
Web Design in a Nutshell, 3rd Edition

By Jennifer Niederst Robbins

...

Publisher: O'Reilly

Pub Date: February 2006

Print ISBN-10: 0-596-00987-9

Print ISBN-13: 978-0-59-600987-8

Pages: 826

Table of Contents | Index

Are you still designing web sites like it's 1999? If so, you're in for a surprise. Since the last edition of
this book appeared five years ago, there has been a major climate change with regard to web
standards. Designers are no longer using (X)HTML as a design tool, but as a means of defining the
meaning and structure of content. Cascading Style Sheets are no longer just something interesting
to tinker with, but rather a reliable method for handling all matters of presentation, from fonts and
colors to the layout of the entire page. In fact, following the standards is now a mandate of
professional web design.

Our popular reference, Web Design in a Nutshell, is one of the first books to capture this new web
landscape with an edition that's been completely rewritten and expanded to reflect the state of the
art. In addition to being an authoritative reference for (X)HTML and Cascading Style Sheets, this
book also provides an overview of the unique requirements of designing for the Web and gets to the
nitty-gritty of JavaScript and DOM Scripting, web graphics optimization, and multimedia production.
It is an indispensable tool for web designers and developers of all levels.

The third edition covers these contemporary web design topics:

Structural layer: HTML 4.01 and XHTML 1.0 (9 chapters), including an alphabetical reference
of all elements, attributes and character entities

Presentation layer: Ten all-new chapters on Cascading Style Sheets, Level 2.1, including an
alphabetical reference of all properties and values.

Behavior layer: JavaScript and scripting with the Document Object Model (DOM)

Web environment: New web standards, browsers, display devices, accessibility, and
internationalization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Web graphics optimization: Producing lean and mean GIF, JPEG, PNG, and animated GIFs

Multimedia: Web audio, video, Flash, and PDF

Organized so that readers can find answers quickly, Web Design in a Nutshell, Third Edition helps
experienced designers come up to speed quickly on standards-based web design, and serves as a
quick reference for those already familiar with the new standards and technology.

There are many books for web designers, but none that address such a wide variety of topics. Find
out why nearly half a million buyers have made this the most popular web design book available.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Web Design in a Nutshell, 3rd Edition

By Jennifer Niederst Robbins

...

Publisher: O'Reilly

Pub Date: February 2006

Print ISBN-10: 0-596-00987-9

Print ISBN-13: 978-0-59-600987-8

Pages: 826

Table of Contents | Index

 Intermediate Perl

 Foreword

 Contributors

 Technical Reviewers

 Lead Technical Editors

 Technical Reviewers

 Preface

 What's in the Book

 Using Code Examples

 Conventions Used in This Book

 CSS Property Conventions

 How to Contact Us

 Safari® Enabled

 Acknowledgments

 Part I: The Web Environment

 Chapter 1. Web Standards

 Section 1.1. What Are Standards?

 Section 1.2. Current Web Standards

 Section 1.3. Standards-Driven Design

 Section 1.4. For Further Reading

 Chapter 2. Designing for a Variety of Browsers

 Section 2.1. Browser History

 Section 2.2. Browser Roll-Call

 Section 2.3. Gathering Usage Statistics

 Section 2.4. Learning from Browser Statistics

 Section 2.5. Dealing with Browser Differences

 Section 2.6. Know Your Audience

 Section 2.7. Test!

 Chapter 3. Designing for a Variety of Displays

 Section 3.1. Designing for Unknown Monitor Resolutions

 Section 3.2. Fixed Versus Liquid Web Pages

 Section 3.3. Designing "Above the Fold"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 3.4. Mobile Devices

 Chapter 4. A Beginner's Guide to the Server

 Section 4.1. Servers 101

 Section 4.2. Unix Directory Structures

 Section 4.3. File Naming Conventions

 Section 4.4. Uploading Documents (FTP)

 Section 4.5. File (MIME) Types

 Chapter 5. Accessibility

 Section 5.1. Types of Disabilities

 Section 5.2. Overview of Assistive Technology

 Section 5.3. Who Is Responsible for Accessibility?

 Section 5.4. Web Content Accessibility Guidelines

 Section 5.5. Web Content Accessibility Guidelines 2.0 (WCAG 2.0)

 Section 5.6. Standards Variations and Section 508

 Section 5.7. Web Accessibility Techniques

 Section 5.8. Testing for Accessibility

 Chapter 6. Internationalization

 Section 6.1. Character Sets and Encoding

 Section 6.2. Character References

 Section 6.3. Language Features

 Section 6.4. Style Sheets Language Features

 Section 6.5. For Further Reading

 Part II: The Structural Layer: XML and (X)HTML

 Chapter 7. Introduction to XML

 Section 7.1. XML Basics

 Section 7.2. How It Works

 Section 7.3. XML Document Syntax

 Section 7.4. Well-Formed XML

 Section 7.5. Document Type Definition (DTD)

 Section 7.6. XML Namespaces

 Section 7.7. XML on the Web

 Section 7.8. Web-Related XML Applications

 Section 7.9. Where to Learn More

 Chapter 8. HTML and XHTML Overview

 Section 8.1. The Role of HTML

 Section 8.2. Markup Basics

 Section 8.3. Introduction to XHTML

 Section 8.4. Which Standard Is Right for You?

 Section 8.5. Well-Formed XHTML

 Section 8.6. Web Authoring Tools

 Section 8.7. Good Authoring Practices

 Chapter 9. Document Structure

 Section 9.1. Minimal Document Structure

 Section 9.2. Document Type Declaration

 Section 9.3. The Root Element

 Section 9.4. The Document Header

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 9.5. The Document Body

 Chapter 10. Text Elements

 Section 10.1. Choosing Text Elements

 Section 10.2. The Building Blocks of Content

 Section 10.3. Inline Elements

 Section 10.4. Deleted and Inserted Text

 Section 10.5. Generic Elements (div and span)

 Section 10.6. Lists

 Section 10.7. Presentational Elements

 Section 10.8. Character Entity References

 Chapter 11. Creating Links

 Section 11.1. Simple Hypertext Links

 Section 11.2. Linking Within a Document

 Section 11.3. Targeting Windows

 Section 11.4. Alternative Protocols

 Section 11.5. Linking Documents with link

 Chapter 12. Images and Objects

 Section 12.1. Inline Images

 Section 12.2. Image Maps

 Section 12.3. Embedded Media

 Section 12.4. Java Applets

 Section 12.5. Inline (Floating) Frames

 Chapter 13. Tables

 Section 13.1. Table Uses

 Section 13.2. Basic Table Structure

 Section 13.3. Row Groups

 Section 13.4. Columns and Column Groups

 Section 13.5. Table Presentation

 Section 13.6. Accessible Tables

 Section 13.7. Responsible Layout Tables

 Chapter 14. Frames

 Section 14.1. Introduction to Frames

 Section 14.2. Basic Frameset Structure

 Section 14.3. Frame Function and Appearance

 Section 14.4. Targeting Frames

 Section 14.5. Frame Design Tips and Tricks

 Chapter 15. Forms

 Section 15.1. The Basic Form Element

 Section 15.2. Form Controls

 Section 15.3. Accessibility Features

 Section 15.4. disabled and readonly

 Section 15.5. Affecting Form Appearance

 Part III: The Presentation Layer: Cascading Style Sheets

 Chapter 16. Cascading Style Sheets Fundamentals

 Section 16.1. CSS in a Nutshell

 Section 16.2. The Benefits of CSS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 16.3. How CSS Works

 Section 16.4. Rule Syntax

 Section 16.5. Adding Styles to a Document

 Section 16.6. Key Concepts

 Section 16.7. Specifying Values

 Section 16.8. Browser Support

 Section 16.9. For Further Reading

 Chapter 17. Selectors

 Section 17.1. Type (Element) Selector

 Section 17.2. Contextual Selectors

 Section 17.3. Class and ID Selectors

 Section 17.4. Attribute Selectors

 Section 17.5. Pseudoselectors

 Chapter 18. Font and Text Properties

 Section 18.1. Typography on the Web

 Section 18.2. Font Family

 Section 18.3. Font Size

 Section 18.4. Other Font Settings

 Section 18.5. Text Transformation (Capitalization)

 Section 18.6. Text Decoration

 Section 18.7. Line Height

 Section 18.8. Text Alignment Properties

 Section 18.9. Text Spacing

 Section 18.10. Text Direction

 Chapter 19. Basic Box Properties

 Section 19.1. The Box Model, Revisited

 Section 19.2. Width and Height

 Section 19.3. Margins

 Section 19.4. Borders

 Section 19.5. Padding

 Chapter 20. Color and Backgrounds

 Section 20.1. Foreground Color

 Section 20.2. Background Color

 Section 20.3. Background Images

 Chapter 21. Floating and Positioning

 Section 21.1. Normal Flow

 Section 21.2. Floating

 Section 21.3. Positioning Basics

 Section 21.4. Absolute Positioning

 Section 21.5. Fixed Positioning

 Section 21.6. Relative Positioning

 Chapter 22. CSS for Tables

 Section 22.1. The Essence of Tables

 Section 22.2. Styling Tables

 Section 22.3. Borders

 Section 22.4. Table Layout (Width and Height)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 22.5. Table Display Values

 Chapter 23. Lists and Generated Content

 Section 23.1. CSS for Lists

 Section 23.2. Generated Content

 Chapter 24. CSS Techniques

 Section 24.1. Centering a Page

 Section 24.2. Two-Column Layouts

 Section 24.3. Three-Column Layouts

 Section 24.4. Boxes with Rounded Corners

 Section 24.5. Image Replacement

 Section 24.6. CSS Rollovers

 Section 24.7. List-Based Navigation Bars

 Section 24.8. CSS Techniques Resources

 Chapter 25. Managing Browser Bugs: Workarounds, Hacks, and Filters

 Section 25.1. Working with "Troubled" Browsers

 Section 25.2. The Browsers

 Section 25.3. Hack and Workaround Management 101

 Part IV: The Behavioral Layer: JavaScript and the DOM

 Chapter 26. Introduction to JavaScript

 Section 26.1. A Little Background

 Section 26.2. Using JavaScript

 Section 26.3. JavaScript Syntax

 Section 26.4. Event Handling

 Section 26.5. The Browser Object

 Section 26.6. Where to Learn More

 Chapter 27. DOM Scripting

 Section 27.1. A Sordid Past

 Section 27.2. Out of the Dark Ages

 Section 27.3. The DOM

 Section 27.4. Manipulating Documents with the DOM

 Section 27.5. Working with Style

 Section 27.6. DOM Scripting in Action

 Section 27.7. Supplement: Getting Started with Ajax

 Part V: Web Graphics

 Chapter 28. Web Graphics Overview

 Section 28.1. Web Graphic File Formats

 Section 28.2. Image Resolution

 Section 28.3. Color on the Web

 Section 28.4. Web Graphics Production Tips

 Chapter 29. GIF Format

 Section 29.1. 8-Bit Indexed Color

 Section 29.2. LZW Compression

 Section 29.3. Interlacing

 Section 29.4. Transparency

 Section 29.5. Minimizing GIF File Sizes

 Section 29.6. Designing GIFs with the Web Palette

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 30. JPEG Format

 Section 30.1. 24-Bit Color

 Section 30.2. JPEG Compression

 Section 30.3. Progressive JPEGs

 Section 30.4. Creating JPEGs

 Section 30.5. Minimizing JPEG File Size

 Chapter 31. PNG Format

 Section 31.1. When to Use PNGs

 Section 31.2. PNG Features

 Section 31.3. Platform/Browser Support

 Section 31.4. Creating PNG Files

 Section 31.5. PNG Optimization Strategies

 Section 31.6. For Further Reading

 Chapter 32. Animated GIFs

 Section 32.1. How They Work

 Section 32.2. Using Animated GIFs

 Section 32.3. Tools

 Section 32.4. Creating Animated GIFs

 Section 32.5. Optimizing Animated GIFs

 Part VI: Media

 Chapter 33. Audio on the Web

 Section 33.1. Basic Digital Audio Concepts

 Section 33.2. Using Existing Audio

 Section 33.3. Preparing Your Own Audio

 Section 33.4. Streaming Audio

 Section 33.5. Audio Formats

 Section 33.6. Choosing an Audio Format

 Section 33.7. Adding Audio to a Web Page

 Chapter 34. Video on the Web

 Section 34.1. Basic Digital Video Concepts

 Section 34.2. Compression

 Section 34.3. Video File Formats

 Section 34.4. Adding Video to an HTML Document

 Chapter 35. The Flash Platform

 Section 35.1. Using Flash on Web Pages

 Section 35.2. Creating Flash Movies

 Section 35.3. ActionScript

 Section 35.4. Adding Flash to a Web Page

 Section 35.5. Integrating Flash with Other Technologies

 Section 35.6. The Flash Player

 Section 35.7. Flash Resources

 Chapter 36. Printing from the Web

 Section 36.1. Browser Print Mechanisms

 Section 36.2. Cascading Style Sheets for Print

 Section 36.3. Portable Document Format (PDF)

 Section 36.4. Flash Printing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Part VII: Appendixes

 Appendix A. HTML Elements and Attributes

 Section A.1. Common Attributes and Events

 Appendix B. CSS 2.1 Properties

 Section B.1. Visual Media

 Section B.2. Paged Media

 Section B.3. Aural Styles

 Appendix C. Character Entities

 Section C.1. ASCII Character Set

 Section C.2. Nonstandard Entities (‚-Ÿ)

 Section C.3. Latin-1 (ISO-8859-1)

 Section C.4. Latin Extended-A

 Section C.5. Latin Extended-B

 Section C.6. Spacing Modifier Letters

 Section C.7. Greek

 Section C.8. General Punctuation

 Section C.9. Letter-like Symbols

 Section C.10. Arrows

 Section C.11. Mathematical Operators

 Section C.12. Miscellaneous Technical Symbols

 Section C.13. Geometric Shapes

 Section C.14. Miscellaneous Symbols

 Appendix D. Specifying Color

 Section D.1. Specifying Color by RGB Values

 Section D.2. Specifying Colors by Name

 Appendix E. Microformats: Extending (X)HTML

 Section E.1. Extending HTML 4 and XHTML

 Section E.2. Semantic Class Names

 Section E.3. Link Relationships

 Section E.4. More Microformats

 Glossary

 About the Author

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Intermediate Perl
Web Design in a Nutshell, Third Edition

by Jennifer Niederst Robbins

Copyright © 2006, 2001, 1999 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Steve Weiss

Developmental Editor: Linda Laflamme

Technical Editors: Tantek Çelik and Molly E. Holzschlag

Production Editor: Mary Brady

Copyeditor: Linley Dolby

Proofreader: Sada Preisch

Indexer: Lucie Haskins

Cover Designer: Edie Freedman

Interior Designer: David Futato

Cover Illustrator: Lorrie LeJeune

Illustrator: Christopher Reilley

Printing History:

January 1999: First Edition.

September 2001: Second Edition.

February 2006: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The In a Nutshell series designations, Web Design in a Nutshell, the image of a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

least weasel, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00987-9

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Foreword
I recall sitting at my desk many years ago, struggling with a piece of HTML markup, when someone
walked by and dropped off a floppy disk. Written in block letters across the label was "Netscape .9b"-
-a pre-release beta version of what would soon become the most widely used browser of that time. I
installed it and clicked around my company's web site, and I remember thinking to myself, "Huh. My
job just completely changed."

Up to that point in the nascent history of the World Wide Web, there had really been only one
browser to worry about. Nearly everyone used Mosaic, and as long as my pages were also functional
in a text-only browser like Lynx, I could safely forget about that aspect of web design. But suddenly
there was competition. And with competition came new concerns about rendering, feature support,
and bugs.

That would prove to be one of innumerable watershed events in more than a decade of growth and
evolution of the Web as a world-changing technological platform. Soon after Netscape shipped its
browser, my job would completely change over and over again. First came fonts and colors; then
frames, JavaScript, database-driven dynamic web applications, XML, Cascading Style Sheets, Flash,
semantic markupand all of those innovations have iterated through countless new versions. If there's
one thing that is certain in the life of a web designer, it's that every day something you thought you
knew will change. And then change again.

Yet in any journeywhether literal or metaphoricalit pays to occasionally find a vantage point and take
stock of where you've been and how far you have to go. We've come a long way on the Web, but we
also have so much more to learn.

The earliest days of the Web were the domain of the webmaster. At that time, the Web was viewed
as another service provided as technical infrastructuremuch like the email server or firewall. The
webmaster's duties included maintaining the HTTP server, keeping things secure, monitoring
bandwidth usage, andoh, yeahcreating the HTML pages for this new service. Web design back then
was simply the output of a web server. And the IT department found itself in the position of building
pages and even occasionally using Photoshop. Those were crazy times.

By the mid '90s, the Web had moved from IT to marketing. Every company needed a web site if they
expected to survive, and there was a mad scramble to develop an "interactive strategy." This was the
era of the transitional web designerwhen people with experience in more traditional media design
came to the Web and tried to bend it to fit. No control of typography? Build the whole page as an
image. Page layout not up to our standards? We'll hack on tables and invisible GIFs until things look
exactly like they should. The Web didn't respond very well to this onslaught. The cornerstones of
digital designusability, content reuse, accessibilitybuckled under the hubris of graphic artists.

But today holds both tremendous opportunity and significant trepidation for those who call
themselves web designers. The legacy of the so-called "Browser Wars" is behind us; we have a
strong and stable platform for building with increasing sophistication. A foundation of accepted and
well-implemented industry standards offers a constancy we once could only dream of. But at the
same time, the Web has factions of innovation racing off in countless directions. Good designers now
worry as much about semantics, device-agnosticism, and Ajax-style interactions as they do about

http://lib.ommolketab.ir
http://lib.ommolketab.ir

color, typography, and layout. It is an understandably intimidating time.

The weight of this book in your hands is a testimony to that complexity. And if it seems daunting, at
least take comfort in the fact that the author could not possibly be a more capable guide. Jennifer
Robbins has been designing web sites longer than anyone else I know. For years she has been the
one we've all turned to for reassurance and clarity as our industry propels itself into the future.

There is nobody I would trust more than Jennifer to show us where we've been, and where we're
heading next. You should, too.

December 2005, San Francisco

Jeffrey Veen

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Contributors
Tantek Çelik

Tantek Çelik contributed Appendix E, Microformats: Extending (X)HTML. He is also a Lead Technical
Editor for this book. His bio is listed on the Technical Reviewers page.

Derek Featherstone

Derek is a well-known instructor, speaker, and developer with expertise in web accessibility
consulting and training. He advises many government agencies, educational institutions, and private
sector companies, providing them with expert accessibility testing, and review and recommendations
for improving the accessibility of their web sites to all people. As a member of the Web Standards
Project (webstandards.org), Derek serves on two task forces: Accessibility/Assistive Devices and
DOM Scripting. He is a dedicated advocate for standards that ensure simple, affordable access to web
technologies for all. Derek wrote Chapter 5, Accessibility.

Aaron Gustafson

Aaron Gustafson has been working on the Web since 1996, plying his trade for many top companies
including Delta Airlines, Gartner, IBM, Konica Minolta, and the U.S. EPA. He is an advocate for web
standards and open source languages, often writing on those topics and more for A List Apart, Digital
Web Magazine, and on his blog, easy-reader.net. When not behind a desk, he can sometimes be
found publicly preaching the web standards gospel alongside Molly E. Holzschlag. He and his wife,
Kelly, reside in Connecticut, where he works as Sr. Web Designer/Developer for Cronin and
Company. Aaron wrote Chapter 25, Managing Browser Bugs: Workarounds, Hacks, and Filters,
Chapter 26, Introduction to JavaScript, and Chapter 27, DOM Scripting.

Todd Marks

Todd Marks is an avid developer, designer, instructor, author, and manager of information display
technologies. In 2002, Todd founded MindGrub Technologies, LLC where he created Flash information
display systems for clients such as Oracle, Zurich, and ARINC. Todd currently works as a Products
Manager for the mediaEdge division of Exceptional Software, where he oversees development of
Media Edge's training applications. Todd is a Macromedia Certified Developer, Designer, and Subject
Matter Expert and has written and contributed to several books including Flash MX Video (Peer
Information), Beginning Dreamweaver MX 2004 (Wrox), Advanced PHP for Flash MX (Glasshaus),
Flash MX Most Wanted Components (Friends of Ed), and other Dreamweaver and Flash-related titles.
Todd wrote Chapter 35, The Flash Platform.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Technical Reviewers
Lead Technical Editors

Technical Reviewers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Lead Technical Editors

Tantek Çelik

Tantek Çelik is Chief Technologist at Technorati (www.technorati.com) where he leads the design and
development of new standards and technologies. Prior to Technorati, he was a veteran representative
to the World Wide Web Consortium (W3C) for Microsoft, where he also helped lead the development
of the award-winning Internet Explorer for Macintosh. As cofounder of the microformats.org
community and the Global Multimedia Protocols Group (gmpg.org), as well as Steering Committee
member of the Web Standards Project (WaSP, www.webstandards.org) and invited expert to the
W3C Cascading Style Sheets working group, Tantek is dedicated to advancing open standards and
simpler data formats for the Web.

Molly E. Holzschlag

Molly E. Holzschlag is a well-known web standards advocate, instructor, and author. She is Group
Lead for the Web Standards Project (WaSP) and an invited expert to the GEO working group at the
World Wide Web Consortium (W3C). Among her thirty-plus books is the recent The Zen of CSS
Design (PeachPit Press, coauthored with Dave Shea. The book artfully showcases the most
progressive csszengarden.com designs. A popular and colorful individual, you can catch up with
Molly's blog atwhere else?--molly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Technical Reviewers

The following people also reviewed chapters and contributed their expertise to the final product: Bill
Sanders (Part II and Chapter 35), Aaron Gustafson (Chapters 7 and 24), Jeremy Keith (Chapters 26
and 27), Jason Carlin (Chapters 16 and 24), Jeffrey Robbins (Chapter 33), and Matthew Klauschie
(Chapter 34).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
If you think you can take a web design book written in 2001 and "tweak" it for release in 2006, guess
again. I know . . . I tried.

In my first draft of the XHTML chapters, I took the content from the last edition and just added some
pointers to Cascading Style Sheet alternatives for font and a few other elements and attributes. After
all (I figured), the (X)HTML Recommendations hadn't changed since 1999, right?

As it turned out, while I was busy doing things like designing corporate identities and having babies
(just one baby, actually), a major sea change had taken place in the web design world. My little
pointers to CSS alternatives amounted to "band-aids on a gaping wound," as so aptly noted by Molly
Holzschlag in her tech review of those initial chapters. I had fallen out of step with contemporary web
design, and I had some catching up to do.

I learned that while it was true that the Recommendation was the same, what had changed was how
the professional web design community was using it. Designers were actually complying with the
standards. They were no longer using (X)HTML as a design tool, but as a means of defining the
meaning and structure of content. Cascading Style Sheets were no longer just something interesting
to tinker with, but rather a reliable method for handling all matters of presentation, from fonts and
colors to the layout of the entire page. That ideal notion of "keeping style separate from content" that
I had been writing about for years had not only become a possibility, it had become a reality.

I spent the next several months immersing myself in the world of standards-driven web design:
reading every book I could get my hands on, exploring oceans of online resources, and of course,
poring over the details of the W3C (X)HTML and CSS Recommendations themselves.

As a result, Web Design in a Nutshell has not been tweaked; it has been transformed. The book now
opens with an overview of web standards and the measurable advantages of designing standards-
compliant sites. The (X)HTML chapters have all been rewritten from scratch, in a way that promotes
the proper semantic use of each element and radically downplays presentational HTML and how
elements are rendered by default in browsers. There are now 10 chapters on CSS (the prior edition
had only one). Two new chapters on JavaScript and the DOM, written by Aaron Gustafson, treat
these topics in a more detailed and useful manner than the previous editions ever offered.

All other sections of the book have been brought up to date as well, reflecting some significant
advancements (such as approaches to accessibility, support for the PNG graphic format, and print-
specific style sheets, to name a few) as well as minor shifts (such as the guidelines on web graphics
and multimedia production) that have taken place since the last edition.

The tale of transformation does not end with the book. This author has been transformed as well.
Knowing what I know now, I shudder when I look at that first draft of the book. I shudder more when
I look at my sites with their layers of nested tables, spacer-GIFs, and meaningless markup. Am I
ashamed? Not especially...I was no different from most other web designers in the late '90s. You
have to learn sometime, and for me, writing this book was my wake-up call.

I suspect that for every new web designer who comes along who has never used a table for layout,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

there are many more like me who need to relearn their craft. That's to be expected in a medium as
new and quickly evolving as the Web. I've written this book to be the definitive resource for designers
who are onboard with standards-driven web design as well as those who are still making the
transition.

Now, if you'll excuse me, I have some sites to redesign.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What's in the Book

This Nutshell book focuses on frontend matters of web design and development: markup, style
sheets, image production, multimedia, and so on. Ironically, despite its title, there is little in the way
of "design" advice, per se. Rather, it strives to be a thorough reference for all the technical details
and requirements that we face in our day-to-day work designing and developing web content.

The book is divided into six parts (plus appendixes), each covering a general subject area.

Part I: The Web Environment

Chapter 1, Web Standards, describes the current approach to web design and sets the stage
for the entire book. It is essential reading. Chapters on designing for varying browsers and
displays provide useful overviews of the unique challenges web developers face. Chapter 5,
Accessibility, and Chapter 6, Internationalization, both serve as introductions to the ways web
content may be created to reach all users, regardless of ability, browsing device, or language.
Chapter 4, A Beginner's Guide to the Server, is a primer on basic server functions, system
commands, uploading files, and file types.

Part II: The Structural Layer: XML and (X)HTML

This part of the book is about document markup, commonly referred to as the structural layer
because it provides the foundation upon which presentation (styles) and behaviors (scripting)
are applied. I highly recommend starting with Chapter 7, Introduction to XML, as it covers
critical concepts that guide the way (X)HTML is handled in contemporary web design. Chapters
8 through 15 focus on HTML and XHTML markup, including detailed descriptions of all the
elements and the way they should be used in standards-based web design.

Part III: The Presentation Layer: Cascading Style Sheets

Part III provides a thorough guide to using CSS for controlling the presentation of web content
with a focus on visual media. It begins with an overview of the fundamentals (Chapter 16) and
an introduction to CSS selectors (Chapter 17). Chapters 18 through 23 provide detailed
descriptions of all the visual properties in the CSS 2.1 specification. Finally, examples of how
CSS is used in the real world are provided in CSS Techniques (Chapter 24) and Managing
Browser Bugs: Workarounds, Hacks, and Filters (Chapter 25).

Part IV: The Behavioral Layer: JavaScript and the DOM

Part IV is all about adding interactivity to your pages with JavaScript. Chapter 26 is an
introduction to JavaScript, covering, syntax, control structures, object-orientation, and the
whys and hows of unobtrusive scripting. Chapter 27 introduces the Document Object Model and
shows you how to tap into it to manipulate both content and design. As a supplement to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 27, we've included a brief introduction to Ajax techniques that will help you on your
way to building rich Internet applications.

Part V: Web Graphics

The chapters in Part V contain essential information on working with RGB color and choosing
the appropriate graphic file formats. The chapters dedicated to GIF, JPEG, and PNG graphics
offer practical tips for graphic production and optimization based on the compression schemes
used by each format. The Animated GIFs chapter is a further examination of GIF's animation
capabilities.

Part VI: Media

Because the Web is not limited to text and images, Part VI is included to provide a basic
introduction to adding audio, video, and Flash movies to web pages. There is also a chapter on
printing from web pages using print-specific CSS style sheets as well as an introduction to the
PDF format for document distribution.

Appendixes

The Appendixes in this book are sure to get a lot of use. Appendix A is an alphabetical listing of
all elements and attributes in the HTML 4.01 Recommendation, as well as a few nonstandard
elements that are well supported and in common use. Appendix B is an alphabetical listing of all
properties defined in the CSS 2.1 specification. Appendix C lists all the character entities
defined in HTML 4.01 and XHTML 1.0 with their numerical references. Appendix D provides a
detailed explanation of the color names and RGB color values used both in (X)HTML and CSS.
Finally, Appendix E, contributed by Tantek Çelik, describes the future of XHTML and
Microformats.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact O'Reilly for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Web Design in a Nutshell, by Jennifer Niederst Robbins.
Copyright 2006 O'Reilly Media, Inc., 0-596-00987-9."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact the publisher at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

The following typographical conventions are used in this book:

Constant width

Used to indicate code examples, code references in text (including tags, elements, variables,
and so forth), and keyboard commands.

Constant width italic

Used to indicate replaceable text in code.

Constant width bold

Used to highlight the code that is being discussed.

Italic

Used to indicate filenames, directory names, URLs, and glossary terms.

This icon designates a tip, suggestion, or a general note that is an important
aside to its nearby text.

