confuse

other browsers.

As always, you need to test, refine, and retest to get the right sizes. Some fonts look bigger than
others, and require smaller sizes. Other fonts work well at larger sizes, but become less legible as
you scale them down in size.

Web purists avoid using exact sizes because they are horribly inflexible on Internet Explorer. For
example, if a near-sighted surfer has upped the text size settings in Internet Explorer, it won't have
any effect on your page. (For some reason, other browsers don't suffer from this problemthey're able
to resize pages even if you use pixel sizes.) As a result, when you use pixel sizes you could
inadvertently lock out certain audiences or create pages that are difficult to read or navigate on
certain types of browsers. It just goes to show that in the Web world there's a price to be paid for
getting complete control over formatting.

6.4. Text Alignment and Spacing

CSS includes a great many properties for controlling how text appears on a Web page. If you've ever
wondered how to indent paragraphs, space out lines, or center a title, these are the tools you need.

Table 6-4 has the details on all your alignment options.

Table 6-4. Alignment and Spacing Properties

Property Description Common Values
Oldest

Supported
Browsers

Can Be
Inherited

text-align
Lines the text up on one or both
edges of the page.

left right center
justify

IE 4,
Netscape 4

Yes

text-
indent

Indents the first line of text
(typically in a paragraph).

A pixel value
(indicating the
amount to indent) or
percentage of the
width of the
containing tag.

IE 4,
Netscape 4

Yes

margin

Sets the spacing that's added
around the outside of a block
element (Section 5.2). You can also
use the similar properties margin-
bottom, margin-left, margin-right,
and margin-top to change the
margin on just one side.

A pixel value or
percentage indicating
the amount of space
to add around the
element.

IE 4,
Netscape 4

No

padding

Sets the spacing that's added
around the inside of a block
element. Has the same effect as
margin, unless you have an element
with a border or background color
(see Section 6.2.1 for more).

A pixel value or
percentage indicating
the amount of space
to add around the
element.

IE 4,
Netscape 4

No

word-
spacing

Sets the space between words.
A pixel value or
percentage.

IE 6,
Netscape 6

Yes

letter-
spacing

Sets the space between letters.
A pixel value or
percentage.

IE 6,
Netscape 6

Yes

Property Description Common Values
Oldest

Supported
Browsers

Can Be
Inherited

line-
height

Sets the space between lines.

A pixel value or
percentage. You can
also use a multiple
(i.e., use 2 for
double-spacing).

IE 4,
Netscape 4

Yes

For example, if you want to create a page that has indented paragraphs (like a novel or newspaper),
use this style sheet rule:

 p {
 text-indent: 20px
 }

In the following sections, you'll see examples that use the alignment and margin properties.

6.4.1. Alignment

Ordinarily, all text in a Web page is lined up on the left side of the browser window. Using the text-
align property, you can center text, line it up on the right edge, or justify it. Figure 6-9 shows your
options.

The most interesting choice is full justification, which tries to line text up so it lines up on both sides.
Full justification, which you get by using the justify setting, is common in print (including books like
this one). Originally, printers preferred full justification because it helps cram more words into each
page (thereby reducing the number of pages and the printing cost). These days, it's a way of life.
Many people feel text with full justification looks neater and cleaner than text with a ragged edge,
even though tests show plain, unjustified text is easier to read.

Justification doesn't work as well in the Web world as in print. A key problem is the lack of word-
splitting rules, which allow long words to be divided in a printed page. The method browsers use to
justify text is relatively simplistic. Essentially, the browser adds words one at a time to a line, until no
more words can fit, at which point spacing is added between the words to pad it to full length. By
comparison, the best page layout systems for print can analyze an entire paragraph as a whole, and
find the optimum justification strategy that best satisfies every line. In problematic cases, a skilled
typesetter may need to step in and adjust the line breaking manually. Compared to this approach,
Web browsers are irredeemably primitive, as you can see in Figure 6-10.

line-
height

Sets the space between lines.

A pixel value or
percentage. You can
also use a multiple
(i.e., use 2 for
double-spacing).

IE 4,
Netscape 4

Yes

For example, if you want to create a page that has indented paragraphs (like a novel or newspaper),
use this style sheet rule:

 p {
 text-indent: 20px
 }

In the following sections, you'll see examples that use the alignment and margin properties.

6.4.1. Alignment

Ordinarily, all text in a Web page is lined up on the left side of the browser window. Using the text-
align property, you can center text, line it up on the right edge, or justify it. Figure 6-9 shows your
options.

The most interesting choice is full justification, which tries to line text up so it lines up on both sides.
Full justification, which you get by using the justify setting, is common in print (including books like
this one). Originally, printers preferred full justification because it helps cram more words into each
page (thereby reducing the number of pages and the printing cost). These days, it's a way of life.
Many people feel text with full justification looks neater and cleaner than text with a ragged edge,
even though tests show plain, unjustified text is easier to read.

Justification doesn't work as well in the Web world as in print. A key problem is the lack of word-
splitting rules, which allow long words to be divided in a printed page. The method browsers use to
justify text is relatively simplistic. Essentially, the browser adds words one at a time to a line, until no
more words can fit, at which point spacing is added between the words to pad it to full length. By
comparison, the best page layout systems for print can analyze an entire paragraph as a whole, and
find the optimum justification strategy that best satisfies every line. In problematic cases, a skilled
typesetter may need to step in and adjust the line breaking manually. Compared to this approach,
Web browsers are irredeemably primitive, as you can see in Figure 6-10.

Figure
6-9.
This page

shows

common

types of

text

alignment.

Figure 6-10. If
you decide to use full

justification in a Web

page, make sure your text

lines are fairly long.

Otherwise, you'll quickly

wind up with gaps and

rivers of white space. Few

Web sites use

justification.

6.4.2. Spacing

To adjust the spacing around any element, you use the margin property. For example, here's a rule
that adds a fixed spacing of eight pixels to all sides of a paragraph:

 p {
 margin: 8px;
 }

Tip: You can supply margins as fixed pixel values (in which case you always get the exact same size) or as percentages (in which case

the margin is a percentage of the width or height of the current document window).

This particular rule doesn't have much effect, because eight pixels is the standard margin that Web
browsers apply around block elements (on all sides). The eight-pixel margin ensures a basic bit of
breathing space. However, if you're looking to create dense pages of information, this space
allowance can be a bit too generous. Therefore, many Web site developers look for ways to slim
down the margins a little bit.

One common trick is to close the gap between headings and the text that follows them. Here's an
example that puts this into action using inline styles:

 <h2 style="margin-bottom: 0px">This heading has no bottom margin</h2>
 <p style="margin-top: 0px">This paragraph has no top margin.</p>

You'll notice that this style rule uses the more targeted margin-top and margin-bottom properties to
home in on just one margin. You can also use margin-left and margin-right to set different margins
on all sides. Figure 6-11 compares some different margin choices.

Figure
6-11.
When you

want to

change the

spacing

between

page

elements

like headers

and

paragraphs,

you need to

consider

both the top

and bottom

tags. For

example, if

you stack

two

paragraphs

on top of

each other,

two factors

come into

playthe

bottom

margin of

the top

paragraph,

and the top

margin of

the bottom

paragraph.

The

browser

uses the

largest of

these two

values.

That means

there's no

point in

shrinking

the top

margin of

the bottom

tag unless

you also

shrink the

top margin

of the

bottom tag.

On the

other hand,

if you want

more

space, you

only need to

increase

the margin

of one of

the two

tags.

If you're daring, you can even use negative margins. Taken to its extreme, this can cause two tags
to overlap.

Note: Unlike most other CSS properties, margin settings are never inherited. That means if you change the margins of an element, other

elements inside that element aren't affected.

6.5. Borders

The last group of style sheet properties that you'll learn about in this chapter let you add borders to
your Web pages (Figure 6-12). Borders are a great way to separate pieces of content. The only thing
that's better than borders for organizing information are tables, which you'll learn about in Chapter 9 .

Figure
6-12.
Left: The

basic

border

styles look

a bit old-

fashioned

in today's

sleek Web.

Right:

Shrink

these

borders

down to

one or two

pixels, and

they blend

in much

better.

Table 6-5 lists the three key border properties.

Table 6-5. Border Properties

Property Description Common Values
Oldest

Supported
Browsers

Can Be
Inherited

border-
width

The border width sets the
thickness of the border line.
Usually, you'll want to pare
this down.

A pixel width.
IE 4, Netscape
4

No

Property Description Common Values
Oldest

Supported
Browsers

Can Be
Inherited

border-
style

Browsers have eight built-in
border styles. The border style
determines what the border
line looks like.

none dotted dashed solid
double groove ridge
inset outset

IE 4, Netscape
4

No

border-
color

The color of the border line.

A color name,
hexadecimal color code,
or RGB value (see
Section 6.2.1.1).

IE 4, Netscape
6

No

6.5.1. Basic Borders

The first choice you make when creating a border is the style. Depending on the style you pick, you
can add a dashed or dotted line, a groove or a ridge, or just a normal thin hairline (which often looks
best). Here's a rule that creates a dashed border:

 p {
 border-style: dashed;
 }

To make a border look respectable, you need to reduce the border width. The standard border width
is almost always too clunky. You should reduce it to one or two pixels (depending on the style):

 p {
 border-style: dashed;
 border-width: 2px;
 }

Tip: You can also use properties like border-top-style and border-left-width to set different styles, width, and colors for every side of your

element. Using many properties at once can occasionally create an unusual effect, but usually you don't need to get this detailed.

Instead, check out the border optimization tips in the next section.

6.5.2. Making Better Borders

In Figure 6-12 the actual borders look fine, but they are squashed too close to the text inside the
boxes formed by the borderlines, as well as by the edges of the page.

To make a border stand out, consider using the border property in conjunction with three other

border-
style

Browsers have eight built-in
border styles. The border style
determines what the border
line looks like.

none dotted dashed solid
double groove ridge
inset outset

IE 4, Netscape
4

No

border-
color

The color of the border line.

A color name,
hexadecimal color code,
or RGB value (see
Section 6.2.1.1).

IE 4, Netscape
6

No

6.5.1. Basic Borders

The first choice you make when creating a border is the style. Depending on the style you pick, you
can add a dashed or dotted line, a groove or a ridge, or just a normal thin hairline (which often looks
best). Here's a rule that creates a dashed border:

 p {
 border-style: dashed;
 }

To make a border look respectable, you need to reduce the border width. The standard border width
is almost always too clunky. You should reduce it to one or two pixels (depending on the style):

 p {
 border-style: dashed;
 border-width: 2px;
 }

Tip: You can also use properties like border-top-style and border-left-width to set different styles, width, and colors for every side of your

element. Using many properties at once can occasionally create an unusual effect, but usually you don't need to get this detailed.

Instead, check out the border optimization tips in the next section.

6.5.2. Making Better Borders

In Figure 6-12 the actual borders look fine, but they are squashed too close to the text inside the
boxes formed by the borderlines, as well as by the edges of the page.

To make a border stand out, consider using the border property in conjunction with three other

properties:

background- color (Section 6.2.1) applies a background color to your element. When used in
conjunction with a border, it makes your element look like a floating box.

margin (Section 6.3.3.3) lets you set the spacing between your border box and the rest of the
page. Increase the margin so that your boxes aren't crowded up against the rest of the content
in your page or the sides of the browser window.

padding works like the margin property, but it sets spacing inside your element, between the
invisible edges and the actual content. Increase the padding so that there's a good amount of
space between the border and your text. Figure 6-13 shows the difference between margin and
padding.

Figure
6-13.
Usually,

you can't

tell the

difference

between

margins

and

padding,

because

you can't

see the

edges of

the

element.

For

example, a

<p> tag

displays a

paragraph

in an

invisible

box, but

you won't

see its

sides.

When you

add a

border, this

changes.

Left: These

boxes have

some extra

margin, but

no more

padding.

Right: The

result is

much

better when

you

increase

both the

margin and

padding.

For added

effect,

throw in a

light

background

color (like

the solid

border box

shown

here).

Here's an example of a paragraph that looks like a shaded box:

 p {
 background-color: #FDF5E6;
 margin: 20px;
 padding: 20px;
 border-style: solid;
 border-width: 1px;
 }

Figure 6-13 shows how the margin, padding , and background-color properties change an ordinary
paragraph into a shaded box.

6.5.3. Using Borders to Separate Sections

In Chapter 5 (Section 5.2.4), you learned about the unremarkable <hr> tag, which gives you a quick
and easy way to separate one section of text from another with a horizontal line. With style sheets,
you get several more ways to create attractive separators.

The first line of attack is to style the <hr> tag itself. You can use the width property to shrink the
separator down. You supply length in terms of the percentage of a line's full length. For example,
here's a half-length line that's centered on the page:

 hr {
 width: 50%;
 }

You can also thicken the line by using the height property and supplying a thickness in pixels. Here's
a thick line:

 hr {
 height: 5px;
 }

For a variety of more interesting effects, you can bring borders into the mix. For example, here's a
rule that heightens the horizontal line, applies the double border style, and adopts a modern light
gray color:

 hr {
 height: 3px;
 border-top-width: 3px;
 border-top-style: double;
 border-top-color: #D8D8D8;
 }

This gives you a quick way to revitalize all your separators. However, if you aren't already using the
<hr> tag, you don't need to start now. Another option is to bind the horizontal line to another tag,
like a heading. For example, the following <h1> tag adds a grooved line at the top. The margin
property sets the space between the line and previous tag, while the padding sets the space between
the line and the heading text.

 h1 {
 margin-top: 30px;
 margin-bottom: 20px;
 padding-top: 10px;
 border-top-width: 2px;
 border-top-style: groove;
 }

Figure 6-14 shows both these examples.

Figure
6-14.
This

document

includes

(from top to

bottom), a

customized

<hr> line, a

normal

<hr>

separator,

and a <h1>

heading

with a top

border.

6.6. Class Selectors

So far, you've seen how to apply formatting rules on a tag-by-tag basis. These selectors are called
type selectors. They apply formatting by matching every occurrence of an HTML tag. The only
exception is inline styles (Section 6.1.2), which act only on the tag where they're placed.

Type selectors are powerful, but not that flexible. Sometimes you need a little more flexibility to
modify whole sections or small portions of an HTML document. Fortunately, style sheets have the
perfect solution with class selectors.

Class selectors are one of the most practical style sheet tricks around. They allow you to separate
your rules from your tags, and use them wherever you please. The basic idea is that you separate
your Web page content into conceptual groups, or classes. Once you've taken this step, you can
apply different formatting to each class. The trick is, you choose where you want to use each class in
your Web page. For example, you might have two identical <h1> headings, but give them separate
classes so the formatting is different for each heading.

For a more detailed example, consider the page shown in Figure 6-15. In the following sections, you'll
work with this example to apply class-based style rules.

6.6.1. Creating Class Rules

To use classes, begin by mentally dividing your page into different kinds of content. In this case, it
makes sense to create a specialized class for book reviews, and the author byline.

Figure
6-15.
In the

average

HTML

document,

you have a

sea of

similar

tagseven a

complex

page often

boils down

to just

headings

and

paragraph

tags. This

page has a

general

introduction

followed by

a series of

book

reviews.

The general

introduction,

the author

credits, and

the book

summaries

are all

marked up

with <p>

tags, but

they

shouldn't be

formatted in

the same

way,

because

they

represent

different

types of

content.

Instead, a

better

system

would be

one in

which each

different

type of

content

(title,

author, or

description)

gets

formatted in

a different

way.

To create a class-specific rule, you use a two part name, like this:

 p.review {
 …
 }

The first part of the name indicates the tag that the rule applies toin this case, the paragraph tag.
The second part (the part after the period) is the class name. You can choose whatever class name
you want, as long as you stick to letters, digits, and dashes, and make sure the first character is
always a letter.

The point of the class name is to provide a succinct description of the type of content you want to
format. In this example, the class name is review, because it's going to be applied to all the
paragraphs that contain the actual reviews.

So how does the browser know when to apply a rule that uses a class selector? It turns out that class
rules are never applied automatically. Instead, it's up to you to add the class name to the appropriate
tags using the class attribute in your HTML file. Here's an example that links a paragraph to the
review class:

 <p class="review">The actual review would go right here.</p>

As long as the class name in the tag matches the class name in the style sheet, the browser applies
the formatting.

Note: Class rules work in addition to any other rules. For example, if you create a rule for the <p> tag, that rule applies to all paragraphs,

including those that are part of a specialized class. However, if the class rule conflicts with any other rules, the class rule wins.

Here's the complete style sheet you might use to format the book review page:

 /* Set the font for the whole page. */
 body {
 font-family: Georgia,serif;
 }

 /* Set some standard margins for paragraphs. */
 p
 {
 margin-top: 2px;
 margin-bottom: 6px;
 }

 /* Format the heading with a background color. */
 h1 {
 background-color: #FDF5E6;

 padding: 20px;
 text-align: center;
 }

 /* Make the bylines small and italicized. */
 p.byline {
 font-size: 65%;
 font-style: italic;
 border-bottom-style: outset;
 border-bottom-width: 1px;
 margin-bottom: 5px;
 margin-top: 0px;
 }

 /* Make book reviews a little smaller, and justified. */
 p.review {
 font-size: 83%;
 text-align: justify;
 }

 /* Make the review headings blue. */
 h2.review {
 font-size: 100%;
 color: blue;
 margin-bottom: 0px;
 }

This style sheet includes three type selector rules. The first formats the <body> tag, thereby
applying the same font to the whole Web page. The second gives every <p> tag the same margins,
and the third changes the alignment and background color of <h1> headings. Next, two new
paragraph classes are definedone for the byline, and one for the review body. Lastly, a class is
created for the review headings.

This example also introduces another featureCSS comments. CSS comments don't look like HTML
comments. They always start with the characters /* and end with the characters */. Comments allow
you to document what each class represents. Without them, it's all too easy to forget what each style
rule does in a complicated style sheet.

And here's how the page applies the classes in the style sheet. (To save space, most of the text is left
out, but the essential structure is still here.)

 <html>

 <head>
 <link rel="stylesheet" href="PessimistReviews1.css"
 type="text/css" >
 <title>The Pessimist</title>
 </head>

 <body>

 <h1>The Pessimist's Review Site</h1>
 <p>…</p>
 <p>…</p>

 <h2 class="review">How To Lose Friends and Fail in Life</h2>
 <p class="byline">Chris Chu</p>
 <p class="review">…</p>
 <h2 class="review">Europe 2005: Great Places to Miss</h2>
 <p class="byline">Antonio Cervantes</p>
 <p class="review">…</p>

 </body>
 </html>

Figure 6-16 shows the result.

Figure
6-16.
Class rules

allow you to

format

different

parts of a

document

differently,

even if they

use the

same tag

(like the

ever-

common

<p> tag).

Tip: Creating style sheets is an art and takes a fair bit of practice. To make the best use of them, you need to become comfortable with

class rules. Not only do class rules give you complete flexibility, they also help you think in a more logical, structured way about your

Web site.

6.6.2. Saving Work with the <div> Tag

It can get tedious to apply the class attribute to every tag in your Web page. Fortunately, there's a
great shortcut, courtesy of the <div> tag.

You may remember the <div> tag from the last chapter (Section 5.2.7). It lets you group together
arbitrary sections of your Web page. You can put as many elements in the <div> tag as you want,
including headings, paragraphs, lists, and more.

Thanks to style sheet inheritance, if you apply a class name to the <div> tag, it's automatically
applied to all the nested elements. That means you can change this:

 <p class="review">…</p>
 <p class="review">…</p>
 <p class="review">…</p>

into this:

 <div class="review">
 <p>…</p>
 <p>…</p>
 <p>…</p>
 </div>

This works because of style sheet inheritance (Section 6.1.6). Essentially, when you format the
<div> tag, all the <p> tags inside of it inherit the settings. And although there are some settings
that can't be inherited in this way (like margin and padding), most can. Figure 6-17 shows this
example.

The <div> tag is a great way to save loads of time. Web gurus use it all the time.

6.6.3. More Generic Class Rules

You can also create a rule that has a class name but doesn't specify a tag name. All you need to do is
leave the first part of the selector (the portion before the period) blank. Here's an example:

 .emphasize {
 color: red;
 font-weight: bolder;
 }

The great thing about a rule like this is that you can use it with any tag, as long as you use the right
class name. In other words, you can use it to format paragraphs, headings, lists, and more with bold,
red lettering. The class name reflects this more general-purpose use. Instead of indicating the type of
content, it indicates the type of formatting.

Figure
6-17.
In this

example,

each

review is

wrapped in

a <div> tag.

The <div>

tag applies

a

background

color and

some

borders,

separating

the reviews

from the

rest of the

page.

Techniques

like these

can help

organize

dense

pages with

lots of

information.

Most Web designers use both tag-specific class rules, and more generic class rules. Although you
could stick exclusively with generic rules, if you know that a certain set of formatting options will only
be used with a specific tag, it's good to clearly indicate this fact with a tag-specific rule. That way,
you won't forget the purpose of your rule when you edit your Web site later on.

6.6.4. Creating a Style Sheet for Your Entire Web Site

Class rules aren't just useful for separating different types of content. They also come in handy if you
want to define the rules for your entire Web site in a single style sheet.

In a typical Web site, you'll have pages or groups of pages that need to be formatted differently. For

example, you might have several pages that make up an online photo gallery, another group of
pages chronicling your trip to Guadeloupe, and a separate page with your résumé. Rather than create
three style sheets, you can create a single style sheet that handles everything. The trick is to use
different class names for each section. In other words, you'll create a résumé class, a trip diary class,
and a photo gallery class. Here's a basic outline of this approach:

 /* Used for the resume pages. */
 p.resume { …}
 h1.resume { … }
 h2.resume { … }
 …
 /* Used for the trip diary pages. */
 p.trip { … }
 h1.trip { … }
 h2.trip { … }
 …
 /* Used for the online photo gallery. */
 p.gallery { … }
 h1.gallery { … }
 h2.gallery { … }
 …

Obviously, each page will use only a few of these rules. However, it's often easier to maintain your
site when you keep your styles together in one place.

Chapter 7. Adding Graphics
It's safe to say that the creators of the Internet never imagined the way it looks todaythick with
pictures, ads, and animated graphics. They expected a meeting place for leading academic minds; we
ended up with something closer to a Sri Lankan bazaar. No one's complaining, but the Web would be
an awfully drab place without its graphics.

In this chapter, you'll learn to master the art of images. You'll learn how to add images to ordinary
Web pages and position them perfectly. You'll also consider what it takes to prepare a picture for the
Webor just find a good candidate online.

7.1. Understanding Images

In order to understand how images work on the Web, you need to know two things:

Images aren't stored in your HTML files. Instead, you store each image in a separate file.

In order to show a picture in your page, you use the tag in your HTML file.

You'll use images throughout your site, even in spots where you might think ordinary text would work
just fine (see Figure 7-1).

Tip: If you just can't tell if a piece of content on a page is a graphic or not, try right-clicking it. If it is, browsers like Internet Explorer and

Firefox will give you a Save Picture option in a drop-down menu.

Figure
7-1. It's
easy to

underestimate

how many

graphics sit

on an

average

page.

Besides just

ordinary

pictures,

bullets, logos,

text headings,

colorful

borders, and

other

adornments

are likely to all

made out of

graphics.

7.1.1. The Tag

Pictures appear on your page courtesy of the tag, which points to the picture you want to
show. For example, here's an tag that shows the file named photo01.jpg :

Note: XHTML fans (see Section 2.4) add a slash character before the closing angle bracket, which indicates that is a standalone

tag:

Pictures are inline elements (Section 5.2), which means you put them inside other block elements
like paragraphs:

 <p></p>

When the browser reads this tag, it sends out a new request for the photo01.jpg file. Once
the browser retrieves the file, it inserts it into the Web page wherever the tag is located. If
the image file is large or the Internet connection is slow, you might notice this two-stage process,
because the rest of the Web page (for example, the text) may appear before the image.

Note: Often, you'll want to organize your site's many files by placing your images in a separate subfolder inside the main folder that holds

your Web pages. You'll learn how to do this in Chapter 8 (Section 8.1.2).

Although it may seem surprising, the tag is the only piece of HTML you need to show pictures.
However, in order to get the result you want, you'll need to understand a few more issues, such as
how to modify the size of your images, the many graphical file formats out there in Web-land, and
how to align your images.

7.1.2. The alt Attribute

Technically, all tags should have two attributes. You've already seen the src attribute (for
source), which points to the image file. The other attribute is alt , which represents alternate text that
should be displayed if the image can't be displayed. Here's an example:

 <img src="photo01.jpg"
 alt="There's no picture, so all you get is this alternate text.">

The alternate text provides a short bit of text that's used instead of the graphic, when necessary.
Here are some scenarios when the alt is used:

The Web browser that requests the page doesn't support images. (This is understandably rare

these days.)

The Web surfer has switched off pictures to save time. (This isn't terribly common today,
either.)

The Web browser tries to request the picture, but can't find it. (Perhaps you forgot to copy it to
the Web server?)

The Web surfer is viewing-impaired and is using a screen-reading program (a program that
"speaks" text on a Web page).

A search engine (like Google) is analyzing your Web page, and is trying to determine the
content of a picture so it can index it in a search catalog.

The last two reasons are the most important. Web gurus always use the alt attribute to help ensure
their Web pages are accessible to screen readers and search engines. In XHTML, the alt attribute is a
requirement.

These days, many Web browsers have resorted to using the alternate text for a completely different
purposeas a pop-up message that appears when you move the mouse over the picture (see Figure
7-2). This behavior is a little controversial, because it makes it difficult to use the alternate text the
way it was designed (as replacement text for missing graphics).

If you want a bit of pop-up text like the one shown in Figure 7-2 , there's a better solution. You should
use the title attribute, which is designed exclusively for this purpose. Here's an example:

 <img src="bullhero.jpg" alt="A flying bull-headed superhero."
 title="I'm scarier than I look." >

If you specify the title attribute, it's always used for pop-up text. However, browsers differ in their
behavior if you don't specify the title attribute. Internet Explorer uses the alt text instead. Firefox
uses the correct approach, and doesn't show any pop-up text at all.

Figure
7-2.
Left: In

order for

this

tag to work,

the file it

points to

must be

placed in

the same

folder as

the Web

page.

Otherwise,

you'll see

the

dreaded

broken

image link

icon.

Middle: The

alternate

text helps a

bituse it to

explain

what the

Web surfer

should've

seen.

Right: In

many

browsers,

the

alternate

text

becomes

pop-up text

if the

picture

appears,

which can

be

confusing.

7.1.3. Picture Size

When you start thinking about the size of your images, it's important to remember that the word size
has two possible meanings: the dimensions of the picture (how big it appears in the browser, or the

picture dimensions), and the actual size of the file (the number of bytes it takes to store it, or the
file size). To Web page creators, both of these factors are very important.

The file size is important because it determines how long it takes to send the picture over the
Internet to the browser. Large pictures can slow down a Web site significantly, especially if you're
using multiple pictures in a page and the Web surfer is struggling with a slow Internet connection. If
you're not careful, impatient surfers might just give up and surf somewhere else if the page is taking
too long to appear. To understand file size and how you can control it, you need to understand the
different file formats Web browsers use, a topic discussed in the next section.

The picture dimensions are important because they determine how much screen real estate an image
occupies. The dimensions of Web graphics are always measured in pixels. Each pixel is one tiny dot
on a screen (see the discussion on Section 5.1.1). Fixed units like inches and centimeters aren't
useful in the Web world, because you never know how large a monitor your visitor's using, and how
many pixels it can cram in. Section 5.1.2 has a detailed discussion about screen size and how to
design your pages to satisfy the largest number of potential viewers.

Interestingly, the tag gives you the ability to resize a picture with its optional height and
width attributes. For example, consider this tag:

In this line of code, the picture is given a width of 100 pixels and a height of 150 pixels. If this doesn't
match the real dimensions of the source picture, the picture is stretched and otherwise mangled to fit
(see Figure 7-3).

Figure
7-3. You

should

never use

the height

and width

attributes to

resize a

picture,

because the

results are

almost

always

unsatisfying.

Enlarged

pictures are

jagged,

shrunken

pictures are

blurry, and if

you change

the ratio of

height to

width (as

with the top-

right and

bottom

images

shown

here), the

picture can

get

squashed

out of its

normal

proportions.

Note: Approach the height and width attributes with extreme caution. Sometimes, novice Web authors use them to make thumbnails ,

which are small versions of large pictures. The problem is that if you use the height and width attributes to scale down a large picture,

the browser still needs to download the original file, which is still just as big, byte-wise. On the other hand, if you create your thumbnails

in a graphics program like Photoshop Elements, you can save them with smaller file sizes, ensuring that your pages download much

speedier.

Many Web page designers leave out the height and width attributes when they're adding images.
However, experienced Web mavens sometimes add height and width attributes using the same
dimensions as the actual picture. As odd as this sounds, there are a couple of reasons to use this
technique.

First, when you include these sizing attributes, the browser can quickly tell how large the picture is
and it can start laying out the page. On the other hand, if you don't include the height and width
attributes, the browser won't know the dimensions of the picture until it's fully downloaded, at which

point it will rearrange the page. This rearrangement is potentially distracting if your Web visitor has a
slow connection, and has already started reading the page.

The second reason is because these attributes control how big the picture box is if the image can't be
downloaded. (See for instance Figure 7-2 .) If you don't use these attributes, the picture box is
reduced until it's just big enough to show the error icon and any alternate text. In a complex Web
page, this might mess up the alignment of other parts of your page.

So should you use the height and width attributes? It's up to you, but they're probably more trouble
than they're worth for the average Web site. If you use them, you'll need to make sure you update
them if you change the size of your picture, which quickly gets tedious.

Note: Many HTML editors, like FrontPage, automatically add the height and width attributes when you insert a picture.

7.1.4. File Formats for Graphics

Browsers can't display every type of image. In fact, browsers are limited to a relatively few image
formats, including:

GIF (pronounced "jif") format is suitable for graphics with a very small number of colors (like
simple logos or clip art). It gives terrible results when used to display photos.

JPEG (pronounced "jay-peg") format is suitable for photos that can tolerate some loss of
quality. (As you'll learn more about in a moment, JPEG format shrinks down, or compresses, an
image's file size so that it will download more quickly.) JPEG doesn't work well if your picture
contains text or line art.

PNG (pronounced "ping") format is suitable for all kinds of images, but it isn't supported on old
browsers, and doesn't always compress as well as JPEG.

All of these formats are known as bitmap or raster graphics, because they represent pictures as a
grid of dots. Vector graphics, which represent pictures with mathematically outlined shapes, aren't
supported in Web pages.

Raster graphics generally have much larger file sizes than vector graphics. For that reason, Web
designers spend a lot of their time worrying about compression or how they can take a picture and
reduce the amount of disk space it needs. Web page graphics use two types of compression: lossy ,
which compresses the most effectively but reduces image quality; and lossless , which preserves the
same image quality but doesn't compress as much. For the full details, see the sidebar "How
Compression Works in JPEG, GIF, and PNG files." Table 7-1 gives you a quick overview of the
different image formats.

Table 7-1. Image File Formats for the Web

Format
Type of

Compression
Color Support Best Suited For:

GIF Lossless
8-bit color (256
colors)

Logos and graphical text

JPEG Lossy
24-bit (16.7 million
colors)

Photos

PNG-8 Lossless
8-bit color (256
colors)

Rarely used, since it's similar to GIF but with
less browser support

PNG-24 Lossless
24-bit (16.7 million
colors)

Images that would normally be GIF files, but
need more colors

Note: Some browsers give you a few more options, but you're better off steering away from them so that you can ensure a wide range of

browsers can display your pages. For example, Internet Explorer supports bitmaps (image files that end with the .bmp file name

extension). Don't ever use themnot only will they confuse other browsers, they're also ridiculously large because they don't support

compression.

You'll probably end up using different file formats throughout your site, depending on what kind of
pictures you're using; each format has its own niche (see Figure 7-4).

In the following sections, you'll get some guidance that will help you decide when to use each format.

7.1.4.1. Compression

In Web graphics, space is a key concern. You may have tons of storage space on your Web server,
but larger files take more time to send across the Internet, which means more frustrating, toe-
tapping seconds for your Web surfers until your page appears. To make a graphics-heavy Web site
run smoothlyand these days, what Web site doesn't have lots of graphics?you need to make sure you
pare down the size of your pictures.

Of course it's not quite that simple. JPEG gives the best compression, but it has to throw out some
detail in the process (see the box "How Compression Works in JPEG, GIF, and PNG files"). As you
compress a JPEG image, you introduce various problems, which are known as compression artifacts .
The most common compression artifacts you'll notice are blocky regions, halos around edges, and a
general blurriness. Some pictures are more prone to showing these flaws than others. (It depends,
for example, on the amount of detail.)

Tip: Most graphics programs let you choose how much you compress a picture, and many even let you preview the result before you

save anything.

Figure
7-4. JPEGs

and GIFs are

the two most

commonly used

image file

formats. You'll

notice that GIFs

produce clearer

text, while

JPEGs do a

much better job

of handling

continuous

bands of color.

GIFs simulate

extra colors

through

dithering, a

process that

mixes different

colored dots to

simulate a solid

color. The

results are

unmistakably

unprofessional.

(You may not

be able to see

the reduced text

quality in this

black-and-white

screen capture,

but if you take a

look at the

downloadable

samples for this

chapter, you'll

see the

difference up

close.)

Figure 7-5 shows the effect of different compression settings on a small section of a picture of a
church.

7.1.4.2. Choosing the right image format

It's important to learn which format to use for a given task. To help you decide, walk through the
following series of questions.

Is your picture a hefty photo or does it contain fine gradations of color?

YES : JPEG is the best choice for cutting large, finely detailed pictures down to size. Depending
on the graphics program you use, you may be able to choose how much compression you want
to apply.

Does your picture have sharp edges, text, or does it contain clip art images? Does it use 256 colors
or less?

YES : GIF is your manit compresses pictures without creating blurred edges around text and
shapes (the way JPEG files often do). However, keep a watch on your file size, because GIF
can't compress quite as well as JPEG.

Does your picture have sharp edges and need more than 256 colors?

YES : PNG is the best answer here. It supports full color, gives you lossless compression, and
you don't lose any detail. However, there are two caveats. PNG isn't supported on very old
browsers.

Figure
7-5.
Compression

can workup

to a point. In

this example,

cutting the

quality factor

from 100

percent to 75

percent

shaves the

file size of the

picture to

one-third

without

compromising

the

appearance.

Reducing the

quality further

doesn't save

much more

disk space,

and

introduces a

raft of

compression

artifacts. Note

that the file

sizes listed

are for the

whole picture,

which is

much bigger

than the small

portion shown

here.

Also, keep an eye on the file sizeeven though PNG offers very good compression, not all
graphics programs take advantage of it, in which case your PNG files won't be as small they
should be. If PNG doesn't work for you (either because you need to support old browsers or
you can't find a graphics program that uses it and makes small enough files), you can try JPEG.
However, keep in mind that JPEG can easily introduce too much blurriness. You can also try
GIF, but look out for mangled colors as a result of ugly dithering (Figure 7-4).

Does your picture include a transparent area?

YES : Use GIF. Although PNG supports transparency (and even goes further, with support for
partially transparent areas), support for this feature is sketchy in many browsers. But think
twice before you use transparencythe next section explains the problems you'll face.

7.1.5. Putting Pictures on Colored Backgrounds

Image files are always stored as rectangles. This is a problem, because not all pictures are

rectangular. For example, a smiley face, of course, is a circular shape. If you create a graphic with a
smiley face, the image file contains the smiley face surrounded by a white rectangle.

UP TO SPEED

Graphics Programs

It's up to you to choose the format you use when you save your image files. In most
good graphics programs (such as Macromedia Fireworks and Adobe Photoshop) you
save your documents in a specialized file format that lets you perform advanced editing
procedures. (In Photoshop, for example, this is the .psd format.) When you're ready to
put your picture into a Web page, you then need to save a copy of the file in a different
format that's specially designed for the Web, like JPEG or GIF. Usually, you can call up
this feature by choosing File Save As from the program's menu (although
sometimes it's File Export or File Save For Web).

As a general rule of thumb, you always need at least two versions of every picture you
createa copy in the original format used by your graphics program, and a copy in the
GIF, JPEG, or PNG format for your Web site. You need to keep the original file so that
you can make changes more easily, and make sure the image quality for future versions
of the picture are as high as possible.

Once you choose your Web format, your graphics program gives you a number of other
options that let you customize details like the compression level. At higher compression
levels, your image file is smaller but of lower quality. Some really simple image editors
(such as the Paint program that ships with Windows) don't let you tweak these settings,
so you're stuck with whatever (usually unsatisfactory) settings are built into the
program.

Graphics programs usually come in two basic flavorsimage editors that let you apply
funky effects to graphics and retouch pictures, and drawing programs that let you create
your own illustrations by assembling shapes and text. Adobe Photoshop (and its lower-
priced, less powerful sibling, Photoshop Elements), Corel Photo-Paint, and Corel Paint
Shop Pro are well-known image editors. Adobe Illustrator, CorelDRAW, and Macromedia
Freehand are popular drawing programs. Which type of tool you use depends on what
you're trying to do. If you're splicing pictures of the office party to cut out an
embarrassing moment, an image editor makes sense. If you're creating a logo for your
newly launched cookie company, you need an illustration program.

If you don't have the luxury of getting a professional graphics program, you can surf to
the shareware sites discussed in Chapter 4 (Section 4.1.1). You can also check out
http://graphicssoft.about.com/od/pixelbased/a/bybphotoeditor.htm , which provides a
good overview of different photo editors for different tasks (and in different price
ranges).

On a white background, this doesn't pose a problem. That's because the box that surrounds your
smiley face blends in with the rest of the page. But if you've given your page a different background
color using the background-color style property (Section 6.2.1), you'll run into the graphical
clunkiness shown in Figure 7-6 .

Web designers came up with two solutions to this problem. One nifty idea was to use transparency, a

http://graphicssoft.about.com/od/pixelbased/a/bybphotoeditor.htm

feature supported by GIF graphics (and by PNG graphics, although not all browsers support it). The
basic idea is that your graphic contains transparent pixels pixels that don't have any color at all.
When the browser comes across these, it doesn't paint anything. Instead, it lets the background of
the page show through. To use transparency, you define a transparent color using your graphics
program.

Although transparency seems like a handy way to make sure your image always has the correct
background color, in practice, transparent regions rarely look good. The problem that you'll usually
see is a jagged edge where the colored pixels of your picture end and the Web page background
begins (see Figure 7-7).

Figure
7-6.
Left: With a

non-white

background,

the white

box around

your picture

is glaringly

obvious.

Right: But

when you

place the

picture on a

page with a

white

background,

the smiley

face blends

right in.

Figure 7-7.
The picture at the

bottom of this page

uses transparency,

but the resulta

jagged edge around

the smiley faceis

less than stellar. To

take away this

edge, graphics

programs use a

sophisticated

technique called

anti-aliasing, which

blends the picture

color with the

background color.

Web browsers can't

perform this feat, so

the edges they

make aren't nearly

as smooth.

The best solution is to use the correct background color when you create your Web graphic. In other
words, when you're drawing your smiley graphic, give it the same background color as your Web
page. Your graphics program can then perform the anti-aliasing to make the edges look nice. When
you put the image on the page it will blend right in.

The only limitation with this approach is the lack of flexibility. If you change your Web page, you need
to edit all your graphics. Sadly, this is the price of creating polished Web graphics.

UP TO SPEED

How Compression Works in JPEG, GIF, and PNG files

All three of the common Web image formats use compression to shrink down picture
information. However, the type of compression you get with each format differs
significantly.

The GIF and PNG formats support lossless compression , which means you don't lose
any information from your picture. Instead, the compression system saves your file in
such a way that the receiving browser can perform a few tricks to reconstruct the file's
original data. Lossless compression uses a variety of techniques to perform its space-
shrinking magicfor example, it might find a repeating pattern in the file, and replace
each occurrence of it with a short abbreviation.

The JPEG format uses lossy compression , which means that some information about
your picture gets discarded, or lost . As a result, your picture's quality diminishes, and
there's no way to get it back to its original tip-top shape. However, the JPEG format is
crafty, and it tries to trick the eye by discarding information that doesn't harm the
picture that much. For example, it might convert slightly different colors to the same

color, or replace fine details with smoothed-out blobs, because the human eye isn't that
sensitive to small changes in color and shape. Usually, the overall result is a picture that
looks softer and (depending how much compression you use) more blurry. On the other
hand, the size-shrinking results that you get with lossy compression are more dramatic
than those offered by lossless compression, because lossy compression can shrink files
much more dramatically.

7.2. Images and Styles

The tag supports a few optional attributes that you can use to control alignment and borders.
But in the modern world, these attributes are considered obsolete, and you won't use them in this
book. Instead, you'll learn the best way to position imageswith style sheets.

The following sections show all your image-alignment options, and help you practice some of the
style sheet smarts you picked up last chapter.

7.2.1. Inline Images in Text

If you don't take any extra steps, every image you insert with an tag is placed right into the
flow of HTML text. The bottom edge is lined up with the baseline of the text that surrounds it (see
Figure 7-8).

You can change the vertical alignment of text using the vertical-align property. Specify a value of top,
middle, or bottom, depending on whether you want to line the picture up with the top, middle, or
bottom of the line of text.

Here's an example with an inline style that uses the vertical-align property to line the picture up with
the top of the line of text.

This technique is worthwhile if you're trying to line up a very small picture (like a fancy bullet).
However, it doesn't work very well with large images. That's because no matter which vertical-align
option you choose, only one line of text of text can appear alongside the picture (as you can see in
Figure 7-8). If you want to create floating pictures with wrapped text, read on (Section 7.2.3).

Figure
7-8.
Usually, you

don't want a

picture

inside an

ordinary line

of text

(unless it's

a very small

emoticon,

like the kind

of symbols

used in

instant

message

programs).

You can

use

paragraphs,

line breaks,

or tables to

do a better

job of

separating

images

from your

text.

7.2.2. Borders

In Section 6.5 in Chapter 6 , you considered the style properties that let you add and modify borders
around text boxes. It should come as no surprise that you can use these borders just as easily
around images.

For example, here's a style that applies a thin, grooved border to all sides of an image:

 img.GrooveBorder {
 border-style: groove;
 border-width: 3px;
 }

As with all style sheet rules, you need to place the rule in an internal style sheet in the current Web
page or in an external style sheet that your page uses (see p. 138 for a discussion of the difference).

Notice that this style is given a class name (groove). That's because it shouldn't be automatically

applied to every picture. Instead, you want to choose when to apply it by using the class attribute:

Figure 7-9 shows the basic border styles. Remember, you can change the thickness of any border to
get a very different look.

Figure
7-9. This

example

shows

several

inline

images in a

row,

separated

from one

another with

a single

space. Each

image in this

example is

the same,

but sports a

different

border. The

browser fits

all the

pictures it

can on the

same line,

but when it

reaches the

right edge of

the browser

window, it

wraps to the

next line. (If

you resize

the window,

you'll see

the

arrangement

of pictures

change.)

7.2.3. Wrapping Text Around an Image

Using inline images is the simplest way to arrange pictures. When you use inline images, the pictures
and the text are usually in separate parts of your Web page. You use paragraphs (<p>), line breaks
(
), horizontal rules (<hr>), and other divisions to separate your images from your text. For
example, you might decide to put a picture in between two paragraphs, like this:

 <p>This paragraph is before the picture.</p>
 <p></p>
 <p>This paragraph is after the picture.</p>

Inline images are locked into place. They never move anywhere you don't expect.

However, sometimes you want a different effect. Instead of separating images and text, you want to
put them alongside each other. For example, maybe you want your text to wrap around one side of a
picture.

Images that have text wrapped on one side or the other are called floating images, because they
float next to an expanse of text (see Figure 7-10). You can create a floating image using a CSS
property named float . The value can be either left or right, which lines the image up on either the
left or the right edge of the text.

 img.FloatLeft {
 float: left;
 }

FREQUENTLY ASKED QUESTION

Typical File Sizes for Images

How much disk space does a typical picture occupy ?

There's no single answer to this question, because it depends on several factors,
including the dimensions of the picture, the file format you use, the amount of
compression you apply, and how well the picture responds to compression techniques.
However, here are a few basic examples that you can keep in mind.

The file size of a typical Web site logo is vanishingly small. Amazon's small logo (about
150 x 50 pixels) has a file size of a paltry 2 kilobytes (KB), which is less than most Web
pages. Google's signature logo banner clocks in nearly as tiny, at 10 KB. Both are GIF
files (Section 7.1.4).

A picture can take up much more disk space. A small news picture in an article on the
New York Times Web site rarely uses more than 20 KB. A typical eBayer includes a
picture of her product that's 30 to 150 KB. At this size, the picture usually takes up a
large portion of your browser window. However, that's nothing compared to the size the

picture would need if you weren't using compression. For example, a 1-megapixel
camera can take a raw, uncompressed picture of about 3,000 KB. In a Web page, you
might compress this to 300 KB or less by using a JPEG file format with a lower quality
level (see Section 7.1.5).

Of course, the important number is how long it takes a Web visitor to download a Web
page that has a picture. Obviously, this depends on the speed of their Internet
connectiona broadband connection won't blink while grabbing a huge graphic, while a
surfer on a relatively slow 56 K dialup modem can only get about 5 KB each second,
meaning it takes about 20 seconds to see all of a 100 KB eBay picture. In Internet time,
20 seconds is a lifetime.

The best advice for keeping your pictures small is to crop them to the right dimensions,
use the right image format, and try lowering the quality level of JPEGs to get better
compression.

Notice that this image uses a class name. You probably don't want every image in your entire Web
page to become a floating image, so it's always a good idea to use a class name. Here's an
that uses this class, followed by some text:

 <p>

 If you place a floating image at the beginning of a paragraph,
 it floats in the top-left corner, with the text wrapped along
 the right edge.
 </p>

At the same time that you use the float attribute, it makes sense to adjust the margin settings to put
a little breathing room between your image and the rest of the text:

 img.FloatLeft {
 float: left;

 margin: 10px;
 }

Figure 7-10 shows several floating images.

Figure 7-10. Remember, all

image file are really rectangles that include

the surrounding white space (see Figure 7-

6). As a result, the following text is

wrapped around the borders of this invisible

square.

Tip: To get floating text to work the way you want, always put the tag just before the text that should wrap around the image.

Wrapping text can get a little tricky, because the results you get depend on the width of the browser
window. A wide browser might fit the text in just a couple of lines, allowing the rest of the page to
bump up next to your floating graphic, which isn't what you want (see Figure 7-11). To prevent this
sort of problem, you can use tables (discussed in Chapter 9), or you can manually stop wrapping at
any point using the clear property in a line break (
) tag:

 <br style="clear: both;">

Place this line at the end of the wrapped paragraph, like so:

 <p>

 Here is a paragraph with a floating image.
 <br style="clear: both;">
 </p>
 <p>

 This should be a separate paragraph with another
 floating picture.
 </p>

The
 tag ensures that the next paragraph starts after any floating pictures (see Figure 7-11).

Figure
7-11.
Left:

Without the

clear

property,

you're in

danger of

having your

floating

images run

into each

other if the

browser

window is

wider than

you expect.

Right: The

clear

property

lets you

turn off

wrapping at

a specific

point in

your

document.

However,

you'll still

end up with

some extra

empty

space.

Based on these examples, you might think that the float property sends a picture to the left or right
side of the page. But this isn't exactly what happens. Remember, in CSS each HTML tag on the page
is treated as a container. When you create a floating image, the image actually goes to the left or
right side of the containing element. In the previous examples, this means the image goes to the left
or right of the paragraph, because the paragraph is the containing tag.

In this example, the paragraph takes the full width of the page. However, this isn't always the case.
If you use style rules to put the paragraph into a padded note box, you'll get a completely different
effect.

To try this out, you need to wrap the image and the paragraph in a <div> tag, like this:

 <div class="Box">
 <p>

 But Wait! A tip box can interrupt the discussion

 to let you know just how good mixed veggies can taste.
 Of course, this tip box is really just an ordinary paragraph with
 the right border and margin style properties.
 </p>
 </div>

You can then apply a fancy border to the <div> tag through a style rule:

 div.Box {
 margin-top: 20px;
 margin-bottom: 10px;
 margin-left: 70px;
 margin-right: 70px;
 padding: 5px;
 border-style: dotted;
 border-width: 2px
 }

Figure 7-12 shows the result.

Figure
7-12.
With a

crafty use

of styles,

you can lay

out your

pictures

with the

same

flexibility

you get

when using

styles to

manipulate

text.

7.2.4. Adding Captions

Another nice touch is to give your pictures a caption above or below the image. You can easily do this
with inline images (just put a line of text immediately above or after the picture, separated by a line
break). However, it's not so easy when you have a floating image. In this case, you need to have
your image and the caption text both float in the same way.

As it happens, the solution is quite easy. You simply need to take the FloatLeft style rule shown earlier
(Section 7.2.3), and change the name from img.FloatLeft to .FloatLeft, so that it can be used with
any tag:

 .FloatLeft {
 float: left;
 margin: 10px;
 }

Next, you need to wrap the tag and your text into a tag. You can then make the

entire tag float, by using the FloatLeft style rule:

 <i>The bark of a plane tree</i>

Figure 7-13 shows the result.

Note: The reason you use a in this example instead of a <div> is because you can place a inside other block elements,

like paragraphs. The <div> element is designed to be placed on the outside (so it contains other block elements). In other words, by

using a tag, you can easily put your picture inside another paragraph.

7.2.5. Background Images

CSS makes it possible to set a background image that sits underneath the rest of the page content.
This technique can be a little distracting, and so it's fallen out of favor with Web gurus in recent
years. However, it's still worth considering if you want to add a really dramatic touch, and it's
particularly handy for creating a "themed" Web site. For example, if you're creating a literary Web
site, you could use a light parchment paper background. A Buffy fan site might put a darker cemetery
image to good use.

Tip: Background images can make your Web site seem tacky. Be wary of using them for a résumé page or a professional business site.

On the other hand, if you want to go a little kitschy, have fun!

Background images are almost always tiled , which means a smaller picture is copied over and over
again to fill the browser window (see Figure 7-14). There's no way you could use a single image to fill
the browser window, because you have no way to know how wide and tall to make the picture. Even
if you did, the picture you'd need to create would be ridiculously large, and downloading it would take
an impractically long amount of time.

Figure 7-13. You can

use styles to create a caption

for a floating picture.

Figure
7-14.
Left: A

small tile

graphic

with a

stony

pattern.

Right:

Using style

sheets, you

can tile this

graphic

over the

whole

page. In a

good tiled

image, the

edges will

blend to

create the

illusion of a

seamless

larger

picture.

To take an image and use it to create a tiled background, you use the background-image style
property. Your first step is to apply this style property to the <body> element, so that the whole
page is affected. Next, you need to provide the file name of the image using the form url('filename') ,
as shown here:

 body {
 background-image: url('stones.jpg');
 }

This takes the image stones.jpg and tiles it across the page to create your background.

Keep these points in mind when creating a tiled background:

Use the JPEG format (Section 7.1.4) when creating your background image file, since JPEGs
can display the most colors of any of the Web-ready image formats.

Make your background light, so the text remains legible. (If you really must go dark, you can
use white, bold text to stand out. But don't do this unless you're creating a Web site for a
trendy new band or opening a gothic clothing store.)

Set the page's background color to match the image. For example, if you have a dark
background picture with white writing, make the background color black. That way, if the image
can't be downloaded, the text will still be visible.

Use small tiles to reduce the amount of time your visitors need to wait before they can see the
page.

If your tiled image has an irregular pattern, make sure the edges line up. The left edge should

continue the right edge, and the top edge should continue the bottom edge. Otherwise, when
the browser tiles your image, you'll see lines where the tiles are stitched together.

Tip: The Web is full of common background images, like stars, blue skies and clouds, fabric and stone textures, fires, dizzying geometric

patterns, borders, and much more. You can find these easily by searching on Google for "backgrounds," or head straight to top sites like

www.grsites.com/textures (with over 5,000 backgrounds indexed by dominant color), www.backgroundcity.com , and

www.backgroundsarchive.com .

7.2.5.1. Background "watermarks"

Most background images that you see on the Web have been created using tiling, but that's not your
only option. Instead, you can take an image and place it at a specific position on your page. (Think,
for example, "Top Secret and Confidential" splayed across your home page.) This is sometimes called
a watermark . (The name stems from the process that's use to place a translucent logo on paper
while the paper in still saturated with water.) To make a good watermark, you should use a
background picture that's pale and unobtrusive.

To add a watermark to your page, you use the same background-image property you learned about
above. However, you also need to add a few more style properties to the mix (see Table 7-2). First,
you have to use the background-repeat property to turn off tiling. At the same time, it also makes
sense to use the back-ground-position property to align your picture to one of the sides of the page
or in the center.

Table 7-2. Background Image Properties

Property Description Common Values
Oldest

Supported
Browsers

Can Be
Inherited

background-
image

The image file you want to show
in the background.

A URL pointing to
the image file, as in
url('mypig. jpg').

IE 3,
Netscape 4

No[1]

background-
repeat

Whether or not the image should
be tiled to fill the entire page.
You can turn off tiling altogether,
or turn it off in one dimension (so
that images are tiled vertically
but not horizontally, for
example).

repeat repeat-x
repeat-y no-repeat

IE 4,
Netscape 4

No

background-
position

Where the image should be
placed. Use this only if you aren't
tiling the image.

top left top center
top right center left
center center right
bottom left bottom
center bottom right

IE 4,
Netscape 6

No

Property Description Common Values
Oldest

Supported
Browsers

Can Be
Inherited

background-
attachment

Whether the image should be
fixed in place when the page is
scrolled. Use this only if you
aren't tiling the image.

scroll fixed
IE 4,
Netscape 6

No

[1] Background pictures aren't inherited (Section 6.1.6). However, if you don't explicitly assign a background color to a tag, it's

given a transparent background, which means the background of the containing tag will still show through

Here's an example that places a picture in the center of the Web page:

 body {
 background-image: url('smiley.jpg');
 background-repeat: no-repeat;
 background-position: center;
 }

Note: The center of the document isn't necessarily the center of the window. If you have a long Web page and you position your image

in the center, it won't appear until you scroll down.

You can also turn off scrolling to give the rather odd effect of an image that's fixed in place (see Figure
7-15). For example, use this style to create a background image that sits squarely in the center of
the window:

 body {
 background-image: url('smiley.gif');
 background-repeat: no-repeat;
 background-position: center;
 background-attachment: fixed;
 }

background-
attachment

Whether the image should be
fixed in place when the page is
scrolled. Use this only if you
aren't tiling the image.

scroll fixed
IE 4,
Netscape 6

No

[1] Background pictures aren't inherited (Section 6.1.6). However, if you don't explicitly assign a background color to a tag, it's

given a transparent background, which means the background of the containing tag will still show through

Here's an example that places a picture in the center of the Web page:

 body {
 background-image: url('smiley.jpg');
 background-repeat: no-repeat;
 background-position: center;
 }

Note: The center of the document isn't necessarily the center of the window. If you have a long Web page and you position your image

in the center, it won't appear until you scroll down.

You can also turn off scrolling to give the rather odd effect of an image that's fixed in place (see Figure
7-15). For example, use this style to create a background image that sits squarely in the center of
the window:

 body {
 background-image: url('smiley.gif');
 background-repeat: no-repeat;
 background-position: center;
 background-attachment: fixed;
 }

Figure
7-15.
This staring

smiley face

remains

perpetually

in the

center of

the

window,

even when

you scroll

up or down.

It's a little

creepy.

7.3. Techniques with Graphics

Now that you've mastered the tag, it's time to learn a few tricks of the trade. In the following
sections, you'll tour three common techniques used by Web gurus everywhere to create more
polished pages.

7.3.1. Graphical Text

In Chapter 6 , you learned that using exotic fonts on Web pages can be risky, since you don't know
for sure which typefaces are installed on your Web surfer's computer. Although there's no way to get
around this problem when you've got large blocks of text, enterprising Web artistes commonly put
the text for headings, buttons, and logos into picture files. That way, you get complete control of
what your text looks like.

Here's a high-level look at what you need to do:

Fire up your favorite image editor or drawing program .

Figure 7-16 shows an example with Adobe Illustrator.

Figure
7-16.
Left: The

final

touches are

being made

to a single-

word

heading in

Adobe

Illustrator.

Right: The

final picture

as it

appears in

a Web

page. This

process of

creating

graphical

text can be

tedious,

especially if

you have a

1.

lot of

headings to

generate.

But it's the

only

reliable way

to bring

funky fonts

to the Web.

Fill in a background color that matches your Web page .

In some programs, the easiest way to fill a section with color is to draw a shape (like a
rectangle), and then give it the proper fill color.

2.

Choose your font, and type the text over the background color .3.

Cut your image down to size .

Ideally, you want to make the image as small as you possibly can without clipping off any of the
text.

4.

Save your picture .

GIF is the best format choice, but you might need PNG if you have more than 256 colors. Don't
use JPEG, or your text will have blurred edges.

5.

Tip: Often, graphical pieces of text are turned into clickable buttons that can take you from page to another. You'll learn more about links

in Chapter 8 , and you'll find out how to make fancy graphical buttons in Chapter 15 .

7.3.2. Backgrounds on Other Elements

You don't need to apply a background to a whole page. Instead, you can bind a background to a
single paragraph or, more usefully, a <div> tag. Usually, you'll want to add a border around this tag
to separate it from the rest of your Web page. You might also need to change the color of the
foreground text so it's legible (for example, white shows up better than black on dark backgrounds).

Here's an example of a background image that can be used with any container element:

 .pie {
 background-image: url('pie.jpg');
 margin-top: 20px;
 margin-bottom: 10px;
 margin-left: 70px;
 margin-right: 70px;
 padding: 10px;
 border-style: double;
 border-width: 3px;

 color: white;
 background-color: black;
 font-size: large;
 font-weight: bold;
 font-family: Verdana,sans-serif;
 }

This style specifies a background image, sets the margins and borders, and chooses background and
foreground colors to match.

Here's a <div> tag that uses this style:

 <div class="pie">
 <p>Hungry for some pie?</p>
 </div>

Figure 7-17 shows the result.

7.3.3. Graphical Bullets in a List

In Chapter 5 , you looked at how you can use the tag to create a bulleted list. However, you
were limited to a small set of predefined bullet styles. If you look around on the Web, you'll see more
interesting examples that use tiny pictures to create custom bullets.

You could add custom bullets by hand using the tag. However, there's an easier option. You
can use the list-style-image style property to set a bullet image. Here's an example that uses a
picture named 3Dball.gif :

 ul {
 list-style-image: url('3Dball.gif');
 }

Figure
7-17.
Top: Using

background

images in

small

boxes is

surprisingly

slick.

Bottom: A

particularly

neat

feature is

the way the

picture

content

grows

when you

resize the

page,

thanks to

tiling.

Once you've created this style rule and placed it in your style sheet, it applies automatically to an
ordinary bulleted list like this one:

 Are hard to miss
 Help compensate for feelings of inadequacy
 Look so darned cool
 Remind people of boring PowerPoint presentations

Figure 7-18 shows the result.

Figure
7-18.
Graphical

bullets

range from

simple

arrows and

check

boxes to

extravagant

three-

dimensional

soccer

balls, like

those

shown

here.

7.4. Finding Free Art

The Web is awash in graphics. In fact, finding a Web page that isn't chock full of images is about as
unusual as spotting Bill Gates in a dollar store. But how does an ambitious developer generate all
these pictures? Do you really need to spend hours in a drawing program fine-tuning every picture
you need?

The answer depends on exactly what type of pictures you need. However, you'll be happy to hear
that there are a variety of great resources on the Web where you can find ready-to-use pictures.

7.4.1. Finding Photos

It's not hard to find pictures on the Web. In fact, you can even use a handy Google tool to search for
graphics on a specific subject (type http://images.google.com into your browser and search away).
Unfortunately, finding an image usually isn't good enough. In order to use the image without
worrying about a nefarious lawyer tracking you down, you also need the rights to use the picture. If
you get lucky, you might be granted the permission you want after you send a quick email to the
Web site owner. But on many sites, that means opening your wallet and shelling out real money.

Fortunately, there are free community sites made up of photo enthusiasts who post their pictures for
the world to see. On some of these sites, you're able to search for and reuse anything you want,
completely for free. One of the most remarkable is Stock.XCHNG (pronounced "stock exchange,"
after stock photography , the name for the vast catalogues of reusable pictures that graphic
designers collect). To get to Stock.XCHNG, surf to http://sxc.hu . Figure 7-19 shows a Stock.XCHNG
search in progress.

Figure
7-19.

Stock.XCHNG

offers a

searchable

catalogue of

well over

100,000

photos on

every subject.

Every day,

eager photo

enthusiasts

upload their

sometimes-

striking work,

including

some of the

images that

have been

used in this

book. In this

figure, a

search for

"paris food"

has found

some

interesting

culinary treats.

If you can't find the picture you want on Stock.XCHNG, you may never find it (at least not without
going to a more specialized commercial service). But if you'd like to look at some other alternatives,
check out the article on finding free photographs at
www.masternewmedia.org/news/2005/04/01/where_to_find_great_free.htm .

7.4.2. Finding Clip Art

Stock.XCHNG is great when you need rich photographs, but it doesn't help when you want standard
clip art. Clip art includes cartoon-like business graphics, common symbols like arrows, buttons, and
starbursts, and more.

A lot of so-called free clip art sites are choked with ads and subscription demands. However, there
are a few bright spots, including www.grsites.com/webgraphics , www.clipartconnection.com , and
www.myfreeclipart.com . Some clip art sites restrict your ability to use their pictures on commercial
Web sites, so be sure to read the fine print.

Tip: If you have a copy of Microsoft Office, you can also download clip art straight from the Office Online Web site. You'll need to open

this clip art with a graphics program and save it as a Web image format (like JPEG or GIF), but it's a small price to pay for gaining

access to a large, free clip art connection. Head to http://office.microsoft.com/clipart to start searching.

Chapter 8. Linking Pages
So far in this book, you've concentrated on one Web page at time. While creating a single page is the
crucial first step in building a Web site, sooner or later you'll want to wire several pages together so a
Web trekker can easily jump from one to the next. After all, surfing is what the Web's all about.

It's astoundingly easy to create linksofficially called hyperlinksbetween pages. In fact, all you need to
do is learn a single new tag: the anchor tag. Once you've mastered this bit of HTML lingo, you're
ready to start organizing your Web site into separate folders and transforming your humble collection
of Web pages into a full-fledged Web site.

8.1. Understanding the Anchor

In HTML, you use the anchor tag to create a link that, when clicked, transports the Web site reader
to another page.

The anchor tag is a straightforward container tag. It looks like this:

 <a>…

Inside the anchor tag, you put the clickable content:

 <a>Click Me

The problem with the above link is that it doesn't point anywhere. To turn this into a fully functioning
link, you need to supply the URL of the destination page using the href attribute (which stands for
hypertext reference). For example, if you want a click to take the reader to a page named
LinkedPage.htm, you'd create this link:

 Click Me

In order for this line to actually work, the LinkedPage.htm file must reside in the same folder as the
Web page that contains the link. You'll learn how to become more organized and sort your pages into
different subfolders on Section 8.1.2.

Tip: To create a link in FrontPage, select the clickable text, and hit Ctrl+K. You can then browse to the correct page, and FrontPage will

create the relative link. Dreamweaver and Nvu work the same way, when you press Ctrl+L.

The anchor tag is an inline tag (Section 5.2) that fits inside any other block element. That means it's
completely acceptable to make a link out of just a few words in an otherwise ordinary paragraph, like
this:

 <p>
 When you're alone and life is making you lonely

 You can always go downtown
 </p>

Figure 8-1 shows this link example in action.

Figure 8-1.
If you don't take any

other steps to

customize the

anchor tag, the text

appears with the

familiar underline

and blue lettering in

the browser. When

you move the

mouse over a

hyperlink, the

mouse pointer turns

to a hand. You can't

tell by looking at a

link whether or not it

works. If the link

points to a non-

existing page, you'll

get an error only

after you click it.

8.1.1. Internal and External Links

Links can shuffle you from one page to another in the same Web site, or they can transport you to a
completely different Web site on a far-off Web server. Depending on which task you're performing,
you use a different type of link.

Conceptually, there are two types of links:

Internal links point to other pages or resources (for example, downloadable files) in your Web
site.

External links point to pages or resources in other Web sites.

For example, if you want visitors to surf from your bio page (MyBio.htm) to another page on your site
with your address information (ContactMe.htm), you need to create an internal link. In all likelihood,
you'll have stored both files in the same folder, and even if they aren't they're still part of the same
Web site on the same Web server. On the other hand, if you want visitors to surf from your favorite
books page (FavBooks.htm) to somewhere on Amazon (www.amazon.com), you need an external
link. Clicking this type of link transports the reader out of your Web site and on to a new site, located
elsewhere on the Web.

HOW'D THEY DO THAT

Changing Link Color with Style Sheets

Virtually everyone born since the year 1900 has an instinctual understanding that blue
underlined text is there to be clicked. But what if blue links are at odds with the overall
look of your site? Thanks to style sheets, you don't need to play by the rules.

Based on what you learned about CSS in Chapter 6, you can quickly build a style sheet
rule that changes the text color of all the link-producing anchor tags in your site. Here's
an example:

 a {
 color: fuchsia;
 }

But watch out: making this change creates two problems. First, ordinary links look
different after you've clicked them (they turn from blue to red). The style sheet rule in
this example overrides that subtle modification, which many Web surfers depend on to
know which links they've clicked in a site. Second, if you apply a rule to all anchor tags,
it also affects any bookmarks (see Section 8.3), which probably isn't the behavior you
want.

A better way to create colorful links is to use another style sheet trick: pseudo-selectors.
Pseudo-selectors are more specialized selectors (Section 6.1.3) that rely on other details
that the browser keeps track of behind the scenes. For example, an ordinary selector
applies to a given tag, like <a>. A pseudo-selector can apply specifically to clicked or
unclicked links. Pseudo-selectors are a mid-range CSS feature, which means they don't
work on very old browsers like Internet Explorer 4 and Netscape 4.

There are four pseudo-selectors that help you format links. They are :link (for links that
point to virgin ground), :visited (for links that have already been visited), :active (the
color a link turns while you're clicking it, just before the new page appears), and :hover
(the color a link turns when you move the mouse over the link). As you can see,
pseudo-selectors always start with a colon (:).

Here's a style rule that uses pseudo-selectors to create a misleading pageone where
visited links are blue and unvisited links are red:

 a:link {
 color: red;
 }
 a:visited {
 color: blue;
 }

If you want to apply these rules to some, but not all, links, you can use a class name
with your pseudo-selector rule:

 a.BackwardLink:link {
 color: red;
 }
 a.BackwardLink:visited {
 color: blue;
 }

Now the anchor tag needs to specify the same class to get this style, as you can see in
this line:

 …

When you create an internal link, you should always use a relative URL, which tells the browser the
location of the target page relative to the current folder. In other words, it gives instructions on how
to find the new folder by moving up or down from the current folder. (Moving down means moving
from the current folder into a subfolder. Moving up is the reverseyou travel from a subfolder into the
parent folder that contains it.)

All the examples you've seen so far use relative URLs. For example, imagine you surf to this page:

 http://www.GothicGardenCenter.com/Sales/Products.htm

The Products.htm page includes a relative link that looks like this:

 Would you like to learn more about our purple
 hydrangeas?