This icon designates a warning relating to the nearby text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CSS Property Conventions

The CSS chapters in this book use the same syntax for indicating allowable property values that are
used in the W3C CSS 2.1 Recommendation. A few examples are shown here:

Value: [<family-name>,]* <family-name>
Value: <uri> [mix || repeat]? | auto | none | inherit
Value: [<border-style> || <border-width> || <border-color>] | inherit
Value: [<color>|transparent]{1,4}|inherit

The notation indicates the value options and requirements, but it is not always intuitive. The various
conventions are explained briefly here.

Words that appear on their own (for example, inherit) are keyword values that must appear
literally, without quotes.

When punctuation such as commas and slashes (/) appear in the option, they must be used
literally in the value as indicated.

Words in brackets give a type of value (such as <color> and <uri>) or a reference to another
property (as in <border-style>).

If a vertical bar separates values (for example, X | Y | Z), then any one of them must occur.

A double vertical bar (X || Y) means that X, Y, or both must occur, but they may appear in any
order.

Brackets ([...]) are for creating groups of values.

Every word or bracketed group may be followed by one of these modifiers:

An asterisk (*) indicates the preceding value or group is repeated zero or more times.

A plus (+) sign indicates that the preceding value or group is repeated one or more times.

A question mark (?) indicates that the preceding value or group is optional.

A pair of numbers in curly braces ({X,Y}) indicates that the preceding value or group is
repeated at least X and at most Y times.

Given these syntax rules, the examples above would be interpreted like this:

Value: [<family-name>,]* <family-name>

The value may be a font family name, preceded by zero or more additional font family names,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

each followed by a comma.

Value: <uri> [mix || repeat]? | auto | none | inherit

The value may be one of the keyword options auto, none, and inherit, or it may be a URI
followed (optionally) by the keywords mix, repeat, or both.

Value: [<border-style> || <border-width> || <border-color>] | inherit

The value may be the keyword inherit, or it may be any combination of values for border-
style, border-width, and border-color, in any order.

Value: [<color>|transparent]{1,4}|inherit

The value may be the keyword inherit, or it may be one, two, three, or four "color" values.
Each "color" value is provided as either the keyword transparent or one of the standard
methods for specifying <color> (such as a color name or RGB value).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata and additional information. You can access this
page at:

http://www.oreilly.com/catalog/wdnut3/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/wdnut3/
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, it
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

As always, this book is a product of the efforts of a small army of people. First, I want to thank my
executive editor, Steve Weiss, who kept the big wheels rolling and bought me more time when life
got in the way of deadlines. A standing ovation goes to Linda Laflamme, the developmental editor,
who kept numerous plates spinning and went above and beyond the call of duty repeatedly without
complaint. She was my ally and hero, and I could not have managed this book without her.

Next, I am thrilled to have had two of the most prominent experts and advocates in standards-based
web design as technical editors of this edition. I owe heaps of gratitude to Molly Holzschlag, who is
the one responsible for turning this ship around. She gave me a firm kick in the pants in the first
round of reviews, but it was exactly what the book (and I) needed to get up to speed with
contemporary thinking and terminology. I am also enormously grateful to Tantek Çelik for not only
the "fine-toothed-comb" treatment he gave the chapters, but also for the positive support and the
feeling that I could always rely on him for help. In my most defeated moments, that kept me going.

It's tough writing a book about everything, and I know when I'm out of my league. I consider myself
very fortunate to have chapters contributed by some of the top experts in their respective fields.
Thanks go to Derek Featherstone for bringing real-world experience and advice to his "Accessibility"
chapter and to Todd Marks, a leading author on Flash and Dreamweaver for his solid chapter, "The
Flash Platform" (Chapter 35). Last, but by no means least, I want to say a special and heartfelt
thanks to Aaron Gustafson who gallantly and competently saved the day more than once. His three
consecutive chapters (Chapter 25, Managing Browser Bugs: Workarounds, Hacks, and Filters,"
Chapter 26, Introduction to JavaScript," and Chapter 27, DOM Scripting") are like an information-
packed drum solo in the middle of the book. He also contributed by reviewing chapters and always
being available to answer the "CSS question of the day."

Thanks also go to the other really smart people who applied their areas of expertise in reviewing
miscellaneous chapters: Bill Sanders, for taking on Flash and all of Part II, Jeremy Keith for his
careful review of the JavaScript and DOM chapters, Jason Carlin for reviewing CSS chapters and
being my go-to guy for CSS information (as well as what music I should be listening to), and Matthew
Klauschie, who knows more than a thing or two about video on the Web.

I want to acknowledge the fine help I received with the figures for this book. Travis Young created
the streamlined CSS examples and screenshots for Chapters 18 through 23. A round of applause
goes to illustrator Chris Reilley, who took my raw materials and spun them into gold. I've worked
with Chris on all my books and am always impressed by his top-notch work.

Producing a book of this size is no small feat, and to do so in record time faced with rounds of later-
than-last-minute changes is worthy of applause. Thanks go to my attentive copyeditor, Linley Dolby,
and the rest of the production team for bearing with me and making the book look great.

I want to say thanks to Alan, Courtney, Dan, Danielle, Jessica, Jillian, Kate, Megan, Melanie, and the
whole gang at Starbucks in Seekonk, MA for pouring the gallons of iced chai that fueled the writing of
this edition and doing so in a way that made me feel at home. Thanks also to Jamie, Diane, Joanna,
and the other women at Rumford Day Nursery for taking good care of my little boy so his mama
could work overtime without worrying. And thank you Seekonk Public Library for getting wireless

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Internet.

As always, I'd like to thank my Mom, Dad, Liam, and Audrey for the boundless support and
inspiration they each provide. Endless thanks and at least a few foot-rubs go to my husband, Jeff
Robbins, who put up with a lot this year. I am fortunate to have a husband who will go into "Super-
dad" mode to free up my evenings and weekends for writing. Jeff also updated Chapter 33, Audio on
the Web. Finally, I thank my darling Arlo for the joy he brings me every single day and for reminding
me of what is important.

December 2005, Massachusetts

Jennifer Niederst Robbins

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part I: The Web Environment
Chapter 1, Web Standards

Chapter 2, Designing for a Variety of Browsers

Chapter 3, Designing for a Variety of Displays

Chapter 4, A Beginner's Guide to the Server

Chapter 5, Accessibility

Chapter 6, Internationalization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Web Standards
A great sea change has taken place in web development in the last six or seven years (and since the
last edition of this book). Standards compliance is the name of the game in web design these days.
After years of browser competition, HTML hacking, and other practices born out of the lack of guiding
principles, we are all finally recognizing the benefits of abiding by the rules. That means using clean
and logical HTML or XHTML for marking up content, Cascading Style Sheets for all matters of
presentation, and a single Document Object Model for scripting.

As of this writing, we are still in a period of transition. New approaches need to be learned; old habits
need to be shaken. Eventually, standards -based design will be second nature. The good news is that
the developers of the tools we use to view and create web pages are making strides toward full
standards support. With everyone on the same page, web production has the potential to be more
efficient, less costly, and forward compatible.

This chapter introduces the current web standards and the way they impact web design.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. What Are Standards?

The World Wide Web Consortium (W3C) creates and oversees the development of web technologies,
including XML, HTML, and their numerous applications. They also keep their eye on higher-level
issues such as making content accessible to the greatest number of devices and users, as well as
laying a common foundation for future development, thus making web content "forward compatible."

The W3C is not an official standards body, but rather a joint effort by experts in web-related fields to
bring order to the development of web technologies. The W3C releases its final word on how various
tasks (such as HTML markup) should be handled in documents called "Recommendations." Most of
their recommendations become the de facto standards for web development. There are other
standards bodies that also affect the Web and the Internet at large, including those described next.

ISO (International Organization for Standardization)

The ISO is a true standards organization that manages more than 10,000 standards, including
everything from information systems and character sets to the dimensions of 220-size film and
the grain size of coated adhesives. Their seal of approval helps keep commerce and information
technologies compatible world wide.

IETF (Internet Engineering Task Force)

The IETF is an international community of network designers, operators, vendors, and
researchers concerned with the evolution of the Internet as a whole. It publishes Request for
Comments (RFCs) that define how things are done over the Internet, including FTP, TCP/IP,
HTTP, and email.

Ecma International

Previously known as ECMA (European Computer Manufacturers Association) , this is a
European association for standardizing information and communication systems. Ecma
International manages information technology standards, including ECMAScript, the
standardized version of JavaScript.

The Unicode Consortium

This body manages the Unicode standard for multilingual character sets.

ANSI (American National Standards Institute)

The ANSI covers a wide range of true standards including ASCII, the American Standard Code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for Information Interchange.

1.1.1. The Standards Process

The Internet was built on standards. Because the Internet isn't owned and operated by one person or
company, decisions regarding how best to accomplish tasks have traditionally been made by a
cooperative effort of invention, discussion, and finally adoption of the way to handle a particular task.

Since even before the Web, Internet standards such as protocols, naming systems, and other
networking technologies have been managed by the IETF. The process begins when a need for
functionality is identified (email attachments, for example) and a person or group proposes a system
to make it work. After a discussion phase, the proposal is made public in the form of an RFC. Once
the kinks are worked out and agreed upon, the technology becomes the standard. This, of course, is
a greatly simplified explanation. If you are interested in learning more about the standards approval
process or in finding out what new technologies are currently in development, the IETF site
(www.ietf.org) provides an excellent overview.

1.1.2. A Bumpy Beginning

The Web was subject to the same development process as any other Internet protocol. The problem
was that the explosion of excitement and opportunism of the early Web caused the development of
HTML and other technologies to outpace the traditional rate of standards approval. So while the W3C
began working on HTML standards in 1994, the browser software companies didn't wait for them.

To gain control of the browser market, the Netscape browser popped up on the scene with its own
set of proprietary HTML tags that vastly improved the appearance of web pages. Microsoft eventually
responded with its own set of tags and features to compete with Netscape, and thus the Browser
Wars were born. Both companies are guilty of give-the-people-what-they-want mentality with little
regard for how that would impact the medium in the long term. The problem only got worse as web
design grew beyond simple HTML to encompass richer web technologies such as Cascading Style
Sheets, JavaScript, and DHTML.

As a result, we have inherited a slew of tags and technologies that work only in one browser or
another as well as elements (being the most notorious) that do nothing to describe the
structure of the document. This flew in the face of the original intent of HTML: to describe the
structure of a document's contents, not its visual presentation. While web standards are better
established now, the W3C is still compensating for years' worth of bogus code still in use.

It didn't take long for the development community to say, "Enough is enough!" and demand that
browser creators slow down and abide by the Recommendations set forth by the W3C. The champion
of this effort is the Web Standards Project (WaSP, www.webstandards.org), a collective of web
developers established in 1998. They pushed hard on the browser developers, tool developers, and
the design community to get on the same page. Their actions seem to be paying off, as over the past
several years, the standards effort has certainly gained steam.

1.1.3. Standards Support Today

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The good news is that the current version browsers have gotten their acts together in supporting the
available HTML and XHTML markup standards. Some browser-specific tags are still rattling around
out there, but at least they aren't creating any new ones. The new challenge is consistent support for
Cascading Style Sheets. Fortunately, the full Level 1 specification is supported by the latest browsers
(and the vast majority of browsers in use). Unfortunately, there is still a bit of chaos around the
implementation of Level 2 features such as absolute positioning, and no browser currently supports
every available property and value in the CSS 2.1 Recommendation. Nearly every browser out there,
even the standards-conformant versions, are known to have quirks and bugs, but all eyes turn to
Microsoft Internet Explorer for consistent support, because it makes up the lion's share of web traffic.
Browser bugs and the workarounds necessary for dealing with them are treated in detail in Chapter
25.

1.1.4. The Advantages of Standards

We're all still waiting for that ideal day when all browsers faithfully adhere to the W3C
Recommendations, but that's no reason to put off creating standards-compliant content yourself.
Standards offer wonderful benefits that you can begin taking advantage of right away.

1.1.4.1. Accessibility

Your web content will certainly be viewed by a variety of browsers and devices. In addition to the
graphical browsers we're most familiar with today, it may be displayed by alternative devices such as
mobile phones, handheld computers, or assistive devices such as screen readers for the visually
impaired. By creating well-structured and logically marked up documents according to the guidelines
for accessibility, you provide a better experience for the greatest number of users. See Chapter 2 for
a look at issues related to competing browsers. Chapter 5 discusses ways in which the current web
standards are being developed with accessibility in mind.

1.1.4.2. Forward compatibility

Future standards will build on current standards; therefore, content that is strictly compliant today
will enjoy longevity into a day when deprecated elements and attributes are no longer supported.
Everyone will need to part with their table-based layouts eventually. Why not start building sites the
right way immediately?

1.1.4.3. Simpler and faster development

For years, web developers have needed to jump through hoops to compensate for the differences in
browser support, sometimes resorting to creating several different versions of the whole site to cater
to browser support quirks. Properly marking up the structure of documents and the strategic use of
style sheets enables you to create one version of your content that serves all your visitors. And
because the document controlling visual style is separate from the content, the design and editorial
development can happen in tandem, potentially shortening production schedules. By cutting time
from development schedules, standards compliance can make good business sense.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1.4.4. Faster download and display

Documents that use nonstandard HTML to control presentation (such as tables, font tags, and
transparent images) tend to get bloated. Stripping out these elements and using style sheets for
controlling presentation typically results in much smaller files that download more quickly and may
add up to significant bandwidth savings. On top of that, modern browsers render pages faster in
standards mode than in backward-compatible mode. Faster pages mean happier visitors. For
additional information on the benefits of style sheets, see Chapter 16.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. Current Web Standards

Okay, so standards are great, but what standards are we talking about? This section looks at the
current standards for the structural, presentational, and behavioral aspects of web design.

Web design and development is commonly discussed in terms of "layers" (and sometimes, even as a
"layer cake," which is more enticing), borrowing a layer model from one commonly used for
describing network protocols. The marked up document forms the structural layer, which is the
foundation on which other layers may be applied. Next comes the presentation layer, specified with
Cascading Style Sheets, that provides instructions on how the document should look on the screen,
sound when it is read aloud, or be formatted when it is printed. On top of these layers, there may
also be a behavioral layer , the scripting and programming that adds interactivity and dynamic effects
to a site. This edition of Web Design in a Nutshell is organized according to this new mental model of
web design.

The following is a summary of web technology Recommendations (what the W3C calls its final
published standards) as of this writing. You can check in with further developments of these
technologies at the W3C site (www.w3.org).

1.2.1. Structural Layer

After years of browser developers getting jiggy with tag creation, the web community is returning to
HTML's original intent as a markup language: to describe the structure of the document, not to
provide instructions for how it should look. The structural markup of the document forms the
foundation on which the presentational and behavioral layers may be applied.

These are the current standard languages for structural markup:

XHTML 1.0 (Extensible Hypertext Markup Language) and XHTML 1.1

XHTML 1.0 is simply HTML 4.01 rewritten according to the stricter syntax rules of XML. XHTML
1.1 finally does away with deprecated and legacy elements and attributes and has been
modularized to make future expansions easier. XHTML 2.0 is currently in development. The last
version of HTML was HTML 4.01, which is still universally supported by today's browsers, but is
not forward compatible. Part II looks at these languages in detail. Links to the full XHTML 1.0,
XHTML 1.1, and HTML 4.01 specifications can be found on this page: www.w3.org/MarkUp/.

XML 1.0 (Extensible Markup Language)

XML is a set of rules for creating new markup languages. It allows developers to create custom
tag sets for special uses. See Chapter 7 for more information, or go to the source at
www.w3.org/XML/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2.2. Presentation Layer

Now that all presentation instructions have been removed from the markup standard, this
information is the exclusive job of Cascading Style Sheets. Style sheets standards are being
developed in phases, as follows.

Cascading Style Sheets (CSS) Level 1

This style sheet standard has been a Recommendation since 1996 and is now fully supported
by current browser versions. Level 1 contains rules that control the display of text, margins,
and borders.

CSS Level 2.1

This Recommendation is best known for the addition of absolute positioning of web page
elements. Level 2 reached Recommendation status in 1998, and the 2.1 revision is a Candidate
Recommendation as of this writing. Support for CSS 2.1 is still inconsistent in current browser
versions.

CSS Level 3

Level 3 builds on Level 2 but is modularized to make future expansion simpler and to allow
devices to support logical subsets. This version is still in development.

You can find links to all three CSS specifications on this page: www.w3.org/Style/CSS. Style
sheets are discussed further in Part III in this book.

1.2.3. Behavioral Layer

The scripting and programming of the behavioral layer adds interactivity and dynamic effects to a
site.

1.2.3.1. Object models

The Document Object Model (DOM) allows scripts and applications to access and update the content,
structure, and style of a document by formally naming each part of the document, its attributes, and
how that object may be manipulated. In the beginning, each major browser had its own DOM,
making it difficult to create interactive effects for all browsers.

Document Object Model (DOM) Level 1 (Core)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This version covers core HTML and XML documents as well as document navigation and
manipulation. The DOM Level 1 Specification can be found at w3c.org/TR/REC-DOM-Level-1/.

DOM Level 2

Level 2 includes a style sheet object model, making it possible to manipulate style information.
Links to the core and other modules of the DOM Level 2 Specification are available at
www.w3.org/DOM/DOMTR.

1.2.3.2. Scripting

Netscape introduced its web scripting language, JavaScript, with its Navigator 2.0 browser. It was
originally called "Livescript" but was later co-branded by Sun, and "Java" was added to the moniker.
Microsoft countered with its own JScript while supporting some level of JavaScript in its Version 3.0
browser. The need for a cross-browser standard was clear.

JavaScript 1.5/ECMAScript 262

The W3C is developing a standardized version of JavaScript in coordination with the Ecma
International, an international industry association dedicated to the standardization of
information and communication systems. According to the Mozilla site, Netscape's JavaScript is
a superset of the ECMAScript standard scripting language, with only mild differences from the
published standard. In general practice, most developers simply refer to "JavaScript," and the
standard implementation is implied.

The full specification can be found at www.ecma-international.org/publications/standards/Ecma-
262.htm.

1.2.4. Other XML-Based Technologies

XML is a meta-language used to create other markup languages and applications. This powerful tool
has enabled the development of some specialized standards. These are just a few. To see other XML
technologies, visit the W3C site. With the modularization of XHTML and other XML specifications, it
may be possible to mix and match XML modules within a single document, for example: XHTML, SVG,
and MathML.

SVG 1.1 (Scalable Vector Graphics)

This is an XML language for defining two-dimensional vector and mixed vector/raster graphics.
SVG is discussed briefly in Chapter 7. For in-depth information, read the specification at
www.w3.org/TR/SVG11/.

MathML 2.0 (Mathematical Markup Language)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Just as it sounds, this is an XML language for defining the elements of mathematical notation,
in both structure and content, for mathematics to be communicated and processed on the
Web. More information and the specification can be found at www.w3.org/Math/.

SMIL 1.0 (Synchronized Media Integration Language) and SMIL 2.0

SMIL is an XML language for creating multimedia presentations that combine images, text,
audio, and video in timed displays. More information and specifications can be found at
www.w3.org/AudioVideo/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. Standards-Driven Design

Now that standards-compliant browsers are used by the vast majority of web visitors (see Chapter 2
for statistics), it is definitely time for designers and developers to start creating standards-compliant
content. The following sections present some quick tips for making the transition to standards-based
design.

1.3.1. Separate Presentation from Structure

For web designers and developers, the biggest mind shift towards making standards-compliant sites
is keeping presentation separate from structure.

It was difficult to recognize HTML as a structural language when it was full of elements and attributes
(like bgcolor, align, and of course, font) that define how elements look on the page. The W3C has
deprecated those elements in the HTML 4.01 Recommendation and removed them entirely from
XHTML 1.1. What remains is a markup language suited for the original purpose of logically describing
the meaning of content elements (semantic markup) and establishing the basic hierarchical outline
(or structure) of the document. The way the document is visually (or aurally, in the case of speech
browsers) presented should be handled entirely by style sheets.

Following are some guidelines that will get you on the right track for designing with web standards.

Don't choose an element based on how it looks in the browser.

Now that you can make any element look the way you want with a style sheet rule, there is no
reason to use an h3 because it looks less clunky than an h1, or a blockquote just because you
want an indent. Take the time to consider the meaning or function of each element in your
document and mark it up accurately.

Don't leave elements undefined.

Don't merely typeset a page using and
 tags to create the appearance of headings
or lists. Again, consider the meaning of the text and mark it up accordingly. Documents with
meaningful semantic markup make sense to the greatest number of viewing devices, including
web browsers, cell phones, or screen readers.

Avoid deprecated elements and attributes.

There is a well-supported CSS property to replace every element and attribute that has been
deprecated in the HTML 4.01 Specification. Using a style sheet will give you greater control and
can potentially make future changes easier.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Avoid using tables for layouts.

Ideally, tables should be used exclusively for tabular data. It is now entirely possible to create
rich page layouts using CSS alone with no tables. Chapter 24 includes several examples of
multicolumn layouts along with references to CSS design showcases online. In addition to being
semantically incorrect, nested tables result in bloated files and take browsers several passes to
display. For those accustomed to thinking in terms of tables, it requires relearning page layout
from the ground up, but now is the time to start the process.

1.3.2. Use a DOCTYPE Declaration

Every HTML or XHTML document should begin with a DOCTYPE declaration that tells the browser
which language your document was written in. An example of a DOCTYPE declaration for a document
written in strict XHTML 1.0 looks like this:

<! DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Not only is it the correct thing to do according to the W3C, but current browsers have the ability to
switch into different rendering modes (e.g., "Standards" "Almost standards," "transitional," and
"quirks") based on the DOCTYPE. Omitting the DOCTYPE may adversely affect the way your page
renders in the browser. Available DOCTYPE declarations and DOCTYPE switching are discussed in
more detail in Chapter 9.

1.3.3. Validate Your Markup

You can't play fast and loose with the strict standards the way you could with old HTML. Code written
incorrectly may render strangely or not at all. While HTML was always meant to be validated, it is
now more important than ever to validate your markup before you publish your content on the Web.

Some HTML editors, like BBEdit by BareBones Software, have built-in validators. You may also use
the W3C's free validation tools for HTML/XHTML (validator.w3.org) and CSS (jigsaw.w3.org/css-
validator).

Be forewarned: the error reports a validator spits out can be overwhelming. One of the problems is
that errors are inherited, so if you make a mistake early on (such as forgetting to close a tag) the
validator gripes about it in multiple error lines. Try fixing early mistakes and then validating again;
chances are, the error list will reduce.

Error messages can also be confusing. The W3C has published a list of common error messages and
how to interpret them at validator.w3.org/docs/errors.html.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4. For Further Reading

If this introduction to standards has left you hungry for more detail, you can find plenty of in-depth
discussions on the bookshelves and the Web.

1.4.1. Books

Additional books regarding accessibility, HTML, XHTML, CSS (including invaluable books by CSS guru,
Eric Meyer) are listed at the ends of the appropriate chapters of this book. For more information on
standards, consider these two volumes.

Designing with Web Standards, by Jeffrey Zeldman (New Riders)

This is the place to start if you need guidance and practical advice regarding making the switch
to standards. Not only is it extremely thorough and informative, it's actually really fun to read.

Web Standards Solutions: The Markup and Style Handbook (Pioneering Series), by Dan Cederholm
(Friends of Ed)

This book offers practical advice on how to create web content with standards, including
multiple solutions to common issues.

1.4.2. Web Resources

With so many professionals in the online community learning to design with standards, it's no
surprise there are plenty of tips, tutorials, and resources available.

The Web Standards Project (www.webstandards.org))

The Web Standards Project is an organization founded in 1998 to push the industry toward
standardization. This site provides numerous compelling articles and helpful resources.

A List Apart (www.alistapart.com)

A List Apart is an online magazine by and for web designers with hundreds of excellent articles
on a variety of topics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"Developing with Web Standards; Recommendations and Best Practices"
(www.456bereastreet.com/lab/developing_with_web_standards/)

This article contains lots of practical information and links to additional online resources. It was
essential for the creation of this chapter. Roger Johansson's 456bereastreet.com site is a
recommended resource for issues regarding standards.

The World Wide Web Consortium (www.w3.org)

If you want to know the details about current web standards , go right to the source.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Designing for a Variety of
Browsers
Most web authors agree that the biggest challenge (and headache) in web design is dealing with a
multitude of browsers and their varying support of web standards. Does a page that is designed to be
functional on all browsers necessarily need to be boring? Is it possible to please everyone? And if not,
where do you draw the line? How many past browser versions do you need to cater to with your
designs?

The situation is better than it was a few years ago, but the struggle is not over. For instance, you can
now be confident that at least 99% of users have browsers that support nearly all of HTML 4.
Unfortunately, there are still inconsistencies in the way Cascading Style Sheets are implemented. And
of course, older browser versions that pre-date the current standards take a long time to fade away
entirely.

This chapter provides background information, statistics, and current wisdom from professional web
designers that may help you deal with browser differences. It focuses on the traditional graphical
computer-based browsers that developers generally keep in mind. Web browsing clients for mobile
devices are discussed in Chapter 3, and assistive browsing devices for the disabled are addressed in
Chapter 5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. Browser History

The story of the browser provides useful context for the way web sites are currently designed and
developed. This brief and simplified timeline highlights a few of the significant events in the
development of the major browsers that have led to the current web design environment.

If you are interested in the history of browsers and the Web, take a look at the
thorough timeline and the old browser emulators at Deja Vu (www.dejavu.org).

1991 to 1993: The World Wide Web is born.

Tim Berners-Lee started his hypertext-based information management at the CERN physics
research labs. Text-only pages could be viewed using a simple line-mode browser.

1993: NCSA Mosaic is released.

The Mosaic browser was created by Marc Andreessen, a student at the National Center for
Supercomputing Applications (NCSA) . Although it was not the first browser to allow graphics to
be placed on the page, it was certainly the most popular due to its cross-platform availability.
The ability to add images to documents was one of the keys to the Web's rapid rise in
popularity. Mosaic also supported sound, video, bookmarks, and forms. All web pages at this
time were displayed in black text on a gray background .

1994: Netscape 0.9 is released.

Marc Andreessen formed Mosaic Communications Corp. (which later became Netscape
Communications) and released the Netscape 0.9 browser. The early browsers were not free
(except to students and teachers). To offer a superior experience over such freely available
browsers as Mosaic and thereby attract customers, Netscape created its own HTML tags
without regard for the traditional standards process. For example, Netscape 1.1 included tags
for changing the background color of a web page and formatting text with tables.

1996: Microsoft Internet Explorer 3.0 is released.

Microsoft finally got into the Web game with its first competitive browser release, complete with
its own set of tags and features. It was also the first browser to support style sheets, which at
the time were an obscure authoring technique.

1996 to 1999: The Browser Wars begin.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For years, the web development world watched as Netscape and Microsoft battled it out for
browser market dominance. The result was a collection of proprietary HTML tags and
incompatible implementations of new technologies, such as JavaScript, Cascading Style Sheets,
and Dynamic HTML. On the positive side, the competition between Netscape and Microsoft also
led to the rapid advancement of the medium as a whole.

1998: Netscape releases its Communicator code under an open source license.

This bold move enabled the thousands of developers to participate in improving Communicator.
In the end, they decided to scrap it all and start from scratch. The Mozilla group, made up in
part of Netscape employees, guided the development of the open source browser and soon
expanded to a complete application platform.

2000: Internet Explorer 5 for the Mac is released.

This is significant because it is the first browser to fully support the HTML 4.01 and CSS 1
Recommendations, setting the bar high for other browsers in terms of standards compliance. It
is also the first browser to fully support the PNG format with alpha transparency.

2000: Netscape is sold to AOL.

This was regarded as Netscape's official loss to Microsoft in the Browser War. Entwined in the
operating system of every PC running the Windows operating system, Internet Explorer was a
formidable foe. Netscape lost important ground by releasing bloated all-in-one applications and
taking several years off to rewrite its browser from scratch for the Netscape 6 release. As of
this writing, Netscape is just a blip on the browser usage charts at a mere 1% for all combined
versions, compared with approximately 90% for all combined versions of Internet Explorer.

2003: The Mozilla Foundation is formed.

Open source Mozilla code continued development under the newly formed Mozilla Foundation
(funded in part by AOL).

2005: Mozilla's Firefox browser is released.

Firefox 1.0 caused much fanfare in the development community due to its strong support of
web standards and its improved security over Internet Explorer. Firefox is important because it
was the first browser to make a significant dent in Microsoft's share of the browser market.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rendering Engines

A rendering engine, also known as a layout engine, is the code that tells the browser how
to display web content and available style information in the browser window. The
rendering engine is responsible for the size of an unstyled h1 heading or how a horizontal
rule looks on the page. It's also the key to the correct implementation of CSS and other
web standards.

The first separate and reusable rendering engine was Gecko , released by the Mozilla
developers in 1998. It was notable for its small size and excellent support for standards.
Now web developers pay attention to underlying rendering engines as a key to
understanding a browser's performance.

The Wikipedia, an online collaborative encyclopedia, has a detailed comparison of
rendering engines, where they are used, and what they support at
en.wikipedia.org/wiki/Comparison_of_layout_engines.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Browser Roll-Call

It is critical that professional web developers be familiar with the most popular browsers in current
use and not just the ones on their own desktops. This section provides basic information about the
browsers that web developers care about most, whether because of total share of web usage
(Internet Explorer 6 for Windows) or because its technology and standards support is important to
the development community (Opera). The browsers listed here make up more than 99% of total
usage as of this writing.

There are scores of less common browsers, some with loyal followings, as well
as older browser versions that are still in use. Unfortunately, it is not possible to
list them all in this chapter. Evolt.org, a site for the web development
community, keeps a complete archive of browsers old and new at
browsers.evolt.org.

Table 2-1 lists the browsers and their release dates, platforms, rendering engines, and level of
standards support, while the following sections describe each browser in more detail.

Table 2-1. Various web browsers

Browser Release date Platform
Rendering
engine

Standards support

Microsoft
Internet Explorer
6

2001
Windows, Linux,
Unix

Trident IV

CSS 1, some CSS 2, some
CSS 3, ECMAScript, DOM
(with proprietary
implementations and quirks)

Microsoft
Internet Explorer
5 and 5.5
(Windows)

1999 (5),
2001 (5.5)

Windows, Linux,
Unix

Trident II (5)
and III (5.5)

Most CSS 1, some CSS 2 (with
bugs), partial support of
ECMAScript/DOM

Microsoft
Internet Explorer
5 (Macintosh)

2000 Macintosh Tasman
CSS 1, some CSS 2, some
CSS 3, ECMAScript, DOM
(buggy and not complete)

Netscape
Navigator 7

2002

Windows,
Macintosh, Linux,
Unix

Gecko
CSS 1, most CSS 2,
ECMAScript, DOM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Browser Release date Platform
Rendering
engine

Standards support

Netscape
Navigator 4

1997
Windows, Linux,
Macintosh, Unix

N/A
Some basic CSS 1, JavaScript,
no DOM because it was
written after NN4's release

Firefox 1.0

2005 (pre 1.0
release
versions
available in
2004)

Windows, Linux,
Macintosh, Unix

Gecko
CSS 1, most CSS 2, some CSS
3, ECMAScript, DOM

Opera 8.5 2005
Windows, Linux,
Macintosh, Unix

Presto

CSS 1, most CSS 2,
ECMAScript, DOM (Opera 7
was the first version with DOM
support)

Safari 2002 Macintosh OS X KHTML
most CSS 1, some CSS 2,
some CSS 3, ECMAScript,
DOM (with bugs)

America Online Various

Windows (there is
a Mac version, but
it isn't as well
supported)

Trident

CSS 1, some CSS 2,
ECMAScript, DOM (same as
Internet Explorer, but expect
additional buggy behavior)

Lynx 1993
Unix, Windows,
Macintosh

N/A N/A

2.2.1. Microsoft Internet Explorer 6

Internet Explorer 6 is the browser that comes with Windows XP, although it is also available for older
Windows versions. As this book goes to press, Version 6 alone currently accounts for more than half
of all web usage. Unfortunately, it is also notorious for inconsistent standards support. Microsoft has
plans to release IE 7, which promises better security (the Achilles' heel of previous versions) and
better standards support, with special attention to Cascading Style Sheets Level 2.1.

For information on designing for Internet Explorer, visit Microsoft's Internet Explorer Developer
Center (part of its MSDN online developer's network) at msdn.microsoft.com/ie/default.aspx.
Additional information is available on the Microsoft product pages at
www.microsoft.com/windows/ie/.

2.2.2. Microsoft Internet Explorer 5 and 5.5 (Windows)

Released in early 1999, IE 5 was the first major browser with XML support. Because it is tied to
several older Windows versions, it still accounts for 5 to 10% of browser usage as of this writing.

Netscape
Navigator 4

1997
Windows, Linux,
Macintosh, Unix

N/A
Some basic CSS 1, JavaScript,
no DOM because it was
written after NN4's release

Firefox 1.0

2005 (pre 1.0
release
versions
available in
2004)

Windows, Linux,
Macintosh, Unix

Gecko
CSS 1, most CSS 2, some CSS
3, ECMAScript, DOM

Opera 8.5 2005
Windows, Linux,
Macintosh, Unix

Presto

CSS 1, most CSS 2,
ECMAScript, DOM (Opera 7
was the first version with DOM
support)

Safari 2002 Macintosh OS X KHTML
most CSS 1, some CSS 2,
some CSS 3, ECMAScript,
DOM (with bugs)

America Online Various

Windows (there is
a Mac version, but
it isn't as well
supported)

Trident

CSS 1, some CSS 2,
ECMAScript, DOM (same as
Internet Explorer, but expect
additional buggy behavior)

Lynx 1993
Unix, Windows,
Macintosh

N/A N/A

2.2.1. Microsoft Internet Explorer 6

Internet Explorer 6 is the browser that comes with Windows XP, although it is also available for older
Windows versions. As this book goes to press, Version 6 alone currently accounts for more than half
of all web usage. Unfortunately, it is also notorious for inconsistent standards support. Microsoft has
plans to release IE 7, which promises better security (the Achilles' heel of previous versions) and
better standards support, with special attention to Cascading Style Sheets Level 2.1.

For information on designing for Internet Explorer, visit Microsoft's Internet Explorer Developer
Center (part of its MSDN online developer's network) at msdn.microsoft.com/ie/default.aspx.
Additional information is available on the Microsoft product pages at
www.microsoft.com/windows/ie/.

2.2.2. Microsoft Internet Explorer 5 and 5.5 (Windows)

Released in early 1999, IE 5 was the first major browser with XML support. Because it is tied to
several older Windows versions, it still accounts for 5 to 10% of browser usage as of this writing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.3. Microsoft Internet Explorer 5 (Macintosh)

Internet Explorer 5 for the Macintosh was released in 2000 and offered never before seen high levels
of standards compliance and features that even IE 6 for Windows has yet to match. Microsoft stopped
development with Version 5.2.3 but still offers free downloads of the latest versions of IE 5/Mac for
OS X (5.2.3) and OS 9 (5.1.7).

2.2.4. Netscape Navigator 7

This latest version of Navigator was released in 2002, with additional 7.x releases in 2003 and 2004.
It is essentially the Mozilla browser wrapped in the Netscape brand. It accounts for a startlingly small
share of web traffic (less than 1%). Netscape's previous meaningful release was Version 6, which was
years in the making, had numerous problems with standards and failed to gain back the market
share gobbled up by Internet Explorer during its overlong development. A beta of Version 8 is
available as of this writing.

For information about the Netscape browser, go to browser.netscape.com. Starting in October 2004,
Netscape shut down its online developer resources. Mozilla.org is trying to gain rights to archive and
publish those documents.

2.2.5. Netscape Navigator 4

Netscape Navigator and Communicator 4 was once the king of the browser world. Now its user base
has dwindled to a fraction of a percent. Even so, web developers may consider a site's performance
in Navigator 4 because it is typical of browsers with minimal support for current standards such as
Cascading Style Sheets. Also, web developers can assume that users who still use Netscape 4 really
have no alternative, for instance, because it is installed by their organization or is built into an
application. While designers generally don't worry about matching layouts exactly in Netscape 4, it is
critical that no content gets lost and that advanced CSS or scripting techniques don't crash the
browser.

2.2.6. Firefox 1.0

Firefox (previously Firebird) is an open source browser based on Mozilla code. Its popularity exploded
in the development community for being small, fast, and highly standards compliant. It also offers
features such as tabbed browsing, pop-up blockers, integrated Google search, and better security
than Internet Explorer, enabling Firefox to be the first browser to take a bite out of IE's market
share. Because it is open source, many useful extensions have been created for it (see the sidebar,
"Web Developer Extension for Firefox").

Download and find out more about Firefox at the Mozilla web site, www.mozilla.org.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Web Developer Extension for Firefox

Web developers are raving about the Web Developer extension for Firefox created by
Chris Pederick. The extension adds a toolbar to the browser with tools that enable you to
analyze and manipulate any page in the window. For example, you can edit the style
sheet for the page you are viewing or apply your own. You can get information about the
HTML and graphics on the page. It also allows you to validate the CSS, HTML, and
accessibility of a web page.

Download the Web Developer extension at
chrispederick.com/work/firefox/webdeveloper/.

For a complete list of Firefox extensions, including others for web developers, go to
https://addons.update.mozilla.org/extensions/?application=firefox/.

2.2.7. Opera 8.5

Opera is a lean and mean browser created by Opera Software in Oslo, Norway. Opera is respected for
its exact compliance with HTML and CSS standards, extremely quick download times, and a small
minimum disk requirement. It is free if you don't mind ad banners as part of the interface. To register
the browser and get rid of the ads, the price is $29. The general public is not likely to flock to Opera,
and it never so much as blips in the browser statistic charts; however, many developers continue to
test their sites in Opera to make sure their code is clean. The Opera browser is also an important
player in the handheld device market.

For more information about Opera, see www.opera.com.

2.2.8. Safari

Safari is the browser that comes with Mac OS X. It uses the KHTML rendering engine originally
developed for the Konqueror desktop environment. It is very fast and offers fairly solid support of
standards, although it does have its own bugs.

For more information and downloads, go to www.apple.com/safari/.

2.2.9. America Online

Beginning with Windows AOL 3.0 (32 bit), the AOL client does not have a browser embedded, but
instead uses the Internet Explorer browser users already have installed in their systems. Therefore,
browser compatibility is mostly independent of a user's specific AOL version. The scant 1 to 2% of
AOL subscribers with Macintoshes use an AOL browser that is built on Gecko.

As of this writing, approximately 97% of AOL users view the Web on Windows machines using

https://addons.update.mozilla.org/extensions/?application=firefox/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Internet Explorer 5.0 or higher. Unfortunately, Internet Explorer's functionality is limited somewhat
when used in conjunction with the AOL client. This is due to the way the specific AOL clients interact
with the browser and AOL's reliance on proxy servers and image compression techniques.

AOL publishes a site specifically for web developers who want their sites to be accessible and
attractive to AOL users. AOL's web developer site can be found at webmaster.info.aol.com.

2.2.10. Lynx

Lynx is the best-known text-only browser. It has been around since the beginning of the Web and
has been updated to include support for tables, forms, and even JavaScript. Lynx is useful to
developers for testing a site's basic functionality in a non-graphical environment. This is important to
ensure accessibility for visitors with disabilities who may be using Lynx with a speech or Braille
device.

Lynx is not kept current for all platforms, so you may find only a beta or out-of-date version. Another
alternative is to view your page in a Lynx emulator online at www.delorie.com/web/lynxview.html.

The Extremely Lynx page (www.subir.com/lynx.html) is a good starting point for finding developer
information for Lynx.

An excellent resource for tracking browser releases and history is Browser
News (www.upsdell.com/browsernews/).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Gathering Usage Statistics

Web developers pay attention to the breakdown of browser usage, for the Web at large and more
relevantly for their specific sites, because it directly affects the way they create their pages. There
are several methods for tracking browser usage: free general statistics listings, log analysis tools that
you run on your own server, and professional statistics services.

2.3.1. Global Browser Statistics

If you are interested in a general breakdown of overall browser usage, there are a number of web
sites that provide listings for free. They also offer usage statistics on other useful criteria such as
screen resolution and various web technologies.

The Counter (www.thecounter.com/stats) bases its global statistics on millions of visitors using
thousands of web sites registered with their service. This is an easy (and free) way to get a good
general overview of browser usage.

Another useful resource for browser information, as well as for tutorials on a number of web topics, is
the W3 Schools site (www.w3schools.com/browsers). Their statistics seem skewed toward the
development and technically savvy community, as evidenced by the fact that the Firefox browser
makes up nearly 20% of all usage, compared with only 8% at the more general Counter.com as of
this writing (September 2005).

2.3.2. Server Log Analysis

The most meaningful statistics are those culled from your own site's usage. There are software tools
designed just for this purpose, all of which work basically the same way.

When a browser accesses files from a server, it leaves a record of that transaction on the server,
including a little data about itself: specifically, its version and the platform it is running on. This
information is known as the user agent string , and it is used by analysis software to generate
statistics about the browser usage for a site. A typical user agent string might look like this:

Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)

There are dozens of log analysis tools available at a wide variety of costs. Many hosting companies
include some level of server statistics as part of their hosting packages. You may also install special
statistics software for better reporting. A web search for "web statistics analysis" will turn up many
companies offering statistics analysis.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another option is to sign up with a service such as The Counter (mentioned earlier) that puts a
counter on your web page and provides usage stats in exchange for ad placement on your page.

The Mozilla Legacy

Today, we know Mozilla as the foundation that guides the development of the open
source Mozilla software. So it may be confusing to see Mozilla at the beginning of a user
agent string for Internet Explorer, as shown in the earlier example.

The Mozilla identifier at the beginning of a typical user agent string is an interesting
artifact from the earliest days of the Browser Wars . Netscape first released its browser
under the codename Mozilla (a shorthand combination of Mosaic killer and Godzilla).
Mozilla, for its time, was a fairly turbo-powered browser, so webmasters began targeting
their content to it specifically.

When competing browsers (most significantly, Microsoft Internet Explorer) began
featuring similar capabilities, they didn't want to be left out of the targeting action, so
they put the word "Mozilla" in their user agent identification as well. Eventually, everyone
was doing it, so the only way to truly identify the browser version was to include it in
parentheses (such as MSIE 5.5 in the previous example).

The name Mozilla stuck with the Netscape browser through its glory days and continued
to its release as open source software. For more information on the Mozilla Foundation,
see www.mozilla.org.

2.3.3. Targeted Statistics Consulting

If you want fairly accurate browser usage statistics, but your own site isn't up and running yet, you
may hire the services of a user trends consultant to analyze usage on similar sites or within a specific
business sector. A place to start is the Web Analytics Association (www.webanalyticsassociation.org),
which offers a listing of members who provide usage trend reports.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Learning from Browser Statistics

However you gather your statistics, they can tell you some important things about your audience and
how they may experience the Web. Consider Table 2-2, which provides a set of browser statistics
typical of the end of 2005. These statistics may not necessarily be meaningful as you read this book,
but if you are completely unfamiliar with the typical browser breakdowns, these will give you a
ballpark idea.

Table 2-2. Browser statistics for December 2005 from The Counter.com

Browser Usage

Microsoft Internet Explorer 6 83%

Microsoft Internet Explorer 5 3%

Mozilla/Firefox 8%

Safari 2%

Unknown 1%

Opera x.x 1%

Netscape 7 1%

Netscape compatible < 1%

Microsoft Internet Explorer 4.x < 1%

Netscape 4.x < 1%

Konqueror < 1%

Netscape 6 (and older versions) < 1%

2.4.1. What You Can Learn

Once you have statistics in hand, what conclusions can you draw from them? Even statistics as
general as those in Table 2-2 provide a jumping off point for thinking about how they might impact
design.

2.4.1.1. Standards support

The good news is that 99% of browsers in use today support some level of current standards, at least

http://lib.ommolketab.ir
http://lib.ommolketab.ir

on paper. Unfortunately, the reality is that even browsers with strong standards support have their
own quirky implementations and bugs that require developers to jump through hoops, particularly
when it comes to CSS, ECMAScript (JavaScript), and the DOM. That's where web design and
development can feel like a black art. Techniques for addressing CSS browser bugs are covered in
detail in Chapter 25.

2.4.1.2. Dominance of Windows and Internet Explorer

As of this writing, the vast majority (83%, according to these statistics; others vary) of web traffic is
happening on Windows machines running Internet Explorer 6. That means you cannot afford to
ignore its unique behaviors and requirements. For example, knowing that more than 80% of your
visitors will not be able to zoom text when its size has been specified in pixel units should influence
the way you size text with style sheets. Other examples of Internet Explorer's special needs are listed
in Chapter 25.

Version 7 is nearing its final release as of this writing, and IE 6 will eventually fall to second in the
rank, but it takes several years for old browser versions to fade from use completely.

2.4.1.3. Persistence of old browser versions

Speaking of old browser versions, the statistics above show that browsers such as Netscape 4,
originally released in 1997, are still hanging around. In fact, statistics show that there are still a
handful of hits from Netscape 2.

With the vast volume of web traffic, even less than 1% could amount to millions of users. If your
revenue depends on them, you must continue to keep them in mind and make sure that your site is,
at the very least, functional on even the oldest browsers.

2.4.2. Browser Usage Trends

What the statistics above do not show us are some important browser developments over time. The
most drastic trend, of course, is Microsoft's complete domination of the browser arena. In mid-1997,
Netscape Navigator enjoyed a comfortable 70 to 80% of overall browser usage (according to statistic
sites such as those listed earlier); by 1998, that share was down to 50%. Now, all versions combined
make up just 1%.

It seemed Internet Explorer was unstoppable, that was until 2005, when it suffered its first drop in
browser usage to Mozilla's free Firefox browser. There was a grass-roots campaign to promote
Firefox (www.spreadfirefox.com) as an alternative browser to people fed up with IE's security holes.
Firefox usage quickly expanded to 5 to 10% of all browser usage (depending on whose stats you
use). As of this writing, its rise is slowing. Even so, it has caused Microsoft to recognize the need to
improve its security and to continue development of a standalone browser application. Microsoft has
plans to integrate web browsing functions so fully into its operating system that browser software as
we know it may be obsolete.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. Dealing with Browser Differences

How do professional web designers and developers cope with the multitude of browsers and their
varying capabilities?

In the past, it required some tough decisions or a lot of extra work. It was common to create multiple
versions of a site to ensure similar functionality. Some designers played it safe and avoided any web
technology more advanced than basic HTML. On the other end of the spectrum were designers who
chose to design cutting edge sites exclusively for the latest version of one specific browser. We can
thank the Browser Wars of the late '90s for that chaos.

Web standardsor more important, the fact that the major browser developers have finally started to
support themhave simplified the way designers cope with the multitude of browsers in use. Gone are
the days of choosing sides or building several versions of the same site. Today, it is possible to create
sites that are accessible to 100% of browsers and that look good in the vast majority of them. The
trick is following the standards yourself in the way you write, style, and program your content.

Note that I said "possible" in the last paragraph, and not "easy," to create sites for all browsers. As of
this writing, the web environment, although inching towards standards compliance, is not there yet.
There are still inconsistencies, even in the current browser versions, that require some fancy coding
to deliver a consistent cross-browser experience. While we are in this period of transition, there are
still some old-school techniques that are common practice or even necessary despite going against
W3C recommendations.

Bugs aside, sticking with standards is still the primary tool to ensuring your site is usable for all users
on all browsers. Following are some specific strategies for addressing varying browser capabilities.

A Little Help from Authoring Tools

Both Adobe GoLive and Macromedia Dreamweaver provide tools that give you feedback
on your design's performance in various browsers. GoLive provides a complete list of
browser profiles that change the appearance of the document in the Layout window.
Simply select a profile from the View palette and the Layout window simulates how your
page will look when viewed with that browser. This can allow you to make certain
adjustments in real time, without the need to open multiple browsers for testing.

Dreamweaver has a Check Target Browser feature that checks your code against a list of
browser profiles to see if any tags or attributes are unsupported and then generates a
report with its findings. To take some of the guesswork out of browser support for
scripting, Dreamweaver allows you to set a target browser. Dreamweaver then limits the
behaviors you can select to just those supported in that browser. The program also
includes built-in functions for performing browser detection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dreamweaver users may also be interested in the book Build Your Own Standards
Compliant Website Using Dreamweaver 8, by Rachel Andrew (Sitepoint).

2.5.1. Document Authoring

It is important to keep in mind that your primary goal on the Web is to communicate. While it may
not be possible to make your site look exactly the same on all browsers, you can be sure your
content is accessible and usable, at the very least, by following standards recommendations for
marking up your content.

Start with good markup

When an HTML document is written in logical order and its elements are marked up in a
meaningful way, it will be usable in even Mosaic 1.0 (try it yourself on the Mosaic emulator at
Dejavu.org). Plus, you have to figure that if a visitor is using Netscape 2.0, your page won't
look any worse than any other.

Follow accessibility guidelines

The techniques that make your site accessible to people with disabilities also ensure that your
site can be viewed on all browsers, including old versions, text-only browsers, and micro-
browsers in handheld devices. See Chapter 5 for more information on accessibility.

2.5.2. Style Sheet Tactics

Now that HTML has resumed the role of providing document structure, Cascading Style Sheets bear
the burden of delivering consistent page layouts and formatting. The good news is that the vast
majority of browsers support CSS Level 1, so you can do basic text formatting with peace of mind
that the majority of your visitors will see it the way you intend.

The bad news is that there are still inconsistencies in the way much of the specification is
implemented, even by those browsers who claim full CSS support. So CSS implementation still
requires some extra effort to achieve consistent results. In some cases, it is necessary simply to live
with one browser displaying items a few pixels off. Remember, the goal is to communicate. A few
pixels shouldn't matter.

The specifics of known bugs, limitations, and workarounds are covered in Chapter 25, so I won't go
into detail here. But I can show you a general style sheet strategy for addressing the special needs of
all browsers. This technique comes from web standards guru Jeffrey Zeldman. In his book, Designing
with Web Standards(New Riders), he describes the Best-Case Scenario Design Method.

The crux of the method (in addition to the proper use of XHTML and CSS) is to design for your
favorite full-featured, standards-compliant browser. This is a departure from the past practice of
checking how pages looked in the lowest common denominator browsers first. Then test your page to
make sure it looks and works the same in comparable standards-compliant browsers. If it doesn't

http://lib.ommolketab.ir
http://lib.ommolketab.ir

look the same, you may need to use some fancy CSS tricks to work out the kinks.

Once you have the design working acceptably in the modern browsers (which are used by the vast
majority of users), take a look at it in a noncompliant browser, such as Netscape 4. If it looks okay,
you're done. If not, the solution is to separate your style sheet into two separate sheets: one with
just the basic CSS features and another with advanced rules features for browsers that understand
them. Link the advanced style sheet using @import to hide it from browsers that wouldn't know what
to do with it.

Knowing which rules are basic and which are advanced takes research, testing, and practice. With
some trial and error, you should be able to design a site that looks the way you want it to in the top-
model browsers but still is acceptable in older versions.

2.5.3. Programming

The standards that govern web behaviors are the scripting language ECMAScript (so close to
JavaScript 1.5 that it is usually just referred to by the less technical sounding moniker, JavaScript)
and the Document Object Model (DOM), which defines the components of a web page that can be
manipulated.

There is the same good news/bad news scenario for JavaScript and the DOM. Although 99% of
compliant browsers profess to support the standards, they are fraught with bugs and inconsistencies.
Some browsers do not support certain JavaScript functions. Microsoft has added its own extensions
to the DOM that work only in Internet Explorer. And so on.

For the remaining 1% of browsers that do not support the DOM at all (namely Version 4 browsers),
there are no simple workarounds. It is usually necessary to serve an alternative version of the page
that uses scripting functions those browsers can understand, or to provide an explanatory page
without scripts at all that would work on any browser.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6. Know Your Audience

Although by following standards-driven development techniques, you ensure that your site is usable
for all visitors, you may decide to embrace or steer clear of certain technologies based on knowledge
of your audience. Before designing a new site, be sure to spend time up front researching the likely
platforms, browsers , technical savviness, and connection speeds of the users you are targeting. If
you are redesigning an existing site, spend time with the server logs to analyze past site usage.

There are no browser-support guidelines that can anticipate every design situation; however, the
following scenarios should start you thinking:

If your site is aimed at a consumer audiencefor instance, a site that sells educational toys to a
primarily parent audiencedon't ignore your site's performance and presentation in the AOL
browsers or older browser versions over dial-up connections.

If you are designing for a controlled environment, such as a corporate intranet or, even better,
a web-based kiosk, you've got it made! Knowing exactly what browser and platform your
viewers are using means you can take full advantage of the bells and whistles (and even
proprietary features) appropriate to that browser. If you are designing a standalone kiosk, you
may even have the luxury of loading the fonts you want to use. Just be sure your design won't
crash the browser, because there won't be anyone there to restart it for you immediately.

If your site is about the technology being used, such as SVG graphics or Flash animations, you
have every right to expect users to use the appropriate browser or plug-in to catch up with your
content. But it might still be nice to at least provide some screenshots or other alternative
content to let the others know what they're missing.

If you are designing a government site, you are required by law under Section 508 to make
your pages accessible to all browsing devices. For more information, see Chapter 5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.7. Test!

The final word in the dilemma of designing for a variety of browsers is test! Always test your site on
as many browsers, browser versions, and platform configurations as you can get your hands on.

Professional web design firms run their sites through a vigorous quality assurance phase before going
"live." They generally keep a bank of computers of varying platforms and processing powers that run
as many versions of browsers (including Lynx) as possible.

Another option is to subscribe to a screen capture service such as Browser Cam. For a monthly fee,
you can enter the URL of a page you want to check, and Browser Cam creates screen captures of the
page in all the operating systems and browsers you select. This makes it easy to see which browsers
are having problems without needing to run copies of all of them yourself. Read more at
browsercam.com.

If you have extremely limited resources, make the site available on a private test site and take a look
at it on your friends' computers. You might view it under corporate conditions (a fast Windows
machine with a 6.0 browser and a T1 connection), and then visit a friend at home to see the same
site on AOL with a 56K modem. (If nothing else, this is a good excuse to get away from your
computer and visit your friends.)

Although your pages will certainly look different in different environments, the idea is to make sure
that nothing is outright broken and your content is communicated clearly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Designing for a Variety of
Displays
A simple fact of web publishing is that your page is at the mercy of the software and hardware
configuration of each individual user. A page that looks great on your machine may look radically
different when viewed on another user's setup. This is partly due to the browser's functionality (as
discussed in Chapter 2) and the individual user's preferences (font size, colors, etc.), but the display
device itself also plays a large part in the user's experience.

This chapter looks at the ways in which design decisions are influenced by a wide range of displays
and viewing conditions. The variation in display is a function of the monitor's size (or, more
accurately, its resolution), color capabilities, and user's personal preferences. However, it is
important to keep in mind that the diversity does not end there. Some users may be watching your
web page on TV. Still others may be viewing it in the palm of their hand on a PDA (personal digital
assistant) or cell phone. Sight-impaired users may be listening to your page, not viewing it.

How do you create a page that works in a cinema-display computer monitor and a postage-stamp
sized cell phone? Once again, web standards are the answer. The W3C guides the development of
web technologies in a way that ensures that the Web is accessible to all manner of devices. As
designers and developers, our job is to author documents in a way that they make sense in any
environment. That means logical, well-structured markup, uncluttered by presentation instructions
that may not be appropriate for a particular medium. In fact, Cascading Style Sheets include a
function that allows you to create different style sheets targeted to particular media such as print,
screen, and handheld.

As most web viewing does take place on computer monitors, this chapter starts with a look at how
monitor resolution impacts web page design.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. Designing for Unknown Monitor Resolutions

Browser windows can be resized to any dimension, limited only by the maximum size of the monitor.
Designing for an unknown amount of browser real estate is a challenge unique to web design and one
that is particularly troublesome for designers who are accustomed to the printed page.

Many web designers want to know which monitor resolution to design for. As with most web design
issues, there is no "right" way to design for the Web, and your decisions should always be guided by
your knowledge of your target audience and the purpose of your site. Still, it is helpful to understand
the environment and to know how others are maneuvering within it.

This section looks at the range of monitor resolutions and presents the current wisdom on making
appropriate design decisions.

3.1.1. Standard Monitor Sizes and Resolutions

The first step in determining the likely size of your web page is to look at the maximum amount of
space provided by the computer monitor. Computer monitors come in a variety of standard sizes,
typically measured in inches, ranging from 12" laptop displays all the way up to 30" cinema displays.

A more meaningful measurement, however, is monitor resolution: the total number of pixels
available on the screen. The higher the resolution, the more detail can be rendered on the screen.
Resolution is related to but not necessarily determined by monitor size. Depending on the video card
driving it, a single monitor can display a number of different resolutions. For instance, a 17" monitor
can display 800 x 600 pixels, 1024 X 768 pixels, or even higher. The following is a list of some
standard monitor resolutions supported by Windows and Macintosh platforms. This is not a complete
listing, merely the most commonly occurring configurations.

640 x 480

800 x 600

1024 x 768

1152 x 870

1280 x 1024

1600 x 1200

It is important to keep in mind that the higher the resolution on a given monitor, the more pixels are
packed into the available screen space. The result is smaller pixels, which will make your images and
page elements appear smaller as well. For this reason, web measurements are made in pixels, not
inches. Something that appears to be an inch wide on your system may look smaller or larger on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

other screens. Chapter 28 further discusses resolution as it applies to graphics.