In this case, Flowers.htm is a relative URL. If you click this link, the browser automatically assumes
that Flowers.htm is stored in the same location as Products.htm, and it fills in the rest of the URL.
That means the browser actually requests this page:

 http://www.GothicGardenCenter.com/Sales/Flowers.htm

http://www.GothicGardenCenter.com/Sales/Products.htm
http://www.GothicGardenCenter.com/Sales/Flowers.htm

HTML gives you another option, called an absolute URL, which defines the whole URL exactly,
including the domain name, folder, and page. For example, you could convert the previous example
into an absolute URL that looks like this:

 Would you like to learn more about our purple <a href=
 "http://www.GothicGardenCenter.com/Sales/Flowers.htm">hydrangeas?

So which approach should you use? Deciding's easy. There are exactly two rules you should keep in
mind:

If you're creating an external link, you must use an absolute URL.

In this situation, a relative URL just won't work. For example, imagine you want to link to the
page home.html on Amazon's Web site. If you create a relative link, the browser will assume
that home.html refers to that file on your Web site. Clicking the link won't take your visitors
where you want them to go (and may not take them anywhere at all, if you don't have a file
with that name on your site).

If you're creating an internal link, you really, really should use a relative URL.

Technically, either type of link works in this situation. However, relative URLs have several
advantages. First, they're shorter and make the HTML more readable and easier to maintain.
More importantly, relative links are flexible. You can rearrange your Web site, put your files into
a different folder, or even change the domain name of your Web site without disturbing your
relative links.

One of the nicest parts about relative links is that you can test them on your own computer, and
they'll work the exact same way as they do online. For example, imagine you've developed the
www.GothicGardenCenter.com Web site on your own computer and have stored it inside the folder
C:\MyWebSite (that'd be Macintosh HD/MyWebSite, in Macintosh-ese). If you click the relative link
that leads from the Products.htm page to the Flowers.htm page, the browser looks for the target
page in the C:\MyWebSite (Macintosh HD/MyWebSite) folder.

Once you've polished your work to perfection, say you upload the site to your Web server, which has
the domain name www.GothicGardenCenter.com. Because you've used relative links, you don't need
to change anything. Now, when you click on a link, the browser requests the corresponding page in
www.GothicGardenCenter.com. If you decide to buy a new, shorter domain name like www.GGC.com
and move your Web site there, the links keep on working.

FREQUENTLY ASKED QUESTION

Navigating and Frames

How do I make a link that opens in a new browser window?

When visitors click on external links, you might not want to let them get away that
easily. A common trick that Web sites use is to open external Web sites in separate
browser windows. This way, your Web site remains open in its original window, ensuring
the reader won't forget about it.

To make this work, you need the help of another HTML featureframes. Using frames,
you can open a document in a specific section of the browser window or even in an
entirely new window. Chapter 10 covers frames in detail. However, you don't need to
understand frames just to open a link in a new window. All it requires is one extra
attribute in your anchor tag, like this:

 >a href="LinkedPage.htm" target="_blank"<
 Click Me>/a<

The target attribute names the frame where the destination page should be displayed.
The value _blank indicates that the page should be loaded into a new frame, in a new,
empty browser window.

Some people love this feature, while others think it's an immensely annoying and
disruptive act of Web site intervention. If you use it, apply it sparingly on the occasional
link.

It's also worth noting that some vigilant pop-up blockers intercept this type of link and
prevent the new window from appearing altogether. (Pop-up blockers are standalone
programs or browser features designed to prevent annoying pop-up ads from
appearing.) Internet Explorer 6 includes its own pop-up blocker, but its standard settings
allow links that use target="_blank".

8.1.2. Relative Links and Folders

So far, all the relative link examples you've seen have assumed that both the source page (the one
that contains the link) and the target page (the destination you arrive at when you click the link) are
in the same folder. There's no reason to be quite this strict. In fact, your Web site will be a whole lot
better organized if you store groups of related pages in separate folders.

For example, consider the Web site shown in Figure 8-2.

Note: The root folder is the starting point of your Web siteit contains all other files and folders. Most Web pages include a page with the

name index.htm or index.html in the root folder. This is the default page (Section 3.2). If a browser sends a request to your Web site

domain without supplying a file name, the Web server sends back the default page. For example, requesting

www.TripToRemember.com automatically returns the default page www.TripToRemember.com/index.htm.

Figure
8-2. This

diagram maps

out the

structure of a

very small Web

site featuring

photos taken on

a trip. The root

folder contains

a style sheet

used across the

entire site

(styles.css) and

two HTML

pages. Two

subfolders,

Trip1998 and

Trip2005,

contain

additional

pages. The

Trip2005 folder

holds thumbnail

images of

pictures taken

on one of the

trips. For each

thumbnail,

there's a

corresponding

full-size picture

in the Photos

subfolder.

The Web site shown in Figure 8-2 uses a variety of different relative links. For example, imagine you
need to create a link from the index.htm page to the contact.htm page. Both of these pages are in
the same folder, so all you need is a relative link:

 About Me

You can also create more interesting links that move from one folder to another, which you'll learn

how to do in the following sections.

Tip: If you'd like to try out this sample Web site, you'll find all the site's files on the "Missing CD" page at www.missingmanuals.com.

Thanks to the magic of relative links, all the links will work fine no matter where you copy the files on your computer (PC or Mac), as long

as you keep the same subfolders.

8.1.2.1. Moving down into a subfolder

Say you want to create a relative link that jumps from the index.htm page to the antarctica.htm
page in the Trip2005 folder. Now you need to include the name of the subfolder in your relative link,
like this (remember, this line of code should be on the index.htm page):

 See pictures from Antarctica

This link gives the browser two instructionsgo into the subfolder Trip2005, and get the page
antarctica.htm. In the link, the folder name ("Trip2005") and the file name ("antarctica.htm") are
separated by a slash (/). Figure 8-3 shows both sides of this equation.

Figure
8-3.
Using a

relative link,

you can

jump from

the main

index.htm

page (top)

to a page

with picture

thumbnails

(bottom).

Each

picture is

itself a

linkclick it to

see a

larger-sized

version of

the picture.

Interestingly, you can use relative paths in other HTML tags, like the <style> tag and the tag.
For example, imagine you want to show the picture photo01.jpg in the page index.htm. This picture
is two subfolders away, but that doesn't stop you from linking to it:

Using these techniques, you can dig even deeper into subfolders of subfolders of subfolders. All you
need to do is add the folder name and a slash character for each subfolder, in order.

But remember, links are always relative to the current page. If you want to display the same picture
in the antarctica.htm page, that tag above won't work, because the antarctica.htm page is in
the Trip2005 folder (take a look back at Figure 8-2 if you need a visual reminder of the site structure).
From the Trip2005 folder, you only need to go down one level, so you need this link:

By now, you've probably realized that the important detail is not how many folders you have in your
site, but how you've organized them. Remember, a relative link always starts out from the current
folder, and works it way up or down to the folder holding the target page.

Tip: One you start using subfolders, you shouldn't change the names of any of the folders or move them around. That said, many Web

page editors (like FrontPage) are crafty enough to help you out if you do make these changes. When you rearrange pages or rename

folders inside these programs, they can adjust your relative links automatically to take into account the new structure. It's yet another

reason to think about getting a full-featured Web page editor.

8.1.2.2. Moving up into a parent folder

The next challenge you'll face is going up a folder level. To accomplish this task, you need to use the
character sequence ../ (two periods and a slash). For example, if you want to add a link in the
antarctica.htm page that returns the reader to the index.htm page, it would look like this:

 Go back

And as you've probably guessed by now, you can use this command twice in a row to jump up two
levels. For example, if you have a page in the Photos folder, you would need this link to get back to
the index page:

 Go back

For a more interesting feat, you can combine both of these tricks to create a relative link that travels
up one or more levels and then travels down a different path. For example, you'd need this sort of
link if you wanted to jump from the antarctica.htm page in the Trip2005 folder to the idaho.htm page
in the Trip1998 folder. Here's the link you need:

 See what happened in Idaho

This link moves up one level to the root folder, and then back down one level to the Trip1998 folder.
You follow the same process when you're browsing files on your computer.

8.1.2.3. Moving into the root folder

The only problem with the relative links that you've seen so far is that they're difficult to maintain if
you ever end up reorganizing your Web site. For example, imagine you have a Web page in the root
directory of your Web site. Say you want to feature an image on that page that's stored in the
images subfolder. You'd use this link:

But then, a little later on, you decide your Web page really belongs in another spota subfolder named
plantso you move it there. The problem is that the link now points to plant/images/flower.gif, which
doesn't exist. As a result, your image link is broken.

There are a few possible workarounds. In programs like FrontPage, when you drag a file to a new
location, the HTML editor updates all the relative links automatically, saving you the hassle. Another
approach is to try to keep related files in the same folder, so that you always move them as a unit.
However, there's a third approach, called root-relative links.

So far, the relative links you've seen have been document-relative, because they're based on the
current location of the Web page document that contains the link. Root-relative links are based on
the root folder in your Web site. They always start with the slash (/) character (which indicates the
root folder).

Here's the tag for flower.gif with a root-relative link:

The remarkable thing about this link is that it works no matter where you put the Web page that
contains it. For example, if you copy this page to the plant subfolder, the link still works, because the

first slash refers to the root folder.

The only trick to using root-relative folders is that you need to keep the real root of your Web site in
mind. When using a root-relative link, the browser follows a simple procedure to figure out where to
go. First, it strips all the path and file name information out of the current page address, so that it's
left with nothing but the domain name. It then adds the relative link on the end. So if you're on this
page:

 http://www.jumboplants.com/horticulture/plants/annuals.htm

The browser strips away the /horticulture/plants/annuals.htm portion, adds the relative link, and then
looks for the picture here:

 http://www.jumboplants.com/images/flower.gif

This makes perfect sense. But consider what happens if you don't have your own domain name. In
this case, your pages are probably stuck in a subfolder on another Web server. Here's an example:

 http://www.superISP.com/~user9212/horticulture/plants/annuals.htm

In this case, the domain name part of the URL is http://www.superISP.com, but for all practical
purposes, the root of your Web site is your personal folder ~user9212. That means you need to add
this detail into all your root-relative links. To get the result you want with the flower.gif picture, you'd
need to use this messier root-relative tag:

Now the browser strips out just the domain name part of the URL (http://www.superISP.com) and
then adds the relative part of the path, starting with your personal folder.

http://www.jumboplants.com/horticulture/plants/annuals.htm
http://www.jumboplants.com/images/flower.gif
http://www.superISP.com/~user9212/horticulture/plants/annuals.htm
http://www.superISP.com
http://www.superISP.com

UP TO SPEED

The Rules for Relative URLs

The rules for correctly writing a URL in an anchor tag are fairly strict, and there are a
few common mistakes that creep into the best Web pages. Here are some pointers to
help you avoid these headaches:

When creating an absolute URL, it must start with the protocol (usually http://).
You don't need to follow this rule when typing a URL into a browser. For example, if
you type www.google.com, most browsers are intelligent enough to assume the
http:// part. However, in an HTML document it's mandatory.

Don't mix up the backslash (\) and the ordinary forward slash (/). In the Windows
world, the backslash is used in file paths (like C:\Windows\win.ini). In the Web
world, the forward slash separates subfolders (as in
http://www.ebay.com/Help/index.html). Once again, many browsers tolerate
backslash confusion, but the same mistake in an anchor tag will break your links.

Don't ever use file paths instead of a URL. It's possible to create a URL that points
to a file on your computer using the file protocol (as in
file:///C:/Temp/myPage.htm). However, this link won't work on anyone else's
computer, because they won't have the same HTML file on their hard drive.
Sometimes, design tools like FrontPage may insert one of these so-called local
URLs (for example, it can occur if you drag and drop a picture file into your Web
page). Be vigilantcheck all your links to make sure this doesn't happen.

Don't use spaces or special characters in your file or folder names, even if these
special characters are allowed. For example, it's perfectly acceptable to put a space
in a file name (like My Photos.htm), but in order to request this page, the browser
needs to translate the space into a special character code (My%20Photos.htm). To
prevent this confusion, just steer clear of anything that isn't a number, letter, dash
(-), or underscore (_).

8.1.3. Linking to Other Types of Content

Most of the links you write will point to bona fide HTML Web pages. But that's not your only option.
You can link directly to other types of files. The only catch is that it's up to the browser to decide
what to do when someone clicks a link that points to a different type of file.

Here are some common examples:

You can link to a JPEG, GIF, or PNG image file (Section 7.1.4). When the visitor clicks
this link, the browser displays the image in the browser window without any other content. Web
sites often use this approach to let visitors take a look at large graphics. For example, the trip
Web site presented in the previous section has a page chock full of small image thumbnails.

http:// part. However, in an HTML document it's mandatory.
http://www.ebay.com/Help/index.html

Click on one of these, and you'll see the full-size image appear.

You can link to a specialized type of file, like a PDF file, a Microsoft Office document, or
an audio file (like a WAV or an MP3). When you use this technique, you're taking a bit of a
risk. These links rely on the browser having a plug-in that recognizes the file type, or a suitable
program installed on the computer. If the surfer's computer doesn't have the right software, the
only thing they'll be able to do is download the file to their computer (see the next point), where
it will sit like an inert binary blob. However, if they do have the right plug-in, a small miracle
happens. The Office, PDF, or audio file opens up right inside the browser window, as though it
were a Web page!

You can link to a file you want others to download. If a link points to a file of a specialized
type and the browser doesn't have a plug-in that wants to deal with that file type, the browser
usually gives the Web surfer a choice. The visitor can ignore the content altogether, open it
using another program on their computer, or save it on the computer. This is a handy way to
distribute large files (like a ZIP file featuring your personal philosophy of planetary motion).

You can link to an email message. Everybody's favorite form of note-sending these days is
email. It's easy to build a link into a Web page that fires up your visitors' favorite email program
and helps them send a note to you. Section 12.2 has all the details.

8.2. Image Links and Image Maps

It's worth pointing out that you can also turn images into links. The trick is to put an tag
inside an <a> tag, like this:

Pictures that are linked in this way get a thick blue border that indicates they're clickable. Usually,
you'll turn this clunky looking border off using the style sheet border properties (Section 6.5.1) or by
adding a border attribute and setting it to 0 (which is the old-fashioned approach). Either way, when a
visitor hovers his mouse over a linked picture, the mouse pointer changes to a hand.

In some cases, you might want to create distinct clickable regions inside a picture. For example,
consider Figure 8-4 .

Figure
8-4.
Left: An

ordinary

picture,

courtesy of

the

tag.

Right: An

irregularly

shaped

region

inside the

mouth

becomes a

hot spota

clickable

region that

takes the

surfer to

another

page. In

this

example,

the hot spot

is visible

because

it's being

edited in

FrontPage.

Ordinarily,

hot spots

are

invisible

when

you're

looking at

the page in

a Web

browser.

To add a hotspot to a picture, you need to start by creating an image map using the <map> tag.
This part's easyall you need to do is choose a unique name for your image map so you can use it
later on:

 <map name="FaceMap">
 </map>

Inside the <map> tag, between the start and end tags, you need to define each hotspot. You can
add as many hotspots as you want, although they shouldn't overlap. (If they do, the one that's
defined first takes precedence.)

To define each hotspot, you add an <area> tag. The area tag identifies three important details: the
target page you'll get to if the link is clicked (the href attribute), the shape of the hotspot (the shape
attribute), and the exact dimensions (the cords attribute). Here's an example:

 <area href="MyPage.htm" shape="rect" coords="5,5,95,195">

This hotspot defines a rectangular region. When clicked, it takes the surfer to MyPage.htm .

Three types of shapes are supported for the shape attribute, each of which corresponds to a different
value for the shape attribute. You can use circles (circle), rectangles (rect), and multi-edged shapes
(polygon). Once you've chosen your shape, you need to supply the coordinates, which are a bit
trickier to interpret. In order to understand hotspot coordinates, you need to first understand how
browsers measure pictures (see Figure 8-5).

Figure 8-5. Setting coordinates on

an image map requires a quick trip back to

Graph-Reading 101. Browsers designate the

top-left corner in a picture as point (0, 0). As

you move down the picture, the y-coordinate

gets bigger. For example, the point (0, 100) is

at the left edge of the picture, but 100 pixels

from the top. As you move to the right, the x-

coordinate gets bigger. That means the point

(100, 0) is at the top of a picture, 100 pixels

from the left edge.

You need to enter the coordinates as a list of numbers separated by commas. For a circle, list the
coordinates in this order: center point (x-coordinate), center point (y-coordinate), radius. For any
other shape, supply the corners in order as a series of x-y coordinates, like this: x1, y1, x2, y2, and
so on. For a polygon, you supply every point. For a rectangle, you only need two pointsthe top-left
corner, and the bottom left corner.

That means the rectangle described earlier is defined by these two points: (5,5) at the top-left and
(95, 195) at the bottom right. The more complex polygon that represents the mouth region in Figure
8-4 is defined like this:

 <area href="MyPage.htm" shape="polygon"
 coords="38, 122, 76, 132, 116, 110, 102, 198, 65, 197">

In other words, this shape is created by drawing lines between these five points: (38, 122), (76,
132), (116,110), (102, 198), and (65, 197)

Tip: Getting coordinates correct is tricky. Many Web editors, like FrontPage and Dreamweaver, have built-in hotspot editors that let you

create an image map by dragging shapes over your picture, which is a lot easier than trying to guess the correct values. To use this tool

in Dreamweaver, select a picture, and look for the three hotspot icons (circle, square and polygon) in the Properties panel. In FrontPage,

you use similar icons in the Picture toolbar. If the Picture toolbar isn't visible, right-click the picture and then select Show Pictures

Toolbar.

Once you've perfected all your hotspots, there's one step left. You need to apply the hotspot to an
image by adding the usemap attribute to your tag. The usemap attribute matches the name
of the map, but starts with the hash (#) character, which indicates that the image map is defined on
the current page:

Here's the complete HTML for the mouth hotspot example:

 <html>
 <head>
 <title>Image Map</title>
 <style>
 img {
 border-style: none;
 }
 </style>
 </head>

 <body>
 <p>Click inside his mouth…</p>
 <p>
 <map name="FaceMap">
 <area href="http://edcp.org/factsheets/handfoot.html" shape="polygon"
 coords="38, 122, 76, 132, 116, 110, 102, 198, 65, 197">
 </map>

 </p>
 </body>

 </html>

The hotspots you create are invisible (unless you've drawn lines on your picture to indicate where
they are). However, when visitors hover over a hotspot the mouse pointer changes to a hand.
Clicking on a hotspot has the same effect as clicking an ordinary <a> linksurfers get transported
immediately to the new page.

Note: It's tempting to use image maps to start creating your own navigation systems. However, sophisticated Web sites go many steps

further with menus and buttons that become highlighted when the mouse moves over them. To implement this nifty trick you need the

JavaScript know-how you'll learn in Chapters 14 and 15 .

8.3. Adding Bookmarks

Most links lead from one page to another. When you make the jump to a new page, the browser
plunks you down at the very top of the page. However, it's also possible to create links that direct the
Web surfer to a specific part of a Web page. This is particularly useful if you're creating long, scrolling
pages and you want to direct your visitors' attention to a particular passage.

You can use this technique to create a link that leads to another position on the current page (see
Figure 8-6), or a specific place in another Web page. Technically, this specific place where you want
to send the reader is called a fragment .

Creating a link that points to a fragment is a two-step process. First, you need a way to identify that
fragment. For example, imagine you want to send a visitor to the third level-three heading in a Web
page named sales.htm . In order to make this work, you need to embed a marker just before that
level-three heading. This marker is called a bookmark .

Figure
8-6.
FAQ

(frequently

asked

questions)

pages are

one of the

best

examples

of

bookmarks

at work.

Often, an

entire FAQ

is only one

long page,

and a table

of contents

at the top

lets you

jump to just

the topic

you're

interested

in. A FAQ

could be

broken into

separate

pages, but

then

readers

wouldn't be

able to

scan

through the

whole list of

questions

in order,

and there

wouldn't be

any way to

print the

entire

document

at once.

To create a bookmark you use the <a> anchor tag, but with a twist. You don't supply the href
attribute, because this anchor won't actually lead anywhere. All you supply is a name attribute that
gives your bookmark a descriptive name. It's up to you whether you put any text inside the
anchortechnically you don't need to, but most people find it easier to lock the bookmark into place
around a specific word or title.

Here's an example:

 …
 <h3>Pet Canaries</h3>
 <p>Pet canary sales have plummeted in the developed world, due in large part
 to currency fluctuations and other macroeconomic forces.</p>

 …

In this example, the bookmark surrounds a heading and has the name Canaries.

Once you've created a bookmark, you can write a URL that points to that bookmark. The trick is that
you need to add the bookmark information to the end of the URL. To do this, you add the number
sign symbol (#), followed by the bookmark name.

For example, if you're sending the reader to a bookmark named Canaries in the sales.htm page,
here's the link you'd use:

 Learn about recent developments in canary
 sales.

When you click this link, the browser heads to the sales.htm page and scrolls down the page until the
Canaries bookmark is at the very top of the browser window.

Tip: If your bookmark is near the bottom of the page, the browser might not be able to scroll the bookmark all the way to the top of the

window. Instead, the bookmarked section will appear somewhere in the middle of the browser window. This occurs because the browser

hits the bottom of the page, and can't scroll down any further. If you think there's some potential for confusion (perhaps because you

have several bookmarked sections close to each other on the same page), you can add a few line breaks at the end of your document,

which will allow the browser to scroll down further.

Sometimes you might want to create a link that points to a bookmark in the current page. In this
case, you don't need to specify the page name at all. Just start with the number sign, followed by the
bookmark name:

 Jump to the canary section.

Using bookmarks effectively is an art. Resist the urge to overcrowd your pages with links that direct
the reader between relatively small sections. Only use bookmarks to tame large pages that take
several screenfuls of scrolling.

8.4. When Good Links Go Bad

Now that you've considered all the ways to build links, it's a good time to consider what can go
wrong. Links on a site can break when you rename or move files or folders. Links to other Web sites
are particularly fragilethey can break at any time, without warning. You won't know that anything's
gone wrong until you click the link and get a "page not found" error message.

Broken links are so common that Web developers have coined a term to describe how Web sites
gradually lose their linking abilities: link rot. Sadly, you can upload a perfectly working Web site
today, and return a few months later to find that many of its external links have died off. They point
to Web sites that no longer exist, have moved, or were rearranged.

Link rot is an insidious problem because it violates the confidence of your Web visitors. They see a
page that promises to lead them to other interesting resources, but when they click one of the links
to try and complete the deal, they're disappointed. Experienced Web surfers won't stay long at a Web
site that's suffering from an advanced case of link rotthey'll assume that the site is updated
infrequently and move on to a snazzier site somewhere else.

So how can you reduce the problem of broken links? First, you should rigorously test all your internal
linksthe ones that point to pages within your own site. Check for minor errors that can stop a link
from working, and travel every path at least once. Leading HTML editors include built-in tools that
can help automate this drudgery.

External links pose a different challenge. You can't create iron-clad external links, because link
destinations are beyond your control and can change at any time. You could reduce the number of
external links you include in your Web site to minimize the problem, but this isn't a very satisfying
solution. Part of the beauty of the Web is the way a single click can take you from a comprehensive
rock discography to a memorabilia site with hand-painted Elvis office supplies. As long as you want to
connect your Web site to the rest of the world, you'll need to include external links. A better solution
is to test your Web site regularly with a link validator that will walk through every page and check
each link to make sure it still leads somewhere.

In the following sections, you'll take a quick look at Web site management and link validators.

8.4.1. Site Management

Nvu, Dreamweaver, FrontPage, and many other HTML editors include site management tools that let
you see your entire Web site at a glance. In most cases, you need to specifically define a Web site in
order to take advantage of these features (a process described on Section 4.2.4). Once you've
defined the Web site, you get a bird's eye view of everything it holds (see Figure 8-7).

In many ways, looking at the contents of your Web site folders isn't as interesting as studying the
Web of links that binds your pages together. Many Web page editors give you the ability to get an at-
a-glance look at where all your links lead (see Figure 8-8).

8.5. Link Checkers

A link checker is an automated tool that scans through one or more of your Web pages. It tests each
link it finds by trying to retrieve the target page (the page your link is pointing to). Depending on the
tool and the type of validation you're performing, link checkers might only scan internal links, or they
might branch out to follow every link in every page until they've completely covered your Web site.

Sophisticated link checkers are built into programs like FrontPage and Dreamweaver, and they're
great for digging through your Web site and finding problems. In Dreamweaver, use the command
Site Check Links Sitewide to perform a link check. In FrontPage, you can use a similar feature by
choosing View Reports Problems Hyperlinks.

Figure
8-7. In
FrontPage,

you can open

an individual

page for

editing using

File

Open, or an

entire Web

site using File

 Open

Site (just

choose the

top-level

folder of your

Web site).

You can then

rearrange

and rename

files in the

Folder List

and

FrontPage

will update

any related

links

automatically.

Figure
8-8. In
FrontPage,

choose

View

Hyperlinks,

and you'll

see this

view, which

shows you

how the

currently

selected

page fits

into your

Web site.

In this

example,

the current

page is

index.htm.

Arrows

pointing

away from

index.htm

represent

links that

lead to

other

pages.

Arrows

pointing to

index.htm

represent

links in

other

pages that

lead to

index.htm.

Click one

of the plus

(+) boxes

next to

another

page, and

you'll see

all the links

for that

page, too.

The link checkers that are built into HTML editors work on the copy of your Web site that's stored on
your computer. That's the best way to keep watch for errors as you're developing your Web site, but
it's no help once your Web site's out in the wild. For example, it won't catch mistakes like linking to a
local file on your hard drive or forgetting to upload a file you need to the Web server.

To get the final word on your Web site's links, you might want to try a free online link checker. The
World Wide Web Consortium provides a solid choice at http://validator.w3.org/checklink . To start
your free online link check, follow these steps:

Surf to http://validator.w3.org/checklink .

This takes you to the W3C Link Checker utility.

1.

Enter the full URL for the page you want to check in the text box .

If your Web site has a default page like index.htm , you can type in just the domain name
without explicitly supplying a file name.

2.

Choose the options you want to apply (Figure 8-9) .

Figure
8-9.
Start by

choosing

the Web

page you

want to

check, and

whether or

not you use

recursion

(which is

used in this

example).

For more

on how

recursion

works, see

step 3,

Section 8.5

. Then click

Check to

get started.

Select "Summary only" if you don't want to see the detailed list of steps that appears as the link

3.

checker examines each page. However, it's better to leave this option turned off, so you can get
a better understanding of exactly what pages the link checker is examining.

Select "Hide redirects" if you want to ignore instructions that would redirect the link checker to
another page (Section 8.5.1). Usually, redirects indicate that your link still works, but should be
updated to a new page.

The "Don't send the Accept-header" option tells the link checker not to tell the Web site about
its language preferences. This setting only has an effect if you're creating a multilingual Web
site, which is beyond the scope of this book.

The "Checked linked documents recursively" option allows you to search more than one page at
a time using recursion. If you don't use this option, the link validator simply checks every link in
the page you specify, and makes sure it points to a live Web page. If you use recursion, the link
validator checks all the links in the current page, and then it follows each link. For example, if
you have a link that points to a page named info.htm , the link checker first verifies that
info.htm exists. Then it finds all the links in info.htm , and starts testing them. In fact, if
info.htm links to another page (like contact.htm), the link checker branches out to that page
and starts checking its links as well.

Note: The link checker is smart enough to avoid checking the same page twice. It also doesn't use recursion on external links.

That means that if you start your link checker on the home page of your Web site, it will follow the links to get to every other page

on your site, but it won't go any further. In other words, recursion is a great way to drill through all the links in your entire Web site

in one go.

If you want to limit recursion (perhaps because you have a lot of pages and you don't need to
check them all), you can supply a "recursion depth," which is the maximum number of levels
you want to dig down. For example, if the recursion depth is 1, the link checker will only follow
the first set of links. If you don't supply a recursion depth, the link checker checks everything.

Select "Save options in a cookie" if you want your browser to remember these
choices .

If you use this option, the next time you use the link checker, the browser will fill in the check
boxes using your previous settings.

4.

Click Check to start checking links .5.

The link checker shows a report that lists each link it checks (Figure 8-10). This
report is updated while the link checker works. If you're using recursion, you'll see
the link checker branch out from one page to another. The report adds a separate
section for each page .

6.

Figure
8-10.
The final

report

shows a list

of links in

anchors

and

images.

Any links

that lead to

dead ends

are

highlighted

in red.

Links that

may need

attention

are

highlighted

in yellow.

One

example is

links that

are

redirected.

Although

they still

work, they

may be out

of date and

might not

last for

long.

8.5.1. Using Redirects

In order to be a good Web citizen, you also need to respect people that are linking to your Web site.
That means once you create your Web site and it becomes popular, try to avoid tinkering with page
and folder names. Making a minor change could disrupt someone else's link, making it impossible for
an eager Web surfer to get to your site.

Some Web gurus handle this problem using redirects . When they rearrange their sites, they keep all
the old files. However, they remove the content from the old files, and replace it with a redirect a
special instruction that tells the browser to automatically navigate to a new page. The advantage of
using a redirect is that it prevents a broken link, but it doesn't lock you into the old structure of your
Web site if you've decided it's time to make a change.

To create a redirect, you need to add a special <meta> tag to the <head> portion of your Web page.

This tag indicates the new destination using an absolute URL, and lists the number of seconds to wait
before performing the redirect. Here's an example:

 <!doctype html public "-//w3c//dtd html 4.0 transitional//en">
 <html>
 <head>
 <meta http-equiv="REFRESH"
 content="10; URL=http://www.mysite.com/homepage.htm">

 <title>Redirect</title>
 </head>
 <body>

 <h1>The page you want has moved</h1>
 <p>
 Please update your bookmarks. The new home page is

 http://www.mysite.com/homepage.htm.
 </p>
 <p>
 You should be redirected to the new site in 10 seconds. Click <a

 here to visit the new page immediately.
 </p>
 </body>
 </html>

To adapt this page for your own purposes, just change the number of seconds (currently at 10) and
the redirect URL. When the browser loads this page, it shows the temporary page for the indicated
number of seconds, and then automatically requests the new page.

Redirect pages really serve two purposes. They keep your pages working when you change your Web
site's structure, and they inform the Web visitor that the link is obsolete. That's where the time delay
comes init provides a few seconds to notify the visitor that they're entering the Web site the wrong
way. Many Web sites keep their redirect pages around for a relatively short amount of time (for
example, a few months), after which they remove the page altogether.

Chapter 9. Page Layout Tools:Tables and
Styles
When HTML was first created, the focus was on delivering basic information: the score in yesterday's
ball game, the price of coffee beans in Colombia, reasons why the Macarena rules. As strange as it
seems, no one thought formatting and layout tools were really that important. Fortunately, a few
pioneering Web designers recognized the problem and set out to rescue the Web from the engineers
who invented it. These Web-heads invented a number of clever workarounds that gave the HTML
universe a much-needed blast of pizzazz.

The best known of these tactics is the invisible table. Using an invisible table, you can align content,
pictures, and headings along the lines of an invisible grid. It's impossible to overstate how important
invisible tables were in the early days of the Webthey saved us almost single-handedly from a world
of drab, plain text pages. But now that styles are on the scene, invisible tables are starting to
outgrow their usefulness. Although invisible tables are still widely used, many Web developers find
that they're just too awkward to manage.

Today, invisible-tablebased layout is slowly but surely giving way to style-based layout. Style-based
layout uses the positioning rules of CSS to place panels, columns, and pictures in specific spots on a
Web page. When you use style-based layout, your HTML markup is easier to understand, and you'll
have less trouble replicating your design across multiple pages. With a little planning, you can even
create flexible pages that can be completely rearranged without touching a line of HTMLall you need
to do is modify the linked style sheet. (See Chapter 6 for all the details on how to get started working
with style sheets.) But style-based layout isn't perfect, and there are a few browser quirks and
compatibility problems that everyone still has to contend with.

In this chapter, you'll learn how to use both table-based and style-based layout.

Note: Overall, style-based layout is the most elegant, and neatly structured, approachit's the wave of the future. Table-based layout has

remained around, thanks to the compatibility it offers with old browsers, and for a few special scenarios where style-based design is

unnaturally difficult. But that doesn't mean you should think about ignoring tables altogether. You'll still use them for laying out dense

grids of information.

9.1. HTML Tables

A table is a grid of cells that's built out of rows and columns. Originally, HTML tables were used
(predictably) to show tables of information. But crafty Web developers quickly discovered that
invisible tables offered a perfect way to get around the limits of plain vanilla HTML, allowing Web page
creators to lay out content in a variety of new ways (see Figure 9-1).

Figure
9-1. Top:

This detailed

census

information

from 1790

makes

perfect

sense in an

ordinary

table.

Bottom: A

combination

of invisible

tables

(technically,

tables with

no borders)

gives you all

the

underpinning

you need for

this

headache-

inspiring,

multi-

columned

newspaper

view.

In the following sections, you'll explore how to create a table using HTML.

9.1.1. The Anatomy of an HTML Table

All you need to whip up a table is a few new tags:

<table > wraps the whole shebang. This is the starting point for every table.

<tr > represents a single table row. A <table> contains a series of one or more <tr> tags.

<td > represents a table cell (it stands for table data). Inside each <tr> tag, you add one <td>
tag for each cell in the row. Inside the <td> tag, you place the text (or numbers, or
tags, or pretty much any HTML you like) that should appear in that cell. If you place text here,
it gets displayed with the same font as ordinary body text.

<th > is an optional tag used to define column headings. You can use a <th> tag instead of a
<td> tag at any time, although it makes most sense in the first row of the table. The text inside
the <th> tag is formatted in almost the same way as the text in a <td> tag, except it's bold
and centered (unless you've applied different formatting rules with a style sheet).

Note: There are a few other table-specific tags that have fallen by the wayside. These tags, which either aren't needed or aren't

supported in all browsers, include <thead>, <tbody>, <tfoot>, and <caption>.

Figure 9-2 shows a table at its simplest. Here's a portion of the HTML used to create the table in
Figure 9-2 :

 <table>
 <tr>
 <th>Rank</th>
 <th>Name</th>
 <th>Population</th>
 </tr>
 <tr>
 <td>1</td>
 <td>Rome</td>
 <td>450,000</td>
 </tr>
 <tr>
 <td>2</td>
 <td>Luoyang (Honan), China</td>
 <td>420,000</td>
 </tr>
 <tr>
 <td>3</td>
 <td>Seleucia (on the Tigris), Iraq</td>
 <td>250,000</td>
 </tr> …
</table>

Figure
9-2.
Top: A

basic table

doesn't

have any

borders,

but you'll

still spot

the

signature

sign that

you're

looking at a

table: text

lined up

neatly in

rows and

columns.

Bottom:

This

behind-the-

scenes

look at the

HTML

powering

the table

above

shows the

<table>,

<tr>, <th>,

and <td>

tags for the

first three

rows.

In this example, the tags are indented to help you see the structure of the table. Indenting your table
tags like this is always a good idea, as it helps you spot mismatched tags. In this example, the only
content in the <td> tags is ordinary text. But you can also add other HTML tags into a cell, including
hyperlinks (the <a> tag) and images (the tag).

Tip: You might be able to avoid writing tables by hand, as most Web design tools include their own table editors that let you point and

click your way to success. These table-creation features are similar to those you'd find in a word processor.

9.1.2. Formatting Table Borders

Traditional tables have borders around each cell. You can turn on table borders using the border
attribute. The border attribute specifies the width (in pixels) of the line that is added around each cell
and around the entire table. Here's an example:

 <table border="1">
 …
 </table>

Although you can choose the line thickness, you can't control the style of a table border. Most
browsers use a solid black line with a raised edge to outline a table.

If this lack of control troubles you, you can always use style sheets. The basic trick is to create a
borderless table and then apply a border to the <tr> and <table> tags. Style sheet border properties
are described on Section 6.5.1 .

The following style sheet rules set a thin blue border around every cell, and create a thick blue border
around the entire table:

 table {
 border-width: 3px;
 border-style: solid;
 border-color: blue;
 }
 td, th {
 border-width: 1px;
 border-style: solid;
 border-color: blue;

 }

Figure 9-3 shows the result.

Tip: Borders aren't the only style sheet feature you can apply to table cells. You can also change the font and text alignment, the padding

and margins (Section 6.3.3.3), and the colors. You can even set a background image for an individual cell or the whole table using the

background-image property (Section 7.2.5). And if you want to apply style rules to individual cells (rather than the whole table), you just

need to use class names (Section 6.6).

Figure
9-3.
Left: A

standard

HTML table

border with

a thickness

of 1 pixel.

Right: A

custom

border

using style

rules.

There's one hiccup to watch out for when creating tables with borders. Empty table cells will appear
to be "collapsed," which means they won't get any borders at all (see Figure 9-4).

Figure
9-4. If
you don't

include a

non-

breaking

space,

you'll lose

the borders

around

your empty

cells.

To prevent your cell from collapsing, add a single non-breaking space:

<td> </td>

This space won't be displayed in the browser, but it will ensure the borders stay put.

9.1.3. Cell Spans

HTML tables support spanning , a feature that allows a single cell to stretch out over several columns
or rows. Spanned cells let you tweak your tables in all kinds of funky ways.

You can use a column span to stretch a cell out over two or more columns. To make this happen, just
add the colspan attribute to the <td> tag you want to extend, and specify the total number of
columns you want it to occupy. Here's an example that stretches a cell out over two columns, so that
it actually occupies the space of two full cells:

 <table border="1" cellpadding="2" width="100%" id="table1">
 <tr>
 <td>Column 1</td>
 <td>Column 2</td>
 <td>Column 3</td>
 <td>Column 4</td>
 </tr>
 <tr>
 <td> </td>
 <td colspan="2">Look out, this cell spans two columns!</td>
 <td> </td>
 </tr>
 …
 </table>

Figure 9-5 shows this trick in action.

In order to make sure your table doesn't get mangled when you're using column spanning, you need
to keep track of the total number of columns you have to work with in each row. In the previous
example, the first row starts off by defining the four basic columns:

 <tr>
 <td>Column 1</td>
 <td>Column 2</td>
 <td>Column 3</td>
 <td>Column 4</td>
 </tr>

In the next row, the second column extends over the third column, thanks to column spanning. As a
result, the next <td> tag actually becomes the fourth column. That means you need only three <td>
tags to fill up the full width of the table:

 <tr>
 <!-- This fills column 1 -->
 <td> </td>

 <!-- This fills columns 2 and 3 -->
 <td colspan="2">Look out, this cell spans two columns!</td>

 <!-- This fills column 4 -->
 <td> </td>
 </tr>

Figure
9-5. A
table with

row

spanning

and column

spanning

run amok.

The same principle works with row spanning and the rowspan attribute . In the following example,
the first cell in this row leaks through to the second row:

 <tr>
 <td rowspan="2">This cell spans two rows.</td>
 <td> </td>
 <td> </td>
 <td> </td>
 </tr>

In the next row, the first cell is already occupied by the cell from above. That means the first <td>
tag you declare actually becomes the second column. All in all, this row needs only three <td> tags:

<tr>
 <td> </td>
 <td> </td>
 <td> </td>

 </tr>

If you miscount and add too many cells to a row, you'll end up with an extra column at the end of
your table.

Tip: Many HTML editors let you create spans by joining cells. In Nvu, just select a group of cells, right-click them, and select Join

Selected Cells. In FrontPage and Dreamweaver it's the same process, but the menu command is named Merge Cells.

9.1.4. Sizing and Aligning Tables

If you don't explicitly set the size of a table, each column grows just wide enough to fit the longest
line of text (or to accommodate any picture you add with an tag). Likewise, the table grows
big enough to fit all the columns. However, there's one exceptionif these adaptations would cause the
table to grow outside the bounds of the browser window, the table's width is limited to the browser
window size. In that case, text gets wrapped inside each column.

Tip: Need more space inside your table? Style rules can make it easy. To add more space between the cell content and its borders,

increase the padding property for the <td> and <tr> tags. To add more space between the cell borders and any adjacent cells, up the

margin width for the <td> and <tr> tags. Section 6.4.2 has more on adjusting these dimensions.

In most cases, you'll want to explicitly set the width of your table and its columns. Once again, style
sheets provide the best approach. All you need to use are the height and width properties, as
explained in the next section.

9.1.4.1. Sizing the table

You have two choices when specifying table dimensions.

Relative sizing sizes the table in sync with the dimensions of the browser window. You supply
the percentage of the window that the table should fill.

Absolute sizing uses pixel sizes to set an exact size for the table.

For example, the following style sheet rule ensures that this table always occupies the full width of
the browser window:

 table {
 width: 100%;
 }

Thus, the table gets sized in relation to the size of the browser window. And this rule limits the table
to half of the current window:

 table {
 width: 50%;
 }

Either way, the table resizes dynamically as you resize the browser window.

If you use exact pixel widths, you choose the exact size you want. For example, the following rule
creates a table that's a generous 500 pixels wide.

 table.Cities {
 width: 500px;
 }

Because this is a very specific width, it will only be suitable for certain tables. To prevent the rule
from being applied to every table, this example uses the class name Cities. Therefore you'll need to
edit your HTML so that only specific tables adopt this class:

 <table class="Cities">
 …
 </table>

You can also set the height of a table. Usually, you'll set the height using an absolute size, as shown
here:

 table.Cities {
 height: 500px;
 }

Although you can set a table height as a percentage of the browser window, that creates a strange,
rarely seen effect (a table that grows taller and shorter as you resize the page).

There's one important caveat to table sizing. Although you can enlarge a table as large as you want
(even if it stretches off the borders of the page), you don't have the same power to shrink a table. If
you specify a table size that's smaller than the minimum size needed to fit the table's data, the table
appears at this minimum size (see Figure 9-6).

9.1.4.2. Sizing a column

Now that you know how to expand the size of a table, you're probably wondering where the extra
space goes. Assuming the table has reached its standard size (just large enough to fit all the data),
the extra space is distributed proportionately so that every column grows by the same amount.

Of course, this isn't necessarily what you want. You might be planning to create a wide descriptive
column paired with a narrow column of densely-packed text. Or, you might just want to set columns
to a specific size so that all your pages look the same, even if the content differs.

Figure
9-6. In
this example,

the table was

explicitly sized

to a width of 1

pixel.

However, the

browser

doesn't

actually shrink

it down that

far, thus

preventing

individual

words from

being

awkwardly

chopped in

two. In this

table, the city

name

Anuradhapura

is the longest

un-splittable

value, so it

determines

the width of

the column. If

you really

want to

ratchet the

size down

another

notch, try

shrinking the

text by

applying a

smaller font

size.

To set a column's size, you simply need to use the width property with the <td> and <th> tags.
Once again, you can do this proportionately, using a percentage, or exactly, using a pixel width.
However, percentages have a slightly different meaning when used with columns. When you use a
percentage value for the table width, you're in effect sizing the entire table up against the width of the
page. So, for example, 50 percent means 50 percent of the full width of the page. But when you use a
percentage value to set a column width, you're defining the percentage of the table that the column
should occupy. So a column with a 50 percent width takes up 50 percent of the table.

When you size columns, you need to create style rules that use class names (Section 6.6). That's
because each table column is potentially a different widthyou can't just write a single style rule that
applies to every column.

The following style rules set different widths for each of the three columns that you see in Figure 9-6 .

 th.Rank {
 width: 10%;
 }
 th.Name {
width: 80%;
 }
 th.Population {
 width: 10%;
 }

In this example, the class names match the column titles, which makes it easier to keep track of
which style rule applies to each column.

Note: When you're using percentage widths for columns, you don't need to specify values for all three columns. If you leave one out, the

browser will size it to fill the rest of the space in the table. If you do decide to include widths for each column (as in the previous example),

make sure they add up to 100 percent, to avoid confusion. Otherwise, the browser will need to override one of your settings, and you

won't know how your table will actually appear.

In order for these rules to take effect, you need to apply them to the corresponding cells:

 <table class="Cities">
 <tr>
 <th class="Rank">Rank</th>
 <th class="Name">Name</th>
 <th class="Population">Population</th>
 </tr>
 <tr>

 <td>1</td>
 <td>Rome</td>
 <td>450,000</td>
 </tr>

Notice that the widths are applied only to the first row (which contains the cell headers in this
example). You could apply the rule to every single row, but there's really no point. When the browser
builds a table, it scans the whole table structure to determine the required size, based on the cell
content and any explicit width settings. If you apply a different width to more than one cell in the
same column, the browser simply uses the largest value.

Tip: It's a good idea to size your table by applying style rules to the first row. This makes your HTML more readable, because it's

immediately obvious what the dimensions of your table are.

9.1.4.3. Sizing a row

You can size a row just as easily as you size a column. The best approach is to use the height
property on the <tr> attribute, as shown here:

 t5.TallRow {
 height: 100px;
 }

Once again, percentages and pixel values are both acceptable. When you resize a row, you affect
every cell in every column. However, you're free to make each row in the table a different height,
using the techniques just described.

9.1.5. Organizing a Page with Tables

So far, the tables you've seen have been fairly typical grids of information. But on many Web sites,
tables play another rolethey organize the page into separate regions.

One of the most common Web site designs is to divide the page into two or three columns. The
column on the left typically has navigation buttons or links. The column in the middle takes the most
space, and has the main content for the page. The column on the right, if present, has additional
information, an advertisement, or another set of links. Figure 9-7 shows how it all breaks down.

Figure
9-7. A
simple

table with

one row

and three

columns is

all you

need to

define the

overall

structure of

this Web

page. All

your

content can

fit into a

single large

row. Most

visitors

won't

realize

there's a

table here

at all.

In order to make this design work, you need to consider several details:

Vertical text alignment . Ordinarily, row content is centered between the top and bottom
edge of the row. This effect isn't what you want in an extremely large row. Instead, you want to
make sure each cell is aligned with the top of the table, so the content in the side panels
remains at the top of your page, and is immediately visible.

Borders . If you decide to use borders, you'll want them only on some edges to emphasize the
separation of content. You won't want them around every cell and the entire table. In many
cases, you'll do away with borders altogether and just use different background colors or
images to separate the sections of your page.

Sizing . Typically, the sidebars will be fixed in size. The middle panel needs to command the
most space.

Figure 9-8 gives you a taste of what a finished page that uses a table for layout might look like. You
can see this example with the downloadable content for this chapter.

Figure
9-8.
Top: A

relatively

easy-to-

make table

creates this

attractive

layout.

Bottom:

Notice how

when the

size of the

browser

window

shrinks, the

side panels

remain the

same size.

Only the

middle

panel

changes.

The table in this example is relatively simple, because all the formatting and sizing details are
maintained separately, in the style rules. Therefore, all you need to do is create an ordinary table
with one row and three columns. Each column is then mapped to a different style using a class name.

<table>
 <tr>
 <td class="Left">
 Relative Sizing

 Absolute Sizing

 Contact Me

 </td>
 <td class="Middle"> I spent the day in utter agony, wondering how
 to create an HTML table with an expandable middle…
 </td>
 <td class="Right">
 Donate to my untraceable Swiss Bank account
 now!
 </td>
 </tr>
 </table>

The style sheet rules start by choosing a font for the whole document:

 body {
 font-family: Trebuchet MS, serif;
 }

Next, the table is sized to fill the window:

 table {
 width: 100%;
 }

Every cell is given some standard settings for text alignment, font size, and padding (to give a little
extra space between the column border and the text):

 td {
 font-size: x-small;
 padding: 15px;
 vertical-align: top;
 }

Finally, the column-specific rules set the widths and the borders. The side panels are given fixed, 100-
pixel widths:

 td.Left {
 width: 100px;
 }
 td.Right {
 width: 100px;
 font-weight: bold;
 }

The middle panel isn't given an explicit width. Instead, it's sized to fit whatever space remains. It's
also given left and right borders to separate the side panels:

 td.Middle {
 border-left-width: 1px;
 border-right-width: 1px;
 border-top-width: 0px;
 border-bottom-width: 0px;
 border-style: solid;
 border-color: blue;
 }

There's one last detail you might want to consider changing. This example uses proportional sizing for
the table, which allows the middle panel to grow and shrink as the browser window is resized.
Although this is the most flexible option, in dense, graphics-rich Web sites, absolute sizing is a must,
because it gives you tighter control over how the page looks. Absolute sizing prevents the table from
being resized and mangling your layout.

You can convert this example to use absolute sizing by changing the table style rule, as shown here:

 table {
 width: 600px;
 }

Now the table is 600 pixels wide. The left and right panels are still 100 pixels each, and the middle
column gets whatever's left in the table after the left and right panels are sized. That means it's
always exactly 400 pixels wide (based on a total width of 600 pixels, minus 100 pixels for each panel).
Figure 9-9 shows the difference.

If you use relative sizing, you need to think quite carefully about the size of monitor your visitors are
using to surf your site. Choose a column width that's narrow enough for the average visitor. (As
discussed on Section 5.1.2 , a typical monitor resolution is 800 x 600 pixels, which gives a maximum
width of 800 pixels if the browser window is maximized. Many Web designers use a width of 760
pixels, to make sure there's room left over for a vertical scroll bar, if needed.) If the content is too
wide for the browser window, visitors will need to scroll from side to side to read each line.

9.2. Style-Based Layout

Although the table-based approach seems perfect at first, it has a few frustrating quirks. One of the
most daunting problems is that once you've perfected your table-based layout, you need to
painstakingly copy the exact table structure to every other page in your Web site. This is tedious, and
tables are notorious for going haywire when a single tag goes missing. Even worse, what happens
once you've copied your table-based layout into a hundred different pages, and then decide you want
to improve it with a minor change?

Figure
9-9.
Absolute

sizing

keeps the

integrity of

your layout

as the

browser

window is

resized.

However,

the tradeoff

is the

possibility

that visitors

might be

forced to

scroll from

side to side

to see

everything

(bottom),

which is

sure to

exasperate

them.

Another

side effect

is that the

page might

appear

barren for

surfers with

high-

resolution

monitors

due to all

the empty

white

space

they'll see

in the

browser

window.

In the early lawless days of the Web, HTML tables went unchallenged. But when styles appeared,
leading Web designers began to explore new layout options. For most Web-heads, style-based layout
takes a little bit longer to grasp, but causes fewer long-term headaches. Here are some of the
benefits:

The HTML for a page that uses style-based layout is cleaner and easier to read.

Ideally, all the style information is stored in a separate style sheet so that it can be applied to
multiple pages with little effort.

When you modify the style sheet, you can reconfigure the layout of every linked page in one
(immensely gratifying) fell swoop.

You've already taken your first tentative steps towards this nirvana by learning about style-based
layout using boxed text and floating images (Chapter 7). But before you go any further, you need to
consider a few more style sheet features that make it all possible.

Tip: Many of the layout features you'll read about below are more recent than the meat-and-potatoes properties for text formatting, colors,

and borders. Some are a part of CSS2 (rather than the original CSS1 standard). As a result, it's even more important to test a page on as

many different browsers as possible when you use style-based layout. As a rule of thumb, don't expect perfect layout if you're dealing with

browsers that are older than Internet Explorer 5 and Netscape Navigator 6.

POWER USERS' CLINIC

Nested Tables

In sophisticated Web sites, the show doesn't end with a single table. Instead, tables are
placed inside of other tables, which are then placed in yet more tables. For example, you
might create a basic three-column setup using one table, and then divide the right
column into a series of distinct ads using a second table. When a table is placed in
another table, it's called a nested table .

Creating this design is easy (although it can be a little difficult to keep track of
everything). The trick is to define a table inside one of the cells in an existing table. For
example, if you have this table with three columns:

 <table>
 <tr>
 <td class="Left">…</td>
 <td class="Middle">…</td>
 <td class="Right">…</td>
 </tr>
 </table>

You can slide a table right into the <td> tags for the third column:

 <table>
 <tr>
 <td class="Left">…</td>
 <td class="Middle">…</td>
 <td class="Right">

 <table>
 <tr>…</tr>
 <tr>…</tr>
 </table>
 </td>
 </tr>
 </table>

Resizing all the parts of these two tables can get confusing. It's easiest to size the
nested table using a relative size of 100 percent. This way, the nested table expands or
shrinks to fit the column that contains it.

9.2.1. The <div> Tag

Before you can start placing elements in the right positions, you need a way to bundle up all the
related content into a single neat package. In the HTML table examples, that package was the table
cell. When you're using styles, that package is the <div> tagthe all-purpose container described on
Section 5.2.7 .

For example, imagine you want to create a box with several links on the left side of your page. Trying
to position each link separately is as much fun as peeling grapes. By using the <div> tag, you can
group everything together:

 <div class="Menu">
 Home Page
 Buy Our Products
 File a Lawsuit
 …
 </div>

Whenever you create a <div> tag, choose a class name that describes the type of content (like
LeftPanel, Menu, Header, AdBar, and so on). Later on, you can create a style rule that positions this
<div> tag and sets its font, colors, and borders.

Remember, a <div> doesn't define any formatting. In fact, on its own, it doesn't do anything at all.
The magic happens when you combine your <div> with a style sheet rule.

9.2.2. Even Better Selectors

In Chapter 6 , you learned a variety of different ways to write selectors . A selector is the part of a
style sheet rule that identifies what you want to format. The most common type of selectors are type
selectors, which format every occurrence of a specific HTML tag, and class selectors, which format
every tag that uses the same class name. However, there are a few ways you can get even craftier.

9.2.2.1. Contextual selectors

Contextual selectors are stricter than ordinary type selectors. Whereas a type selector matches a tag,
a contextual selector matches a tag inside another tag . To understand the difference, take a look at
this type selector:

 b {
 color: red;
 }

This selector formats all bold text in red. But what if you want to work only on bold text that appears
inside a bulleted list? You can do this using the following contextual type selector, which matches the
unordered list tag () and then finds any bold tags inside it:

 ul b {
 color: red;
 }

To create a contextual type selector, you simply need to put a space between the two tags.

Contextual selectors are useful, but thinking through the different possibilities for combining tags can
get a little dizzying. The real benefit occurs when you use a contextual selector to match a specific
type of tag inside a specific type of class.

For example, imagine you want to change how all the links look inside the menu panel described
above. The menu panel is represented by a <div> tag with the class name Menu. Here's the rule you
need:

 div.Menu a {
 color: red;
 }

The first part of this selector gets all the <div> tags in your page. The second part limits the matches
to <div> tags that have the Menu classwhich is exactly one. The third and final part of the selector
extracts the <a> tags inside the menu panel.

The end result is that this rule changes every anchor in the menu panel to have red lettering.
However, the anchors in the rest of the Web page are left alone. This technique is frequently used in
Web pages that use CSS-based layout, because contextual selectors make it easy for you to define
formatting rules for different sections of a page.

9.2.2.2. id selectors

There's one other type of selector that you need to know about: the id selector . The id selector is
actually a lot like the class selectors you've been using up until now. Like a class selector, the id
selector lets you pick a descriptive name for your rule. But instead of a period (.), you separate the
tag name from the id name with a hash character (#), as shown here:

 div#Menu {
 border-width: 2px;
 border-style: solid;
 }

This example defines a rule named Menu that can apply only to <div> tags.

Like a class rule, id rules aren't applied unless you specifically indicate that they should be used in
your HTML. However, instead of using the class attribute to switch them on, you use the id attribute.

For example, here's a <div> tag that uses the Menu style:

 <div id="Menu">…</div>

At this point, you're probably wondering what's the point of all thisafter all, the id selector seems
almost exactly the same as the class selector. The only difference you've seen so far is in the name
of the attribute that links the tag to the style rule.

But there is one more restriction: You can have only one tag in a page with a given id. In other
words, if you define an id selector for formatting a menu, you can use it in your Web page only once.
This restriction doesn't apply to classes, which you can reuse inexhaustibly.

Web designers like the id selector for page elements that occur only once, because they're clearer.
For example, a page has only one menu, or one navigation bar. By using the id attribute, you clearly
communicate this fact. Of course, the reason you need to understand id attributes is because you'll
frequently see them in the wild (for example, you'll find them in the www.csszengarden.com
examples shown in Figure 9-12). Now that you know they're just a version of class attributes, you
won't have any trouble understanding how they work.

Incidentally, you can use id selectors in all the same ways as other selectors. That means you can
combine them with the comma (,) or you can create contextual selectors like the one shown here,
which acts only on anchors inside a <div> menu:

 div#Menu a {
 color: red;
 }

9.2.3. Floating Boxes

Most of the example pages in previous chapters used relative positioning , which is the original HTML
model. When you use relative positioning, elements are ordered based on where they appear in the
document. For example, if you have one <div> followed by another <div>, the second <div> is
placed below the first one.

To get richer layoutsfor example, to create either of the pages you see in Figure 9-10 , bottomyou
need different ways to position content. One option is a floating layout , which you used to make
pictures float off to the side in Chapter 7 . A floating layout works just as readily with <div> tags, with
one exceptionyou need to supply the correct width for the box.

Note: When you float an image, the floating box is automatically made as wide as the image in the box. When you float a text box, it's up

to you to choose how wide you want it.

Here's an example that defines a box that floats on the right side of some text:

 .Float {
 float: right;
 width: 150px;
 background-color: red;
 border-width: 2px;
 border-style: solid;
 border-color: black;
 padding: 10px;
 margin: 8px;
font-weight: bold;
 color: white;
}

With floating content, text wraps around the edges (see Figure 9-10).

Figure
9-10.
Top: A

standard

floating

box.

Bottom,

left: You

can stack

more than

one floated

box at a

time. Each

new

floating box

is added to

the left of

the one

before it.

Bottom,

right: Add

the

clear:both

style sheet

property

(Section

7.2.3) to

force the

second

floating box

to appear

under the

first.

9.2.4. Absolute Positioning

Style sheets also let you place elements at fixed locations on a page, with no wrapping involved. This
technique is handy for creating multi-columned pages (see Figure 9-11).

To use absolute positioning, you simply need to set the position property of your <div> tag to
absolute . Then, you set the location of your <div> tag using a combination of the top, left, right ,
and bottom properties.

For example, the following style rule defines a panel that's 150 pixels wide and positioned along the
left side of the page. The left edge of the box is 10 pixels from the edge of the browser window, and
the top edge of the box is 70 pixels from the top of the browser window.

 .LeftPanel {
 position: absolute;
top: 70px;
 left: 10px;
 width: 150px;

}

It's just as easy to create a fixed panel on the right side. Just use the top and right position
properties to space the box out from the right edge of the browser window:

 .RightPanel {
 position: absolute;
 top: 70px;
 right: 10px;
 width: 150px;
}

The final step is to define a content section that sits between the two panels. You can't use absolute
positioning for this part, because you don't know how large the browser window will be. Fortunately,
you don't need toall you need is to create enough spacing from either edge with the margin
properties. Given that the panels are both 150 pixels wide, left and right margins of 151 pixels will do
the trick:

 .CenterPanel {
 margin-left: 151px;
 margin-right: 151px;
 padding-left: 12px;
 padding-right: 12px;
 }

This panel also adds some padding to make sure the text isn't too crowded along the left and right
edges.

Once you've defined the main regions of your page, you can insert content into them using <div>
tags. But because the <div> tags are placed precisely on the page, it doesn't matter how you order
the <div> tags in your Web page. For example, you might want to define the content for your left
and right panels, and then your center panel. The point is, the order that you lay down your <div>
tags doesn't matter. Here's an example:

 <div class="LeftPanel">
 <h1>Links</h1>
 Page 1

 Page 2

 …

 </div>

 <div class="RightPanel">

 <h1>Contact Us</h1>
 …
 </div>
<div class="CenterPanel">
 Styles are remarkably powerful. All you need to do is position
 a few <div> tags, and your content flows…
 </div>

Figure 9-11 shows the results.

Figure
9-11.
Top: This

page uses

a three-

panel style

sheet

layout, with

a few more

refinements

(like fine-

tuned

borders,

fonts, and

background

colors).

Bottom:

Another

variation of

the same

design sets

the height

of the side

panels to

90 percent,

so they

always fill

up the

browser

window.

The remarkable part about this example is that the HTML code is completely free of the messy
formatting details. Instead, it's a small miracle of clarity, with content divided into several easy-to-
understand sections. The same structure in a table would be cluttered with table tags, making it more
difficult to interpret. And if you've saved your styles into an external style sheet (Section 6.1.1), you
can start building a second page that uses the same layout without spending any time puzzling out
the correct formatting.

To use style-based layouts, begin by planning your page as a collection of separate regions. Next, put
every region into a <div> tag with a different class, even if you don't intend to apply style sheet rules
for the section yet. Finally, write the style sheet rules that position and format each element. This
part is the most time-consuming, but don't worryyou can tweak your rules at any time without
disturbing the HTML content. Figure 9-12 shows a Web site that takes this concept to the extreme.

Figure 9-12.
One page, dozens of

different looks. The

Web site

www.csszengarden.com

demonstrates the holy

grail of style-based

formatting: a page that

can be thoroughly

reformatted and

rearranged just be

switching the style sheet

it uses. Best of all, you

can download the HTML

for this page and the

sample style sheets to

try it out for yourself.

9.2.5. Layering

It may have occurred to you that you need to position elements very carefully when using absolute
positioning, to make sure you don't overlap one element over another. Interestingly, advanced Web
pages sometimes overlap elements deliberately to create dramatic effects. For example, you might
overlap two words to create a logo, or create a heading that partially overlaps a picture. These tricks
use overlapping layers .

When using overlapping layers, the browser needs to know which element goes on top. This is
accomplished through a simple number called the z-index . Elements with a high z-index are placed
in front of elements with a lower z-index.

For example, here are two elements that are positioned absolutely so that they overlap:

 .Back {
 z-index: 0;
 position: absolute;
 top: 10px;
 left: 10px;
 width: 150px;
 height: 100px;
 background-color: orange;
 border-style: dotted;
 border-width: 1px;
 }
 .Front {
 z-index: 1;
 position: absolute;
 top: 50px;
 left: 50px;
 width: 230px;
 height: 180px;
 font: xx-large;
 border-style: dotted;
 border-width: 1px;
 }

The first class (Back) defines an orange background square. The second class (Front) defines a large
font for text. The z-index is set so that the Front box (which has a z-index of 1) is superimposed over
the Back box (which has a z-index of 0). A dotted border is added around both elements to make it
easier to see how they overlap on the page.

Tip: The actual value of the z-index isn't important, only how it compares to other elements. For example, if you have two elements with

the z-indexes of 48 and 100, you'll have the same effect as two elements with the z-indexes 0 and 1the second element overlaps the first.

In your HTML, you need to create both boxes with <div> tags. It also makes sense to supply some
text content for the Front box:

 <div class="Back">
 </div>
 <div class="Front">
 This text is on top.
 </div>

In the browser, you'll a block of text that stretches over part of the orange box and out into empty
space (see Figure 9-13 , left).

Figure
9-13.
Left: The

colored box

has the

lower z-

index.

Right: The

colored box

has the

higher z-

index, and

obscures

the text.

DESIGN TIME

Become a Style Sheet Guru

Style sheets are one of the hottest topics in Web development today. The Web is
buzzing with discussion groups, articles, and tutorials that show how to create slick
style-powered designs. If you want to become a style guru, there's still quite a bit to
learn, including the ins and outs of browser quirks, workarounds for style sheet
limitations, and innovative ways to combine graphics and text. Here are a few of the
best resources:

Style sheet basics . Is your style sheet expertise a little wobbly? Brush up with
the tutorials at www.w3schools.com/css .

Style sheet examples (the barebones) . See some of the basic style sheet
designs (like two- and three-column layouts) at the Layout Reservoir
(www.bluerobot.com/web/layouts) and Glish (http://glish.com/css), along with

handy links to other good online resources.

Style sheet examples (full-featured) . See dozens of different painstakingly
perfected style sheets that can all be used to format the same HTML document.
This small miracle of CSS design is at www.csszengarden.com . There's even a
book tie-in named The Zen of CSS Design (Peachpit Press) that discusses some of
the more exotic examples.

Advanced style sheet resources . Planning to become a cutting-edge Web
designer? Check out the legendary books by Eric Meyer (such as Eric Meyer on CSS
(New Riders Press)) and surf by the Web site at
www.westciv.com/style_master/house .

You can also reverse the z-index to change the example:

 .Back {
 z-index: 1;
 …
 }
 .Front {
 z-index: 0;
 …
 }

Chapter 10. Frames
As you start to build bigger and more elaborate Web sites, you'll no doubt discover one of the royal
pains that come with being a Web maven: getting a common element (like a navigation bar) to
appear on every page in your site.

For example, you might decide to add a menu of links that let a visitor jump from one section of your
Web site to another. You can place these links in a table or a <div> tag (two techniques
demonstrated in Chapter 9). However, either way, there's a problemin order to show this menu on
every page, you'll need to do a fair bit of copying and pasting. If you're not careful, one page will end
up with a slightly different version of the same menu. And when you decide to make a minor change
to the menu, you'll be faced with the nightmare of updating dozens of pages.

One way to tackle this problem is with frames, a sometimes-controversial HTML feature that lets you
show more than one Web page in the same browser window. In this chapter, you'll learn how to use
frames to tame large Web sites.

10.1. The Problem with Repeating Content

By this point, you've amassed a solid toolkit of Web-page building tactics and tricks. You've learned
to polish up your Web pages with modern fonts and colors, gussy them up with a trendy layout, and
add images and links to the mix. However, as you apply these techniques to a complete Web site,
you'll run into some new challenges.

One of the first consequences you'll face when you go from one Web page to a dozen is how to make
them all consistent. If you carefully plan the structure of your Web site and you use external style
sheets (Chapter 6), you'll be able to apply a common look and feel to as many pages as you want.
However, style sheets won't help you if you need to have the same content in more than one page.
That's a problem, because modern Web sites have specific elements that repeat on every
pagetypically a header and a set of navigation buttons (see Figure 10-1).

Figure
10-1. On

www.expedia.com

, the same set of

navigation tabs

are always at the

top of the window,

no matter where

you go. This

common design

crops up on sites

throughout the

Web.

In a large Web site, pasting the same bit of HTML into every page just isn't an optionit's a
management disaster.

The problem could easily be solved if HTML supported a way to dynamically insert the contents of one
HTML file into another. For example, imagine you had an <include> tag you could use like this:

 <html>
 <head>…</head>
 <body>

 <h1>Welcome to the First Page</h1>

 <!-- This tag doesn't really exist. -->
 <include src="menu.htm">

 <p>This is the welcome page. Just above this
 text is the handy menu for this site.</p>
 </body>
 </html>

Presumably, when the browser found the <include> tag it would request the menu.htm document
and inject its HTML into the current location of the page. That way, you could create one copy of the
menu.htm file and reuse it in several pages. Sadly, this feature never materialized in ordinary HTML,
and Web developers have been forced to rely on other compromise measures.

Note: Many Web programming platforms do have an include feature. Examples include ASP, PHP, and ASP.NET (and a host of other

techno-cool acronyms). Almost all of the Web's most popular sites are actually so-called Web applications (powerful programs that

generate HTML on the fly) so they don't face the hassle of maintaining the same content in dozens of different files. Expedia (Figure 10-1)

is one example.But don't rush off to pick up a degree in computer science just yet. Programming is a completely different cup of tea.

Unless you have a lot of time to spare for removing cryptic bugs from computer code (a process known as debugging) and even more

time to put them there in the first place (politely known as programming), you're better off using the techniques in this chapter instead.

Without a handy include feature, what's an enterprising Web designer to do? HTML doesn't include a
feature for dynamically inserting a block of HTML into another file, but it does have a feature for
splitting a Web browser window into several regions, or frames . Once you split the window in this
way, you can show a different Web page in each frame. This feature is almost as good as the missing
include feature (see the box below for some of the reasons why it's not quite the same).

FREQUENTLY ASKED QUESTION

The Frames Controversy

Are there reasons to avoid frames ?

The Web developer community has been steadily moving away from frames for several
years. Although they're still alive and well in small- and medium-sized Web sites, you're
unlikely to see them turn up in a large-scale Web site such as eBay or Amazon.