3.1.2. Live Space in the Browser Window

Knowing the size of the monitor is just the beginning. The operating system and the interface
components of the browser itself (known as the browser chrome) occupy a fair amount of screen
space. The amount of space that is actually available within the browser window, (the browser
canvas), is dependent on the computer's operating system, the browser being used, and the
individual user's preference settings.

Table 3-1 lists the amount of canvas space that is available at standard monitor resolutions.
Measurements were taken with the browser maximized to fill the monitor and with all possible
chrome elements such as buttons, location bars, and scrollbars visible. In a way, this can be
considered a worst case scenario for available space (with the browser maximized).

Bear in mind that these are theoretical extremes, and actual browser window dimensions will vary.
Users may have some of the buttons showing, but not all of them. Scrollbars turn on and off
automatically, so they are difficult to anticipate. Users with high monitor resolutions (1024 pixels
wide and higher) do not necessarily open their browser windows to fill the whole area, but may keep
several narrow windows open at the same time.

Table 3-1. Minimum canvas dimensions at various monitor resolutions

Browser 640 x 480 800 x 600 1024 x 768 1280 x 1024

Windows

Internet Explorer 6 620 x 309 780 x 429 1004 x 597 1260 x 853

Firefox 1.0 621 x 291 781 x 421 1005 x 579 1261 x 835

Netscape 7a 625 x 258 785 x 378 1009 x 546 1265 x 802

Macintoshb

Safari 625 x 352 785 x 472 1009 x 640 1265 x 896

Firefox 1.0 625 x 328 785 x 448 1009 x 616 1265 x 872

Internet Explorer 5.2 625 x 334 785 x 454 1009 x 622 1265 x 878

Netscape 7a 625 x 340 785 x 460 1009 x 628 1265 x 884

a Netscape measurements are taken with MySidebar hidden. MySidebar takes up 170 pixels of
horizontal space

b Macintosh widths are measured with no launch bar visible on the side of the screen.

The dimensions for Microsoft Internet Explorer on an 800 x 600 monitor are in bold because they
represent the available canvas area for a typical lowest common denominator user. Because as much

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as 80% of web traffic uses Internet Explorer on Windows, and because as many as a quarter of users
have 800 x 600 monitors, it is current web design practice to make sure pages fit comfortably within
780 x 429 pixels in order not to alienate this significant percentage of users. Designing to fit specific
window sizes is discussed later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. Fixed Versus Liquid Web Pages

Closely related to the issue of varying monitor resolutions is the question of whether web pages
should be designed to be liquid (resizing and adapting to various window sizes, also called "fluid"
design) or fixed at a particular size (giving the designer more control of the page's dimensions).
There are very strong opinions on both sides, and there are good reasons for and against each
approach, naturally.

You may find that you choose a fixed structure for some sites and allow others to be liquid, or you
may have strong convictions that one or the other approach is the only way to go. Either way, it is
useful to be familiar with the whole picture and the current opinions of professional web designers
(see "The Layout Debate" sidebar). This section attempts to present a balanced overview of the
possibilities and the pitfalls.

The Layout Debate

The question of whether fixed or liquid page layouts are most appropriate for web pages
has sparked impassioned debate among professionals in the web design community.
There is an undeniable trend toward fixed-width layouts (presumably due to the desire to
control line lengths), but there are still staunch proponents of liquid designs as best for a
medium where the canvas size is unknown. To get caught up with both sides of the
debate, start with these articles and blog entries (they all have links to additional points
of view):

"On Fixed vs. Liquid Design," by Doug Bowman (experimenting with fixed-width
design at www.stopdesign.com/log/2003/12/15/fixedorliquid.html)

"More on fixed widths," by Richard Rutter (pro-liquid design article at
clagnut.com/blog/269/)

"Fixed Fashion," by Jeremy Keith (pro-liquid design post at
www.adactio.com/journal/display.php/20050415012704.xml)

"The Benefits of a Fixed Width Design," by Mike Golding
(www.notestips.com/80256B3A007F2692/1/TAIO-5TT34F)

3.2.1. Liquid Layouts

Web pages are fluid by default. The behavior of the "normal flow" of a web document is to flow into

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the browser window, filling all available space in the canvas area. When the browser window is
resized, the elements reflow to adapt to the new dimensions. Many designers make a conscious
decision to construct pages that adapt to the stretching and shrinking of browser windows. This
approach comes with advantages and disadvantages.

3.2.1.1. Advantages and disadvantages of fluid web pages

The advantages of a flexible design include:

You don't need to worry about choosing a target monitor resolution.

The whole window is filled, without the potentially awkward empty space left over by many
fixed-width designs.

Designing liquid pages is in keeping with the spirit and the nature of the medium. A "good" web
page design by these standards is one that is functional to the greatest number of users.

Keep in mind, though, these potential pitfalls of a flexible design:

On large monitors, the text line length can get out of hand when the text fills the width of the
browser. Long lines of text are particularly uncomfortable to read on a screen. (Note, line length
on liquid designs could be controlled by the max-width CSS property, but it is not supported by
Internet Explorer 6 or earlier. One day, it will be a tool for addressing the line-length issue.)

Elements float around on large monitors, making the design less coherent and potentially more
difficult to use. Likewise, on very small monitors, elements can get cramped.

The results of flexible design are unpredictable, and users will have varying experiences of your
page.

3.2.1.2. Creating flexible pages

The key to creating web pages that resize proportionally to fill the browser is using relative
measurements, such as percentages) in your style sheets, tables, or frames or not specifying
measurements at all and allowing elements to size automatically.

As an example, let's consider a web page that is divided into two sections: a main content column
and a links column (Figure 3-1). By using percentage values for the divs, table cells, or frame
measurements, the columns and elements will remain proportional to one another. In this example,
the main content column takes up 75% of the screen regardless of the size of the browser window.
Note that the content of that column reflows to fill the available width.

Figure 3-1. A flexible web page with proportional columns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using style sheets, you can also set the contents of the page to flex based on the user's text size
preference by setting measurements in ems, a unit used in printing to refer to the width of one
capital letter M. In CSS, an em is equal to the font size; in other words, an em unit in 12-point text is
12 points square. Using em measurements for element dimensions, margins, line-height, and so on
ensures that page elements scale proportionally with the user's chosen text preference.

3.2.2. Fixed-Width Design

If you want more control over the layout of a page, you may opt to design a web page with a fixed
width that stays the same for all users, regardless of monitor resolution or browser window size. This
approach to web design is based on design principles learned in print, such as a constant grid, the
relationship of page elements, and comfortable line lengths. It is a popular approach among the
standards-based design crowd as of this writing, but that may only indicate a trend, not that it is the
superior approach to web page layout.

3.2.2.1. Advantages and disadvantages of fixed-width design

These are the advantages of fixed-width design:

The basic layout of the page remains the same regardless of canvas size. This may be a priority
for companies interested in presenting a consistent corporate image for every visitor.

Fixed-width pages and columns provide better control over line lengths, preventing them from
becoming too long when the page is viewed on a large monitor.

Consider also these disadvantages:

If the available browser window is smaller than the grid for the page, parts of the page will not
be visible and may require horizontal scrolling to be viewed. Horizontal scrolling is a hindrance
to ease of use, so it should be avoided. (One solution is to choose a page size that serves the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

most people, as discussed later in this section.)

Elements may shift unpredictably if the font size in the browser is larger or smaller than the font
size used in the design process.

Trying to exert absolute control over the display of a web page is bucking the medium. The Web
is not like print; it has its own peculiarities and strengths.

3.2.2.2. Creating fixed pages

Fixed web page designs are created by using exact pixel measurements for all the elements on the
page. Figure 3-2 shows a two-column web page similar to the one in Figure 3-1; however, this one
has been sized to exactly 900 pixels wide, with the two columns set to 700 and 200 pixels,
respectively.

Figure 3-2. A fixed-width web page with exact pixel measurements
viewed on large (left) and small (right) monitors

Style sheets offer the best set of tools for fixed-measurement layouts. In the past, designers resorted
to tricks such as sized transparent graphics to hold "whitespace" on the page and multiple nested
tables to control spacing around elements. Thankfully, these workarounds are no longer necessary.

Style sheets allow you to set specific pixel measurements for the page, columns, margins, indents,
and so on. You can also specify the font size in pixels, ensuring the text will wrap similarly for most
users.[*] The CSS Level 2 specification provides tools for the precise positioning of elements on the
page, right down to the pixel. For designers looking for control over layout, style sheets are great
news.

[*] Using pixel measurements for font size is problematic, because Internet Explorer users (Version 6 and earlier on Windows)

cannot resize text set in pixels in the browser window. This could create accessibility problems for sight-impaired users who need

to zoom text. Internet Explorer 7 will support this feature, but in the meantime, em units are the best choice for font size. For a

more detailed discussion, see Chapter 18.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some visual HTML authoring tools make it easy to create fixed-width designs . Adobe GoLive
(www.adobe.com/products/golive/main.html) has an option for designing your page on a grid as
though it were a page-layout program. GoLive then automatically generates the corresponding (and
often complicated) table. Macromedia Dreamweaver
(www.macromedia.com/software/dreamweaver/) also includes a layout mode with the option of
generating your design using tables or style sheets with absolute positioning .

3.2.2.3. Left-aligned or centered?

When you set your content to a specific width, you need to consider where it should appear in the
browser window. By default, it will be aligned on the left margin, with the extra space in the browser
window on the right. Some designers opt to center the page, splitting the extra space over the left
and right margins. Centering the page may make it feel as though the page better fills the browser
window. Figure 3-3 provides examples of each approach. Neither of these approaches is necessarily
better than the other; it's just a design decision you'll need to make.

Figure 3-3. Positioning fixed-width content on the page

Be aware that there are a few issues regarding centering content in the
browser window in modern browsers. This is discussed in Chapter 21.

3.2.2.4. Pop-up and resized windows

For the ultimate in control-freak, fixed-width page design, you can specify not only the size of your
web page, but also the size of the browser window itself.

One way to get the browser window "just so" is to open a new browser window automatically (known

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as a pop-up window) set to specific pixel dimensions. The drawback to this technique is that pop-up
windows have become associated with annoying, force-fed advertising banners. Many users have
learned to close a pop-up window before the content even has time to load. The seriously annoyed
folks may have taken the time to install a pop-up window blocker on their browser. Others may
simply have JavaScript turned off for security or whatever reasons. The lesson here is not to put
critical content in a pop-up window, and if you do, label the link accordingly to let people know what
to expect.

Another, more drastic, approach is to run a JavaScript that resizes the user's current browser window
to accommodate your design. In my opinion, this is just bad mannerslike visiting a stranger's house
and rearranging their furniture without asking. But I will qualify this statement by saying that no
technique is entirely off limits. Sometimes an otherwise bad practice may be the appropriate solution.
In this case, automatically resizing the browser window might be a good backup technique to make
sure a web-based kiosk window is always sized appropriately.

3.2.3. Combination Pages

Of course, web pages need not be all-fixed or all-flexible. It is certainly possible to create pages that
are a combination of the two by setting a specific pixel size for one critical element and allowing the
rest of the page to resize to fill the browser window. In Figure 3-4, the right column has been set to
stay at 200 pixels so the list of links is always visible, but the main content column is allowed to
resize to fill the available browser window space.

Figure 3-4. A web page with a liquid left column and a fixed-width right
column

3.2.4. Choosing a Page Size

Obviously, if you decide to design a web page at a fixed size, you need to make a decision regarding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

how big to make it. If the page is too wide, you run the risk of users with lower resolution monitors
missing some of your content as shown in Figure 3-2. It makes sense to design the page to fit
comfortably in the smallest monitors and eliminate the need for horizontal scrolling. This is where
web traffic statistics come in handy.

3.2.4.1. The statistics

Table 3-2 shows the breakdown of users browsing the Web with various monitor resolutions in late
2005, according to TheCounter (www.thecounter.com).

Table 3-2. Resolution statistics as of December 2005 (thecounter.com)

Resolution Usage

640 x 480 < 1%

800 x 600 20%

1024 x 768 56%

1152 x 864 3%

1280 x 1024 14%

1600 x 1200 <1%

Unknown 2%

Of course, this is only an approximation based on traffic to a limited set of web sites. The only
worthwhile statistics are those culled from your own server logs. You can install software to check
browser resolution yourself, or sign up for a tracking service such as TheCounter (free in exchange
for ad placement).

3.2.4.2. Current practice

Based on these statistics, the only definitive conclusion is that it is finally time not to worry about how
your page will appear in 640 x 480 monitors (unless, of course, you know the target audience for
your site is likely to have outdated hardware setups).

As of this writing, professional web developers tend to design pages that fit in 800 x 600 monitors.
Although the percentage of people with this monitor resolution is steadily shrinking, with just a fifth
of all traffic, it is still too large a population to risk alienating. For this reason, you will find that most
fixed-width consumer- or business-oriented web sites are designed to be approximately 750 pixels
wide.

If you know that the majority of your visitors will have a higher monitor resolution (such as graphic
designers), or if the right edge of your design does not contain critical content, then it may be safe to
design to fill the live space of a 1024 x 768 monitor. Very few sites today are designed to fill 1280 x
1024.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I suspect as 800 x 600 monitors go the way of 640 x 480, we'll be seeing larger and larger web
pages. For now, however, consider 800 x 600 the lowest common denominator monitor resolution.

"Design-to-Size" Developer Tools

There are a few developer tools available that allow you to see how your page will look at
varying browser sizes without needing to change the resolution on your monitor.

One of the niftiest tools out there is the Web Developer Extension for Firefox and Mozilla
browsers. The extension adds a toolbar to the browser that has a number of useful tools
for web developers. One of the tools is Resize, which automatically changes the
dimensions of the browser window to your specifications. You can download Web
Developer Extension for free at www.chrispederick.com/work/firefox/webdeveloper/.

Macromedia Dreamweaver provides a Window Size tool that resizes the document
window to a number of standard monitor resolutions. This allows you to see how your
page is fitting the available live space as you design it. The window size is listed as a
pixel dimension (say, 760 x 420) in the bottom-right corner of the document window.
Clicking on the button opens a pop-up menu of standard resolutions.

In Adobe GoLive CS, the dimensions of the page you are working on are displayed in the
lower-right corner. There is a pull-down menu that lets you set the layout window to the
available space for several standard widths (such as 720 pixels to fit in an 800 x 600
monitor) or add your own. Selecting a resolution resizes the layout window.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Designing "Above the Fold"

Newspaper editors have always designed the front page with the most important elements "above
the fold," that is, visible when the paper is folded and sitting in the rack.

Likewise, the first screenful of a web site's homepage is the most important real estate of the whole
site, regardless of whether the page is fixed or flexible. It is here that the user makes the decision to
continue exploring the site or to hit the Back button and move along. Web designers have adopted
the term "above the fold" to apply to the contents that fit in that important first screen.

As discussed throughout this chapter, a "screenful" can be quite different depending on the resolution
of the monitor. To play it absolutely safe, consider the space available for the lowest common
denominator 800 x 600 monitorapproximately 780 x 400 pixels. That's not much room.

Some elements you should consider placing above the fold include:

The name of the site.

Your primary marketing message.

Some indication of what the site is about. For instance, if it is a shopping site, you might place
the credit card logos or shopping cart in the top corner to instantly communicate that "shopping
happens here."

Navigation to other parts of the site. If the entire navigation device (such as a list of links down
the left edge of the page) doesn't fit, at least get it started in the first screen; hopefully users
will scroll to see the remainder. If it is out of sight completely, it is that much more likely to be
missed.

Any other information that is crucial for visitors to the site, such as a toll-free number or special
promotion.

Banner advertising. Advertisers may require that their ads appear at the top of the page.

Monitor Color Issues

Differences in the number of colors a monitor can display (color depth) and how bright or
dark it is (gamma) may also influence your design decisions. Dealing with color issues in
web design is discussed in Chapter 28.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Mobile Devices

The increased popularity and usefulness of the Web combined with the growing reliance on handheld
communications devices (such as palm-top computers, PDAs, and cellular telephones) has resulted in
web browsers squeezing into the coziest of spaces. Advancing technology and lower production costs
have made high-resolution color displays and embedded web browsers standard issue on nearly all
new phones and PDAs. This comes as a big improvement over the black-and-white, text-only displays
of only a few years ago, and it is creating a call for mobile -appropriate web content.

3.4.1. Mobile Display Resolution

Because each manufacturer creates its own displays, there are no clear standard screen resolutions
for mobile devices the way there are for computer monitors. But to get you in the ballpark, take a
look at some current specifications. On the low end are standard mobile phones with screen
dimensions of 128 x 128 pixels. Fuller-featured phones typically have resolutions of 176 x 208, 176 x
220, 208 x 208, or as large as 240 x 320. Handheld devices, such as the ubiquitous BlackBerry, sport
screen sizes of 240 x 160 or 240 x 240.

3.4.2. Mobile Browsers

The browsers embedded in mobile phones and PDAs (also known as microbrowsers) are designed to
accommodate the lower memory capacity, low bandwidth abilities, and limited display area of
handheld devices. Some are WAP browsers with limited HTML support (see the sidebar, "WAP and
WML"), and some are full-featured browsers that support the current web standards and allow access
to all the same web content that is available from a PC browser. (Some of the best-known mobile
browsers and their web addresses are listed at the end of this section.)

3.4.2.1. Support for standards

The significant development in mobile browsing technology is the abandonment of WAP (Wireless
Application Protocol) and its authoring language WML (Wireless Markup Language) in favor of the
same web authoring standards set forth by the W3C for web content. The Open Mobile Alliance
(www.openmobilealliance.org), the organization that guides standards for the mobile industry, has
been working in cooperation with the W3C to ensure that web technologies take into account the
needs of the mobile environment. In fact, the W3C has formed the Device Independence Working
Group (www.w3c.org/2001/di) to promote access to a "unified Web from any device in any context
by anyone."

Modern mobile phones and other handheld devices will support XHTML Mobile Profile (XHTML minus
the tags that don't make sense for the mobile environment), ECMAScript Mobile Profile, Wireless CSS,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SVG Tiny (a version of Scalable Vector Graphics especially for mobile devices), among other
standards. This is big news, because web content developers no longer need to learn a special
language to make content accessible to the growing mobile audience. The devices may also continue
to support less strictly authored HTML pages as well as legacy WML.

3.4.2.2. Adapting web content for small screens

What happens when a cell phone accesses a traditional web page? Basically, it does the best it can.
One of the biggest challenges for mobile browsers is rendering big web pages on small screens.
Browser and device developers have created a few solutions to this problem.

WAP and WML

WAP, the Wireless Application Protocol, is a collection of protocols and specifications that
work together to give mobile phones access to Internet-like information. WAP uses
Wireless Markup Language (WML) to create wireless applications just as HTML is used to
create web pages. WML is an application of XML, meaning that it is defined in a
document type definition.

WAP is generally used for creating applications tailored to handheld devices rather than
web pages as we think of them. That is why you often see the phrase "Internet-like
information" used in regards to WAP. WAP is good for delivering short, pithy bits of data,
such as stock prices, sports scores, movie times, and so on. It is not useful for complex
documents with visual layouts.

WAP and WML are becoming obsolete now that the mobile industry has embraced
standard web technologies on mobile devices .

Shrink-to-fit

The most sophisticated method is to reduce the web page to fit the available width of the
device display. They accomplish this by intelligently displaying the contents of the source HTML
document sequentially and shrinking graphics to fit. The best known browsers that use this
technique are Opera's Small-Screen Rendering technology and Access System's NetFront
browser with its SmartFit Rendering.

Allow horizontal scrolling

Another option is to simply display the web page at its actual size and enable horizontal and
vertical scrolling to view it all. Some devices offer an option for users to decide whether they
want to scroll the page horizontally (which may be necessary for wide tabular content such as
time tables) or make pages flow into the narrow screen width.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4.3. Designing for Mobile Devices

It should come as no surprise that the prescription for optimizing your visitors' experience in the
mobile environment is creating standards-compliant content. Here are just a couple of tips.

3.4.3.1. Write clean HTML

The best ways to accommodate the limitations of handheld browsers are to mark up documents
semantically and logically and to avoid sinking text in graphics (which you should be avoiding
anyway). The goal is to create a page that works and makes sense even with all the graphics and
tables stripped away.

One example of how logical semantic markup can serve all audiences is the practice of marking up
navigation options as an unordered list in the document source. Cascading Style Sheets can be used
to present the list as a horizontal navigation bar (with graphics, too, if you choose) for graphical
browsers, but microbrowsers and other alternative browsing devices will see a bulleted list of links.
This technique is demonstrated in Chapter 24.

3.4.3.2. Use media types

What looks good on a PC monitor may not work at all on the small screen of a PDA. Fortunately, you
can give the PDA its own set of presentation instructions by creating a style sheet crafted specifically
for handheld devices. The HTML media attribute allows you to target a number of media including (but
not limited to) screen, print, projection, and handheld. CSS media types are discussed in further
detail in Chapter 16.

To create a link to a style sheet that is used only by handheld devices, use the code:

<link rel-"stylesheet" href="smaller.css" media="handheld" />

3.4.4. Online Resources

For more information on what is happening in the mobile browsing world, see these useful sites.

3.4.4.1. Mobile standards

These organizations oversee the technology that is continuing to improve the mobile web experience.

Open Mobile Alliance (www.openmobilealliance.org)

W3C's Device Independence group (www.w3.org/di)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4.4.2. Mobile browsers

The following are some of the most popular embedded mobile browsers.

Opera (Opera Software, www.opera.com)

NetFront (Access Systems, www.access-sys-eu.com)

Nokia (Nokia, www.forum.nokia.com)

Openwave Mobile Browser (Openwave, www.openwave.com)

Pocket Internet Explorer (Microsoft, www.microsoft.com)

Picsel (Picsel Technologies, www.picsel.com)

3.4.4.3. Mobile device manufacturers

The major information appliance manufacturers publish information about their products and
technologies for developers. To get you started, a few of the most popular are:

Forum Nokia (www.forum.nokia.com)

Ericsson Mobility World (www.ericsson.com/mobilityworld)

BlackBerry Developers pages (www.blackberry.com/developers)

3.4.5. The Web on TV

Some people access the Web via their television sets using a set-top box that connects to the
television and either a cable or modem Internet connection. Although it is not as full-featured or
versatile as browsing on PCs, it may offer a convenient and more affordable alternative for some
users. Gaming consoles are another option for using the TV as the display for Internet content.

The only significant player in the web TV arena is MSN TV (formerly WebTV , which hit the market in
1996). As of this writing, it remains barely a blip on the radar screen of overall browser usage, but it
still has millions of users. Some sites are designed specifically for MSN TV.

MSN TV uses a television rather than a monitor as a display device. The canvas area in the MSN TV
browser is a scant 544 x 372 pixels. Principles for designing legible television graphics apply, such as
the use of light text on dark backgrounds rather than vice versa and the avoidance of any elements
less than two pixels in width. These and other guidelines are provided on MSN TV's special developer
site at developer.msntv.com/.

Of particular interest is MSN-TV Viewer , which shows you how your web page will look on MSN TV,
right from the comfort of your computer. It is available for free for both Windows and Mac (although

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Mac version is antiquated and will not be updated). For information on MSN-TV Viewer, go to
developer.msntv.com/TOOLS/msntvvwr.asp.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. A Beginner's Guide to the
Server
Even if you focus primarily on what's commonly referred to as frontend web developmentHTML
documents and web graphicsthe server and the way it is configured may impact the way you work.
In most cases, there is no way to avoid making firsthand contact with the server, even if it's just to
upload files.

For this reason, all web designers should have a basic level of familiarity with servers and what they
do. At the very least, this will enable you to communicate more clearly with your server
administrator. If you have permission for greater access to the server, it could mean taking care of
certain tasks yourself without needing to wait for assistance.

This chapter provides an introduction to server terminology and functions, pathnames, and file
(MIME) types. It also discusses uploading files and setting permissions, which designers often need to
do.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. Servers 101

A server is any computer running software that enables it to answer requests for documents and
other data. The programs that request and display documents (such as a browser) are called clients .
The terms server-side and client-side, in regard to such specific functions refer to which machine is
doing the processing. Client-side functions happen on the user's machine; server-side functions occur
on the remote machine.

Web servers answer requests from browsers (the client program), retrieve the specified file (or
execute a script), and return the document or script results. Web browsers and servers communicate
via the Hypertext Transfer Protocol (HTTP).

4.1.1. Popular Server Software

Any computer can be a server as long as it is running server software. Today, there are many server
packages available, but the overwhelming leaders are Apache and Microsoft Internet Information
Server (IIS) .

Apache

The majority of servers today (approximately 70%) run Apache. Powerful and full-featured, it
has always been available for free. It runs primarily on the Unix platform but is also available
on other platforms, including Windows NT/2000 and Mac OS X.

The core installation of Apache has limited functionality, but it can be expanded and customized
easily by adding modules. Apache calls on each module to perform a dedicated task, such as
user authentication or database queries. You can pick up a copy of the Apache server and its
documentation from the Apache home page at www.apache.org

Internet Information Server (IIS)

This is Microsoft's server package, which is also available without charge. IIS runs on the
Windows NT platform. IIS has developed into a powerful and stable server option that is
somewhat easier to set up and maintain than its Unix competitor. It has many advanced server
features, including ASP (Active Server Pages) for server-side scripting. As of this writing,
approximately 20% of sites run on IIS servers. For more information, see the Windows Server
System pages at www.microsoft.com/windowsserversystem/.

Two good sites for information and statistics on popular servers are ServerWatch
(www.serverwatch.com) and Netcraft (www.netcraft.com/survey/).

The particular brand of server does not impact the majority of things designers do, such as making

http://lib.ommolketab.ir
http://lib.ommolketab.ir

graphics or developing basic HTML files. It certainly influences more advanced web site building
techniques, such as Server Side Includes, adding MIME types (discussed later in this chapter), and
database-driven web pages. Be certain to coordinate with your server administrator if you are using
your server in ways beyond simple HTML and graphic files storage.

4.1.2. Basic Server Functions

As a web designer, it is important that you have some level of familiarity with the following elements
of the web server.

4.1.2.1. Web root directory

When a browser requests a document, the server locates the document, starting with the server's
root directory. This is the directory that has been configured to contain all documents intended to be
shared via the Web. The root directory does not necessarily appear in the URL that points to the
document, so it is important to know what your root directory is when uploading your files.

For example, if the root directory on example.com is /users/httpd/www/ and a browser makes a
request for http://www.example.com/super/cool.html, the server actually retrieves
/users/httpd/www/super/cool.html. This, of course, is invisible to the user.

4.1.2.2. Index files

A slash (/) at the end of a URL indicates that the URL is pointing to a directory, not a file. If no
specific document is identified, most servers display the contents of a default file (or index file). The
index file is generally named index.html, but on some servers, it may be named welcome.html or
default.html. Often, there is a hierarchy of index file names that the browser checks for and uses the
one that has been given the highest priority. For example, if a directory contains both index.html and
index.php, the server may be set up to display index.php automatically. This is another small
variation you will need to confirm with your server administrator.

Some servers may be configured to display the contents of the directory if an index file is not found,
leaving files vulnerable to snooping. For this reason, it is a good idea always to name some page
(usually the main page) in each directory index.html (or another specified name). One advantage is
that it makes URLs to the index page of each directory more tidy (www.littlechair.com rather than
www.littlechair.com/homepage.html, for example).

Another variable to confirm with your server administrator is whether your
server has been configured to be case sensitive. For case-sensitive servers, the
files index.htm and Index.htm are not equivalent, and can result in missing file
errors.

4.1.2.3. HTTP response header

http://www.example.com/super/cool.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once the server locates the file, it sends the contents of that file back to the browser, preceded by
some HTTP response headers. The headers provide the browser with information about the arriving
file, including its media type (also known as its content type or MIME type). Usually, the server
determines the format from the file's suffix; for example, a file with the suffix .gif is taken to be an
image file.

The browser reads the header information and determines how to handle the file, either displaying it
in the window or launching the appropriate helper application or plug-in. MIME types are discussed
further at the end of this chapter.

4.1.3. Server-Side Programming

Web pages and sites have gotten much more interactive since the early days of simple HTML
document sharing. Now web sites serve as portals of two-way information sharing, e-commerce,
search engines, and dynamically generated content. This functionality relies on programs and scripts
that are processed on the server. There are a number of options for server-side programming , of
which CGI, ASP, PHP, and Java servlets/JSP are the most common.

4.1.3.1. CGI (Common Gateway Interface)

Instead of pointing to an HTML file, a URL may request that a CGI program be run. CGI stands for
Common Gateway Interface, and it's what allows the web server to communicate with other
programs (CGI scripts) that are running on the server. CGI scripts are commonly written in the Perl,
C, or C++ language.

CGI scripts are the traditional methods for performing a wide variety of functions such as searching,
server-side image map handling, and gaming; however, their most common use is form processing
(information entered by the user through entry fields in the document). As other more powerful
options for interfacing with databases become available (such as ASP, PHP, and Java servlets),
traditional CGI programming is getting less attention.

Most server administrators follow the convention of keeping CGI scripts in a special directory named
cgi-bin (short for CGI-binaries). Keeping them in one directory makes it easier to manage and secure
the server. When a CGI script is requested by the browser, the server runs the script and returns the
dynamic content it produces to the browser.

4.1.3.2. ASP (Active Server Pages)

ASP (Active Server Pages) is a programming environment for Microsoft's Internet Information Server
(IIS). It is primarily used to interface with data on the server to create dynamically generated web
pages. It can also be configured to process form information.

Often, you'll come across a web document that ends in the .asp suffix (as opposed to .html). This
indicates that it is a text file that contains HTML and scripting (usually written in VBScript) that is
configured to interact with ASP on the server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For more information on ASP, see Microsoft Developer Network's page entitled "ASP from A to Z" at
msdn.microsoft.com/workshop/server/asp/aspatoz.asp. Another good resource is ASP 101
(www.asp101.com).

4.1.3.3. PHP

PHP is another scripting language that allows you to create dynamically generated web pages (similar
to ASP). PHP is a project of the Apache Software Foundation , so it is open source and available for
free. PHP works with a variety of web servers, but it is most commonly used with Apache.

PHP code, which is similar to Perl or ASP, can be embedded into the HTML document using special
PHP tags. PHP's advantage over CGI scripting is that it is very easy to include short bits of PHP code
directly in a web page, to process form data or extract information from a database, for example.

For more information on PHP, go to www.php.net, the official PHP web site.

4.1.3.4. Java servlets and JSP

Although Java is known for its small applications (known as applets) for the Web, it is a complete and
complex programming language that is more typically used for developing large, enterprise-scale
applications. With a Java-enabled web server, a programmer can write Java servlets that produce
dynamic web content.

JavaServer Pages (JSP) is a related technology that is similar to ASP. JSP code is embedded directly
in web pages; it provides a simple way for web authors to access the functionality of complex servlets
that are running on the web server.

For more information on Java servlets and JSP, consult java.sun.com/products/servlet/ and
java.sun.com/products/jsp/.

Lamp

In your web design travels, you may come across the acronym LAMP, which stands for
four separate open source programs:

Linux: an operating system

Apache: web server software

MySQL: a database server

PHP (or Perl or Python): a scripting language

Although not designed specifically as a package, these programs are often used in
conjunction to create dynamic web content and applications. For more information on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LAMP development, visit O'Reilly Media's OnLamp.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Unix Directory Structures

Because the Web was spawned from the Unix environment, it follows many of the same conventions.
Directory structure and pathname syntax are prime examples. It is important for all web designers to
have an understanding of how directory structures are indicated on the Unix platform, because
pathnames are used in hyperlinks and pointers to images and other resources.

Directories ("places" to store files) are organized into a hierarchical structure that fans out like an
upside-down tree. The topmost directory is known as the root and is written as a forward slash (/).
The root can contain several directories , each of which can contain subdirectories; each of these can
contain more subdirectories, and so on. A subdirectory is said to be the child of the directory that
holds it (its parent). Figure 4-1 shows a system with five directories under the root. The directory
users contains two subdirectories, jen and richard. Within jen are two more subdirectories, work and
pers, and within pers is the file art.html.

A pathname is the notation used to point to a particular file or directory; it tells you the path of
directories you must travel to get to where you want to go. There are two types of pathnames:
absolute and relative.

4.2.1. Absolute Pathnames

An absolute pathname always starts from the root directory , which is indicated by a slash (/). So, for
example, the pathname for the pers directory is /users/jen/pers, as shown in Figure 4-2. The first
slash indicates that you are starting at the root and is necessary for indicating that a pathname is
absolute.

Figure 4-1. Example of a directory hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-2. Visual representation of the path /users/jen/pers

The advantage to using absolute pathnames in links, image tags, and other places where you provide
the URL of a file on the server is mobility. Because the pathname starts at the top of the server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hierarchy, you can move the file to another directory on the server and the links won't break. The
downside is that it makes it more difficult to test pages on your local machine, because your machine
is likely to have a different root directory than the final destination server.

4.2.2. Relative Pathnames

A relative pathname points to a file or directory relative to your current working directory. When
building a web site on a single server, relative pathnames are commonly used within URLs to refer to
files in other directories on the server.

Unless you specify an absolute pathname (starting with a slash), the server assumes you are using a
relative pathname. Starting in your current location (your working directory), you can trace your way
up and down the directory hierarchy. This is best explained with an example.

If I am currently working in the directory jen and I want to refer to the file art.html, the relative
pathname is pers/art.html, because the file art.html is in the directory pers, which is in the current
directory, jen. This is illustrated in Figure 4-3.

Figure 4-3. The path pers/art.html relative to the jen directory

Going back up the hierarchy is a bit trickier. You go up a level by using the shorthand of two dots (..)
for the parent directory . Again, consider an example based on Figure 4-1.

If I am currently in the jen directory, and I want to refer to the directory richard/work, the pathname
is ../richard/work. The two dots at the beginning of the path take me back up one level to the to the
users directory, and from there, I find the directory called richard, and then the subdirectory called
work, as shown in Figure 4-4.

Figure 4-4. The path ../richard/work, relative to the jen directory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If I am currently in my pers directory and I want to refer to Richard's work directory, I need to go up
two levels, so the pathname would be ../../richard/work, as shown in Figure 4-5.

Figure 4-5. The path ../../richard/work, relative to the pers directory

Note that the absolute path /users/richard/work accomplishes the same thing. The decision whether
to use an absolute versus a relative pathname generally comes down to which is easiest from where
you are and how likely it is that you will be moving files and directories around. Relative pathnames
can break if files or directories are moved.

4.2.2.1. Using relative pathnames in HTML

When pointing to another web page or resource (such as an image) on your own server, it is
common to use a relative URL, one that points to the new resource relative to the current document.
Relative URLs follow the syntax for pathnames described above. For example, a hypertext link to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

art.html from another document in the pers directory would look like this:

The URL for the link could also be written starting from the root directory:

Image tags also use pathnames to point to the graphic file to be displayed. For instance, this image
tag in the art.html document:

points to a graphic named daisy.gif located in the jen directory. Two uses of ../ indicate that the
graphic file resides in a directory two levels higher than the current document (art.html).

If you plan on doing your HTML markup by hand, pathname syntax will come naturally after a little
practice. If you are using a WYSIWYG authoring tool (such as Macromedia Dreamweaver, Adobe
GoLive, or Microsoft FrontPage), you have the luxury of letting the tool construct the relative URL
pathnames for you. Some even have site management tools that automatically adjust the pathnames
if documents get moved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. File Naming Conventions

For your files to traverse the network successfully, you must name them in accordance with
established file naming conventions :

Avoid character spaces in filenames. Although this is perfectly acceptable for local files on a
Macintosh or Windows machine, character spaces are not recognized by other systems. It is
common to use an underscore or hyphen character to visually separate words within filenames,
such as andre_bio.html or andre-bio.html. Hyphens are sometimes preferred because they tend
to better enable search engines to index the individual words in a filename.

Avoid special characters such as ?, %, #, /, and : in filenames. It is best to limit filenames to
letters, numbers, underscores (in place of character spaces), hyphens, and periods.

Use proper suffixes. HTML documents should use the suffix .html (.htm also works on most
servers). GIF graphic files take the suffix .gif, and JPEGs should be named .jpg or .jpeg. If your
files do not have the correct suffix, the server might not send the proper HTTP Content-Type
header, and thus the browser may not recognize the files as web-based files. Suffixes for a
large number of common file types are listed later in this chapter.

Consistently using all lowercase letters in filenames, while certainly not necessary, may make
them easier to remember. In addition, filenames are case-sensitive on some servers, so keeping
them all lowercase avoids potential hassles.

Keep filenames as short as possible. They add to the size of the file (and they can be a nuisance
to remember).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Uploading Documents (FTP)

The most common transaction that a web designer will have with a web server is the uploading of
HTML documents, graphics, and other media files. Files are transferred between computers over a
network via a method called FTP (File Transfer Protocol) .

If you are working in a Telnet session on Unix, you can run the FTP program and transfer files with a
hefty collection of command-line arguments (not covered in this book).

Fortunately, if you work on a Mac or PC, there are a number of FTP programs with graphical
interfaces that spare you the experience of transferring files using the Unix command line. In fact,
FTP functions are now built right into full-featured web authoring tools, such as GoLive,
Dreamweaver, and FrontPage, among others. On the Mac, dedicated programs that allow drag-and-
drop file transfer, such as Fetch and Interarchy (previously Anarchie) are quite popular. On the PC,
there are numerous simple FTP programs, such as CuteFTP, WS_FTP, AceFTP, and Transmit. These
(and many others) are available for download at www.shareware.com; search for "ftp."

4.4.1. The FTP Process

Regardless of the tool you use, the basic principles and processes are the same. Before you begin,
you must have an account with permission to upload files to the server. Check with the server
administrator to be sure you have a login name and a password.

You don't necessarily need an account to upload and download files if the server is set up as an
"anonymous" FTP site. However, due to obvious security implications, be sure that your personal
directories are not configured to be accessible to all anonymous users.

Launch the FTP program of your choice and open a connection with your server. You'll need to
enter the exact name of the server, your account name, and password.

1.

Locate the appropriate directory into which you want to copy your files. You may also choose to
create a new directory or delete existing files and directories on the remote server using the
controls in your FTP program. (Note that some servers allow you to enter the complete
pathname to the directory before logging in.)

2.

Specify the transfer mode. The most important decision to make during uploading is specifying
whether the data should be transferred in binary or ASCII mode.

ASCII files are composed of alphanumeric characters. Some FTP programs refer to ASCII files
as "text" files. Most HTML documents may be transferred as ASCII or text. However, more and
more HTML documents are written using Unicode (UTF-8 in particular), and Unicode files may
be corrupted if sent as ASCII or text. For such files, see the next section on binary.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Binary files are made up of compiled data (ones and zeros); some examples are executable
programs, graphic images, movies, and so on. Some programs refer to the binary mode as "raw
data" or "image." All graphics (.gif, .jpeg, and so on), multimedia files, and Unicode (e.g., UTF-
8) encoded (X)HTML files should be transferred as binary or raw data. Table 4-1 includes a
listing of the transfer mode for a number of popular file types.

In Fetch (available at www.fetchsoftworks.com), you may see a MacBinary option, which
transfers the file with its resource fork (the bit of the file containing desktop icons and other
Mac-specific data) intact. It should be used only when transferring from one Mac to another.
This resource fork is appropriately stripped out of Mac-generated media files when transferred
under the standard raw data mode.

Some FTP programs also provide an Auto option, which enables you to transfer whole
directories containing files of both types. The program examines each file and determines
whether it should be transferred as text or binary information. This function is not totally
reliable on all programs, so use it with caution until you are positive you are getting good
results.

Upload your files to the server. Standard FTP uses the terminology put (uploading files from
your computer to the server) and get (downloading files from the server to your computer), so
these terms may be used in your FTP program as well. You can also upload multiple files at a
time.

4.

Disconnect. When you have completed the transfer, be sure to disconnect from the server. You
may want to test the files you've uploaded on a browser first to make sure everything
transferred successfully.

5.

4.4.2. Setting Permissions

When you upload files to a web server, you need to be sure that the files' permissions are set so that
everyone is able to read your files. Permissions control who can read, write (edit), or execute (if it is
a program) the file, and they need to be established for the owner of the file, the file's group, and for
"everyone." Usually, when you create or upload a file, you are automatically the owner, which may
mean that only you can set the permissions. Most web servers honor the operating system's default
permissions to determine which files can be read, written, and executed.

Some FTP programs enable you to set the default upload permissions via a dialog box. Figure 4-6
shows Fetch's dialog box for doing this. For most web purposes, you want to grant yourself full
permissions but restrict all other users to read-only. You may want to confirm that your server
administrator agrees with these settings.

Figure 4-6. Standard permissions settings (using Fetch)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The server needs to be specially configured to recognize these permissions commands, so check with
your administrator to see if you can use this easy method. The administrator will give you
instructions if any special permissions settings are necessary.

If a CGI or script file does not work properly, permissions are often the culprit.
You'll need to enable execution to run these files. Resist the urge to enable all
permissions for all files and directories, because it could become possible for
users to upload their own script files and run them, allowing them to do such
things as delete all of your files, deface your site, or create their own mail
server to send out spam.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. File (MIME) Types

Servers add a header to each document, which tells the browser the type of file it is sending. The
browser determines how to handle the file based on that informationfor example, whether to display
the contents in the window, or to launch the appropriate plug-in or helper application.

The system for communicating media types closely resembles MIME (Multipurpose Internet Mail
Extension) , which was originally developed for sending attachments in email . The server needs to
be configured to recognize each MIME type to successfully communicate the media type to the
browser.

If you want to deliver media beyond the standard HTML files and graphics (such as a Shockwave
Flash movie or an audio file), you should contact your server administrator to be sure the server is
configured to support that MIME type. Most common formats are built into current versions of server
software, but if the format isn't there already, the administrator can easily set it up if you provide the
necessary information.

The exact syntax for configuring MIME types varies among server software; however, they all require
the same basic information: type, subtype, and extension. Types are the most broad categories for
files. They include text, image, audio, video, application, and so on. Within each category are a
number of subtypes. For instance, the file type image includes the subtypes gif, jpeg, and the like.
The extension refers to the file's suffix, which the server uses to determine the file type and subtype.
Not all extensions are standardized.

Table 4-1 lists the MIME type and subtype for common media types. The ASCII/binary information is
provided to aid in making upload decisions.

Of course, new technologies and file types are emerging every day, so keep in mind that it is the web
designer's responsibility to make sure that for any new media type, the appropriate information is
communicated to the server administrator. For a complete listing of registered MIME types, see the
IANA (Internet Assigned Numbers Authority) site at www.iana.org/assignments/media-types/.

Table 4-1. MIME types and subtypes

Type/subtype Extension Description ASCII/binary

application/excel .xl Microsoft Excel B

application/mac-binhex40 .hqx Mac BinHex archive B

application/msword .doc, .dot, .word,.w6w Microsoft Word document B

application/pdf .pdf
Portable Document Format
(Adobe Acrobat file)

B

application/postscript .ai PostScript viewer A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type/subtype Extension Description ASCII/binary

application/postscript .eps Encapsulated PostScript A

application/postscript .ps PostScript file A

application/powerpoint .ppt, .pot PowerPoint file B

application/rtf .rtf
Rich Text Format (Microsoft
Word)

A

application/vnd.ms-excel .xll, .xls Microsoft Excel File B

application/xml .xml Generic XML A

application/xml+xhtml .htm, .html XHTML document A

application/x-director .dcr, .dir, .dxr Shockwave files B

application/x-gzip .gz, .gzip
GNU zip (Unix
decompressor)

B

application/x-msdownload .exe
Self-extracting file or
executable

B

application/x-perl .pl Perl source file A

application/x-sea .sea
Self-extracting archive
(StuffIt file)

B

application/x-sit .sit StuffIt archive B

application/x-shockwave-flash .swf Shockwave Flash file B

application/x-stuffit .sit StuffIt Archive B

application/x-tar .tar Compressed file B

application/x-zip or
application/x-zip-compressed

.zip
Compressed file
(decompress using WinZip
or StuffIt on Mac)

B

audio/aifc .aifc Compressed AIFF file B

audio/basic .au -law sound file B

audio/basic .snd Digitized sound file B

audio/midi or audio/x-midi .mid MIDI audio file B

audio/x-aiff .aif, .aiff AIFF file B

audio/x-mpeg .mp3 MP3 audio file B

audio/x-ms-wma .wma Windows Media audio file B

audio/x-ms-wax .wax
Windows Media audio
metafile

B

audio/x-pn-realaudio .ra, .ram RealAudio file (and metafile) B

audio/x-pn-realaudio-plugin .rpm RealAudio (plug-in) B

audio/x-wav .wav, .aiff Windows WAV audio file B

image/gif .gif Graphic in GIF format B

application/postscript .eps Encapsulated PostScript A

application/postscript .ps PostScript file A

application/powerpoint .ppt, .pot PowerPoint file B

application/rtf .rtf
Rich Text Format (Microsoft
Word)

A

application/vnd.ms-excel .xll, .xls Microsoft Excel File B

application/xml .xml Generic XML A

application/xml+xhtml .htm, .html XHTML document A

application/x-director .dcr, .dir, .dxr Shockwave files B

application/x-gzip .gz, .gzip
GNU zip (Unix
decompressor)

B

application/x-msdownload .exe
Self-extracting file or
executable

B

application/x-perl .pl Perl source file A

application/x-sea .sea
Self-extracting archive
(StuffIt file)

B

application/x-sit .sit StuffIt archive B

application/x-shockwave-flash .swf Shockwave Flash file B

application/x-stuffit .sit StuffIt Archive B

application/x-tar .tar Compressed file B

application/x-zip or
application/x-zip-compressed

.zip
Compressed file
(decompress using WinZip
or StuffIt on Mac)

B

audio/aifc .aifc Compressed AIFF file B

audio/basic .au -law sound file B

audio/basic .snd Digitized sound file B

audio/midi or audio/x-midi .mid MIDI audio file B

audio/x-aiff .aif, .aiff AIFF file B

audio/x-mpeg .mp3 MP3 audio file B

audio/x-ms-wma .wma Windows Media audio file B

audio/x-ms-wax .wax
Windows Media audio
metafile

B

audio/x-pn-realaudio .ra, .ram RealAudio file (and metafile) B

audio/x-pn-realaudio-plugin .rpm RealAudio (plug-in) B

audio/x-wav .wav, .aiff Windows WAV audio file B

image/gif .gif Graphic in GIF format B

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type/subtype Extension Description ASCII/binary

image/jpeg
.jpg, .jpeg, .jpe,.jfif,
.pjpeg, .pjp

Graphic in JPEG format B

image/tiff .tif, .tiff
TIFF image (requires
external viewer)

B

image/x-MS-bmp .bmp Microsoft BMP file B

image/x-photo-cd .pcd Kodak Photo CD image B

image/x-pict .pic PICT image file B

image/x-png or image/png .png Graphic in PNG format B

image/x-portable-bitmap .pbm Portable bitmap image B

text/html .htm HTML document A

text/plain .txt ASCII text file A

text/richtext .rtx
Rich Text Format (Microsoft
Word)

A

text/xml .xml Generic XML document A

video/avi or video/x-msvideo .avi AVI video file B

video/mpeg
.mpg, .mpe,
.mpeg,.m1v, .mp2,
.mp3,.mpa

MPEG movie B

video/quicktime .mov QuickTime movie B

video/quicktime .qt QuickTime movie B

video/x-ms-asf .asf Windows Media (legacy) B

video/x-ms-asx .asx
Windows Media metafile
(legacy)

B

video/x-ms-wmv .wmv Windows Media video file B

video/x-ms-wmx .wmx
Windows Media video
metafile

B

video/x-sgi-movie .movie Silicon Graphics movie B

x-world/x-vrml .wrl, .wrz
VRML 3D file (requires VRML
viewer)

B

image/jpeg
.jpg, .jpeg, .jpe,.jfif,
.pjpeg, .pjp

Graphic in JPEG format B

image/tiff .tif, .tiff
TIFF image (requires
external viewer)

B

image/x-MS-bmp .bmp Microsoft BMP file B

image/x-photo-cd .pcd Kodak Photo CD image B

image/x-pict .pic PICT image file B

image/x-png or image/png .png Graphic in PNG format B

image/x-portable-bitmap .pbm Portable bitmap image B

text/html .htm HTML document A

text/plain .txt ASCII text file A

text/richtext .rtx
Rich Text Format (Microsoft
Word)

A

text/xml .xml Generic XML document A

video/avi or video/x-msvideo .avi AVI video file B

video/mpeg
.mpg, .mpe,
.mpeg,.m1v, .mp2,
.mp3,.mpa

MPEG movie B

video/quicktime .mov QuickTime movie B

video/quicktime .qt QuickTime movie B

video/x-ms-asf .asf Windows Media (legacy) B

video/x-ms-asx .asx
Windows Media metafile
(legacy)

B

video/x-ms-wmv .wmv Windows Media video file B

video/x-ms-wmx .wmx
Windows Media video
metafile

B

video/x-sgi-movie .movie Silicon Graphics movie B

x-world/x-vrml .wrl, .wrz
VRML 3D file (requires VRML
viewer)

B

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Accessibility
by Derek Featherstone

At its core, web accessibility is about building web sites, applications, and pages so that there are as
few barriers to use as possible for anyone, regardless of ability and the device used to access the
information. Web accessibility goes beyond creating a more usable Web for persons with disabilities,
too. Many of the techniques and principles designers apply to make web content more accessible to
people with disabilities also improve accessibility for those using slower connections who might have
the images off as well as increase interoperability with handhelds.

For sites to be accessible, we have to let go the notion that we know how people use our web sites.
We have to understand the nature of the medium in which we work. And, we have to be willing to
embrace "universal design" and to use web development techniques and code that support
accessibility.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. Types of Disabilities

There are four broad categories of disabilities that have an impact on how a person interacts with a
web site: vision impairment, mobility impairment , auditory impairment, and cognitive impairments.

Vision impairment

People that are blind or have low vision use a variety of assistive technology to get content
from the screen, including screen readers, Braille displays, screen magnifiers, and even some
combination of these.

Mobility impairment

Mobility challenges range from having no use of the hands at all to difficulties with fine motor
control. Various hardware solutions include modified mice and keyboards, single-button
"switches," foot pedals, head wands, and joysticks, while software solutions range from full
voice recognition to face tracking to simple keyboard macros.

Auditory impairment

Auditory impairments may seem to have little to no impact on how people use the Web, as
most content is text and images. A person who has never been able to hear, however, may
process language completely differently than a hearing person or someone with hearing loss
that occurred later. There are requirements for captioning for multimedia and audio files to
make this type of media accessible to everyone.

Cognitive impairment

Cognitive impairments, which involve memory, reading comprehension, mathematical
processing, visual comprehension, problem solving, and attention, are the least understood of
the various accessibility issues. Although there isn't a large body of literature and research
available, the common advice is to focus on simplicity and clarity to help address some of these
issues. Thinking this way also helps make your web pages, sites, and applications more readily
understood by everyone.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Overview of Assistive Technology

Assistive technology is any tool that helps a person with a disability accomplish everyday tasks more
easily. A specially designed "rocker" knife that makes it easier to cut food with the use of one hand is
considered assistive technology . In computer terms, assistive technology helps people accomplish
two fundamental tasks: input and output. These tools are not web specific; web usage is just one
component of their overall utility.

Don't overlook your own computer's capabilities. Windows XP and Mac OS X
both include a lot of support for accessibility by default, and Sun Microsystems'
Solaris 10 includes full accessibility support with voice capabilities, screen
magnification, and onscreen keyboard functions.

5.2.1. Input Devices

Assistive technology for input works to provide the same type of functionality that a keyboard and
mouse provide. This means that for the most part, you as a web designer or developer simply need
to ensure that what you create is operable by both keyboard and mouse. If you can do that,
generally the assistive technology will take care of the rest (although some input considerations are
discussed later in the chapter).

Some example technologies are:

Alternative keyboards

Alternative keyboards may provide a more functional key layout, be color-coded for cognitive
disabilities, include larger keys, have a keyboard overlay or guide that aids in selection of the
proper key, or be designed for one-handed use.

Virtual keyboards

A virtual keyboard is one that is displayed on the screen to help people who may have difficulty
typing but are able to use a mouse or some other pointing device effectively. Windows XP
comes with a basic onscreen keyboard.

Voice recognition software

Voice recognition software makes use of a computer's audio capabilities to detect a person's
voice for two main purposes: transcribing voice to text and listening for operating commands.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Voice command recognition is available at the operating system level (Mac OS X) as well as in
voice-capable web browsers, such as the most recent versions of the Opera browser.

Voice Recognition Approaches

Voice recognition software has evolved significantly over the last decade. To activate a
web link, you might simply say the link text. The voice recognition software then
searches through the links it finds in the page, finds the correct one, and simulates a
"click" on that link. So, what happens if you have multiple links with the same text? The
software might highlight all of the links and overlay a number beside each, allowing you
to speak the number of the link you'd like to follow.

To fill in a form, you could speak the name of the field you wish to fill in, and the cursor
will automatically be placed in the appropriate text box or form control. As you will see in
Chapter 15, form controls must be labeled properly so that the voice recognition software
knows exactly which form field should receive the focus.

Some recognition packages enable users to overlay a numbered 3 x 3 grid on the
computer screen by saying "mouse grid." The user then speaks the number of the grid
portion of interest. The software overlays another numbered 3 x 3 grid within that space
and the mouse cursor moves on the screen. This process continues until the grid is
sufficiently small to put the mouse cursor where the user desires and the user issues the
command to click or double-click. For example, to click on a radio button, you might
have to say the following: "Mouse grid. Four. Three. Eight. Two. Five. Mouse click."

Head and mouth wands

These wands amount to a stick that is used to type on a regular or modified keyboard. These
input devices are regularly used with a common operating system feature known as "sticky
keys" that enables the user to press and release a modifier key, such as Ctrl, and then press
another key, treating the sequence of keystrokes as if they happened in unison.

Face and eye tracking

This technology generally uses software to follow the eyes or face of a person who has limited
mobility and is unable to speak clearly enough to use voice recognition software. As users
move their eyes, the mouse cursor follows. Various other actions may be used as a click or
double-click. For an example, visit www.qualilife.com.

Switches

Adaptive switches are highly specialized mechanisms that may simply serve as a single button
mouse or may allow for greater flexibility with a set of foot switches, or a sip and puff
mechanism. Again, these may be used in conjunction with specialized software to allow people
to have full control of all the functions on their computer, including typing with automatic word-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

prediction.

5.2.2. Output Devices

The normal sources of output for most everyday computer usage are the monitor and speakers.
Captioning or transcripts can be of assistance, or users can turn to:

Screen readers

Most screen readers are programs that interpret and interface with the actions that occur
within the operating system and the applications that run on it. They provide extensive
functionality through keystroke combinations and offer specific modes for specific functions. For
example, Freedom Scientific's JAWS (www.freedomscientific.com) has normal reading, tables
reading, and forms modes. They generally read some combination of the rendered HTML on the
screen and do so based on source order. Other screen readers include: Window Eyes (GW
Micro, www.gwmicro.com), HAL (Automated Living, www.automatedliving.com), and
SuperNova (Dolphin Computer Access, www.dolphincomputeraccess.com).

Screen magnifiers

Used by people with low vision, screen magnifier software simply provides an enlarged view of
the onscreen text and graphics. Examples include ZoomText (Ai Squared Software,
www.aisquared.com), SuperNova, and MAGic (Freedom Scientific).

Aural browsers

Similar in function to screen readers, aural browsers are specialized for web use and provide
less functionality than a full screen reader. Some examples are Home Page Reader (IBM, www-
3.ibm.com/able/solution_offerings/hpr.html), which is a standalone program, and Connect
Outloud (Freedom Scientific) and Browsealoud (Texthelp Systems, www.browsealoud.com),
which are plug-ins for Internet Explorer.

Braille display

These devices convert computer output to Braille, displaying the words via a set of movable
pins that represent the current line of display. These devices are often used in conjunction with
a screen reader. For example, the speech output from JAWS could be sent to a Braille display.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Who Is Responsible for Accessibility?

Generally speaking, there are four "groups" of people responsible for accessibility. These include:

Web designers

That's right, us: the people who design, program, and build web sites. Using the W3C's Web
Content Accessibility Guidelines (WCAG) we can make informed decisions as to how to make
sites accessible.

Browser, screen reader, and other user agent manufacturers

This group is responsible for ensuring the accessibility of their tools for using the Web. The User
Agent Accessibility Guidelines (UAAG) help browser manufacturers build their tools so that they
can leverage the good content that developers produce.

Software vendors

Playing a critical role in accessibility, this group creates the tools that developers, designers,
and authors use to create web content. This group looks at the Authoring Tool Accessibility
Guidelines (ATAG) when they are building their software.

Users

People with disabilities are not without some responsibility. It is quite reasonable that we
expect people using assistive technology to know how to use it properly and efficiently.

So if we as developers, designers, and authors are partly responsible, how do we go about living up
to those responsibilities to make our web sites accessible? First, we start with an understanding of
what we're trying to achieve, and then we apply that to the way we build our sites. Fortunately, we
are guided by the W3C's Web Content Accessibility Guidelines 1.0 (WCAG 1.0).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Web Content Accessibility Guidelines

The Web Content Accessibility Guidelines were created by the Web Accessibility Initiative (WAI) at the
W3C. The guidelines were formally made Recommendations in 1999, and a lot has changed since
then. Some of the techniques that are advocated in the WCAG 1.0 Techniques resource are outdated
and may no longer apply in the same way as when the guidelines were released.