Some of the reasons that frames have a bad reputation are historicalfor example,
ancient browsers didn't support them that well, and Web newbies used them in all the
wrong ways. However, frames also have a few quirks of their own.

Here are the reasons that top-level Web professionals look like they've just bit into a
lemon when you tell them you're thinking about using frames:

Search engine confusion . When you use a frame, you display several pages at
once. This has the potential to confuse search engines when their automatic
indexing robots stumble across just one file in a set that's meant to be shown

together. They might have difficulty interpreting what your page is about, because
the important content is stored in a separate page. Or, they might index your
content page by itself. In this case, when someone follows the search engine link
they'll wind up seeing your page without any of the other frames. These
idiosyncrasies aren't the end of the world, but they aren't ideal.

Frame abuse . Some Stone Age Web developers used frames to keep part of their
Web site visible when the visitor clicked on an external link. The effect is like an ad
bar that never goes away. This leech-like use of frames is universally despised and
almost completely expunged from today's Internet. One of the few Web sites that
still uses it is www.about.com .

Future compatibility and accessibility . In Section 2.4 you learned about
XHTML, the eventual successor to HTML. Although the earlier transitional versions
of XHTML support frames, the latest versions don't. While frames will probably
never disappear from the Web completely, they are slowly being phased out
because they're not easily viewable by people with disabilities (who often use
screen-reading devices) or those who use cell phones to surf the Web.

Less-effective URLs . When you surf to a frames page, the Web browser grabs
the initial page for each frame. There's no way to supply visitors with a URL that
lets them surf straight to the page they wantthey'll need to click their way through.
You'll learn more about this issue on Section 10.3.4 .

Throughout the rest of this chapter, you'll explore frames and learn how to use them to deal with
repeating Web site content like headers and navigation bars.

10.2. Frame Basics

Frames work by splitting a browser window into two or more regions, and showing a different HTML
page in each region. The first step to using frames is to create a frameset document, which holds the
smaller Web pages and defines how the browser window should be split.

A frameset page isn't like an ordinary HTML page. It still starts with an <html> tag, and it includes a
<head> section, where you can define the title for the page, but it doesn't continue with the familiar
<body> tag, where you usually put the content of the page. Instead, it includes a <frameset> tag
that divides the page into separate frames, and a <noframes> tag that supplies content that is
shown if frames aren't viewable on the browser that's loading the pages. Here's a summary of the
code you might see on a frameset page:

 <html>
 <head>
 <title>A Sample Frames Page</title>
 </head>
 <frameset>…</frameset>
 <noframes>…</noframes>
 </html>

The <noframes> portion is the easiest to fill in. Just enter the HTML content you want to show if the
browser doesn't support frames. Many Web sites include little more than a couple of lines of text, like
this:

 <noframes>This Web site uses frames and your browser doesn't
 support them.</noframes>

This approach, although common, isn't terribly helpful. Later in this chapter (Section 10.3.3), you'll
learn how to include some much more respectable content in the <noframes> section, without going
to much extra work.

Some of the reasons that a browser might not support frames include:

The browser is really old. This is incredibly rare today. Netscape's supported frames since
version 2.

It's a mobile browser, like those used on small devices like cell phones. Of course, if you want to
support these devices, you need to design your site with their small screens and limited display
powers in mind.

The Web surfer is viewing-impaired and is using a screen-reading program (a program that
"speaks" text on a Web page). To make the page accessible to screen readers, you should
definitely use the <noframes> technique shown later on Section 10.3.3 .

10.2.1. Defining the Frameset

The information inside your <frameset> tags is the heart of your frameset page. It's where you
decide how to split the browser window into rows or columns of specific sizes (with each row or
column occupying its own frame). You define the width of each column using the cols attribute, or the
height of each row using the rows attribute. For every column or row you want to add to your page,
you need to add a measurement indicating its width or height, respectively. Here's an example that
splits the page into two even columns:

 <frameset cols="50%,50%">
 …
 </frameset>

Here's an example that creates three rows, with the middle section being the largest:

 <frameset rows="25%,50%,25%">
 …
 </frameset>

Figure 10-2 shows what this example looks like in a browser.

Figure
10-2.
These figures

show the

same

frameset, with

a 25/50/25

percent split.

Because

frame size

was set using

a percent

value (rather

than

specifying an

exact pixel

size), all the

frames get

resized

proportionately

when the

browser

window is

stretched.

In these examples, the size of each column or row is defined using a percentage value. For example,
if you use 50 percent for a column, it will occupy half of the browser window.

Another option is to specify an exact pixel size. For example, here's a three-column example where
the left and right columns are always 100 pixels each:

 <frameset cols="100,*,100">
 …
 </frameset>

This example introduces another nifty trickusing the asterisk (*). You use this to tell the browser to
make that frame occupy the remaining space. For example, if the browser window is 800 pixels wide,
you'll have two 100-pixel columns on the flanks and a 600-pixel column in the leftover space. Figure
10-3 shows what this looks like.

Figure
10-3.
In this

example,

the

frameset

has a fixed

100-pixel

frame on

either side,

and a

middle

frame that

gets the

remaining

space.

When the

browser

window is

resized, the

only frame

that widens

is the one

in the

middle.

Note: If you specify fixed pixel sizes for every row or column, the browser gives them the requested size and then checks if there's more

space left over in the browser window. If there is, the browser expands all frames proportionately. This probably isn't the effect you want,

so it's a good idea to use the asterisk to give all the extra space to a specific frame.

As you've probably figured out by now, frames always occupy rectangular regions of a browser
window. There's no way to create frames with fancy shapes. However, that doesn't mean you can't
create the illusion of a shaped frame. All you need to do is create a regular rectangular frame and use
the background-image property discussed in Chapter 7 (Section 7.2.5) to add some sort of shaped
or curved background picture behind your frame. Figure 10-4 shows an example.

Figure
10-4.
You can

create the

illusion of a

curved

frame by

adding the

correct

background

image, as

shown

here.

10.2.2. Putting Documents in a Frameset

Splitting the window into frames is a good first step, but in order to see some actual content on your
pages, you'll need to define the frame source . The frame source is the HTML document that contains
the content you want to show in an individual frame.

To define the frame source, you need to add one <frame> tag for each column and row your
frameset includes. You add these <frame> tags inside the <frameset> tags, keeping the same order
that was used to list the columns (left to right) or rows (top to bottom).

Here's the basic skeleton for a page with two frames:

 <frameset cols="30%,*">
 <frame>
 <frame>
 </frameset>

To link your page to the frame you want to incorporate, you can set various attributes of the
<frame> tag. The most important are src (which lists the Web page file name) and name (which
gives the frame a descriptive title you can use to refer to the frame later). Here's a typical example
of a complete frameset page:

 <html>
 <head>

 <title>A Sample Frames Page</title>
 </head>
 <frameset cols="30%,*">
 <frame name="Menu" src="menu.htm">
 <frame name="Main" src="welcome.htm">
 </frameset>
 </html>

In this case, it makes sense to assume that the Menu frame on the left (that is, the first frame listed)
will always show the same menu from the menu.htm page. On the other hand, the Main frame on the
right will be reused to show all kinds of different contentinitially it shows the welcome page, but that
will change as the reader surfs through the Web site. That's why the frame name and the HTML file
name don't match in the second <frame> tag.

Tip: When you supply the source for a frame, you follow all the same rules you follow when supplying the source for an image or

hyperlink. That means you include just the file name if the file is in the same folder as the current page, or you can use a relative or

absolute path (see Section 8.1.1).

To try this example out, save the frameset page using the file name index.htm .

Tip: Many Web servers treat index.htm as the entry point of your Web site. That means they send it to the browser automatically if they

receive a request that doesn't specify a page. See Section 3.2 in Chapter 3 for more.

Next, create the menu.htm and welcome.htm pages. All the menu.htm page needs is a simple list of
links, as shown here:

 <html>
 <head><title></title></head>
 <body>
 Welcome

 Page 1

 Page 2

 Page 3
 </body>
 </html>

When displaying frames, the browser uses the title that's defined in the frameset page. That means
the title in the menu.htm and welcome.htm pages has no effect. However, it's a good idea to still
include the <title> element, because it's a required part of HTML. Additionally, the title information
sometimes appears in search engine listings.

Note: In the examples in this chapter, the <title> tag is left blank if it won't appear in a browser. That way, you can quickly sort out which

titles are most important.

The welcome.htm page can show some straightforward content:

 <html>
 <head><title></title></head>
 <body>
 <h1>Welcome</h1>
 <p>This simple welcome page shows how two frames can be joined in happy
 matrimony. On the left is a menu with a set of links.
 Over here on the right, there's a heading and an ordinary paragraph,
 which makes up a content page.</p>
 </body>
 </html>

As always, you could use styles to make these two pieces look a lot more impressive (see Chapter 6
for more on styles). But these pages are enough to give you an idea of how all this frames business
works. Assuming all the pages are in the same folder, you'll see a single integrated window when you
request index.htm (see Figure 10-5).

Figure
10-5.
To display

the frames

page

index.htm,

the browser

needs to

request two

separate

pages.

These

documents

are then

shown in

different

frames in

the same

window.

10.2.3. Targeting Frames

There's actually a small but important flaw in the frameset shown in the previous example. When you
click one of the navigation links, the target page of the link opens in the frame where the link is placed
(see Figure 10-6).

To correct this problem, you need to change your links so that they explicitly tell the browser to open
the target page in the Main frame. To take care of this, you need to add the target attribute to the
<a> tag. Use this attribute to supply the name of the frame where the page should be displayed.

Figure
10-6.
Here's what

happens

when you

click the

Page 1 link

on the left-

hand frame

shown in

Figure 10-5

. The target

page

(page1.htm)

appears,

but in the

frame

where the

menu bar

used to be.

Now you're

stuck, with

no

navigation

controls to

move

around.

Here's how you should rewrite the menu.htm page to target your links:

 Welcome

 Page 1

 Page 2

 Page 3

Figure 10-7 shows the corrected behavior.

Figure
10-7.
Once you

add the

target

attribute to

the <a>

tag, menu

links open

the target

in the Main

frame on

the right,

keeping the

menu links

visible at all

times.

Rather than changing every link in your page, it would be nice if there were a way to set a single
target frame that would apply to every link in the page. Fortunately, HTML makes this easy with the
<base> tag. Using the <base > tag, you could rewrite the menu page like this:

 <html>
 <head>
 <base target="Main">
 <title></title>
 </head>
 <body>
 Welcome

 Page 1

 Page 2

 Page 3
 </body>
 </html>

There are also four reserved target names that have special meanings. You can use these target
names with individual links or with the <base> tag instead of naming an actual frame. For example,
you can use these targets to open a pop-up window, as shown here:

 Welcome

Table 10-1 has the list of these target names.

Table 10-1. Reserved Target Names

Name Description

_top
Opens the target in the "top" level of the window. That means every frame is cleared
away to make room for the new document. It's equivalent to typing the URL of the target
page into the browser's address box.

_parent
Opens the target in the frameset that contains the current frame. In the examples you've
seen so far, there's only one frameset, so this is equivalent to the _top target. However, if
you start deploying nested frames (Section 10.3.5) the _parent target comes in handy.

_self
Opens the target in the current frame. This is the standard behavior, unless you've
changed it using the <base> tag.

_blank
Opens the target in a brand new pop-up window. This technique should be used sparingly,
because it can quickly litter the unsuspecting visitor's monitor with a confusing mess of
extra windows.

10.3. Building Better Frames Pages

So far, you've learned enough about frames to create a basic Web site that sports a never-changing
navigation bar (just like the one shown in Figure 10-7). In this section, you'll learn about a few
refinements that help make sure your frames look respectable, as well as a way to create more
complex site structures using nested frames.

10.3.1. Frame Borders and Resizing

When you create a basic frameset, the browser adds a thick gray bar between each frame. The Web
surfer can drag this bar to resize your frames at will, potentially scrambling your content (see Figure
10-8).

Figure
10-8.
Resizable

frames just

give your

Web

visitors too

much

control.

Although resizable frames are occasionally useful, very few Web sites use them. Instead, most Web
sites add the noresize attribute to lock frames into place. That way, you decide what the page looks
likeand stays like. You need to apply the noresize attribute to each <frame> tag, like so:

 <frame noresize … >

Many Web pages go even further, and hide the ugly gray bar altogether, by using the border
attribute of the <frameset> tag. You also need to add a number to the border attribute that
represents the width of the bar (in pixels). Set this number to 0 and the border disappears, so the
page blends into one seamless whole:

 <frameset border="0" … >

Here's a cleaned-up version of the frameset demonstrated earlier:

 <html>
 <head>
 <title>A Sample Frames Page</title>
 </head>

 <frameset cols="30%,*" border="0">
 <frame name="Menu" src="menu.htm" noresize>
 <frame name="Main" src="welcome.htm" noresize>
 </frameset>
 </html>

Figure 10-9 shows the result.

Figure
10-9.
This

frames

page might

as well be

an ordinary

Web

pagethe

only

indication

that there

are two

pages

involved is

that each

page uses

a different

background

color. You

could

change this

so they

blend

together

completely,

or you

could use

styles to

add a

fancier

border.

10.3.2. Scrolling

Frames have one unmistakable featurethe scroll bar. When the content of one page grows larger
than the size of its frame, scrollbars appear. But what makes this scrolling feature different than in an
ordinary Web page is the fact that you can scroll each frame independently , as shown in Figure 10-
10 .

Note: The fact that you don't see independently scrolling page sections is one way you can tell that a Web site like Amazon isn't

designed using frames. When you scroll a page on the Amazon Web site, everythingcontent, menu, and header sectionsscrolls as part

of the same page.

In order to prevent confusion, it's a good idea to keep as little content as possible in the non-content
frames (like the menu panel) to prevent having more than one set of scrollbars, which can confuse
the hardiest Web fan.

Alternatively, you can change the scrolling behavior of a frame using the scrolling attribute. The
standard setting, auto (which you get if you don't list any attribute) shows scrollbars only when
they're needed. Your other options are no (to never show scrollbars) or yes (to always show them).

Figure
10-10.
Frames

support

independent

scrolling.

That means

that when

you scroll

down to see

a lengthy

content

page, other

frames (like

the

navigation

controls

circled in

this

example)

remain

locked in

place.

Here's an example that disables scrolling for the menu frame:

 <frame name="Menu" src="menu.htm" noresize scrolling="no">

Figure 10-11 shows the difference.

Note: Resist the temptation to turn off scrolling, because it might be needed if the browser window is very small. Ideally, you should test

your Web site at the minimum expected browser window size (see Section 5.1.2 in Chapter 5 for a discussion about screen resolutions),

and ensure that at this size, the only scrollbars that appear are in the main content page. The only time you may want to turn off scrolling

is when you show a small frame for a navigation bar or a page banner.

Figure
10-11.
Top: If the

browser

window is

small enough,

you'll see two

sets of

scrollbars,

one for each

frame that

can't

accommodate

its content.

Bottom:

When you

disable

scrolling in a

frame, no

scrollbars

appear, even

if that means

some content

is chopped off

or even

completely

inaccessible.

10.3.3. Handling Browsers That Don't Support Frames

Earlier in this chapter (Section 10.2) you learned about the <noframes> tag, which allows you to
define content that appears in a browser that doesn't support frames. Although it's rare that you'll
run into any trouble, it's still a good idea to plan an alternative option for surfers who can't view your
frames. Fortunately, HTML gives you an option that doesn't require a lot of work.

For example, consider the two-frame example you've been reading about throughout this chapter. It

uses frames to show a menu alongside a content page. At a bare minimum, browsers that don't
support frames should still be able to read the content pages one at a time, in an ordinary browser
window. The easiest way to accomplish serve up these individual pages is to copy the HTML from the
menu.htm file into the <noframes> section, as shown here:

 <html>
 <head>
 <title>A Sample Frames Page</title>
 </head>
 <frameset>…</frameset>
 <noframes>
 <body>
 <h1>Choose a Topic</h1>
 Welcome

 Page 1

 Page 2

 Page 3
 <body>
 </noframes>
 </html>

Notice that the <noframes> section picks up where the rest of the HTML document leaves offwith the
<body> tag that defines the start of the HTML content.

Now, when the page is viewed on a browser that doesn't support frames, the visitor will see a
heading and the list of pages from the menu. The visitor can click through to see each content page.
The solution isn't perfect (for example, in order to move from the content page back to the menu,
the visitor needs to click the browser's Back button), but it does provide a rudimentary view of your
site's pages. You also need to remember to copy the menu HTML back into the <noframes> section
of the index.htm document every time you change it.

Tip: It's also a good idea to add content to the <noframes> section so any search engine that stumbles across your page can find out

more about it, increasing the likelihood your Web site will be cataloged and searchable. Chapter 11 discusses search engines and how

they find your Web site in more detail.

10.3.4. Better URLs for Framesets

There's no law against requesting a frameset page. You can type its URL into your browser window or
link to it in the same way you link to any page. However, frameset pages are a lot less flexible,
because they combine several pages into one URL. To understand the problem that can create, it
helps to consider an example.

When you head to a frameset page (say, index.htm), the browser requests the initial page for each
frame. For example, the browser might request navbar.htm to get a menu and start.htm to show a
start page. When you start clicking links in the navigation bar, the browser performs the nifty little
trick you saw earlierit keeps the same frame layout, but it loads in new Web pages. For example, if

you click Contact Us, the link might swap the start.htm page with contact.htm .

But here's the problem: The URL in the browser window never changes. No matter what page you're
looking at, the URL still reflects the name of the initial frameset page (index.htm). That means that
there's no way to surf back to the arrangement of frames that has contact.htm loaded up. Instead,
when you type index.htm into your browser you'll see the initial set of frames (which includes
start.htm), and you'll need to click your way through to contact.htm .

Note: The limitation discussed in this section actually doesn't apply to the Favorites feature in Internet Explorer. That's because IE is

crafty enough to store information about what page should be loaded into each frame, so it can restore the exact arrangement of frames.

However, this limitation does apply to other browsers like Firefox. More significantly, it applies if you need to type the URL in by hand,

send it in an email message, or provide a link from another Web site.

You might think you could solve this problem by requesting contact.htm directly. But that would get
you just the contact.htm page, not the frameset. As a result, you wouldn't see the content in other
frames, like the ever-so-important navigation bar.

One way around this problem is to create extra frames pages. For example, if you want a way to get
back to the contact.htm page, you could create a frames page named contact_frames.htm . This
frames page would use the exact same frameset as index.htm , with one minor difference. Instead of
loading the start.htm page initially, it would load the contact.htm page. If you want to point someone
to the Contact Us page, just use contact_frames.htm . Think of it as an open front door that gives
surfers another way into your Web site.

The only problem with this approach is that you need to create a lot of extra frameset pagesas much
as one for each ordinary content page. If you decide to change your layout later on, you're stuck with
a lot of updating.

Note: A more advanced approach is to add JavaScript code to each page. The idea is that each content page should check if it's a

frameset when it's shown in a browser. If it isn't, the content page should send the surfer back to the frames page, with specific

instructions about what frames to show. If you want to experiment with this more complex approach, work through the JavaScript section

in Chapter 14 , and then read the solution at http://javascript.about.com/library/blframe.htm .

10.3.5. Nested Framesets

As you get more comfortable with frames, you may begin to plan more ambitious layouts. Sooner or
later, you'll want to divide and subdivide the browser window with wild abandon. The good news is
that this isn't that difficult to accomplishyou simply need to nest one set of frames inside another.

For example, imagine you want to divide a page into two rows, and place the header information into
the top row. Then, you want to subdivide the remaining content into two columns, featuring the menu
controls and content page. Figure 10-12 shows the result of this kind of slicing and dicing.

Figure
10-12.
There are

three

frames in

this

example.

The header

is always

80 pixels

high, and

the menu

bar is

always 100

pixels wide.

The main

content

page

(where it

says

"Welcome")

expands to

fill whatever

space is left

over.

In this case, you need two framesets. The outer frameset defines the two rows, and the inner
frameset splits one of these rows into columns. Here's the complete code for the frames page:

 <html>
 <head>
 <title>A 3-Part Frames Page</title>
 </head>

 <frameset rows="80,*" border="0">
 <frame name="Header" src="header.htm">

 <frameset cols="100,*" border="0">
 <frame name="Menu" src="menu.htm" noresize>
 <frame name="Main" src="welcome.htm" noresize>
 </frameset>

 </frameset>
 </html>

The only challenge in writing a nested frameset is determining the correct order to use for dividing
your page. If you reverse the nesting in this example (so you split the window into columns first and

then into rows), you'll end up with a different result.

 <html>
 <head>
 <title>A 3-Part Frames Page</title>
 </head>

 <frameset cols="100,*" border="0">
 <frame name="Menu" src="menu.htm" noresize>

 <frameset rows="80,*" border="0">
 <frame name="Header" src="header.htm">
 <frame name="Main" src="welcome.htm" noresize>
 </frameset>

 </frameset>
 </html>

Figure 10-13 shows this reorganized version.

Figure
10-
13.
Here, the

same

frames as

shown in

Figure 10-

12 end up

in different

places. The

browser

begins by

splitting the

page

vertically

into two

columns,

and then

splits the

second

column into

two rows.

10.3.6. Another Way to Nest Frames

There is one limitation with defining all your frames in a single frames page. To understand the
problem, it helps to consider a new example.

Figure 10-14 shows a page that's divided into a typical layout of three frames: a header at the top, a
topic panel at the left, and a content region at the right. However, the way these frames are used is
different from the previous examples. If you click one of the topic links on the left, you'll jump to a
different portion of the current page. If you click one of the header links at the top, you'll surf to a
whole new page with a different set of topics.

Figure
10-
14. In
this page,

the main

navigation

links are all

a part of

the header

panel on

the top.

The panel

on the left

shows

something

new: topic

links that

allow the

reader to

quickly

jump from

one part of

the current

page to

another

(using the

bookmark

feature you

learned

about on

Section 8.3

). While the

header

menu

never

changes,

every page

has its own

set of topic

links.

Tip: Topic links are a great way to break down large pages and make them easier to navigate on the Web. Add these links to your pages

by using bookmarks (as described on Section 8.3).

The problem that this example presents is that every time the reader clicks a new link in the header,
you need to replace both of the frames underneath. That's because you need to load a new content
page and a new list of topic links. Unfortunately, if you implement this design using a single frames
page, that isn't possible. Every time you click a link in the header, you can change only a single
frame.

The workaround to this problem is to create more than one frames page. The first frames page is
index.htm , which defines the overall structure of the site. It simply splits the page into a header
frame and another frame underneath, as shown here:

 <html>
 <head>
 <title>An Advanced Nested Frames Example</title>
 </head>
 <frameset border="0" rows="94,*">
 <frame name="Header" scrolling="no" noresize src="header.htm">
 <frame name="Main" src="welcome_frame.htm">
 </frameset>
 </html>

The trick here is that the frame underneath points to another frame document, which is named
welcome_frame.htm . The welcome_frame.htm file then splits the page again , this time into two
columns:

 <html>
 <head><title></title></head>
 <frameset cols="150,*">
 <frame name="TopicLinks" src="welcome_topics.htm" scrolling="no">
 <frame name="Content" src="welcome.htm" >
 </frameset>
 </html>

The frame on the left, TopicLinks, holds the topic links. The frame on the right, Content, holds the
actual text (see Figure 10-15).

Figure 10-
15. When you

request the

index.htm page in a

browser, the

browser creates the

first two frames

(Header and Main),

and then loads up

the header.htm and

welcome_frame.htm

files. The

welcome_frame.htm

file splits the bottom

portion of the

window into two

more frames

(showing

welcome_topics.htm

and welcome.htm).

The result is just

like a nested frame

set, but it gives you

more control over

navigation.

In order for this model to work, you need to create a frame document for every content page. That's
the messy bit. For example, when the Page 1 link is clicked, you would replace the bottom frame with
the page1_frame.htm page. Here's the link you'd put in the header.htm document:

 Page 1

The page1_frame.htm document looks exactly the same as welcome_frame.htm , because it defines
the same two column frames, in exactly the same positions. The only difference is that the source
changes to point to a new topic page and a new content page, as shown here:

 <html>
 <head><title></title></head>
 <frameset cols="150,*">
 <frame name="TopicLinks" src="page1_topics.htm" scrolling="no">
 <frame name="Content" src="page1.htm" >
 </frameset>
 </html>

That's all you need to make this example work. As you can see, by creating more than one frames
page, you buy yourself oodles more flexibility. However, this approach requires some extra effort. In
order to complete this solution, you need a frames page, topic page, and content page for each link
in the header. Sadly, there's no way to dodge this work.

Tip: Of course, high-powered HTML editors like FrontPage and Dreamweaver do provide tools that make it easier to work with frames.

For example, you can edit all the pages that belong to a frameset in one window. The same support isn't available in Nvu.

Part Three: Connecting with Your Audience
Chapter 11, Attracting Visitors

Chapter 12, Letting Visitors Talk to You (and Each Other)

Chapter 13, Making Money with Your Site

Chapter 11. Attracting Visitors
Over the past ten chapters, you've polished your Web designing mettle and learned how to build a
variety of sleek pages. Now it's time to shift to an entirely different role, and become a Web site
promoter.

The best Web site in the world won't do you much good if it's sitting out there all by its lonesome self.
In order for your site to flourish, you need to find the best way to attract visitorsand keep them
flocking back for more. In this chapter, you'll learn some valuable tricks for promoting your site.
You'll also see how search engines work, how to make sure they regularly index your site, and how to
work your way up the rankings. Before you know it you'll be more popular than chocolate ice cream.

11.1. Your Web Site Promotion Plan

Before you plunge into the world of Web site promotion, you need a plan. So grab a pencil and plenty
of paper, and get read to jot down your ideas for global Web site domination (fiendish cackling is
optional).

Although all Webmasters have their own tactics, it's generally agreed that the best way to market a
Web site is to follow these steps:

Build a truly great Web site.

If you start promoting your Web site before there's anything to see, you're wasting your effort
(and probably burning a few bridges). Nothing says "never come back" like an empty Web site
with an "under construction" message.

1.

See step 1.

If in doubt, polish and perfect your Web site! Fancy graphics aren't the key concern herethe
most important detail is whether or not you have some genuinely useful content. Ask yourselfif
you were surfing the Web, would you stop to take a look at this site? Make sure you've taken
the time to add the kinds of add-on features that will keep visitors coming back. One great
option: a discussion forum (see the next chapter for more details on how to add one to your
site).

2.

Share links with friends and like-minded sites.

This step is all about building community. Contrary to what you might expect, this sort of small-
scale, word-of-mouth promotion might bring more traffic to your Web site than high-powered
search engines like Google.

3.

Perfect your Web site's meta tags.

Meta tags are hidden tags that convey important information about your Web site's content, like
a list of keywords and a site description. Search engines use them as one way to determine
what your Web site's all about.

4.

Submit your Web site to Internet directories.

Like search engines, directories help surfers find Web sites. The difference between directories
and search engines is that directories are generally smaller catalogs put together by humans
(rather than huge sprawling text indexes amassed by computers).

5.

Submit your Web site to Internet search engines.

Now you're ready for the big time. Once you submit your Web site to Web heavyweights like
Google, it officially enters the public eye. However, it still takes time to climb up the rankings

6.

7.

and get spotted.

6.

Figure out what happened.

In order to assess the successes and failures of your strategy, you need to know measure some
vital statisticshow many people are surfing to your site, how long they're staying, and how
many visitors are coming back for more. To take stock, you'll need to crack open tools like hit
counters and server logs.

7.

Throughout this chapter, you'll tackle these steps, get some new ideas, and build up a collection of
promotion strategies.

11.2. Spreading the Word

Some of the most effective promotion you can do doesn't involve any high-tech HTML wonkery, but instead amounts
to variations on the theme of good old fashioned advertising.

The first step is to find other Web sites like yours. If you're creating a topic-oriented siteyour musings on, say, golf,
fine jewelry, or jeweled golf clubsthese kinds of similar sites are friendlies that make up the larger online community
to which you now belong. So why not introduce yourself? Strike up a reciprocal link relationship (see the next
section).

On the other hand, if you're creating a business site, similar sites are, obviously, your competitors. As a result,
you're unlikely to share links. However, it's a great idea to Google your competition. You'll probably find other
sitesbusiness directories, news sites, content sites, and so onthat link to these competitive sites. Once you've found
these places, you can advertise your Web site in them as well.

11.2.1. Reciprocal Links

A reciprocal link is a link-trading agreement. The concept is simple. You find a Web site with similar content, and you
strike a bargain: Link to my site, and I'll link to yours. Reciprocal links are an important thread in the underlying
fabric of the Web. If you're not sure where to start searching for potential link buddies, pay a visit to Google and use
the link : operator (as explained in Figure 11-1) to see who's linking to sites similar to yours.

Figure 11-1. Google has a little-known

search keyword that lets you search for links (to

your site or to anyone else's for that matter). It's

the link: operator. If you type in

link:www.disneylandparis.com , you'll find all the

Web sites that link to the EuroDisney home page.

You can use any URL you want (for example, try

link:www.disneylandparis.com/uk/introduction.htm

to find out who's linking to the English-language

intro page). Just remember to always leave out

the http://part of the URL.

Reciprocal links only work if there's a logical connection between the two sites. For example, if you've created the
Web site www.ChocolateSculptures.com , it probably makes sense to exchange links with
www.101ChocolateRecipes.com . But www.HomerSimpsonForPresident.com is a far stretch, no matter how much
traffic it gets.

Topic isn't the only consideration. You should also look for a site that feels professional. If a similarly themed site is
choked with ads, barren of content, formatted with fuchsia text on a black background, and was last updated circa
1998, keep looking.

Once you've found a site you want to exchange links with, dig around on the site for the Webmaster's email address.
Send an email message explaining that you love www.101ChocolateRecipes.com , and plan to link to it from your
site, www.ChocolateSculptures.com . Then, gently suggest that you think your Web site would be of great interest to
the readers of www.101ChocolateRecipes.com .

Tip: Reciprocal linking can require a little finesse. It's best to look for sites that complement yours, but don't necessarily compete with it. You'll also have more

luck if you approach a Web peer (a site that's of similar quality or has a similar amount of traffic to yours).

Once you enter into a link agreementeven if it's just an informal exchange of emailsremember to keep your end of

the deal. Don't remove the link from your Web site without letting the other Webmaster know about your change.
It's also a good idea to keep checking on the other site to make sure your link remains prominent. If it disappears,
don't fly into an Othellian ragejust send a polite email asking where it went or why it disappeared.

Reciprocal links are also a good way to start working your way up the search engine rankings (see Section 11.4.2.1
). That's because one of the criteria Google takes into account when determining how to order results in a Web
search is how many sites link to your Web site. The more popular you are, the more likely you'll climb up the list.

Note: There are some companies that sell reciprocal link services. The basic idea is that they try to pair up different Web sites (for a fee) in a link-sharing

agreement. Don't fall for it. Your traffic might increase, but the visitors you'll get won't really be interested in the content of your site, and they won't hang

around for long.

11.2.2. Web Rings

A Web ring is similar to a reciprocal link, but instead of sharing a link between two partners, it binds a group of Web
sites together.

For example, imagine you've created a brilliant new site featuring reality TV trivia. To get more exposure, you could
join a Web ring dedicated to reality TV. You agree to put a block of HTML on your Web site that advertises the ring
and lets surfers visit other sites in the ring. As payback, you become another stop on the ring (see Figure 11-2).
Web rings are almost exclusively used with topic-based sites.

Figure
11-2.
Many Web

rings don't

list all their

member

sites.

Instead,

surfers can

move from

one site to

the next

using

previous

and next

links. This

sequence

of sites

makes up

the "ring."

Sadly, the majority of Web rings consist of gaudy, amateurish Web disasters. Pair up with these nightmares, and
your Web site will be deemed guilty by association. However, with a little research you may find a higher quality ring.
To search for one, use Google (see Figure 11-3). If you want to establish and manage your own ring, check out
http://dir.webring.com/rw or www.bravenet.com .

Note: The biggest disadvantage of Web rings is that they usually require you to add a fairly ugly set of links to your page. Before you sign up, carefully

evaluate if the extra traffic is worth it, and travel to all the other sites to see if they're of similar quality. If you're linked in a ring with low-quality sites, it can hurt

your reputation.

11.2.3. Shameless Self-Promotion

To get your Web site listed on many popular sites, you'll need to fork over some cold, hard cash. However, some of
the best advertising doesn't cost anything. The trick is to look for sites where you can promote and contribute at the
same time.

For example, if you've created the Web site www.HotComputerTricks.com , why not answer a few questions on a
computing newsgroup or discussion board? It's considered tactless to openly promote your Web site, but there's
nothing wrong with dispensing some handy advice and following it up with a signature that includes your Web site
URL.

Figure
11-3.
Searching

for a Web

ring? Try

searching on

Google;

enter the

topic

followed by

the words

"web ring."

Here's an example of how you can answer a poster's question and put a good word in for yourself at the same time:

Jim,

http://dir.webring.com/rw

The problem is that most hard drives will fail when submerged in water. Hence, your fishing computer idea
won't work.
Sasha Mednick
www.HotComputerTricks.com

An answer posting is much better than sending an email directly to the original poster, because on a popular site,
hundreds of computer aficionados with the same question will read your posting. If even a few decide to check out
your site, you've made great progress.

If you're very careful, you might even get away with something that's a little more explicit:

Jim,
The problem is that most hard drives will fail when submerged in water. Hence, your fishing computer idea
won't work. However, you might want to check out my home-made hard-drive vacuum enclosure
(www.HotComputerTricks.com), which I developed to solve the same problem.
Sasha Mednick
www.HotComputerTricks.com

Warning: This maneuver requires a very light touch. The rule of thumb is that your message should be well-intentioned. Only direct someone to your Web

site if there really is something specific there that addresses their question.

Some sites allow you to post tips, reviews, or articles. In this case, you can use variations of the same technique.
Remember, dispense some useful advice, and then follow up with a byline at the end of your message. For example,
if you submit a free article that describes how to create your groundbreaking vacuum enclosure, end it with this:

Sasha Mednick is a computer genius who runs the first-rate computing Web site www.HotComputerTricks.com.

Promotion always works best if you believe in your product. So make sure there's some relevant high-quality content
on your site before you boast about it. Don't ever send someone to your site based on some content you plan to add
(someday).

11.2.4. Return Visitors

Attracting fresh faces is a critical part of Web site promotion, but novice Webmasters often forget something equally
importantreturn visitors. In order for a Web site to become truly popular, it needs to be able to attract visitors who
will return again and again. Many a Web site creator would do better to spend less time trying to attract new visitors
and more time trying to keep the attention of the current flock.

If you're a marketer, you know that a customer that comes back to the same store three or four more times is a lot
more likely to make a purchase than someone who's there on a first visit. These regulars are also more likely to get
excited and recruit their friends to come and take a look. This infectious enthusiasm can lead more and more people
to your Web site's virtual doorstep. The phenomenon is so common it has a name: the traffic virus .

Tip: Return visitors are the ultimate measuring stick for a Web site. If you can't interest someone enough to come back again, your Web site's just not fulfilling

its destiny.

So how does your Web site become a favorite stopping point for Web surfers? The old Internet adage says it
allcontent is king . Your Web site needs to be chock full of fascinating must-read information. Just as important, this
information needs to change regularly and noticeably. If you update information once a month, your Web site barely
has a pulse. If you update information two or three times a week, you're ready to flourish.

Never underestimate the importance of regular updates . It takes weeks and months of up-to-date information to
create a return visitor. However, one dry spellsay, three months without changing anything more than the color of
your buttonsdoesn't just stop attracting newcomers, it can actually kill off your current roster of return visitors.
That's because savvy Web surfers immediately realize when a Web site's gone stale. They have much the same
sensation you feel when you pull out a once-attractive pastry from the fridge and find it's as hard as an igneous rock.
You know what happens nextit's time to toss the pastry away, clear out the Web site bookmarks, and move on.

Tip: Signs of a stale site include old-fashioned formatting, broken links, and references to old events (like a Spice Girls CD release party or a technical

analysis of why the dot-com boom may not last as long as everyone thinks).

The other way to encourage return visitors is to build a community . Discussion forums, promotional events, and
newsletters are like glue. They encourage visitors to feel like they're participating in your site, and sharing your Web
space. If you get this right, hordes of visitors will move in and never want to leave. You'll learn specific techniques for
community building in the next chapter.

GEM IN THE ROUGH

Favorite Icons

Your first challenge is to get a Web surfer to add your site to her browser bookmarks. However, that's
not enough to guarantee a return visit. Your Web site also needs to be fascinating enough that it
beckons from the bookmark menu, tempting the visitor to come back. If you're a typical surfer, you
regularly visit only about five percent of the sites you've bookmarked.

One way to make your Web site stand out from the crowd is to change the icon that appears in the
bookmark or favorites menu (technically called a favicon). This technique is browser-specific, but it
works reliably in most versions of Internet Explorer, Firefox, and Safari. The illustration in this box
shows the favicons for Google and Amazon.

To create a favicon, just add an icon file to the top-level folder of your Web site, and make sure it's
named favicon.ico . The best approach is to use a dedicated icon editor (see the shareware sites listed
on Section 4.1.1) because that will let you create an icon file that has both a 16-pixel x 16-pixel and
larger 32 x 32 version of your icon in the same file. That's handy because some operating systems and
browsers use the favicon when you drag a shortcut to the desktop. If you don't have an icon editor,
just create a bitmap (a .bmp file) that's exactly 16 pixels wide and 16 pixels high.

11.3. Adding Meta Tags

Meta tags give you a way to attach descriptive information to your Web pages, which is important
because some Web search engines rely on these tags to help surfers find your work. Figure 11-4
explains how it all works.

Figure
11-4.
Ever

wondered

where the

information

that you

see in a

search

listing

comes

from? The

underlined

link part (in

this

example,

"Sugar

Beat") is

the title of

the Web

page that's

been

found. The

text

underneath

is a hidden

description

pulled

directly

from the

page's

meta tag.

Meta tags

can also

contain a

keyword

list, which

search

engines

sometimes

consult

when

deciding

which

results to

list. That

means it's

important

to list likely

search

terms in

your meta

tag's

keyword

list.

Note: Fun fact for etymologists and geeks alike: the term meta tag means "tags about," as in "tags about your Web page."

All meta tags are placed in the <head> section of the page. Here's an example meta tag that assigns
a description to a Web page:

 <html>

 <head>
 <meta name="description"
 content="Noodletastic offers custom noodle dishes made to order.">
 <title>Noodletastic</title>
 </head>

 <body>…</body>

 </html>

All meta tags look more or less the same. The tag name is <meta>, the name attribute indicates the
type of meta tag, and the content attribute supplies the relevant information.

Meta tags don't show up when your page appears in a browser. They're intended for the programs
that read your Web pagelike browsers and Web search engines (see the box below).

UP TO SPEED

How Web Search Engines Work

A Web search engine like Google is built out of three separate pieces. The first piece is
an automated program that roams the Web, downloading everything it finds. This
program (often known by more picturesque names like spider, robot , or crawler) will
eventually stumble across your Web site and copy its contents.

The second piece is an indexer that chews through the Web page, and extracts a bunch
of meaningful information, including the Web page title, the description, and the
keywords. The indexer also records a great deal of more esoteric data. For example, a
search engine like Google keeps track of what words crop up the most often on a page,
what other sites link to your page, and so on. The indexer inserts all of this digested
information into a giant catalog (technically, a database).

The final piece of the search engine is the part you're probably the most familiar withthe
front-end, or search, page. You enter the keywords you're hunting for, and the search
engine scans the catalog looking for suitable pages. Different engines have different
ways of ranking pages, but the basic idea is that the search engine attempts to make
sure the most relevant and popular pages turn up early in the search. In a search
engine like Google, Web sites aren't ranked individually. That is, there's no such thing as
the world's most popular Web page (in the eyes of Google). Instead, pages get ranked
in terms of how they stack up against whatever search keywords have been entered.
That means that a slightly different search (say, "green tea health" instead of just
"green tea") could get you a completely different set of results.

In theory, there's no limit to the types of information you can place inside a meta tag. For example,
FrontPage is notorious for inserting meta tags that identify that your pages were built with its
software. (Don't worry; once you understand meta tags, you'll recognize this harmless fingerprint
and you can easily remove it.) Another Web page might use a meta tag to record the name of the
Web designers who created it, or the last date it was updated.

Although there's no limit to the information you can put in meta tags, in practice, there are two meta
tags that are more important than all others, because they're the only ones heeded by search
engines. These are the description and keywords meta tags. These details, in conjunction with the
<title> tag, constitute the basic information the search engine needs to know about your page. That
means you need to make sure you put these tags in every page you create.

11.3.1. The Description Meta Tag

The description of your page is the simplest part. You simply need a few sentences that distill the
content of your site into a few plain phrases. Here's an example:

 <meta name="description" content="Sugar Beat Music for Children offers age-
 appropriate music classes for children 4 months to 5 years old.">

This tag is split over two lines in this book because there's not enough room for it on one line. But
when you're composing a description in your HTML, file make sure you don't hit the Enter key. If you
do, your description could get broken up over multiple lines when it appears on a search results page.

Although you can stuff a lot of information into your description, it's a good idea to limit it to a couple
of focused sentences that total no more than around 50 words. Some search engines use the
description text, while others rely more heavily on the text in the page. Even if your description is
shown on a search result page, you'll see only the first part, followed by an ellipsis (…) where it gets
cut off.

DESIGN TIME

The Importance of Titles and Image Text

A search engine draws information from many parts of your page, not just the meta
tags. To make sure your pages are search-engineready, you should check that you're
using the <title> tag in all your pages, and alternate text with all your images.

Alternate image text is the text that's shown if an image can't be retrieved. You specify
this text using the alt attribute in the tag (see Section 7.1.2). Search engines
also pay attention to the alternate textfor example, Google, uses it as the basis for its
image-searching tool (http://images.google.com). If you don't have alt text, Google has
to guess what the picture is about by looking at nearby text, which is less reliable.

The <title> tag also plays several important roles. You already know that it sets the text
in the title bar of the browser window. The <title> tag also helps identify your Web page
in a search (see Figure 11-4). Finally, the <title> tag contains the text that appears in
the bookmarks menu if a surfer bookmarks your page. Keep that in mind, and refrain
from adding long slogans. "Ketchup CrusadersBecause ketchup isn't just for making food
tasty" is about the longest you can stretch a title, and even that's iffy. On the other
hand, remember not to omit essential information. The title "Welcome" or "New Page 2"
(a FrontPage favorite) isn't very helpful.

11.3.2. The Keyword Meta Tag

The keyword list should contain a list of about 25 words or phrases (or less) that represent your Web
site. Each word in the list is separate by a comma. Here's an example:

 <meta name="keywords" content="sugarbeat, sugar, beat, music, children,
 musical, classes, movement, babies, infants, kids, child, creative">

The keyword list is a great place to add key terms (like "horseback riding"), alternate spellings
("horse back riding"), synonyms or related words ("equestrian"), and even common misspellings
("ecquestrian"). Keywords aren't case-sensitive.

Unfortunately, there's a huge caveat. Most search engines don't use the keyword list any longer.

That's because it was notorious for abuses (many a Web page stuffed their keyword list full of
hundreds of words, some only tangentially related to what was actually on the site). Search engines
like Google take a more direct approachthey look at all the words in your Web page, and pay special
attention to words that appear more often, appear in headings, and so on.

Note: To find out which Web search engines still support the keyword list, check out

http://searchenginewatch.com/webmasters/article.php/2167891 .

Even though search engine support is spotty, it's a good idea to keep using the keyword list. Just
don't expect it to do that much for you.

FREQUENTLY ASKED QUESTION

Keyword Tricks

Can I make my Web site more popular by adding hidden keywords ?

There are quite a few unwholesome tricks that crafty Webweavers use to game the
search engine system (or at least try). For example, they might add a huge number of
nonmeta-tagged keywords, but hide the text so it isn't visible on the page. (White text
on a white background is one oddball option, but there are other style-sheet tricks.)
Another trick is to create pages that aren't really a part of your Web site, but are stored
on your Web server. You can fill these pages with repeating keyword text. To complete
this trick, you can use a little JavaScript code to make sure real people who arrive at the
page are directed to the entry point of your Web site, while search engines get to feast
on the keywords. (JavaScript is discussed in Chapter 14 .)

As seductive as some of these tricks may seem to lonely Web sites (and their owners),
the best advice is to avoid them altogether. The first problem is that they pose a new
set of headaches and technical challenges, which can waste hours of your day. But more
significantly, search engines learn about these tricks almost as fast as Web developers
invent them. If a search engine catches you using these tricks, they may ban your
completely, banishing your site to the dustbin of the Web.

If you're still tempted, keep this in mind: Many of these tricks just don't work. In the
early days of the Web, primitive search engines gave a site more weight based on the
number of times a keyword cropped up, but modern search engines like Google use
much more sophisticated page-ranking systems. A huge whack of keywords might not
move you up the search list one iota, and it'll make you as popular as Enron.

http://searchenginewatch.com/webmasters/article.php/2167891

11.4. Directories and Search Engines

Now that you're well on your way to perfecting and popularizing your site, it's time to start looking at
the second level of Internet promotionsearch engines. Getting your Web site into the most important
search engine catalogs is a key step in publicizing your Web site. Working your way up the rankings
so Web searchers are likely to find you takes more work, and monopolizes the late-night hours of
many a Webmaster.

11.4.1. Directories

Directories are searchable site listings, with a difference: They're created by humans. That means a
small army of computer workers painstakingly puts together a collection of sites, neatly sorted into
categories. The advantage of directories is that they're well-organized. A couple of clicks can get you
a complete list of California regional newspapers. The unquestioned disadvantage is that they're
dramatically smaller than full-text search catalogs. That means directories aren't very useful for
those in search of a piece of elusive information that doesn't easily fall into a category, like the most
commonly misspelled words. Over the years, as the Web's ballooned in size, directories have become
increasingly specialized, and full-text searching tools have become the most common way to hunt for
information.

So, given that directories are just the unattractive cousins of full-text search engines, why do you
need to worry about them? Two reasons. First, many Web surfers still use directories, even if they
don't use them as often as full-text search engines. Second, some search engines (including Google)
pay attention to directory listings, and tend to rank sites higher if they turn up in certain directories.
Getting into the right directories can help you start to move up the list in a full-text search. And just
like college, getting into a directory requires that you submit an application, which you'll learn about
next.

11.4.1.1. The Open Directory Project

The most important directory to submit your site to is the Open Directory Project (ODP) at
http://dmoz.org . The ODP is a huge, long-standing Web site directory that's staffed entirely by
thousands of volunteer editors, who review submissions in countless categories. The ODP isn't the
most popular Web directory (that honor currently goes to the Yahoo directory), but it is used behind
the scenes by other search engines, including Google, Yahoo, AOL, HotBot, and Lycos. In fact,
Google's own directory service (http://directory.google.com) is based on the ODP.

Before submitting to the ODP, take the time to make sure you do it right. An incorrect submission
could result in your Web site not getting listed at all. You can find a complete description of the rules
at http://dmoz.org/add.html , but here are the key requirements:

Don't submit your site more than once.

Don't submit your site to more than one category.

http://dmoz.org

Don't submit more than one page or section of your site (unless you have a really good reason,
like the separate sections are dramatically different).

Don't submit sites that contain "illegal" content. (By the OPD definition, this is more accurately
described as unsavory content, like pornography, libelous content, or material that advocates
illegal activityyou know who you are.)

Clean up any broken links, outdated information, or any other red flags that might suggest to
an editor that your site isn't here for the long term.

When you submit your site, describe it carefully and accurately. Don't promote it. In other
words "Ketchup Masters is a manufacturer of gourmet ketchup" is acceptable. "Ketchup Masters
is the best food-oriented site on the Webthe Louisville Times says you can't miss it!" is not.

Don't submit a site that's not completed. Your "under construction" page won't get listed.

Next step is to spend some time at the http://dmoz.org site, until you've found the single best
category for your site (see Figure 11-5).

Figure

11-5.
Top: When

you first surf

to the ODP

site, you're

greeted by a

group of

general, top-

level

categories.

Bottom: As

you click your

way deeper

into the

hierarchy,

you'll

eventually

find the

specific

subcategory

that'll make a

good home

for your site.

Here's the

Arts

Visual Arts

 Native

and Tribal

category.

There are

several

subcategories

(like Asia, with

22 sites).

Categories

with an @

after their

names link to

a different

place in the

hierarchy.

Once you've found the right section, click the "suggest URL" link at the top of the page and fill out the
submission form (see Figure 11-6). The form includes your URL, the title of your site, a brief
description, and your email address.

Figure
11-6.
Here's a

portion of

the ODP

submission

form for a

new site.

Read all

the

instructions

carefully, fill

in the

boxes, and

then click

the inviting

Submit

button at

the bottom

of the page

(not shown

here).

Tip: If you have some free time on your hands, you can offer to help edit a site categoryjust click the "become an editor" link. And even if

you don't have editorial aspirations, why not check out the editor guidelines at http://dmoz.org/guidelines to get a better idea of what's

going on in the mind of an ODP editor, and how he'll evaluate your Web site submission?

Once you've submitted your site, there's nothing to do but wait (and submit your site to the other
directories and search engines discussed in this chapter). If two or three weeks pass without your
site appearing in the listing, and you haven't received an email describing any problems with your
site, try submitting again. If that still doesn't work, it's time to contact the editor of the category
where you submitted your site. Write a polite email asking why your site wasn't added to the listing,
and include the date of your submission(s) and the name, URL, and description of your site. You can
find the email address for the category editor at the very bottom of the category page (see Figure
11-7).

11.4.1.2. Other directories

ODP is a great starting point, but it isn't the only directory on the block. The other two heavyweights
are Yahoo and Looksmart. Unfortunately, getting your site on these directories takes considerably
more work. If you've created a commercial site, you'll almost certainly need to pay a fee. If you've
created a non-commercial site, you can probably get in free, but it may take persistence, emails,
multiple submissions, and a bit of luck.

Here are some links to get your started:

For Yahoo (www.yahoo.com), the official submission guidelines are at

http://docs.yahoo.com/info/suggest . However, you'll be much happier with the unofficial write-
up at www.apromotionguide.com/yahoo.html , which discusses your free and for-fee options,
and explains what the cryptic rejection emails Yahoo sends you really mean.

For Looksmart (www.looksmart.com), it gets more confusing. You'll probably want to dodge
the high fees and try to get in through the back door through a related Web site called Zeal
(www.zeal.com). You can read the Zeal guidelines at www.zeal.com/guidelines/user , and get a
walkthrough of the horribly convoluted process at www.apromotionguide.com/looksmart.html .

Once you're done with directories (or just ready to move on), it's time to take a look at full-text
search engines.

Figure
11-7.
Click the

editor's

name

("sprice") to

find out

who he is,

what

categories

he

manages,

and how

you can

email him.

11.4.2. Search Engines

For most people, search engines are the one and only tool for finding information on the Web. In
order for the average person to find your Web site, you need to make sure your site is in the most
popular search engine catalogs, and turns up as a result for the right searches. This task is harder
than it seems, because the Web is full of millions of sites jockeying for position. In order to get
noticed, you need to spend time developing your site and enhancing its visibility. You also need to
understand how search engines rank pages (see the box below for an example).

The undisputed king of Web search engines is Google (www.google.com). Not only is Google far and
away the most popular search engine, it also powers other search engines (usually without being
credited). Google performs an amazing amount of workevery day it chews through hundreds of
millions of search requests.

http://docs.yahoo.com/info/suggest

Tip: For more information about search engines, including who's on top and who owns whom, check out www.searchenginewatch.com .

UP TO SPEED

How Google's PageRank Works

Google uses a rating system called PageRank to size up different Web pages and
determine how they rank when someone conducts a search.

PageRank isn't used to find search results; instead, it's used to order them. When you
perform a search with Google, it pulls out all the sites that match your search keywords.
Then, it orders its results according to the PageRank of each page.

The basic idea behind the PageRank system is that the value of your Web site is
determined by the community of other Web sites that link to it. There are a few golden
rules:

The more sites that link to you, the better.

A link from a more popular site (a site with a higher PageRank) is more valuable
than a link from a less popular site.

The more links a site has, the less each link is worth. In other words, if someone
links to your site and just a handful of other sites, that link is valuable. If someone
links to your site and hundreds of other sites, the link's value is diluted.

Although Google regularly fine tunes its secret PageRank recipe, Web gurus spend hours
trying to deconstruct it. For some fascinating reading, you can learn more about how
PageRank works (loosely) at www.akamarketing.com/google-ranking-tips.html and
www.markhorrell.com/seo/pagerank.html . The original formulation of PageRank is
described in an academic paper by Google co-founders Sergey Brin and Larry Page at
http://www-db.stanford.edu/~backrub/google.html .

For way more information about Google and its internal workings, be sure to check out
Google: The Missing Manual .

It's not too difficult to get noticed by Google. By the time your site's about a month old, Google will
probably have stumbled across it at least once, usually by following a link from another site or the
ODP. A link to your site is the best way to introduce yourself to Google. As described in the box
above, Google takes outside links into consideration when sizing up a site, so the more sites that link
to you the more likely you are to turn up in someone's search results.

If you're impatient or you think Google's passing you by, you can introduce yourself directly using the
submission form at www.google.com/addurl.html (see Figure 11-8). Most popular search engines
include a submission form like this. Just make sure you keep track of where you've submitted, so you
don't inadvertently submit to the same search engine more than once.

http://www-db.stanford.edu/~backrub/google.html

Figure
11-8.
You can

safely skip

filling in the

comments

section on

this page

but make

sure to

include the

http://prefix

at the start

of your

Web

page's

URL.

11.4.2.1. Rising up in the rankings

You'll soon discover that it's not difficult to get into Google's catalog. However, you might find that
it's exceedingly hard to get noticed. For example, suppose you've submitted the site
www.SamMenzesHomemadePasta.com . To check if you're in Google, try an extremely specific
search that targets just your site, like "Sam Menzes Homemade Pasta." This should definitely lead to
your doorstep. Now, try searching for just "Homemade Pasta." Odds are, you won't turn up in the
top 10, or even the top 100.

So how do you create a site that the casual searcher's likely to find? There's no easy answer. Just
remember that the secret to getting a good search ranking is having a good PageRank, and getting a
good PageRank is all about connections. In order to stand out, your Web site needs to share links
with the other leading sites in your category area.

If you want to delve into the nitty-gritty of search engine optimization (known to Webmasters as
SEO), consider becoming a regular reader of www.webmasterworld.com and
www.searchenginewatch.com . You'll find articles and forums where Webmasters discuss the good,
bad, and downright seedy tricks to try and get noticed.

Tip: It's possible to get too obsessed about search engine rankings. Here's a good rule of thumbdon't spend more time trying to improve

your search engine ranking than you spend improving your Web site. In the long term, the only way to gain real popularity is to become

one of the best sites on the block.

http://prefix

11.4.2.2. Google AdWords

As a Web surfer, you've no doubt seen several lifetimes' worth of flashing messages, gaudy banners,
and invasive pop-ups, all trying to sell you some hideously awful products. It probably comes as no
surprise to learn that these types of ads aren't the way to promote your sitethey're more likely to
alienate people than entice them.

However, there are respectable paid placements that can get your site in front of the right readers, at
the right time, and with the right amount of tact. One of the best choices is AdWords
(https://adwords.google.com), Google's insanely flexible advertising system.

The idea behind AdWords is that you create text ads that Google will show alongside its regular
search results. The neat part is that the ads aren't shown indiscriminately. Instead, you choose the
search keywords that you want your ad to be associated with (see Figure 11-9).

The neat (and slightly confusing) part about AdWords is that you bid for the keywords you want to
use. For example, you might tell Google you're willing to pay 25 cents for the keyword "food." Google
takes this into consideration with everyone else's bids, and shows the higher bidders more often.
(Google will tell you the highest bid, in case you just want to beat that by a penny.) However, you
don't get charged anything for appearing on Google's page. You owe money only when someone
clicks on your ad to get to your site.

By this point, you might be getting a little nervous. Given the fact that Google handles hundreds of
millions of searches a day, isn't it possible for a measly one-cent bid to quickly put you and your site
into bankruptcy? Fortunately, Google's got the solution for this, too. You just tell Google how much
you're willing to pay per day. Once you hit your limit, Google stops showing your ad.

Interestingly, the bid amount isn't the only factor that determines how often an ad appears.
Popularity is also important. If Google shows your ad over and over again and it never gets a click,
Google realizes that your ad just isn't working, and lets you know with an automatic email message.
It may then start showing your ad significantly less, or refrain from showing it altogether until you
can improve it.

Figure
11-9.
To see

AdWords in

action, try

searching

for a name

brand like

Microsoft.

You'll see a

section

clearly

marked

Sponsored

Links

appear on

the right

side of the

search

results, or

just above

the search

results in a

blue

shaded

box.

AdWords can be competitive. In order to have a chance against all the AdWords sharks, you need to
know how much a click is worth to your site. For example, if you're selling monogrammed socks, you
need to know what percentage of visitors actually buy something (the conversion rate) and how
much they're likely to spend. A typical cost per click hovers around 35 cents, but there's a wide
range. At last measure, the word free topped the charts at $1.33, while capitalism could be had for a
songa mere 10 cents. (And in recent history, law firms have bid "mesothe-lioma"an asbestos-related
cancer that could have a class action lawsuit in the makingup close to $100.) Before you sign up with
AdWords, it's a good idea to conduct some serious research.

Note: You can learn more about AdWords from Google: The Missing Manual , which includes a whole chapter about it. You can also get

an online introduction at http://searchenginewatch.com/sereport/article.php/2164591 . Finally, for a change of pace, surf to

www.iterature.com/adwords for a story about an artist's attempt to use AdWords to distribute AdWords, and why it failed.

11.4.2.3. Hiding from search engines

In rare situations, you might create a page that you don't want to turn up on a search engine. The
most common reason is because you've posted some information that you want to share with only a
few friends, like the latest Amazon e-coupons. If Google indexes your site, thousands of visitors could
flood your way, sucking up your bandwidth for the rest of the month. Another reason may be that
you're posting something semi-private that you don't want other people to stumble across, like a
story about how you stole a dozen staplers from your boss. If you fall into the latter category, be

very cautious. Keeping search engines away is the least of your problemsonce a site's on the Web, it
will be discovered. And once it's discovered, it won't ever go away (see the box below).

But there is at least one thing you can do to minimize your site's visibility or, possibly, keep it off
search engines altogether. To understand how this procedure works, recall that search engines do
their work in several stages (Section 11.4.2). In the first stage, a robot program crawls across the
Web downloading sites. You can tell this robot not to index your site, or a portion of it, in several
ways. (Not all search engines respect these rules, but mostincluding Googledo.)

UP TO SPEED
Web Permanence

You've probably heard a lot of talk about the ever-changing nature of the Web. Maybe
you're worried that the links you create today will lead to dead sites or missing pages
tomorrow. Well, there's actually a much different issue taking shapeold site copies that
just won't go away.

Once you put your work on the Web, you've lost control of it forever. The corollary to
this sobering thought is: Always make sure you aren't posting something that's illegal,
infringes on copyright, is personally embarrassing, or could get you fired. Because once
you've put this material out on the Web, it may never go away.

For example, imagine you accidentally reveal your company's trade secret for carrot-
flavored chewing gum. A few weeks later, an excited customer links to your site. You
realize your mistake, and pull the pages off your Web server. But have you really
contained the problem?

Assuming the Google robot has visited your site recently (which is more than likely),
Google now has a copy of your old Web site. Even worse, people can get this cached
(saved) copy from Google if they know about the cache keyword. For example, if the
offending page's URL is www.GumLover.com/newProduct.htm , a savvy Googler can get
the old copy of the page using the search
"cache:www.GumLover.com/newProduct.htm." (Less savvy surfers might still stumble
onto the cached copy of a page by clicking the Cached link that appears after each
search result in Google's listing.) Believe it or not, this trick's been used before to get
accidentally leaked information, ranging from gossip to software license keys.

You can try to get your page out of Google's cache as quickly as possible using the
remove URL feature at http://services.google.com/urlconsole/controller . But even if this
works, you're probably starting to see the problemthere's no way to know how many
search engines have made copies of your work. Interested people who notice you've
pulled down the information will hit these search engines and copy the details to their
own sites, making it pretty near impossible to eliminate the lingering traces of your
mistake. There are even catalogs dedicated to preserving old Web sites for posterity
(see the Wayback Machine at www.archive.org).

To keep a robot away from a single page, add the robots meta tag to your page. Use the content
value noindex, as shown here:

 <meta name="robots" content="noindex">

Remember, like all meta tags, you place this in the <head> section of your HTML document.

Alternatively, you can use the content nofollow to tell the robot to index the current page, but not to
follow any of its links:

 <meta name="robots" content="nofollow">

If you have larger portions of your site that you want to block off, you're better off to create a
specialized file called robots.txt , and place it in the top-level folder of your site. The robot will check
this file before it goes any further. The content inside the robots.txt file sets the rules.

If you want to stop a robot from indexing any part of your site, add this to the robots.txt file:

 User-Agent: *
 Disallow: /

The User-agent part identifies the type of robot you're addressing. (An asterisk represents all robots.)
The Disallow part indicates what part of the Web site is off limits. (A single forward slash represent
the whole site.)

To rope off just the Photos subfolder in your site, use this:

 User-Agent: *
 Disallow: /Photos

To stop a robot from indexing certain types of content (like images), use this:

 User-Agent: *
 Disallow: /*.gif
 Disallow: /*.jpeg

As this example shows, you can put as many Disallow rules as you want in the robots.txt file, one
after the other.

Remember, the robots.txt file is just a set of guidelines for search engine robots. It's not a form of
access control. In other words, it's similar to posting a "No Flyers" sign on your mailboxit works only
as long as advertisers choose to heed it.

Tip: You can learn much more about robots, including how to tell when they visit your site, and how to restrict the robots coming from

specific search engines, at www.robotstxt.org .

11.5. Tracking Visitors

As a Web site owner, you'll try a lot of different tactics to promote your site. Naturally, some will
work while others won'tand you'll need to keep the good strategies and prune those that fail. In order
to do this successfully, you need a way to assess how your Web site is performing.

Almost every Web hosting company (except for those that don't charge a fee) give you some way to
track the number of visitors to your site (see Figure 11-10). Ask your Web hosting company how to
use these tools. Usually, you need to log on to a "control panel" or "my account" section of your Web
host's site. You'll see a variety of options therelook for an icon labeled "site counters" or "Web
traffic."

Figure
11-10.
This

Brinkster

page view

summary

shows the

number of

hits (page

requests)

received on

a given day.

The chart

below this

summary

(not shown)

shows the

total

amount of

bytes of

information

downloaded

from your

site. It's

important to

realize that

a hit is

defined as

a request

for any

page. If a

single

visitor

travels

around your

Web site,

requesting

several

pages,

they'll

generate

several hits.

In order to

find out how

many

unique

visitors you

have, you

need to use

a separate

log analysis

program,

described

below.

11.5.1. Web Server Logs

With more high-end hosting services, you often have more options for viewing your site's traffic
statistics. For example, you might be able to get a report by time of day, or get an indication of how
many pages each visitor is reading. But to get really detailed information, you need to grab the raw
Web server logs . Many commercial Web hosts provide the server logs, but you may need to ask their
technical support department how you can download them.

The Web server logs are important because they have detailed, blow-by-blow information about
every visitor. This information includes the time visitors came, their IP addresses (Section 3.1.2),

their browsers, what site referred them to you, whether they ran into an error, what pages they
ignored, what pages they loved, and so on. The information in a Web server log is richer by several
orders of magnitude than the simple Web traffic analysis offered by your Web host.

You won't be able to interpret a server log on your own, but you can feed it into a log analysis
program for more detailed breakdowns. For example, you can use a log analyzer to pick out your
most popular pages, the sites that are leading visitors to you, and what browsers and operating
systems your fans use. This information can help you tailor your Web site and your promotional
tactics.

Log analyzers are notoriously complex, but you can get a good overview of a few free choices from
www.thefreecountry.com/webmaster/loganalyzers.shtml .

11.5.2. Hit Counters

The best choice is to work with a dedicated analysis program and review the raw server logs.
However, this isn't an option for everyone. Low-priced Web hosts might not make the server logs
available. In fact, free Web hosts probably won't even give you a single tool for traffic analysis.

In this case, you may want to use a free hit counter service from another company. A hit counter is a
page element that counts up the number of times your page has been requested. The appearance of
a hit counter variessome hit counters show the number of hits directly on the page (usually with a
small picture), while others are invisible and collect their data silently for later analysis.

Here's how a typical hit counter service works:

You add a very small bit of HTML to your page .

For example, this HTML might include an tag that shows the hit counter picture.

1.

When someone requests your page, they see an image that shows how many people
have visited so far .

Here's the trick: When your page loads and requests the image from the hit counter Web site,
the Web site makes a note of this request, and increases the counter by one. In other words,
every time you display the hit counter, the hit counter site logs what happened.

2.

Later on, you can log on to the hit counter Web site to get more detailed information
.

For example, you might be able to find the difference between page hits (the number of time a
page on your site is requested) and unique visitors (the number of different people who visited
that same page). If someone looks at the same page several times (or just hits the Refresh
button), the number of page hits goes up, but the number of unique visitors doesn't change.

Hit counters don't all work in the same way, and be on the lookout for hit counting services that
try to convince you to insert ads into your page. For a list of free hit counter services, see
www.thefreecountry.com/webmaster/loganalyzers.shtml . Or, to try out a free hit counter that
doesn't require an image (and is completely invisible to the Web site surfer), check out the
popular StatCounter service at www.statcounter.com .

3.

Chapter 12. Letting Visitors Talk to You
(and Each Other)
The Web is the crowded home of several million people. When you put your Web site online, it
doesn't just drop into a vacuum. Instead, it takes center stage in front of an audience that's always
interested, often opinionated, and occasionally irritable.

In order for your site to really fit in with the rest of the Web, you need to participate with your
visitors. The idea of dialogueback-and-forth communication between peersis hard-wired into the
Internet's DNA. Heated discussion flows over all sorts of different channels, and includes insightful
postings on discussion groups, scathing reviews on Amazon, shout-outs on Web site guestbooks,
daily blog entries, email, instant messages, chat rooms, and much more. The online discussions
never stopthey just billow across the globe like giant clouds of hot air.

In this chapter, you'll learn how to connect with your audience by using basic tools like your email
inbox and how to incorporate the often rollicking world of Web-based groups and discussion forums
into your site.

12.1. Transforming a Site into a Community

The Web sites you've created so far are lonely affairs. Visitors can come and look around, but there
aren't any avenues for them to really participate. If this were a one-way medium like cable television
or newspapers, this wouldn't be a problem. But the Internet is all about community, which means
you need to let your visitors react, respond, and (occasionally) harass you.

How do you start transforming your Web site into a Web community? The first trick is to change your
perspective, so that you plan your Web site as a meeting place instead of just a place to vent your
(admittedly brilliant) thoughts. Here are a few tips to help you get in the right frame of mind:

Clearly define the purpose of your site. For example, the description
"www.BronteRevival.com is dedicated to bringing Charlotte Bronte fans together to discuss and
promote her work" is more community-oriented than "www.BronteRevival.com contains
information and criticism of Charlotte Bronte's work." The first description indicates what the
site aims to accomplish, while the second reflects what it contains, thereby limiting its scope.
Once you've defined a single-sentence description, you can use it in your description meta tag
(Section 11.3.1) or in a mission statement on your homepage.

UP TO SPEED
Talking the Talk

Community is so important to the Web that ubergeeks have their own catchy
jargon to describe the process of people meeting up online. Here are some popular
terms so you won't feel left out of the discussion:

A netizen is an active, responsible citizen of the Internetsomeone who takes
Web community as seriously as life in the real world.

Flaming is a blistering exchange of insults on a public forum. If you post your
personal theory about how an alien race created the human species on a
discussion group about evolution, you're sure to be flamed.

Trolling is the act of enticing people to flame you, either to make them look
ridiculous or just for sport. For example, if you ask for donations for your
"Hillary for President" campaign on a Web site for young Republicans, you're
trolling.

Blogging is the practice of posting regular, dated entries on a special kind of
Web site (which is called a blogshort for Web log). Blogs can contain anything
from detailed technical articles to rambling, random thoughts. Often, bloggers
let other people add comments to their blog entries, which allows blogs to
become another forum for community interaction. You'll learn about blogs in
Chapter 17.

Build gathering places. No one wants to hang around a collection of links and static text. Jazz
your site up with discussion forums or chat boards, where your visitors can kick up their heels.
You'll learn how to get these bits in place later in this chapter.

Give your visitors different roles. Successful community sites recognize different levels of
contribution. At one extreme, the right people can grow into leadership roles and even
coordinate events, newsletters, or portions of the site. At the other end are visitors who are
happiest lurking in the background and watching what others do. There are different ways to
recognize individual contributionsome sites use a personal feedback rating system that adds
gold stars (or some other sort of icon) next to a person's name. Another approach is to give
certain visitors more powerslike the ability to manage members in a Google group (Section
12.3.1).

Advertise new content before and after you add it. In order to get visitors coming back
again and again, you need lots of new content. But new content on its own isn't enoughyou
need to build up visitors' expectation of new content so that they know to return, and you need
to clearly highlight the new material so that they can find it once they do. To help this work
smoothly, try adding links on your first page that lead to newly added content, along with a
quick line or two about upcoming content you're planning to add (and when it'll be there).

Introduce regular events. It's hard to force yourself to update your site regularlyand even
when you do, visitors have no way to know when there's something that makes a return visit
worthwhile. Why not help everyone keep track of what's going on by promoting regular events
(like a news section that's updated weekly or a promotional drawing that happens on a set
date)?

Create feedback loops. It's a law of the Webgood sites keep getting better, while bad sites
magnify their mistakes. To help your site get on the right track, make sure there's a way for
visitors to tell you what they like. Then, spend the bulk of your time strengthening what works
(and tossing out what doesn't).

To get some more ideas for community building, check out the book Community Building on the Web
by Amy Jo Kim. You can read portions of it online at www.naima.com/community.

Now that you have your Web site good-citizenship philosophy straight, it's time to learn how to build
the ingredients every Web community needs.

POWER USERS' CLINIC

Planning for the Future

The techniques you'll learn about in this chapter will help you start and manage a small
Web community. However, keeping up with all the tools you'll need to use takes effort,
and as your site starts to grow, you might not have the time to manage mailing lists by
hand or keep track of your visitors.

All large communities on the Web are supported with some type of nifty software that
can manage these tasks. Only a small fraction of Web site creators build their own
software. Most buy an existing program.

You won't learn about full-fledged community software in this chapter (aside from some
free solutions for setting up forums). However, you can take your search online to hunt
down professional software. Missing Manual parent O'Reilly Media, for example, uses
Lyris (www.lyris.com) to manage its internal discussion groups and newsletters.

12.2. Helping Visitors Email You

The first step in audience participation is letting your visitors email you. This is a very small-scale
type of interaction, because it's exclusively between two people (you and one visitor) and the
conversation is private. Later on in the chapter you'll see how to expand the discussion to include a
whole gaggle of surfers.

12.2.1. Mail-To Links

Unlike the standard-issue hyperlinks you learned about back in Chapter 8 , there's one special type of
link that you haven't seen yetthe mail-to link. This link automatically starts an email message when
clicked. It's still up to the Web surfer to send the message, but you can supply some boilerplate
subject and body text.

Note: The mail-to link is a great way to get feedback from others, but in order for it to work there, must be an email program installed on

the Web surfer's computer, and the email program must be properly configured.

To create a mail-to link, you supply a path that starts with the word mailto , followed by a colon (:)
and the email address. Here's an example:

 Email Me

Most browsers also let you supply some text for the subject and body of the email message, which
the Web visitor can then edit as she sees fit. To do this, you need to use a slightly wonky syntax that
follows these rules:

After the email address, put a question mark.

To declare the subject, add "subject=" followed by the subject text.

If you also want to define some body text, add the character sequence "&" after the
subject text. Then, begin the body by writing "body=" followed by the body text.

Replace every space in the subject and body text with the character sequence "%20". This gets
quite tedious and makes the message hard for you to read as you're composing it, but it's
required in order for this trick to work with all browsers.

Confused? The easiest way to grasp these rules is to take a look at a couple of examples. First, here's
a mail-to link that includes the subject text "Automatic Email":

 Email Me

And here's a link that includes both subject text and body text:

 <a href=
 "mailto:me@myplace.
 com?subject=Automatic%20Email&body=I%20love%20your%20site">
 Email Me

When you click this link, you'll see an email pop up like the one shown in Figure 12-1 .

Figure
12-1.
When you

click a mail-

to link, an

email

message is

created (as

shown

here). The

recipient,

subject,

and body

are filled in

according

to the link,

although

whoever's

clicked the

link has the

ability to

change

these

details (or

just to

close the

window

without

clicking

Send). The

actual

email

window

differs,

depending

on what

email

program is

installed on

the Web

surfer's

computer.

This

example

shows the

send mail

window

from

Outlook

Express.

12.2.2. HTML Forms

HTML forms is a corner of the HTML standard you haven't explored yet. It defines tags that you can
use to create graphical widgets (like text boxes, buttons, checkboxes, and lists). Visitors can interact
with these widgets, which are commonly called controls . Figure 12-2 shows an example of an HTML
form in action

HTML forms are an indispensable technology for many Web sites, but you probably won't get much
mileage out of them. The problem is that HTML forms are best suited for high-powered Web
applications, not the static Web sites you're creating.

For example, consider the account creation form shown in Figure 12-2 . Once you, the visitor, fill out
all the details and click the Submit button at the bottom, the browser does something specialit
collects the information you've entered and the selections you've made in every control, and patches
it together into one long piece of text. Then, it sends a request back to the server with all this
information. That's where the Web application comes in. It examines the submitted data, chews
through it, and then carries out some sort of action. This action might involve sending back another
page with different HTML (for example, if the application detects an error), or storing the information
in a database on the Web server.

Forms are the basic building block of highly dynamic Web sites. If you're not a Web programmer, you
probably won't use forms all that often. However, you can still use forms as a basic way to collect
information. To do this, you configure your forms to send an email message at the moment that
they're submitted. In other words, when someone clicks the Submit button on the form, the collected
data isn't sent to a programinstead, it's mailed to you as an email message. You'll need to sift
through the emails yourself (which can be a major chore if you're receiving hundreds of messages a
day). However, you've opened up a valuable channel for feedback.

Figure
12-2.
Before

Microsoft

will grant

you an

email

account,

you need to

submit

some

seriously

detailed

information.

The

textboxes,

lists, and

buttons you

use are all

part of an

HTML

form.

12.2.2.1. Form basics

Every HTML form starts out with a <form> tag. The <form> tag is a container tag (Section 2.2.2),
and everything inside is automatically deemed to be part of your form.

 <form>
 …
 </form>

Form tags are also block elements (Section 5.2), which means when you start a form, the browser
adds a little bit of spacing and starts you off on a new line.

What goes inside your form tag? Ordinary HTML content (like text) can go inside a form tag, or it can
go outsideit really doesn't matter. However, controls (those graphical widgets like buttons, text
boxes, and lists) should always go inside a form tag. Otherwise, you won't have any way to capture
the information that visitors enter into these controls.

POWER USERS' CLINIC

Becoming a Programmer

Want to unleash forms throughout your site and become a hard-core programmer? It's
not easy going, but it can open up a lot of options for a stylin' site. The first task is to
choose the programming framework you want to use. Here are some options:

JavaScript is a simplified way to program for the Web. It won't power a
professional Web site, because it runs only inside the browser (not on the Web
server). However, it's a good way to start out with a kind of programmer's training
wheels. You'll get a basic introduction to JavaScript in Chapter 14 .

CGI (Common Gateway Interface) is the favorite of Internet traditionalists. It's a
thorny but widely adopted standard that has been around since the dawn of the
Internet. CGI isn't for the faint of heart, because it requires jargon-filled languages
like C and Perl. If you aren't familiar with these languages, you might still be able to
download a CGI script file from the Web and get it working for you. Surf over to
www.cgi101.com/book to dip a toe into CGI.

ASP (Active Server Pages) and ASP.NET (a newer version) are Microsoft
technologies that are a good fit for people familiar with friendly programming
languages like Visual Basic. You can learn some ASP basics at
www.w3schools.com/asp , or tackle the more complex but much more capable
ASP.NET at www.w3schools.com/aspnet .

To create controls, you use yet another set of HTML tags. Here's the weird part most form controls
use the exact same tag. That tag is named <input>, and it represents information that you want to
get from the visitor. You choose the type of input control by using the type attribute. For example, to
create a checkbox, you use the checkbox type:

 <input type="checkbox">

To create a text box, you use the text type:

 <input type="text">

To create a complete form, you just mix and match <input> tags with ordinary HTML:

 <html>
 <head>

 <title>A Form-idable Test</title>

 </head>

 <body>
 <form>
 First Name: <input type="text">

 Last Name: <input type="text">

 Email Address: <input type="text">

 <input type="checkbox">Add me to your mailing list

 </form>
 </body>
 </html>

Figure 12-3 shows the page this creates.

Figure 12-3.
This very basic HTML

form brings together

four controls: three text

boxes and one

checkbox. Everything

else is just ordinary

HTML content. To

make everything look

nicer (and align it more

neatly), you can use all

the tricks you've

learned about in

previous chapters,

including tables and

styles. But one thing's

still missing: a way for

your visitor to actually

send you the form's

info. You'll learn how to

fix that shortcoming

below.

Every <input> tag also supports the value attribute, which is usually used to set the initial state
(setting) of the control. For example, if you want to put some text inside a textbox when the page
first appears, you could use this tag:

 <input type="text" value="<Enter the first name here>">

Checkboxes are a little different. You can start them off so that they're turned on by adding the
checked attribute, as shown here:

 <input type="checkbox" checked>

Not all controls use the <input> tag. In fact, there are two notable exceptions. The <textarea> tag is
used to grab large amounts of text that span more than one line (don't ask why a new tag was used
for this purposeit's largely for historical reasons). The <option> tag is used to create a list (inside of
which the surfer can select an item). Table 12-1 lists all of the most common controls.

Table 12-1. HTML Form Controls

Control HTML Tag Description

Single-line
Textbox

<input type="text">

<input type="password">

Shows a textbox where the visitor can type in any text.
If you use the password type, the text isn't displayed in
the browser. Instead, surfers see an asterisk (*) appear
in the place of each letter, hiding it from prying eyes.

Multi-line
Textbox

<textarea></textarea> Shows a large textbox that can fit multiple lines of text.

Checkbox <input type="checkbox"> Shows a checkbox that can be turned on or off.

Option
Button

<input type="radio">

Shows a radio button (a circle that can be turned on or
off). Usually, you'll have a group of radio buttons next
to each other, in which case the visitor can select only
one.

Button
<input type="submit">
<input type="reset">

Shows the standard clickable button. A submit button
always gathers up the form data and sends it to its
destination. A reset button simply clears the visitor's
selections and text in all the input controls of the form.

List <select>…</select>
Shows a list where your visitor can select one or more
items. Each item in the list is represented by an
<option> tag.

Right now, the only problem with the form in Figure 12-3 is that it doesn't actually do anything. You
need a way for the visitor to send the form to you. In order to make this happen, you need to take
two steps. First, you need to add a submit button. Use the value attribute to set the text that
appears inside this button.

 <input type="submit" value="OK">

Next, you need to modify the <form> tag so that it uses a mailto link to identify the email address
where the form data should be sent:

 <form action="mailto:myaccount@HelloThere.com"
 method="post" enctype="text/plain">

Note: As with the mailto links shown in the previous section, this technique only works if Web surfers have an email program installed

and correctly configured on their computers.

Finally, you need a way to uniquely identify each control. Otherwise, you won't be able to separate
the first name from the last name from the rest of the form information. The solution is to give each
control a name with the name attribute.

Here's the revised form:

 <form action="mailto:myaccount@HelloThere.com"
 method="post" enctype="text/plain" >
 First Name: <input type="text" name="FirstName">

 Last Name: <input type="text" name="LastName">

 Email Address: <input type="text" name="Email">

 <input type="checkbox" checked name="MailCheck">
 Add me to your mailing list

 <input type="submit" value="OK">
 </form>

Now, say a visitor fills out the form with the information shown in Figure 12-4 .

Figure 12-4. A
form with some visitor-

supplied information.

When the visitor clicks OK, the information is added to an email message, and sent to your email
address. Here is the content of the email that you'll receive:

FirstName=Margaret
LastName=Chu
Email=mchu@myplace.com
MailCheck=on

All this email contains is a list of name-value pairs . The name (on the left side of the equal sign)
identifies the control. The value (on the right side) indicates the value that the visitor supplied. As
you can see, it could take a lot of work to read all these emails and add them to an email list in your
email program if you have a popular Web site. A nicer, but far more complex, approach is to have
some sort of program that can understand this type of message, and carry out the correct actions
automatically.

Tip: Your browser may show a warning when you click the submit button, advising you that you are about to send an email. Similarly,

spyware catchers and virus programs might block this behavior. If you're concerned about these potential roadblocks, you can add a

note to your page informing visitors that when they click the submit button they may see a message, which they'll need to review before

they can send an email.

12.2.2.2. Creating a feedback page with a form

The next example you'll see uses a form to create a feedback page (see Figure 12-5). Visitors use
this page to supply their deepest thoughts, and whisk them off to you with a single click of a button.

Figure
12-5.
This form

aligns its

controls

neatly, and

features a

radio button

selection

and a drop-

down menu.

This form is a fair bit more interesting than the previous one. First of all, it includes two instances of a
new form tagthe radio buttonwhich is created with the radio type of <input> tag. Here's the HTML
that makes it all happen:

 <input type="radio" name="Plan" value="Full" checked>Full
 <input type="radio" name="Plan" value="Part">Partial

The trick is to make sure you give every radio button in the group the same name. That way, the
browser knows they belong together, and when you click one option, the others are unselected. You
also need to give every radio button a unique value. That's how you tell, when you receive the form
results, which option was selected. For example, if the surfer clicks Full and submits the form, this is
the corresponding line you'll see in the emailed data:

 Plan=Full

The drop-down menu uses the <select> tag to define the list (and choose a name), and the
<option> tags to define each item in the list (and choose a unique value for each one). Here's the
HTML:

 <select name="PromoSource">
 <option value="Ad">Google Ad</option>
 <option value="Search">Google Search</option>

 <option value="Psychic">Uncanny Psychic Intuition</option>
 <option value="Luck">Bad Luck</option>
 </select>

Now, if someone selects the first option, the email message will contain this line:

 PromoSource=Ad

Tip: You can switch your menu from its drop-down appearance to a large list box using the size attribute. For example, if you write

<select size="3"> you'll create a scrollable list box that fits three items into view at once. If you want to allow multiple selections, add the

attribute multiple . Now, a visitor can select several items at once by holding down the Ctrl key (or @cmd, if she's using a Mac). For more

low-level HTML form details, check out www.w3schools.com/html/html_forms.asp .

The last interesting detail about the form shown in Figure 12-5 is that it uses tables and styles to

neaten up its appearance. Various style rules set the fonts and sizing of the different controls. (See
the downloadable content for this chapteravailable from the "Missing CD" page at
www.missingmanuals.com to take a look at the details.) Additionally, each item is placed inside a
separate table row so they all line up neatly. The table has two columns. The leftmost column holds
the caption text, and the rightmost column has the control.

Here's the first part of the table structure:

 <table>
 <tr>
 <td>First Name:</td>
 <td><input type="text" name="FirstName"></td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td><input type="text" name="LastName"></td>
 </tr>
 <tr>

 <td>Email Address:</td>
 <td><input class="TextControl" type="text" name="Email"></td>
 </tr>
 …
 </table>

This technique is a handy way to rein in sprawling forms.

12.3. Adding Forums and Groups to Your Site

In the early days of the Internet, Web sites weren't at the heart of the action. Instead, the most
interesting and lively interactions took place on a mammoth collection of online bulletin boards called
Usenet . Sadly, Usenet fell into decline as the Web grew, suffering as well from an onslaught of spam,
and losing its luster as slick graphical sites become the norm. More recently, the collection of Usenet
groups was bought by Google, and is experiencing a small renaissance as a part of Google Groups
(see http://groups.google.com).

Although Usenet isn't ever going to recapture the limelight, different types of discussion forums are
still ragingly popular. But instead of subject-based, administrator-moderated groups that are
controlled by a single organization, forums are cropping up as a bonus feature on all sorts of different
Web sites. Here are some examples:

Technology vendors large and small use them to provide community support and spread
information. For example, Microsoft veterans and newbies exchange Office tips on the boards at
www.microsoft.com/office/community/en-us .

Topic sites use them to host rollicking discussions. For example, you can tear reality TV to
shreds on the popular http://p085.ezboard.com/bsurvivorsucks or register your Office
frustration at www.officefrustration.com .

Individuals use them to provide technical support and get feedback. For example, popular
computer book author Jesse Liberty helps readers with questions about his technical books at
http://forums.delphiforums.com/LibertyBooks .

One of the best parts about forums is they drive themselves. Once you get the right ingredients in
place, a forum can succeed without you needing to intervene. Think of it as a dinner party that you're
hosting, and all you need to do is get the conversation started before making a polite retreat. And if
you use forums to answer technical questions, you can reduce your workload immensely. For
example, on many forums the emphasis is on different customers or experts helping each other. That
means easy questions are answered for you, and you might only need to step in to clear up a long-
running debate.

Although discussion forums are wildly popular, they come in many different flavors. All the examples
in the previous list run on different software. Some of it's free, other options cost money, and still
other options are developed by hand by Web site programmers and aren't for sale to the public.

To create your own groups, you have a few choices. You could purchase an expensive product, install
it on your own in-house Web server, and have complete control over everything: what your
discussion pages look like, who gets to post messages (or not), and so on. This approach makes
sense for a gargantuan company like American Express, but it doesn't fit the bill for the small- to
medium-sized site. Instead, what you'll probably want to do is use an online service provided by
another company. In this scenario, you provide a link on your site that leads to the other company's
Web server, where the discussion forum is hosted. The only catch? Usually, most companies that
provide a discussion forum sell advertising space. That means that as you read messages in the
group, you're likely to see some ads on the sidelines.

http://forums.delphiforums.com/LibertyBooks

In the remainder of this chapter, you'll learn how to create a forum with one of the most capable
discussion forum tools Google Groups.

12.3.1. About Google Groups

Google Groups is a thriving community of discussion forums. Although it hasn't been around as long
as some other forum hosts, it includes a collection of useful features that rivals any of its
competitors. And, of course, it's all free.

Here are some important details about Google Groups:

When you create a group, you're given a unique, easy-to-remember URL. That's the group
address, and it never changes.

Group members can search through group postings with some of the best search tools on the
planet. For bragging rights, nothing rivals the catalog of searchable Usenet content that Google
has acquired, which ranges back to 1981.

The group creator (you) controls who can and who can't post.

Google manages the registration process itself. That means you don't need to manually add and
remove group members.

Each group member can choose whether they like to read group messages online, or receive
them in regular emails that Google will send automatically.

Google's page layout is a frazzled Web surfer's dream. It's easy to search posts, see all the
replies to a post at a glance, bookmark the posts you want to follow, and more.

Although Google will display ads in the corners of your group windows, it does its best to choose
relevant ad content. For example, if the most common topic in a group is favorite DVDs, you're
likely to start seeing ads that promise cutting edge DVD players, mail-order movie clubs, and
DVD e-commerce shops.

You can learn more about Google Groups by surfing to
http://groups.google.com/intl/en/googlegroups/about.html .

Note: Google is continuously improving its offerings. At the time of this writing, some parts of the Google Groups features are

considered to be "in beta." Technically, that means they may get tweaked a bit, and may have a few unexpected hiccups along the way.

12.3.2. Creating a Group

To create a new group, follow these steps:

Head on over to http://groups.google.com . Look for a link inviting new members to
join, and click it .

1.

http://groups.google.com/intl/en/googlegroups/about.html

You'll need to register (with a valid email address and password) before you can create a group.
Once you've completed the process and activated your account, you're ready to return to the
group setup page.

1.

Click the "Create new groups" link to get started .2.

When asked, log in with your user name and password. The "Create a group" page
appears, as shown in Figure 12-6) .

Figure
12-6.
Creating a

Google

group takes

two steps.

In the first

step, you

define all

the basic

information

about your

group,

including its

name and

email

address.

3.

Fill in all the information for your group .

The group name identifies your group, like Candy Collectors .

The group email address is a version of the name that will work as an email address or URL.
Spaces aren't allowed, but Candy-Collectors and CandyCollectors work. The email address also
becomes part of the group URL, so make sure it's memorable.

The group description explains what the group's all about, using two or three sentences.

4.

The access level indicates who's allowed to post. If you want to create a completely open group
that accepts all comers, choose Public , which makes sense for most Web groups. Anyone who
stumbles across the group can join at will, without your intervention. If you want to use the
group solely as a place to post your own musings, choose Announcements-only . However,
you're probably better off to put these announcements right on your Web site instead of in a
group. Finally, if you want to have micromanaged control over who's allowed in and who's kept
out, choose Restricted . That way, the only people allowed to join are those you specifically
invite.

Finally, you'll see a checkbox to allow adult content. If you don't allow this, naughty posts may
be blocked automatically, saving you some embarrassment.

Click the "Create my group" button .

The second step appears (see Figure 12-7).

Figure
12-7.
In the

second

step, you

choose

your initial

group

members.

Remember,

if you're

creating a

public

group, new

people can

join at any

time

through

Google.

5.

Fill in the initial set of group members .6.

Supply a list of email addresses, with one address per line. Google will email these people to tell
them they've been allowed into the group.

If you choose Add, each of these members is automatically a group member. If you choose
Invite, they'll need to visit the site to opt in and become a member. Either way, if the recipient
doesn't have a Google account, they'll need to create one before they can do anything.

The subscriber type allows you to choose how these people will use the group. They can choose
to read the group posts on the group Web site, or to have every message delivered to them by
email (a bad idea unless it's a quiet discussion group). There are also two more specialized
options. If you choose Abridged Email, the subscriber receives one email message per day (as
long as there's been at least one new post), and this email message contains a list of message
titles, with a link to the full text next to each. This option is a handy way to stay on top of group
activity, and keep an eye out for interesting posts. The other option is Digest Email, which sends
all the new content once per day in a single gargantuan email. This option won't clutter your
email inbox as much as receiving each message separately, but in an active group, it's
impractical to browse through such a long email.

No matter what subscriber type you choose, each group member can change this to match their
personal preference later on.

Finally, supply some text for a welcome message. Once you create the group, every member
receives a welcome message letting them know the group's been set up (see Figure 12-8).

6.

Figure
12-8.
Welcome

aboard.

You're a

new

member of

a Google

group.

Tip: Don't worry if you don't have email addresses handy. You don't need to invite anyone now. You can return to this page to

invite more people later on, after you've created the group.

Click Done .

Google creates the group, and shows you a summary (Figure 12-9). Sometime shortly
thereafter, it sends welcome messages to the initial set of group members.

7.

Figure
12-9.
The final

summary

includes

some

important

information.

It includes

the group

home page

(which

you'll want

to link to

from your

Web site)

and email

address.

You can

use the

links at the

bottom

(circled) to

skip directly

to the

group

homepage.

12.3.3. Participating in a Group

When you first head over to your group, you'll find that it's barren. To get the discussion started, why
not post the first topic?

Google gives you two different ways to post a topic. You can add a topic right from the Web page by
clicking the "Start a new topic" link. Or, if you're really in a hurry, you can simply send an email
message to the group email address. The email message is then automatically converted into a group
topic (Figure 12-10).

Of course, discussions are all about back-and-forth exchanges. Once a message has been posted,
you can read it and click the Reply link to post a reply. Posts and replies are threaded , which means
they're grouped together so that you can easily see what message goes with what topic, no matter
when the posts were made (see Figure 12-11).

Figure
12-10.
Top: This

email is

about to be

sent to a

Google

group.

Bottom:

Once the

email's

received, it

becomes an

ordinary

posting.

Interestingly,

even with a

single topic

Google's

already

picked out

some ads it

thinks are

related

(shown on

the right). As

people use

your group,

Google will

refine the

types of ads

it uses,

based on

which ones

are the most

popular (and

get the most

clicks from

group

members).

You now have a fully functioning group. From this point on, the challenge isn't in using the group, but
attracting enough interesting people that it becomes a lively community.

12.3.4. Managing Your Group

When an ordinary group member visits a group, he'll have the option of posting new messages,
replying to existing messages, or changing his delivery settings by clicking the "Unsubscribe or
change membership" link. Use this last option to have group messages automatically emailed to you

or to see a summary of group activity (Section 12.3.3).

Figure
12-
11.
When

browsing a

group,

you'll only

see a list of

topic posts,

not replies.

However,

each entry

clearly

indicates

the number

of replies.

In this

example,

there are

three

topics. The

first two

have one

message

each. The

third topic

has three

messages

(the post

you see

and two

replies).

Click "read

more" to

see the full

post and

any replies.

On the other hand, when the group creator visits the group, some additional links appear in the
display. Along with the customary links for posting and changing the membership settings, you'll also
see an Invite link, which allows you to send welcome messages to a new batch of groupies. You'll also
see the "Manage group" link, which allows you to take control of a lot more (see Figure 12-12).

On the whole, the group membership page is well-organized and quite clear. You'll have no trouble
using the various options. Here are some of the highlights:

The Access settings . These settings allow you to define who's allowed to read messages

(anybody, or only group members), who's allowed to invite new members (just you, or any
group member), and who's allowed to join. The last option is the most interesting. You can
allow everyone, restrict the group to just people you invite, or force people to apply for group
membership. If you use the last choice, anyone can apply to join through Google, but you'll
have the chance to review the application and give the final acceptance or refusal. You can even
tell Google to give hopeful applicants a specific question. You can then review their answer to
determine whether they are group-worthy.

Figure
12-
12.
When you

click

"Manage

group,"

you'll see

this page,

which

allows you

to change

the group

name and

description,

change the

level of

access,

and invite

new

members

or remove

existing

ones. The

settings

offered

here are

more

detailed

than those

you saw

when you

created the

group.

Posting & Delivery settings . These settings let you define who's allowed to post to your
group. You can choose any group member, just you, or anyone. Additionally, you can choose to
use moderated messages . With moderated messages, every new message is sent to you for
review. Messages won't appear on the group until you give them a thumbs-up (and if you don't,
they'll never reach the group). Only use moderated messages if you have a lot of spare time.

Browse membership list . Use this link to delve into the details about group members. You

can review the full list of group members, see who hasn't responded to a group invitation, ban
troublemaking posters, and give other members managerial powers.

FREQUENTLY ASKED QUESTION

Group Restrictions

Should I restrict people from joining my group or posting messages?

It's tempting to force group members to apply to your group, but resist the ego trip. On
the Web, people are impatient and easily distracted. If you place barriers in the way of
potential group members, they may just walk away.

On the other hand, there are some cases where restricted group membership makes a
lot of sense. Two examples are if you want to discuss semi-secret information like
company strategies, or if you're afraid your topic might attract the wrong kind of crowd.
For example, if you set up a group called Software-Piracy to discuss the social
implications of software piracy, you might find yourself deluged with requests for the
latest versions of cutting-edge software. As a general rule of thumb, restrictions make
sense only if they're being used to maintain group quality control.

The same holds true for message moderation. Most healthy online communities are self-
regulating. If a member inadvertently offends the general community, others will correct
him or her; if it's deliberate, most will eventually ignore the provocation. You might need
to step in occasionally to ban a member, but screening every message is overkill. It also
adds a huge amount of extra work for you, and severely cramps the dynamic of your
group, because most messages won't appear until several hours after they've been
written (at least). For fans of the Web who expect instant gratification, this isn't good
news.

Chapter 13. Making Money with Your Site
If it's not for sale on the Web, it's probably not for sale at all. It's no secret that the Internet is a
global bazaar with more merchandise than a decade's worth of garage sales. Surfers generate huge
amounts of traffic hunting for Amazon coupons, discussing hot deals, and scouring eBay for bargains.
So how can you get your share of Web capital?

One obvious option is to sell a real, tangible product. The Internet abounds with specialty shops
hawking art, jewelry, and handmade goods. But even if you have a product ready to sell, you still
need a few specialized tools to transform your corner of the Web into a bustling e-commerce
storefront. For example, you'll probably want a virtual shopping cart, which lets visitors collect the
items they want to buy as they surf. And when they finally head for the checkout, you'll need a
secure way to accept their cashusually by way of a credit card transaction. In this chapter, you'll
learn how to get both these features using PayPal's merchant tools.

But even if you aren't looking for a place to unload your hand-crafted fishbone pencils, your Web site
can still help fatten your wallet. In fact, just about any Web site can become profitable, either by
selling ad space or recommending other companies' products. In this chapter, you'll consider how you
can use two of the Web's most popular affiliate programsGoogle AdWords and Amazon Associatesto
collect some spare cash.

Note: Not a U.S. citizen? Don't worryall the money-making ideas in this chapter rely on companies that provide services worldwide.

Google, Amazon, and PayPal will let you rake in the cash no matter what country you live in.

13.1. Money Making the Web Way

The Web offers many paths to fiduciary gain. Here are some of the most popular ways Web sites make
money:

Donations . It sounds crazy, but some Web sites badger their visitors for spare change.
Donations might work if your Web site provides some truly valuable and unique content (see
Figure 13-1). Otherwise, don't bother. Don't be seduced into logic like "If 1000 visitors come and
every visitor pays just 10 cents…." They won't. (If you still want to add a Donate button to your
Web pages, you can use a payment service like PayPal, which is discussed later in this chapter.)

Figure 13-1.
www.treadmilldoctor.com

a popular site with

information about a

dizzying array of

exercise treadmillsgoes

so far as to ask visitors

for money (see the

donation box, circled).

It's a rare success story.

Because

TreadmillDoctor.com

spends so much time

compiling detailed

research, and since

they've decided not to

accept sponsored links

(which would

compromise their

objectivity), many visitors

are willing to pay up

every once in a while.

Advertisements . The most popular way to make money on the Web is by selling small spaces
of Web-page real estate. Unfortunately, this is also a great way to exasperate your visitors,
especially if the ads are distracting, unrelated to your site, or simply take up too much space. Not
long ago, ads were the worst thing you could do to your pages. Fortunately, in the 21st century,
monitors are bigger, and companies like Google provide targeted, unobtrusive ads that fit right in
with the rest of your site.

Affiliate Programs . Rather than plastering ads across your site, why not put in a good word for

a company you really believe in? Many affiliate programs let you get a commission for referring
customers to other sites. For example, if you review gourmet cookbooks, why not include links to
the books on Amazon's Web site? If an interested reader buys a book, Amazon's associate
program will fork over a few dollars.

Sell Stuff . If you have your own products to sell, the Web is the perfect medium, since the costs
required to set up shop online are so much less than in the real world. You can build a slick store,
with product pictures and a shopping cart, with surprisingly little work.

Pay-For-Content . If you have really great content, you can ask for cash before letting your
visitors read it. Warning: This is even harder to pull off than asking for donations, because
visitors need to take a huge leap of faith. It's a technique that's used by established media
companies (like the Wall Street Journal) and hucksters promising secret ways to conquer the
real estate market or get free camcorders.

Note: Pay-for-content is the only money making scheme that you won't learn to pull off in this chapter. That's because in order for it to

work, you need a way to authenticate visitorsin other words, you need to be able to identify visitors in order to tell if they've paid or not. This

needs some heavy-duty programming (or a pay service from another company).

13.2. Google AdSense

Even if you don't have any products to sell, you still have one valuable asset: the attention of your
visitors. The good news is there are a huge number of companies ready to pay for it.

Some of these companies pay you a minuscule fee every time someone requests a page that has an
ad, while others pay only when an ad is clicked, or when an ad is clicked and the visitor goes on to
actually buy something on the sponsor's site. Fortunately, you don't need to waste hours checking
out all these options, because Google offers an advertising program that handily beats just about
every other system out there.

The program's called Google AdSense, and it requires you to show small, text-only advertisements
on your Web site. You sign up, set some space aside on one or more Web pages, and paste in some
HTML that Google supplies (see Figure 13-2). Google takes care of the rest, filling in the space with a
group of ads every time someone requests the page.

Showing Google AdSense ads doesn't get you anything, but whenever a visitor clicks on one of the ad
links, you earn a few cents. When your total reaches $100, Google mails you a check.

Note: There's no way to know for sure how much money an individual click is worth with AdSense. That's because Google advertisers

compete by bidding for different keywords (see Section 11.4.2.2 in Chapter 11) and keyword prices can fluctuate over time. Google does

let you know how much your clicks were worth (in total) when it pays you. A typical click can net you about 20 cents.

Figure
13-2.
In this

example, a

box with

three

Google

AdSense

ads is

nestled

alongside

travel links.

It blends

into the

scenery

perfectly

with a

similar

visual style

and

content.

This

grouping of

ads is

sometimes

called an

ad unit.

Google lets

you choose

the layout

of your ads,

and the

number of

them you

want to use

in a page,

so it's up to

you

whether

you want to

slip a few

ads in

quietly or

have them

dominate

your page.

Before you become an AdSense devotee, you need to know what makes AdSense different from
other ad programs. Here are some of its top advantages:

AdSense ads are relevant . Google automatically scans your site, and matches ads based on
keywords. That means that if you've got a Web site devoted to SpongeBob SquarePants, Google
will provide ads hawking SpongeBob DVDs, inflatable dolls, and birthday gear. Using keyword-
based ads is far, far better than aggravating your visitors with offers for completely unrelated
products like high-tech spy cameras. It also dramatically increases the chance that a visitor will
click an ad and generate a click-through fee. And if you're worried about a competitor's site
turning up in an advertisement, you can tell Google to filter it out.

AdSense ads can blend in with the scenery . Google gives you a wide range of ad layout
and color options. This ensures that you can generate ads that match the slick color scheme of
the rest of your Web site.

Google gives fair payment terms . As you learned in Chapter 11 , Google charges
advertisers different amounts of money for different keywords. Most advertising providers would
just swallow the extra money, and pay their members the same amount for any click-through.
Not Google. It pays you according to the current value of the keyword, which guarantees that
you're always getting a competitive rate.

There are no start-up charges . The AdSense program is completely free to join.

Tip: Don't try to cheat AdSense. Devious Web developers have tried to game the system by clicking on their own ads over and over

again, or even firing up automating programs that do it for them. The problem is that Google uses various techniques to spot suspicious

usage patterns. If it sees a ridiculous number of clicks over a short period of time all originating from the same computer, it's likely to

spot the deception and ban your site outright.

13.2.1. Signing Up for AdSense

You can learn much more about the specifics of Google's ad program by surfing to
www.google.com/adsense . There's also a great, not-too-detailed walkthrough of the AdSense
service at www.google.com/services/adsense_tour .

When you're ready to get started, follow these steps to sign up:

On the AdSense homepage, click the Click Here to Apply button .

Google asks you if you already have an AdWords account (which you can use to pay for
advertisements that appear on Google's Web site, as described on Section 11.4.2.2). If you do,
you can use that to login and skip the account creation steps.

Note: Even if you have a Gmail account, you still need to register for AdSense. Gmail login information and the AdSense

information are separate, because Google needs a few more details before it can conduct business with you.

1.

To create a new account, you need to supply your email address and a password, and
click Continue .

Google starts the process of getting the account information it needs. First, you'll need to
identify whether you're applying as an individual or as a registered business. Registered
businesses that are based in the U.S. need an EIN (Employer Identification Number). U.S.
citizens who are applying as individuals need to give an SSN (Social Security Number). Citizens
of other countries need to apply for a U.S. TIN (Taxpayer Identification Number)see
www.google.com/adsense/taxinfo for the lowdown.

2.

Next, you'll need to supply the typical identification information, like your name and
address .

The interesting part comes when it's time to choose the type of AdSense feature you want.
You'll find these options in the Products section at the bottom of the page (see Figure 13-3).

3.

Figure
13-3.
Google

gives you

the option

of ordinary

AdSense

(called

"AdSense

for

content"),.

which

you've

learned

about so

far, and a

search-

based

feature

called

"AdSense

for search."

With

"AdSense

for search,"

you can

provide a

Google

search box

on your

page that

visitors can

use to

search the

Web.

When ads

crop up in

the search

results,

they're

treated like

ads on your

Web site

(see

Section

13.2.4 for

more). You

may as well

choose

both

AdSense

programs,

since you

can decide

later which

to use.

Once you're finished, click Submit .

The next page shows a summary of all the information you supplied.

4.

Click Continue to finish the process .

Now you need to wait for Google to contact you by email to confirm your account. There are
two steps in this process.

First, Google sends you an email confirmation message almost immediately. This message
contains a link that you need to click to confirm your email address. However, this still doesn't
finish the job.

Instead, someone at Google needs to take a quick look at your Web site to confirm it really
exists and isn't promoting illegal activity (for example, offering pirated copies of Windows XP).
Once this process is finished (usually two days later), you'll get a second email confirming your
account has been activated.

5.

13.2.2. Creating an Ad

Now that you have an AdSense account, you're ready to generate some ads and put them in your
Web site. Just go to www.google.com/adsense , and log in with your email and Google password.
You'll see the Google AdSense page (see Figure 13-4).

Note: Before you can generate the right ad unit, you need to have a basic idea of where you plan to put your ads. Consider whether you

want a vertical or horizontal strip of ads, and try to assess how wide or long that bar should be. You can skip ahead to Figure 13-6 to see

a preview of some of your layout options.

Figure
13-4.
The

AdSense

page is

divided into

several

tabs.

Initially, you

begin at the

Reports

tab, where

you can

survey a

day-by-day

breakdown

of the

money

you've

made.

The AdSense page has four central sections, which are represented by tabs at the top of the page.
These sections include:

Reports . This tab helps you assess the performance of your AdSense ads. You'll see a
summary of the money you've made today and over the last week. To get more detailed
information, you can click a report link (like "This month, by day," which gets the earnings for
this month, totaled by day). Google won't tell you what each individual click was worth, or which
particular ad caught the reader's eye. You can also view a payment history that records each
check that Google's mailed out to you (click the "View payment history" link).

AdSense for Content . This is your starting point for generating AdSense adsit's where you
specify the type of ad you want, and get the HTML code you need to insert into your Web
pages. You also have access to some advanced features here, such as filtering out ads from
specific Web sites.

AdSense for Search . Using this tab, you can generate the HTML for a Google search box that
you can place on your Web pages. When a visitor performs a search through this Google box,
they may see some relevant ads, and if they click one, you'll get the usual commission.

UP TO SPEED

AdSense Rules

Google enforces a handful of rules that your Web site must follow in order to be a
part of AdSense. Many of these are common sense, but it's still worth taking a
quick look at them.

You can't put the ads that Google supplies you with in email messages or pop-
up windowsthe temptation for spammers to abuse the system is just too
great.

You can't put ads on pages that don't feature any "real" content. This includes
error, login, registration, welcome, and under-construction pages. You
definitely can't create pages that include nothing but ads.

You can't try to obscure parts of the ad (for example, by placing other
elements overtop with a style sheet). The entire content of an ad must be
visible.

You can't click your own ads. You also can't use programs that do this for you.
Finally, you can't entice your visitors to click your links using threats or
incentives.

Your Web site can't include excessive profanity, copyrighted material,
pornography, content about hacking hi-tech security systems, advocacy for
illegal drugs, hate speech, or anything related to gambling.

For the full AdSense policy, surf to www.google.com/adsense/policies .

My Account . This tab lets you update most of the information you supplied when you
registered. This includes details like your mailing address and tax information.

Now that you're acquainted with AdSense, you're ready to dive in and build your first ad unit. Here's
how:

On the AdSense page, click the "AdSense for Content" tab .

The "AdSense for Content" tab has several clickable subcategories, including "Ad layout code,"
which is selected when you arrive on the "AdSense for Content" page. Using this "Ad layout
code" sub-tab, you can generate the HTML code for a Google ad unit.

1.

Choose the type of ad you want to createeither an ad unit or a link unit .

An ad unit is a group of one or more ads, complete with descriptive text or (optionally) images.
When a visitor clicks an ad, the visitor winds up at the advertiser's Web site (and you get paid).
If you're used to seeing AdSense ads on Web pages, ad units are what you've probably seen
most of in the past.

2.

A link unit is a slim box of links with no descriptive text. The title of the box is "Ads by Google"
and the links are one- or two-word entries, like "Digital Cameras" or "Consumer Electronics." If
a visitor clicks on one of these links, Google serves up a new page that's filled with ads for that
topic. If the visitor then clicks one of these ads, you get paid.

Note: Google is constantly tweaking and refining the types of ads it offers. Don't be surprised if you find even more types of ad

formats available when you check out the AdSense program.

Choose the exact type of ad (from the list box next to ad unit or link unit) .

If you're creating a link unit, you're limited to choosing how many links appear in the box.

If you're creating an ad unit, you can choose whether you want to use text or image ads.
Generally, image ads stand out more than text ads. However, you need to balance two
conflicting goalsthe desire to make money by attracting clicks with eye-catching ads, and the
desire to minimize the distraction on your Web page by choosing ad types that are less
obtrusive.

Figure 13-5 shows one possible ad type and page layout selection.

3.

Figure
13-5.
This

example

uses text-

only ad

units. The

ad layout is

a 300 x 250

pixel

rectangle,

which holds

four ads,

one on top

of the other.

Of course,

the only

way you'll

know how

many ads

fit into this

layout is by

checking

out

Google's

sample-ad

page (see

Figure 13-6

).

Choose the ad layout .

The ad layout determines the size of an ad. If you've chosen a text-only ad, Google uses a box
with several ads inside it. The ad layout option also determines how many ads you'll see at once
(from one to five). It's usually impossible to picture what the different ad layouts really look like.
To orient yourself, click the View Samples link, which opens a new window with an example of
every ad layout option (see Figure 13-6). Using this page, you can find the format that best
suits your Web site.

Figure
13-6.
Google has

an ad option

for virtually

4.

any Web

site layout.

Click the

"View

sample

placements"

link (circled)

next to any

type of ad to

see how

you can

integrate

the ad into a

sample

Web page.

Top:

Vertical and

horizontal

groups of

text ads are

the most

common

types of

AdSense

layouts that

you'll see

out on the

Web.

Middle:

Image ads

are eye-

catching,

but they can

take the

focus away

from a more

modest

Web site.

Bottom:

Link units fit

almost

anywhere.

They

provide brief

topic links

that lead to

more

detailed

pages with

lists of

Google ads.

5.

Choose a color palette. (This step is optional.)

The color palette sets the colors that are used for the ad text, background, and border. Google
has preset palettes, with names that rival designer paint lines ("Mother Earth" and "Fresh Mint"
are two examples). As you choose the palette you want to use, Google demonstrates the result
with a small preview ad on the right.

If you want complete control over your colors and want to make sure they match the ones
you're using in your Web site, you need to create a custom color palette. Click the "Manage
color palettes" link (see Figure 13-7).

Figure
13-7.
To create a

custom

color

palette,

begin by

choosing

one of the

existing

color

5.

palettes as

a starting

point. Next,

modify the

colors of

different

parts of the

ad, one by

one. For

example, to

modify the

color used

for the ad

text, click

the Text

radio

button, and

type in the

HTML color

code

(Section

6.2.1.1).

Finally,

give your

custom

palette a

name and

click Save

to store it

for future

use. Once

your

palette's

saved, you

can choose

it from the

list of

palettes the

next time

you create

an ad.

Note: Usually, you'll choose ad backgrounds and text colors that match the colors you're already using in your Web pages. For

some advice about how to choose HTML colors, see Section 6.2.2 .

Choose an alternate ad. (This step is optional.)

When you first place the ad unit on a page, Google doesn't yet know what ads are a good match
for your content. Instead it uses some generic ads, like news headlines or messages from

6.

nonprofit organizations. Google's text-sniffing software pays a visit to your page shortly after,
and the real ads materialize within a couple of days.

If you don't want to put up with the generic ads for any period of time, you can choose
alternate content. You have two optionsyou can choose an alternate color, in which case Google
will insert a block of color and not give you any ad content. The idea is that you'll use a color
that matches the background of your page, so it disappears entirely. Your second option is to
specify a URL for a page you want to use. Until the real ads are ready, that's the content that
appears in your page.

Note: Alternate ads probably aren't worth the trouble. It's better to use the generic ads, because the ad layout is the same, which

makes it easy to place the ad in the right place and get an idea of what it looks like alongside the rest of your site's content.

6.

Choose a channel. (This step is optional.)

Ordinarily, if you generate a half-dozen ads, and scatter them on different pages throughout
your site, you don't know which ones are making you money. Google's report only shows you
the total clicks for all pages on your site. Some site owners need more detailed information
about which ads are working. Enter Google's channels feature.

If you want to track the performance of different ads or different pages, you need to create
distinct channels. The idea is that you place each ad in a separate, virtual "channel." Google
then lets you create reports that compare each channel, so you can tell which one is performing
best.

If you've created a channel, you can select it from the list. To create a new channel, click the
"Manage channels" link, which takes you to the page shown in Figure 13-8 .

Tip: Channels are a great way to try out different ad strategies, and see which ad formats and ad placements have the most

success garnering clicks from your visitors.

7.

If the page where you're going to place the ad uses frames, turn on the "Ad will be
placed on a framed page" checkbox .

If your Web page uses frames, Google needs to know about it, so it can scan the content of the
correct frame. When using frames, you need to put your ad in the content part, not in other
frames (like titles or navigation bars). If you put an ad in a page without any content, Google
won't be able to figure out what kind of ads are relevant to your Web site. For more on frames,
see Chapter 10 .

8.

The text box at the bottom of the page now has your complete, customized ad unit
code (see Figure 13-9) .

Click in the text box to select it, and then copy its contents by pressing Ctrl+C (-C). You're
now ready to paste it, by clicking Ctrl+V (-V) into one or more Web pages, as described in
the next section.

9.

Figure
13-8.
Creating a

custom in a

name, click

"Create

channel,

and then

click

Activate.

You can

add

multiple

ads to the

same

channel to

track them

as a group,

or you can

create a

separate

channel for

each ad

you use.

13.2.3. Placing Ads in Your Web Pages

Once you've generated the ad script, you're ready to pop it into any Web page. Horizontal strips are
easiest to position. You simply need to paste the entire script right where you want it to appear.

Here's an example that places the ads at the bottom of a page:

 <html>
 <head>…</head>
 <body>
 <h1>A Trip to Remember</h1>
 <p>
 After returning from my three-month travel adventure…</p>
 <p>I hope you enjoy these pictures as much as I do.</p>
 <p>See pictures from…</p>

 <script type="text/javascript"><!--
 google_ad_client = "pub-5867479552359052";
 google_ad_width = 728;
 google_ad_height = 90;
 google_ad_format = "728x90_as";
 google_ad_type = "text";
 google_ad_channel ="";

 google_color_border = "006600";
 google_color_bg = "FDF5E6";
 google_color_link = "000000";
 google_color_url = "0033FF";
 google_color_text = "000000";
 //--></script>
 <script type="text/javascript"
 src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
 </script>
 </body>
 </html>

Figure
13-9. The

ad unit doesn't

consist of HTML

elementsinstead,

it's a JavaScript

(which you'll

Google uses a

script because it

needs to be able

to generate

blocks of ads

dynamically,

according to the

preferences

you've chosen.

Whenever your

page gets

requested, the

Google ad script

runs,

communicates

with the Google

Web servers,

and asks for a

set of ads. The

Google Web

server looks up

some relevant

ads, applies your

layout and color

options, and

then sends the

final block of

HTML back to

the script so it

can be inserted

into your page.

Figure 13-10 shows the result.

Positioning vertical ad strips requires a little more work, but it's easy once you learn the trick. The
challenge is that you want the rest of your page content to flow beside the vertical ad. As you learned
in Chapter 9 , there are two techniques that can help you accomplish this feat. You can use invisible
tables and lock the ad unit into a specific cell, or you can use style sheet rules to float the ads on the
side of the page. .

Figure
13-
10. A
728 x 90

pixel

horizontal

slab

provides

four ads for

this page.

The Google

bot hasn't

visited this

site yet, so

the initial

set of ads

consists of

generic

news

headlines.

But notice

how the

background

ad color

matches

the

background

heading

color,

thanks to

the creation

of a custom

palette

(Section

13.2.2).

To use the style sheet approach, begin by wrapping your script in a <div> tag. Here's an example
featuring the same content you saw in Figure 13-10 ; the <div> tag lines are highlighted:

 <html>
 <head>…</head>
 <body>
 <div class="floatRight">
 <h1>A Trip to Remember</h1>
 <script type="text/javascript"><!--
 google_ad_client = "pub-5867479552359052";
 google_ad_width = 120;
 google_ad_height = 240;
 google_ad_format = "728x90_as";
 google_ad_type = "text";
 google_ad_channel ="";
 google_color_border = "006600";
 google_color_bg = "FDF5E6";
 google_color_link = "000000";
 google_color_url = "0033FF";
 google_color_text = "000000";
 //--></script>
 <script type="text/javascript"
 src="http://page ad2.googlesyndication.com/pagead/show_ads.js">
 </script>
 </div>
 <p>
 After returning from my three-month travel adventure…</p>
 <p>I hope you enjoy these pictures as much as I do.</p>
 <p>See pictures from…</p>
 </body>
 </html>

Notice that the <div> tag (which has no formatting of its own), uses the style sheet class floatRight .
In your style sheet, you use this rule to make the <div> section float with the float attribute (see
Section 7.2.3). Here's what you need:

 .floatRight {
 float: right;
 margin-left: 20px;
 }

Figure 13-11 shows the result.

13.2.4. Google-Powered Searches

Google has one more way for you to please your visitors (and earn some cash in the process). You
can add a Google search box to a Web page, letting visitors launch their Google queries right from
your site. Even better, you get the earnings for any ads they click in the search resultsa feature

Google calls (rather unimaginatively) "AdSense for search."

Once you have an AdSense account, it's easy to get the Google search box so you can add it to your
site:

Log in to your AdSense account, and click the "AdSense for Search" tab .

The "AdSense for Search" page is a lot like the "AdSense for Content" page. It asks you a series
of questions, and gives you a block of HTML you can copy into your Web page at the end.

1.

Select the language and country of your Web site .

The standard options are English and United States. As you probably know, Google has country-
specific pages that can tweak search results, providing them in different languages or giving
priority to local sites.

2.

Choose Google Search (if you want visitors to be able to explore the whole Web,
including your site) or Google SiteSearch (if you want them to be confined to just
searching the pages on your site) .

Figure
13-
11. A
120 x 240

vertical

banner fits

two ads

into this

page.

Vertical ads

are the

most

popular

way to

integrate

Google ads

into a page.

Not only do

they tuck

neatly next

to the Web

page's

content, but

if you make

them long

enough,

they remain

visible as

the Web

surfer

3.

scrolls

down the

page.

Google Search is the original Google search engine we all know and love.

Google SiteSearch is an innovative ideait's a search box just for searching your site . For
example, if you have dozens of pages of travel stories, a visitor could home in on the page they
want by typing "funny story about rubber chicken in Peru" into a SiteSearch box. However,
there's one catch. SiteSearch still uses Google's standard, centralized catalog of Web pages; it
just limits the search to the pages from your site. But if Google doesn't have the page in its
catalog (either because you just created it or because Google doesn't know your site exists),
SiteSearch won't find it.

If you want to provide both options (Google Search and Google Site Search), just follow these
instructions twice to create two different text boxes. But be careful you don't wind up confusing
your visitors.

Tip: If you decide to use SiteSearch, use the search engine tips in Chapter 11 to make sure Google knows you're alive.

If you want to filter out profanity and sexual content from search results, choose the
SafeSearch option .

SafeSearch is useful in two situations. First, it's de rigueur for sites that provide children's
content. Second, it's handy if your Web site deals in a topic that shares some keywords with
adult-only sites. For example, if you're creating a breast cancer awareness page, you don't want
searches for "breast exam" to dig up the wrong goods.

UP TO SPEED
How AdSense Creates Targeted Ads

Every time you serve up a Web page that contains Google ads, the AdSense script
sends a message to the Google Web server asking for ads. This message includes
your ad preference information and your unique client ID. (Your client ID is
something like pub-5867479552359052 ; you can see it in the script code.)

The first time Google receives this request, it realizes that it hasn't examined your
page yet, and it doesn't know what types of ads are best suited for it. Instead,
Google sends you a block of generic ads (or sends back your alternate content, if
you choose that feature as described on Section 13.2.2). Google also adds your
page to a list of pages it needs to visit. Sometime in the next couple of days, the
AdSense robot heads over to your site and analyzes its content. From that point
forward, you'll see ads that are based on the content of your page.

If 48 hours pass and you still aren't getting targeted ads, there could be a problem.
One of the most common mistakes is putting ads on pages that don't have much
text, in which case Google can't figure out what your site is really all about.
(Remember, Google only considers a single pagethe one with the ad unitnot any
other pages in your site.) Another potential problem occurs if you put your ad in an

4.

inaccessible page. For example, the Google bot can't get to any page that's not on
the Internetpages on your personal computer or a local network just can't cut it.
Likewise with pages that are password-protected. Some Web sites block off robots
using exclusion rules (Section 11.4.2.3 in Chapter 11). These also stop the
AdSense bot cold.

Tailor the appearance of the Google search box .

You can tweak the background color, width, and placement of the logo and search button (see
Figure 13-12).

5.

Choose any optional features you want .

Select "Open search results in a new browser window" if you want a new page to pop up with
the results of the visitor's search. Pop-up windows are usually annoying to Web surfers, but are
handy if you want to make sure your Web site sticks around on the visitor's desktop.

Choose a style palette for the search results page. This way, the search results can blend in with
the color scheme used in the rest of your Web site. Style palettes are almost the same as the
color palettes discussed with ad creation (Section 13.2.2), except they also let you add a
custom logo.

Choose a channel if you want to track the ad dollars you make from this search box. See
Section 13.2.2 for more information about channels.

Figure
13-
12.
There's not

a lot to

change

here, but

Google

gives you a

little

flexibility to

alter how

the search

box

appears.

6.

7.

The text box at the bottom of the page now has your complete, customized search
engine box (see Figure 13-13) .

You can copy this HTML with a quick Ctrl+C (-C) and paste it, via Ctrl+V (-V) into any Web
page.

7.

Note: For even more details and tips about the Google AdSense program, check out Google: The Missing Manual .

13.3. Amazon Associates

As popular as ads are, they have one serious drawbackthey clutter up your Web site. Once you've
perfected a design beauty with carefully chosen pictures and style sheets, you might not want to
insert someone else's ad. And although Google ads aren't as visually distracting as other types of ads
(like animated banners and pop-up windows), they still chew up valuable screen space. If you can't
bear to disturb your Web page masterpieces, you might be interested in subtler affiliate programs.

The Amazon Associates program is the Web's longest running affiliate program. If you have a
personal site with a "favorite books" page, or you just refer to the odd book here and there, you
might be able to make some extra money by signing up.

Figure
13-
13.
Unlike with

Google

ads, the

search box

doesn't

require a

script.

Instead, it

includes

the actual

HTML tags,

including

an invisible

table, logo,

and input

controls.

As

tempting as

it might

seem,

Google

forbids you

from editing

the HTML

to create a

really

customized

Google

search box.

The basic idea behind the Amazon Associates program is that you provide links to book pages and
other product pages on the Amazon Web site. For example, if you write a blurb about a great recipe
you tried, you could add a link that, when clicked, takes the reader to the Amazon page that sells the
cookbook you're quoting from. The link itself is a nice feature for your Web site, since it provides your
visitor with more information. But the best part is what happens if a visitor decides to buy a copy.
You'll wind up making a healthy commission of 4 percent to 7.5 percent of the book's Amazon sale
price.

Tip: Amazon commissions aren't just for books. You can provide links to pretty much everything that's for sale on Amazon (excluding

items sold by other retailers, like Target and Office Depot). But there are limits to how much you can make on non-book items. For

example, with personal computers, you're capped at a maximum $25 commission. These rules change from time to time, so make sure

you scour the Amazon Associates Web site carefully to get the lowdown.

The specific payments terms are a little convoluted, and they're discussed in detail at
www.amazon.com/gp/browse.html/?node=3435371 . Here are a few rules of thumb:

You make the most money if you lead Amazon fans directly to a specific book, and they buy
that book.

If you lead a surfer to the main Amazon page, or you lead them to a specific book but they go
on to buy something different, you still make a commission, but it'll be smaller.

If your Web site is responsible for generating a huge number of sales, you earn even more (up
to a total 10 percent commission). Amazon calculates your bonus based on the total number of
sales in the quarter. To be eligible for the bonus percentage points, you need to help sell at least
21 products.

It may take a graduate degree in number theory to really sort out the final commissions you'll get
from an Amazon sale. Fortunately, it doesn't matter that muchmost associates are happy to add a
few links to specific books they like, and then see how much money it nets.

Note: Without a doubt, the best feature of Amazon Associates is that it doesn't tamper with your Web site. You're in complete control of

where you place the link and what it looks like.

13.3.1. Signing Up as an Associate

Signing up for an Amazon Associates program is even easier than joining AdSense. Just follow these
steps:

Surf to www.amazon.com/gp/browse.html/?node=3435371 and find the "Click here
for easy registration" link .

If that link is too much to remember, just surf to Amazon's main site and search the help
information for "associates."

1.

Log in with your Amazon email and password .2.

In order to join the associates program, you need to already be an Amazon customer. If you
aren't, create a customer account before you go any further. (Don't worry, it's easy. Just head
to the main www.amazon.com site and look for a sign-up link.)

2.

Enter your payment information and click Continue .

You need to supply your name, address, and preferred form of payment (check, Amazon
certificates, or direct deposit to a U.S. bank). Check payments don't go out until you make at
least $100, while other payment types kick in once you reach $10.

3.

Enter your Web site information and click Continue .

You need to supply a Web site name, URL, and a brief description (see Figure 13-14).

4.

Review the summary and click Continue to submit your application .

The final page lets you confirm all the information you've entered so far.

Shortly after you've submitted your application, you'll get a confirmation message that approves
you on a trial basis. This email also supplies you with your unique associate ID. This is
important, because it's the single piece of information you need to put in all your Amazon links
to start earning commissions. You can now start using the associate tools at
http://associates.amazon.com (see the next section).

Figure
13-
14. To

become an

Amazon

associate,

you need to

supply

some basic

information

about your

site. Don't

skip over

this step,

because

someone

from

Amazon

will take a

quick look

at your site

before it

approves

you for the

program.

5.

http://associates.amazon.com

A couple of days later, when someone at Amazon has verified your site exists and isn't running
afoul of the law, you'll get a second email confirming that you're in for good.

13.3.2. Generating Associate Links

Once you have your associate ID (which is found in the first confirmation email Amazon sends you),
you're ready to start creating associate links , the hyperlinks that will bring your site visitors over to
Amazon. The trick is formatting the URL in the right way.

Associate links always have the associate ID at the very end. For example, the first email Amazon
sends shows an example of how you can link to the Amazon homepage. It looks like this:

 http://www.amazon.com/exec/obidos/redirect-home/prosetech-20

In this example, the associate ID is prosetech-20 . (Replace it with your own ID to create a link for
your Web site.) If someone follows this link and buys something, you'll earn the minimum 4 percent
commission.

Here's how you could use this link in an anchor (Section 8.1 in Chapter 8):

 Visit
 Amazon and help me save up to buy a Ferrari.

Note: Amazon encourages you to advertise the fact that you're an Amazon associate. If you'd like to boast, Amazon provides a

collection of ready-made Amazon logos and banners at http://associates.amazon.com/gp/associates/network/build-

links/banner/main.html . You can add these to your site, and even put them in anchor tags to transform them into associate links. (Before

you can view the banner page, you'll need to be signed up as Amazon associate, as described on Section 13.3.1 .)

13.3.2.1. Product links

You'll get better commissions with more useful links that lead directly to a specific product. Amazon
supports several associate link formats, and here's one of the simplest:

 http://www.amazon.com/exec/obidos/ASIN/0141181265/prosetech-20

In this link, there are two details you need to customize, the ASIN (Amazon Standard Item Number)
and the associate ID. In this link, the ASIN is 0141181265 (which leads to the book Finnegans Wake)
and the associate ID is prosetech-20 . Figure 13-15 shows you where to find an ASIN.

http://www.amazon.com/exec/obidos/redirect-home/
http://www.amazon.com/exec/obidos/ASIN/

Here's an example of a complete link:

 The development of the modern personal computer was first presaged in Joyce's

 Finnegans Wake.

That's all you need.

13.3.2.2. Advanced links

Amazon offers a set of specialized tools designed to help you generate links. Using these tools, you
can create a wide range of snazzier links. Your options include:

Links with thumbnail pictures.

Links to product categories (like equestrian magazines or bestselling kitchen gadgets) .

Figure
13-15.
Every item in

the Amazon

catalog has

a unique

ASIN, which

you can find

in the

Product

Details

section on

the page for

that product.

For books,

the ASIN is

the same as

the ISBN

(highlighted),

which is an

industry-

standard

book ID

number.

Ad banners that advertise a specific Amazon department.

Amazon search boxes that let visitors perform their own queries.

Even if you don't want these fancier links (and if your life isn't dedicated to selling books, you
probably don't), there's still good reason to build links with the tools Amazon provides. That's
because these links have built-in tracking, which lets you determine how many people saw your
Amazon link.

Note: Amazon tracking is very clever. Essentially, Amazon embeds a tiny one-pixel image alongside each link. If someone requests a

page that contains one of these links, his browser automatically fetches the invisible picture from Amazon. When Amazon gets the

request for the invisible picture, it knows someone is looking at the link, and so it records a single impression in its tracking database.

Here's how you can use Amazon's link building tools:

Surf to http://associates.amazon.com and log in .

This takes you to the Associates Central home page, which has a number of useful resources for
associates (Figure 13-16).

Figure
13-
16. The

Associates

Central

home page

gives you a

variety of

reports for

checking

your

progress to

date, as

well as

tools for

building

links. You

can also

get

invaluable

advice from

other

associates

by visiting

the

discussion

forums.

1.

Click Build Links Product Links .

Product links point to individual items on Amazon's site. They're the most lucrative type of link

2.

3.

(and generally the most useful for your site's visitors). But if you're planning to go Amazon-
crazy, feel free to explore all the other types of links.

2.

Type in the ASIN for your product and click Go .

If you don't know the ASIN, select the best category and type in the product name. When you
click Go, Amazon performs the search and shows a list of all the results that match (see Figure
13-17).

3.

Click the Get HTML button next to the product you want to link to .

You'll see a text box with the HTML code required to create an ad linking to the book or
whatever product you're linking to. You can copy this code directly into your page. However, if
you want an ordinary text link, you need to do a little more work.

Figure
13-
17.
When

building a

link, you

can

perform a

search for

the product

you want.

This search

works in

more or

less the

same way

as a search

from the

Amazon

home

page.

4.

Click the Show button next to the Customize Link heading. Then, choose the link
options you want .

The page you're looking at shows a set of options for configuring the link to be as fancy or simple
as you want (see Figure 13-18). To create a text link, click Basic Display, and choose Text Only
in the Image box.

You can also choose where the link goes by choosing from the Link Destination drop-down menu
(see Figure 13-18 , bottom). Your two options are Detail Page (the full product description, with
reviews) and Offer Listing Page (which shows third-party sellers that have new or used copies

5.

6.

for sale).

Click Update HTML .

Now you can copy the HTML from the text box and paste it in any Web page on your site.

6.

When you create a text link, Amazon generates an anchor tag that looks fairly complex. (As
described earlier, the anchor tag contains an tag for an invisible picture that lets Amazon
track how many times the link is shown.) However, like all anchor tags, it's relatively easy to put this
tag where you want it. Just pop it into an existing paragraph, like this:

 <p>Lewis Carroll's work as a mathematician may have driven him insane,
 as his famous book
 The Hunting of the Snark

 attests.</p>

Figure
13-
18. As

you choose

your link

options,

Amazon

shows you

a preview

of what the

link will

look like.

You can

choose a

graphical

image (top)

or a

plainer,

easier-to-

integrate

text link

(bottom).

Tip: Inside the anchor tag, Amazon puts the full title of the book. This title might be a little longer than you intend, because it might

include information about the edition or a byline. If so, just cut it down to the title you want to use.

13.4. PayPal Merchant Tools

Unless your Web site is wildly popular, ads and other affiliate programs will only net you spare
change. If you have all-consuming dreams of Web riches, you need to actually sell something.

You don't need to go far to run into self-made Internet commerce kingpins. A surprisingly large
number of people have made their living with creative products. Examples include t-shirts with
political catchphrases, empty bottles of wine with Titanic labels, and collectable toys from a relative's
basement. Your path to a thriving e-business might involve little more than buying tin spoons from
Honest Ed's and decorating them with macramé.

But no matter how good your goods are, you need a way to sell vast quantities easily and
conveniently. Very few people will go through the hassle of mailing you a personal check. However, if
they can make an impulse purchase with a credit card, your odds of making a sale improve
significantly.

But accepting credit cards isn't the easiest thing in the world. There are two ways an e-business can
accept credit cards:

Open a merchant account with a bank . This is the traditional way to accept credit cards.
Requirements for this step vary from country to country, but you may need a business plan and
an accountant, and some up-front capital.

Use a third-party service . A number of companies accept credit card payments on your
behalf in exchange for a flat fee or a percentage of the sale. In this chapter, you'll learn how to
use one of the bestPayPal.

Unless you have a large business, the second option is always better. The reason has to do with the
additional risks that accompany Web-based sales.

First of all, the Internet is an open place. Even if you have a merchant account, you need a secure
way to accept credit card information from your customers. That means the credit card number
needs to be encrypted (scrambled using a secret key) so that Internet eavesdroppers can't get it.
Most Web masters don't have a secure server sitting in their basement.

Another problem is that when you conduct a sale over the Web, you don't have any way to collect a
signature from the e-shopper. This makes you vulnerable to chargebacks (see the following sidebar).

Note: PayPal is a staggeringly large Internet company that offers payment solution in 45 countries, and has 71 million account members

worldwide. PayPal was established in 1998 and purchased by eBay in 2002. .

FREQUENTLY ASKED QUESTION

Understanding Chargebacks

What's a chargeback?

A chargeback occurs when a buyer asks their credit card company to remove a charge
from their account. The buyer may claim that the seller didn't live up to their end of the
agreement, or claim that they never made the purchase in the first place. A chargeback
can occur weeks or months after the item is purchased.

From the buyer's point of view, a chargeback is relatively easy. The buyer simply phones
the credit card company and reverses the transaction. The money you made is deducted
from your account, even though you've already shipped the product. If you want to
dispute the buyer's complaint, you're in the unenviable position of trying to convince a
monolithic credit card company to take your side. Many small businesses don't dispute
chargebacks at all, because the process is too difficult, expensive, and unsuccessful.

However, when you use a third-party service, the odds tilt in your favor. If the buyer
asks for a chargeback, the chargeback is made against the third-party company that
accepted the payment (like PayPal), not you. And even though PayPal isn't as large as
the average multinational bank, it's still a major customer of most credit card
companies, which means it has significant clout to argue against a chargeback.