These guidelines have several related checkpoints organized according to three different priority
levels from Priority 1 (most critical for web accessibility) to Priority 3 (important but having less
impact on overall accessibility). At www.w3.org/TR/1999/WAI-WEBCONTENT-19990505, each of the
checkpoints are listed following their related guidelines along with their priority level. For a view of
the checkpoints organized according to their priority level, go to www.w3.org/TR/WCAG10/full-
checklist.html.

Guideline 1: Provide equivalent alternatives to auditory and visual content.

Following this rule ensures that visually or aurally impaired people have access to the content
that they are unable to perceive. "Equivalent alternatives" refers to ensuring that images have
appropriate alt text that represents the image, that audio content has captions provided, and
that video includes audio description. Remember, when deciding what an equivalent alternative
is, you must consider both the content and function of the original.

Guideline 2: Don't rely on color alone.

When you rely on color alone to present information on a web page, you limit the usefulness of
that information. Rather than using color alone to show which fields of a form are required,
mark the labels in red and bold, or with an asterisk beside them to ensure that people who
can't see the red color have some other means of getting the same information. Further,
provide sufficient contrast between the foreground color and the background color to ensure
that text (even as part of a graphic, Flash movie, or other multimedia component) is readable.

Guideline 3: Use markup and style sheets and do so properly.

In other words, validate your code to ensure it has the correct syntax, use appropriate HTML
elements for the tasks for which they were designed, and use HTML for your content, CSS for
presentation, and ECMAScript for interaction and behavior (JavaScript is the most commonly
known implementation of ECMAScript). Not only does this mean using markup the correct way
(using <blockquote>…</blockquote> to surround a quote, for example) and enhance
accessibility, but it also means not using markup the wrong way (using
<blockquote>…</blockquote> to indent text, for example), which can actually reduce
accessibility.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Guideline 4: Clarify natural language usage.

Identify the language of the document and mark up such exceptions as foreign words,
abbreviations, and acronyms. This makes it easier for speech devices and other assistive
technologies to interpret the content. In fact, some screen readers change their language on
the fly to speak the content with the correct pronunciation and accents. Of course, a limited
number of languages are supported. For further details on language codes, refer to Chapter 6.

Guideline 5: Create tables that transform gracefully.

Five years ago it was common to see tables used for layout purposes, simply because browser
support for CSS-based layouts was less than satisfactory. Modern, standards-based web
development techniques suggest that we limit the use of tables to the display of tabular
dataafter all, that is what tables were designed for! Chapter 13 includes tips to help ensure that
your tables are as accessible as possible.

Guideline 6: Ensure that pages featuring new technologies transform gracefully.

Think of this guideline as preparing your web page for the worst, ensuring that it is both
compatible with future/new technologies as well as backward compatible with technologies.

Following this guideline is like making a contingency plan, preparing for the reality that we
don't really know how people will use our sites and web pages. Does the site still work if CSS is
disabled, or overridden? Does the site work appropriately when JavaScript is disabled? What
about when a particular plug-in is not available? Is there an appropriate alternative in that
case?

This guideline is also about making sure that the web pages you implement don't require the
use of any specific input device. For example, in addition to allowing a mouse to control or
activate certain scripts or controls (such as playing a movie) you must allow a keyboard.

Guideline 7: Ensure user control of time-sensitive changes.

At its most fundamental level, this guideline is about providing all users the control that they
need to take in content at their own pace. Consider a web site that includes a news ticker that
displays a new headline every two seconds. What if someone can't finish reading the headline
in the allotted time? Allowing the user control over this type of content helps everyone. Another
common scenario is the web page that employs a <meta> tag and http-equiv="refresh" to
redirect users to a new page after an allotted time after displaying the message "This page has
moved. You will be redirected in five seconds. If you aren't, then click this link." This technique
isn't good practice, because it makes the assumption that everyone will be able to read the
message that quickly.

In addition to these issues with reading pace and readability in general, this guideline suggests
avoiding "flickering" or other blinking and moving content. Not only can these be a distraction
to those with reading difficulties, but flickering or flashing in the 4 to 59 flashes per second
range may trigger seizures in those with photosensitive epilepsy.

Guideline 8: Ensure direct accessibility of embedded user interfaces.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Essentially this means that if you create your own interface within the browser using Flash or
similar technology, the interface should follow all of the basic accessibility principles. The
embedded interface should provide device-independent access to any content and controls that
it contains, and the content of the embedded interface should be made available to assistive
technology such as screen readers.

Guideline 9: Design for device independence.

Generally speaking, web pages written in HTML or XHTML are device independent. You can
activate links, move to form fields, and submit forms using either the mouse or keyboard.
HTML is device independent by default. It is only when we add non-HTML based elements to
the mixFlash, Java, or even scripting with JavaScriptthat the trouble starts. When
implementing scripts and other items that go beyond basic HTML, remember that some people
rarely use a mouse; they "click" on links with the Enter key on their keyboards or push submit
and other buttons with their spacebars. Keep this in mind. Head wands, switches, alternative
keyboards, voice recognition, and other input devices generally emulate basic mouse and
keyboard typing and clicking. If you can ensure that these two actions are allowed, you don't
necessarily have to make other adjustments for assistive technology and alternate input
devices.

Many of this chapter's guidelines and associated techniques are coming under
question as we more fully understand how people using screen readers and
sighted keyboards use the Web. With the growing popularity of standards-
based techniques that use CSS for layout, we rarely require the use of the
once-common tabindex attribute. In most cases, it simply isn't required
anymore. There are also several arguments that the use of access keys as
recommended by Guideline 9 is not as useful as it first appears.

Guideline 10: Use interim solutions.

One of the most difficult areas of making accessible web pages, this guideline seems to suggest
the use of outdated techniques that are designed to compensate for older browsers and screen
readers. This is due to literal interpretation of the guidelines without recognizing why the
guideline existed in the first place.

All of the guidelines in this section include the phrase "until user agents." This means that when
the guidelines were published, the interim solutions suggested were valid and useful, but it was
fully recognized that these techniques may no longer be recommended once user agents and
assistive technology had "caught up." Ensure that when you read through these solutions, you
check to make sure that the techniques are still valid and useful.

Guideline 11: Use W3C technologies and guidelines.

The W3C specifications were designed with accessibility features built into them. So, following
these specifications should result in greater accessibility for all.

At its core, this guideline suggests that the lowest common denominatorHTMLis the best and
most accessible delivery format. And for the most part, it is true.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, we know that this is not always possible, nor is it reality. The best advice, then,
based on this guideline is to use W3C technologies and make them accessible, and when you
use other technologies, use their built-in accessibility features, and provide an alternative
version to the non-W3C version that is accessible.

Guideline 12: Provide context and orientation information.

This guideline encompasses using titles for frames to ensure that the purpose of each frame is
clearly stated, to use elements, such as optgroup, within a select form control to group related
options together, to use fieldset to group related form controls together, to describe the
fieldset contents with a legend, and to explicitly associate form controls with their labels.

All of these techniques improve accessibility for everyone by providing information about the
components and their relationships to one another.

Guideline 13: Provide clear navigation mechanisms.

Clearly marked navigation menus that are consistent across a site can be enhanced by using a
site map, providing metadata by using link relationships and other information about the
author, date of publication, and the type of content they contain.

There are implications here for content creation as well: link text should be clear and identify
where the link leads, and headings, paragraphs, and lists should provide their distinguishing
phrase or content near the beginning.

Guideline 14: Ensure documents are clear and simple.

This guideline is designed to help everyone by making documents more readable and more
readily understood. Clarity is often achieved through not words alone, but through the
combination of words and well-designed illustrations or images that help get the point across
(with appropriate alt text, of course).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. Web Content Accessibility Guidelines 2.0 (WCAG 2.0)

At the time of this writing, the W3C's Working Draft of Web Content Accessibility Guidelines 2.0 was
entering its final stages of approval.

WCAG 2.0 revolves around four basic principles for web accessibility:

Content must be perceivable.

User interface components in the content must be operable.

Content and controls must be understandable.

Content must be robust enough to work with current and future technologies.

This is not a radical departure from WCAG 1.0, and the same general principles apply. In many ways,
it is a reorganization to make the full gamut of accessibility guidelines more understandable. Further,
WCAG 2.0 attempts to provide better guidance to web content authors by eliminating some of the
ambiguity in WCAG 1.0. For a comparison of WCAG 1.0 and WCAG 2.0, see
www.w3.org/WAI/GL/2005/06/30-mapping.html.

Keep in mind, however, that the WCAG 2.0 Working Draft is subject to revision based on review and
public comment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Standards Variations and Section 508

Various other countries have their own versions of web accessibility standards, most of which are
derived from WCAG 1.0. Canada, Australia, the U.K., and Europe, for example, have accessibility
standards that generally agree with the most important points (Priority 1 and Priority 2) of WCAG
1.0. One of the most well-known standards that is a deviation from this is Section 508 in the U.S.,
which uses Priority 1 checkpoints, as well as a few other selectively chosen checkpoints.

Many view Section 508 as a more literal and strict interpretation of the Priority 1 and 2 checkpoints.
Fundamentally, though, Section 508 principles are generally consistent with Priority 1 of WCAG 1.0,
though the wording may be slightly different.

The following list is excerpted from subsection 1194.22 of Section 508 standards for Web-based
intranet and Internet information and applications (www.section508.gov/index.cfm?
FuseAction=Content&ID=12#Web). You'll notice that the items (a) through (k) consistently map to
the Priority 1 checkpoints of WCAG 1.0, whereas the subsequent items do not.

(a) A text equivalent for every nontext element shall be provided (e.g., via alt, longdesc, or in
element content).

(b) Equivalent alternatives for any multimedia presentation shall be synchronized with the
presentation.

(c) Web pages shall be designed so that all information conveyed with color is also available
without color, for example, from context or markup.

(d) Documents shall be organized so they are readable without requiring an associated style
sheet.

(e) Redundant text links shall be provided for each active region of a server-side image map.

(f) Client-side image maps shall be provided instead of server-side image maps except where
the regions cannot be defined with an available geometric shape.

(g) Row and column headers shall be identified for data tables.

(h) Markup shall be used to associate data cells and header cells for data tables that have two
or more logical levels of row or column headers.

(i) Frames shall be titled with text that facilitates frame identification and navigation.

(j) Pages shall be designed to avoid causing the screen to flicker with a frequency greater than
2 Hz and lower than 55 Hz.

(k) A text-only page, with equivalent information or functionality, shall be provided to make a
web site comply with the provisions of this part, when compliance cannot be accomplished in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

any other way. The content of the text-only page shall be updated whenever the primary page
changes.

(l) When pages utilize scripting languages to display content, or to create interface elements,
the information provided by the script shall be identified with functional text that can be read by
assistive technology.

(m) When a web page requires that an applet, plug-in, or other application be present on the
client system to interpret page content, the page must provide a link to a plug-in or applet that
complies with [subsection]1194.21(a) through (l).

(n) When electronic forms are designed to be completed online, the form shall allow people
using assistive technology to access the information, field elements, and functionality required
for completion and submission of the form, including all directions and cues.

(o) A method shall be provided that permits users to skip repetitive navigation links.

(p) When a timed response is required, the user shall be alerted and given sufficient time to
indicate more time is required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Web Accessibility Techniques

Official guidelines and checkpoints are vital, but they don't give us much in the way of best practice advice
or implementation techniques. To help you, the W3C provides reference documents with overviews of HTML,
CSS, and core techniques at www.w3.org/WAI/intro/wcag.php .

Here are some good starting points that will help you make your web sites more accessible.

Start with meaning .

In other words, use HTML elements for the purposes for which they were designed: to provide a
semantic description of a document's content. As discussed in the guidelines earlier in this chapter,
make use of headings (h1 through h6), lists, quotes, and blockquotes to provide structure to your
pages. Use table markup appropriately as shown in Chapter 13 . Screen readers and other software
infer meaning and provide functionality based on this markup.

Provide alternatives .

Ensure that you provide some type of alternative--alt text, longdesc , transcripts for audio files, and
captions for videofor users with various disabilities. Formerly cost prohibitive, captioning and
transcripting can now be outsourced at a very reasonable cost and provide significant benefit to users
that require alternative media types.

Use Zoom layouts .

Typically used by low-vision users, a Zoom layout is an alternative view of the same content. Users of
screen magnification software have a limited view of what is on the screen, making multiple columns
difficult to follow. A single-column format can be very useful. For more information on Zoom layouts,
Joe Clark's web site (www.joeclark.org/access/webaccess/zoom/to) is an excellent starting point.

Remember that order counts .

Ensuring a logical order within a page and the components within the page makes your life simpler
and can be very beneficial to users of screen readers and Zoom layouts. A screen reader or aural
browser tends to read things in the order of the source (although there are exceptions). Ensure that a
logical order applies not only to the entire page, but also to components of the page, such as groups
of links or form fields.

Make your forms explicit .

Although various pieces of assistive technology can make guesses as to which form fields go with
which labels, you're better off making the relationship explicit than relying on a guess. Best practice

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for forms also includes using fieldset and legend to group related form controls. If nothing else, use
the label element for every form control. For more information, see Chapter 15 . Where it is
undesirable to have the label visible on the screen, either hide the label from the visible screen using
CSS positioning, or use the title attribute instead to provide a prompt text for the form control.

Test JavaScript extensively .

When using JavaScript in your pages, you should test with JavaScript support both on and off to
ensure greatest interoperability. Do not let this fool you into thinking that if the page works under
both of these conditions that you are finished, however. Remember that screen reader users are likely
using Internet Explorer with scripting on. The interaction between what happens with the scripts and
the screen reader might surprise you; testing with real people using screen readers is a must if you
are doing any serious scripting in your pages or applications.

Facilitate users moving around the page .

This includes all users, but it is particularly useful for visually impaired and mobility impaired people
who rely on keyboard navigation. Providing "in-page" links to various parts of the page has become a
best practice. This includes a "skip to main content" link or "skip to navigation" link, depending on
whether you present content or navigation first in the source order of your page. A skip-to-main
content link can be visible on the page to everyone:

 Skip to main content

visible only to screen readers through CSS positioning:

 Skip to main content

or visible only to screen readers through using an image-based alt text:

Each of these techniques has its advantages and disadvantages. The most accessible and useful is when the
link is available to all users and not just focused on screen readers.

Allow text to scale .

Despite the fact that pixels are a relative unit, specifying text in your CSS using pixel units means
that users of Internet Explorer for Windows (Versions 6 and earlier) will not be able to scale their text
without what amounts to an intervention. Specifying text sizes in em or % units allows text to scale in
IE for Windows as well as other modern browsers and is considered to be current best practice.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Make use of the focus state for links .

When a keyboard user navigates a page's links via a browser's built-in mechanism, we can provide
visual feedback to show the user which link is currently selected or has the focus. This makes the web
page easier to use. This is typically seen in menu bars that add in a CSS hover effect for mouse users:

 a:link {
 color: #000;
 background-color: #fff;
 }
 a:hover {
 color: #fff;
 background-color: #000;
 }

To provide the same feedback for keyboard users, add the code:

 a:focus {
 color: #fff;
 background-color: #000;
 }

Although the :focus technique works for links in modern standards-compliant
browsers, Internet Explorer for Windows doesn't recognize the :focus pseudoclass
selector. Instead, you must use the :active pseudoclass to provide the same visual
feedback:

 a:active {
 color: #fff;
 background
-color: #000;
 }

Handle colors intelligently .

Declare your colors in pairs and to do so only in CSS. If you are specifying a background color in the
CSS and a foreground color in the HTML, there is room for conflict if style sheets are off, not
supported, or overridden by the end user. In addition, when you declare your background and
foreground colors in CSS, be sure that there is a reasonable contrast between them. (See the color

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contrast analyzers available at JuicyStudio for more:
http://juicystudio.com/services/colourcontrast.php .)

Use CSS background images carefully .

Creative techniques for using background images in CSS help provide for accessibility as they allow us
to use text for buttons, tabs, and other places formerly the province of graphics. This provides for
scaling of text and doesn't require alt text. There is one catch: if the image contains content, do not
use it as a background image, as there is no means to specify alternative text for background images
as there is for images placed inline with the img element. The exceptions are various image
replacement techniques, whose usefulness is often debated.

When using a CSS background image, be sure to specify a background-color as well, to ensure that
there is enough contrast between the foreground text and the background while images are off, or do
not load.

http://juicystudio.com/services/colourcontrast.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8. Testing for Accessibility

One of the best ways to ensure successful implementation of these guidelines is through testing. How
else will you know when you've hit the mark in terms of providing accessible content? There are four
primary methods of testing for accessibility: by developers, by expert review, with real users, and
with automated tools.

5.8.1. Testing by Developers

You can find accessibility testing tools online and on the desktop for everything from smaller scale
testing to enterprise level tools that allow you to track progress over time, automate reporting, and
allow for manual review in conjunction with automated tests.

These items should be in every web developer's toolkit. In addition to their use for informal
accessibility testing, they are often useful for general web development as well.

Web Developer Toolbar for Firefox/Mozilla (addons.mozilla.org/extensions/moreinfo.php?id=60)

An extension for Firefox and Mozilla, the Web Developer Toolbar provides a host of tools that
are useful for low-level accessibility testing. It allows you to easily disable CSS and JavaScript,
as well as replace images with their alt text. Quick access to these tools helps assess your
work against the guidelines presented in this chapter.

Accessibility Toolbar for Internet Explorer (www.nils.org.au/ais/web/resources/toolbar/)

Similar to the Web Developer Toolbar, the Accessibility Toolbar is designed to work in Internet
Explorer for Windows. It provides quick access to many of the same types of tools found in the
Web Developer Toolbar, as well as one-click launching of several online services that allow you
to roughly analyze readability of passages of text, color contrast analysis, various other vision-
related disabilities, and online automated testing tools.

Opera browser (www.opera.com)

The Opera browser is actually quite a good testing tool on its own. It includes quick access to
various browser "modes" that are useful for demonstrating and testing a text-based view of the
web site. It also includes both voice recognition of commands and speech capabilities in its
browser, which are useful for quick demonstration and testing.

WAT-C online tools and services (www.wat-c.org/tools/)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In September of 2005, a group of web developers and accessibility specialists formed the Web
Accessibility Tool Consortium (WAT-C) to provide a series of tools under a general public license
agreement that can be used for both testing accessibility and educational purposes. These tools
include the Accessibility Toolbar for IE and many useful online services developed by Gez
Lemon of Juicy Studio (www.juicystudio.com).

5.8.2. Expert Review

Expert review testing involves one or more accessibility specialists reviewing a web site, page, or set
of pages to perform a heuristic analysis and evaluation of conformance against a set of criteria, such
as W3C or Section 508 standards. The analysis is based on experience and common "rules of thumb"
in terms of accessibility issues.

Once the review is completed, the reviewers usually prepare a report that outlines specific
accessibility issues, methods for improving accessibility, and areas that need to be tested further by
users with various disabilities (often referred to as "pan-disability" testing). They may or may not
assign a "severity" to each issue, but will likely make prioritized recommendations on those items
that should be fixed first and those that should be fixed but may be less critical.

5.8.3. Testing with Users

Although it is fine for an expert to review a site, feedback is that much more meaningful and powerful
when it comes from people who use assistive technology every day.

User testing falls into two categories: general review and testing of specific tasks. General review
tends to be focused on providing a general impression of the accessibility of a site but without
particular goals in mind. Although this can be useful for finding "obvious" accessibility issues such as
missing alt text, spelling mistakes, and confusing content or reading order, it may not be as useful
as testing for such specific tasks as:

Logging into the application

Finding the email address for support/help

Performing a typical transaction, such as determining your current bank balance or purchasing a
specific item and having it shipped to your address

Creating a new account

User testing that provides an overall impression of the accessibility of a site can be useful, but it pales
in comparison to actually watching users attempt to complete tasks that are critical to their use of
the application or site.

Several things often happen during these facilitated tests: an observer makes notes about difficult
areas, ranks task completion (completed, completed with difficulty, completed with assistance, not
completed, for example), and code is reviewed to identify areas for improvement.

User testing should not be seen as a final stage of development; it should be done early in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

development process, conducted with multiple users with various disabilities, and repeated after
improvements are made.

In some cases, however, we don't have that luxury. So, how much accessibility testing should you
do? As much as you can! Some is better than none. If all you can manage is expert review, or testing
with a handful of users, then do that, and do it well.

5.8.4. Automated Testing Tools

If used with appropriate caution and judgment, automated tools can be very useful in determining
accessibility problems in a site, in tracking progress over time, and for identifying possible issues that
bear further investigation. The W3C maintain an extensive list of tools that are available for use in
testing at www.w3.org/WAI/ER/existingtools.html. Keep in mind, however, that ability and disability
are relative terms, so testing with black-and-white absolutes is sometimes problematic and always
controversial.

It is important to remember with all of the automated testing tools that in some cases, you may see
issues that do not apply to your particular site or that are difficult to test. For example, after scanning
a page with JavaScript, many automated testing tools will state that you have used JavaScript in the
page and therefore must include an alternate by using a <noscript>…</noscript> block in your page.
The problem is that the automated test does not know what the script is doing, and what the result
will be if the page is used with JavaScript both on and off.

As another simple example to illustrate the point: an automated testing tool can test for the presence
of alternative text for an image. It can even test to see if there are other images with the same
alternative text, and it can test to see if that image is part of a link. However, it cannot run any test
that will determine whether or not the alternative text is appropriate for the image in question.

Therein lies the problem with automated testing. Human judgment is still required and must be
factored into testing time as automated testing on its own is simply not the answer.

For best testing, a combination of automated testing methods, browser-based tools, expert review,
and user task completion should be what you aim for.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Internationalization
If the Web is to reach a truly worldwide audience, it needs to be able to support the display of all the
languages of the world, with all their unique alphabets and symbols, directionality, and specialized
punctuation. The W3C's efforts for internationalization (often referred to as "i18n"an i, then 18
letters, then an n) ensure that the formats and protocols defined by the W3C are usable worldwide in
all languages and writing systems.

You often hear the terms internationalization (or globalization) and localization used together. The
W3C defines localization as the process of adapting a technology or content to meet the language,
cultural, and other requirements of a particular culture, region, or language. Internationalization
refers to the design and development of web content and technologies that enables easy localization
for target audiences. Localization entails more than simple language translation. It also takes into
account details including, but not limited to:

Date and time formats

Currency

Keyboard usage

Cultural interpretations of symbols, icons, and colors

Content that may be subject to misinterpretation or viewed as insensitive

Varying legal requirements

Creating multilingual web sites and localized versions of site content is well beyond the scope of this
Nutshell book. This chapter addresses two primary issues related to internationalization. First is the
handling of alternative character sets that take into account all the writing systems of the world,
including character encoding and character references. Second is the features built into HTML 4.01
and CSS 2.1 for specifying languages and their unique presentation requirements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. Character Sets and Encoding

The first challenge in internationalization is dealing with the staggering number of unique character
shapes (called glyphs) that occur in the writing systems of the world. This includes not only
alphabets, but also all ideographs (characters that indicate a whole word or concept) for such
languages as Chinese, Japanese, and Korean. There are also invisible characters that indicate
particular functionality within a word or a line of text, such as characters that indicate that adjacent
characters should be joined.

To understand character encoding as it relates to HTML, XHTML, and XML, you must be familiar with
some basic terms and concepts.

Character set

A character set is any collection or repertoire of characters that are used together for a
particular function. Many character sets have been standardized, such as the familiar ASCII
character set that includes 128 characters mostly from the Roman alphabet used in modern
English.

Coded character set

When a specific number is assigned to each character in a set, it becomes a coded character
set. Each position (or numbered unit) in a coded character set is called a code point (or code
position). In Unicode, (discussed in more detail later) the code point of the greater-than
symbol (>) is 3E in hexadecimal or 62 in decimal. Unicode code points are typically denoted as
U+hhhh, where hhhh is a sequence of at least four and sometimes six hexadecimal digits.

Character encoding

Character encoding refers to the way characters and their code points are converted to bytes
for use by computers. The character encoding transforms the character stream in a document
to a byte stream that is interpreted by user agents and reassembled again as a character
stream for the user.

The number of characters available in a character set is limited by the bit depth of its encoding.
For example, 8 bits are capable of describing 256 (28) unique characters, 16 bits can describe
65,536 (216) different characters, and so on.

Many character sets and their encodings have been standardized for worldwide interoperability. The
most relevant character set to the Web is the comprehensive Unicode (ISO/IEC 106460-1), which
includes more than 50,000 characters from all active modern languages. Unicode is discussed in
appropriate detail in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Web documents may also be encoded with more specialized encodings appropriate to their authoring
languages. Some common encodings are listed in Table 6-1. Note that all of these encodings are 8-
bit (256 character) subsets of Unicode.

Table 6-1. Common 8-bit character encodings

Encoding Description

ISO 8859-1 (a.k.a. Latin-1) Latin characters used in most Western languages (includes ASCII)

ISO 8859-5 Cyrillic

ISO 8859-6 Arabic

ISO 8859-7 Greek

ISO 8859-8 Hebrew

ISO-2022-JP Japanese

SHIFT_JIS Japanese

EUC-JP Japanese

HTML 2.0 and 3.0 were based on the 8-bit Latin-1 (ISO 8859-1) character set. Even as HTML 2.0 was
being penned, the W3C was aware that 256 characters were not adequate to exchange information
on a global scale, and it had its sights set on a super-character set called Unicode. Unfortunately,
Unicode wasn't ready for inclusion in an HTML Recommendation until Version 4.0 (1996). Without
further ado, it's time to talk Unicode.

6.1.1. Unicode (ISO/IEC 10646-1)

SGML-based markup languages are required to define a document character set that serves as the
basis for interpreting characters. The document character set for HTML (4 and 4.01), XHTML, and
XML is the Universal Character Set (UCS) , which is a superset of all widely used standard character
sets in the world.

The USC is defined by both the Unicode and ISO/IEC 10646 standards. The code points in Unicode
and ISO/IEC 10646 are identical and the standards are developed in parallel. The difference is that
Unicode adds some rules about how characters should be used. It is also used as a reference for such
issues as the bidirectional text algorithm for handling reading direction within text. The Unicode
Standard is defined by the Unicode Consortium (www.unicode.org).

In common practice, and throughout this book, the Universal Character Set is
referred to simply as "Unicode."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because Unicode is the document character set for all (X)HTML documents, numeric character
references in web documents will always be interpreted according to Unicode code points, regardless
of the document's declared encoding.

6.1.1.1. Unicode code points

Unicode was originally intended to be a 16-bit encoded character set, but it was soon recognized that
65,536 code positions would not be enough, so it was extended to include more than a million
available code points (not all of them are assigned, of course) on supplementary planes.

The first 16 bits, or 65,536 positions, in Unicode are referred to as the Basic Multilingual Plane (BMP)
. The BMP includes most of the more common characters in use, such as character sets for Latin,
Greek, Cyrillic, Devangari, hirgana, katakana, Cherokee, and others, as well as mathematical and
other miscellaneous characters. Most ideographs are there, too, but due to their large numbers,
many have been moved to a Supplementary Ideographic Plane.

Unicode was created with backward compatibility in mind. The first 256 code points in the BMP are
identical to the Latin-1 character set, with the first 128 matching the established ASCII standard.

6.1.1.2. Unicode encodings

Many character sets have only one encoding method, such as the ISO 8859 series. Unicode,
however, may be encoded a number of ways. So although the code points never change, they may
be represented by 1, 2, or 4 bytes. The encoding forms for Unicode are:

UTF-8

This is an expanding format that uses 1 byte for characters in the ASCII set, 2 bytes for
additional character ranges, and 3 bytes for the rest of the BMP. Supplementary planes use 4
bytes. UTF-8 is the recommended Unicode encoding for web documents and other Internet
technologies.

UTF-16

Uses 2 bytes for BMP characters and 4 bytes for supplementary characters. UTF-16 is another
option for web documents.

UTF-32

Uses 4 bytes for all characters.

So while the code point for the percent sign is U+0025, it would be represented by the byte value 25
in UTF-8, 00 25 in UTF-16, and 00 00 00 25 by UTF-32. There are other things at work in the
encoding as well, but this gives you a feel for the difference in encoding forms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1.1.3. Choosing an encoding

The W3C recommends the UTF-8 encoding for all (X)HTML and XML documents because it can
accommodate the greatest number of characters and is well supported by servers. It allows wide-
ranging languages to be mixed within a single document.

Not all web documents need to be encoded using UTF-8 however. If you are authoring a document in
a language that uses a lot of non-ASCII characters, you may want to choose an encoding that
minimizes the need to numerically represent ("escape") these special characters.

Bear in mind, however, that regardless of the encoding, all characters in the document will be
interpreted relative to Unicode code points.

For more information on how character sets and character encodings should be
handled for web documents, see the W3C's Character Model for the World Wide
Web 1.0 Recommendation at www.w3.org/TR/charmod/.