The end result is that buyers are less likely to charge back items to PayPal. And even if
they do, PayPal gives you the chance to dispute the chargeback. PayPal even lets you
contact the buyer to see if there's a simple misunderstanding (for example, to check
whether you sent the item to the wrong address). And if you're really paranoid, you can
use PayPal's Seller Protection Policy, which insures you for up to $5,000 of loss, if you
take a few additional steps (like giving PayPal your bank information and retaining proof
of delivery). For more information about how PayPal handles chargebacks, check out
www.paypal.com/cgi-bin/webscr?cmd=xpt/seller/ChargebackRisk-outside . To learn
about PayPal's seller protection, refer to www.paypal.com/cgi-bin/webscr?
cmd=p/gen/protections-outside .

13.4.1. Singing Up with PayPal

Once you sign up with PayPal, you'll have the ability to accept payments from customers across the
globe. Here's how you do it:

Head to the PayPal Web site (www.paypal.com). Click the Sign Up Now button on
the home page .

This sends you to the Sign Up Web page

1.

Choose the type of account you want to create: Personal, Premier, or Business .

A personal account is ideal if you want to use PayPal to buy items on eBay. With a personal

2.

account, you can buy items using your credit card or an account funded from a bank account.
You can also accept payments from other people, without having to pay any fees. However,
there's a significant catchcredit card payments aren't supported, which means your customers
need to get money into their account first (either from a transaction with another PayPal
account holder or from a linked bank account) before they can do business with you.

A premier account is the best way to run a small business. You get the ability to send money
(great if you crave a rare Beanie Baby on eBay) and accept any type of payment that PayPal
supports, including credit cards and bank account debit. You'll also get to use PayPal's e-
commerce tools. However, You'll be charged a fee on every payment you receive, which varies
by volume but ranges from 1.9 percent to 2.9 percent of the total value (with a base fee of 30
cents). That means on a $25 sale, you pay PayPal about $1.

A business account is almost identical to a premier account, except it supports multiple logins.
The business account is the best choice if you have a large business with employees who need
to use PayPal to help manage your site.

2.

Choose your country and click Continue .

The next page collects the typical account details.

3.

Enter your name, postal address, and email address. Next, supply a password .

Make it goodyou don't want a malicious hacker guessing your password and using your PayPal
account to go on an electronic buying binge.

Tip: As a general rule of thumb, guard your PayPal account information the same way you guard your bank PIN. If you're really

paranoid, don't use your PayPal account to buy items on other Web sites, and don't supply your credit card information.

4.

Finally, review the PayPal user agreement and privacy policy and indicate your
agreement. Click Sign Up to complete the process .

PayPal sends you an email confirmation message immediately. Once you click the link in this
message, your account is active and you can start creating PayPal buttons and shopping carts
to collect payments.

5.

13.4.2. Accepting Payments

PayPal makes it ridiculously easy to make e-commerce Web pages. In this section you'll see how to
add a Buy Now button to any Web page on your site.

Head to www.paypal.com , and sign in .

Once you've signed in, you have access to several tabs crammed with goodies (see Figure 13-
20).

Use the My Account tab to update your account information, see what transactions you've
made, and request withdrawals.

1.

Use the Send Money tab to email someone some cash (which you'll need to supply from a real-
world bank account or a credit card), and the Request Money tab to send an email asking for
the same.

Use the Merchant Tools tab to build buttons that you can add to your Web pages to sell items.

Figure
13-
19.
PayPal

gives you a

range of

options for

collecting

money via

email and

by placing

buttons on

your Web

pages.

Use the Auction Tools tab to use PayPal to sell items on eBay. (eBay is still one of the most
popular places to set up an e-business.)

Click the Merchant Tools tab .

Scroll down the page, and you'll see a variety of tools for collecting money, as explained in
Figure 13-19 .

2.

Click the link Buy Now Buttons .

PayPal shows a page where you can configure your button's appearance and set the price of
your product (Figure 13-21).

3.

Give your item a name and (optionally) a product code that you use to keep track of
it. Then supply the price, currency, and a default country .

Don't worry about locking out international visitors when you set your currency. Credit card
companies are happy to charge Canadian customers in U.S. dollars, U.S. customers in euros,

4.

and European customers in rupees. Just choose the currency that your buyers expect to see.

The country setting isn't terribly important. If you think most of your customers are from the
U.S., then choose United States. However, enterprising surfers from Luxembourg can still
change this setting when they fill out their payment forms.

Figure
13-20.
The My

Account tab

lets you see

what

transactions

you've

made so

far, and if

there's any

money

currently in

your

account.

Choose to use the standard button picture or design a custom button .

The standard Buy Now button is nice, but a little plain. If you've created a nicer button (see
Chapter 15 for tips) and uploaded it to your site, just supply the URL for that button image
here. Either way, you can always change the HTML that PayPal generates later on if you want to
use a different button picture.

5.

Choose whether you want to use encryption for your price information .

This bit's slightly confusing. PayPal always uses bulletproof encryption when it gets payment
details (like a credit card number) from a customer. Anything less would be scandalously
irresponsible. However, this option lets you choose whether or not to encrypt the price
information that you've entered, so it can't be changed.

If you choose not to encrypt the price information, a nefarious user could create a copy of your
Web page, change the price from $500 to $0.50, and then make a payment. This deception isn't
the end of the worldunless you're selling hundreds of different products, you're likely to notice
the incorrect payment and refuse to ship the item.

6.

Figure
13-
21. The

basics of a

Buy Now

button.

If you use encryption, buyers can't attempt this kind of fraud. However, it also prevents you
from using option fields , a PayPal feature that lets customers choose various options about the
product they're buying.

Click the Add More Options button .

The Add More Options page gives you a heap of extra possibilities. You can add a flat surcharge
for shipping and a percentage for taxes. You can also let customers fill in comments with their
payments, and supply a URL on your Web site where purchasers should be redirected after they
complete a payment or cancel it. But two of the niftiest features are option fields (described in
Figure 13-22), and the ability to customize your "buyer's experience."

Essentially, the buyer experience section lets you tell PayPal where to send shoppers when they
complete a transaction or cancel it. Rather than using the generic PayPal pages, you can send
your shoppers to a specific URL on your Web site with a detailed description about your shipping
policies and provide them with additional support contact information.

7.

Figure
13-
22. The

basics of a

Buy Now

button.

Note: Option fields are only available if you've chosen not to use encryption (see the description for step 7).

Click Create Button Now .

You'll see a text box with the HTML for your customized Buy Now button. All you need to do
now is copy it out of the text box and paste it into a Web page.

8.

When you create a Buy Now button, PayPal puts everything inside a <form> tag (explained on
Section 12.2.2.1 in Chapter 12). If you haven't used encryption, you might be able to figure out
what's going on inside your form.

Here's the example that was generated over the last few steps for a pair of handmade origami socks:

 <form action="https://www.paypal.com/cgi-bin/webscr" method="post">
 <input type="hidden" name="cmd" value="_xclick">
 <input type="hidden" name="business" value="matthewpmacdonald@hotmail.com">
 <input type="hidden" name="item_name" value="Handmade Origami Socks">
 <input type="hidden" name="item_number" value="HOS-001">
 <input type="hidden" name="amount" value="26.95">

 <input type="hidden" name="no_note" value="1">
 <input type="hidden" name="currency_code" value="USD">
 <table><tr><td>
 <input type="hidden" name="on0" value="Color">Color</td><td>
 <select name="os0">
 <option value="Yellow">Yellow
 <option value="Green">Green
 <option value="Tomato">Tomato
 <option value="Chartreuse">Chartreuse
 </select>
 </td></tr></table>
 <input type="image" src="https://www.paypal.com/en_US/i/btn/x-click-but23.
 gif"
 border="0" name="submit" alt="Make payments with PayPal">
 </form>

Remember, when you submit a form, all the information in any <input> fields gets sent along with it.
PayPal puts the product name, number, and price in the input fields, along with your business name.
If you don't use encryption, this is the part that a troublemaker could tamper with and attempt to
pay you less than you or your product are worth.

If you've added any option fields, you'll see <select> and <option> tags that define the list boxes you
need (Section 12.2.2.2 in Chapter 12). Finally, the form ends with a submit button that sends the
form to PayPal. You can change the src attribute of this button to point to a different image file.

Tip: As long as you don't tamper with the <input> fields, and you keep everything inside the <form> tags, you can tweak the HTML

PayPal has created for you. For example, you can add other tags in the form, or apply style sheet formatting. Or, you might want to

remove the invisible table (represented by the <table>, <tr>, and <td> tags) that's used to organize your button and your option fields to

get a different layout.

What happens when the shopper submits this form? The action attribute in the very first line of the
above code tells the story. It has the URL https://www.paypal.com/cgi-bin/webscr . This URL tells
you the information is sent to PayPal over a secure channel (that's why it starts with "https" instead
of "http").

Lastly, it's just as important to realize what PayPal hasn't generatednamely, it doesn't provide any
information about the item you're selling. You'll need to put the item name, picture, description, and
price into your Web page (probably before the Buy Now button). Here's an example:

 <html>
 <head>…</head>

 <body>
 <h1>Handmade Origami Socks</h1>
 <p>
 You've waited and they're finally here. Order your own
 pair of origami socks for only $26.95 and get them in time
 for the holidays. What better way to show your loved ones how

 poor your gift giving judgement really is?</p>
 <form action="https://www.paypal.com/cgi-bin/webscr" method="post">
 … </form>
 </body>
 </html>

Figure 13-23 shows the result. In this example, the standard PayPal ordering page is shown, but you
can customize this page with your own logo. You'll learn how in the next section.

13.4.3. Building a Shopping Cart

The Buy Now button gives you a great way to make a quick sale. But if your dreams are about a Web
e-commerce empire, you'll need to create a store where visitors can collect several items, and pay
for them all at once. This setup requires a shopping cart, and it's a staple on e-commerce Web sites.
With PayPal, you don't need to program your own shopping cartinstead, you can use a pre-built
shopping cart service that integrates smoothly into your Web site.

Creating a shopping cart is remarkably similar to creating a Buy Now button (so if you haven't tried
that, you might want to play around with it before you go any further). The basic idea is that you
create a separate Add To Cart button for each item you're selling on your site. When you create this
Add To Cart button, you get many of the same options you saw when you created the Buy Now
buttonfor example, you set the price, product code, shipping charges, and so on. The difference is
that when a visitor clicks the Add To Cart button, they aren't sent straight to a checkout page.
Instead, a shopping cart page pops up in a new window. Visitors can keep shopping, and then
complete the purchase when they've collected everything they want.

To demonstrate how this works, the following example takes the page shown in Figure 13-24 as a
starting point. This example also demonstrates a great use of style-based layout. Check out the
downloadable samplesavailable from the "Missing CD" page at www.missingmanuals.com to try it out
for yourself.

Figure
13-
23. Top:

A page with

a Buy Now

button.

Bottom:

Clicking the

Buy Now

button

starts a

secure

checkout

process

using

PayPal.

The visitor

can pay for

the item by

credit card,

and you

both get an

email

confirming

the

transaction.

Then it's up

to you to fill

your end of

the deal.

13.4.3.1. Creating a custom page style

Before you create your shopping cart, there's an extra step you can take to really personalize the
payment pages. If you're happy with the PayPal standards, feel free to skip straight to the next
section. But if you'd rather have your company logo appear in the shopping cart pages, keep reading.

Figure
13-24.
Right now,

this

BrainFood

page offers

a great list

of product

descriptions,

but doesn't

give the

reader any

way to make

an impulse

purchase.

You can

change that

by adding

PayPal's

shopping

cart buttons.

If you're not already there, head to www.paypal.com , and sign in .1.

Select the My Account tab, and then the Profile sub-tab .

You see a page with a slew of information about your preferences, grouped into three main
categories: Account Information (who you are and where you live), Financial Information (your
bank, credit card, and payment history information), and Selling Information (extra options you
can use with the merchant tools). In this case, you're interested in the Selling Information
section.

2.

Scroll down to find the Custom Payment Page link, and click it .

This takes you to the Custom Payment Page Styles page, where you can set up page styles or
edit existing ones.

3.

Click Add to create a new page style .

You start off with only a single page stylethe PayPal standard, which sports a basic PayPal logo.

4.

Supply the information for your page style .

Page Style Name is a descriptive title to help you remember which style is which.

5.

Header Image URL is a URL that points to a picture on your Web site. This picture is the logo
you want to show at the top left of the PayPal shopping cart page. The image you use can be a
maximum size of 750 pixels wide by 90 pixels high.

Note: Because PayPal's shopping cart page is a secure page, when you use a custom logo, the shopper may get a message

informing them that there are some insecure items on the page (namely, your picture). If you want to avoid this message, talk to

your Web hosting company about putting your picture on a secure (https) server.

Header Background Color, Header Border Color, and Background Color let you set the page
colors with six-digit HTML color codes (see Section 5.2.7 in Chapter 6). This part is
optionalleave it out if you're happy with the standard white.

5.

Click Save to store the page style .

You can also click Preview to take a sneak peek at what the PayPal payment page will look like.

6.

13.4.3.2. Generating the shopping cart buttons

Now you're ready to build the buttons that add your items to an e-shopper's cart. Here's how to do
it:

If you're not already there, head to www.paypal.com , and sign in .1.

Click Merchant Tools and then click the PayPal Shopping Cart link .

PayPal shows a page where you can configure the Add To Cart button for a single item.

2.

Give your item a name and (optionally) a product code that you use to keep track of
it. Then supply the price, currency, and default country .

These settings are exactly the same as for a Buy Now button (see Figure 13-25). Choose to use
the standard button picture (by clicking the Add To Cart radio button) or create a custom button
(by clicking "Choose a different button") .

3.

Click the Add More Options button .

Now you can set all the options you learned about above, including shipping and sales tax
(Section 13.4.2). You also get two new shopping-cartonly features.

Your shopping cart solution wouldn't be complete without a button that lets the shipper see
what's in the cart (and then head to the virtual checkout counter). PayPal let's you use the
standard View Cart button, or supply a URL that points to a button picture of your own design.

In the Customize Your Payment Pages section, you can also choose a custom page style. This
lets you change the look of the PayPal shopping cart page. If you followed the instructions on
Section 13.4.3 to create a custom page style, select it now.

4.

Figure
13-
25.
Here's the

information

you need to

supply to

create an

Add To

Cart button

that selects

the

Mystical

Brownies.

Click Create Button Now .

You'll see a text box with the HTML for your customized Add To Cart and View Cart buttons. But
remember, the Add To Cart code you generated is good for one button only. If you have more
than one item (as in the BrainFood example), you need to generate multiple buttons. Click
Create Another Button and head back to step 3.

5.

Tip: If you aren't using encryption, there's a shortcut that lets you create additional buttons. Just copy the block of HTML from your first

button and find the input tags inside. Look for the product name, product code, and price, and edit these details by hand. This is also a

great way to make a price change without regenerating the whole button.

Once you've created your buttons, you simply need to add them all to your page. Figure 13-26 shows
the final result.

Figure
13-
26. Top:

Here's the

revised

BrainFood

page, with

shopping

cart

buttons.

Bottom:

After

clicking a

few Add To

Cart

buttons,

here's the

shopping

cart page

your

visitors will

see (in a

separate

window).

All they

need to do

is click

Secure

Checkout

to make the

purchase.

13.4.4. Withdrawing Your Money

Every payment you get through PayPal is safely stashed in your PayPal account (which is kind of like
a virtual bank account). You can see the balance at any time after you log in and click the My
Account tab.

If you've earned a small amount of money, you may be happy just using it to buy other stuff on Web
sites like eBay and www.buy.com . But if you're raking in significant dough, you'll want to withdraw
some of that money into the real world. Pay-Pal gives you a few options.

You can transfer money to a bank account . In order to do this, you'll need to provide
PayPal with your bank account information. Depending on the country where you live, PayPal
waives its fee as long as your withdrawal meets a certain minimum (like $150). However, your
bank may apply a standard electronic transaction fee.

You can request a check . PayPal will mail you the amount to your postal address. Once
again, you may need to meet a certain minimum to get your money without a fee.

To get started with either of these approaches, log in, select My Account Withdraw, and follow
the instructions there.

Part Four: Web Site Frills
Chapter 14, JavaScript and DHTML: Adding Interactivity

Chapter 15, Fancy Buttons and Menus

Chapter 16, Audio and Video

Chapter 14. JavaScript and DHTML:
Adding Interactivity
JavaScript is a simplified programming language designed for beefing up HTML pages with interactive
features. JavaScript aims to give you just enough programming muscle to add some fancy effects,
but not enough to cause any serious damage if your code goes wonky. JavaScript is perfect for
creating pop-up windows, marquee-style scrolling text, and buttons that light up when a visitor
moves his or her mouse pointer over them. On the other hand, JavaScript can't help you build a hot
e-commerce storefront (for that, you need the PayPal tools described in Chapter 13).

The goal of this chapter isn't to teach you all the details of JavaScript. Instead, by the time this
chapter's through, you should know enough to find a great script online, understand it well enough to
make basic changes, and paste it into your pages to get the results you want. Since the Web's got
dozens of JavaScript sites, offering thousands of ready-made scripts for free, these basic skills can
come in very handy.

14.1. Understanding JavaScript

The JavaScript language has a long historyit first hit the scene with the Netscape Navigator 2 browser
in 1995, and Internet Explorer jumped on the bandwagon by adding JavaScript compatibility to IE
version 3. Today, all modern browsers support JavaScript, and it's become wildly popular as a result.
However, some justifiably paranoid surfers turn off the JavaScript switch in their browser settings
(since malicious developers have, on occasion, used JavaScript-fueled agents to attack computers
with pop-up ads and other types of browser annoyances). That means the best rule of thumb is to
use JavaScript to improve your page, but make sure your page still works (even if it doesn't look
quite as nice) when JavaScript has been disabled.

Note: JavaScript is thoroughly different from the Java language (although the code sometimes looks similar, because they share some

syntax rules). Java was developed by Sun Microsystems, and is a full-fledged programming language, every bit as powerfuland

complicatedas C++, C#, and Visual Basic.

So what can JavaScript do?

JavaScript can dynamically insert some HTML into a Web page, or modify an existing HTML tag.
For example, you can show a personalized message, or make a title grow and shrink perpetually
(an example of which is shown on Section 14.3.1.1).

JavaScript can gather information about the current date, the surfer's browser, and the choices
he's made when presented with a form element like a dropdown menu or a radio button. You
can display any of this information or use it to make decisions about what page to show next.
For example, you could stop surfers from going any further until they type in an email address.

JavaScript can react to events that happen in the browser. For example, you can write code
that runs when something specific happens (like when a page has finished loading or when a
surfer clicks a picture).

It's just as important to understand what JavaScript can't do. JavaScript code is sandboxed, which
means the browser locks your page into a carefully controlled place in memory (known as the
sandbox) so it can't access anything on the Web surfer's computer. This design, which is necessary to
ensure good security, effectively prevents JavaScript from sending orders to the printer, reading or
writing (creating or editing) files, running other programs, reformatting your hard drive, and so on.
Just about the only thing JavaScript is allowed to do is read and modify the HTML of the current Web
page.

14.1.1. Server-Side and Client-Side Programming

In order to understand how JavaScript fits into the Web universe, it's important to understand that
there are two types of programming on the Web.

When you surf to a search engine like Google or an e-commerce Web site like Amazon, you're
actually connecting to a high-powered piece of software that runs on a Web server. This program is
what's known as a server-side application. When you're using one of these Web sites, you send the
program some information (like the keywords you want to search for, or the book you want to buy)
and the application consults a massive database and spits out some HTML that creates the page you
see in your browser.

Server-side applications rule the Web world, because there's virtually nothing they can't do.
However, they're insanely difficult to program. Not only do developers need to worry about
generating the HTML for the browser, they also need to run all kinds of complex routines and consult
giant databasesand they need to do it all in a way that performs just as well when millions of people
are clamoring for attention as it does when there's only one person surfing the site. This is hard
work, and it's best handled by the poor souls we call programmers.

Client-side applications, on the other hand, use a completely different model. They embed a small,
lightweight program inside an ordinary HTML page. When a browser downloads this page, the
browser itself can then run the program (assuming it hasn't been disabled by security settings or
compatibility issues). Client-side applications are much less powerfulfor example, they have no
reliable way to access the huge databases stored on Web servers, and for safety reasons they're
prevented from directly changing most things on your home computer. However, they're much
simpler to create. If you've ever played a game of Java checkers in your browser (see Figure 14-1),
you've used a client-side program.

Figure
14-1.
This game of

Java

checkers

looks like an

ordinary Web

page, but

something

very different

is taking

place behind

the scenes.

In fact, the

checkerboard

is actually a

complete

Java program

that's

embedded

inside the

Web page.

14.1.2. Scripting Languages

Even client-side applications can be a challenge for ordinary non-technogeeks. For example, to build
the checkers game shown in Figure 14-1, you need to know your way around the highly sophisticated
Java programming language. However, a whole class of client-side applications exist that aren't
nearly as ambitious. They're called scripts, and their purpose in life is to give the browser a list of
instructions (like "scroll that heading from left to right" or "pop up an ad for fudge-flavored toothpicks
in a new window").

Scripts are written in a simplified scripting language, and even if you don't know all the ins and outs
of a language, you can often copy and paste a cool script from another Web site to get instant
gratification. Two examples of scripting languages are JavaScript and VBScript (a scripting language
that uses syntax that resembles Visual Basic).

This chapter focuses exclusively on scripts created with JavaScript, the only scripting language that's
reliably supported on most browsers.

14.2. JavaScript 101

Now that you've learned a bit about JavaScript and why it exists, it's time to dive right in and start
creating your first real script.

14.2.1. The <script> Tag

Every script starts with a <script> block that you slot somewhere into an HTML document. Really,
you have only two options:

The <body> section . Put scripts in the <body> section that you want to run right away,
when the browser's in the process of reading (and displaying) your page. The browser launches
your script as soon as the browser reaches the script in the HTML document. This means if you
put your script at the beginning of the <body> section, the script gets fired up before the rest
of the HTML is displayed in the browser.

Tip: Usually, JavaScript fans put their scripts at the end of the <body> section. That way, you avoid errors that might occur if you

use a script that relies on another part of the page, and the browser hasn't read that other section yet. Because browsers read an

entire page quite quickly, these scripts execute almost immediately.

The <head> section . If you place an ordinary script in the <head> section, it runs
immediately, before the browser has processed any part of the HTML for the page. However, it's
more common to use the <head> sections for scripts that contain functions (see Section 14.2.3
). Functions don't run immediatelyinstead, they're summoned when some kind of action
happens on the page (for example, when the Web surfer moves her mouse).

Note: You can place as many <script> blocks in a Web page as you want.

A typical script block consists of a series of programming instructions. To get a handle on how these
instructions work, consider the following example, which causes the browser to display a JavaScript
alert box.

 <html>

 <head>
 <title>JavaScript Test</title>
 </head>

 <body>
 <h1>You Will Be Wowed</h1>
 <p>This page uses JavaScript.</p>
 <script type="text/javascript">

 alert("Welcome, JavaScript coder.")
 </script>

 </body>

 </html>

This script pops up a window with a message, as shown in Figure 14-2 . When you click OK, the
message disappears, and it's back to life as usual for your Web page.

Figure
14-2.
Because

the script

tag is

positioned

at the end

of the

document,

the browser

displays all

the HTML

first and

then pops

up this alert

box. If you

put the

script tag at

the

beginning

of the

<body>

section (or

in the

<head>

section),

the page

would still

be blank

when the

alert box

appears.

The

browser

would then

wait until

you clicked

OK to read

the rest of

the HTML

page and

display its

contents.

You're probably wondering exactly how this script works its magic. When the browser processes the
script, it runs all the code, going one line at a time. In this case, there's only one line:

 alert("Welcome, JavaScript coder.")

This line uses the built-in JavaScript function named alert . A function is a programming routine
consisting of one or more lines of code that performs a certain task. JavaScript offers many built-in
functions, and you can build your own.

The alert() function requires one piece of information, or an argument , in programmer-speak. In
this case, that piece of information is the text you want to show in the alert box. If you were
supplying an ordinary number, you could type it in as isthat is, you'd just write in the number.
However, text poses a bit more of a problem, because there's no way for the browser to tell where
the text starts and stops. To handle this problem in JavaScript, you must put your text inside single
apostrophe quotes (') or double quotation marks ("), as in this example.

Note: In programmer-speak, a distinct piece of text that's used in a program is called a string ; "a," "The friendly fox," and

"Rumpelstiltskin" all qualify as strings.

That's it. All this simple script does is call the alert() function. (Spend enough time around
programmers and JavaScript fans, and you'll soon learn that "call" is the preferred way to describe
the action of summoning a function into action.) The alert() function does the rest, popping up the
correct-sized window and waiting for the surfer to click OK.

Note: In order to write this script, you need to know that there's an alert() function ready for you to usea fact you can find out on one of

the many JavaScript tutorial sites.

Based on what you now know, you should be able to change this script in the following ways:

Display a different message (by changing the argument).

Display more than one message box, one after the other (by adding more lines in your <script>
block).

Display the message box before the Web page is shown (by changing the position of the
<script> block).

It's not much to keep you occupied, but it does demonstrate how easy it is to get started using and
changing a simple script.

14.2.1.1. Scripts and really, really old browsers

Sometimes, scripts are written with the comment markers shown here:

 <script type="text/javascript">
 <!--
 alert("Welcome, JavaScript coder.")
 //-->
 </script>

Placing the comment markers like this hides the script from Paleolithic browsers like Netscape 2,
which don't understand scripts and are dimwitted enough to display the actual script text in the
browser window. The chances of running into one of these beasties today is quite rare, so many
JavaScript coders don't even bother with this extra step.

UP TO SPEED

Spaces and Line Breaks in JavaScript

JavaScript is quite tolerant of extra spaces. In this chapter, most of the examples use
some sort of indenting to help you see the structure of the code. But as with HTML, you
don't absolutely have to add these spaces.

The only rule in JavaScript is that every code statement needs to be on a separate line.
You can get around this limitation by using the line-termination character, which is a
semicolon (;). For example, here's how you can compress three code statements onto
one line:

 alert("Hi"); alert("There");
 alert("Dude");

Each semicolon designates the end of a code statement. This strange convention comes
from the Bizarro world of C and Java.

If you don't want to put more than one code statement on the same line, you don't need
the semicolons. However, you're still free to add them if you want, at the end of each
line. In fact, if you download a script from the Web, you just might find these optional
semicolons, which is often a tip-off that a C or Java programmer wrote the script.

Even if you aren't expecting really old browsers to come by your Web site, you might want to use the
<noscript> tag. This tag defines some alternate content that's used by browsers that understand the
meaning of the <script> tag, but have JavaScript switched off. It's also used for browsers that don't
support the script language you're using. For example, most non-IE browsers don't support VBScript,
a scripting language based on Visual Basic.

You place the <noscript> tag immediately after the <script> tag. Here's an example that shows a
paragraph of text in the page when JavaScript support is lacking:

 <script type="text/javascript">
 alert("Welcome, JavaScript coder.")
 </script>
 <noscript>
 <p>Welcome, non-JavaScript-enabled browser.</p>
 </noscript>

14.2.2. Variables

Every programming language includes the concept of variables , which are temporary storage
containers where you can keep track of important information. Variables can store numbers, objects,
or pieces of text. As you'll see throughout this chapter, variables play a key role in many JavaScripts,
and they're a powerful tool in any programmer's arsenal.

14.2.2.1. Declaring variables

To create a variable in JavaScript, you use the var keyword, followed by the name of the variable.
You can choose any name that makes sense to you, as long as you're consistent (and avoid spaces
or special characters). Here's an example that creates a variable named myMessage :

 var myMessage

To put information into a variable, you use the equal sign (=), which copies the data on the right side
of the equal sign into the variable on its left. Here's an example that puts some text into myMessage.

 myMessage = "Everybody loves variables"

Remember, you need to use quotation marks whenever you've got a text string. In contrast, if you
want to copy a number into a variable, you don't need quotation marks:

 myNumber = 27.3

Note: JavaScript variables are case-sensitive, which means a variable named myMessage isn't the same as MyMessage. If you try to

use them interchangeably, you'll wind up with a scripting error (if your browser is nice) or a bizarre mistake in the page (which is usually

what happens).

Often, you'll want to create a variable and fill it with some useful content in the same step. JavaScript
lets you do perform this maneuver by placing the equal sign immediately after the variable name
when you declare it:

 var myMessage = "Everybody loves variables"

To make matters a little confusing, JavaScript lets you use variables that you haven't declared. Doing
so is considered extremely bad form and is likely to cause all sorts of problems. However, it's worth
knowing that these undeclared variables are permissible, because they're the source of many an
unexpected error.

14.2.2.2. Modifying variables

One of the most useful things you can do with numeric variables is perform operations to change
your data. For example, you can use arithmetic operators to perform mathematical calculations:

 var myNumber = (10 + 5) * 2 / 5

These calculations follow the standard order of operations (parentheses, then addition and
subtraction, then multiplication and division). The result of this calculation is 6.

You can also use operations to join together multiple pieces of text into one long string. In this case,
it's the plus (+) operator that you use:

 var firstName = "Sarah"
 var lastName = "Smithers"
 var fullName = firstName + " " + lastName

Now the fullName variable holds the text "Sarah Smithers".

14.2.2.3. An example with variables

Although you'd need to read a thick volume to learn everything there is to know about variables, you
can pick up a lot from a simple example. The following script inserts the current date into the Web
page. Each line of script code is numbered to make it easy to reference.

 <html>
 <head>
 <title>JavaScript Test</title>
 </head>

 <body>
 <h1>What Day Is It?</h1>
 <p>This page uses JavaScript.</p>
 <p>
 <script type="text/javascript">

1 var currentDate = new Date()
2 var message = "The current date is: "
3 message = message + currentDate.toDateString()
4 document.write(message)

 </script>
 </p>
 </body>
 </html>

Here's what's happening, line by line:

This line creates a new variable named currentDate . It fills the currentDate variable with a new
Date object. You'll know an object is being created when you see the keyword new . (You'll learn
more about objects on Section 14.3 ; for now, it's enough to know that objects come with built-
in functions that work more or less the same way as the functions you learned about earlier.)

1.

This line creates a new variable named message , and fills it with a generic welcome message.2.

This line adds some new text to the end of the message. The new text comes from the
currentDate object. The tricky part is understanding that the currentDate object comes with a
built-in toDateString() function that converts the date information into a piece of text suitable
for displaying in the browser (see Figure 14-3). Once again, this is the kind of detail you can
only pick up by studying a good JavaScript reference.

3.

Figure
14-3.
Some

HTML

editors will

help you

out when

you write

JavaScript

code. For

example,

FrontPage

shows a

drop-down

menu that

shows you

all the

functions

an object

provides.

Although

this

probably

isn't

enough for

you to

figure out

how to use

the Date

object for

the first

time, it's a

great way

to refresh

your

memory

later on.

This line uses the document object, which has a function named write() . The write() function
copies a piece of text into the page at the current location. The final result is a page that shows
your welcome message (see Figure 14-4).

4.

Scripts can get much more complex than this. For example, they can use loops to repeat a single
action several times, or use conditional logic to make decisions. You'll see examples of some of these
techniques in this chapter, but you won't get a blow-by-blow exploration of the JavaScript languagein
fact, that would require a small book of its own. If you want to learn more, check out the box
"Becoming a JavaScript Guru."

14.2.3. Functions

So far, you've seen simple scripts that use only a few lines of code. More realistic JavaScript scripts
can take dozens of lines, and if you're not careful, they can grow into a grotesque tangle that leaves
the rest of your page difficult to edit. To control the chaos, smart JavaScripters almost always use
custom functions .

A function is a series of code instructions that you group together and give a name. In a way,
functions are sort of like miniature programs, because they can perform a series of operations. The
neat thing about functions is that you only need to create them once, and then you can reuse them
anywhere.

Figure
14-4. The

document.write(

) command

inserts your text

directly into the

page, wherever

the script block

is positioned. In

this case, it

shows the

current date.

14.2.3.1. Declaring a function

To create a JavaScript function, start by deciding what your function is going to do (like show an alert
message) and then choose a suitable name (like ShowAlertBox). As with most things in the
programming world, the function name can't have any spaces or special characters.

Armed with this information, you're ready to put a <script> block in the <head> section of your
page. But this <script> block looks a little different from the examples you've seen so far. Here's a
complete function that shows an alert box with a predefined message:

 <script type="text/javascript">
 function ShowAlertBox() {
 alert("I'm a function.")
 }

 </script>

To understand what's going on here, it helps to break this example down and consider it piece by
piece.

Every function declaration starts with the word function , which tells JavaScript what you're up to.

 function

Next is the name of your function and then two parentheses. The parentheses can be used to get
extra information to feed into your function, as you'll see on Section 14.2.3.3 .

 function ShowAlertBox()

At this point, you've finished declaring the function. All that remains is to put the code you want
inside that function. To do this, you need the funny curly braces shown above. The { brace indicates
the start of your function code and the } brace indicates the end. In between, you can put as many
code statements as you want.

One tricky part of function writing is the fact that JavaScript is notoriously loose about line breaks.
That means you can create an equivalent JavaScript function that moves the curly brace down a line,
and looks like this:

 <script type="text/javascript">
 function ShowAlertBox()
 {
 alert("I'm a function.")
 }
 </script>

But don't worryboth functions work exactly the same.

Tip: You can put as many functions as you want in a single <script> block. Just add them one after the other.

POWER USERS' CLINIC

Becoming a JavaScript Guru

JavaScript requires some basic programming skills. However, it's fairly forgiving. Even
non-geeks can learn to use JavaScript to create their own wildly customized programs
(with the right motivation).

If you've decided that you're not satisfied in using other people's JavaScripts, and you
want to be able to create your own, it's time to learn more. And although in-depth
JavaScript programming is beyond the scope of this book, there are plenty of great
resources to get you started.

If you're happy learning from the Web, there's no shortage of tutorials. Three great
places to start are www.w3schools.com/js , www.echoecho.com/javascript.htm , and
www.htmlgoodies.com/primers/jsp . If you want a more hardcore approach, you may be
interested in JavaScript & DHTML Cookbook (O'Reilly), which provides a whack of
JavaScript examples, or JavaScript: The Definitive Guide (O'Reilly), which is the 900-
page final word on the subject (although not for the faint of heart).

14.2.3.2. Calling a function

Creating a function is only half the battle. On their own, functions don't do anything. It's up to you to
call the function somewhere else in your page to actually run the code. To call a function, you use the
function name, followed by parentheses:

ShowAlertBox()

Note: Don't leave out the parentheses after the function name. Otherwise, the browser will assume you're trying to use a variable rather

than call a function.

You can call ShowAlertBox() anywhere you'd write ordinary JavaScript code. For example, here's a
script that shows the alert message three times in a row to really hassle your visitors:

 <script type="text/javascript">
 ShowAlert()
 ShowAlert()
 ShowAlert()
 </script>

This is the same technique that, earlier, you saw used to call the alert() function. The difference is
that alert() is built into JavaScript, while ShowAlertBox() is something you created yourself. Also, the
alert() function requires one argument, while ShowAlertBox() doesn't use any.

14.2.3.3. Functions that receive information

The ShowAlertBox() function is beautifully simple. You simply call it, and it displays an alert box with
the built-in message. Most functions don't work this easily. That's because in many cases you need to
send specific information to a function, or take the results of a function and use them in another
operation.

For example, imagine you want to show a welcome message with some standard information (like
the current date). However, say you want to have the flexibility to change part of this message by
supplying your own witty words each time you call the function. In this case, you need a way to call a
function and supply a text string with your message.

To solve this problem, you can create a ShowAlertBox() function that accepts a single argument.
This argument represents the customized piece of information you want to incorporate into your
greeting. You choose a name for it, and place it in between the parentheses after the function name,
like so:

 function ShowAlertBox(customMessage) {
 …
 }

There's no limit to how many pieces of information a function can accept. You just need to separate
each argument with a comma. Here's an example with three arguments:

 function ShowAlertBox(messageLine1, messageLine2, messageLine3) {
 …
 }

The following example shows the finished ShowAlertBox() function. It accepts a single argument
named customMessage, and uses it to customize the text that's shown in the alert box:

 <script type="text/javascript">
1 function ShowAlertBox(customMessage)
2 {
3 // Get the date.
4 var currentDate = new Date()
5
6 // Build the full message.
7 var fullMessage = "** IMPORTANT BULLETIN **\n\n"
8 fullMessage += customMessage + "\n\n"
9 fullMessage += "Generated at: " + currentDate.toTimeString() + "\n"
10 fullMessage += "This message courtesy of MagicMedia Inc."
11
12 // Show the message.

13 alert(fullMessage)
14 }
 </script>

Here are some helpful notes to help you wade through the code:

Any line that starts with // is a comment (see lines 3 and 6). Good programmers include lots of
comments to help others understand how a function works. The browser ignores them.

To put line breaks into an alert box, you need to use the code \n in your strings (lines 7, 8, and
9). Each \n is equivalent to one line break. (This rule is for message boxes only. When writing
HTML, you need to add the
 tag to create a line break.)

To build the text for the fullMessage variable (lines 7 to 10), the code uses a shortcut with the
+= operator. This operator automatically takes whatever's on the right side of the equal sign
and pastes it onto the end of the variable that's on the left side. In other words, this…

 8 fullMessage += customMessage + "\n\n"

…is equivalent to this longer line:

 8 fullMessage = fullMessage + customMessage + "\n\n"

Using this function is easy. You just need to remember that when you call the function, you must
supply the same number of arguments as you defined for the function, separating each one with a
comma. In the case of ShowAlertBox(), you only need to supply a single value for the
customMessage variable. Here's an example:

 <script type="text/javascript">
 ShowAlertBox("This Web page includes JavaScript functions.")
 </script>

Figure 14-5 shows the result of this script.

Figure 14-5. This

message is built out of several

pieces of text, one of which is

supplied as an argument.

14.2.3.4. Functions that return information

Arguments let you send information to a function. You can also create functions that send some
information back to the script code that called them. The trick to doing this is the return command,
which you should place right at the end of your function. The return command ends the function
immediately, and spits out whatever information you want your function to generate.

Of course, a sophisticated function can accept and return information. For example, here's a function
that multiplies two numbers (supplied as arguments) and returns the result to anyone who's
interested:

 <script type="text/javascript">
 function MultiplyNumbers(numberA, numberB)
 {
 return numberA * numberB
 }
 </script>

Here's how you can use the function elsewhere in your Web page:

 <p>The product of 3202 and 23405 is
 <script type="text/javascript">
 var product = MultiplyNumbers(3202, 23405)
 document.write(product)
 </script>
 </p>

This displays the following text in a paragraph on your page:

 The product of 3202 and 23405 is 74942810

To use a typical script from the Web, you'll need to copy one or more functions into your page. These
functions are likely to look a lot more complex than what you've seen so far. However, now that you
understand the basic structure of a function, you'll be able to wade through the code to get a basic
understanding of what's taking place (or at least pinpoint where the action is going down).

14.2.4. External Script Files

Reusing scripts inside a Web page is neat, but did you know you can share scripts between individual
pages and even different Web sites? The trick is to put your script into an external file and then link to
it. This procedure is similar to the external style sheet linking you learned about back in Chapter 6 .

For example, imagine you perfect the ShowAlertBox() routine so that it performs a complex task
exactly the way you want, but it requires a couple of dozen lines of code to do so. To simplify your
life, you could create a new file to store that script.

Script files are always plain text files. Usually, they have the extension .js (for JavaScript). Inside the
script file, you put all your code, but you don't include the <script> tags. For example, you could
create a JavaScript file named ShowAlert.js and add this code to it:

 function ShowAlertBox()
 {
 alert("This function is in an external file.")
 }

Now save the file, and place it in the same folder as your Web page. In your Web page, you define a
script block, but you don't supply any code. Instead, you add the src attribute and indicate the script
file you're linking to:

 <script type="text/javascript" src="ShowAlert.js">
 </script>

When the browser comes across this script block, it requests the ShowAlert.js file and treats it as
though the code were inserted right in the page. Here's a complete HTML test page that uses the
ShowAlert.js file. The ShowAlertBox() function is called by a script in the body of the of the page:

 <html>

 <head>
 <title>Show Alert</title>
 <!-- Make all the functions in the ShowAlert.js file
 available in this page. Notice there's no actual content here. -->
 <script type="text/javascript" src="ShowAlert.js">

 </script>
 </head>

 <body>
 <!-- Test out one of the functions. -->
 <script type="text/javascript">
 ShowAlertBox()
 </script>
 </body>

 </html>

There's no difference in the ways that embedded and external scripts work. However, placing your
scripts in separate files helps keep your Web site organized and makes it easy to reuse scripts across
several pages. In fact, you can even link to JavaScript functions on another Web sitethe only
difference is the src attribute in the <script> block needs to point to a full URL (like
http://SuperScriptSite.com/ShowAlert.js) instead of just a file name.

Note: Using separate script files doesn't improve your security one iota. Because anyone can request your script file, a savvy Web

surfer can figure out what scripts your page uses and take a look at them. So never include any code or secret details that you don't

want the world to know about in a script.

http://SuperScriptSite.com/ShowAlert.js

14.3. Dynamic HTML

JavaScript underwent a minor revolution in the late 1990s, adding support for a set of features called
Dynamic HTML (DHTML). Dynamic HTML isn't a new technologyinstead, it's a fusion of three distinct
ingredients:

Scripting languages like JavaScript, which let you write code.

The CSS (Cascading Style Sheet) standard, which lets you control how an HTML element
appears and how it is positioned.

The HTML document object model (or DOM), which lets you treat an HTML page as a collection
of objects .

The last point is the most important detail. DHTML extends scripting languages like JavaScript so they
can interact with the page as a collection of objects . This is a radical shift in Web programming. Each
HTML element you add, including images, links, and even the lowly paragraph, is treated like a
separate programming ingredient that your JavaScript can play with. And when you mix in style
sheet attributes, your code can change what each element looks like or even where it gets placed on
the page.

Note: Most DHTML operations require Internet Explorer 4 or later, Netscape 7 or later, Opera 7 or later, or Firefox. Although these options

represent the browsers that are most commonly in use today, you should test your pages with older browsers if you need to support

them, too. Also, be wary of proprietary features (like the innerHTML property that only Internet Explorer supports).

14.3.1. HTML Objects

Clearly, DHTML requires a whole new way of thinking about Web page design. Your scripts no longer
look at your Web page as a static block of HTML. Instead, they see a combination of objects .

UP TO SPEED

Understanding Objects

In many programming languages, including JavaScript, everything revolves around
objects. What exactly is an object?

In the programming world, an object is nothing more than a convenient way to group
some related features or information. For example, say you wanted to change the
picture that's shown in an tag in a Web page (useful, if you wanted to write a
script that flashed a series of images). The easiest way to interact with an tag in
JavaScript is to use the corresponding image object. In effect, the image object is a
container holding all sorts of potentially useful information about what's happening
inside an tag (including its dimensions, its position, the name of the image file
associated with it, and so on). The image object also gives you a way to manipulate the
 tagthat is, to change some or all of these details.

For example, you can use an image object to get information about the image, like this:

 document.write("The tooltip says" +
 image.title)

Or, you can even change one of these details. For example, you can modify the actual
image that an tag is showing by using this code:

 image.src = "newpic.jpg"

You'll know an object's at work by the presence of a dot (.) in your code line. The dot
separates the name of the variable (the first part) from one of the built-in functions it
provides (called methods), or one of the related variables (called properties). The
properties and methods are always placed after the period.

In the previous examples, src and title are two of the image object's properties. In other
words, the code image.src = "newpic.jpg" is the equivalent of saying "Hey, Mr.
Objectnamed- Image: I have a new picture for you. Change your src to point to
newpic.jpg ."

Programmers embraced objects long ago, because they're a great way to organize code
conceptually (not to mention a great way to share and reuse it). You might not realize it
at first, but working with the image object is actually easier than memorizing a few
dozen different commands that manipulate an image.

Before you can manipulate an object in your Web page, you need a way to uniquely identify it. The
best choice is the id attribute. Add this attribute to the tag for the element you want to manipulate,
and choose a unique name, as shown here:

 <h1 id="PageTitle">Welcome to My Page</h1>

Once you give your element a unique ID, it's easy to dig up (and use) the matching object in your
code. JavaScript has a trick for just this purposeit's the document.getElementById() method.
Basically, document is an object that represents your whole HTML document. It's always available
and you can start using it any time you want. The document object, like any object worth its name,
provides some handy properties and methods. The getElementById() method is one of the coolestit's
able to scan the whole page looking for a specific HTML tag.

When you call the document.getElementById() method, you supply the ID of the HTML element
you're looking for. Here's an example that digs up the object for an HTML tag with the ID PageTitle :

 var titleObject = document.getElementById("PageTitle")

This gets the object for the <h1> element (shown earlier), and stores it in a variable named
titleObject. That way, you can perform a series of operations with the heading without having to look
it up more than once.

What exactly can you do with an HTML object? To a certain extent, it depends on the type of
element. For example, if you have a hyperlink, you can change the URL. If you have an image, you
can change the source. And there are some actions you can take with most HTML elements, like
changing the style information, or modifying the text that appears between the beginning and ending
tags. As you'll see, these tricks are useful when you're making a page more dynamicfor example, you
want your page to change when your visitors do something. That way, they feel like they're using an
intelligent, responsive program, instead a plain, inert Web page.

For example, here's how you could modify the text inside the just-mentioned <h1> element:

 titleObject.innerText = "This Page Is Dynamic"

If you run this code in a script, the header's text changes immediately when the script runs.

The trick that makes this script work is the innerText property . Like all properties, innerText is just
one aspect of an HTML object that you can alter. In order to write code statements like this, you need
to know what properties there are for you to play with. Obviously, some properties are for specific
tags onlylike the src attribute of an image. However, modern browsers boast a huge catalog of DOM
properties that you can use for just about any tag. Table 14-1 lists some of the most useful.

Tip: To get the properties that a specific HTML tag supports, check out the reference at

www.w3schools.com/htmldom/dom_reference.asp .

Currently, this example works in two steps (getting the object, and then manipulating it). Although

this two-step maneuver is probably the clearest approach, it's possible to combine these two steps
into one line, which scripts often do. Here's an example:

 document.getElementById("PageTitle").innerText = "This Page Is Dynamic"

The advantage of getting an object first is that you can change several properties one after the other,
without needing to look up the HTML object using getElementById() each time.

Table 14-1. Common HTML Object Properties

Property Description

className

Lets you retrieve or set the class attribute (see Section 6.6). In other words, this
property determines what style (if any) this element uses. Of course, this style
needs to be present in an embedded or linked style sheet, or you'll just end up with
the plain-Jane default formatting.

innerText

Lets you read or change the text inside this element. innerText is insanely useful,
but has two quirks.

First, any tags you include are automatically converted to plain text using the HTML
character entities (see Section 2.3.5.3). In other words, if you set this property
with the text Hi, it's converted to Hi which is displayed
as the text Hi. If you want to actually make the text bold, you'll need to
use the style property instead (which is also described in this table).

Second, if you use a tag that has other tags inside it, the innerText refers to the
text between the opening tag and the first nested tag. So if you have a paragraph
with bolded text, as in "<p>This word is bold</p>," the inner-Text is just
the first part: "This." Using innerText can be quite confusing, so it's recommended
that you don't use it on tags that contain other tags. If you want to modify a
specific piece of a paragraph, wrap that piece in a tag.

parentElement

Provides the HTML object for the tag that contains this tag. For example, if the
current element is a tag in a paragraph, this gets the object for the <p> tag.
Once you have this object, you can modify the paragraph. Using this technique
(and other similar techniques in DHTML), you can jump from one tag to another.

style

Bundles together all the CSS attributes that determine the appearance of the HTML
element. Technically, the style property returns a full-fledged style object, and you
need to add another dot (.) and the name of the style attribute you want to
change, as in myObject.style.fontSize. You can use the style object to set colors,
borders, fonts, and even positioning.

tagName
Provides the name of the HTML tag for this object, without the angle brackets. For
example, if the current object represents an tag, this returns the text
"img".

Property Description

value

In an <input> tag (Section 12.2.2.2), the value attribute has a special meaning.
For example, in a checkbox, it indicates whether or not the checkbox is turned on;
in a text box, it indicates the text inside the box; and so on. Other tags don't use
the value attribute.

14.3.1.1. Using HTML objects in a script

The easiest way to come to grips with how HTML objects work is to look at an example. The Web
pages shown in Figure 14-6 includes a paragraph that continuously grows and then shrinks, as your
code periodically tweaks the font size.

value

In an <input> tag (Section 12.2.2.2), the value attribute has a special meaning.
For example, in a checkbox, it indicates whether or not the checkbox is turned on;
in a text box, it indicates the text inside the box; and so on. Other tags don't use
the value attribute.

14.3.1.1. Using HTML objects in a script

The easiest way to come to grips with how HTML objects work is to look at an example. The Web
pages shown in Figure 14-6 includes a paragraph that continuously grows and then shrinks, as your
code periodically tweaks the font size.

Figure
14-6.
If you were

looking at

this

heading in

a real live

Web

browser,

you'd see

that the text

is always

changing

sizes,

making it

difficult to

ignore.

The way this example works is quite interesting. First of all, in the <head> section of the underlying
HTML, two variables are defined. The size variable keeps track of the current size of the text (which
starts at 10 pixels). The growIncrement variable determines how much the text size changes each
time the code runs (initially, it grows by two pixels at a time).

 <html>

 <head>
 <title>DHTML</title>
 <script type="text/javascript">
 // The current font size.

 var size = 10
 // The amount the font size is changing.
 var growIncrement = 2

Next, the script defines a function named ChangeFont(). This function retrieves the HTML object for
the <p> tag that should have the growing and shrinking text. Once again, the getElementById()
function does the job.

 function ChangeFont() {
 // Find object that represents the paragraph
 whose text size you want to change.
 var paragraph = document.getElementById("animatedParagraph")

Now, using the size and growIncrement variables, it's easy to perform a calculation to determine the
new size for the paragraph.

size = size + growIncrement

And it's just as easy to set the new size using the paragraph.style.fontSize property:

 paragraph.style.fontSize = size

If this code runs perpetually, you'll eventually end up with text that grows so ridiculously huge you
can't see any of it on the page. To prevent this from happening, the code has a safety valve.

When the text size hits 100, it's time to stop growing and start shrinking. At that point, the
growIncrement variable is switched to subtract two pixels, and the paragraph text is also changed to
let you know what's taking place. The next time this code runs, it will shrink the text instead of
growing it. To make this happen, the code uses conditional logic courtesy of the if statement. Here's
what it looks like:

 // Decide whether to reverse direction from
 // growing to shrinking (or vice versa).
 if (size > 100) {
 paragraph.innerText = "This Text is Shrinking"
 growIncrement = -2
 }

Of course, you don't want the shrinking to go on forever either. So it makes sense to add one last
check that tests if the text has shrunk to 10 pixels or less, in which case it's time to go back to
enlarging the text.

 if (size < 10) {
 paragraph.innerText = "This Text is Growing"
 growIncrement = 2
 }

Now here comes the really crafty bit. JavaScript includes a setTimeout() function, which lets you give
an instruction to the browser that says "call this function, but wait a bit before you do." The
setTimeout() function is very handy when creating interactive pages. In this example, the
setTimeout() function instructs the browser to call the ChangeFont() method again in 100
milliseconds (0.10 seconds).

 setTimeout("ChangeFont()", 100)
 }
 </script>
 </head>

Because the ChangeFont() always uses setTimeout() to call itself again, the shrinking and resizing
never stops. However, you could alter this behavior. For example, you could add conditional logic so
that the setTimeout() method is called only a certain number of times.

The last detail is the <body> section, which contains the actual paragraph that's being resized and a
script that calls ChangeFont() for the first time, starting the whole process.

 <body>
 <p id="animatedParagraph">This Text is Growing</p>
 <script type="text/javascript">
 ChangeFont()
 </script>
 </body>

 </html>

Although the resizing paragraph trick is absurdly impractical, the same technique is the basis of many
much more impressive scripts (to download the whole script and play around with it yourself,
download the script from the "Missing CD" page at www.missingmanuals.com). For example, you
can easily find scripts that animate text in various ways, making it fly in from the side of the page
(see www.codejunction.com/detailed/sequential-fly-in-text-effect.html); showing words appear one
letter at a time, typewriter-style (www.javascript-page.com/tickert.html); or making a sparkle float
over a title (www.flooble.com/scripts/animate.php). Each of these examples uses the same basic

approach but adds significantly more code, and gives you a much slicker solution.

14.3.2. Events

The most exciting JavaScript-powered pages are dynamic , which means they perform various
actions while your visitors interact with the page (moving their mice, typing in text, clicking things,
and so on). A dynamic page is far more exciting than an ordinary HTML page, which appears in the
browser in one shot and sits there, immobile.

To make dynamic pages, you need to program your pages to react to JavaScript events . Events are
notifications that an HTML element sends out when specific things happen.

For example, JavaScript gives every <a> tag an event named onMouseOver. As the name suggests,
this event takes place (or fires , to use programmer-speak) when the mouse pointer moves over an
HTML element like a paragraph, link, image, table cell, or text box. At that point, the event is
triggered and your code flies into action.

Note: The capitalization of JavaScript events is a little controversial. As you learned in Chapter 2 , HTML isn't case-sensitive, and it

doesn't care what mix of uppercase and lowercase letters you use. Long-time scripters have a tradition of capitalizing the first letter of

each word in the event (except the first word "on"), as in onMouseClick. Although this is the most common approach, if you want to

upgrade to XHTML (Section 2.4) in the future, you may as well get used to less-readable, all-lowercase names, like onmouseclick.

That's what XHTML requires.

Here's an example that displays an alert message when a surfer moves his mouse pointer over a
link:

 <html>
 <head>
 <title>JavaScript Test</title>
 </head>

 <body>
 <h1>You Will Be Wowed (Again)</h1>
 <p>When you hover over <a href="SomePage.htm"
 onMouseOver="alert('Colorless green ideas sleep furiously.')">
 this link
 you'll see a secret message.
 </p>
 </body>
 </html>

When you use an event, you don't absolutely need a script block (although it's a good idea to use one
anyway, as described in the next section). Instead, you just put your code in between quotation
marks next to the event attribute:

 …

There's one detail to keep in mind. In this example, the text argument ('Colorless green…') uses
single quotes instead of double quotes. That's because the event attribute uses double quotes, and
using them for two different purposes at the same time will horribly confuse the browser.

Figure 14-7 shows the result of running this script and moving the mouse pointer over the link.

Figure
14-7.
In this

example,

the alert

box doesn't

pop up until

you move

the mouse

pointer

over the

link.

In order to use events effectively, you need to know what events there are, and what HTML tags
support them. Although the events you can use depend on the HTML tag they're applied to, Table 14-
2 provides a list of commonly used events (and you can find a more complete reference at
www.w3schools.com/htmldom/dom_reference.asp). In the following sections, you'll see two
common scenarios that use some of these events.

Table 14-2. Common HTML Object Properties

Event Description Applies To

onClick Occurs when you click an element. Almost all

onMouseOver Occurs when you move the mouse pointer over an element. Almost all

onMouseOut
Occurs when you move the mouse pointer away from an
element.

Almost all

Event Description Applies To

onKeyDown Occurs when you press a key.
<select>, <input>,
<textarea>, <a>,
<button>

onKeyUp Occurs when you release a pressed key.
<select>, <input>,
<textarea>, <a>,
<button>

onFocus

Occurs when a control receives focus (the cursor appears
there so you can type something). Controls include text
boxes, checkboxes, and so onsee Section 12.2.2.1 in
Chapter 12 for a refresher.

<select>, <input>,
<textarea>, <a>,
<button>

onBlur Occurs when focus leaves a control.
<select>, <input>,
<textarea>, <a>,
<button>

onChange
Occurs when you change a value in an input control. In a
text box, this event doesn't fire until you move to another
control.

<select>, <input
type="text">,
<textarea>

onSelect Occurs when you select a portion of text in an input control.
<input type="text">,
<textarea>

onError
Occurs when an image can't be downloaded (usually due to
an incorrect URL).

onLoad Occurs when a new page finishes downloading.
, <body>,
<frame>, <frameset>

onUnload
Occurs when a page is unloaded. (This typically occurs after
a new URL has been entered or a link has been clicked. It
fires just before the new page downloads.)

<body>, <frameset>

14.3.3. Image Rollovers

The most popular way to use mouse events is to create image rollovers . With an image rollover, you
start by creating an tag that shows a specific picture. Then, when the mouse pointer moves
over the tag, a new picture appears, thanks to the onMouseOver event. Creating an image
rollover is a fairly easy task. All you need to do is get the HTML object for the tag and modify
the src property.

In this situation, you can't get everything done with a single line of code. You could pile your entire
script into the event attribute (using semicolons to separate each line), but it would be dreadfully
confusing. A better choice is to put your code in a function. You can then call the function using the
event attribute.

For example, here's the function you need to swap an image. This function is written in a very
generic way using parameters, which lets you reuse the function over and over, as you'll see in a
moment. Every time you call the function, you specifically indicate which image you want to change
(by name) and what new image file you want to use. That way, you can call the same function for

onKeyDown Occurs when you press a key.
<select>, <input>,
<textarea>, <a>,
<button>

onKeyUp Occurs when you release a pressed key.
<select>, <input>,
<textarea>, <a>,
<button>

onFocus

Occurs when a control receives focus (the cursor appears
there so you can type something). Controls include text
boxes, checkboxes, and so onsee Section 12.2.2.1 in
Chapter 12 for a refresher.

<select>, <input>,
<textarea>, <a>,
<button>

onBlur Occurs when focus leaves a control.
<select>, <input>,
<textarea>, <a>,
<button>

onChange
Occurs when you change a value in an input control. In a
text box, this event doesn't fire until you move to another
control.

<select>, <input
type="text">,
<textarea>

onSelect Occurs when you select a portion of text in an input control.
<input type="text">,
<textarea>

onError
Occurs when an image can't be downloaded (usually due to
an incorrect URL).

onLoad Occurs when a new page finishes downloading.
, <body>,
<frame>, <frameset>

onUnload
Occurs when a page is unloaded. (This typically occurs after
a new URL has been entered or a link has been clicked. It
fires just before the new page downloads.)

<body>, <frameset>

14.3.3. Image Rollovers

The most popular way to use mouse events is to create image rollovers . With an image rollover, you
start by creating an tag that shows a specific picture. Then, when the mouse pointer moves
over the tag, a new picture appears, thanks to the onMouseOver event. Creating an image
rollover is a fairly easy task. All you need to do is get the HTML object for the tag and modify
the src property.

In this situation, you can't get everything done with a single line of code. You could pile your entire
script into the event attribute (using semicolons to separate each line), but it would be dreadfully
confusing. A better choice is to put your code in a function. You can then call the function using the
event attribute.

For example, here's the function you need to swap an image. This function is written in a very
generic way using parameters, which lets you reuse the function over and over, as you'll see in a
moment. Every time you call the function, you specifically indicate which image you want to change
(by name) and what new image file you want to use. That way, you can call the same function for

any image rollover, anywhere on your page.

 <script type="text/javascript">
 function ChangeImage(imageName, newImageFile) {
 // Find the object that represents the tag.
 var image = document.getElementById(imageName)

 // Change the picture.
 image.src = newImageFile
 }
 </script>

When creating an image rollover, you need to use two events. Use the onMouseOver event to switch
to the rollover picture. Additionally, use the onMouseOut event (which occurs when the mouse
pointer moves off the HTML element) to switch back to the original picture.

 <img id="SwappableImage" src="pic1.gif"
 onMouseOver="ChangeImage('SwappableImage', 'LostInterestMessage.gif')"
 onMouseOut="ChangeImage('SwappableImage', 'ClickMe.gif')" >

Figure 14-8 shows the result.

Figure
14-8.
A rollover

image in

action.

If you want to add more rollover images, just add a new tag with a different name. The
following tag uses the same initial image, but shows a different rollover image each time the mouse
pointer moves on and off the image:

 <img id="SwappableImage2" src="pic1.gif"
 onMouseOver="ChangeImage('SwappableImage2', 'MouseOverPicture.gif')"
 onMouseOut="ChangeImage('SwappableImage2', 'InitialPicture.gif')" >

If you want to get really fancy, you can even use the onClick event (which occurs when the element
is clicked) to throw yet another picture into the mix.

Note: You'll get your hands dirty with more image rollovers when you create fancy buttons in Chapter 15 .

14.3.4. Collapsible Text

Another nifty way to use events is to create collapsible pages . The basic idea behind a collapsible
page is this: If you've got a lot of information to show your viewers, but don't want them to digest it
all at once, you can hide (or collapse) chunks of text behind headlines that they can then click to read
the details (see Figure 14-9).

Figure
14-9.
Top:

Initially,

everything

is hidden.

Bottom:

Click the

down arrow

image to

show the

content in a

section.

You can

reveal as

many

sections at

a time as

you want.

DHTML gives you many ways to trick the browser into hiding text to create a collapsible page, but one
of the best techniques is shown in the next example. One of the advantages of this example is that it
works well with old browsers (those before Internet Explorer 5). Old browsers will simply display all
the content, including the information that should be hidden. The page won't be as impressive, but at
least nothing will go missing.

The technique revolves around the CSS display property. When the property is set to block , an item
appears in the HTML page in the normal way. But when set to none , the element completely
disappears, along with everything inside it.

The first ingredient in making a collapsible page is to create the function that performs the hiding and
the showing. The function requires two parameters: the name of the open/close image, and the
name of the element you want to hide or show. The function actually does double duty. It checks the
current state of the section, and then changes it. That means a hidden section is automatically shown
and a displayed section is hidden, thanks to conditional logic. At the same time, the open/close image
is changed to display a different type of arrow.

Note: This practice, where you always reverse the current state of an item, is called toggling by jargon-happy programmers.

 <script type="text/javascript">
 function ToggleVisibility(image, element){
 // Find the image.
 var image = document.getElementById(image)

 // Find the element to hide/unhide.
 var element = document.getElementById(element)

 // Check the element's current state.
 if (element.style.display == "none"){
 // If hidden, unhide it.
 element.style.display = "block"
 image.src = "open.png"
 }
 else
 {
 // If not hidden, hide it.
 element.style.display = "none"
 image.src = "closed.png";
 }
 }
 </script>

The code starts out by looking up the two objects you need, and storing them in the variables image
and element . Then it gets to work. It looks at the current state of the paragraph, and makes a
decision (using an if statement) about whether it needs to show the paragraph or hide it. Only one
part of this conditional code runs. For example, if the image is currently hidden (the display style is

none), the function runs just these two lines and then skips to the bottom of the function and ends:

 element.style.display = "block"
 image.src = "open.png"

On the other hand, it the image isn't hidden, this code gets a chance to prove itself instead:

 element.style.display = "none"
 image.src = "closed.png";

To use this function, you need to add the that performs the toggling into your Web page. You
also need to add the HTML section that contains the hidden content. You can show or hide virtually
any tag, but a good all-purpose choice is to use a <div> tag. That way, you can stuff whatever you
want to hide inside the <div> tag.

Here's an example:

 <p>
 <img id="Question1Image" src="closed.png"
 onClick="ToggleVisibility('Question1Image','HiddenAnswer1')">
 Where has all the information gone?
 </p>

 <div id="HiddenAnswer1" style="display:none">
 <p>Now you've found it. We've decided to hide parts of the
 page in these neat little collapsible sections. That way you won't
 see everything at once, panic, and do something drastic.</p>
 </div>

The first part (between the <p> tags) defines the question heading, which is always visible. It
contains the image and the question (in bold). The second part (in the <div> tag) is the answer,
which can be alternately shown or hidden.

Notice that the <div> tag uses a style rule (display:none) to explicitly hide the section. If you want a
section to start off being visible, just remove the style attribute, so the <div> tag is declared like
this:

 <div id="HiddenAnswer1">

Best of all, because you've put all the complicated stuff into a function, you can reuse your function

quite easily to make more collapsible sections. These sections have the same structure, but have
different contents:

 <p>
 <img id="Question2Image" src="closed.png"
 onClick="ToggleVisibility('Question2Image','HiddenAnswer2')">
 Can I read more than one answer at a time?
 </p>

 <div id="HiddenAnswer2" style="display:none">
 <p>You can expand as many or as few sections as you want.
 Once you've expanded a section, just click again to collapse it back up
 out of sight. The only rule is that when you leave this page and come back
 later, everthing will be hidden all over again. That's just the way
 JavaScript and DHTML work.</p>
 </div>

Notice that each and <div> tag needs a unique id, or your function won't know which picture
to change and which section to hide. This is all you need to run the example shown in Figure 14-9 .

Optionally, you can change this page around to give it a different feel but keep the same collapsing
behavior. For example, you can make the page easier to use by letting the surfer expand and
collapse sections by clicking the heading text (instead of just the image). The easiest way to do this is
to pop the image and the bold heading into a <div> tag, and then handle the onClick event of that
<div> tag. Here's the change you need:

 <div onClick="ToggleVisibility('Question1Image','HiddenAnswer1')">
 <p>

 <u>Where has all the information gone?</u>
 </p>
 </div>

You could even underline the heading text so it looks like a link, which lets the viewer know
something will happen if it's clicked. Use style sheet formatting or the <u> tag to get your
underlining.

Note: You'll see more collapsible text effects when you tackle collapsible menus in Chapter 15 .

14.3.5. An Interactive Form

Some of the most powerful examples of JavaScript appear when you combine JavaScript with HTML
forms. As you learned in Chapter 12 (Section 12.2.2.1), HTML forms allow you to create graphical
widgets like text boxes, checkboxes, buttons, and more. Without using a client-side programming

language like JavaScript or a more powerful server-side programming language, forms are quite
limited. However, if you start using JavaScript and add in a dash of programming savvy, you can
create pages that have their own intelligence.

For example, consider the page shown in Figure 14-10 . It provides several text boxes where viewers
can type in numbers, and then it performs a calculation when they click a button.

Building this example is surprisingly easy. The trickiest part is creating the function that powers the
underlying calculations. This function needs several pieces of information, corresponding to the values
in the three text boxes (feet, inches, and pounds). The function also needs the name of the element
where it should display the results. Here's what the function looks like to start with:

 <script type="text/javascript">
 function CalculateBMI(feet, inches, pounds, resultElementName) {

Tip: You could create a CalculateBMI() function that doesn't take any arguments. Instead, the function could just search for all the

controls on the page by name. However, using arguments is always a good idea, because it makes your code more flexible. Now you

can use the CalculateBMI() function on all kinds of different pages, with or without a form.

Figure
14-10.
BMI, or body-

mass index,

is a popular

way to

calculate a

person's

overall health

by taking their

height and

weight into

consideration.

It produces a

single

number that

you can

compare

against a few

standard

values. The

BMI

calculation is

thought to be

accurate for

most people,

but there are,

of course,

always

exceptions.

The function code that follows isn't much different from what you've seen before. One trick is that it
begins by using a Number() function that's hardwired into JavaScript. This function converts the text
that's been typed in to numbers that can be used in calculations. If you don't take this step, you
might still get the right answer (sometimes), because JavaScript can automatically convert textual
strings into numbers as needed. However, there's a catchif you try to add two numbers together and
JavaScript thinks they're strings, it will just join the two strings together into one piece of text (so 1+1
would get you 11). This mistake can really scramble your calculations, so it's best to always use the
Number() function, like so:

 inches = Number(inches)
 pounds = Number(pounds)
 feet = Number(feet)

The actual calculation isn't too interesting. It's taken straight from the definition of BMI (which you
can find on the Internet).

var totalInches = (feet * 12) + inches

Finally, the result is displayed on the page:

 var resultElement = document.getElementById(resultElementName)
 resultElement.innerText =
 Math.round(pounds * 703 * 10 / totalInches / totalInches) / 10
 }
</script>

Creating the form that uses this function is the easy part. All you need to do is create the text boxes
with <input> tags, and give them names that are easy to remember. In this example, the form uses
a table to make sure the text boxes line up neatly next to each other.