6.1.2. Specifying Character Encoding

The W3C encourages authors to specify the character encoding for all web documents, even those
that use the default UTF-8 Unicode encoding, but it is particularly critical if an alternate encoding is
used. There are several ways to declare the character encoding for documents: in the HTTP header
delivered by the server, in the XML declaration (for XHTML and XML documents only), or in a meta
element in the head of the document. This section looks at each method and provides guidelines for
their use.

6.1.2.1. HTTP headers

When a server sends a document to a user agent (such as a browser), it also sends information
about the document in a portion of the document called the HTTP header. A typical HTTP header
looks like this:

 HTTP/1.x 200 OK
 Date: Mon, 14 Nov 2005 19:45:33 GMT
 Server: Apache/2.0.46 (Red Hat)
 Accept-Ranges: bytes
 Connection: close
 Transfer-Encoding: chunked
 Content-Type: text/html; charset=UTF-8

Notice that one of the bits of information that the server sends along is the Content-Type of the
document using a MIME type label. For example, HTML documents are always delivered as type
text/html. (The MIME types for XHTML documents aren't as straightforward, as discussed in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sidebar, "Serving XHTML.") The Content-Type entry may also contain the character encoding of the
document using the charset parameter, as shown in the example.

The method for setting up a server with your preferred character encoding varies with different
server software, so it is best to consult the server administrator for assistance. For Apache servers ,
the default character encoding may be set for all documents with the .html extension by adding this
line to the .htaccess file.

 AddType 'text/html; charset=UTF-8' html

The advantages to setting character encodings in HTTP headers are that the information is easily
accessible to user agents and the header information has the highest priority in case of conflict. On
the downside, it is not always easy for authors to access the server settings, and it is possible for the
default server settings to be changed without the author's knowledge.

It is also possible for the character encoding information to get separated from the document, which
is why it is recommended that the character encoding be provided within the document as well, as
described by the next two methods.

Serving XHTML

XHTML 1.0 documents may be served as either XML or HTML documents. Although XML
is the proper method, many authors choose to deliver XHTML 1.0 files with the text/html
MIME type used for HTML documents for reasons of backward compatibility, lack of
browser support for XML files, and other problems with XHTML interpretation. When
XHTML documents are served in this manner, they may not be parsed as XML
documents.

XHTML 1.0 files may also be served as XML, and XHTML 1.1 files must always be served
as XML. XHTML documents served as XML may use the MIME types
application/xhtml+xml, application/xml, or text/xml. The W3C recommends that you
use application/xhtml+xml only.

Whether you serve an XHTML document as an HTML or XML file type changes the way
you specify the character encoding , as covered in the upcoming "Choosing the
declaration method" section.

6.1.2.2. XML declaration

XHTML (and other XML) documents often begin with an XML declaration before the DOCTYPE
declaration. The XML declaration is not required. The declaration may include the encoding of the
document, as shown in this example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The XML declaration may be provided even for XHTML documents served as text/html.

Because the default encoding for all XML documents is UTF-8 or UTF-16, encoding information in the
XML declaration is not required for these encodings, and thus can be omitted as a space-saving
optimization.

In addition, although it is technically correct to include the XML declaration in such documents,
Appendix C of the XHTML 1.0 specification, "HTML Compatibility Guidelines," recommends avoiding it,
and many authors choose to omit it because of browser-support issues. For example, when Internet
Explorer 6 for Windows detects a line of text before the DOCTYPE declaration, it converts to Quirks
Mode (see Chapter 9 for details), which can have a damaging effect on how the documents styles are
rendered. (This is reportedly fixed in IE 7.) It is required only if your document uses an encoding
other than UTF-8 or UTF-16 and if the encoding has not been set on the server.

6.1.2.3. The meta element

For HTML documents as well as XHTML documents served as text/html, the encoding should always
be specified using a meta element in the head of the document. The http-equiv attribute passes
information along to the user agent as though it appeared in the HTTP header. Again, the encoding is
provided with the charset value as shown here:

<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Document Title</title>
</head>

Although the meta element declaring the content type is not a required element in the HTML and
XHTML DTDs, it is strongly recommended for the purpose of clearly identifying the character encoding
and keeping that information with the document. This is particularly helpful for common text editors
(such as BBEdit), which use the meta element to identify the character encoding of the document
when opening the document for editing. With this method, all character encodings must be explicitly
specified, including UTF-8 and UTF-16.

6.1.2.4. Choosing the declaration method

The declaration method you use depends on the type of document you are authoring and its encoding
method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML documents

The encoding should be specified on the server and again in the document with a meta element.
This makes sure the encoding is easily accessible and stays with the document should it be
saved for later use.

XHTML 1.0 documents served as HTML

The encoding should be specified on the server and again in the document with a meta element.
If the encoding is something other than UTF-8 or UTF-16, and the document is likely to be
parsed as XML (not just HTML), then also include the encoding in an XML header. Be aware
that the inclusion of the XML declaration may cause rendering problems for some browsers.

XHTML (1.0 and 1.1) documents served as XML

The encoding should be specified on the server and by using the encoding attribute in the XML
declaration. Although not strictly required for UTF-8 and UTF-16 encodings, it doesn't hurt to
include it anyway.

This strategy for declaring character encodings is outlined in a tutorial on the
W3C's Internationalization site (www.w3.org/International/tutorials/tutorial-
char-enc/). For another approach, see the article "WaSP Asks the W3C:
Specifying Character Encoding" on the Web Standards Project site
(webstandards.org/learn/askw3c/dec2002.html).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. Character References

HTML and XHTML documents use the standard ASCII character set (these are the characters you see
printed on the keys of your keyboard). To represent characters that fall outside the ASCII range, you
must refer to the character by using a character reference. This is known as escaping the character.

Declaring Encoding in Style Sheets

It is also possible to declare the encoding of an external style sheet by including a
statement at the beginning of the .css document (it must be the first thing in the file):

@charset "utf-8";

It is important to do this if your style sheet includes non-ASCII characters in property
values such as quotation characters used in generated content, font names, and so on.

In HTML and XML documents, some ASCII characters that you intend to be rendered in the browser
as part of the text content must be escaped in order not to be interpreted as code by the user agent.
For example, the less-than symbol (<) must be escaped in order not to be mistaken as the beginning
of an element start tag. Other characters that must be escaped are the greater-than symbol (>),
ampersand (&), single quote ('), and double quotation marks ("). In XML documents, all ampersands
must be escaped or they won't validate.

There are two types of character references: Numeric Character References (NCR) and character
entities.

6.2.1. Numeric Character References

A Numeric Character Reference (NCR) refers to the character by its Unicode code point (introduced
earlier in this chapter). NCRs are always preceded by &# and end with a ; (semicolon). The numeric
value may be provided in decimal or hexadecimal. Hexadecimal values are indicated by an x before
the value.

For example, the copyright symbol (©), which occupies the 169th position in Unicode (U+00A9), may
be represented by its hexadecimal NCR © or its decimal equivalent, ©. Decimal values are
more common in practice. Note that the zeros at the beginning of the code point may be omitted in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the numeric character reference.

Handy charts of every character in the Basic Multilingual Plane are maintained
as a labor of love by Jens Brueckmann at his site J-A-B.net. The Unicode code
point and decimal/hexadecimal NCR is provided for every character. It is
available at www.j-a-b.net/web/char/char-unicode-bmp.

6.2.2. Character Entities

Character entities use abbreviations or words instead of numbers to represent characters that may
be easier to remember than numbers. In this sense, entities are merely a convenience. Character
entities must be predefined in the DTD of a markup language to be available for use. For example,
the copyright symbol may be referred to as ©, because that entity has been declared in the
DTD. The character entities defined in HTML 4.01 and XHTML are listed in Appendix C (a list of the
most common is also provided in Chapter 10). XML defines five character entities for use with all XML
languages:

<

Less than (<)

>

Greater than (>)

&

Ampersand (&)

'

Apostrophe (')

"

Quotation mark (")

6.2.3. Escapes in CSS

It may be necessary to escape a character in a style sheet if the value of a property contains a non-
ASCII character. In CSS, the escape mechanism is a backslash followed by the hexadecimal Unicode
code point value. The escape is terminated with a space instead of a semicolon. For example, a font

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name starting with a capital letter C with a cedilla (Ç) needs to be escaped in the style rule, as shown
here.

 p { font-family: \C7 elikfont; }

When the special character appears in a style attribute value, it is possible to use its NCR, entity, or
CSS escape. The CSS escape is recommended to make it easier to move it to a style sheet later.

For guidelines on declaring character encodings and using escapes, see the
W3C's Authoring Techniques for XHTML & HTML Internationalization available at
www.w3.org/TR/i18n-html-tech-char/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Language Features

Coordinating character sets is only the first part of the challenge. Even languages that share a
character set may have different rules for hyphenation, spacing, quotation marks, punctuation, and
so on. In addition to character shapes (glyphs), issues such as directionality (whether the text reads
left to right or right to left) and cursive joining behavior have to be taken into account. This section
introduces the features included in HTML 4.01 and XHTML 1.0 and higher that address the needs of a
multilingual Web.

6.3.1. Language Specification

Authors are strongly urged to specify the language for all HTML and XHTML documents. To specify a
language for XHTML documents, use the xml:lang attribute in the html root element. HTML
documents use the lang attribute for the same purpose . To ensure backward compatibility, the
convention is simply to use both attributes, as shown in this example, which specifies the language of
the document as French.

 <html xml:lang="fr" lang="fr" xmlns="http://www.w3.org/1999/xhtml" >

Users can set language preferences in their browsers. This language preference
information is passed to the server when the user makes a request for a
document. The server may use it to return a document in the preferred
language if there is a document available that matches the language
description.

The language attributes may be used in a particular element to override the language declaration for
the document. In this example, a long quotation is provided in Norwegian.

 <blockquote xml:lang="no" lang="no">...</blockquote>

6.3.2. Language Values

The value of the lang and xml:lang attributes is a language tag as defined in "Tags for the
Identification of Languages" (RFC 3066). Language tags consist of a primary subtag that identifies
the language according to a two-or three-letter language code (according to the ISO 639 standard),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for example, fr for French or no for Norwegian. When a language has both a two-and three-letter
code, the two-letter code should be used.

The complete list of ISO 639 language codes is available at the Library of Congress web site at
www.loc.gov/standards/iso639-2/langcodes.html. The more common two-letter codes are provided
in Table 6-2 at the end of this section.

A language tag may also contain an optional subtag that further qualifies the language by country,
dialect, or script, as shown in these examples.

en-GB

English as spoken in Great Britain

en-scouse

English with a scouse (Liverpool) dialect

bs-Cyrl

Bosnian with Cyrillic script (rather than Latin script, bs-Latn)

Codes for country names are provided by the standard ISO 3166 and are available at
www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html. Dialect and script
language tags are registered with the IANA (Internet Assigned Numbers Authority) and are available
at www.iana.org/assignments/language-tags.

Table 6-2. Two-letter codes of language names

Country Code Country Code Country Code

Afar aa Armenian hy Oriya or

Abkhazian ab Herero hz Ossetian os

Avestan ae Interlingua ia Punjabi pa

Afrikaans af Indonesian (formerly in) id Pali pi

Akan ak Interlingue ie Polish pl

Amharic am Igbo ig Pashto, Pushto ps

Aragonese an Sichuan Yi ii Portuguese pt

Arabic ar Inupiak ik Quechua qu

Assamese as Icelandic is Rhaeto-Romance rm

Avaric av Italian it Kirundi rn

Aymara ay Inuktitut iu Romanian ro

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Country Code Country Code Country Code

Azerbaijani az Japanese ja Russian ru

Bashkir ba Javanese jv Kinyarwanda rw

Belarusian be Javanese jw Sanskrit sa

Bulgarian bg Georgian ka Sardinian sc

Bihari bh Kongo kg Sindhi sd

Bislama bi Kikuyu ki Northern Sami se

Bambnara bm Kuanyama kj Sangho sg

Bengali; Bangla bn Kazakh kk Serbo-Croatian sh

Tibetan bo Greenlandic kl Sinhalese si

Breton br Cambodian km Slovak sk

Bosnian bs Kannada kn Slovenian sl

Catalan ca Korean ko Samoan sm

Chechen ce Kanuri kr Shona sn

Chamorro ch Kashmiri ks Somali so

Corsican co Kurdish ku Albanian sq

Cree cr Komi kv Serbian sr

Czech cs Cornish kw Swati ss

Old Slavic cu Kirghiz ky Sesotho st

Chuvash cv Latin la Sundanese su

Welsh cy Luxembourgish lb Swedish sv

Danish da Ganda lg Swahili sw

German de Limburgan li Tamil ta

Divehi dv Lingala lm Telugu te

Dzongkha dz Lingala ln Tajik tg

Ewe ee Laothian lo Thai th

Greek el Lithuanian lt Tigrinya ti

English en Luba Katanga lu Turkmen tk

Esperanto eo Latvian lv Tagalog tl

Spanish es Malagasy mg Setswana tn

Estonian et Marshallese mh Tonga to

Basque eu Maori mi Turkish tr

Persian fa Macedonian mk Tsonga ts

Fulah ff Malayalam ml Tatar tt

Azerbaijani az Japanese ja Russian ru

Bashkir ba Javanese jv Kinyarwanda rw

Belarusian be Javanese jw Sanskrit sa

Bulgarian bg Georgian ka Sardinian sc

Bihari bh Kongo kg Sindhi sd

Bislama bi Kikuyu ki Northern Sami se

Bambnara bm Kuanyama kj Sangho sg

Bengali; Bangla bn Kazakh kk Serbo-Croatian sh

Tibetan bo Greenlandic kl Sinhalese si

Breton br Cambodian km Slovak sk

Bosnian bs Kannada kn Slovenian sl

Catalan ca Korean ko Samoan sm

Chechen ce Kanuri kr Shona sn

Chamorro ch Kashmiri ks Somali so

Corsican co Kurdish ku Albanian sq

Cree cr Komi kv Serbian sr

Czech cs Cornish kw Swati ss

Old Slavic cu Kirghiz ky Sesotho st

Chuvash cv Latin la Sundanese su

Welsh cy Luxembourgish lb Swedish sv

Danish da Ganda lg Swahili sw

German de Limburgan li Tamil ta

Divehi dv Lingala lm Telugu te

Dzongkha dz Lingala ln Tajik tg

Ewe ee Laothian lo Thai th

Greek el Lithuanian lt Tigrinya ti

English en Luba Katanga lu Turkmen tk

Esperanto eo Latvian lv Tagalog tl

Spanish es Malagasy mg Setswana tn

Estonian et Marshallese mh Tonga to

Basque eu Maori mi Turkish tr

Persian fa Macedonian mk Tsonga ts

Fulah ff Malayalam ml Tatar tt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Country Code Country Code Country Code

Finnish fi Mongolian mn Twi tw

Fiji fj Moldavian mo Tahitian ty

Faroese fo Marathi mr Uighur ug

French fr Malay ms Ukrainian uk

Frisian fy Maltese mt Urdu ur

Irish ga Burmese my Uzbek uz

Scots Gaelic gd Nauru na Venda ve

Galician gl Nepali ne Vietnamese vi

Guarani gn Ndonga ng Volapuk vo

Gujarati gu Dutch nl Walloon wa

Manx gv Nynorsk nn Wolof wo

Hausa ha Norwegian no Xhosa xh

Hebrew (formerly iw) he Ndebele nr Yiddish (formerly ji) yi

Hindi hi Navaho nv Yoruba yo

Hiri Motu ho Chichewa ny Zhuang za

Croatian hr Occitan oc Chinese zh

Haitian ht Ojibwa oj Zuni zu

Hungarian hu (Afan) Oromo om

6.3.3. Directionality

HTML 4.01 and XHTML take into account that many languages read from right to left and provide
attributes for handling the directionality of text. Directionality is part of a character's encoding within
Unicode.

The dir attribute is used for specifying the direction in which the text should be interpreted. It can be
used in conjunction with the lang attribute and may be added within the tags of most elements. The
accepted value for direction is either ltr for "left to right" or rtl for "right to left." For example, the
following code indicates that the paragraph is intended to be displayed in Arabic, reading from right
to left:

 <p lang="ar" xml:lang="ar" dir="rtl">...</p>

The bdo element, introduced in HTML 4.01, also deals specifically with documents that contain
combinations of left- and right-reading text (bidirectional text, or bidi, for short). The bdo element is
used for "bidirectional override," in other words, it specifies a span of text that should override the

Finnish fi Mongolian mn Twi tw

Fiji fj Moldavian mo Tahitian ty

Faroese fo Marathi mr Uighur ug

French fr Malay ms Ukrainian uk

Frisian fy Maltese mt Urdu ur

Irish ga Burmese my Uzbek uz

Scots Gaelic gd Nauru na Venda ve

Galician gl Nepali ne Vietnamese vi

Guarani gn Ndonga ng Volapuk vo

Gujarati gu Dutch nl Walloon wa

Manx gv Nynorsk nn Wolof wo

Hausa ha Norwegian no Xhosa xh

Hebrew (formerly iw) he Ndebele nr Yiddish (formerly ji) yi

Hindi hi Navaho nv Yoruba yo

Hiri Motu ho Chichewa ny Zhuang za

Croatian hr Occitan oc Chinese zh

Haitian ht Ojibwa oj Zuni zu

Hungarian hu (Afan) Oromo om

6.3.3. Directionality

HTML 4.01 and XHTML take into account that many languages read from right to left and provide
attributes for handling the directionality of text. Directionality is part of a character's encoding within
Unicode.

The dir attribute is used for specifying the direction in which the text should be interpreted. It can be
used in conjunction with the lang attribute and may be added within the tags of most elements. The
accepted value for direction is either ltr for "left to right" or rtl for "right to left." For example, the
following code indicates that the paragraph is intended to be displayed in Arabic, reading from right
to left:

 <p lang="ar" xml:lang="ar" dir="rtl">...</p>

The bdo element, introduced in HTML 4.01, also deals specifically with documents that contain
combinations of left- and right-reading text (bidirectional text, or bidi, for short). The bdo element is
used for "bidirectional override," in other words, it specifies a span of text that should override the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

intrinsic direction (as inherited from Unicode) of the text it contains. The bdo element uses the dir
attribute as follows:

<bdo dir="ltr"> English phrase in an otherwise Hebrew text </bdo>...

6.3.4. Cursive Joining Behavior

In some writing systems , the shape of a character varies depending on its position in the word. For
instance, in Arabic, a character used at the beginning of a word looks completely different when it is
used as the last character of a word. Generally, this joining behavior is handled within the software,
but there are Unicode characters that give precise control over joining behavior. They have zero
width and are placed between characters purely to specify whether the neighboring characters should
join.

HTML 4.01 provides mnemonic character entities for both these characters, as shown in Table 6-3.

Table 6-3. Unicode characters for joining behavior

Entity Numeric Name Description

‌ ‌
zero-width non-
joiner

Prevents joining of characters that would otherwise be
joined.

‍ ‍ zero-width joiner Joins characters that would otherwise not be joined.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. Style Sheets Language Features

The first version of Cascading Style Sheets (CSS) did not include any mechanisms for dealing with
anything but standard western, left-to-right languages.

CSS Level 2 introduced a few controls that specifically address multilingualism.

Directionality

The direction and unicode-bidi properties in CSS 2 allow authors to specify text direction,
similar to the dir and bdo elements in HTML.

Quotation marks

The quotes property is used to specify quotation marks appropriate to the current language of
the text. Generated quotation marks are discussed in Chapter 23.

CSS Level 3 addresses advanced foreign language attributes such as detailed specification of
international numbering schemes, vertical text, and language-based text justification. International
numbering schemes are published in the CSS 3 Lists Module (www.w3.org/TR/css3-lists/). Text
effects that accommodate internationalization efforts are published in the CSS 3 Text Effects Module
(www.w3.org/TR/css3-text/).

CSS 3 also includes a module for dealing with Ruby text . Ruby text is a run of text that appears
alongside another run of text (the base). It serves as an annotation or pronunciation guide, as in the
case of phonetic Japanese characters that run above the pictorial kanji symbols to aid readers who do
not understand the symbols. More information can be found at www.w3.org/TR/css3-ruby/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. For Further Reading

If you are interested in learning more, the W3C Internationalization Activity Home Page
(www.w3.org/International/) makes a great jumping-off point for further exploration.

Another good resource is Babel, an Alis Technologies/Internet Society joint project to internationalize
the Internet. It is available at alis.isoc.org/index.en.html.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part II: The Structural Layer: XML and
(X)HTML

Chapter 7, Introduction to XML

Chapter 8, HTML and XHTML Overview

Chapter 9, Document Structure

Chapter 10, Text Elements

Chapter 11, Creating Links

Chapter 12, Images and Objects

Chapter 13, Tables

Chapter 14, Frames

Chapter 15, Forms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Introduction to XML
If you are thinking about skipping this chapter, please reconsider. While you may never need to be
an XML expert, the basic concepts covered here will illuminate why things are done the way they are
in the world of web document authoring. Furthermore, if you "get" XML, you'll understand the
reasoning that influences all contemporary web design and related W3C Recommendations, from
XHTML to CSS 2 and beyond.

XML (Extensible Markup Language) is a W3C standard for text document markup. It is not a
language in itself (like HTML), but rather a set of rules for creating other markup languages. In other
words, it is a meta-markup language. Languages written according to XML syntax are called XML
applications (a confusing use of the word "application" to be sure, but such is the legacy jargon that
SGML has left us). If this sounds a bit abstract, think of it this way: XML provides the tools for
making up custom sets and subsets of tags.

Although XML began as an effort to improve information structure and handling on the Web, it has
quickly taken the entire computing world by storm. In fact, today there is more XML used outside the
Web than on it. XML is used for document sharing and data storage in fields as diverse as finance,
retail, physics, travel, insurance, and academia, just to name a few. There are also XML files working
behind the scenes in an increasing number of software applications, such as Microsoft Office,
Macromedia Flash, and Apple iTunes. This is just a testament to the flexibility and robust nature of
XML.

XML is having some of its intended impact on the Web as well. It is the cornerstone of the W3C's
vision for the future of information exchange over networks.

XML is a complex topic, well beyond the scope of this web design book. This chapter provides an
introduction to XML, focusing on the aspects of XML that are useful to web designers and developers,
such as how it works, the basic syntax, terminology, and web-based XML applications.

The best way to get a feel for XML is to look at a quick example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1. XML Basics

Here is a very simple XML document that is marked up with tags I made up to describe the liner
notes for my famous end-of-the-year music compilations. (I could call it JenML).

<?xml version="1.0"?>
<compilation >
<title>Oh Baby! Jen's Favorites</title>
<year>2005</year>
<image source="ohbabycover.jpg"/>
<tracklist>
 <track number="1">
 <artist>The Wrens</artist>
 <song>
 <song_title>Hopeless</song_title> from
 <album_title>The Meadowlands</album_title>,
 <label>Absolutely Kosher Records</label>,
 <release_date>2003</release_date>
 </song>
 <comments>I love The Wrens, both musically and personally.</comments>
 </track>
<!--more tracks added here -->
</tracklist>
</compilation>

Certain things about this example should look familiar to anyone who has seen an HTML document.
First, it is a plain-text document. As such, it can be created or edited in any text editor. It also uses
tags in brackets to indicate the start and end of content elements in the document. Consider this
element from the example:

<artist>The Wrens</artist>

The element includes the content (in this case, the character data "The Wrens") and its markup (the
start tag <artist> and end tag </artist>). In XML, tags are case-sensitive, so <ARTIST>, <Artist>,
and <artist>would be parsed as three different elements. Elements may contain character data,
other elements, or both. Some elements are empty, which means they have no content. <meta/> is
an example of an empty element in XHTML. Elements may be clarified or enhanced with attributes
that provide extra information about that element. In the example, the image element uses the
source attribute to provide the location of the image file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1.1. Meaningful Markup

The most significant thing to note here is that the tags describe the information they contain in a
meaningful way. In XML, element names are intended to be simple, descriptive, and easily readable
by human beings as well as machines. Notice also that the tags do not provide any indication of how
the document should look when it is displayed. Their purpose is to provide a semantic description (the
meaning) of their contents. XML documents rely on style sheets to handle all matters of presentation.

Together, the elements in a document create its structure. Notice in the example that some elements
contain other elements, which may contain yet more elements. This hierarchy is referred to as the
document tree . It starts with a root element (compilation in the example) and branches out in
layers of parent/child relationships. Every XML document must have exactly one root element, and
the root element has no ancestors. Document structure is covered in more detail in Chapter 16.

The concepts of semantic markup and document structure are directly relevant
to web design. HTML and XHTML are markup languages for describing text
documents whose "data" consists of paragraphs, headings, lists, and so on. In
proper HTML markup, elements should accurately describe their contents, and
should not be chosen to achieve a particular visual effect in a browser.
Additionally, an awareness of a document's structure will be a major advantage
when planning and writing style sheets.

7.1.2. Text as Data, Data as Text

It is easy to see even from our simple example how XML markup treats content in a text document
like data. So while this document can be displayed in a page format, it can just as easily be stored in
a database (which is a common use of XML-formatted information).

On the flip side, XML allows data to be stored in a plain-text format. This is the key to XML's rampant
success in the computing world. Data that had previously been stored in proprietary, device-specific
formats can now be marked up in a text file and shared between incompatible systems. Longevity is
improved as well. XML documents are self-defining, intuitive, and not tied to a format or system that
may grow obsolete.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. How It Works

XML has four basic components :

A document marked up in an XML language

An optional Document Type Definition or XML Schema that defines the elements and the rules
for their use in that language

Style sheets for presentation instructions

Parsers that interpret the XML document

Take a closer look at each.

7.2.1. XML Documents

XML documents may be used for a wide variety of content. A document might be text based (such as
a magazine article), or it might contain only numerical data to be transferred from one database or
application to another. An XML document might also contain an abstract structure, such as a
particular vector graphic shape (as in SVG) or a mathematical equation (as in MathML).

A Brief XML History

Both XML and HTML have roots in SGML (Standard Generalized Markup Language).
SGML is a comprehensive set of syntax rules for marking up documents and data that
has existed as an ISO standard since 1986. It is the big kahuna of meta-languages. For
information on SGML, including its history, see www.oasis-open.org/cover/general.html.

When Tim Berners-Lee needed a markup language that told browsers how to display
content, he used SGML to create HTML. In other words, HTML is an SGML application,
albeit a very simplified one.

As the Web matured, there was a clear need for more versatile markup languages. SGML
provided a good model, but it was too vast and complex; it had many features that were
redundant, overly complicated, or simply weren't useful. XML is a simplified and reduced
form of SGML.

Much of the credit for XML's creation can be attributed to Jon Bosak of Sun
Microsystems, Inc., who started the W3C working group responsible for scaling down
SGML to its portable, Web-friendly form. Other big players include James Clark, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

technical lead of the working group, and Tim Bray, Michael Sperberg-McQueen, and Jean
Paoli, the co-editors of the XML specification.

XML 1.0 became a W3C Recommendation on February 10, 1998 and it was revised three
times, with the third edition released in 2004. At that time, the W3C released XML 1.1,
which addressed issues with Unicode, among other things. Developers are still
encouraged to use XML 1.0 if they do not need the newer features. Various aspects and
modules of XML are still in development. For more information and updates on XML
progress, see the W3C's site at www.w3.org/XML.

It is important to note that an XML document is not limited to one physical file. It may be made up of
content from multiple files that are integrated via special markup, or it may exist only as records in a
database that are assembled on the fly. The end result is always marked-up text content.

7.2.2. Document Type Definition (DTD)

Some XML languages also use a Document Type Definition (DTD) that defines each element allowed
in the document along with its attributes and rules for use. An XML-compliant application may check
the document against its DTD to "decode" the markup and make sure that it follows its own rules. A
document that conforms to its DTD is said to be valid . DTDs are discussed in detail later in this
chapter.

An updated method for defining XML elements and document structure is XML Schemas . A particular
instance of an XML Schema is called an XML Schema Definition (XSD) . The difference is that XSDs
are XML-based, while DTDs (an older form of schema) are created according to the rules of SGML.
XSDs are more powerful in describing XML languages, but the price is that they also tend to be more
complicated and difficult to read and write. XML Schemas are outside the scope of this introductory
chapter, but you can find information on the W3C site at www.w3c.org/XML/Schema.

7.2.3. Style Sheets and XML

A markup language describes only the structure of a document; it is not concerned with how it looks.
Like HTML, XML documents can use Cascading Style Sheets for presentation. In fact, the CSS Level 2
Recommendation has been broadened for use with all XML applications, not just web documents. CSS
is covered in Part III of this book.

Another style sheet language called the Extensible Stylesheet Language (XSL) exists for XML
documents. XSL creates a large overhead in processing, whereas CSS is fast and simple, making it
generally preferable.