 <form>
 <table>
 <tr>
 <td>Height: </td>
 <td><input type="text" name="feet"> feet</td>
 </tr>
 <tr>
 <td> </td>
 <td><input type="text" name="inches"> inches</td>
 </tr>
 <tr>
 <td>Weight: </td>
 <td><input type="text" name="pounds"> pounds</td>
 </tr>
 </table>

Finally, at the bottom of the form, you create a button that calls the CalculateBMI() function with the
form values. To have the button make this call, you need to program your page to react to the
onClick event. To look up a value in a form, you don't need the getElementById() function. Instead,
you can access them by name through the this.form object, which represents the current form:

 <p>
 <input type="BUTTON" name="calc" value="Calculate"
 onClick="CalculateBMI(this.form.feet.value, this.form.inches.value,
this.form.pounds.value, 'result')">
 </p>
 </form>

The final ingredient is the tag that displays the result. In this case, you want it to appear inside
another paragraph, the tag makes more sense than the <div> tag. (See Section 5.2.7 in
Chapter 6 to review the difference.)

 <p>
 Your BMI:
 </p>

You can use all sorts of other form-related scripts. For example, you can check the information
people enter for errors before allowing them to continue from one page to another. To learn more
about these tricks, you'll need to take your search to the Web, as described in the next section.

UP TO SPEED

Script Categories

To get a handle on what types of scripts are available, look through the different
Dynamic Drive categories. Here's a sampling of what you'll find:

The Calendars category has scripts that produce nifty HTML that looks like a
calendargreat for displaying important dates or letting surfers plan in advance.

The Date & Time category has live clocks and countdowns to a specific date.

The Document Effects category has page transitions and background effects (like
fireworks or floating stars).

The Dynamic Content category has menus that slide out, sticky notes, and scrollable
panels.

The Form Effects category has scripts for managing forms (see Section 14.4). You can
use them to make sure forms are submitted only once, check for invalid entries, and
more.

The Games category has complete miniature games, like tic-tac-toe and Tetris. These
games stretch the capabilities of JavaScript and DHTML as far as they can go.

The Image Effects category has slideshow and image gallery scripts, along with dynamic
images that change pictures when you move the mouse.

The Links & Tooltips category has fancy links that flash, button tricks, and pop-up text
boxes that capture your visitors' attention.

The Menus & Navigation category has handy collapsible menus and navigational bars
that let visitors move through your site, like the ones you'll see in Chapter 15 .

The Mouse and Cursor category has scripts to change the mouse pointer and add those
annoying mouse trails (pictures that follow the mouse pointer wherever it goes).

The Scrollers category has marquee-style scrolling text, like you might see in a news

ticker.

The Text Animations category has scripts that bring text to life, making it shake, fly,
glow, or take on even more bizarre characteristics.

The User/System Preference category has scripts that dig up information about the
browser that's currently displaying your page.

The Window and Frames category has scripts for a dozen different types of pop-up
windows.

14.4. Scripts on the Web

JavaScript is a truly powerful tool. If you're a diehard alpha nerd who likes to program your TiVo to
talk to your BlackBerry, you'll enjoy long nights of JavaScript coding. However, if you don't like to lie
awake wondering what var howMany = (trueTop>1?"s" : ""); really means, you'll probably be
happier if you let someone else do the heavy lifting.

If you fall into the non-programmer camp, this chapter has some very good news. The Web is flooded
with free JavaScript. In fact, it's easier to find free scripts than clip art, style sheets, or MIDI music.
Most of the time, these scripts include step-by-step instructions that explain where to put the
functions, what tags to use in your page, and how to hook your tags up to functions using events.

Although the list of JavaScript sites is too long to print, here are some good starting points:

http://webdeveloper.earthweb.com/webjs

Offers a huge collection of JavaScript standards.

http://javascript.internet.com

Provides a solid catalog of 2,000 bread-and-butter scripts.

www.javascript-2.com

Tips the scales with a staggering 9,000 scripts.

www.dynamicdrive.com

Provides a smaller set of scripts that emphasize modern DHTML-based programming
techniques. Includes exotic scripts like glowing green letters that tumble down the page, Matrix-
style. Offers many scripts that are IE-only, but clearly indicates browser support for each script.

www.javascripter.net/faq

Unlike the other sites, this one doesn't offer a catalog of complete downloadable scripts.
Instead, it's organized as a set of frequently asked JavaScript questions, with the relevant code
for each answer.

http://webmonkey.wired.com/webmonkey/programming/javascript

Unlike the other sites, this one offers a smaller set of detailed JavaScript tutorials instead of a
huge variety of standalone scripts. Useful if you want to learn more about some of the core
JavaScript techniques.

Using this list, you can dig up everything from little frills to complete, functioning Tetris clones. But
keep in mind that a script is only as good as the coder who created it. Even on sites with good quality
control, you could stumble across a script that doesn't work on all browsers or slows your page down
to a sluggish crawl. As a rule of thumb, always try out each script thoroughly before you start using it

http://webdeveloper.earthweb.com/webjs
http://javascript.internet.com
http://webmonkey.wired.com/webmonkey/programming/javascript

on your site.

Tip: The hallmark of a good script site is that it's easy to navigate. You'll know you've found a bad script site if it's so swamped in ads

and pop-ups that you can't find out where the scripts are.

14.4.1. Finding a Cool Script

Ready to hunt for scripts online? The next series of steps takes you through the process from
beginning to end.

Fire up your browser and choose your site .

In this example, you'll use www.dynamicdrive.com .

1.

Choose the category that you want from the site's home page (Figure 14-11) .

In this case, you'll use the Documents Effects category. For a sample of what else you can find,
see the box "Script Categories."

Figure
14-
11. The

Dynamic

Drive site

organizes

its scripts

into clear

categories.

If you're

looking for

something

new, scroll

down the

page and

you'll find

links to the

most

recently

added

scripts.

Some sites

also

provide

quick links

to reader

favorites.

2.

3.

Scroll through the list of scripts in your category (Figure 14-12), and click one .

In this case, you'll use the Top-Down Stripy Curtain Script.

3.

The next page shows an example of the script (Figure 14-13) .

Once the next page loads, you'll find a script description, the author's name, and a link to try
the script out (if it wasn't already used on the page). Underneath all this information are the
step-by-step instructions you need to use the script.

Figure
14-
12. The

Top-Down

Stripy

Curtain

Script is

good to go

with

Firefox,

Internet

Explorer 5

or greater,

and Opera

7 or

greater.

4.

Figure
14-
13.
Here's the

Top-Down

Stripy

Curtain

Script in

action. It

fills in the

page by

drawing

alternating

black

strips,

some from

top to

bottom and

others from

bottom to

top. It all

happens in

a flash.

Follow the instructions to copy and paste the different parts of the script into your
page (Figure 14-14) .

Often, you'll get a set of functions (which you need to place in the <head> portion of your
page) and then some HTML tags (which you need to place in the <body> section). In some
cases, you'll be able to customize your scriptsfor example, you might modify numbers and other
values to tweak your script code, or you'll change the HTML tags to provide different content

5.

Note: Many scripts include a set of comments with author information. If they do, the rule usually is that you need to keep these

comments in your script file, so other developers who check your site out will know where the code originally came from. This practice is

just part of giving credit where credit's due. Ordinary Web visitors won't even think to look at the script code, so they won't have any idea

whether or not you wrote the script from scratch.

Figure
14-14.
The Top-

Down Stripy

Curtain

Script has

two

components.

The first part

is a style

definition that

defines the

solid

background

curtain that's

wiped away

with the

page

content. The

second part

creates the

background

curtain (as a

<div> tag)

and includes

the script

code that

performs the

transition.

Copy both of

these to any

page, and

you're set.

(And for

even better

organization,

consider

placing the

code in a

separate

JavaScript

file, as

described on

Section

14.2.4 .)

Chapter 15. Fancy Buttons and Menus
Chapter 14 gave you a crash course in JavaScript, the secret ingredient you need to add slick
features and frills to ordinary Web pages. Although JavaScript is quirky, arcane, and sometimes
frustrating, learning the basics pays off. In this chapter, you'll see how you can use the JavaScript
you learned in Chapter 14 to create fancy buttons and menus that will liven up any Web site.

Although buttons and menus that pulse, swirl, and unfurl may seem like small potatoes, they're
actually a hallmark of contemporary Web design. In fact, a stylized button or well-designed
collapsible menu is sometimes all the polish you need to make your site stand out.

Fortunately, you don't need to be a JavaScript guru to add these sophisticated buttons and menus to
your site. As you'll see in this chapter, there are plenty of great tools (both in Web editing programs
like FrontPage and Dreamweaver and in free online scripts) that can help you get the results you
want without forcing you to endure an all-night JavaScript coding binge.

15.1. Creating Fancy Buttons

In Chapter 8 , you learned how to use links to let visitors travel from one page in your Web site to
another. Although ordinary links work perfectly well, they just aren't showy enough for creative Web
masters. Instead, modern Web sites usually let surfers move around by clicking graphical buttons, as
shown in Figure 15-1 .

A graphical button is really just an image (represented by the familiar tag) that's been turned
into a link. There are two ways you can perform this transformation. You can put the image inside an
anchor tag, as described in Chapter 8 . Here's what that looks like:

Figure
15-1.
These menu

links look like

ordinary text,

but they're

actually

graphical

buttons.

When you

hover over

one, the text

changes

color (by

substituting a

different

image).

When you

click a

button, the

image

changes

again, this

time to a

version with

a different

background

color.

Sometimes

buttons add

even more

graphical

details, like

etched

borders or

artfully

textured

backgrounds.

This adds an ugly blue border around your image to indicate it's a link. To get rid of the blue border,
you can use the CSS border-style attribute (Section 6.5.1 in Chapter 6) and set it to none .

Alternatively, you can use the tag in conjunction with the onClick event attribute (Section
14.3.2). This is a good approach if you want to run some JavaScript code instead of just redirecting
the visitor with a URL. For example, you used this technique in Chapter 14 (Section 14.3.5) to create
the BMI calculator, which performs a calculation and displays it in the current page when you click a
button.

Here's an example of this technique:

In this case there's no ugly blue border, and you don't need the border-style attribute.

Neither of these techniques is new. However, things get a little more interesting if you decide to
make dynamic buttons. Dynamic buttons (also known as rollover buttons) change subtly but
noticeably when a visitor to your site hovers the mouse pointer over them. This change lets the
visitor know that she's poised over a real, live button, and all she needs to do is click the button to
complete the deal.

When you're ready to create a dynamic button, you're going to use the image rollover technique
described on Section 14.3.3 . Here's a quick overview of how the maneuver works. Your button
reacts to JavaScript events like onMouseOver and onMouseOut to swap the button picture with
another picture that's similar, yet slightly different. Then, when the visitor clicks the button, off she
goes to whatever link's associated with the button.

Really slick dynamic buttons have three picturesone for the initial state, one for when the mouse
pointer hovers over the button, and one for when the button is clicked (just before the new page
appears).

GEM IN THE ROUGH

Free Button Makers

Creating a cool rollover button is an age-old problem, with plenty of solutions.

On the Web, you'll find a wide range of online button-making tools. These tools usually
start with a page where you specify the button details (like the text, color, background,
and so on). Once you're finished, you simply click a button and a program running on
the Web server creates the button image (or images) and displays them in a new page.
All you need to do is download the images and start using them in your own pages.

Some examples of online button-making tools include www.buttongenerator.com (which
is demonstrated in this chapter), http://cooltext.com/ButtonBrowse.aspx , and
www.grsites.com/button . Not all of these button makers can create mouse-over
images. However, you can usually run the button generator multiple times and choose a
slightly different color scheme to create the highlighted button image. For a change of
pace, try www.flashbuttons.com , which lets you create animated buttons that are
actually miniature Flash animations (as described later on Section 16.4.2 in Chapter 16).
Although these types of buttons are impressive, few Web sites use them because they
aren't usable on browsers that don't have Flash installed.

The most powerful button-making tools aren't Web-based. Instead, they're separate
programs that you can download and install on your computer. These programs often
give a richer range of choices, more configurable options, and features that let you
create a pile of buttons at once. Unlike online button-makers, if you go this route you'll
need to shop around a bit before you find a program that runs on your operating system
(for example, Windows or Mac) and has the right price (free or close to it).

Your best place to find free button-making software is one of the shareware sites
discussed on Section 4.1.1 . Windows fans might be interested in trying out the free
http://freebuttons.org . And if you have FrontPage, skip ahead to Section 15.1.3 to find
out about its integrated button generator.

Creating a dynamic button presents you with two challenges:

Creating the button pictures . Not only should these buttons look eye-catchingly cool, the
different versions you use (the normal version and the mouseover version) need to line up
exactly. If the selected version of your button has text that's a slightly different size or in a
slightly different place, it makes for a jarring effect when the browser swaps the images.

Loading the images . Every dynamic button on your site can use up to three images. For best
performance, the browser needs to download all these images when it first requests the page.
That way, when someone moves the mouse pointer over a button there isn't a noticeable delay
while the appropriate mouse-over image is downloaded.

In the next two sections, you'll learn how to create button images and make them dynamic with a
dash of JavaScript.

http://freebuttons.org

15.1.1. Generating Button Pictures

If you're graphically inclined, you can create the pictures for a rollover button by hand, using just
about any graphics program (Adobe Photoshop and Macromedia Fireworks are two popular choices).
However, getting buttons to look good isn't always easy. It's also hard to mass-produce buttons,
because you need to make sure every button has a consistent size, background, color palette, and
text placement.

Fortunately, if you need a bunch of buttons in a hurry, or your artistic abilities are feebler than those
of Koko the painting Gorilla, there's an easier option. You can use a specialized button creation
program. These programs have no purpose in life other than to help you create attractive buttons
with the text, colors, and backgrounds you choose.

The Web's teeming with a wide range of button creation tools (see the box "Free Button Makers").
The following example shows how you can use one of these (the site www.buttongenerator.com) to
get what you need.

Surf to www.buttongenerator.com .

This is the ButtonGenerator home page. Scroll down the page until you see the section with the
title "Select the button you wish to edit."

1.

In the Show list, choose Only Free Buttons. Figure 15-2 shows the list you'll see .

ButtonGenerator has a large catalog of button styles, and it offers a rotating selection of these
for free. For a small yearly fee, you can join as a member and get access to more powerful
features and the full catalog of buttons.

If you stick with the free option but find something you like in the full catalog, look for the "Will
be FREE in" message underneath the button, which indicates when this style will be offered for
free (typically less than a week).

2.

Once you find a button you like, click to select it .

Now you'll see a page that lets you customize your button.

3.

In the "Choose a mode" list, select Advanced Form .

The Advanced Form lets you create an ordinary button image and the rollover image at the
same time. It also lets you create several buttons at once. (The plain vanilla Easy Form lacks
both these valuable features.)

4.

Figure
15-2. At

any given time,

ButtonGenerator

offers about 50

free buttons

styles. You can

make a

selection from

the Sort Buttons

By list (circled)

to see an

alphabetical list,

or put the most

popular or most

recently updated

buttons first.

Choose a different picture or a different background for the mouse-over version of
your button (see Figure 15-3) .

To create a good dynamic button, you need to differentiate your ordinary button image (called
the initial state button) from the image that appears when the mouse pointer hovers over the
button (called the mouse-over state button). The difference should be noticeable, yet subtle.

5.

In the Background Transparency section, choose Light Background or Dark
Background, depending on where you want to place your buttons .

Button images often need to use some transparency because they aren't exact rectangles. The
Light Background option creates an image that tends to look better when the page has a light
background showing through (like white, gray, or yellow). The Dark Background is a better
choice if you're creating Web pages with a black background.

6.

Figure
15-3.
The best

way to

distinguish

an ordinary

button from

a selected

button is by

choosing a

different

state

image, as

in this

example.

The

ordinary

button uses

the Dog 1

state, while

the

selected

button uses

Dog 5,

which is

lighter and

doesn't

have the

paw print

icon. If your

button

doesn't

provide

multiple

state

choices,

you'll need

to choose a

different

background

color to

make the

distinction

instead.

In the Text Labels section, enter the text you want to appear on the button (see
Figure 15-4) .

If you enter multiple lines of text, each line of text creates a separate button. This is a great
trick for generating a pile of buttons in one go.

7.

8.

In the Text Font section, choose a font for the button text, the font size, and whether
or not you want to use anti-aliasing .

When choosing a font, you're limited to a relatively small number of choices. These are the fonts
that the ButtonGenerator site uses to create the buttonsit doesn't matter what fonts your site
visitors have installed on their computers, since these buttons are going to be transformed into
graphics.

Anti-aliasing is a feature that smoothes the edges of a font by blending them in with the
background. Usually, this makes the button look more professional.

Figure
15-4. In
this example,

three buttons

are being

created at

once (with

the text

"Dogs,"

"Cats," and

"Lemurs,"

respectively).

The options

underneath

let you

choose the

best font.

8.

In the Text Alignment section, choose left, right, or center alignment, depending on
whether the text should be flush with the left edge, lined up on the right, or centered
in the middle .

You can also use the X and Y text boxes to offset the text slightly in either direction. Use these
settings only if you find out that your button text isn't aligned perfectly after you generate it.
For example, if you create a button with lowercase text, you might find that the text is
positioned too low on the button. You can correct this by using a negative number for the Y
value.

9.

10.

Optionally, tweak the colors for various parts of the button in the Text Color and
Mouse Over Buttons Text Color sections .

The Text Color section corresponds to the initial button image. The Mouse Over Buttons Text
Color section corresponds to the image that's shown when the mouse pointer hovers over the
button. If you like the current colors, you don't need to change any of these details.

10.

Optionally, choose an image from the list in the Icon Insertion section .

If you want, you can embed a small image inside your button, like an arrow or flag. However,
you're limited to the options that the ButtonGenerator gives you. Usually, you don't need a
button iconit's overkill.

11.

If you want all your buttons to be the same size, turn on the All Same Width
checkbox in the Buttons Width section .

If you use this option, the ButtonGenerator calculates the width it needs to fit the largest button
(the one with the longest text), and makes all the buttons that same width. If you don't choose
this option, each button is sized to fit its text exactly.

Tip: If you plan to stack more than one button in a column (for example, to create a navigation bar), make sure you use the All

Same Width option. Otherwise, your buttons won't line up.

There's one other option. If you have a specific width in mind, you can enter that value (in
pixels) in the Buttons Width text box. Now all the buttons will have the size you specify. The
Buttons Width text box overrides the All Same Width setting. It's a good choice if you're fitting
buttons into a specific part of your Web page layout and you know exactly how much space you
need to fill.

12.

Click the Click Here to Generate Your Button link at the bottom of the page .

The ButtonGenerator creates all your buttons, and shows them all in a new page (see Figure 15-
5). Now it's time to download the pictures (or click your browser's Back button and try again).

Tip: Once you create your button images, they can't be edited in the ButtonGenerator. For that reason, it's a good idea to keep

track of the settings you used (like colors, font, text size, and button width). That way, you can generate replacement buttons later

on if you need to change the wording, or if you need to create additional buttons that match those you already have.

13.

You need to download the pictures one at a time. To save a picture on a Windows PC,
right-click the button and choose Save As (the actual wording depends on your
browser). If you've got a Mac, Control-click the button to access your Save As
options .

The Save Picture dialog box appears.

Note: All unregistered button fanatics are kindly asked to include a link to the ButtonGenerator site somewhere on their Web

page. (It's completely kosher to bury this detail on an About Us or Credits page.) The HTML you need for this link is also provided

on the ButtonGenerator page, below your button pictures.

14.

15.

In the Save Picture dialog box, browse to your Web site folder, type in a button name,
and click Save. Return to step 14 to save the next picture, and continue until you've
saved every image .

It's important to use a good naming convention for your button pictures, so you don't get lost in
a tangle of picture files. One approach is to give each button a descriptive name, followed by an
underscore, and then the button state. For example, the two pictures for the Dogs button could
be named DogsButton_ Normal.png and DogsButton_MouseOver.png .

15.

Figure
15-5.
If you

create

three

buttons,

you'll end

up with six

pictures in

total, two

for each

button.

15.1.2. Building a Rollover Button

Now that you have the button images you need, you're ready to incorporate them in a Web page.
You can use the exact same ChangeImage() function you used in Chapter 14 (Section 14.3.3).

Note: If you're using Dreamweaver, you don't need to write the JavaScript on your own. Instead, skip ahead to Section 15.1.3 (or keep

reading if you're curious to learn how rollover buttons really work).

The following example shows a complete Web page that includes the ChangeImage() script and a
single tag, which represents one button. This button is placed inside an anchor tag so it can
be clicked to move to another page; and the blue border gets removed thanks to a style sheet rule.

Here's the full HTML, including several comments to help guide you along the way:

 <html>

 <head>
 <title>Fancy Buttons</title>
 <style>
 /* Hide the blue link border on all images. */
 img {
 border-style: none;
 }
 </style>

 <script type="text/javascript">
 // This is the script for swapping button pictures.
 function ChangeImage(imageID, newImageFile) {
 // Find the object that represents the tag.
 var image = document.getElementById(imageID)

 // Change the picture.
 image.src = newImageFile
 }
 </script>
 </head>

 <body>
 <p>
 <!-- Create the link with the dynamic button inside. -->

 <img id="Dogs" src="DogsButton_Normal.png"
 onMouseOver="ChangeImage('Dogs', 'DogsButton_MouseOver.png')"
 onMouseOut="ChangeImage('Dogs', 'DogsButton_Normal.png')">

 </p>

 </body>

 </html>

Figure 15-6 shows the result.

Figure
15-6. Top:

The rollover

button in its

initial state.

Middle: The

rollover button

while the mouse

pointer hovers

overtop.

Bottom: The

rollover button

without the style

rule that hides

the border.

Without this

ever-important

style rule, a

blue rectangle

appears as a

clumsy

indication that

the button's a

link.

15.1.2.1. Using image lists

Although this page gets the job done, it's a little more complicated than it needs to be. The problem is
that the declaration for the tag is quite long. Worse, if you make a slight mistake when you
type in the image ID or picture URLs, the code won't work. In a page with dozens of buttons, keeping
all this straight can become quite a headache, especially if your pictures are stored in a subfolder (in
which case the URLs can become very long). And if you add the image preloading technique discussed
a bit later (on Section 15.1.2.2), you're in even more danger of derailing your code with a minor
mistake in the picture URL.

To help minimize the chance of error, pages that use rollover buttons commonly add another
JavaScript technique. They declare all the picture URLs in a single list, and they place this list in a
script block at the start of the page. Each picture is associated with a number, like 1 for the first
button, 2 for the second, and so on. From that point onward, the rest of your page can refer to each
picture by number, which shortens your HTML and simplifies life considerably.

To create the picture list, you use a JavaScript ingredient that you haven't seen yet: the array . An
array is an object that represents a list of items. It can hold as many objects as you want.

Here's an example that creates an array:

 var myArray = new Array()

Initially, this array is empty. To actually put information into the array, you use square brackets to
indicate the index number . This is where arrays get a little wonky, because they use zero-based
numbering . This is a fancy way of saying the first item is given the index number 0, the second item
has the index number 1, and so on. Strange as it seems, programmers always start counting at 0.

Here's an example that puts a text string into the first slot in the array:

 myArray[0] = "This is the first item"

In the dynamic button example, you're dealing with three buttons. Each button has an initial image
and a mouse-over image. To track these two sets of images, it makes sense to create two arrays,
one for normal images (which you can name imgN) and one for selected buttons (imgS). Here's the
complete code you need to create the array and store all the picture URLs:

 <script type="text/javascript">
 // The image lists.
 var imgN = new Array()
 imgN[0] = "DogsButton_Normal.png"
 imgN[1] = "CatsButton_Normal.png"
 imgN[2] = "LemursButton_Normal.png"

 var imgS = new Array()
 imgS[0] = "DogsButton_MouseOver.png"
 imgS[1] = "CatsButton_MouseOver.png"
 imgS[2] = "LemursButton_MouseOver.png"
 …

Now you can rewrite the button so that it pulls the names of the images from the array, rather than
using the file names directly:

 <img id="Dogs" src="DogsButton_Normal.png"
 onMouseOver="ChangeImage('Dogs', imgS[0])"
 onMouseOut="ChangeImage('Dogs', imgN[0])">

There's another change you can make to streamline your code and make the ChangeImage()
function easier to use. Right now, the current version of the ChangeImage() function uses two
argumentsthe ID of the image tag and the new image file name. Check it out:

 function ChangeImage(imageID, newImageFile) {

You can simplify life by modifying the ChangeImage() function so that it accepts an object that
represents the tag, instead of the name of the tag. Here's the modified version:

 // This is the script for swapping button pictures.
 function ChangeImage(image, newImageFile) {
 image.src = newImageFile
 }
 </script>

As you can see, this means there's no longer a need to go hunting for the image object with the
document.getElementById() method. However, this change also allows for a handy shortcut. When
you call ChangeImage(), you can pass the current tag using a special keyword named this . The this
keyword always refers to the object for the current tagin this case, the object that represents the
 tag. Here's how it works:

 <img src="DogsButton_Normal.png"
 onMouseOver="ChangeImage(this, imgS[0])"
 onMouseOut="ChangeImage(this, imgN[0])">

Take a moment to compare this to the more painful version on Section 15.1.2 . Now you no longer
need to give the tag a unique ID to keep track of it. You also don't need to type in the picture
URLs every time you call ChangeImage(). Instead, imgS[0] refers to the first selected button image,
and imgN[0] refers to the first normal button image.

Note: Keen eyes may notice that the image URL still appears in the src attribute. You might wonder if there's a way to set this detail

through JavaScript code using the imgN array. Although it's possible, it's not a good idea. That's because the current approach works

even when the browser doesn't support JavaScript. (In that situation, the fancy rollover effect doesn't work, but the ordinary button image

is still shown.) If you relied entirely on JavaScript, the buttons wouldn't appear at all on feebler browsers.

To complete this example, you need an tag for each button. In the following code, all the
buttons are grouped into a <div> tag so the buttons can be placed together along the side of the
page.

 <div class="Menu">
 <p>

 <img src="DogsButton_Normal.png"
 onMouseOver="ChangeImage(this, imgS[0])"
 onMouseOut="ChangeImage(this, imgN[0])">

 </p>
 <p>

 <img src="CatsButton_Normal.png"
 onMouseOver="ChangeImage(this, imgS[1])"
 onMouseOut="ChangeImage(this, imgN[1])">

 </p>
 <p>

 <img src="LemursButton_Normal.png"
 onMouseOver="ChangeImage(this, imgS[2])"
 onMouseOut="ChangeImage(this, imgN[2])">

 </p>
 </div>

Here's the style rule that formats this <div> tag, lining it up neatly on the left side of the page:

 div.Menu {
 float: left;
 margin-right: 20px;
 margin-top: 20px;
 height: 1000px;
 }

For a quick refresher on style sheet-based layout, pop back to Section 9.2 . Figure 15-7 shows the
final result.

Figure
15-7. A
finished

page, with

three

rollover

buttons.

15.1.2.2. Preloading images

With the current example, it's only a little bit more work to use image preloading . This technique
ensures that the mouse-over pictures are downloaded the first time the page is requested (instead of
when the surfer moves her mouse pointer over a button). Although you won't notice the difference
when you run a Web page from your computer's hard drive, preloading images makes the buttons
more responsive when visitors interact with a page over the Internet, particularly if they've got a
slow connection.

The technique for preloading images requires a bit of a quirky workaround. Basically, you need to
trick the browser into thinking that you're using the rollover pictures right away. This convinces the
browser to download the images without delay.

Then, later on, when the mouse pointer moves over a button and the ChangeImage() method runs,
the browser gets ready to download the mouse-over picture. However, being a relatively clever
program, the browser immediately realizes that it already has the picture stored away in its cache (a
temporary location in memory or on disk for storing recently visited pages and other recently
downloaded files). As a result, no download is neededthe browser just uses the image it already has.

To use image preloading, you need to add a function that downloads the rollover pictures. The first
step is to create a dummy image object in memory. You won't actually use this image to do anything,
but the browser doesn't know that.

 function PreloadImages() {
 // Create a "dummy" image.
 var preloadedImage = new Image()
 …

Next, the code reads through the entire imgS list of rollover pictures, using a programming construct
called a for loop . Each time it finds an image, it stuffs it into the image object, which convinces the
browser to download it.

 …
 // Load all the pictures into this image, one after another.
 for (var j = 0; j < imgS.length; j++) {
 preloadedImage.src = imgS[j]
 }
 }

A for loop repeats code a certain number of times using a built-in counter. In this case, the counter is
a variable named j that starts at 0, and keeps increasing until it matches imgS.lengthin other words,
until it gets to the last item in the imgS array. Assuming the imgS array has three items, that means
this statement is executed three times:

 preloadedImage.src = imgS[j]

The first time is when j is 0, and the code loads up the first image in the list. The second time j is 2,
and it digs up the second image. You can guess what happens the third time.

Strangely enough, that's all you need to do. Even though you're not using the images, the browser
still obligingly fetches them from your Web server and stores them in its cache when you refer to
them in this way.

The only remaining step is to make sure you call the PreloadImages() function when the page is
loaded. You accomplish this by adding the onLoad event attribute to the <body> tag, as shown here:

 <body onLoad="PreloadImages()">

That's it. Your rollover buttons are now Web-ready!

15.1.3. Creating Rollover Buttons in Dreamweaver and FrontPage

If you're using an HTML editor like Dreamweaver or FrontPage, you don't need to write your own
JavaScript code. Both programs provide a built-in way to quickly create rollover buttons.

In Dreamweaver, all you need to do is select Insert Image Objects Rollover Image. You see
an Insert Rollover Image dialog box, which you can use to set all the important details (Figure 15-8).
Click OK, and Dreamweaver creates the <a> and tags and adds the JavaScript code for
swapping images.

Figure
15-8. To

create a

rollover button

in

Dreamweaver,

just supply a

unique button

name, the

normal state

and mouse-

over images,

any alternate

text that

should appear

if the image

can't be

shown, and

the target

URL. You can

also click the

"Preload

rollover

images"

button to

generate

JavaScript

code that

downloads all

the rollover

buttons when

the page

loads.

The only way to improve on this feature is with a tool that not only inserts a rollover button, but can
also create the button images you need, based on the text and style options you choose. FrontPage
provides the goods with a feature it calls interactive buttons .

To create an interactive button in FrontSection 7.2.5 3, start by selecting Insert Web Component
from the FrontPage menu. The Insert Web Component dialog box appears. In the "Component type"
box, choose Dynamic Effects, and in the "Choose an effect" box, select Interactive Button. Then click
Finish. You're presented with an impressively featured button generator (see Figure 15-9).

When you save your Web page, FrontSection 7.2.5 3 prompts you to choose file names for all the
button pictures you've created using the Interactive Buttons dialog box.

The best part about the FrontPage button generator is that it's fairly easy to modify your button
settings and regenerate the button pictures later on. Just double-click the interactive button in the
editor, modify the settings in the Interactive Buttons dialog box, and click OK to generate the new

images.

Tip: The FrontPage button generator is new in FrontSection 7.2.5 3. However, if you have an earlier version of the program, you can

download a similar tool named 3D Button Visual Editor from Microsoft at www.microsoft.com/downloads/details.aspx?familyid=23e6b5ad-

c173-4aa4-8348-f400d670e0ac . (If you don't want to type in this horrendous URL, use the link from the "Missing CD" page at

www.missingmanuals.com .)

15.2. Creating Fancy Menus

Rollover buttons are wildly popular on the Web, and it's easy to see why. There's something
irresistible about a button that lights up when you're over it. However, you can have too much of a
good thing, and stuffing too many rollover buttons into a page is a surefire way to create an
overdone turkey of a Web site.

Figure
15-9.
Left: The

FrontPage

button

generator

lets you

choose

from a long

list of

button

styles,

ranging

from

metallic

rectangles

to soft glow

tabs. You

supply the

text and

target link.

Right: Use

the Image

tab to set

the button

size and

background

color. Turn

on the

"Create

hover

image"

checkbox

to generate

a mouse-

over image

along with

the initial

button

image, and

turn on

"Create

pressed

image" if

you want a

third image,

one that

appears

when the

button is

clicked

(just before

the browser

navigates

to the new

page).

More recently, the Web's seen a small renaissance of simplicity, and a trend away from rollover
buttons. This change is caused in part by the increasing complexity of the Webquite simply, a handful
of rollover buttons is no longer enough to guide a reader around a typical Web site. Instead, Web
sites use more detailed multilevel menus that can swallow up dozens of links.

Note: Fancy buttons and fancy menus play a similar role in taking surfers from one page to another. If you have a relatively small site,

you may choose to use buttons exclusively. If you have a large Web site, you're more likely to use a combination of menus and buttons.

A typical menu starts with a collection of anchor tags, organized into logical groups, that are placed
together on a page. For example, a company Web site might have a group of product pages, a group
of pages with contact and location information, and another group of tech support pages. By
arranging links into separate groups, it's much easier for visitors to find what they're looking for.

So far, this menu design doesn't require anything special. Using the linking skills you picked up in
Chapter 8 , and the layout smarts you gained in Chapter 9 , you can easily create a side panel with a
grouped list of anchors. But really neat menus add another trickthey're collapsible . That means you
don't need to see the whole menu at once. Initially, you see only the group headings. When you click
a group, a list of related links pops open just underneath.

There are a variety of ways to create collapsible menus. Some are fairly easy, while others are
dizzyingly complicated. In the following sections, you'll learn how to build a simple collapsible menu of
your own, and use a more complicated menu system, courtesy of a free JavaScript site.

15.2.1. Do-It-Yourself Collapsible Menus

You can create a respectable menu of your own using the collapsible DHTML tricks described in
Chapter 14 (Section 14.3.4). The basic idea is to use JavaScript to hide and show specific HTML
elements by changing the CSS display property (Section 14.3.4).

For example, imagine you want to create the cool two-level tabbed menu shown in Figure 15-10 .
This page splits its links into three separate groups, each of which is represented by a tab. Only one

tab shows its sublinks at a time.

This design might seem a little intimidating, but it only consists of two separate parts: the tabs at the
top of the page, and the link boxes that appear dynamically underneath them. In order to make
these regions easy to deal with, it makes sense to wrap them in <div> and tags, as you've
seen throughout this book.

Note: In the rest of this section, you'll get a chance to look at the solution piece by piece. To see the complete page, check out the

downloadable content for this chapter, available from the "Missing CD" page at www.missingmanuals.com .

Because the three tabs appear next to each other on the same line, the tag is the easiest
choice. (Remember, the <div> tag adds a line break and some space between each element. The
 tag is an inline element, which means you can fit it inside an existing paragraph and place
more than one side by side.)

Here's the HTML you'll start with:

 About Me
 My Store
 Really Cool Stuff

These tags have the descriptive class name Tab. That associates them with the following
style sheet rule, which gives the tabs the correct font and borders:

 .Tab {
 font-weight: bold;
 padding: 5px;

 border-style: solid;
 border-width: 1px;
 }
 body {
 font-family: Veranda, sans-serif;
 }

Figure
15-10.
Top: When

the page

first loads,

the visitor is

presented

with three

tabs.

Middle and

bottom: As

the visitor

moves the

mouse

pointer over

a tab box, a

set of

related

links

appears

underneath.

After you declare the tags, it makes sense to add the link groups. Each link group can be
represented by a or <div> tag, but a <div> tag makes most sense because the links are
placed separately on the page (meaning they aren't inserted into another paragraph). Each <div>
tag needs to have a unique ID, because you'll need to use that in your code to show the group of

links you want.

Here's the <div> tags for the three link groups:

 <div id="AboutMe" class="Links">
 My Traumatic Childhood
 My Education
 Painful Episodes
 </div>
 <div id="MyStore" class="Links">
 Buy Something
 Request a Refund
 File a Complaint
 </div>
 <div id="ReallyCoolStuff" class="Links">
 Just kidding.
 </div>

Even though these <div> tags are stacked one on top of the other, they won't ever appear at the
same time. When the page first appears, they're all hidden, thanks to the style rule for the Links
class:

 .Links {
 display: none;
 border-width: 1px;
 border-style: solid;
 padding: 10px;
 background-color: lightyellow;
 font-size: x-small;
 }

These style sheet rules, tags, and <div> tags create the basic framework for your page. The
final step is to create a script that can show one of the hidden <div> tags, depending on which tab
your visitor selects.

The code you need is quite similar to what you used with the ToggleVisibility() function demonstrated
in Chapter 14 (Section 14.3.4). The difference is that in this case, you're not interested in hiding and
showing individual sections. Instead, you want to show a single section (depending on the selected
tab) and hide everything else. In this page, that task is handled by a custom function named
MakeVisible().

Here's a simplified version of the MakeVisible() function. As you can see, it takes an element name,
finds the element, and changes the style settings to make it appear on the page.

 function MakeVisible(element){
 // Find the element and unhide it.
 var element = document.getElementById(element)
 element.style.display = "block"
 }

Now you can hook up this function to all of the tab buttons. You have a choice hereyou could react to
clicks using the onClick attribute, or to a mouse pointer hovering using the onMouseOver attribute.
This example uses the latter approach.

 About Me
 My Store
 Really Cool
 Stuff

The page still isn't quite right. Although the MakeVisible() function shows the correct tab, it doesn't
hide anything. That means that if you pass the mouse pointer over all three tabs, you'll see all three
groups of links at the same time, one above the other.

To correct this problem and hide the other tabs, you need to get a little craftier. The problem is that
MakeVisible() knows what tab it's supposed to show, but it doesn't know anything about the other
tabs. To find these tabs, your code needs to search through the rest of the page. In this example, the
basic approach is to look for any <div> tag that has the class name Links, and hide it. You can
perform this step at the beginning of the MakeVisible() function, so that everything is hidden. Then,
you need the code you saw before to show just the link box you want.

Here's the corrected MakeVisible() function:

 function MakeVisible(tab, element) {
 // Get an array with div tags.
 var links = document.getElementsByTagName("div")

 // Search the array for link boxes, and hide them.
 for (var j = 0; j < tabs.length; j++) {
 if (links[j].className == 'Links') links[j].style.display = "none" }

 // Find the element and unhide it.
 var element = document.getElementById(element)
 element.style.display = "block"
 }

This code is a little tricky. As with the rollover example earlier in this chapter (Section 15.1.2.1), it
uses an array and a for loop. In this case, the array has a list of all the <div> objects on your page.
As the code moves through this list, it checks the class name of each <div> tag. If the class name

indicates that you've found a link box, the code makes it disappear from the page by changing the
display style.

The code in the downloadable example gets slightly fancierit also fiddles with the tab to change the
background border color and hide the border for the selected tab. However, the basic approach is still
the same.

Note: If the stranger aspects of JavaScript still look like Danish, don't worry. If you're inclined, you can learn about JavaScript

programming features like arrays, loops, and if statements from a dedicated book or Web site (see Section 14.2.3.2 in Chapter 14 for

some good resources). Or, you can keep your sanity and rely on the examples provided with this book and find great free scripts online.

15.2.2. Third-Party Menus

If you've had enough fun writing your own JavaScript code, you'll be happy to hear that the Web is
chock-full of free menu scripts that you can use completely for free. Many of these have more dazzle
than the tabbed menu shown in the previous example. Some of the extra features you might find
include:

Multilevel menus that let your visitors drill down into specific subcategories.

Pop-up menus that appear "above" your Web page when you click them.

Ridiculously showy effects, like shaded highlighting and transparent backgrounds.

To find a good menu, you can use any of the JavaScript sample sites described in Chapter 14 (see
Section 14.4.1). You'll find that there's quite a bit more diversity in menus than in rollover buttons.
Every menu looks and behaves a little differently. Some pop up, others slide out, and others try to
emulate the look and feel of popular programs like Microsoft Outlook.

To get a glimpse of what's out there, head over to the examples at Dynamic Drive, which has a set of
nifty menus at www.dynamicdrive.com/dynamicindex1 and a particularly interesting specimen
(called, rather unimaginatively, Top Navigational Bar II) at
www.dynamicdrive.com/dynamicindex1/topnavbar.htm . Figure 15-11 shows this menu with the
same menu structure that was used in the tabbed menu example from earlier in this chapter.

Tip: Before you choose a navigation bar for your own Web site, you'll want to test drive quite a few. This section walks you through the

process, but you'll want to compare the result with other navigation bars before you commit.

In the following sections, you'll download the script code you need for Top Navigation Bar II, and use
it to create your menu.

Note: Top Navigational Bar II works in Internet Explorer and Opera, but not Firefox. To get better support, you should definitely check out

Top Navigational Bar III (www.dynamicdrive.com/dynamicindex1/topmen3), which provides a similar effect but works in just about every

modern browser. (The Web page for the script provides a table with detailed browser compatibility information.)

Figure
15-11.
Top

Navigational

Bar II is a

lot like the

menus in

Windows

and Mac

programs.

When you

pop open a

menu, it

appears on

top of

existing

Web page

content.

15.2.2.1. Getting the script

To download Top Navigational Bar II, follow these steps:

Surf to www.dynamicdrive.com/dynamicindex1/topnavbar.htm .

You'll see a page that demonstrates the navigation bar, and provides step-by-step instructions
for using it.

1.

In the Step 1 section, copy all the code, and paste it into the <head> section of any
Web page .

You can create a new Web page for this purpose, or use a Web page you've already created.

2.

3.

As instructed in the Step 2 section, change the <body> tag in your Web page to <body
onload="init()"> .

This tells your code to call the init() method to set up the menu when the page loads.

3.

In Step 3, click to download and open the ZIP file named exfiles.zip . Unzip these files
(using any unzip tool you have) into the same folder where you've stored your Web
page .

The exfiles.zip file contains three text files that are full of JavaScript code that supports the
navigation bar. Fortunately, you never need to look at (or understand) any of this code, unless
you're irrationally curious.

4.

Try the page out in your Web browser .

You'll see a sample menu with a series of headings and subheadings. To change this menu into
the menu you really want, you need to edit the JavaScript code that you pasted into your Web
page (not the ones in the separate script files). As you'll see in the next section, it's pretty easy.

5.

15.2.2.2. Creating the menu

Every JavaScript menu has a slightly different procedure for creating it. Some menus make you
define the menu in a separate text file. Other menus, like Top Navigational Bar II, force you to
modify the actual JavaScript code to define the links you want.

In the previous section, you pasted the script code into a Web page, and wound up with the sample
menu. To customize this menu, you need to open up the Web page, and scroll to the very top of the
script.

You'll see this code, which creates the special menu objects:

 <script language="JavaScript">
 var myNavBar1 = new NavBar(0);
 var dhtmlMenu;

Note: The code in this example looks a little different because every statement ends with a semicolon (;). This is a C programming

convention that's supported (but optional) in JavaScript. Programming types like it because it clearly indicates where each line ends. We

use it in this section because that's the way the Top Navigational Bar II is written.

From this point on, the rest of the code builds up the particular menu structure for your page. The
code performs this task one submenu at a time. You can delete the code that's there (to remove the
existing menus) or just modify it to create the menu items you really want.

To create a submenu, you begin by creating a new NavBarMenu object, and supplying two numbers.
The first number is the width (in pixels) of the top-level menu heading. The second number is the
width of the menu that pops up underneath the top-level heading. Here's an example that makes
both 150 pixels wide, which is a good size to start with. The longer your text, the wider the space
you'll need on your Web page.

 dhtmlMenu = new NavBarMenu(150, 150);

Now, you need to add the top-level heading for this menu item. You do this by calling
dhtmlMenu.addItem(), and passing in a new NavBarMenuItem object, like this:

 dhtmlMenu.addItem(new NavBarMenuItem("About Me", ""));

When you create a NavBarMenuItem you supply two details: the menu text ("About Me"), and the
link. In the case of a top-level menu item, you don't need the link. Technically, you can make the
top-level menu heading clickable, but that behavior confuses just about everyone.

Note: Remember, you don't need to understand how this code works (or why the syntax is the way it is) in order to use it. You simply

need to copy the sample code exactly, and replace the menu captions and page links with yours. (You should also test your page with a

range of different browsers and on different operating systems.)

You now know just about everything you need to create fancy menus for your site's navigation menu.
You simply need to repeat the previous step to create each menu item. Here's how you would add
three more menu items, representing the three items in the About Me menu:

 dhtmlMenu.addItem(new NavBarMenuItem("My Childhood", "Child.html"));
 dhtmlMenu.addItem(new NavBarMenuItem("My Education", " Education.html "));
 dhtmlMenu.addItem(new NavBarMenuItem("Painful Episodes", "Pain.html "));

The only rule you need to keep in mind is that you create the menu items in the same order you
want them to appear on the page. The first menu item is always the heading that you'll see at the
top.

Finally, when you've completed a submenu, end with this statement, which adds the submenu to the
navigation bar:

 myNavBar1.addMenu(dhtmlMenu);

Now you just repeat the whole process to add the next submenu. Here's the complete code that
creates the My Store submenu:

 dhtmlMenu = new NavBarMenu(150, 150);
 dhtmlMenu.addItem(new NavBarMenuItem("My Store", ""));

 dhtmlMenu.addItem(new NavBarMenuItem("Buy Something", "…"));
 dhtmlMenu.addItem(new NavBarMenuItem("Request a Refund", "…"));
dhtmlMenu.addItem(new NavBarMenuItem("File a Complaint", "…"));
myNavBar1.addMenu(dhtmlMenu);

You can continue this process of defining submenus indefinitely, until you get all the menus you want.

Chapter 16. Audio and Video
There comes a point when every new Web designer wants more than mere text and pictures. Even
spruced-up fonts and elegant page layouts don't satisfy the design envy that many newcomers feel
when they spot a site loaded with sounds and motion. It's understandable: You want to use
multimedia to trick out your pages with audio and video. In this chapter, you'll learn how to do
exactly that, and create Web pages with background music, animations, and even full-frame movies.

But before you go any further, take a moment to consider the pitfalls you'll face. If you think of the
most common examples of multimedia on the Web, you're likely to come up with a long list of Web
annoyances. These abuses include flashing banner ads, irritating background music, exasperating
pop-ups, time-wasting intro pages, and bandwidth-sucking commercials. Occasionally, you'll find a
worthwhile movie promo or interactive game, but they're far outnumbered by budget Web pages
blurting out irritating jingles.

So before you jump on the multimedia bandwagon, it's important to think about exactly what you
want to accomplish. Are you planning to showcase your musical compositions or provide
downloadable recordings of Junior's first moments? If so, multimedia probably makes sense. But if
you're just looking for a way to dazzle surfers with an animated logo sequence, think twice. It's
probably not worth the considerable effort to design something that will only aggravate most of your
visitors.

16.1. Understanding Multimedia

Multimedia is a catch-all term that includes a variety of different technologies and file types, all of
which have dramatically different computer requirements and pose different Web design challenges.
Before you can jazz up your site with audio or video, you need to understand a few basics.

16.1.1. Linking and Embedding

One of the key choices you'll make when outfitting your Web pages with multimedia is whether to link
or embed the files you're adding.

Linking to your multimedia content is the simplest but least glamorous approach. The basic idea is
that you create a link that points to the audio or video file that you've stored alongside all the other
HTML and image files on your site. There's really nothing to creating linked multimedia. All you need is
the lowly anchor tag (see Chapter 8) to create the link. The href attribute of the link points to your
file, as in this example:

Would you like to hear Industrial Noise?

Figure 16-1 shows what happens when you click one of these babies.

Figure 16-
1. When you

click a linked

multimedia file, the

browser asks

whether to save

the multimedia file

or open it straight

way. If you choose

the latter, the

browser first

downloads the file,

and then launches

it using a separate

program. The

actual program

that's used to play

the file depends

on what software

you have installed

on your computer.

For example, if

you use the

popular Winamp

(www.winamp.com

) to play MP3 files,

the downloaded

song heads

straight to your

Winamp play list.

Other common

players include

Apple QuickTime

Player and

Windows Media

Player.

Note: It makes absolutely no difference what kind of software is running on your Web server when you add linked audio to your site. The

audio is always downloaded to the Web surfer's computer and played there.

Embedding multimedia is a more advanced approach that aims to integrate ordinary HTML content
with background music or a video window. Embedding multimedia can be a challenge. Depending on
what kind of file you're embedding, your visitor's browser might not support it. Another problem is
that you might need to have special software on your Web server. Usually, the role of this software is
to take a large multimedia file (like a five-minute movie clip), and send it out to browsers piece by
piece. This process, known as streaming , allows the Web surfer's computer to start playing the
multimedia file before it's completely downloaded.

Note: The distinction between linking and embedding multimedia is the same as the difference between linking to a picture (with the <a>

tag), and embedding it right in your page (with the tag). The only difference is that images are a basic, well-supported part of the

HTML standard, so embedding never causes much concern. However, embedding audio and video takes you into less-charted waters.

16.1.2. Types of Multimedia Files

The decision to link or embed will be decided, at least partly, by the type of multimedia content you
want to show. Because HTML doesn't have any multimedia standard of its own, other companies
have innovated to fill the gaps. Today, there's a slightly bewildering field of choices.

Here are the types of multimedia you'll see in this chapter:

Synthesized music (MIDI) . MIDI files are very small, low-quality music files. Although the
audio quality depends on the sound hardware in your site visitor's computer, the results most
commonly resemble a cheesy Casio keyboard. But because they're lightweight and supported
on almost all browsers, MIDI files are the most common type of Web page background music.
(MIDI stands for Musical Instrument Digital Interface.)

Digital audio (WAV and MP3) . These file types store recorded audio, which makes for far
better quality. However, WAV files are enormous, which makes them unsuitable for all but the
most bloated Web sites. MP3 files are 10 times slimmer, but browsers often don't support them
directly, which means you can't always embed MP3 files.

Digital video (MPEG, AVI, MOV, and WMV) . These file types are the heavy hitters of
multimedia. They allow you to show full video that ranges in quality from a jerky thumbnail-
sized window to DVD-quality playback. Digital video is a challenge for any Web page creator,
because it's ridiculously large. In order to have even a chance of making it work, you need to
compress, shrink, and reduce the size and quality of your video clips with video editing
software.

Animated GIFs . Animated GIFs are small animations that actually consist of a sequence of
static images shown one after the other (like a flipbook). If you see a Web site with a dancing
carton character, spinning text, or pulsing globe (don't ask), you're probably looking at an
animated GIF. Most Web-heads don't consider these to be real multimedia, because they're so
simple. However, GIF files are small, pretty easy to create, and they're widely supported.

Flash . Flash is an animation standard that's designed especially for the Web. Flash movies are
vector-based , which means they're built out of animated shapes rather than a series of video
frames. That makes them much smaller than digital video, and perfect for creating animated
logos, commercials, and dazzling intro screens (see Figure 16-2). Flash animations can also be
interactive, which means a Flash guru can use Flash to build slick menus and games. However,
in order to create a Flash animation, you need to buy specialized software from Macromedia,
which runs into the hundreds of dollars. And even if you shell out the cash, you'll find that
creating the professional Flash animations you want requires the skill of a talented Flash artiste.
Finally, Flash movies won't even appear at all in a Web surfer's browser unless it has the Flash
plug-in installed (which most do). (A plug-in is a small program that extends the browser with
extra features, like the ability to handle otherwise foreign types of files.)

Figure
16-2. The

news and

current affairs

site

www.salon.com

makes

nonsubscribers

sit through a

short

commercial

before gaining

access to any

articles.

Though the

commercial

varies, it's

always a Flash

animationa fact

you can confirm

by right-clicking

(Control-

clicking, on a

Mac) on it at

any time.

Instead of

seeing options

that let you

download it (as

you would with

a picture), you'll

see a

command for

changing

playback

settings.

It's difficult to digest all the information in this list at once. If you're still mulling over you're different
choices, take a look at the scenarios in Table 16-1 to help you sort out the roles of the different
multimedia types.

Table 16-1. Multimedia Scenarios

If You Want To: Then Use:
Embedded or

Linked

Play a synthesized version of your
favorite pop tune in the background

MIDI files Embedded

If You Want To: Then Use:
Embedded or

Linked

Play a short loop of digital audio
continuously in the background

Flash (You can use the MP3 format
instead, but not all browsers will
support it, and the looping is less
precise.)

Embedded

Let visitors download your band's
newest indie recordings

MP3 files (Record your music using
WAV files and then covert them into
MP3 format to save space.)

Linked

Show a stock animation effect, like
clapping hands, a flashing star, or a
dancing bean

Animated GIFs Embedded

Let visitors see your favorite home
movie

MPEG, AVI, or MOV files (But make
sure you use video editing software
to dramatically reduce the file size.)

Either one
(although linking
is easiest).

JavaScript or Flash (JavaScript only
works with Internet Explorer; Flash
works with all browsers, but takes more
work)

Flash (This can also be done through
JavaScript, but browser support is
more limited.)

Embedded

Show an animated intro screen or
commercial

Flash (Animated GIFs are used
sometimes, but they look chintzy.)

Embedded

Show a humorous animated story that
you've created

Flash Embedded

Tip: If you plan to create a Web site with a significant amount of digital audio and video, you'll need to reconsider your space and

bandwidth requirements (see page 66). Unlike ordinary HTML and Web graphics, multimedia files can grow quite large.

Play a short loop of digital audio
continuously in the background

Flash (You can use the MP3 format
instead, but not all browsers will
support it, and the looping is less
precise.)

Embedded

Let visitors download your band's
newest indie recordings

MP3 files (Record your music using
WAV files and then covert them into
MP3 format to save space.)

Linked

Show a stock animation effect, like
clapping hands, a flashing star, or a
dancing bean

Animated GIFs Embedded

Let visitors see your favorite home
movie

MPEG, AVI, or MOV files (But make
sure you use video editing software
to dramatically reduce the file size.)

Either one
(although linking
is easiest).

JavaScript or Flash (JavaScript only
works with Internet Explorer; Flash
works with all browsers, but takes more
work)

Flash (This can also be done through
JavaScript, but browser support is
more limited.)

Embedded

Show an animated intro screen or
commercial

Flash (Animated GIFs are used
sometimes, but they look chintzy.)

Embedded

Show a humorous animated story that
you've created

Flash Embedded

Tip: If you plan to create a Web site with a significant amount of digital audio and video, you'll need to reconsider your space and

bandwidth requirements (see page 66). Unlike ordinary HTML and Web graphics, multimedia files can grow quite large.

16.2. Background Music

Most people like to browse the Web in peaceful silence. That means no trance-hypno-ambient
background tracks, no strange disco beats, and no sudden cymbal crashes. This aversion to noise
may be due to the fact that something like 98 percent of all Web surfing takes place on company
time.

But if you like to startle and annoy people, or if you're absolutely convinced that your Web audience
really does want some funky beats, keep reading to bring on the background music.

16.2.1. The <embed> Tag

Although the HTML standard doesn't include official support for background music, almost all
browsers support the <embed> tag, which was first pioneered by Netscape browsers in the early
days of the Web. You can put the <embed> tag anywhere on your page. Here's a basic example of a
Web page that includes background music:

 <html>
 <head>
 <title>Background Music</title>
 </head>

 <body>
 <h1>Automatic, Unsolicited Music</h1>
 <p>The music now blaring from your speakers is
 Scarlatti's first sonata (K. 500).
 I hope you didn't tell your colleagues you were working!</p>

 <embed src="soundfile.mid">
 </body>
 </html>

When using the <embed> tag, you have a slew of different options that allow you to control whether
or not the playback controls are shown, and whether the music starts automatically. If you use the
<embed> tag without specifying any of these details (as in the previous example), your visitors will
see a page like the one shown in Figure 16-3.

Figure
16-3.
If you use a

plan vanilla

<embed>

tag, the

playback

controls

appear n

your page

wherever

you placed

the tag.

The exact

style of the

playback

controls

varies

depending

on the

surfer's

operating

system,

browser,

and audio

plug-ins.

Music playback isn't always this seamless. Because every browser performs this task a little
differently, you can run into problems like the ones shown in Figure 16-4. The best advice is to test
your Web page on as many browsers as possible.

Figure
16-4.
Top:

Paranoid

surfers

sometimes

step up their

security

settings,

which can

lock out

your music.

Bottom:

Depending

on what a

Web surfer

has

installed

and

uninstalled,

the browser

might not

find the

components

it needs to

play your

background

music.

Ordinarily, the <embed> tag starts the music playing as soon as the music file is downloaded.

Visitors can kill the sound with a quick click of the stop button, but if they're not expecting to hear a
burst of music, it's still enough to frazzle some nerves.

GEM IN THE ROUGH

Finding MIDI Files

Although MIDI files usually sound synthesized and cheesy, you can't complain about the
number of tunes available online. With a simple Google search, you can usually dig up
MIDI files for your favorite band, movie, computer game, or classical composer.

Technically, it's against copyright rules to use a MIDI file of another artist's work on your
Web site. However, there's a fairly large gray area. First of all, MIDI files are usually
sequenced (composed) by fans or amateur musicians. So not only do they lack real
instruments and vocals, they may also contain outright errors. In that respect, putting a
cheap MIDI file on your Web site is a little bit like listening to a Led Zeppelin cover
bandit's a tribute to the original, not a competitive threat. That's why music companies
haven't made any effort to crack down on MIDI files.

If you want to steer clear of copyright issues altogether, you should stick to music that's
in the public domain. Music that was created before 1923 falls into this category, which
means you're free to draw from a huge catalog of classical pieces. To download your
favorites, try the Classical MIDI Archives (www.classicalarchives.com).

A more polite option is to show the playback controls but not start the music until the visitor clicks
the play button. This design is easyjust use the autoplay attribute:

 <p>If you'd like some soft music to browse by, click the play button.</p>
 <embed src="soundfile.mid" autoplay="false">

Turning off autoplay is considered very good Web etiquette. A much poorer idea is the hidden
attribute, which lets you hide the playback controls altogether. All too often, you'll find Web pages
that use <embed> tags like this:

 <embed src="soundfile.mid" hidden="true">

In this example, the sound file plays automatically. Because the playback controls are hidden, the
only way to stop it is to lunge for the volume control. Web sites that put their visitors through this
ordeal rarely see a return visit.

Note: Unfortunately, autoplay and hidden playback controls are all too common. Some Web designers become intoxicated with their

newfound multimedia abilities, and decide it's not enough to let visitors listen to musicthey need to force them to do it. Resist the urge.

Quite a few more frills are available for the <embed> tag. Table 16-2 has the full list.

Table 16-2. Attributes for the <embed> tag

Attribute Description

src The URL that points to the audio file.

autoplay
A true or false value that indicates whether the audio should start playing
immediately (true) or wait for the Web surfer to click the play button (false).

hidden A true or false value that indicates whether the playback controls are visible.

loop
A true or false value that indicates whether the audio should be played once (from
start to finish), or repeated endlessly. When looping audio, you'll notice a distinct
pause before the audio restarts.

volume

A percentage between one percent and 100 percent (100 percent is the loudest you
can get). 50 percent tends to produce the standard volume on a Windows computer;
on Macs, the equivalent effect comes with a value of 75 percent. Set it to 100
percent, and you can be sure you won't get any repeat visitors. When you use the
volume attribute, just supply a number (leave out the % sign).

border,
width, and
height

These attributes let you set the dimensions of the playback controls and the border
around them, in pixels. You can achieve greater customization by applying a style
sheet rule (see Chapter 6).

16.2.2. Other Audio Formats

As you learned earlier on, MIDI files are remarkably small because they don't store recorded sound.
Instead, they contain a series of musical notes that are played using the built-in instruments on your
computer's soundcard. As a result, they don't usually sound that great, and they don't sound the
same on everyone's computer. MIDI files are fun, but they often make a site seem amateurish.

What if you want something a little more upmarket? You could use a WAV file, which is an
uncompressed digital audio file format first introduced by Microsoft but now supported everywhere.
Most computers have software for recording WAV filesfor example, on Windows computers you can
usually find a program called Sound Recorder lurking in the Programs Accessories
Entertainment section of the Start menu. Mac fans may want to use the free program Audacity
(http://audacity.sourceforge.net), which is also available in a Windows version.

You can use a WAV file with the <embed> tag in exactly the same way as a MIDI file:

 <embed src="soundfile.wav" autoplay="false">

The problem with WAV files is that they're really, really big. In fact, they're enormous. Think of the

http://audacity.sourceforge.net

file size of an MP3 file, and multiply it by ten. As a result, it rarely makes sense to use WAV files in a
Web page. On a typical mid-speed connection, your visitor would have a long wait before the
complete music file trickled down and playback started.

Note: A typical MIDI file is even smaller than a typical image. A 100 kilobyte (KB) MIDI file could handle the first movement of a detailed

symphony.

Another option is to use MP3 files. This approach works great in newer browsers, but older browsers
may ignore your command or launch another program.

 <embed src="soundfile.mpg" autoplay="false">

If you're interested in trying this option, keep your file small and try it out on the browsers your
visitors use. A 10-second MP3 file takes a modest 170 KB. As a rule of thumb, most Web authors
suggest you keep your audio clips limited to 30 seconds if you use autoplay.

Sadly, the <embed> tag won't help you create those nifty looping soundtracks. Even though you can
use the loop attribute, the results aren't good, because the <embed> tag doesn't loop cleanly.
Instead, it pauses each time it reaches the end of your audio file. If you want a slick looping
soundtrack, you'll need to use Flash, as described on Section 16.4.2.3.

Tip: There's lots of great shareware available for recording WAV audio files and converting WAV audio files into the more compact MP3

format. Two bargain basement choices that are free to try are GoldWave (www.goldwave.com) and FlexiMusic (www.fleximusic.com). If

all you want to do is convert existing WAV files to MP3 format, you can use Apple's iTunes software, available for both Windows and the

Mac (www.apple.com/itunes). You can get the job done by right-clicking (Control-clicking) any song name and choosing, from the pop-up

menu, "Convert Selection to MP3."

16.2.3. Sound Effects

Ever wanted to create one of those Web pages where every mouse movement unleashes a sound?
For example, maybe you want a whoosh when your visitors move over a button or an audible click
when they click a link.

Sadly, there's no perfect solution that will work with every browser. But there are two compromises:

Use Flash, which lets you construct an entire page with sound effects for the most minute of
actions. The problem here is that the browser needs to have the Flash plug-in installed.

Use the <bgsound> tag (short for background sound) along with the JavaScript technique you'll
learn about next. The key limitation with this technique is that it only works with Internet
Explorer 5 and latermost other browsers and older versions of IE ignore your background sound
effects altogether.

Several versions of this script are available online. The one you'll see in the next example (and
available via the "Missing CD" page at www.missingmanuals.com)is one of the simplest. If you dig
around on the Internet, you can find similar versions that preload their audio files, which delivers
better performance. Without preloaded sounds, your visitors may experience a slight delay the first
time they play an audio file because the file needs to be downloaded.

To use JavaScript-powered sounds, start by adding a <bgsound> tag in the <head> section of your
Web page. The <bgsound> tag is an IE-specific version of the <embed> tag. The trick is, you won't
supply any source file for this tag. Instead, you'll set the source to start playing only when something
actually happens on the page:

 <bgsound src="" id="SoundEffect" autostart="true" loop="1">

Notice that the <bgsound> tag is named SoundEffect. (The id attribute uniquely identifies a tag in
your documentfor a refresher, see Section 9.2.2.2.) The last two attributes in the <bgsound> tag
instruct it to play audio files immediately (autostart="true") and play them exactly once (loop="1").

The next step is to add the script with the PlaySound() function to the <head> portion of your page.
The PlaySound() function has one roleit finds the <bgsound> tag and points it to the music file you
want to play:

 <script type="text/javascript">
 function PlaySound(soundfile) {
 if (document.all && document.getElementById)
 {
 document.getElementById("SoundEffect").src=soundfile
 }
 }
 </script>

In other words, it's up to you call the PlaySound() function and supply a sound file name. The
PlaySound() function then adjusts the <bgsound> tag by setting its src attribute, and the
background sound plays immediately.

Remember, functions just hang around idly until you call them. Your Web page won't make a beep
until a JavaScript event occurs and triggers the PlaySound() function. Here's how you can use the
PlaySound() function to play a sound named soundeffect.wav when a visitor moves her mouse
pointer over a link:

 <a href="http://www.somesite.com"
 onMouseOver="PlaySound('ding.wav')">Click Me

The only problem here is that if you want to add sound effects like this to several links, you need to

hook up every single link separately, even if they all use the same audio file. But don't despair.
There's a solution courtesy of www.dynamicdrive.com. A second JavaScript function, named
BindSound(), lets you add a sound effect to all the tags of a certain type in a certain container.

For example, if you want to add a sound effect to a group of links, pop them into a <div> tag, like
this:

 <div>
 Click Me
 Click Me
 …
 </div>

Now, instead of adding the onMouseOver attribute to every <a> tag, you can attach it to the <div>
container using the BindSound() function. The BindSound() function takes three argumentsthe type
of tag that you want to hook up, the sound effect file name, and the container that contains the tags
you want to hook up. Here's an example:

 <div onMouseOver="BindSound('a', ding.wav', this)">
 Click Me
 Click Me
 …
 </div>

Notice that for the first argument, it's important to leave out the angle brackets (for example, use "a"
to hook up every <a> anchor tag). For the third argument, you can always use the keyword this,
which refers to the current tag (in this case, the <div> container). The end result of this example is
that every anchor in the <div> section is linked to the ding.wav audio file.

You can use this trick to put sounds on your entire pagejust add the onMouseOver attribute to the
<body> tag that contains the whole Web page.

You can get the full code with the BindSound() function from the "Missing CD" page for this chapter
at www.missingmanuals.com.

Tip: Looking for some free sound effects to use with this script? Try out www.grsites.com/sounds and www.freeaudioclips.com.

16.3. Video Clips

Video clips haven't quite taken off, but with the recent wave of digital cameras that shoot movies,
video cell phones, and other video gadgets, interest is growing. Family members, tourists, and
adventurers all regularly keep in touch by posting video clips, and the blogging community (see
Chapter 17) is getting excited, too. Bloggers are in the midst of coining a new word for Web sites that
feature regular video postings. (Current candidates include "videoblogs," "vidblogs," "vogs," and
"vlogs;" check out http://videoblogging-universe.com for some neat samples.)

Surprisingly, you can pop a video into your Web page using the exact same techniques you used with
digital audio. That means you can link to a video so that it opens up in another browser window:

 Click to download or open my home movie
 Ouch, That Hurts.

Or, you can use the <embed> tag to place a video window right inside your Web page.

 <embed src="ouch.mpg" autoplay="false">

If you use the <embed> tag, make sure you turn off the autoplay behavior. Otherwise, surfers with
feeble dial-up connections will see their Web pages slow to a crawl while your video downloads.

The video window shows up wherever you place the <embed> tag (see Figure 16-5).

http://videoblogging-universe.com

Figure
16-5.
You can add

a video

window to

your Web

pages

almost as

easily as

adding basic

audio

playback

controls. If

you don't

specify a

fixed size,

the video

window

automatically

adjusts to

the

dimensions

of your

video.

If this seems too easy to be true, that's because it is. There are two stumbling blocks that you'll
encounter when using video in a Web page. The first challenge is getting the video in the first place.
Not just any video will workyou need a highly compressed format that won't choke your visitors'
browsers.

The second problem is the fact that it takes a while to download a video file. When you use the
<embed> tag, your video won't start playing until it's completely downloaded. Internet techies found
a way around this unbearable wait, by inventing streaming video (see Section 16.3.2). Their solution
works great, but it requires special software on the Web server, which most budget Web hosting
companies won't provide.

Note: Modern media players can perform streaming on the Web browser's computer with certain file types. For example, both

QuickTime Player (with .MOV files) and Windows Media Player (with .ASF files) can start playing audio before it's completely

downloaded. This technique is called a progressive download, and it doesn't require special Web server software.

16.3.1. Creating Your Own Movies

Putting personal video on a Web site is a task meant for ambitious multimedia mavens. The key
stumbling block is the sheer size of your files when you start dealing with digital video.

For example, consider a popular MiniDV camcorder, which stores an hour of video on a single tape.
You can download that video to your computerbut only if you have a spare 13 gigabytes handy! The
ugly truth is that every second of raw, high-quality video chews through a sizeable 3.5 megabytes of
space. Not only is that enough to take a bite out of any Web master's Web space and bandwidth
allocation, it's too big for even the speediest surfers to download.

What can you do to make a respectable Web video? You can always use someone else's Web-ready
video (or just pay a video editing company lots of money to trim yours down to Web proportions).
Assuming that's not what you want, you have two choices.

Record at a lower quality. In some cases, you may have the option to record your video
using lower quality settings. Some video cameras allow you to record lower-quality video just
for the purpose of putting it on a Web site. Usually, this video gets stored on a memory card
instead of a tape. Cell phones, tiny computer spy cams, and digital cameras all create low-
quality movies, letting you dodge the conversion headaches and enable you to send your video
straight to your Web site. In fact, some video fans find the best solution is to have two types of
recording devicesone for ordinary home movies and one for lower-quality Web movies.

Lower the quality afterwards. More commonly, you'll need to start with your high-quality
video and go through a long process of re-encoding to convert it to a size that's more suitable
for the Web. In order to do this, you'll need a video editing program. Video cameras generally
include some sort of tool to help you out, although you may want to pony up for more powerful
software. Two popular choices are iMovie (for the Mac) and Windows Movie Maker (which is
included with Windows XP).

Note: For full details on how to operate Windows Movie Maker, check out Windows XP Home Edition: The Missing Manual. If you're

using iMovie, take a look at iMovie HD & iDVD: The Missing Manual. You'll also find some great articles on Web video preparation at

www.internetvideomag.com.

Here are the basic steps you need to follow to get your video ready for the Web:

First, film your movie.

Video gurus are careful to film their video in a way that makes it easier to compress and
introduces less distortion. For example, if you keep camera movements smooth and gradual,
and don't film complex patterns, your compressed video will be smaller and look better.

1.

Fire up the video capture program that was included with your video camera. Use
this program to download your movie to your computer's hard drive.

Typically, this step involves connecting your camera to your computer using a FireWire cable.
(USB cables need not applythey're just not fast enough to keep up with huge chunks of raw
video data.)

2.

Now you need to use a video editing program to snip out the part you're interested in3.

posting to your site.

Depending on the program you're using, you might use this moment to add music or special
effects.

3.

Next, you need to re-encode just that piece of video in a highly compressed format.
If all the format information in your program sounds like gobbledy-gook, look for an
option that clearly says "Web video" when you save your clip.

Technically, you're making three choices in this stepthe video format (the algorithm used to
encode the video), the dimensions of the playback window (Web pages usually fall somewhere
between 176 x 144 to 320 x 240 pixels), and the quality (as with JPEGs, the greater the
compression, the more detail you lose in the picture).

Tip: There are a wide range of competing Web video formats, but the most common is MPEG-4. Just to make life more

interesting, MPEG-4 has all kinds of quality settings, so you can use it to create DVD-quality movies or Web-friendly video clips. If

in doubt, double check the final file size of the movie. If you can get 60 seconds of video into a file that's one megabyte on your

hard drive, you're doing well.

Re-encoding video is a time-consuming operationeven the speediest computer may take five
times as long as the length of the original clip to re-encode the video. The good news is that at
the end of the process, you'll have a more manageable Web-ready video filesay, two
megabytes for a full 90-second clip.

4.

Tip: Need more space for your video files? Even Web-sized videos can consume more Web server space and bandwidth than you

have. Consider using a free video hosting service, which lets you put your videos on another server. The disadvantage is that if that Web

server is slow or buggy, your videos won't work as well. There's a good list of options at

www.internetvideomag.com/ProductReviews/Services/FreeVideoHosting102.htm.

16.3.2. Streaming Media

Streaming video is designed to take the pain out of video playback on the Web. The key idea is that
instead of sending a video file in one large piece, the Web server sends small chunks to the browser
as they're needed. Modern computers, which are quite adept at doing two things at once,
simultaneously play the current chunk while requesting the next one. The only drawback is that
streaming video can sometimes bog down a bit (especially if the viewer's got a pokey Internet
connection); in that case, the video will pause briefly until the next chunk downloads.

On the whole, streaming video is much more satisfying than downloading the whole enchilada first.
Some Web mavens also like streaming video because it makes it more difficult (although not
impossible) for the viewer to save a copy of the video on their own computer.

In order to use streaming video, the browser and the Web server need to enter into a more detailed
conversation than usual. Rather than the standard "Give me this file" instruction, a browser needs to
ask, "Can you give me a piece of that data?" and, when appropriate, "I'm ready for some more." This
requires special software on the Web server. You can ask your Web hosting company if they provide
this feature. If they don't (or you're unwilling to pay the extra price), you do have another option.
Recently, free streaming servers have started to crop up on the Web. They let you store your video

on their Web servers. And because they have the streaming software, you can stream the video
through your Web pages. Right now these services are still pretty unreliable, but check out
www.pixparty.com if you're interested in giving it a whirl.

16.4. Animations

Web animations are a simpler, more flexible alternative to video. They let you show a series of
changing pictures, floating text, and cartoon-like characters. In the hands of a talented Web artiste,
animations can become complete, miniature movies.

Animations are much more common on the Web than video for two reasons. First, they're
dramatically smaller, and therefore much more practical. Second, a Web designer can build an
animation with nothing more than a mouse and some specialized software. No camera or lengthy
conversion process is required.

In this section, you'll take a quick look at two types of animationanimated GIFs and Flash.

16.4.1. Animated GIFs

Animation is one of the features built into the GIF standard (Section 7.1.4). Animated GIFs are really
a poor man's form of animation. They don't let you design complex animations like Flash, they aren't
interactive, and they certainly don't let you show real video like the MPEG format. An animated GIF is
really just a series of separate GIFs that are shown one after the other, with a specified delay in
between each frame. Animated GIFs are short and usually loop, which means they restart their
animation when they reach the last frame. Figure 16-6 shows how an animated GIF works.

Figure 16-6. This

simple animated GIF

consists of three static

images, which are shown

one after the other (with a

brief delay after each frame)

to create the illusion of a

cartoon character banging a

drum. It's taken from the

online Microsoft Office clip

art collection.

Note: Just as with any other GIF, animated GIFs are limited to a paltry 256 colors. There's no such thing as animated JPEGs.

You can build animated GIFs using a shareware tool (search on www.zdnet.com to find candidates),
or a professional tool like Macromedia Fireworks. However, animated GIFs aren't generating much
interest these days, and all the cool people have moved on to Flash.

If you're looking for some free animated GIFs, you'll find ancient sites strewn across the Web. Check
out www.gifanimations.com , www.webdeveloper.com/animations , and www.animatedgif.net to get
started. Microsoft Office also has animated GIFs in its copious clip art library.

16.4.2. Flash Animations

A Flash animation can be anything from a simple animated-GIF replacement to an alternate way to
build an entire Web site. That's because Flash animations have several unique characteristics.

16.4.2.1. The good

First, Flash animations are stored as a series of instructions. So instead of, say, saving three dozen
pictures of a circle in slightly different positions to simulate a ball in flight (like you would with an
animated GIF), you simply instruct Flash to "move this shape from here to there, at this speed." That
makes complex animations much easier to create and edit.

Flash animations also can include video and compressed audio. That makes them perfect for creating
talking characters or background music.

Finally, Flash uses programming code. That means you can program in all kinds of devious logic, like
making shapes move and sounds play when the Web surfer moves the mouse or clicks a portion of
the animation. This ability brings all the tricks of client-side programming (Chapter 14) together with
all the tools of graphic design to make really slick animations. Best of all, your Web server doesn't
need any special software because the Flash browser plug-in does it all.

Note: To get a sense of what's possible with Flash, check out the gorgeous graphics in the free Flash games at

www.ferryhalim.com/orisinal , or take on the detailed negotiation simulations at www.zapdramatic.com , which pit you against a host of

unsavory characters.

16.4.2.2. The bad

The disadvantage to Flash is that it really isn't HTML. In fact, Flash animations are really miniature
programs that Web visitors download to their computers, and then run using a browser plug-in. (You
can download the plug-in at www.macromedia.com/go/getflashplayer .)

For example, imagine you want to create a part of your Web site with Flash. To do this, you create a
Flash file (a .swf file) using the Flash editing software. Then, you insert that file into your Web pages
using an <embed> or <object> tag. When the browser reads the page, it downloads your Flash file,
and uses a browser plug-in in to display the animation.

One significant side effect to using Flash: The content you put inside your Flash animations can't be
read by a search engine. The quirks don't end there. Flash animations also require that pesky
browser plug-in. By now, most avid Web surfers have it (and it is supported on virtually all browsers
and computer platforms). However, if someone's stubbornly decided not to download the Flash
player, they won't see any Flash contentor even a substitute.

Note: Sometimes, developers use Flash to create animated buttons. Dreamweaver even has a built-in feature for just this purpose. But

it's a dangerous game to play, because surfers without the Flash plug-in will be locked out of your buttons (and by extension, the rest of

your Web site) altogether.

Finally, with great power comes great responsibilityor at least, enough complexity to send you

running for the hills. To really use the animation and programming muscle in Flash, you'll need to
plunk down about $400 for this premier Web design tool, and get ready to learn a whole lot more.
Everything you've learned so far (HTML, styles, and so on), won't help you much in the world of
Flash. Even once you have the right software, you'll find it takes more than a modicum of artistic skill
to create a professional Flash animation.

As a result, the rest of this chapter concentrates on guiding you to some free Flash animations. If
you'd like to learn more and develop your inner animator, check out the Web tutorials at
www.flashkit.com/tutorials and www.w3schools.com/flash , or pick up a dedicated book on the
subject.

16.4.2.3. Free Flash animations

The best things in Flash aren't free, but you can dig up some interesting Flash files by searching on
Google. Figure 16-7 shows a free Flash animation generator, good for creating introduction page
greetings; you'll find the tool at www.freeflashintros.com .

Figure
16-7.
Top:

Choose

three lines

of text and

a final Web

page where

you want

the surfer

to be

redirected.

Bottom:

The three

lines of text

scroll

slowly from

alternating

sides, with

just a

flicker of

white to

add a little

flair. To

add this

animation

to your

Web site,

download

the Flash

animation

file (.swf),

and put it in

the same

folder as

your Web

page.

Then, copy

the

provided

HTML code

(circled) to

the page

on which

you want to

display the

Flash

animation.

If you absolutely must have background music, Flash is probably the best way to go. The trick is to
use an invisible (audio-only) Flash animation. Flash compresses audio even more snugly than the
MP3 format, and it lets you seamlessly loop audio (for non-stop playing). Many Web sites sell audio
loops; you can download from a large catalog of free choices at www.flashkit.com/loops (see Figure
16-8). Altogether, this site features nearly 10,000 loops that range from ambient to urban.

Figure
16-8.
You can

preview the

loops

directly

without

downloading

them. Once

you've found

what you

want, click

the

"flashtrak"

link to

download

the audio in

Flash

format. The

site also

supplies

MP3- or

WAV-format

versions of

the audio

files. In this

example, the

high-quality

WAV file is

almost two

MB, but the

Flash

version is a

respectable

50 KB. The

loop is 10

seconds

long.

If you don't have the Flash authoring software, you'll run into a small problem. In order to get your
Web page ready to play a background audio track using Flash, you actually need two things:

The file that contains the actual audio for the loop. This is a .swf file.

A flashtrak player. This is a program (designed in Flash and a .swf itself), that plays the audio
file.

So far, you have the audio file, but not the player. But thanks to the Flash Kit site, it's not hard to
find one. Just look for the "Get flashtrak players" link. You'll find a range of jukebox-style controls,

each of which is actually a Flash program. Most of these show snazzy effects while the music's
playing (like pulsing lines or expanding circles).

Note: When you download the flashtrak player, you may end up with more files than you actually need. For example, you don't need any

files that end with ".fla" (these are Flash files that you edit in the Flash software). You can delete these files. Also, when you download a

player, you'll probably find yourself with a pile of extra song files. Delete the ones you don't want, or your player will cycle through them

all.

Once you've downloaded the two pieces you need, you're ready to play your audio loop in a Web
page. A simple <embed> tag that points to the player file will take care of things:

 <embed src="StarPlayerMultiTrackWithAutoStart.swf">

Figure 16-9 shows what you'll see when you run the page that contains this tag.

Figure 16-9.
Here's the Flash-based

audio controls in action,

complete with playback

buttons and soothing

graphics. The best way to

try out this example is to

download the sample

content for this chapter,

available from the

"Missing CD" page at

www.missingmanuals.com

.

Some HTML editors also include features that allow you to quickly insert Flash animations. For
example, FrontPage provides an Insert Picture "Movie in Flash Format" command that
inserts the <embed> tag you need. If you look at the HTML FrontPage generates, you'll find it's
actually a fair bit more complicated than the example shown above. (For example, FrontPage also
inserts an <object> tag, which is recommended for wide-ranging browser compatibility, but rarely
needed.)

Part Five: Blogs
Chapter 17, Blogs

Chapter 17. Blogs
Throughout this book, you've learned how to craft a personalized Web site using the basic
ingredients: HTML, style sheets, and JavaScript. Armed with this knowhow, you can build a fairly
impressive site.

However, maintaining a Web site requires a significant investment of your time. You need to regularly
review what you have, add fresh material, keep site navigation menus up to date, check old links,
and periodically update your pages to incorporate the latest Web design trends. For some people, this
constant grooming is funafter all, you get to tweak and fiddle with the most minute details until you
get everything exactly the way you want it. But not everyone's that ambitious. Some people prefer to
spend less time managing their Web site, and more time just creating content.

In this chapter, you'll learn about blogs, a self-publishing format that can help you avoid the
headaches of Web site management. Blogs are a fresh, straightforward, and slightly chaotic way to
communicate on the Web. To maintain a blog, you publish short entries whenever the impulse hits.
Your blog posts are collected, organized (chronologically), and presented in HTML pages by high-
powered blogging software. That means if you don't want to fuss with the fine details of Web site
management, you don't need to. All you need to worry about is sending in the postingsand with some
blogging software, that's as easy as firing off an email.

In this chapter, you'll see how to create your own blog with Blogger, one of the leading free services.

17.1. Understanding Blogs

The word "blog" is a nerdy abbreviation of Web log , which makes sense because blogs are made up
of regular, dated blurbssort of like a cross between a diary entry and a newsgroup postings. "Blog" is
also a verb, as in "I just ate at a terrible restaurant; when I get home I'm going to blog about it."
Figure 17-1 dissects the anatomy of a basic blog.

Figure
17-1. A
typical blog

has posts

ordered in

reverse

chronological

order, starting

with the most

recent at the

top of the

page. The

home page

for the blog

may feature

the last few

recent entries,

or just the

most recent

one. If blog

entries are

extremely

long, the

home page

might just

show the first

few

paragraphs,

with a link to

read the rest

(as in this

example). Off

to the side,

you'll find

other details

like a

calendar or

set of links

that let you

read older

posts, a

picture or

blurb about

the author

(not in this

example), or a

list of

recommended

blogs (called

a blogroll).

Although blogs simplify Web posting, it's unfair to say that blogs are just a simplified way to work the
Web. Rather, blogs are better understood as a wholly different form of online communication. And
although there's no definitive test to decide what is and what isn't a real blog, there are several
characteristics that most blogs share:

Blogs are personal . There are topic-based blogs, work-based blogs, and many more blogs
filled with random, offbeat musings. However, blogs always emphasize the author's point of
view. There's rarely any attempt to be objectiveinstead, blogs contain unapologetically
idiosyncratic opinions . Blogs are always written in the first person.

Blogs are organized chronologically . When you design a Web site, you spend a great deal
of time deciding how to best organize the material. Ideally, you need a menu or set of links that
can guide the visitor through an assortment of different topics. Blogs take a radically different
approach. They don't have any organization other than a loose, chronological ordering of
postings. Anything else would just slow down restless bloggers.

Blogs are updated regularly . Blogs emphasize fast, free communication rather than
painstakingly crafted Web design. Bloggers are known to add content obsessively (sometimes
as often as hourly). Because blog entries are dated, it's glaringly obvious if you aren't keeping
your blog up to date. If you can't commit to blogging regularly, don't start a blogjust set up a
simple Web page instead.

Blogs are flexible . There's a bit of blog wisdom that says no thought's too small for a blog.
And it's truewhether you want to write a detailed discussion about the viability of peanut-butter
Oreos or a three-sentence summary of an uneventful day, a blog post works equally well.

Blogs create a broader conversation . Blogs form communities more readily than Web sites.
Not only are blogs more conversational in nature, they also support comments and links that
can tie different blogs together into a conversation. If an interesting item is posted in one blog,
a legion of fellow bloggers often add links to it within hours. Scandalous blog gossip is known to
rocket right around the globe in a startlingly short period of time.

Note: When a large amount of activity, information, and opinion erupts around a particular subject or controversy in the blogosphere , it's

sometimes called a blogstorm , or blog swarm. You can find more blogtastic jargon at http://en.wikipedia.org/wiki/Weblog .

The actual content of a blog isn't fixedit can range widely, from political commentary to personal
travelogues. There are hundreds of thousands of blogs online today. In fact, the Blogger service

alone hosts several million blogs, of which several thousand are considered active blogs.

The best way to get a feeling for blogdom is to check out some popular examples. To see an example
of widely read political commentary, surf over to arch-conservative Andrew Sullivan's blog at
www.andrewsullivan.com . Or check out the insights of Salam Pax, the Baghdad blogger (now a
Guardian columnist), who captivated the media world with a frank, gripping account of life in war-
torn Baghdad at http://dear_raed.blogspot.com . For somewhat lighter fare, visit the curiously
popular www.wilwheaton.net , a blog by Wil Wheaton, the actor who played the nerdy upstart Wesley
Crusher of Star Trek fame. For expertise and observations from security guru Bruce Schneier, surf to
www.schneier.com/blog . The list goes onfrom journalists to hobbyists to sports heroes and porn
stars, it seems almost everyone's willing to psychoanalyze their life or chat about water-cooler topics
with an audience of millions via a blog.

Tip: Blogs are a specialized niche that can't compete with a lot of the other types of sites you've seen. For example, you can't effectively

sell a line of clothes for dogs on a blog. However, many people start blogs in addition to ordinary Web sites. This is a great combination.

Visitors love blogs because they crave a glimpse behind the scenes. They're also sure to visit again and again if they can count on a

regularly updated blog to offer a steady stream of news, gossip, and insights.

17.1.1. Syndication

One of neatest features about blogs is syndication . Syndication is a feature that allows avid blog
readers to monitor their favorite blogs using a specialized program (called a feed reader , or news
aggregator). You fire up your feed reader, and enter links to all your favorite blogs. The feed reader
periodically checks these blogs for new postings, and lets you know when they show up. Quite simply,
a feed reader lets you stay up to date with all your friends in the blogiverse, without forcing you to
surf back to every blog 94 times a day to check if anything's new. Feed readers are the only practical
option if you need to follow lots of blogs regularly.

Note: Feed readers are a little like email programs, which, of course, let you regularly check to see if you have new messages from any

of your friends. This is a lot more efficient than contacting them each individually and asking if they have anything new to say. Similarly,

you can use a feed reader program whenever you want to check up on blog activity. If there's nothing new, you find out in an instant.

Although most blogs work with feed readers, some don't. In order to work with a feed reader, a blog
needs to provide a feed (Figure 17-2). A feed contains recent blog postings in a computer-friendly
format. Feed readers know to interpret feeds to get important information like the title, description,
and date. Feed readers also use feeds to determine whether or not there are any new postings.
Technically, feeds are in an XML-based format, because XML is a data standard that can be
interpreted on any computer platform.

If you want to try using a feed reader, you've got lots of choices:

Online feed readers require a subscription, but you don't need to install anything. You read the
feed right inside a Web browser window. Popular examples include www.bloglines.com ,
www.newsisfree.com , and www.newsgator.com .

Desktop feed readers run on your computer; you'll need to find a version that runs on your
operating system. You can track down many desktop feed readers on popular shareware sites
like www.zdnet.com . If you're using a Windows computer, you can purchase the excellent

FeedDemon (see Figure 17-3) for a nominal fee. Mac fans might like the highly-touted
NetNewsWire (which sells for around $25 at http://ranchero.com/netnewswire).

Browsers are increasingly adding features like feed reading. If you're using Firefox, you can use
a feature called live bookmarks (see Figure 17-4) or you can download a more powerful feed
reader plugin. The next version of Internet Explorer promises new feed-reading features, and
the latest version of Apple's Safari browser has a feed reader built in.

Figure
17-2.
Top: Most

blogs will

have a link

somewhere

on their

home

pages that

provides a

feed. Look

for the word

feed or

syndication.

Sometimes,

the link

includes

the actual

name of the

feed

format, like

RDF, RSS,

or Atom (all

of which

are

designed

with XML),

so be on

the lookout

for these

words too.

Bottom:

The feed

won't look

like much

to you, but

your feed

reader can

interpret it.

Tip: For an article that describes different feed readers, see http://weblogs.about.com/od/aggregators .

Figure 17-3.
FeedDemon

(www.bradsoft.com/feeddemon

) is a modern Windows

program that lets you keep

your finger on the pulse of the

blogiverse. You can monitor

dozens of blogs (or more) at a

time, and home in on any new

activity.

17.1.2. Blog Hosting and Software

Before you can set up a blog, you need to understand the different kind of blogmaking options out
there. There are really three types of blogs:

Hosted blogs . With a hosted blog, you simply sign up with a blog provider and start blogging.
Adding a blog entry is as simple as just filling out a form in your Web browser. You never need
to hassle with a separate program or figure out how to upload content files, because the blog
provider stores all the HTML files for your blog on its Web servers. You don't even need to have
a Web site. Hosted blogs are the best bet for new bloggers. They're completely painless and
remarkably flexible.

Examples of hosted blog companies include MSN Spaces (http://spaces.msn.com), Radio
UserLand (http://radio.userland.com), TypePad (www.typepad.com), Live Journal
(www.livejournal.com), and Xanga (www.xanga.com).

Self-hosted blogs . If you're a hardcore high-tech geek and you have a Web server in the
basement, you might be interested in hosting a blog entirely on your own. In order to do this,
you need to find some blog hosting software that works on your Web server platform, install it
on your Web server, and configure everything correctly. This approach gives you unlimited
flexibility (and it may get you better performance). However, it probably isn't for you unless you

enjoy do-it-yourself challenges like making your laptop talk to your coffee maker.

Figure
17-4.
Top: When

Firefox

detects a link

to an XML

feed in the

current page,

it shows a

special icon

in the status

bar. Click this

icon to add a

live

bookmark.

Bottom: Live

bookmarks

provide a

submenu

with current

blog posts,

which gets

updated

automatically.

You still need

to check the

bookmark to

see if there's

a new post

(which

requires

more effort

than a feed

reader like

FeedDemon),

but you don't

need to keep

visiting the

original site.

Examples of blogging software include Movable Type (www.movabletype.org), Blosxsom
(www.blosxom.com), and WordPress (http://wordpress.org).

Remote weblog systems . This category is really a hybrid between hosted blogs and do-it-
yourself blog hosting software. The basic idea is that you use a blogging system that's hosted
by a blog provider, and you have the option to choose where you want to store the final blog
files. You can choose to host them with the blog provider (in which case, this option is the same

as an ordinary hosted blog), or you can ask the blogging system to transmit any updates to
your own Web server. This model gives you the ease of hosted blogs along with some extra
features (like the ability to place your blog on a part of your Web site).

Examples in this category include Blogger (www.blogger.com), the blog software demonstrated
in this chapter, and WebCrimson (www.webcrimson.com).

In this chapter, you'll spend your time using one blogging tool, called Blogger. Blogger is simple to
use yet powerful, which makes it the best candidate for all-around blogging champ.

17.2. Getting Started with Blogger

Blogger is the most commonly used blogging tool. It provides the easiest way to start a blog, and is
chock-full of nifty blog management tools. Once upon a time, Blogger was offered in both a basic free
version (supported by ads) and a more full-featured premium version, which required a small yearly
contribution. In early 2003, that all changed when Google bought Blogger. Now, all of Blogger's
features are part of the free package and blogs are much more reliable, thanks to Google's stacks of
cash and rock-solid Web servers.

Creating a blog with Blogger is ridiculously easy. In the following sections, you'll learn how to create a
blog, add posts, and take charge of a few neat features.

Tip: You can also check out the official catalog of Blogger help at http://help.blogger.com and the discussion board

www.bloggerforum.com , where bloggers share tips, ask questions, and vent their frustrations.

17.2.1. Creating a Blog

Before you create your blog, it's a good idea to assess your goals, and decide exactly what type of
content you plan to showcase in your blog. Will it contain random thoughts, a chronicle of daily life,
or more targeted, topic-specific posts? Once you know how you want to position your blog, you'll be
able to choose a snappy name and a suitable URL. Then, start with these steps:

Surf to www.blogger.com .

This is the home page for the Blogger service.

1.

Click the "Create a Blog" button .

Creating a blog is a three-step process. The first step is creating an account (see Figure 17-5).

2.

Figure
17-5.
In the first

step, you

create your

account.

2.

Type in your account information, which consists of a user name, a password, and an
email address. You also need to turn on the checkbox at the bottom of the page to
officially accept the Blogger rules .

If you're still trying to think of a good user name, try the first part of your email address. For
example, if your email address is lemur_tamer01@hotmail.com , lemur_tamer01 probably
makes a good user name. If your user name is already taken, you'll be asked to enter a new
one. Don't worry about anonymityyou can choose a different display name for your blog, and
other people never need to know your user name.

Tip: You only need to create an account once. However, you can create multiple blogs for the same account.

3.

Click Continue to move to the next step .

The second step is where you actually create the blog (see Figure 17-6).

4.

Figure
17-6. In
the second

step, you

create the

important

partthe blog

itself. As you

can see here,

if you choose

a blog URL

that's already

taken, you'll

need to try

again.

Fortunately,

it's much

easier to find a

catchy

available

Blogger URL

(which always

ends with

.blogspot.com)

than a good

Web site URL.

4.

Supply the title and URL you want your blog to have .

A blog title is just like a Web page titleit's the descriptive bit of text that appears in the browser
title bar.

The URL is the really important part, because you don't want to change this later on (or you risk
losing your readers). It's the address that eager Web surfers will use to find your blog. Blogger
is surprisingly generous with URLsunlike free Web hosting providers, Blogger lets you have just
about any URL, so long as it ends with .blogspot.com . Although other bloggers will already
have taken some of the most obvious names, it's still reasonably easy to create short-and-
sweet blog names like http://secretideas.blogspot.com or http://richwildman.blogspot.com .

If you really must have your own completely customized domain name, you have two choices.
You can use the domain-forwarding technique described in Chapter 3 (Section 3.2.3.2) to
forward visitors from your domain to the URL for your blog. Or, you can use a more seamless
approach, and tell Blogger you'll host your blog on another Web server (Section 17.2.5).

Note: Just under the section where you choose your URL is an option that lets you use advanced setup to host your blog on

another Web server. You don't need to set this up right away. Instead, you can choose ordinary hosting to start with, and change

your hosting settings later on to move your blog to another Web server (as described on Section 17.2.5).

5.

6.

Click Continue to move to the next step .

In the third step, you choose a template for your blog (see Figure 17-7).

Figure
17-7.
Blogger

templates

just may

qualify for

coolest

feature of

the year.

You

choose one

of the slick

presets,

and your

blog

postings

are

formatted

with the

template's

color,

graphics,

and layout.

6.

Scroll down through a list of templates, and select the one you want to use .

Click the "preview template" link to get a sneak preview of what it looks like. Don't worry too
much about your decisionyou can choose a different template at any time later on.

7.

Click Continue to finalize your blog .

You see a page with a "Creating your blog" message for a few seconds, followed by a
confirmation message.

8.

Click Start Posting to carry on to create your first blog post .

You can return to manage your blog at any time by surfing to www.blogger.com . Or, continue
with the next step to create your first blog entry.

9.

Enter the title for your entry, and then type the content of your post into the large text
box, which acts like a miniature word processor (see Figure 17-8) .

Don't worry about all the fancy frills in the editing window just yetyou'll learn all about that in
the next section.

Note: A blog entry can be as long or short as you want. Some people blog lengthy stories, while others blog one-or two-sentence

10.

posts that simply provide a link to an interesting news item (or, more commonly, a post from another blogger).

Figure
17-8.
Blogger uses

a tabbed

page layout

that's

organized

around four

tasksposting,

changing

settings,

choosing a

template,

and viewing

your blog.

When you

create a

post, you'll

use the

Posting tab,

which

provides

three

linksone for

creating a

new post,

one for

editing an

existing post,

and one for

checking the

status of

your last

blog posting.

Choose whether you want to allow or prevent comments at the bottom of the page.
Also, verify that the indicated date is correct (and if it isn't, change it) .

You'll learn more about comments later.

The date is probably incorrect, because you haven't yet set the time zone for your blog. You'll
learn how to update this later on Section 17.2.2.1 , but for now, change the date by hand so
that readers know when you created the entry. (The date appears at the bottom of each blog
post.)

11.

Click Publish Post to create the blog entry .

You see a status page informing you that your blog entry is being published. A few seconds

12.

later, you'll get a confirmation informing you that your new entry is online.

If you want to take some time to think over your blog post, click Save Draft instead. That way,
the text you've entered so far will be waiting for you the next time you return to your blog.

12.

Now's a great time to check out what your post looks like. You can click the View Blog tab to show
your blog in a new window, or just type your blog URL into a browser window by hand. Figure 17-9
shows what you'll see.

Figure
17-9.
This blog has

two recent

posts (placed

in reverse

chronological

order, so the

most recent

is first). On

the right, a

sidebar

provides

sections of

information

about the

author and

other Web

sites of

interest

(neither of

which have

been filled in

yet), along

with links to

recent posts.

17.2.2. Managing a Blog

Once you've created your blog, you can do exactly two things when any kind of blog-related urge
strikes:

Surf to your blog, using whatever URL you picked when you created it. Here you can read all of
the blog entries you've posted, and any feedback left by others.

Surf to www.blogger.com and sign in. Here you can add posts and manage your blog.

To try this second option out, head to www.blogger.com and sign in. You'll see a page called the
Dashboard (see Figure 17-10).

Figure
17-
10.
Once you

log in to

Blogger,

you're in a

section

called the

Dashboard,

where you

can see all

your blogs

and how

many posts

they have.

Click the

green +

icon

(circled) to

add a new

post

(Figure 17-

8), or click

the blog

name to

start

managing

your blog

(Figure 17-

11).

Once you click a blog name, you end up back on Blogger's multi-tabbed page with the Posting tab
selected (see Figure 17-11). However, this time, Blogger sends you to the "Edit posts" page, which
lets you review the posts you've made and edit them.

Figure
17-
11. The

"Edit posts"

page lets

you review

what you've

written,

search for

specific

content

(type

something

in the

Search box

and click

Go), or

even edit

an old post

(click the

Edit button

next to the

entry you

want to

change). If

you have

second

thoughts

about

something

you've

posted,

click Delete

to remove

it.

To do more with Blogger, you need to find your way around its multi-tabbed page layout. There are
four tabs:

Posting . Use this tab to create a new post, edit an existing post, or review the status of your
last post and republish your blog (so that recent changes appear).

Settings . This tab groups a dizzying number of options into several subgroups. Here you set
everything from basic information about you and your blog to comment and hosting options.

Template . This tab lets you choose a new template for your blog. If you aren't happy with the
current look and feel, this gives your blog an effortless makeover.

View Blog . This tab opens a separate browser window for your blog site. After you make

changes to your blog, you'll use this command to take a look at the results.

WORD TO THE WISE

The Hazards of Blogging

There's something about the first-person nature of a blog that sometimes lures people
into revealing much more information than they should. Thanks to reckless moments of
blogging, lovers have discovered their cheating spouses, grandmothers have read
memorable accounts of their daughter's sexual conquests, and well-meaning employees
have lost their jobs.

The dangers of impulse blogging are particularly great in the working world. In most
countries, companies have the ability to fire employees who make damaging claims
about a business (even if they're true). Even famously openminded Google ditched Mark
Jen (http://blog.plaxoed.com) after he blogged a few choice words about a Google sales
conference that he claimed resembled a drunken frat party. The notable part of his story
is that he didn't set out to undermine Google or make his blog widely available. In fact,
only his close friends and family even knew he had a blog. Unfortunately, a few Google-
watching sites picked up on the blog post and posted the link around the Internet. There
are many more stories like these, where employees lose their jobs after revealing trade
secrets, admitting to inappropriate on-the-job conduct (for example, posting risqué at-
work photos or bragging about time-wasting games of computer solitaire), or just
complaining about the boss.

To protect yourself from the hazards of blogging, remember these rules:

"Anonymous" never is.

If you plan to hide your identity, adopt a pseudonym, or conceal personal details,
remember the first rule.

Funny is in the mind of the beholder. Your humorous work stories will be seen in a
different light when read by high-powered executives without your finely developed
sense of irony.

Think before you write. There's a fine line between company secrets and
information in the public domain.

There's no going back. Although tools like Blogger let you edit or remove old posts,
they can stick around in search-engine caches indefinitely.

17.2.2.1. Tweaking a few common settings

To get started and add a few more details to your blog, follow the steps below that lead you through
several fine details that can improve any blog. You'll add a description, choose how many posts you
want to see on your front page, and set a time zone to make sure your posts get the right date
stamp.

1.

Click the Settings tab .

The Settings tab provides eight separate options. Initially, the Basic page of settings is shown.

1.

Add a description for your blog .

The description appears just under the blog title. Typically, it should only be a sentence or two
that hints at the flavor of your blog. For example, two good descriptions are "The sober
confessions of an unlicensed meat handler," and "An on-again, off-again look at my life and
adventures."

2.

Scroll down and click Save Settings .

When you save your settings, you'll see a message appear at the top of the page, informing you
that you need to republish the site before any changes appear. Don't do that yetthere are still a
few more changes to make.

3.

Click the link for the Archiving subgroup .

Archiving is the process Blogger uses to group together old posts and shuffle them out of sight.
Every archive gets a link on your page. For example, if you have Blogger set to create monthly
archives, your blog will have links like "January 2006, February 2006, and so on. If your visitors
click an archive link, they'll see the posts from that period.

4.

Set the archive frequency, and choose whether or not you want each post to have its
own page .

The archive frequency can be monthly, weekly, or daily. Most casual bloggers find that monthly
is the best choice. If you blog every day, it might be better to split posts into weekly groups, but
you'll end up cluttering your index page with a lot of extra links (one for every week you've
blogged).

The post page option determines whether or not each post has its own dedicated page. Usually,
you want posts to have their own dedicated pages. That way, a reader can blog in response to
your posting, and provide the exact link to your post. The post page option is also required if
you want to support blog comments.

Note: Even though each blog posting has its own page, Blogger still shows multiple entries at once on the home page and

archive pages.

5.

Click Save Settings .

Once again, it's not quite time to republish yet.

6.

Click the link for the Formatting subgroup .

The Formatting group lets you choose how many postings are shown on your blog home page,
and how dates are formatted (see Figure 17-12).

7.

Figure
17-
12. This

example

shows how

you can

configure

your blog to

show a

week's

worth of

posts.

Choose the number of posts you want to appear on your first page .

You can set a number of days or a number of posts. For example, you could ask Blogger to
show the last 14 days of posts, or just the three most recent posts. Ideally, you don't want to
crowd your front page with too many entries. If you post daily, stick to showing a small number
of posts or just topics from the current week.

8.

Set the date format you want to use, and specify your time zone .

The date is displayed for every blog post, usually at the beginning or end of the post (depending
on the template). By setting the correct time zone, you won't need to manually set the correct
date every time you create a new post.

9.

Click Save Settings .

Now you're ready to republish.

10.

Click Republish .

When you republish a blog, Blogger recreates all the HTML files for your blog, based on the new
settings. Blogger keeps the same content (which is safely tucked away in a database on the
Blogger server), but it changes details like the formatting depending on your settings. For a
large blog, this process may take a little time. Once it finishes, you can click View Blog to see

11.

the results of your work.

The Republish Index command is similar to Republish, but it regenerates only the blog home
page, not the archive pages and post pages. Typically, you'll only use the Republish Index
command if you want to preview the effect of your changes before you go ahead and apply
them to the whole blog.

17.2.2.2. Configuring your user profile

Interested in customizing the information that appears at the side of your blog posts on your blog
home page? This information is drawn from your user profile, and it's easy to customize. Just follow
these steps:

Head to the Dashboard area on Blogger's main page .

If you're in the tabbed view, click the Back To Dashboard link at the top of the window.
Otherwise, surf to www.blogger.com and sign in.

1.

Click the Edit Profile link (which appears to the right of your blog list) .

Your profile page appears.

2.

Edit your profile information (see Figure 17-13). Pay special attention to the Display
Name, Photo URL, City, State, Country, and About Me sections .

The profile page lets you supply a wide range of information about yourself. Only some of those
details will appear on your blog home page. The most important include your name (Display
Name), an optional link to your photo (Photo URL), your location (City, State, and Country),
and the descriptive text in About Me box.

3.

Once you've entered all the profile information you want to supply, click Save Profile
.

Now that your profile is saved, its time to head back to Blogger's main page.

4.

Click the Back to Dashboard link .

Even though you've updated your profile information, the changes won't appear until you
republish your blog. That's the next step you need to perform.

5.

Select your blog in the list. Then, click the Posting tab and then the Status subgroup .

This brings you back to the multi-tabbed page you use for managing blogs. The Status
subgroup is where you need to go to republish your blog.

6.

Figure
17-13.
The About

Me section

is one of

the most

important

parts of

your profile,

because it's

displayed

prominently

on your

blog home

page. Other

sections,

like

Interests

and

Occupation,

aren't

(although

readers can

find them

by clicking

the "View

my

complete

profile" link

on your

blog home

page).

Click Republish Entire Blog .

If you want to see the effect of your changes, click the View Profile button. Figure 17-14 shows
the result.

7.

17.2.3. Templates

Templates are keenly important in Blogger. They don't just determine what your blog looks like
(irreverent, serious, technical, breezy, and so on), they also set the overall layout, and allow you to
add specific ingredients, like a set of links that point to your favorite fellow bloggers, or a sidebar of
targeted Google ads (Section 13.2). You can also remove parts of the template you don't like.

When you first create a blog, you'll want to choose a template that suits your content, and has more
or less the right layout and formatting. After you've found the right template, you'll probably want to
edit it to add more features. Once you crack open the HTML inside a template, you're free to use the
skills you've learned throughout this book to change virtually anything.

Figure
17-
14.
Here's a

fine-tuned

blog home

page that

shows a

custom

description

and About

Me text.

GEM IN THE ROUGH

Team Blogs

Having trouble keeping your blog up to date? If you want to be part of the blogosphere
but just can't manage to update more than once a month, consider sharing the effort
with some friends. Look for a natural reason to band togetherfor example, colleagues
often create blogs to discuss specific work projects, and families create them to keep in
touch.

Creating a team blog in Blogger is easy. All you need to do is take your ordinary blog,
choose the Settings tab, and click Members. Then, click Add Members to add fellow
bloggers.

You supply the email address and an optional welcome message. Blogger sends an email
to inform each blogger that they're now a part of your blog.

All bloggers have the ability to post entries. Additionally, you can give some bloggers
administrator status, which means they can add more bloggers (and delete existing
ones).

17.2.3.1. Applying a new template

Finding the right template is often a trial-and-error process. Fortunately, it's easy.

Click the Template tab .

The Template tab gives you two choices. You can edit the HTML for the current template by
hand (click "Edit current") or choose a new preset design (click "Pick new"). The second option

1.

2.

is the best starting point.

1.

Click "Pick new."

Find the template you want to try and click Use This Template. If you're not sure yet which one
you want, try clicking the template picture to see a larger preview of what it looks like.

When you select a template, you may see a warning message informing you that any
customization you've made to the current template will be lost. Since you haven't invested any
effort in changing the template yet, you can safely ignore this message.

Once you select a template, you're sent back to the "Edit current" section, where you can make
any changes to the template you chose.

2.

Click Republish or Republish Index to update your blog .

If you want to test out your template and you have a large blog, click Republish Index to
republish just the home page. If you don't mind waiting, or you're sure you've got the right
template, click Republish instead.

3.

Click View Blog to take a look at your changes (see Figure 17-15 for an example) .

If you don't like what you see, you can head back to step 2 and keep going to pick a new
template.

4.

17.2.3.2. Customizing a template

To get complete control over your blog's home page, you can edit its template by hand.

The blog template is really just an HTML document that defines your blog pages. At first glance, this
seems a little unusualafter all, a modest blog has dozens of pages, and you only have one template!
The trick is that the template defines special replaceable regions. When Blogger builds your home
page or creates a new post, it starts with the template, and then fills in the appropriate details
wherever it finds a matching code.

For example, if Blogger finds this code:

 <head>
 <title><$BlogPageTitle$></title>
 …

It replaces the highlighted code with the title of your blog. The final HTML file for your home page will
actually contain this text:

 <head>
 <title>A Cheese Maker's Story</title>
 …

You can recognize Blogger codes by the fact that they're always bracketed by the character
combinations <$ and $>. In addition, you'll also find some tags that are used exclusively by Blogger
and have no meaning in HTML. For example, here's part of the definition for a blog entry in a
template. It adds the date using a level-two heading (formatted according the date-header style
sheet class).

 <BlogDateHeader>
 <h2 class="date-header"><$BlogDateHeaderDate$></h2>
 </BlogDateHeader>
 …

Figure
17-
15.
Ready for a

change?

Compare

this

example

with Figure

17-14 to

see how a

new

template

changes

everything.

Note the presence of the wacky <BlogDateHeader> tag, which doesn't mean anything to a browser.
When Blogger creates a page, it uses these tags to identify the structure of the page and determine
where to insert content. In then strips them out before creating the final HTML.

Tip: To get detailed reference information on Blogger template tags, check out Blogger's online help on the subject at

http://help.blogger.com/bin/topic.py?topic=39 .

The upshot of all this is that you can edit how your blog looks using all the HTML and CSS skills
you've acquired throughout this book. Although a typical template is quite long, the overall
organizational rules are fairly straightforward.

It splits the page into separate regions using <div> tags, just as you did in Chapter 9 (Section
9.2.2).

It places the sidebars using the floating behavior in CSS, which you saw in Chapter 9 (Section
9.2.3).

It uses an embedded style sheet (Section 6.1.1 in Chapter 6) to define all the styles for
different regions of the page.

It includes HTML comments to point out important regions (for example, places where you
might want to add content).

Editing a template is quite a bit easier than creating one. Now that you know how templates work,
here are some of the tasks you might want to perform:

Modify the style settings to change the formatting of a portion of the page.

Move content around the page, by cutting it from one <div> tag and popping it into another.

Add new content on the page, such as a set of links or a block of Google ads (see Section 13.2 in
Chapter 13).

The following series of steps explains how to edit the current template to add a new section with your
favorite links. Although some templates already have a links section, not all do (and even if they do,
you'll need to edit the template to change the title and any other formatting details you want to fiddle
with).

Here's how it works:

Click the Template tab .

You'll start with the "Edit current page" link selected, which is what you want.

1.

Choose a color for the Blogger NavBar .

The NavBar is the thin strip that appears at the top of your blog. It has quick links that let
visitors travel from one blog to another, sign up for their own blog, or (most usefully) search
your blog for specific keywords. This search feature uses the Google SiteSearch feature
described in Chapter 13 (Section 13.2.4), which means it homes in exclusively on the content in
your blog.

You can't get rid of the NavBar. However, it's a good idea to choose a color that matches your
template, so it blends in with the scenery.

2.

http://help.blogger.com/bin/topic.py?topic=39

Note: If you really, really must remove the NavBar (and Blogger frowns on this), see www.diaphaneity.com/layouts/2004/08/how-

to-disable-navbar.html for a workaround.

Edit the template in the large text box in the middle of the page (see Figure 17-16) .

This is where the real work takes place.

3.

Figure
17-
16. The

first part of

the

template is

filled with

style sheet

rules that

format your

blog.

If you want to modify style properties, it's easyjust find the appropriate style rule, and use the style
sheet settings you've used throughout this book. For example, change the post-title style sheet rule
to set the formatting for the title of each blog entry. All the style rules are at the top of the template.

If you want to add new content, you need to find the right section in which to add it. The template is
divided into a few key regions using <div> tags. You can identify each section based on the id
attribute in the <div> tag:

content contains the whole page.

sidebar2 defines the side panel with the About Me section and archive links.

main2 defines the center column that contains the blog posts.

footer defines an optional footer at the bottom of the page.

Note: You'll notice that some <div> tags are defined twice, the second time with the number 2 at the end. For example, there's a sidebar

<div> that contains the sidebar2 <div> where the real content is. This curious detail is actually a workaround for a bizarre Internet Explorer

bug. You're best off not to think about it too long.

The sidebar2 panel is the best place to add your own content, like a set of links or ads. That's the task
you'll complete in the following steps.

Start by looking for this line in the template :

 <div id="sidebar"><div id="sidebar2">

Right after this line, the About Me information is defined. Scroll past this information. You should
see a comment indicating the end of the profile section:

 <!-- End #profile -->

And then you'll see the spot where the list of previous posts appears.

 <h2 class="sidebar-title">Previous Posts</h2>

Note: Some templates already include a group of links or a similar section. In this case, it makes more sense to edit this section

rather than create a new one.

1.

Just before this <h2> heading, add your own set of links .

Here's an example of the links you might create:

 <h2 class="sidebar-title">My Favorite Links</h2>
 All About Cheese

 Why Swiss Cheese Has Holes

2.

 Cheese Fondue

Notice you don't need to worry about spacing or formatting, because the style sheet rules take
care of that automatically. Just make sure you use the sidebar-title style for your heading.

Click Save Template Changes to store your new template, and use Republish or
Republish Index to update your blog accordingly .

Figure 17-17 shows the result.

3.

Tip: Once you've perfected the template, it's a good idea to back it up before you make any more changes. Otherwise, you could muck it

up and have no way to get back to the right version. To make a backup, just copy the full template text from the text box, and paste it into

a text editor. Save it somewhere where you won't forget it on your computer, with a name like BloggerBackupTemplate.htm .

Figure
17-
17.
Thanks to

style sheet

rules, the

new

section

blends

effortlessly

into the rest

of the

template.

Tip: One great reason to use the technique you've just seen is to add Google AdSense ads to help your blog earn you some cash. Just

use the same technique to place the AdSense code into a sidebar. For a walkthrough and some information about the best ad types to

use, see http://help.blogger.com/bin/answer.py?answer=974 .

17.2.4. Creating Formatted Posts

So far, you've only seen how to post text-only content in a blog. But Blogger actually lets you run
rampant with HTML and perform all sorts of fancy design maneuvers, from highlighting text to
inserting graphics. You just need to know your way around the editor.

To try out some of these changes, start a new post by clicking the Posting tab and choosing Create.
Type something in the Compose box in the middle of the page. Next, select some text, and try out
some of the buttons in the toolbar to format it (see Figure 17-18).

Figure
17-
18. The

toolbar

buttons in

Compose

mode limit

you to a

few basic

choices.

You can

change the

font, resize

the text,

add bold or

italic

formatting,

create

simple lists,

and add

pictures.

This editor, called the visual composer , is designed to mimic a word processor. However, if you're
itching for some HTML action, click the Edit HTML link at the top right of the edit window. Now you can
add tags and other HTML goodies directly (see Figure 17-19).

Figure 17-20 shows the splashy result.

Tip: Blogger recently released a tool that lets you post blogs from right inside Microsoft Word. Surf to

http://buzz.blogger.com/bloggerforword.html to check out this effortless alternative.

Figure
17-
19. The

HTML view

lets you

edit the

HTML for a

post, which

means you

can add

any HTML

tag you

want.

17.2.5. Hosting Your Blog on Your Web Site

In the past, cutting-edge bloggers took off on their own because hosted providers just weren't stable
enough. All too often, blog messages would disappear or blog tools would become temporarily
unresponsive. Fortunately, Blogger has evolved into a remarkably reliable blog host. However, there
are still some reasons that you might want to host your blog on your own Web site. One of the most
obvious reasons is because you already have a URL, and you want your blog to use that URL. For
example, if you have the site www.CheeseMaker.com , you could put your blog at
www.CheeseMaker.com/blog . The best part is that you can still use Blogger to create the
appropriate HTML pages for your blog, but now you get to tell Blogger to upload them directly to your
Web site.

To set this up, you need to have a few pieces of information at your fingertips. Namely, you need to
know the FTP address for your Web host, and the user name and password you use to log in to their
FTP server. You need to provide all this information to Blogger. That way, every time you add a post,
Blogger can connect to the FTP site and transmit the newly generated files to your site.

Here's how you set this up:

1.

http://buzz.blogger.com/bloggerforword.html

After you've logged into Blogger, click the Settings tab and choose Publishing .

The first line on this page indicates where your blog is hosted. You'll see the line "You're
publishing on blogspot.com" unless you've already followed these steps to switch your blog over
to another Web site.

Figure
17-
20. A
blog post

with wacky

formatting

and a

picture.

The picture

is hosted

on

Blogger's

Web

server, just

like the

HTML for

your blog

pages.

1.

Next to the "Switch to" heading, click either FTP or SFTP, depending on the type of
publishing system you use with your Web hosting provider .

FTP is most common. SFTP is a secure version that uses encryption to hide your password when
it makes the connection.

2.

Enter all the information about your FTP server .

FTP Server is the URL for your server (like ftp.website.com).

Blog URL is the Web address where you can see this part of your site (like
http://www.website.com/blog).

FTP Path is the subfolder of your Web site where you want to store your blog. Usually, you
won't put the blog right in the root (main) folder, because that's where your Web site goes.
Instead, you can use a path like blog/ to tell blogger to go into the blog subfolder. Make sure
you include the trailing forward slash character.

Blog Filename is the filename that you want Blogger to use when it creates your blog home
page. For example, you might use index.html . If this page already exists at the same location,

3.

http://www.website.com/blog

it will be overwritten when Blogger transfers your blog.

FTP Username and FTP Password compose the user information you supply to connect to the
FTP server. You can leave these values blank, in which case you need to supply them every
time you publish your blog.

Click Save Settings to abandon your blogspot.com-based blog and switch over to
your own server .

From this point on, any time you publish your blog, Blogger will attempt to connect to your FTP
server and transfer all the files.

4.

It's a good idea to test this out right away by clicking Republish .5.

GEM IN THE ROUGH

Emailing a Blog Entry

To take advantage of all of Blogger's features, it makes sense to use the editor on the
Blogger Web site. However, if you find yourself on the go with only limited time to spare,
you might appreciate Blogger's ability to accept emails and turn them into posts
automatically. It really comes in handy if you want to email in a post from a mobile
phone that's got email capability, or if you've got a sporadic Internet connection. If
that's the case, you can prepare a post in your email program, and then connect to the
Internet just long enough to send in the posting.

To use Blogger's email posting features, you first need to enable them. Click the Settings
tab and choose "email." Then, in the Mail-To-Blogger section, enter a secret word to use
in your email address and turn on the Publish checkbox.

The secret word prevents other people from sneaking their posts onto your blog,
because they won't know the exact address. For example, if your user name is lisajones
and your secret word is antelope12, you need to send a message to
lisajones.antelope12@blogger.com .

When you send an email, the subject line immediately becomes the title of your blog
entry, and the message text becomes the body of the post. Blogger inserts the date
automatically, based on your time zone (see Section 17.2.2.1).

17.2.6. BlogThis

A huge number of blog postings simply call attention to online interesting news stories, scandalous
gossip, or funny pictures. If you're an infrequent blogger, you can beef up your blog by adding this
type of short entry. And thanks to a remarkable tool called BlogThis , adding these links is now easier
than ever.

There are two ways to use BlogThis. If you're using Internet Explorer and the handy Google Toolbar
(see http://toolbar.google.com), there's a BlogThis button waiting for you to use. If you aren't
currently using the Google Toolbar and you don't want to start, you have another optionyou can add
a special BlogThis link to your list of bookmarked sites. To do that, head to

http://help.blogger.com/bin/answer.py?answer=152&topic=17 . You'll see some explanatory
information and a link with the text "BlogThis." Add this link to your favorites menu.

Note: BlogThis works through a funky assortment of JavaScript code. This code runs when you click the BlogThis button (on the Google

Toolbar) or the BlogThis favorite link.

Once you're set up to use BlogThis with one of these two approaches, the fun really starts. Surf
around, and when you find a page that interests you, click the BlogThis button (on the Google
Toolbar) or the BlogThis favorite link.

When you do, a new pop-up window appears (see Figure 17-21), with a text box that's similar to the
one you use when creating a new entry.

Figure
17-21.
When you've

found

something

unique

online, let

the world

know by

adding it to

your blog

with

BlogThis.

When you

use

BlogThis, the

text box (with

the content

for your

post) is

automatically

filled in with

a link to the

page you're

looking at.

You simply

need to type

in a few

words

underneath,

and click

Publish to

post it.

Figure 17-22 shows the posted blog entry.

http://help.blogger.com/bin/answer.py?answer=152&topic=17

17.2.7. Promoting Your Blog

Blogs need to be promoted just like any other Web site. Although you can use everything you learned
in Chapter 11 , there are some techniques that are unique to the blogosphere.

Here are some important tips to help get you started:

Add a blogroll to your site . A blogroll is really just a set of links that lead to bloggers you like
(similar to the set of links you learned how to add to the template on Section 17.2.3.2).
However, the blogroll also makes a statement. It says "these are the people I like" or "this is
the crowd I want to be associated with." In other words, a blogroll is social networking at its
best.

Figure
17-
22. The

blog entry

includes a

link back to

the original

page, and

any

comments

you added.

Tip: If you don't want to keep updating your template to change your blogroll, consider a service that can help you manage a

blogroll and insert it into your blog for you, like www.blogrolling.com .

Tell the world when your blog is updated . Blogger includes a setting to tell Weblogs.com
every time your blog is updated. Weblogs.com is a blog update notification service that many
people (and many other services) use. That way, your blog will crop up in "recently updated"
lists across the Web. To find this setting, on Blogger.com choose the Settings tab and the
Publishing section. The setting is named Ping Weblogs.com. Set it to Yes.

Participate with others . Bloggers are an open-minded bunch. If you leave an insightful
comment in response to someone else's blog entry, odds are good at least some readers will
head over to your blog to see what else you have to say. If you let them comment on your
posts, they're even more likely to come back for more.

Use the Email This Post feature . You need to capitalize on the enthusiasm of your visitors.
If you blog about a truly fascinating piece of gossip or news, readers might just decide to tell all
their friendsif you make it easy enough. To help them give into the impulse, you can add a quick
link that lets the reader email the story link to friends. To add this feature, choose the Settings
tab and click the Basic section. Set "Show Email Post links" to true and republish.

Make sure you're in Blogger's listings . You're probably already there, but it's good to
double-check. Choose the Settings tab and click the Basic section, and make sure the "Add your
blog to our listings" setting is set to Yes. If not, you're hiding from the world.

Provide a feed . Feeds, discussed on Section 17.1.1 , work with feed readers. True blog
aficionados love them, because they can track dozens or even hundreds of blogs all the time.
Odds are, your site is already enabled for feeds. To check, choose the Settings tab and click the
Site Feed section. Make sure Publish Site Feed is set to Yes. On this page, you'll also see the
feed URL for your blog (for example, http://cheesemakerstory.blogspot.com/atom.xml), which
is the URL you need to supply to a feed reader so it can start watching your blog.

Part Six: Appendixes
Appendix A: HTML Quick Reference

Appendix B: Useful Web Sites

Appendix A. HTML Quick Reference
HTML (HyperText Markup Language) is the language of the Web. It's the standard used to create all
Web pages, whether you're promoting a local bake sale or running a Fortune 500 company. Chapter
2 introduced HTML in detail, and since that point, you've steadily added to your arsenal of HTML
techniques.

This appendix provides a quick HTML reference, organized alphabetically. Each entry features a brief
description of what the tag does, and many provide cross-references to more detailed examples in
other chapters. You'll also get a quick refresher of HTML character entities (codes that you use when
you want to display special characters on a Web page).

Note: This appendix tackles HTML. HTML is slowly but surely giving ground to XHTML, which borrows the same basic set of tags, but

has stricter rules about using them. To learn more about XHTML, see Section 2.4.

A.1. HTML Tags

As you already know, the essential idea behind the HTML standard is tagsspecialized codes in angle
brackets that tell the browser how to format text, when to insert images, and how to link different
documents together. Throughout this book, you've examined just about every important HTML tag
that's in use today. Now you're ready for a quick reference that can refresh your memory and help
you find the information you need elsewhere in this book.

Note: You won't see every HTML tag in this chapter. Some are old, obscure, and rarely used, while others are redundant or have been

superseded by the CSS (Cascading Style Sheet) standard. For the full HTML standard, check out www.w3.org/MarkUp, or try

www.htmlhelp.com/reference/html40 for a reference that's easier to digest.

A.1.1. <a> (Anchor Tag)

The anchor tag has two roles. The most common use of the <a> tag is to create a link that, when
clicked, takes a visitor from one page to another. To insert this type of link, you supply the
destination URL using the href attribute, and put the clickable link text between the opening and
closing tags.

 Click Me

The href can be relative (which means it points to a page in your own Web site) or absolute (which
means it includes a full URL starting with "http://"). For a review of the differences and when to use
each type, see Section 8.1.1 (Chapter 8).

Creating clickable image links is just as easy as creating clickable text links. The trick is to put an
 tag inside an <a> tag, like this:

Finally, you can create a link that doesn't transfer the visitor to a new page, but instead pops up an
email message with the address information filled in. You do this by creating a mail-to link, as shown
here:

 Email Me

For more information about the ins and outs of the mail-to link, see Section 12.2 (Chapter 12).

Anchors can also take a target attribute, which instructs the browser to open the destination page in
a specific frame, or in a new browser window (as shown here).

 Click Me

You can learn about this technique on Section 10.2.3 (Chapter 10).

The anchor tag also lets you create a bookmark in a specific spot on a page. Once you've created a
bookmark, you can create a link that heads straight to your bookmark.

To create a bookmark, you use the <a> anchor tag, but with a difference. You don't supply the href
attribute, because the anchor doesn't lead anywhere. You also don't put any text inside the anchor,
because it's not clickable. Instead, all you supply is a name attribute that gives your bookmark a
descriptive name. Here's an example:

 Pet Canaries

Once you've created a bookmark, you can write a URL that points to that bookmark. The trick is that
you need to add the bookmark information to the end of the URL. To do this, you add the number
sign symbol (#) followed by the bookmark name, as shown here:

 Learn about recent developments in canary
 sales.

You can learn more about bookmarks and ordinary links in Chapter 8.

A.1.2. <acronym>

The acronym tag lets you give the full version of an abbreviation. For example, wouldn't your visitors
like to know that the hipster slang AFAIK stands for "as far as I know"? You can provide this
information like this:

 <acronym title="As Far As I Know">AFAIK</acronym>

On your Web page, the information in the title attribute doesn't appear right away. But it's available
for automated programs that scan Web pages, and more interestingly, many Web browsers
(including Internet Explorer) show the full title text in a pop-up text box if you hover over the
acronym.

If you use the <acronym> tag, consider applying some style sheet formatting to make sure your
acronym appears differently from the rest of the body text (perhaps with a different background
color). That way, the visitor will know there's some extra information waiting to be uncovered with a
mouseover.

A.1.3. <address>

An occasionally used tag that identifies contact information (like a Web or postal address). Here's an
example:

 <address>If you have any questions about the content of this site,
 phone our offices at 555-5555.
 </address>

Most browsers format addresses in italics, just as though you used the <i> tag. The only value in
using the <address> tag is the fact that it lets automated programs that scan Web pages extract
some useful address information.

A.1.4. <area> (Image Map)

Defines a clickable region (known as a hotspot) inside an image map (generated with the <map>
tag; see Section A.1.33). When defining an area, you need to supply the target URL (using the href
attribute), the type of shape (using the shape attribute), and the coordinates (using the coords
attribute). The shape can be a circle, square, or polygon.

For a circle, the coordinates are in this order: center point (x-coordinate), center point (y-
coordinate), radius. For any other shape, you supply the corners in order as a series of x-y
coordinates, like this: x1, y1, x2, y2, and so on. Here's an example that creates a square-shaped
hotspot:

 <area href="page1.htm" shape="square" coords="5,5,95,195">

The square is invisible. If you click anywhere inside this square, you'll be transported to page1.htm.
For more information, see the <map> tag on Section A.1.33. For a full-fledged image map example,
see Section 8.2 in Chapter 8.

A.1.5. (Bold Text)

Displays text in bold. HTML gurus suggest using instead of , because it more clearly
indicates the relative importance of your text, rather than giving a strictly typographic instruction
about how to format it. However, the tag is much more common.

 Here is some bold text.

You can get much more control over every aspect of formatting using style sheet rules.

A.1.6. <base> (Base URL)

Defines a document's base URL, which is a Web address that's used to interpret all relative paths.
You must place the <base> tag in the <head> section of a page, and you can use two attributeshref
(which supplies the base URL) and target (which supplies a target frame for links).

For example, if you have a link that points to a file named MySuperSunday.htm and the base URL is
http://www.SundaysForever.com/Current, the browser interprets the link as
http://www.SundaysForever.com/Current/MySuperSunday.htm. The base URL is rarely used in this
way, because it almost always makes more sense for the base URL to be drawn from the current
page. In other words, if you're looking at http://www.SundaysForever.com/Current/Intro.htm, the
browser already knows that the base URL is http://www.SundaysForever.com/Current. For more
information about the difference between absolute and relative links, see Section 8.1.1 (Chapter 8).

There is one useful purpose for the base URL tagyou can use it to set the target frame that will be
used for all the links on the page (unless otherwise indicated). Here's an example:

 <base target="Main">

You can learn much more about frames in Chapter 10.

A.1.7. <big> (Large Text)

Steps the text size up a notch to create larger text. The <big> tag is out of vogue, and you're better
off using style sheets to control the formatting of your text.

A.1.8. <blockquote> (Block Quotation)

http://www.SundaysForever.com/Current
http://www.SundaysForever.com/Current/MySuperSunday.htm
http://www.SundaysForever.com/Current/Intro.htm
http://www.SundaysForever.com/Current

Used to identify a long quotation (which stands on its own, separate from other paragraphs) as a
block element. As with all other block elements, the browser adds a line break and some space
before the beginning and after the end of a <blockquote>:

 <blockquote>It was the best of times, it was the worst of times.</blockquote>

Usually, the <blockquote> element is rendered as italic text and indented on the left and right side.
However, it makes more sense to use the <blockquote> element to denote the meaning of your text
(for example, that it's a passage quoted from a book), in conjunction with style sheet rules that apply
the specific formatting you want.

If you want a shorter quotation that you can place inside another block element (like a paragraph),
use the <q> element instead.

A.1.9. <body> (Document Body)

The body tag is a basic part of the structure of any HTML document. It occurs immediately after the
<head> section ends, and it contains the complete content of your Web page, including all its text,
images, tables, and links.

A.1.10.
 (Line Break)

The break tag is an inline element that splits two lines using a single hard return. No extra spacing is
added in between the two lines. For example, you can use
 to split address information in a
paragraph:

 <p>Johny The Fever

 200 Easy Street

 Akimbo, Madagascar</p>

A.1.11. <button> (Button)

Lets you create a clickable button in a form, with any content inside (for example, you can place a
phrase or an image between the start tag and the end tag). As with any other form control, you need
to supply a unique name and a value that will be submitted when the surfer clicks the button. You
place the button text between the opening and closing tags:

 <button name="submit" value="order">Place Order</button>

The <button> tag is more powerful than the <input> tag for creating buttons, because it puts
whatever content you want on the face of a button, including images.

 <button name="submit" value="order">
 </button>

A.1.12. <caption> (Table Caption)

Defines a text title for a table. If used, this must be the first element in a <table> tag:

 <table>
 <caption>Least Popular Vacation Destinations</caption> …
 </table>

No automatic formatting is applied to the captionit's just placed at the top of the table as ordinary
text (and wrapped to fit the width of the table). However, you can apply whatever formatting you
want through style sheet rules.

A.1.13. <cite> (Citation)

Used to identify a citation, which is a reference to a book, print article, or other published resource.

 <p>Charles Dickens wrote <cite>A Tale of Two Cities</cite>.</p>

Usually, the <cite> element is rendered as italic text. However, it makes more sense to use the
<cite> element to denote the meaning of your text, in conjunction with style sheet rules that apply
the specific formatting you want.

A.1.14. <dd> (Dictionary Description)

Used to identify the description in a dictionary list. For more information, see the very simple
example under the <dl> tag description, below, or refer to Section 5.3.3 (Chapter 5).

A.1.15. (Deleted Text)

A rarely used tag that identifies text that was present but has now been removed. Browsers that
support this tag display crossed-out text to represent deleted material. Another tag sometimes used
to indicate a revision trail is <ins>.

A.1.16. <dfn> (Defined Term)

A rarely used tag that indicates the defining instance of a term. For example, the first time you learn
about a new term in this book, like froopy, it's italicized. That's because it's considered the defining
instance, and a definition usually follows. Browsers render the <dfn> tag in italics.

A.1.17. <div> (Generic Block Container)

The division tag is used to group together one or more block elements. For example, you could group
together several paragraphs, a paragraph and heading, and so on. Here's an example:

 <div>
 <p>…</p>

 <p>…</p>
 </div>

On its own, the <div> tag doesn't do anything. However, it's a powerful way to apply style sheet
formatting. In the example above, any formatting you apply to the <div> tag is automatically applied
to the two nested paragraphs.

To learn more about how to use the <div> tag to apply style rules, see Section 6.6.1 in Chapter 6.
You should also refer to the tag (Section 5.2.7), which applies formatting inside a block
element.

A.1.18. <dl> (Dictionary List)

Defines a definition list (also known as a dictionary list), which is a series of terms, each one followed
by a definition in an indented block of text that appears immediately below it. In theory, you could
put any type of content in a dictionary list, but it's recommended that you follow its intended use and
include a list of points and explanations. Here's an example:

 <dl>
 <dt>tasseomancy</dt>
 <dd>Divination by reading tea leaves.</dd>
 <dt>tyromancy</dt>
 <dd>Divination by studying how cheese curds form during cheese making.</dd>
 </dl>

A.1.19. <dt> (Dictionary Term)

Used to identify the term in a dictionary list. For more information, see the very simple example
under the <dl> tag description, above, or refer to Section 5.3.3 (Chapter 5).

A.1.20. (Emphasis)

Has the same effect as the <i> tag, but is preferred by some HTML experts because it indicates the
relative importance of your text, not just the way it should be formatted. After all, you might use
style sheet rules to change the formatting of this tag so that it's emphasized in some other way, and
doesn't necessarily use italic formatting.

A.1.21. <form> (Interactive Form)

The form tag creates an interactive form, where you can place graphical widgets like text boxes,
checkboxes, selectable lists, and so on (represented by the <input>, <textarea>, <button>, and
<select> tags). By placing these widgets in a <form> tag, you can create pages that are able to
collect the information the surfer enters with these controls, and submit this information to a Web
application. Web applications are outside the scope of this book, but you can learn how to create a
basic form that emails you the relevant information in Chapter 12.

A.1.22. <frame> (Frame)

Defines a framea rectangular subset of the browser windowinside a <frameset>. Each frame can
show a different Web page. When defining a frame, you can supply a frame name with the name
attribute (which you use to identify the frame in your links) and the page that should be shown in the
frame with the src attribute.

 <frame name="Menu" src="menu.htm">

You can also create a fixed, non-resizable frame by adding the noresize attribute to the frame tag,

and you can prevent scrolling the frame by adding scrolling="no".

For much more information about frames and how to use them, refer to Chapter 10.

A.1.23. <frameset> (Frameset)

Defines a frameset pagea page that contains one or more frames. Each frame is a rectangular region
in the browser window that can show a different Web page. The <frameset> tag also sets the size of
each frame (using absolute pixel sizes or percentages of the current browser window). If you're
splitting the page horizontally, you use the rows attribute. If you're splitting the page vertically, you
use the cols attribute.

Here's an example with two frames split vertically. The first frame is 100 pixels, and the second
frame occupies the remaining space.

 <frameset cols="100,*">
 <frame name="Menu" src="menu.htm">
 <frame name="Main" src="welcome.htm">
 </frameset>

You can also control the size of the border that's shown between frames by adding the border
attribute and setting it to a pixel size (use 0 for no border at all).

 <frameset cols="100,*" border="0">
 …
 </frameset>

For much more information about frames and how to use them, refer to Chapter 10.

A.1.24. <h1>, <h2>, <h3>, <h4>, <h5>, <h6> (Headings)

Headings are section titles. They display in bold lettering, at various sizes. The size of the heading
depends on the heading level. There are six heading levels, starting at <h1> (the biggest), and
moving down to <h6> (the smallest). Both <h5> and <6> are actually smaller than regularly sized
text. Here's an <h1> tag in action:

 <h1>Important Information</h1>

When you use headings, always make sure your page follows a logical structure that starts with

<h1> and gradually works its way down to lower heading levels. Don't start with <h3> just because
the formatting looks nicer. Instead, use style sheets to change the formatting of each heading to suit
you, and use the heading levels to delineate the structure of your document.

A.1.25. <head> (Document Head)

Defines the header portion of an HTML document. The <head> tag is placed immediately before the
<body> tag. While the <body> tag contains the Web page content, the <head> tag includes other
information like the Web page title (the <title> tag), descriptive metadata (one or more <meta>
tags), and styles (the <style> or <link> tags).

A.1.26. <hr> (Horizontal Rule)

Defines a horizontal rule (a solid line) that's drawn to separate block elements:

 <p>…</p>
 <hr>
 <p>…</p>

Although the <hr> tag still works perfectly well, HTML gurus prefer using border settings in a style
sheet rule to get much more control over the line style and color. Here's an example that defines a
style sheet rule for a solid blue line:

 .border { border-top: solid medium navy }

And here's how you could apply it:

 <p>…</p>
 <div class="border"></div>
 <p>…</p>

For more information about the style sheet border settings, refer to Section 6.5.1 in Chapter 6.

A.1.27. <html> (Document)

The <html> tag is the first tag in any HTML document. It wraps the rest of the document. If you're
creating an ordinary Web page, the <html> tag contains two other essential ingredientsthe <head>
tag that defines the title, metadata, and linked style sheets, and the <body> tag that contains the
actual content. If you're creating a frames page, the <html> tag contains a <head> tag, a
<frameset>, and a <noframes> region.

A.1.28. <i> (Italic Text)

Displays some text in italics. HTML gurus suggest using (emphasis) instead of <i>, because it
more clearly indicates the relative importance of your text, rather than giving a strictly typographic
instruction about how to format it. However, the <i> tag is much more common.

 Here is some <i>italicized</i> text.

You can get much more control over every aspect of formatting using style sheet rules.

A.1.29. <iframe> (Inline Frame)

Creates an inline framean embedded, scrollable window that shows another Web page inside the
current one. You supply the attributes src (the page to show in the frame), name (the unique name
of the frame), width, and height (the dimensions of the frame in pixels). You can also turn off the
border by setting the frameborder attribute to 0, or disable scrolling by adding the scrolling="no"
attribute. Here's one use of the <iframe> tag:

 <iframe src="MyPage.html" width="100" height="250"></iframe>

Inside the <iframe> tag, you can put some content that will be displayed on browsers that don't
support the <iframe> tag.

 <iframe src="MyPage.html" width="100" height="250">
 <p>To see more details, check out this page.</p>
 </iframe>

A.1.30. (Image)

The tag points to a picture file you want to show in a page. The src attribute identifies the

picture (using a relative or absolute linksee Section 8.1.1 in Chapter 8). The alt attribute supplies
some text that's used if the picture can't be shown.

 <img src="OrderButton.gir"
 alt="Place Order">

Internet Explorer uses the alternate text for a picture pop-up text box, while some more standards-
aware browsers (namely Firefox) don't. In either case, you can supply a pop-up text box in just
about any browser using the title attribute. This is the best way to add a pop-up text box to an
image.

The tag also supports height and width attributes that you can use to explicitly size a picture:

In this example, the picture is given a width of 100 pixels and a height of 150 pixels. If these
dimensions don't match the actual size of the source picture, the picture is stretched and otherwise
mangled to fit.

Never use the width and height attributes to resize an image; instead, make those kinds of edits in a
proper image-editing program. You can use the width and height attributes to tell the browser how
big your picture is, so it can lay out the page before it's downloaded the whole image (see Section
7.1.3 in Chapter 7 for more details).

To learn more about supported image types, how to organize pictures on a page, and where to find
the best material, refer to Chapter 7. To learn how to create images that serve as fancy clickable
buttons, check out Chapter 15.

Finally, you can create clickable regions on an image by defining an image map, and then linking that
image map to your image with the usemap attribute of the tag. For more information, see the
<map> section (Section A.1.33).

A.1.31. <input> (Input Control)

The input tag is the most common ingredient in a HTML form (represented by the <form> tag). The
input tag can represent different onscreen widgets (called controls) that collect information from the
Web surfer.

The type of control is determined by the type attribute (see Section 12.2.2.1 in Chapter 12 for a
detailed list). Table A-1 lists the most common types. Additionally, every control should have a
unique name associated with it.

Table A-1. HTML Form Controls

Control HTML Tag Description

Single-Line
Text Box

<input type="text"> Shows a text box where the visitor can type in any text.

Password
Text Box

<input
type="password">

Shows a text box where the visitor can type in any text.
However, the text isn't displayed in the browser. Instead, you'll
see an asterisk (*) appear in the place of every letter, hiding it
from prying eyes.

Checkbox
<input
type="checkbox">

Shows a checkbox that can be turned on or off.

Option
Button

<input
type="radio">

Shows a radio button (a circle that can be turned on or off).
Usually, you'll have a group of radio buttons next to each
other, in which case the visitor can select exactly one.

Button
<input
type="submit">

Shows a standard push button that submits the form, with all
its data.

Button
<input
type="reset">

Shows a standard push button that simply clears the user
selections and entered text in all the input controls of the form.

Here's an <input> tag that creates a text box. When the page is submitted, whatever the surfer
typed in will be sent along, with the descriptive identifier "Last-Name".

 <input type="text" name="LastName">

For more information about forms and how you can use them to collect data, refer to Section 12.2.2
in Chapter 12.

A.1.32. <ins> (Inserted Text)

A rarely used tag that identifies newly inserted text. It lets you create an HTML Web page with limited
change tracking. (Of course, you don't really want too much change tracking information in a page,
because you want to keep your page sizes as small as possible so they can sail across the Internet
without a care.)

The <ins> tag can be used around block elements, or inside a block element. Another change
revision tag is .

A.1.33. (List Item)

Represents a single item in an ordered (numbered) list or unordered (bulleted) list. For more
information, see the tag for ordered lists and the tag for unordered lists.

A.1.34. <link> (Document Relationship)

The <link> tag describes a relationship between the current document and another document. For
example, you might use it to point to another document that's the previous version of the current
document. More commonly, it's used to point to an external style sheet that provides the styles for
the current page. The <link> tag is always placed in the <head> section of the page. Here's one
possible use:

 <link rel="stylesheet" href="NyStyles.css" type="text/css">

By using external style sheets, you can define your styles in one file, and use them in multiple pages.
Chapter 6 has much more about style sheets and how to use them.

A.1.35. <map> (Image Map)

Defines an image mapa picture with one or more clickable regions. When creating an image map, you
assign a unique name that identifies it using the name attribute. You then add one <area> tag inside
the <map> tag for each clickable region, specifying the coordinates and destination URL (see the
<area> tag on Section A.1.2 for more on how the coords attribute works). Here's an example of an
image map with three clickable regions:

 <map name="ThreeSquares">
 <area href="page1.htm" shape="square" coords="5,5,95,195">
 <area href="page2.htm" shape="square" coords="105,5,195,195">
 <area href="page3.htm" shape="square" coords="205,5,295,195">
 </map>

Finally, to use your image map, you need to apply it to an image with the usemap attribute. The
usemap attribute matches the name of the map, but starts with the hash (#) character, which
indicates that the image map is defined on the current page:

The clickable regions are invisible (unless they're indicated within your picture). However, when you

hover over a hotspot, the mouse pointer changes to a hand. Clicking on a hotspot has the same
effect as clicking an ordinary <a> linkyou're transported immediately to the new URL. For a full-
fledged image map example, see Section 8.2 in Chapter 8.

A.1.36. <meta> (Metadata)

Meta tags give you a way to attach descriptive information to your Web pages. This information is
never shown to the Web surfer, but it is available to automated programs like Web search engines as
they scan your site. You add metadata by placing <meta> tags in the <head> section of your page.

Every <meta> tag is made up of a name attribute (which identifies the type of information you're
adding) and a content attribute (which supplies the actual information). Although there is an
unlimited number of potential <meta> tags, the two most common are description and keywords,
because they're used by some search engines:

 <meta name="description" content="Sugar Beat Music for Children offers age-
 appropriate music classes for children 4 months to 5 years old">

Section 11.3 in Chapter 11 describes meta tags in more detail, and explains how search engines use
them.

A.1.37. <noframes> (Frames Alternate Content)

Defines the content that should be shown instead of a frames page if the browser doesn't support
frames. The <noframes> tag must immediately follow the <frameset> tag on a frames page.

It's incredibly rare to stumble across a browser that's too old to support frames. (Netscape's
supported frames since version 2.) Today, the only browsers you're likely to find that don't support
frames are mobile browsers for small devices like cell phones, and screen reading programs (typically
used by viewing-impaired visitors).

For much more information about frames and how to use them, refer to Chapter 10.

A.1.38. <noscript> (Alternate Script Content)

Defines the content that should be shown if a script can't run. The <noscript> tag must immediately
follow the <script> tag. The most common reason a script can't run isn't due to lack of browser
supportinstead, it's usually because the Web surfer has specifically disabled this feature of the
browser.

For more information about scripts, refer to Chapter 14.

A.1.39. <object> (Embedded Object)

Used to embed specialized objects in your page, like audio, video, and even applets (miniature
programs that can run inside a Web page). For example, you might use an <object> tag to place a
Flash movie inside a Web page, as described in Chapter 16.

A.1.40. (Ordered List)

An unordered list starts with the tag, and contains multiple list items, each of which is
represented by the tag. In an ordered list, each item is numbered consecutively, although the
numbering can use numbers, letters, or roman numerals.

Here's a simple ordered list that numbers items from 1 to 3:

 Buy bread
 Soak stamps off letters
 Defraud government with offshore investment scheme

To start at a number other than 1, use the start attribute and supply the starting number. To change
the list formatting, use the type attribute with one of these values: 1 (numbers), a (lowercase
letters), A (uppercase letters), i (lowercase roman numerals), I (uppercase roman numerals).

Ordered lists are demonstrated in Chapter 5 (Section 5.3).

A.1.41. <option> (Menu Option)

Defines an item in a selectable list control, inside a <select> tag. For example, if you want to create
a drop-down menu for color picking that has the entries Blue, Red, and Green, you need one
<select> tag with three <option> tags inside.

When you define the <option> tag, you can use attributes like selected (the choice is initially
selected) and disabled (the choice is disabled, and can't be selected by the surfer). You can also use
the value attribute to associate a uniquely identifying piece of information for this option, which is
sent with the form data when the form is submitted.

For a basic example, see the description of the <select> tag on Section 12.2.2.2.

A.1.42. <p> (Paragraph)

The paragraph tag contains a paragraph of text:

 <p>It was the best of times, it was the worst of times …</p>

Paragraphs are block elements, which means the browser automatically adds a line break and a little
extra space between two paragraphs, or between a paragraph and another block element, like a list
or a heading.

Empty paragraphs are ignored by the browser. If you want to create a blank paragraph that takes up
the normal amount of space, use a non-breaking space like this:

 <p> </p>

A.1.43. <param> (Object Parameter)

Defines extra information that's used with the <object> tag to send information to the applet or
plugin.

A.1.44. <pre> (Preformatted Text)

Preformatted text breaks the normal rules. Inside a <pre> tag, the browser pays close attention to
every space and line break you use, and it duplicates that exactly in the Web page. Additionally, the
Web browser puts it all into a monospaced font (typically Courier), which means the results are
usually ugly. The <pre> tag is an easy and quick way to get text to appear exactly where you want,
which is useful if you're using it to show visual poetry or a snippet of programming code. However,
you shouldn't use it to align large sections of ordinary textuse tables and CSS positioning rules (see
Chapter 9) for those tasks.

 <pre>
 Tumbling-hair
 picker of buttercups
 violets
 dandelions
 And the big bullying daisies
 through the field wonderful
 with eyes a little sorry
 Another comes
 also picking flowers
 </pre>

A.1.45. <q> (Short Quotation)

Used to define a short quotation inside another block element, like a paragraph.

 <p>As Charles Dickens once wrote, <q>It was the best of times, it was the
 worst of times</q>.</p>

Usually, the <q> element is rendered as italic text. However, it makes more sense to use the <q>
element to denote the meaning of your text, in conjunction with style sheet rules that apply the
specific formatting you want.

If you want a longer quotation that stands on its own as a block element, use the <blockquote>
element instead.

A.1.46. <script> (Client-Side Script)

Includes a client-side script inside your Web page. A script is a set of instructions written in a
simplified programming language like JavaScript. These instructions are often used to create more
interactive Web pages by adding effects like buttons that change color when you hover the mouse
pointer over them. To learn some of the basics of JavaScript and see scripts in action, check out
Chapter 14.

A.1.47. <select> (Selectable List)

Defines a list control inside a form. The Web surfer can select a single item in the list (or multiple
items, if you add the multiple attribute). You use the name attribute to uniquely identify this control,
as in the following example:

 <select name="PromoSource">
 <option value="Ad">Google Ad</option>
 <option value="Search">Google Search</option>
 <option value="Psychic">Uncanny Psychic Intuition</option>
 <option value="Luck">Bad Luck</option>
 </select>

Ordinarily, selection lists are shown as drop-down menus. However, you can create a scrollable list
box using the size attribute. Just specify the number of rows you want to show at once:

 <select name="PromoSource" size="3">
 …
 </select>

For a full form example, refer to Section 12.2.2.2 in Chapter 12.

A.1.48. <small> (Small Text)

Steps the text size down one notch to create smaller text. The <small> tag is out of vogue, and
you're better off using style sheets to control the formatting of your text.

A.1.49. (Generic Inline Container)

The tag is used to identify some text you want to format inside a block element. For
example, you could format a single word in a paragraph, a whole sentence, and so on. Here's an
example:

 <p>In this paragraph, some of the text is wrapped in a span tag.
That gives you the ability to format it in some fancy
 way later on.</p>

On its own the tag doesn't do anything. However, it's a powerful way to apply style sheet
formatting in a generic way.

You should also refer to the <div> tag (Section A.1.13), which can apply formatting to several block
elements at once.

A.1.50. (Strong Emphasis)

Has the same effect as the tag, but is preferred by some HTML experts because it indicates the
relative importance of your text, not just the way it should be formatted. After all, you might use
style sheet rules to change the formatting of this tag so it's emphasized in some other way, and
doesn't necessarily use bold formatting.

A.1.51. <style> (Internal Style Sheet)

The <style> tag is used to supply CSS (Cascading Style Sheet) rules that format a Web page. It's
always placed inside the <head> section of a Web page.

The <style> tag lets you define a style right inside a Web page. This is known as an internal style
sheet. Here's an example that gives <h1> headings colored text.

 <style type="text/css">
 h1 { color: fuchsia }
 </style>

More commonly, you'll use the <link> tag instead of the <style> tag, so that you can link to a
separate file that defines your styles. That way, you can apply the same styles to multiple pages
without cluttering up your HTML. Chapter 6 has much more about style sheets and how to use them.

A.1.52. <sub> (Subscript)

Formats text so that it appears smaller and lower (the middle of the text is lined up with the bottom of
the current line). It's best not to rely on this trick for formatting (use style sheets instead), but it is a
handy way to deal with scientific terms like H20. Here's how you'd use it:

 Water is H₂0

A.1.53. <sup> (Superscript)

Formats text so that it appears smaller and higher (the middle of the text is lined up with the top of
the current line). It's best not to rely on this trick for formatting (use style sheets instead), but it is a
handy way to deal with exponents like 33. Here's the <sup> tag in action:

 3³ is 27

A.1.54. <table> (Table)

The outermost tag that defines a table. Inside the <table> tag, you define rows with the <tr> tag,
and inside each row, you place columns of data in cells with the <td> tag. Here's a very basic table:

 <table>

 <tr>
 <td>Row 1, Column 1</td>
 <td> Row 1, Column 2</td>
 </tr>
 <tr>
 <td>Row 2, Column 1</td>
 <td>Row 2, Column 2</td>
 </tr>
 </table>

It looks like this:

Table A-2.

R ow 1, Column 1 Row 1, Column 2

Row 2, Column 1 Row 2, Column 2

For much more information about creating exotic tables and sizing them perfectly, refer to Chapter 9.

A.1.55. <td> (Table Data Cell)

Represents an individual cell with text inside a table row (a <tr> tag). Each time you add a <td> tag,
you create a column. However, it's perfectly valid to have different numbers of columns in
subsequent rows (although it might look a little wacky). For a very basic table example, see the
<table> tag definition, above, and for a detailed table exposé, check out Chapter 9.

A.1.56. <textarea> (Multiline Text Input)

Shows a large text box that can fit multiple lines of text, inside of a <form>. As with all input
controls, you need to identify the control by giving it a unique name. Additionally, you can set the
size of the text box using the rows and cols attributes.

If you want some text to appear initially in the <textarea> element, place it in between the beginning
and ending tags, like so:

 <textarea name="Comments">Enter your comments here.</textarea>

A.1.57. <th> (Table Header Cell)

Represents an individual cell with heading text. The <th> tag is used in the same way as the <td>
tagthe difference is that it's usually reserved for the first row (with the heading text), and has a basic
bold formatting (which you can tailor using style sheets).

A.1.58. <title> (Document Title)

The <title> tag sets the title for the Web page, which is displayed in the browser title bar and used as
the bookmark text if a surfer adds your site to his or her bookmark list. The <title> tag must be
placed in the <head> section.

 <title>Truly Honest Car Mechanics</title>

A.1.59. <tr> (Table Row)

Represents an individual row inside a table (a <table> tag). To add cells of information, you need to
add the <td> tag inside the <tr> tag. For a very basic table example, see the <table> tag definition,
above, and for a detailed table exposé, check out Chapter 9.

A.1.60. <tt> (Teletype Text)

Text in a teletype tag displays using a fixed-width (monospaced) font, like Courier. Programmers
sometimes use it for snippets of code in a paragraph:

 <p>To solve your problem, use the <tt>Fizzle()</tt> function.</p>

Teletype text is designed to be used inside a block element like a paragraph (because it's an inline
element). For a similar effect in a block element, check out the <pre> tag.

A.1.61. <u> (Underlined Text)

Displays some underlined text. Be careful about using this tag, because it's all too easy for Web
surfers to mistake underlined text for links.

 Here is some <u>underlined</u> text.

A.1.62. (Unordered List)

An unordered list starts with the tag, and contains multiple list items, each of which is
represented by the tag. The browser indents each item in the list, and draws a bullet next to it.

Here's a simple unordered list:

 Buy bread
 Soak stamps off letters
 Defraud government with offshore investment scheme

Section 5.3.2 shows how you can change the bullet style in an unordered list with the type attribute.
You can even use an image for a bullet, as demonstrated on Section 7.3.3 (Chapter 7).

A.2. HTML Character Entities

HTML character entities are codes you can enter in a page that are then translated into other
characters by the browser before they're displayed. All HTML character entities start with the
ampersand (&) and end with the semicolon (;).

There are two reasons you might want to use HTML character entities. First of all, you might want to
use a character that is considered to have a special meaning in the HTML standard. For example, if
you type < in an HTML document, the browser assumes you're starting a tag, which makes it difficult
to write a pithy bit of logic like "2 < 3." To get around this, you can replace the < symbol with a
character entity that represents the less-than symbol. The browser will then insert what you want
when it displays the page.

The other reason you might use HTML character entities is because you want to use a special
character that's not easy to type, like an accented letter or a currency symbol. In fact, it's quite
possibly not on your keyboard at all.

Table A-2 has the most commonly used HTML entities. For the complete list, which includes many
more international language characters, see
http://webmonkey.wired.com/webmonkey/reference/special_characters.

Table A-3. HTML Character Entities

Character Name of Character What to Type

< Less than <

> Greater than >

& Ampersand &

" Quotation mark "

© Copyright ©

® Registered trademark ®

¢ Cent sign ¢

£ Pound sterling £

¥ Yen sign ¥

Euro sign € (but € is better supported)

° Degree sign °

± Plus or minus ±

http://webmonkey.wired.com/webmonkey/reference/special_characters

Character Name of Character What to Type

÷ Division sign ÷

x Multiply sign ×

µ Micro sign µ

¼ Fraction one-fourth ¼

½ Fraction one-half ½

¾ Fraction three-fourths ¾

¶ Paragraph sign ¶

§ Section sign §

« Left angle quote, guillemotleft «

» Right angle quote, guillemotright »

¡ Inverted exclamation ¡

¿ Inverted question mark ¿

æ Small ae diphthong (ligature) æ

ç Small c, cedilla ç

è Small e, grave accent è

é Small e, acute accent é

ê Small e, circumflex accent ê

ë Small e, dieresis or umlaut mark ë

ö Small o, dieresis or umlaut mark ö

É Capital E, acute accent É

÷ Division sign ÷

x Multiply sign ×

µ Micro sign µ

¼ Fraction one-fourth ¼

½ Fraction one-half ½

¾ Fraction three-fourths ¾

¶ Paragraph sign ¶

§ Section sign §

« Left angle quote, guillemotleft «

» Right angle quote, guillemotright »

¡ Inverted exclamation ¡

¿ Inverted question mark ¿

æ Small ae diphthong (ligature) æ

ç Small c, cedilla ç

è Small e, grave accent è

é Small e, acute accent é

ê Small e, circumflex accent ê

ë Small e, dieresis or umlaut mark ë

ö Small o, dieresis or umlaut mark ö

É Capital E, acute accent É

A.3. HTML Color Names

Only 16 color names are officially recognized by the HTML standard. These are listed in Table A-3.

Table A-4. HTML Color Names

Aqua Navy

Black Olive

Blue Purple

Fuchsia Red

Gray Silver

Green Teal

Lime White

Maroon Yellow

Although many browsers recognize more names, the safest option to get better colors is to use a
color code (Section 6.2.1.1).

Appendix B. Useful Web Sites

Throughout this book, you've learned about a number of great Web sites where you can download
handy software or get valuable information. Odds are, you'll want to revisit some of these sites to
keep honing your Web skills (or just get free stuff). To save you the effort of leafing through
hundreds of pages, this appendix repeats all these links, grouped by chapter.

Tip: To avoid carpal tunnel syndrome, you don't need to painstakingly type these URLs into your browser. Instead, use the online

version of this appendix that's located on the "Missing CD" page at www.missingmanuals.com. That way, once you've found the link you

want, you're just a click away. Also, it's worth checking this page for late-breaking changes (like URLs that have moved to another

location).

B.1. Chapter Links

The following tables list the links found in each chapter. Links are presented in the same order that
they occur in the text. You'll find all kinds of links here. Some point to useful tutorial sites and
articles, others to Web curiosities, and still more point to handy free tools or downloadable pictures
and media. Particularly important or noteworthy links are printed in bold.

Table B-1. Chapter 1. Preparing for the Web

Description URL

The history of the Internet
www.isoc.org/internet/history

www.walthowe.com/navnet/history.html

Internet Explorer (browser) www.microsoft.com/windows/ie

Firefox (browser) www.mozilla.org/products/firefox

Netscape (browser) http://channels.netscape.com/ns/browsers/download.jsp

Opera (browser) www.opera.com

Safari (browser) www.apple.com/safari

Summary of Mac browsers http://darrel.knutson.com/mac/www/browsers.html

Spybot Search & Destroy (spyware
removal tool)

www.safer-networking.org

Microsoft AntiSpyware (spyware
removal tool)

www.microsoft.com/athome/security/spyware

Lavasoft Ad-Aware (spyware removal
tool)

www.lavasoftusa.com/software/adaware

Online community of diary writers www.opendiary.com

One of many free blogging services (see
the Chapter 17 link list for more)

http://spaces.msn.com

Personal blogs of Microsoft employees www.microsoft.com/communities/blogs

A fee-based service for testing a Web
page with different browsers

www.netmechanic.com

What not to do in a Web page www.angelfire.com/super/badwebs

http://channels.netscape.com/ns/browsers/download.jsp
http://darrel.knutson.com/mac/www/browsers.html
http://spaces.msn.com

Description URL

The ultimate examples of bad Web
design

www.webpagesthatsuck.com

www.worstoftheweb.com

Table B-2. Chapter 2. Creating Your First Web Page

Description URL

Java checkers http://thinks.com/java/checkers/checkers.htm

ActiveX virus scanner http://housecall.trendmicro.com

Flash games www.ferryhalim.com/orisinal

XHTML tutorial www.w3schools.com/xhtml

XHTML validator www.htmlhelp.com/cgi-bin/validate.cgi

Table B-3. Chapter 3. Putting Your Page on the Web

Description URL

Domain Direct (Web host) www.domaindirect.com

Brinkster (Web host) www.brinkster.com

Insider Hosting (Web host) www.insiderhosting.com

Pair Networks (Web host) www.pair.com

Sonic.net (Web host) www.sonic.net

Yahoo GeoCities (free Web host) http://geocities.yahoo.com

Angelfire (free Web host) http://angelfire.lycos.com

Tripod (free Web host) www.tripod.lycos.com

AOL Hometown (free Web host) http://hometown.aol.com

Table B-4. Chapter 4. Power Tools

Description URL

ZDNet (shareware) http://downloads-zdnet.com

The ultimate examples of bad Web
design

www.webpagesthatsuck.com

www.worstoftheweb.com

Table B-2. Chapter 2. Creating Your First Web Page

Description URL

Java checkers http://thinks.com/java/checkers/checkers.htm

ActiveX virus scanner http://housecall.trendmicro.com

Flash games www.ferryhalim.com/orisinal

XHTML tutorial www.w3schools.com/xhtml

XHTML validator www.htmlhelp.com/cgi-bin/validate.cgi

Table B-3. Chapter 3. Putting Your Page on the Web

Description URL

Domain Direct (Web host) www.domaindirect.com

Brinkster (Web host) www.brinkster.com

Insider Hosting (Web host) www.insiderhosting.com

Pair Networks (Web host) www.pair.com

Sonic.net (Web host) www.sonic.net

Yahoo GeoCities (free Web host) http://geocities.yahoo.com

Angelfire (free Web host) http://angelfire.lycos.com

Tripod (free Web host) www.tripod.lycos.com

AOL Hometown (free Web host) http://hometown.aol.com

Table B-4. Chapter 4. Power Tools

Description URL

http://thinks.com/java/checkers/checkers.htm
http://housecall.trendmicro.com
http://geocities.yahoo.com
http://angelfire.lycos.com
http://hometown.aol.com
http://downloads-zdnet.com
http://thinks.com/java/checkers/checkers.htm
http://housecall.trendmicro.com
http://geocities.yahoo.com
http://angelfire.lycos.com
http://hometown.aol.com

Description URL

ZDNet (shareware) http://downloads-zdnet.com

Download.com (shareware) www.download.com

Tucows (shareware) www.tucows.com

Nvu (HTML editor) www.nvu.com

HTML-Kit (HTML editor)
www.html-kit.com

www.chami.com/html-kit/plugins/info/hkh_w3c_offline

CoffeeCup (HTML editor) www.coffeecup.com

FrontPage (trial software) www.microsoft.com/office/frontpage/prodinfo/trial.mspx

Dreamweaver (trial software) www.macromedia.com/go/trydreamweaver

Table B-5. Chapter 5. HTML Text Tags

Description URL

Learn about the semantic
Web

http://logicerror.com/semanticWeb

Special characters in
HTML

http://webmonkey.wired.com/webmonkey/reference/special_characters

Table B-6. Chapter 6. Style Sheets

Description URL

Browser usage statistics www.w3schools.com/browsers/browsers_stats.asp

CSS compatibility tables for different browsers
www.corecss.com/properties/full-chart.php

www.quirksmode.org

Web-safe colors www.w3schools.com/css/css_colors.asp

Online color pickers

www.webtemplates.com/colors

http://mediagods.com/tools/rgb2hex.htm

www.colorschemer.com/online.html

Information about font support on
different operating systems

http://web.mit.edu/jmorzins/www/fonts.html

www.upsdell.com/BrowserNews/res_fontsamp.htm

ZDNet (shareware) http://downloads-zdnet.com

Download.com (shareware) www.download.com

Tucows (shareware) www.tucows.com

Nvu (HTML editor) www.nvu.com

HTML-Kit (HTML editor)
www.html-kit.com

www.chami.com/html-kit/plugins/info/hkh_w3c_offline

CoffeeCup (HTML editor) www.coffeecup.com

FrontPage (trial software) www.microsoft.com/office/frontpage/prodinfo/trial.mspx

Dreamweaver (trial software) www.macromedia.com/go/trydreamweaver

Table B-5. Chapter 5. HTML Text Tags

Description URL

Learn about the semantic
Web

http://logicerror.com/semanticWeb

Special characters in
HTML

http://webmonkey.wired.com/webmonkey/reference/special_characters

Table B-6. Chapter 6. Style Sheets

Description URL

Browser usage statistics www.w3schools.com/browsers/browsers_stats.asp

CSS compatibility tables for different browsers
www.corecss.com/properties/full-chart.php

www.quirksmode.org

Web-safe colors www.w3schools.com/css/css_colors.asp

Online color pickers

www.webtemplates.com/colors

http://mediagods.com/tools/rgb2hex.htm

www.colorschemer.com/online.html

http://downloads-zdnet.com
http://logicerror.com/semanticWeb
http://webmonkey.wired.com/webmonkey/reference/special_characters
http://mediagods.com/tools/rgb2hex.htm
http://web.mit.edu/jmorzins/www/fonts.html
http://downloads-zdnet.com
http://logicerror.com/semanticWeb
http://webmonkey.wired.com/webmonkey/reference/special_characters
http://mediagods.com/tools/rgb2hex.htm

Description URL

Information about font support on
different operating systems

http://web.mit.edu/jmorzins/www/fonts.html

www.upsdell.com/BrowserNews/res_fontsamp.htm

Detailed information about CSS typography http://usabletype.com/ess

Table B-7. Chapter 7. Adding Graphics

Description URL

Overview of photo-
editing software

http://graphicssoft.about.com/od/pixelbased/a/bybphotoeditor.htm

Free backgrounds

www.grsites.com/textures

www.backgroundcity.com

www.backgroundsarchive.com

Google image
search (pictures
aren't necessarily
free to use)

http://images.google.com

Stock.XCHNG
(free pictures)

http://sxc.hu

Overview of places
to find free pictures

www.masternewmedia.org/news/2005/04/01/where_to_find_great_free.htm

Free clip art

www.grsites.com/webgraphics

www.clipartconnection.com

www.myfreeclipart.com

Microsoft Office clip
art

http://office.microsoft.com/clipart

Table B-8. Chapter 8. Linking Pages

Description URL

Link checker http://validator.w3.org/checklink

Information about font support on
different operating systems

http://web.mit.edu/jmorzins/www/fonts.html

www.upsdell.com/BrowserNews/res_fontsamp.htm

Detailed information about CSS typography http://usabletype.com/ess

Table B-7. Chapter 7. Adding Graphics

Description URL

Overview of photo-
editing software

http://graphicssoft.about.com/od/pixelbased/a/bybphotoeditor.htm

Free backgrounds

www.grsites.com/textures

www.backgroundcity.com

www.backgroundsarchive.com

Google image
search (pictures
aren't necessarily
free to use)

http://images.google.com

Stock.XCHNG
(free pictures)

http://sxc.hu

Overview of places
to find free pictures

www.masternewmedia.org/news/2005/04/01/where_to_find_great_free.htm

Free clip art

www.grsites.com/webgraphics

www.clipartconnection.com

www.myfreeclipart.com

Microsoft Office clip
art

http://office.microsoft.com/clipart

Table B-8. Chapter 8. Linking Pages

Description URL

Link checker http://validator.w3.org/checklink

http://web.mit.edu/jmorzins/www/fonts.html
http://usabletype.com/ess
http://graphicssoft.about.com/od/pixelbased/a/bybphotoeditor.htm
http://images.google.com
http://sxc.hu
http://office.microsoft.com/clipart
http://validator.w3.org/checklink
http://web.mit.edu/jmorzins/www/fonts.html
http://usabletype.com/ess
http://graphicssoft.about.com/od/pixelbased/a/bybphotoeditor.htm
http://images.google.com
http://sxc.hu
http://office.microsoft.com/clipart
http://validator.w3.org/checklink

Table B-9. Chapter 9. Page Layout Tools: Tables and Styles

Description URL

A huge catalog of style sheet layout examples www.csszengarden.com

CSS tutorial www.w3schools.com/css

Style sheet templates
www.bluerobot.com/web/layouts

http://glish.com/css

CSS resources www.westciv.com/style_master/house

Table B-10. Chapter 10. Frames

Description URL

How to force frames with JavaScript http://javascript.about.com/library/blframe.htm

Table B-11. Chapter 11. Attracting Visitors

Description URL

Web ring services
http://dir.webring.com/rw

www.bravenet.com

The Open Directory Project

http://dmoz.org

http://dmoz.org/add.html (submission rules)

http://dmoz.org/guidelines (editor guidelines)

Google Directory http://directory.google.com

Yahoo (submission guidelines)
http://docs.yahoo.com/info/suggest

www.apromotionguide.com/yahoo.html (unofficial)

Looksmart/Zeal (submission
guidelines)

www.zeal.com/guidelines/user

www.apromotionguide.com/looksmart.html

How Google works

www.akamarketing.com/google-ranking-tips.html

www.markhorrell.com/seo/pagerank.html

www-db.stanford.edu/~backrub/google.html

http://glish.com/css
http://javascript.about.com/library/blframe.htm
http://dir.webring.com/rw
http://dmoz.org
http://dmoz.org/add.html
http://dmoz.org/guidelines
http://directory.google.com
http://docs.yahoo.com/info/suggest

Description URL

Google (submission)

www.google.com/addurl.html (submit a site)

http://services.google.com/urlconsole/controller (remove a
site)

Search Engine Watch (industry
news)

www.searchenginewatch.com

Webmaster World (industry news) www.webmasterworld.com

Google AdWords http://adwords.google.com

AdWords information
http://searchenginewatch.com/sereport/article.php/2164591

www.iterature.com/adwords

Wayback Machine (archived Web
pages)

www.archive.org

List of Web robots www.robotstxt.org

Overview of free log analysis
software

www.thefreecountry.com/webmaster/loganalyzers.shtml

Overview of free hit counters www.thefreecountry.com/webmaster/loganalyzers.shtml

StatCounter (free hit counter) www.statcounter.com

Table B-12. Chapter 12. Letting Your Visitors Talk to You (and Each Other)

Description URL

Community building on the Web (book
excerpts)

www.naima.com/community

Lyris (professional software for groups
and newsletters)

www.lyris.com

CGI introduction www.cgi101.com/book

ASP and ASP.NET introductions
www.w3schools.com/asp

www.w3schools.com/aspnet

HTML forms tutorial www.w3schools.com/html/html_forms.asp

Google Groups
http://groups.google.com

http://groups.google.com/intl/en/googlegroups/about.html

Examples of discussion groups on the

www.microsoft.com/office/community/en-us

http://p085.ezboard.com/bsurvivorsucks

Google (submission)

www.google.com/addurl.html (submit a site)

http://services.google.com/urlconsole/controller (remove a
site)

Search Engine Watch (industry
news)

www.searchenginewatch.com

Webmaster World (industry news) www.webmasterworld.com

Google AdWords http://adwords.google.com

AdWords information
http://searchenginewatch.com/sereport/article.php/2164591

www.iterature.com/adwords

Wayback Machine (archived Web
pages)

www.archive.org

List of Web robots www.robotstxt.org

Overview of free log analysis
software

www.thefreecountry.com/webmaster/loganalyzers.shtml

Overview of free hit counters www.thefreecountry.com/webmaster/loganalyzers.shtml

StatCounter (free hit counter) www.statcounter.com

Table B-12. Chapter 12. Letting Your Visitors Talk to You (and Each Other)

Description URL

Community building on the Web (book
excerpts)

www.naima.com/community

Lyris (professional software for groups
and newsletters)

www.lyris.com

CGI introduction www.cgi101.com/book

ASP and ASP.NET introductions
www.w3schools.com/asp

www.w3schools.com/aspnet

HTML forms tutorial www.w3schools.com/html/html_forms.asp

Google Groups
http://groups.google.com

http://groups.google.com/intl/en/googlegroups/about.html

www.microsoft.com/office/community/en-us

http://services.google.com/urlconsole/controller
http://adwords.google.com
http://searchenginewatch.com/sereport/article.php/2164591
http://groups.google.com
http://groups.google.com/intl/en/googlegroups/about.html
http://p085.ezboard.com/bsurvivorsucks
http://services.google.com/urlconsole/controller
http://adwords.google.com
http://searchenginewatch.com/sereport/article.php/2164591
http://groups.google.com
http://groups.google.com/intl/en/googlegroups/about.html

Description URL

Examples of discussion groups on the
Web

http://p085.ezboard.com/bsurvivorsucks

www.officefrustration.com

http://forums.delphiforums.com/LibertyBooks

Table B-13. Chapter 13. Making Money with Your Site

Description URL

Google
AdSense

www.google.com/adsense (sign up)

www.google.com/services/adsense_tour

www.google.com/adsense/taxinfo

www.google.com/adsense/policies

Amazon
Associates

www.amazon.com/gp/browse.html/?node=3435371 (sign up)

http://associates.amazon.com (log in)

www.amazon.com/gp/browse.html/?node=3435371 (payment rules)

http://associates.amazon.com/gp/associates/network/build-
links/banner/main.html (banners)

PayPal

www.paypal.com

www.paypal.com/cgi-bin/webscr?cmd=xpt/seller/ChargebackRisk-outside
(about chargebacks)

www.paypal.com/cgi-bin/webscr?cmd=p/gen/protections-outside (seller
protection)

Table B-14. Chapter 14. JavaScript and DHTML: Adding Interactivity

Description URL

JavaScript tutorials

www.w3schools.com/js

www.echoecho.com/javascript.htm

www.htmlgoodies.com/primers/jsp

http://webmonkey.wired.com/webmonkey/programming/javascript

Examples of discussion groups on the
Web

http://p085.ezboard.com/bsurvivorsucks

www.officefrustration.com

http://forums.delphiforums.com/LibertyBooks

Table B-13. Chapter 13. Making Money with Your Site

Description URL

Google
AdSense

www.google.com/adsense (sign up)

www.google.com/services/adsense_tour

www.google.com/adsense/taxinfo

www.google.com/adsense/policies

Amazon
Associates

www.amazon.com/gp/browse.html/?node=3435371 (sign up)

http://associates.amazon.com (log in)

www.amazon.com/gp/browse.html/?node=3435371 (payment rules)

http://associates.amazon.com/gp/associates/network/build-
links/banner/main.html (banners)

PayPal

www.paypal.com

www.paypal.com/cgi-bin/webscr?cmd=xpt/seller/ChargebackRisk-outside
(about chargebacks)

www.paypal.com/cgi-bin/webscr?cmd=p/gen/protections-outside (seller
protection)

Table B-14. Chapter 14. JavaScript and DHTML: Adding Interactivity

Description URL

JavaScript tutorials

www.w3schools.com/js

www.echoecho.com/javascript.htm

www.htmlgoodies.com/primers/jsp

http://webmonkey.wired.com/webmonkey/programming/javascript

http://p085.ezboard.com/bsurvivorsucks
http://forums.delphiforums.com/LibertyBooks
http://associates.amazon.com
http://associates.amazon.com/gp/associates/network/build-
http://webmonkey.wired.com/webmonkey/programming/javascript
http://p085.ezboard.com/bsurvivorsucks
http://forums.delphiforums.com/LibertyBooks
http://associates.amazon.com
http://associates.amazon.com/gp/associates/network/build-
http://webmonkey.wired.com/webmonkey/programming/javascript

Description URL http://webmonkey.wired.com/webmonkey/programming/javascript

Text effect examples

www.codejunction.com/detailed/sequential-fly-in-text-effect.html

www.javascript-page.com/tickert.html

www.flooble.com/scripts/animate.php

JavaScript events www.w3schools.com/htmldom/dom_reference.asp

EarthWeb (JavaScript
samples)

http://webdeveloper.earthweb.com/webjs

The JavaScript Source
(JavaScript samples)

http://javascript.internet.com

JavaScript 2 (JavaScript
samples)

www.javascript-2.com

Dynamic Drive (JavaScript
samples)

www.dynamicdrive.com

JavaScript FAQ www.javascripter.net/faq

Table B-15. Chapter 15. Fancy Buttons and Menus

Description URL

Button image
generator

www.buttongenerator.com

Other button image
generators

http://cooltext.com/ButtonBrowse.aspx

www.grsites.com/button

Flash button generator www.flashbuttons.com

Button making software
(Windows)

http://free-buttons.org

FrontPage 3D Button
Visual Editor add-in

www.microsoft.com/downloads/details.aspx?familyid=23e6b5ad-c173-
4aa4-8348-f400d670e0ac

Navigation bars

www.dynamicdrive.com/dynamicindex1

www.dynamicdrive.com/dynamicindex1/topnavbar.htm

www.dynamicdrive.com/dynamicindex1/topmen3

Table B-16. Chapter 16. Audio and Video

http://webmonkey.wired.com/webmonkey/programming/javascript

Text effect examples

www.codejunction.com/detailed/sequential-fly-in-text-effect.html

www.javascript-page.com/tickert.html

www.flooble.com/scripts/animate.php

JavaScript events www.w3schools.com/htmldom/dom_reference.asp

EarthWeb (JavaScript
samples)

http://webdeveloper.earthweb.com/webjs

The JavaScript Source
(JavaScript samples)

http://javascript.internet.com

JavaScript 2 (JavaScript
samples)

www.javascript-2.com

Dynamic Drive (JavaScript
samples)

www.dynamicdrive.com

JavaScript FAQ www.javascripter.net/faq

Table B-15. Chapter 15. Fancy Buttons and Menus

Description URL

Button image
generator

www.buttongenerator.com

Other button image
generators

http://cooltext.com/ButtonBrowse.aspx

www.grsites.com/button

Flash button generator www.flashbuttons.com

Button making software
(Windows)

http://free-buttons.org

FrontPage 3D Button
Visual Editor add-in

www.microsoft.com/downloads/details.aspx?familyid=23e6b5ad-c173-
4aa4-8348-f400d670e0ac

Navigation bars

www.dynamicdrive.com/dynamicindex1

www.dynamicdrive.com/dynamicindex1/topnavbar.htm

www.dynamicdrive.com/dynamicindex1/topmen3

Table B-16. Chapter 16. Audio and Video

http://webmonkey.wired.com/webmonkey/programming/javascript
http://webdeveloper.earthweb.com/webjs
http://javascript.internet.com
http://cooltext.com/ButtonBrowse.aspx
http://free-buttons.org
http://webmonkey.wired.com/webmonkey/programming/javascript
http://webdeveloper.earthweb.com/webjs
http://javascript.internet.com
http://cooltext.com/ButtonBrowse.aspx
http://free-buttons.org

Description URL

Winamp (MP3
player)

www.winamp.com

Classical MIDI
Archives

www.classicalarchives.com

Audacity (sound
editor)

http://audacity.sourceforge.net

WAV/MP3
editors

www.goldwave.com

www.fleximusic.com

iTunes www.apple.com/itunes

Sound effects
www.grsites.com/sounds

www.freeaudioclips.com

Video Blogs http://videoblogging-universe.com

Internet Video
Magazine

www.internetvideomag.com

Overview of
cheap places to
store video files

www.internetvideomag.com/ProductReviews/Services/FreeVideoHosting102.htm

Pixparty (free
video hosting)

www.pixparty.com

GIF animations

www.gifanimations.com

www.webdeveloper.com/animations

www.animatedgif.net

Flash player www.macromedia.com/go/getflashplayer

Impressive
Flash
examples

www.ferryhalim.com/orisinal

www.zapdramatic.com

Flash tutorials
www.flashkit.com/tutorials

www.w3schools.com/flash

Flash
introduction
generator

www.freeflashintros.com

Flash
background
music loops

www.flashkit.com/loops

http://audacity.sourceforge.net
http://videoblogging-universe.com

Table B-17. Chapter 17. Blogs

Description URL

Definition of "blog" http://en.wikipedia.org/wiki/Weblog

Popular blog examples

www.andrewsullivan.com

http://dear_raed.blogspot.com

www.wilwheaton.net

www.schneier.com/blog

http://blog.plaxoed.com

Online feed readers

www.bloglines.com

www.newsisfree.com

www.newsgator.com

Windows feed reader
www.bradsoft.com/feeddemon

Mac feed reader
http://ranchero.com/netnewswire

Overview of feed readers
http://weblogs.about.com/od/aggregators

MSN Spaces (hosted blogs) http://spaces.msn.com

Radio UserLand (hosted blogs) http://radio.userland.com

TypePad (hosted blogs) www.typepad.com

Live Journal (hosted blogs) www.livejournal.com

Xanga (hosted blogs) www.xanga.com

Movable Type (blogging
software)

www.movabletype.org

Bloxsom (blogging software) www.blosxom.com

WordPress (blogging software) http://wordpress.org

WebCrimson (hosted blogs,
with the option to self-host)

www.webcrimson.com

www.blogger.com

http://help.blogger.com (information)

http://help.blogger.com/bin/topic.py?topic=39 (template tag

http://en.wikipedia.org/wiki/Weblog
http://dear_raed.blogspot.com
http://blog.plaxoed.com
http://ranchero.com/netnewswire
http://weblogs.about.com/od/aggregators
http://spaces.msn.com
http://radio.userland.com
http://wordpress.org
http://help.blogger.com
http://help.blogger.com/bin/topic.py?topic=39

Description URL

Blogger (hosted blogs, with
the option to self-host)

http://help.blogger.com/bin/topic.py?topic=39 (template tag
reference)

http://help.blogger.com/bin/answer.py?answer=974 (putting
Google ads in a blog)

http://help.blogger.com/bin/answer.py?answer=152&topic=17
(create a BlogThis bookmark)

http://buzz.blogger.com/bloggerforward.html (post a blog entry
using Word)

Blogger discussion forum www.bloggerforum.com

Removing the Blogger NavBar
(unofficial workaround)

www.diaphaneity.com/layouts/2004/08/how-todisable-
navbar.html

Google Toolbar (for BlogThis) http://toolbar.google.com

Blogrolling service www.blogrolling.com

Blogger (hosted blogs, with
the option to self-host)

http://help.blogger.com/bin/topic.py?topic=39 (template tag
reference)

http://help.blogger.com/bin/answer.py?answer=974 (putting
Google ads in a blog)

http://help.blogger.com/bin/answer.py?answer=152&topic=17
(create a BlogThis bookmark)

http://buzz.blogger.com/bloggerforward.html (post a blog entry
using Word)

Blogger discussion forum www.bloggerforum.com

Removing the Blogger NavBar
(unofficial workaround)

www.diaphaneity.com/layouts/2004/08/how-todisable-
navbar.html

Google Toolbar (for BlogThis) http://toolbar.google.com

Blogrolling service www.blogrolling.com

http://help.blogger.com/bin/topic.py?topic=39
http://help.blogger.com/bin/answer.py?answer=974
http://help.blogger.com/bin/answer.py?answer=152&topic=17
http://buzz.blogger.com/bloggerforward.html
http://toolbar.google.com
http://help.blogger.com/bin/topic.py?topic=39
http://help.blogger.com/bin/answer.py?answer=974
http://help.blogger.com/bin/answer.py?answer=152&topic=17
http://buzz.blogger.com/bloggerforward.html
http://toolbar.google.com

Colophon

Mary Anne Weeks Mayo was the production editor for Creating Web Sites: The Missing Manual.
Marlowe Shaeffer and Claire Cloutier provided quality control. Johnna VanHoose Dinse indexed the
book.

Marcia Friedman designed the cover of this book, based on a series design by David Freedman.
Marcia Friedman produced the cover layout with Adobe InDesign CS using Adobe's Minion and Gill
Sans fonts.

David Futato designed the interior layout, based on a series design by Phil Simpson. This book was
converted by Keith Fahlgren to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray,
Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Adobe Minion; the heading font is Adobe Formata Condensed; and the code font is LucasFont's
TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert
Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX and Adobe Photoshop
CS.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

<acronym> tag

<address> tag

<anchor> tag

 links

<area> tag

 tag

<base> tag

<big> tag

<blockquote> tag 2nd

<body> tag

 tag

<button> tag

<caption> tag

<cite> tag

<dd> tag

<det> tag

<dfn> tag

<div> tag 2nd

<dl> tag

<dt> tag

 tag

<form> tag

<frame> tag

<frameset> tag

<head> tag

<hr> tag

<html> tag

<i> tag

<iframe> tag

 tag

<input> tag

<ins> tag

 tag

<link> tag

<map> tag

<meta> tag

<noframes> tag

<noscript> tag

<object> tag

 tag

<option> tag

<p> tag

<param> tag

<pre> tag

<q> tag

<script> tag

<select> tag

<small> tag

 tag

 tag

<style> tag

<sub> tag

<sup> tag

<table> tag

<td> tag

<textarea> tag

<th> tag

<tr> tag

<tt> tag

<u> tag

 tag

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

absolute font sizes

absolute positioning

absolute URLs

ActiveX controls

addresses

 email

 IP

advertisement

 Amazon Associates 2nd

 Google AdSense

 money and

 placing on Web pages 2nd 3rd 4th

 promotion

 targeted ads

affiliate programs

alert() function (JavaScript)

aligning text 2nd 3rd

alignment

 text

 tables

Amazon Associates 2nd 3rd

 advertisement

 associate links

 associate links

 sign up

animation

 Flash 2nd 3rd 4th

anti-aliasing fonts

applications

applying style sheets 2nd 3rd 4th 5th

ASP (Active Server Pages)

associate links

 Amazon Associates

 advanced links

 product links

audience for site

audio

AVI files

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

background images

 elements

background music 2nd 3rd 4th 5th 6th

background-color property

backgrounds

bandwidth

binary files

block elements

Blogger

 creating a blog 2nd 3rd 4th 5th 6th

 emailing entries

 formatted posts

 hosting blogs

 managing blogs 2nd 3rd

 settings

 templates

 user profile

blogs 2nd

 content

 feed readers

 hosting

 promoting

 remote systems

 software

 syndication

 types

BlogThis

bold text

border properties

borders

 color

 CSS (Cascading Style Sheets)

 color

 padding

 frames

 images and

 margins and

 padding

 sections

 style sheets

 color

 tables

brackets

broken links

browser-based uploads 2nd

browser-specific features

browsers

 CSS and

 Firefox

 frames support

 Internet Explorer

 Lynx

 Opera

 Safari

 scripts and

 spyware

 URL analysis

bulleted lists

ButtonGenerator.com

buttons

 dynamic

 font anti-aliasing

 creating 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

caching

captions for pictures

case sensitivity in tags

cell spans

CGI (Common Gateway Interface)

character entities

chargebacks

checkboxes

class selectors

classes 2nd

client-side programming

closing tags

CoffeeCup free HTML Editor

collapsible menus

 creating

collapsible text

color

 hexadecimal values

 links

 RGB values

 versus black and white

 web-safe

color picking programs

colspan attribute

compression

 GIF files

 graphics

 images

 JPEG files

 PNG files

compression artifacts

container HTML tags

content

 blogs

 links to

contextual selectors

controls 2nd

credit cards

CSS (Cascading Style Sheets) 2nd

 borders

 browsers and

 caching and

 cascading

 class selectors

 classes

 font properties

 fonts

 size 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 inheritance

 inline styles

 rules

 styles for entire site

 text

 alignment 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

defining framesets

definition lists 2nd

design

 tables and

 tips

DHTML (Dynamic HTML)

 HTML objects 2nd 3rd 4th 5th 6th

digital audio files

digital video

directories

discussions

domain forwarding

domain names

 .org

 international

 registering

 Web hosting and

domain parking

domains

 subdomains

downloads

 JavaScript scripts

Dreamweaver

 rollover buttons

 site management and

DTD (document type definition)

dynamic buttons

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

e-commerce Web sites

email

 addresses

 Blogger entries

 mail-to links

embedded applications

embedded multimedia

embedded style sheets

emphasized text

empty paragraphs

endless HTML tags

event Web sites

events (JavaScript) 2nd 3rd 4th

exact font sizes

external links 2nd 3rd 4th

external script files

external style sheets

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

feed readers

feedback pages

file formats

 JPEG

file transfers

 FTP

filenames in URLs

files

 binary

 HTML

 multimedia

Firefox

fixed IP addresses

flaming

Flash

 animation 2nd 3rd 4th

floating images

floating layout

folders

 FrontPage

 relative links 2nd

font anti-aliasing

 buttons

 button makers

font properties 2nd 3rd

font-family attributes

fonts

 CSS (Cascading Style Sheets)

 standard

 preferences

 size 2nd 3rd 4th 5th

 standard

 style sheets

 standard

formats

formatting HTML documents

formatting text

forms

 JavaScript

forums

 Google Groups

frame source

frames

 browser support

 problems with

 scrolling

framesets

 documents

 URLs and

free

 HTML editors

 CoffeeCup

 HTML-Kit

 Nvu

free artwork

free HTML editors 2nd 3rd 4th

 CoffeeCup

 HTML-Kit

 Nvu

free Web hosting

FrontPage

 folders

 rollover buttons

 uploading Web site

 Web sites

FTP (File Transfer Protocol)

 Web hosting and

functions

 calling

 custom

 declaring

 information receipt

 information return

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

GIF files

 animation 2nd

 compression and

Google

 AdWords 2nd

 PageRank

 search engines

 PageRank

Google AdSense

 creating ad 2nd 3rd 4th 5th 6th 7th 8th

 Google search box 2nd 3rd 4th

 money making

 sign up

Google Groups

 creating

 managing

graphical bulleted lists

graphical buttons

 button makers

 button pictures 2nd 3rd 4th 5th 6th

 creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

graphical text 2nd

graphics

 compression 2nd

 formats

groups

 creating 2nd 3rd 4th

 Google Groups

 participating in

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

headings

 tags

hexadecimal color values

hit counters

horizontal lines

hosting blogs

 Blogger

href attribute

HTML

 file creation

 objects 2nd

 properties

HTML documents

 formatting

 line breaks

 structuring

 text editors and

 text flow

HTML editors

 free 2nd 3rd 4th

 image insertion

 multiple views

 professional

 site management

 style sheet creation

 types

 Web page creation

 WYSIWYG

HTML forms 2nd

 controls

HTML tables

 borders

 cell spans

 contextual selectors

 design and

 nested

 sizing

 tags

HTML tags

 <acronym>

 <address>

 <base>

 <big>

 <blockquote>

 <button>

 <caption>

 <cite>

 <dfn>

 <div>

 <div> tag

 <dl>

 <dt>

 <form>

 <frameset>

 <head>

 <hr>

 <html>

 <i>

 <iframe>

 <input>

 <ins>

 <link>

 <map>

 <meta>

 <noframes>

 <noscript>

 <object>

 <option>

 <p>

 <pre>

 <q>

 <small>

 <style>

 <sub>

 <sup>

 <table>

 <td>

 <textarea>

 <th>

 <tr>

 <tt>

 <u>

 basic tags

 block elements

 brackets

 container tags

 headings 2nd

 line breaks

 lists

 logical

 nesting

 physical

 special characters

 text

 text formatting 2nd 3rd

 text structure

HTML-Kit editor

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

icons

id selectors

idiomatic HTML tags

image lists

image preloading

image rollovers

images

 tag

 alternate attribute

 as links 2nd 3rd 4th

 background images

 borders and

 compression

 file sizes

 format

 inline

 inserting

 size

 styles and

 text wrapping

inheritance

inline images

inline styles 2nd

interactive forms

internal links 2nd 3rd 4th

internal style sheets 2nd

international domain names

Internet

 history of

 intranets and

 Web comparison

Internet Explorer

invisible tables

IP addresses

 fixed

ISPs

italic text

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Java applets

JavaScript

 <script> tag 2nd 3rd 4th

 DHTML

 dynamic pages 2nd

 events 2nd

 forms

 functions

 history of

 line breaks

 resources

 scripts

 categories

 spaces

 variables

 window resizing

JPEG files

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

keyword meta tags

 hidden

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

layering

layout

 floating

 style-based

lifespan of Web site

line breaks

 JavaScript

linking

links

 anchor tag

 color

 content

 external 2nd

 images as

 internal

 link rot

 reciprocal

 redirects

 relative 2nd 3rd 4th 5th 6th

 URLs

lists

 definition lists

 HTML tags

 definition lists

 ordered

 unordered lists

 nesting

 ordered lists

 unordered

logical HTML tags

logs

Lynx

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

mailto link 2nd

managing Web sites

 link checkers

margin property

margins

 padding

menus

 collapsible

meta tags

 description

 keyword

 promotion

 description

 keyword

 promotion and

MIDI (Musical Instrument Digital Interface) files

money making

 advertisement

 Amazon Associates 2nd 3rd 4th 5th 6th

 affiliate programs

 donations

 PayPal Merchant Tools 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

monitors

mouse events (JavaScript)

MOV files

movie creation

movies

MP3 files

MPEG files

much

multimedia

 digital video

 embedding

 files

 MIDI

 Flash

 GIF files

 linking to

 MIDI files

 MP3 files

 music

 background music

 scenarios

 sound effects

 video clips

 WAV files

music

 background music 2nd

 WAV files

music files

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

name-value pairs

navigating

nested framesets 2nd 3rd 4th

nested HTML tags

nested lists

nested tables

Netscape Navigator

news aggregators

non-breaking spaces 2nd

Notepad

Nvu

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

objects

ODP (Open Directory Project) 2nd 3rd

online diaries

Opera

ordered lists 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

parent folders

path

pay for content

PayPal Merchant Tools

 chargebacks

 credit cards

 payment acceptance 2nd 3rd 4th

 shopping cart creation 2nd 3rd 4th

personal Web sites

physical HTML tags

pixels

plug-ins 2nd

PNG files

preformatted text

professional HTML editors

 Macromedia Dreamweaver

 Microsoft FrontPage

promotion

 advertising

 blogs

 directories

 Google AdWords 2nd

 hit counters

 icons and

 meta tags

 reciprocal links

 Web server logs

promotion Web sites

properties

 background-color

 borders

 color

 margin

 rules

 width

protocols in URLs

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

query string in URLs

quotes

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

radio buttons

raster graphics

reciprocal links

redirects

registering domain name

relative

 URLs (Uniform Resource Locator)

 rules

relative font sizes

relative links 2nd 3rd 4th 5th 6th

relative URLs

 rules

repeating content

resizing frames

resolution

resume Web sites

returning visitors

RGB color values

rollover buttons

 building

 Dreamweaver

 FrontPage

 image preloading

rollovers

 graphical buttons

 Dreamweaver

 FrontPage

root folder

rows

rules

 CSS (Cascading Style Sheets)

 properties

 selectors 2nd

 properties

 selectors

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Safari

sales

 Google AdSense 2nd 3rd

sandboxed code

screen resolution

scripting languages

scripts

 browsers and

 JavaScript

 categories

 searching online

scrolling

search engines

 Google

 AdWords 2nd

 hiding from

 promotion

 Google

searches

 domain names

 Google search box addition

 image text

selectors

 contextual

self-hosted blogs

self-promotion

server-side programming

shopping cart 2nd 3rd 4th 5th 6th

site management

 link checkers

sizes

 fonts

 absolute

 exact

 pixels

 relative

sizing

 frames

 HTML tables

 rows

 table rows

 tables

 rows

small business Web sites

software

 blogs

 spyware

sound effects 2nd 3rd

spaces

spanning

special characters 2nd

split window HTML editors

spyware

standalone HTML tags

streaming media

strikethrough text

strong text

structuring HTML documents

style sheets

 borders

 class selectors

 color

 entire Web site

 internal

 link color

style-based layout 2nd

 absolute positioning

 floating layout

styles

 images and

 inheritance

 inline

subdomains

subfolders

subscript text

superscript text and

syndication of blogs

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tables

 <div> tag

 borders

 HTML

 invisible

 nested

 sizing

 text alignment

targeted ads

teletype text

templates

 applying

 customizing

terminology in communities

text

 alignment 2nd 3rd

 bold

 CSS (Cascading Style Sheets)

 spacing

 emphasized

 graphical

 italic

 preformatted

 spacing

 strong

 structure in tags

 subscript

 superscript

 table alignment

 teletype

 underline

text tags

 formatting and 2nd

 headings

 line breaks

 ordered lists

text-align property

text-based HTML editors

TextEdit

third-party menus 2nd 3rd 4th

tiling background images

titles

topical Web sites

tracking visitors

trolling

type selectors

types of Web sites

typographic HTML tags

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

underline text

unordered lists 2nd

uploads

 browser-based

 Web hosting and

 Web sites

 Dreamweaver

 FrontPage

URLs (Uniform Resource Locator)

 absolute

 bookmarks

 browsers and

 framesets and

 paths

 query string

 relative

Usenet

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

values

variables

 declaring

 example

 JavaScript

 example

 modifying

vector graphics

video

video clips

 animation

 Flash 2nd 3rd 4th

 multimedia

 animation

visitors

 HTML forms

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

watermarks

WAV files 2nd

Web

 Internet comparison

Web hosting

 application hosting

 bandwidth

 checklist

 email addresses

 free hosts

 frills

 FTP and

 hosting companies 2nd 3rd 4th

 ISPs

 needs assessment

 packages

 standard site hosting

Web pages

 ad placement 2nd 3rd 4th

Web resources 2nd 3rd 4th 5th 6th 7th 8th

Web rings

Web servers 2nd

 hosting

 logs

Web sites

 blogs

 Dreamweaver

 defining

 event sites

 FrontPage

 managing

 online diaries

 personal

 small business

 topical

 types

 uploads

 Dreamweaver

 FrontPage

web-safe colors

white space

width property

window size

 JavaScript and

WMV files

wrapping text around images

WYSIWYG HTML editors 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XHTML

 page creation

XML

	Creating Web Sites: The Missing Manual
	Table of Contents
	Copyright
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgements
	The Missing Manual Series

	Introduction
	What You Need to Get Started
	About This Book
	Macintosh and Windows
	About the Outline
	About These Arrows
	Downloadable Examples
	About MissingManuals.com
	Safari® Enabled

	Part One: Welcome to the Web
	Chapter 1. Preparing for the Web
	Section 1.1. Introducing the World Wide Web
	Section 1.2. Planning a Web Site
	Section 1.3. The Ingredients of a Web Site

	Chapter 2. Creating Your First Page
	Section 2.1. The Anatomy of a Web Page
	Section 2.2. The HTML Tag
	Section 2.3. The HTML Document
	Section 2.4. XHTML

	Chapter 3. Putting Your Page on the Web
	Section 3.1. How Web Hosting Works
	Section 3.2. Domain Names
	Section 3.3. Getting Web Space
	Section 3.4. Transferring Files

	Chapter 4. Power Tools
	Section 4.1. Choosing Your Tools
	Section 4.2. Working with Your HTML Editor

	Part Two: Building Better Web Pages
	Chapter 5. HTML Text Tags
	Section 5.1. Understanding Text and the Web
	Section 5.2. Basic Text Tags
	Section 5.3. HTML Tags for Lists
	Section 5.4. Inline Formatting

	Chapter 6. Style Sheets
	Section 6.1. Style Sheet Basics
	Section 6.2. Colors
	Section 6.3. Fonts
	Section 6.4. Text Alignment and Spacing
	Section 6.5. Borders
	Section 6.6. Class Selectors

	Chapter 7. Adding Graphics
	Section 7.1. Understanding Images
	Section 7.2. Images and Styles
	Section 7.3. Techniques with Graphics
	Section 7.4. Finding Free Art

	Chapter 8. Linking Pages
	Section 8.1. Understanding the Anchor
	Section 8.2. Image Links and Image Maps
	Section 8.3. Adding Bookmarks
	Section 8.4. When Good Links Go Bad
	Section 8.5. Link Checkers

	Chapter 9. Page Layout Tools:Tables and Styles
	Section 9.1. HTML Tables
	Section 9.2. Style-Based Layout

	Chapter 10. Frames
	Section 10.1. The Problem with Repeating Content
	Section 10.2. Frame Basics
	Section 10.3. Building Better Frames Pages

	Part Three: Connecting with Your Audience
	Chapter 11. Attracting Visitors
	Section 11.1. Your Web Site Promotion Plan
	Section 11.2. Spreading the Word
	Section 11.3. Adding Meta Tags
	Section 11.4. Directories and Search Engines
	Section 11.5. Tracking Visitors

	Chapter 12. Letting Visitors Talk to You (and Each Other)
	Section 12.1. Transforming a Site into a Community
	Section 12.2. Helping Visitors Email You
	Section 12.3. Adding Forums and Groups to Your Site

	Chapter 13. Making Money with Your Site
	Section 13.1. Money Making the Web Way
	Section 13.2. Google AdSense
	Section 13.3. Amazon Associates
	Section 13.4. PayPal Merchant Tools

	Part Four: Web Site Frills
	Chapter 14. JavaScript and DHTML: Adding Interactivity
	Section 14.1. Understanding JavaScript
	Section 14.2. JavaScript 101
	Section 14.3. Dynamic HTML
	Section 14.4. Scripts on the Web

	Chapter 15. Fancy Buttons and Menus
	Section 15.1. Creating Fancy Buttons
	Section 15.2. Creating Fancy Menus

	Chapter 16. Audio and Video
	Section 16.1. Understanding Multimedia
	Section 16.2. Background Music
	Section 16.3. Video Clips
	Section 16.4. Animations

	Part Five: Blogs
	Chapter 17. Blogs
	Section 17.1. Understanding Blogs
	Section 17.2. Getting Started with Blogger

	Part Six: Appendixes
	Appendix A. HTML Quick Reference
	Section A.1. HTML Tags
	Section A.2. HTML Character Entities
	Section A.3. HTML Color Names

	Appendix B. Useful Web Sites
	Section B.1. Chapter Links

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