XSL is useful when the contents of the XML document need to be "transformed" before final display.
Transforming generally refers to the process of converting one XML language to another, such as
turning a particular XML language into XHTML on the fly, but it can also be used for transformations
as simple as replacing words with other words. An Extensible Stylesheet Language for
Transformations(XSLT, a subset of XSL) style sheet works as a translator in the transformation
process. XSL is not covered in this chapter; for more information, see the XSL information on the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

W3C site at www.w3.org/Style/XSL/.

7.2.4. Parsers

Software that interprets the information in XML documents is called an XML parser or processor.
Parsers are generally built into other XML-compliant applications (such as web browsers or database
servers), although standalone, command-line XML parsers do exist. It's the parser's job to pass
elements and their contents to the application piece by piece for display or execution.

One of the things the parser does is make sure that the XML document is well-formed , that is, that it
follows all of the rules of XML markup syntax correctly. If a document is not well-formed, parsers are
instructed not to process it (although some are more forgiving than others). Well-formedness is
discussed in the following section. Some parsers are also validating parsers, meaning they check the
document for validity against a DTD.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. XML Document Syntax

Now let's look at some of the particulars of XML syntax using this simple XML document:

<?xml version="1.0" encoding="US-ASCII" standalone="no"?>
<!DOCTYPE accounts SYSTEM "simple.dtd">
<accounts>
<customer>
 <name>
 <firstname>Bobby</firstname>
 <lastname>Five</lastname>
 </name>
 <accountNumber>4456</accountNumber>
 <balance>111.32</balance>
</customer>
<!-- more customers will be added soon -->
<?php print date ('Fj,Y') ?>
</accounts>

Well-Formed Versus Valid

In short, well-formed documents comply with the rules for marking up documents
according to XML , independent of a specific language. For instance, all elements must be
correctly nested and may not overlap.

Valid documents are well-formed and abide by the rules of a DTD for a particular XML
language. For instance, in XHTML, it is invalid to put a body element in an a element.

An XML document must be well-formed, and should be valid , but validity is not required.

Because XHTML is an XML application, all of the following syntax conventions
apply to web documents written in XHTML.

7.3.1. XML Declaration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first line of the example is the XML declaration.

<?xml version="1.0" encoding="US-ASCII" standalone="no"?>

The XML declaration contains special information for the XML parser. First, the version attribute tells
the parser that it is an XML document that conforms to Version 1.0 of the XML standard (which,
incidentally, is the only available option).

In addition, the encoding attribute specifies which character encoding the document uses. By default,
XML use the UTF-8 encoding of the Unicode character set (the most complete character set including
glyphs from most of the world's languages). Alternate encodings may also be specified, such as ISO-
8859-1 (Latin-1), which is a set containing characters from most Western European languages.
Character encodings are discussed in more detail in Chapter 6.

Finally, the optional standalone="no" attribute informs the program that an outside DTD is needed to
correctly interpret the document. If the value of standalone is yes, it means there is no DTD or the
DTD is included in the document.

XML documents should begin with an XML declaration, but it is not required.

In XHTML documents, the presence of an XML declaration will cause Internet
Explorer 6 for Windows to render in Quirks mode, even when a proper
DOCTYPE declaration is provided (see Chapter 9 for information on Quirks
versus Standards mode and DOCTYPE switching). For this reason, it is
commonly omitted. This problem has been fixed in IE 7. Some other browsers
may render the XML declaration or have other problems. Avoid using the XML
declaration in your XHTML documents if possible.

7.3.2. Document Type Declaration

The example also includes a document type (DOCTYPE) declaration.

 <!DOCTYPE accounts SYSTEM "simple.dtd">

The purpose of the DOCTYPE declaration is to refer to the DTD against which the document should be
compared for validity. The declaration identifies the root element of the document (accounts, in the
example). It also provides a pointer to the DTD itself. DOCTYPE declarations are discussed in the
"DTD Syntax" section later in this chapter and again in Chapter 9 as they apply to XHTML.

Together, the XML declaration and DOCTYPE are often referred to as the document prolog . For XML
languages that don't use DTDs, the entire prolog is optional. For languages with DTDs, the DOCTYPE
declaration is required for the document to validate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3.3. Comments

You can leave notes within an XML document in the form of a comment. Comments begin with <!--
and end with -->. If you've used comments in HTML, this syntax should be familiar. The example
document contains the comment:

<!-- more customers will be added soon -->

Comments are not elements and, therefore, do not affect the structure of the document. They may
be placed anywhere in a document except before an XML declaration or within a tag or another
comment.

7.3.4. Processing Instructions

A processing instruction is a method for passing information to applications that may read the
document. It may also include the program or script itself. Unlike comments, which are intended for
humans, processing instructions are for computer programs or scripts. Processing instructions are
indicated by <? at the beginning and ?> at the end of the instruction.

The example document includes a processing instruction for a simple PHP command that displays the
current date.

<?php print date('Fj, Y'); ?>

7.3.5. Entity References

Isolated markup characters (such as <, &, and >) are not permitted in the flow of text in an XML
document and must be escaped using either a Numeric Character Reference or a predefined
character entity. This is to avoid having the XML parser interpret any < symbol as the beginning of a
new tag. In addition to using entity references in the content of the document, you must use them in
attribute values.

XML defines five character entities for use in all XML languages, listed in Table 7-1. Other entities
may be defined in a DTD.

Table 7-1. Predefined character entities in XML

Entity Char Notes

& & Must not be used inside processing instructions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Entity Char Notes

< < Use inside attribute values quoted with "

> > Use after]] in normal text and inside processing instructions

" " Use inside attribute values quoted with '

' ' Use inside attribute values quoted with "

If you have a document that uses a lot of special characters, such as an example of source code, you
can tell the XML parser that the text is simple character data (CDATA) and should not be parsed. To
protect content from parsing, enclose it in a CDATA section , indicated by <![CDATA[...]]>. This
XHTML example uses a CDATA section to display sample markup on a web page without requiring
every < and > character to be escaped:

<p>This is sample SMIL markup:</p>
<![CDATA[
<audio src="audio_file.mp3" begin="0s" />
 <seq>

 </seq>
]]>

The five reserved characters (listed in Table 7-1) are also put to frequent use when writing scripts
(such as JavaScript), making it necessary to designate those blocks of content as CDATA so they will
be ignored by XML parsers.

< < Use inside attribute values quoted with "

> > Use after]] in normal text and inside processing instructions

" " Use inside attribute values quoted with '

' ' Use inside attribute values quoted with "

If you have a document that uses a lot of special characters, such as an example of source code, you
can tell the XML parser that the text is simple character data (CDATA) and should not be parsed. To
protect content from parsing, enclose it in a CDATA section , indicated by <![CDATA[...]]>. This
XHTML example uses a CDATA section to display sample markup on a web page without requiring
every < and > character to be escaped:

<p>This is sample SMIL markup:</p>
<![CDATA[
<audio src="audio_file.mp3" begin="0s" />
 <seq>

 </seq>
]]>

The five reserved characters (listed in Table 7-1) are also put to frequent use when writing scripts
(such as JavaScript), making it necessary to designate those blocks of content as CDATA so they will
be ignored by XML parsers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. Well-Formed XML

Browsers often recover from sloppily written or illegal HTML. This is not the case with XML
documents. Because XML languages vary, the rules for coding the document need to be followed to
the letter to ensure proper interpretation by the XML client. In fact, the XML specification strictly
prohibits XML parsers from trying to read or render documents with syntax errors. When a document
follows the XML markup syntax rules, it is said to be well-formed . Documents that have incorrect
syntax are referred to as malformed .

The primary rules for a well-formed XML document are:

There may be no whitespace (character spaces or line returns) before the XML declaration, if
there is one.

An element must have both an opening and closing tag, unless it is an empty element.

If an element is empty, it must contain a closing slash before the end of the tag (for example,

).

All opening and closing tags must nest correctly and not overlap.

There may not be whitespace between the opening < and the element name in a tag.

All element attribute values must be in straight quotation marks (either single or double
quotes).

An element may not have two attributes with the same name.

Comments and processing instructions may not appear inside tags.

No unescaped < or & signs may occur in the character data of an element or attribute.

The document must have a single root element, a unique element that encloses the entire
document. The root element may be used only once in the document.

This is by no means a complete list. There are over a hundred criteria that must be met for a
document to be well-formed, but many of them follow common sense; for example, there must be at
least one character between the brackets <>. But because the syntax rules must be read by machines
(without common sense), the rules need to be explicit.

You can check whether the syntax of your XML document is correct using a well-formedness checker
(also called a non-validating parser). There is a list of them at the Web Developer's Virtual Library at
wdvl.com/Software/XML/parsers.html.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. Document Type Definition (DTD)

A Document Type Definition (DTD) is a file associated with SGML and XML documents that defines
how markup tags should be interpreted by the application reading the document. The DTD uses
SGML syntax to explain precisely which elements and attributes may appear in a document and the
context in which they may be used. DTDs were briefly introduced earlier in this chapter. In this
section, we'll take a closer look.

A DTD is a text document that contains a set of rules, formally known as element declarations ,
attlist (attribute) declarations, and entity declarations. DTDs are most often stored in a separate file
(with the .dtd suffix) and shared by multiple documents; however, DTD information can be included
inside the XML document as well. Both methods are demonstrated later in this section.

Reading DTDs

While you may never be required to write a DTD, knowing how to read one is a useful
skill if you plan on getting cozy with XHTML or any other DTD released by the W3C. This
chapter should give you a good start, but you may also want to check out these online
resources.

"How to Read W3C Specs" by J. David Eisenberg at
www.alistapart.com/articles/readspec/

W3Schools DTD Tutorial at www.w3schools.com/dtd/default.asp

7.5.1. Document Type Declarations

XML documents specify which DTD they use via a document type declaration (also called a DOCTYPE
declaration).

When the DTD is an external document, the DOCTYPE declaration identifies the root element for the
document, lists the method used to identify the DTD (SYSTEM or PUBLIC), and then finally provides the
location or name of the DTD itself. When using an external DTD, it is recommended that you include
the standalone attribute set to "no" in the XML declaration.

A SYSTEM identifier points to the DTD file by location (its URI), as shown in this example:

<?xml version="1.0" standalone="no"?>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!DOCTYPE compilation SYSTEM "http://www.littlechair.com/notreal/comp.dtd">

DTDs that are shared by a large community or are hosted at multiple sites may have a PUBLIC ID
that specifies the XML application. When public IDs are used, it is common practice to supply an
additional SYSTEM URI because it is better supported. Web developers who write documents in XHTML
will be familiar with the following DOCTYPE declaration that indicates the root element (html) and the
public identifier for XHTML Strict. This declaration also specifies its URL as a backup method.

<?xml version="1.0" standalone="no?">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

As an alternative, the DTD may be included in the XML document itself, rather than as an external
.dtd document. This is done by placing the DTD within square brackets in the document type
declaration as shown here:

<?xml version="1.0"?>
<!DOCTYPE phonebook [
 <!ELEMENT listing (name, number)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT number (#PCDATA>
]>

An XML document may combine external and internal DTD subsets.

7.5.2. Valid XML

When an XML document conforms to all the rules established in the DTD, it is said to be valid ,
meaning that all the elements are used correctly.

A well-formed document is not necessarily valid, but if a document proves to be
valid, it follows that it is also well-formed.

When your document uses a DTD, you can check it for mistakes using a validating parser. The parser
checks the document against the DTD for contextual errors, such as missing elements or improper
order of elements. Some common parsers are Xerces from the Apache XML Project (available at
xml.apache.org) and Microsoft MSXML (msdn.microsoft.com/xml/default.asp). A full list of validating
parsers is provided by Web Developer's Virtual Library at wdvl.com/Software/XML/parsers.html.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As an alternative to downloading your own parser, you can use a free online parsing service. Just
enter the locations of your documents at these sites:

The Brown University Scholarly Technology Group's XML Validation Form at
www.stg.brown.edu/service/xmlvalid/

W3Schools XML Validator (based on MSXML) at www.w3schools.com/dom/dom_validate.asp

XML Names

When naming elements and attributes (and other less common XML constructs), you
must follow the rules for XML names :

Names may contain letters, numbers, or non-English character glyphs (such as).

Names may contain these three punctuation characters: _ (underscore), -
(hyphen), or . (period). No other punctuation characters are permitted.

Names may not start with a number or punctuation (exception: _ (underscore) is
allowed at the start).

Names must not start with "xml."

Names may not contain whitespace of any kind (space, carriage return, line feed, or
non-breaking space).

7.5.3. DTD Syntax

The following example is made up of lines taken from the XHTML Strict DTD (the full DTD is over
1,500 lines long). It contains samples of element , attlist (attribute), and entity declarations.

<!ELEMENT title (#PCDATA
)>
<!ELEMENT meta EMPTY>
<!ELEMENT ul (li)+>

<!ENTITY % i18n
 "lang %LanguageCode; #IMPLIED
 xml:lang %LanguageCode; #IMPLIED
 dir (ltr|rtl) #IMPLIED"
 >

<!ATTLIST title

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 %i18n;
 id ID #IMPLIED
 >

<!ATTLIST meta
 %i18n;
 id ID #IMPLIED
 http-equiv CDATA #IMPLIED
 name CDATA #IMPLIED
 content CDATA #REQUIRED
 scheme CDATA #IMPLIED
 >

7.5.3.1. Element declarations

Element declarations are the core of the DTD. Every element must have an element declaration in
order for the document to validate. Consider the parts of this declaration for the title element.

<!ELEMENT title (#PCDATA)>

!ELEMENT identifies the line as an element declaration (no surprise there). The next part provides the
element name (in this case, title) that will be used in the markup tag. Finally, the material within
the parentheses identifies the content model for the element, or in other words, what type of content
it may contain. In this example, the content model for the title element must be #PCDATA, which
stands for parsed character data. This means the content is character data that may or may not
include escaped character entities (such as < and & for < and &, respectively), but it may not
include other elements.

Other content models include:

Single child elements

You may also put other element names in the parentheses. In the following (non-XHTML)
element declaration, the content of the birth element must be exactly one year element.

<!ELEMENT birth (year)>

Sequences

More often, elements will contain multiple elements. When element names are separated by
commas in the parentheses, it means they must appear in exactly the provided order. No listed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element may be omitted or the document will be invalid.

<!ELEMENT birth (month, year)>

The number of child elements

DTD syntax allows you to indicate varying numbers of element instances using the following
suffixes:

? Permits zero or one of the element

* Permits zero or more of the element

+ Permits one or more of the element

In the XHTML example, the following declaration indicates that the unordered list element (ul)
may contain one or more list item elements (li), as indicated by the + suffix. A ul with no li
elements would be invalid.

<!ELEMENT ul (li)+>

A list of options

A list of elements separated by vertical bars indicates available options, only one of which may
be used. In this (non-XHTML) example, the season element may contain exactly one of the
child elements named winter, spring, summer, or fall.

 <!ELEMENT season (winter|spring|summer|fall)>

Combinations of options and/or sequences

Options and sequences may be grouped in parentheses to be combined with other options or
suffixes. In this (non-XHTML) example, the martini element starts with either a gin or vodka
element, followed by zero or more of either olive or onion, followed by an optional vermouth
element.

 <!ELEMENT martini ((gin|vodka),(olive|onion)*,vermouth?)>

Mixed content

It is common for elements to contain a mix of character data and child elements. This is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

declared by combining #PCDATA and the permitted child elements in an option group. The *
suffix permits zero or more of the chosen element, in no specified order. In this (non-XHTML)
example, the description element may include text and/or any number of date children. There
is no method for specifying the particular order or number of child elements for an element
with mixed content.

<!ELEMENT description (#PCDATA|date)*>

Empty elements

Empty elements don't have any content. They are indicated by the keyword EMPTY. In the
XHTML example, the meta element is empty.

<!ELEMENT meta EMPTY>

7.5.3.2. Attlist (attribute) declarations

ATTLIST (attribute) declarations are used to declare the attributes permitted for a particular element.
The following attribute declaration from the previous XHTML example says that the meta element may
use the attributes id, http-equiv, name, content, and scheme. %i18n is an entity that represents still
more available attributes (more on entities next).

<!ATTLIST meta
 %i18n;
 id ID #IMPLIED
 http-equiv CDATA #IMPLIED
 name CDATA #IMPLIED
 content CDATA #REQUIRED
 scheme CDATA #IMPLIED
 >

After each attribute name is its attribute type, which provides an indication of the type of information
its value may contain. The most common attribute types are CDATA (character data) and an
enumerated list of possible values (for example (left|right|center)). Other attribute types include
ID, IDREF, IDREFS, NMTOKEN, NMTOKENS, ENTITY, ENTITIES, NOTATION, and xml: (a predefined XML value).

Finally, a default value is provided for each attribute. The default value itself may be listed, or there
may be an indication of whether the attribute is required within the element (#REQUIRED), optional
(#IMPLIED), or fixed (#FIXED value).

7.5.3.3. Entity declarations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In XML, an entity is a string of characters that stands for something else. An entity can be used to
represent a single character or a selection of marked up content, such as a footer containing
copyright information. Entity declarations provide the name of the entity (which must be a legal XML
name; see the earlier sidebar "XML Names") and its replacement text. The five character entities
proved by XML were listed in Table 7-1.

General entities insert replacement text into the body of an XML document. The syntax for declaring
general entities is:

<!ENTITY address "1005 Gravenstein Highway, North Sebastopol, CA 95472">

As a result, wherever the author places an &address; entity in the XML source, it will be replaced by
the full address upon display. The content may include markup tags. (Be sure that when double
quotes are used to delimit the entity value, single quotes are used in the enclosed content, or vice
versa.) The content of an entity may also reside in a separate, external file that is referenced in the
entity declaration by its URL.

The XHTML sample at the beginning of this section includes another kind of entity called a parameter
entity, shown here:

<!ENTITY % i18n
 "lang %LanguageCode; #IMPLIED
 xml:lang %LanguageCode; #IMPLIED
 dir (ltr|rtl) #IMPLIED"
 >

Parameter entities are used only within the DTD itself to declare groups of elements or entities that
are repeated throughout the DTD. They are indicated by the % symbol (rather than &). The entity
declaration above creates a parameter entity called %i18n (shorthand for "internationalization") that
includes three language-related attributes. Because these three attributes apply to nearly every
XHTML element, instead of repeating them in every ATTLIST declaration, a parameter entity is used
instead to reduce repetition. You can see it in use in the attribute declaration for the meta element.

7.5.4. When to Use a DTD

If you create a markup language in XML, it is not mandatory that it have a DTD. In fact, DTDs come
with a few disadvantages. A DTD is useful when you have specific markup requirements to apply
across a large number of documents. A DTD can ensure that certain data fields are present or
delivered in a particular format. You may also want to spend the time preparing a DTD if you need to
coordinate content from various sources and authors. Having a DTD makes it easier to find mistakes
in your code.

The disadvantages to DTDs are that they require time and effort to develop and are inconvenient to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

maintain (particularly while the XML language is in flux). DTDs slow down processing times and may
be too restrictive on the user's end. Another problem with DTDs is that they are not compatible with
the namespace convention (discussed next). Elements and attributes from another namespace won't
validate under a DTD unless the DTD explicitly includes them. If you are creating just a few XML
documents, you may choose not to create a DTD. If you are using namespaces and it is necessary to
have documentation of your XML vocabulary, you must use an XML Schema.

Because XHTML is a markup language that is used on a global scale, it was
necessary to define the language and its various versions in DTDs. An XHTML
document must include a DOCTYPE declaration to specify which DTD it follows
in order to validate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.6. XML Namespaces

An XML document may use tags that come from different XML applications or vocabularies. For
example, you might have an XHTML document that also contains some math expressions written
using MathML. But in this case, the parser needs to differentiate between an a element coming from
XHTML (an anchor) and an a element that might come from MathML (an absolute value).

The W3C anticipated such conflicts and responded by creating the namespace convention (see the
Recommendation at www.w3.org/TR/REC-xml-names). A namespace provides a name for a
particular XML vocabulary, the group of element and attribute names used in an XML application. This
allows several XML vocabularies to be used in a single XML document.

When you reference elements and attributes in your document, the browser looks them up in the
namespace to find out how they should be used. Namespaces have names that look just like URLs
(they are not links to actual documents, however) to ensure uniqueness and provide information
about the organization that maintains the namespace.

Namespaces are declared in an XML document using the xmlns attribute. You can establish the
namespace for a whole document or an individual element. Typically, the value of the xmlns attribute
is a reference to the URL-like namespace. This example establishes the default namespace for the
document to be transitional XHTML:

<html xmlns="http://www.w3.org/1999/xhtml">

If you need to include math markup, you can apply the xmlns attribute within the specific tag, so the
browser knows to look up the element in the MathML DTD (not XHTML):

46/100

If you plan to refer to a namespace repeatedly within a document, you can declare the namespace
and give it a label just once at the beginning of the document. Then refer to it in each tag by placing
the label before the tag name, separated by a colon (:). For example:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:math="http://www.w3.org/1998/Math/MathML">

The full namespace can now be shortened to math later in the document, resulting in tidier code and
smaller file sizes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<math:a>46/100</math:a>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.7. XML on the Web

As mentioned earlier, XML turned out to have uses that reach far beyond web documents , but it is
still the W3C's primary tool for optimizing information exchange over the Web. XML is put to use on
the Web in several ways.

The most common is XHTML, a reformulation of HTML according to the stricter syntax rules of XML.
XHTML is formally introduced in the next section and is discussed in detail in the Chapters 8 through
15.

XHTML 1.1 can be combined in documents with other XML vocabularies such as MathML and SVG
(Scalable Vector Graphics; discussed next). Namespaces help the parser keep track of which
elements belong to which application (note that this requires a browser that supports namespaces).

XML documents may also be displayed directly in web browsers that support XML. The "Browser
Support" section provides more information on how browsers deal with XML.

Finally, one of the most widespread uses of an XML-based format for web content is in the form of
RSS feeds that allow summaries of web content (or the content itself) to be shared on other sites or
read with a special reader. RSS is discussed in detail in the following section.

The W3C keeps a directory of Recommended DTDs to use in web documents at
www.w3.org/QA/2002/04/valid-dtd-list.html.

7.7.1. Browser Support

All of the current browser versions produced by Microsoft, Mozilla, and Opera support XML in some
form. Table 7-2 lists each of the browsers and the XML features they support.

Table 7-2. Browser support for XML

Browser XML 1.0 XML+CSS XSL Namespaces

Internet Explorer 6 for Windows Yes Yes Yes Yes

Internet Explorer 5 for Macintosh Yes Yes Yes No

Internet Explorer 5 and 5.5 for Windows Yes No No No

Firefox 1.0 Yes Yes Yes Yes

Mozilla 1.8 Yes Yes Yes Yes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Browser XML 1.0 XML+CSS XSL Namespaces

Netscape 8 Yes Yes Yes Yes

Netscape 6 and 7 Yes Yes No Yes

Opera 7 and 8 Yes Yes No Yes

Safari 2.0 Yes Yes Yes Yes

7.7.2. Viewing XML in Web Browsers

When an XML-compliant browser encounters an XML document that doesn't have a style sheet, it
typically displays the contents of the file, including the markup. All of the browsers in Table 7-2 also
use some sort of color-coding to improve readability, either to make markup stand out from the
content or to indicate parent/child relationships (Netscape 6 color-codes only when you select View
Page Source). All of them except Opera also display plus (+) and minus (-) signs next to parent
elements that allow the user to expand or collapse the element's contents. Figure 7-1 shows an
unstyled XML document in Firefox 1.0.

If the XML document has a CSS style sheet, browsers that support XML+CSS use the style sheet to
display the document's contents according to the presentation instructions. When a style sheet is in
use, the markup is hidden. Figure 7-2 shows the same XML document, this time referencing a CSS
style sheet. XML documents with XSLT style sheets may be converted to XHTML before being
displayed in the browser.

Netscape 8 Yes Yes Yes Yes

Netscape 6 and 7 Yes Yes No Yes

Opera 7 and 8 Yes Yes No Yes

Safari 2.0 Yes Yes Yes Yes

7.7.2. Viewing XML in Web Browsers

When an XML-compliant browser encounters an XML document that doesn't have a style sheet, it
typically displays the contents of the file, including the markup. All of the browsers in Table 7-2 also
use some sort of color-coding to improve readability, either to make markup stand out from the
content or to indicate parent/child relationships (Netscape 6 color-codes only when you select View
Page Source). All of them except Opera also display plus (+) and minus (-) signs next to parent
elements that allow the user to expand or collapse the element's contents. Figure 7-1 shows an
unstyled XML document in Firefox 1.0.

If the XML document has a CSS style sheet, browsers that support XML+CSS use the style sheet to
display the document's contents according to the presentation instructions. When a style sheet is in
use, the markup is hidden. Figure 7-2 shows the same XML document, this time referencing a CSS
style sheet. XML documents with XSLT style sheets may be converted to XHTML before being
displayed in the browser.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.8. Web-Related XML Applications

XML is already being put to powerful uses on the Web. Some languages, like XHTML and RSS, are
expanding the possibilities of web-based content and changing the way we use the Web itself. Others
have found small niche uses (such as SMIL and MathML) or have yet to live up to their promised
potential (such as SVG). This section introduces these XML languages and others that are relevant to
the Web.

Figure 7-1. An unstyled XML document displayed in Firefox 1.0

Figure 7-2. An XML document with a CSS style sheet displayed in Firefox
1.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.8.1. XHTML (Extensible Hypertext Markup Language)

In the context of XML, XHTML is a language for describing the content of hypertext documents
intended to be viewed or read in some sort of browsing client. It uses a DTD that declares such
elements as paragraphs, headings, lists, and hyperlinks. It uses the namespace
http://www.w3.org/1999/xhtml.

In the context of web design, XHTML is the updated version of HTML and is the current W3C
recommendation for authoring web pages. It has all the same elements and attributes as the HTML
4.01 Recommendation, but where HTML was written according to the broader rules of SGML, XHTML
has been rewritten according to XML syntax. That means that XHTML documents need to be well-
formed, requiring more stringent markup practices. XHTML is by far the dominant use of XML on the
Web.

XHTML is discussed in great detail in Chapters 8 through 15.

7.8.2. RSS (Really Simple Syndication or RDF Site Summary)

RSS is an XML language and file format for syndicating web content. The elements in the RSS
vocabulary provide metadata about content (such as its headline, author, description, and originating
site) that allows content to be shared as data, known as an RSS feed. While originally intended for
headlines and short summaries, some RSS feeds now contain the full content of each posting,
including marked-up XHTML content. The content of the feed is up to the discretion of the author.

RSS feeds can be used to display information from other sites on a web page, such as headlines from
Slashdot on a technology-related site. RSS feeds can also be read using special programs called feed
readers (or news readers). Readers may be web-based or standalone desktop applications. Web

http://www.w3.org/1999/xhtml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

sites that combine feeds from many sources in one place are sometimes called aggregators .

Some popular RSS feed readers include SharpReader (Windows), NetNewsWire (Mac), and the web-
based Bloglines. A web search for "RSS readers" will turn up many more. Some browsers, such as
Firefox 1.0 and Safari RSS, come with built-in RSS readers.

7.8.2.1. How it works

To understand how RSS works, consider this possible scenario. Say you have a favorite news site
that is updated frequently throughout the day and you want to make sure you don't miss their Oscar
nomination announcement. You could use your web browser to visit the site every 20 minutes and
scan through it for new posts, but that would waste a lot of time. But, if that site is RSS-enabled (and
most news sites are), every time they post an article to the site, a listing of that article
simultaneously appears in RSS feed readers that have subscribed to the site and are themselves
checking the site once an hour or so. Using a news reader, you could keep an eye on new articles as
they are posted and take a break only when you see Oscar in the title.

Originally developed to create web "channels" during the days of web push technologies, news sites
were the first to put RSS to widespread use. But it wasn't until the weblog (or blog) phenomenon that
the RSS acronym became as familiar as HTML.

Because blog creation software such as Blogger and Movable Type made it easy to publish content as
an RSS feed, most bloggers make their site content available both on a web page and via an RSS
feed (watch for the ubiquitous orange RSS or XML icon). That means that you can use a news reader
to see when your friends post without having to check every blog, every day. Furthermore, you can
often read the content right there in the reader, without skipping from site to site.

Many web users have integrated spending time with their RSS feed readers into their daily routines.
Bloggers are finding that an increasing number of visitors are reading their sites via RSS feeds rather
than in the context of a designed page. In this way, RSS has made a significant impact on how
information is produced and consumed.

7.8.2.2. Trouble over an RSS standard

The story of the development of RSS has all the makings of a daytime drama. Along the way, RSS
developers divided into two camps, both claiming right to the initials "RSS" for their specifications.
The result is that we, indeed, now have two recent standards, RSS 1.0 and RSS 2.0, that sound
sequential, but are actually conflicting. In addition, there are several older incompatible flavors of
RSS (0.91, 0.92, 0.93, and others) that are still in use.

The history of the RSS "fork" is well documented, and it makes for some
interesting reading. Check out Mark Pilgrim's blow-by-blow account taken from
actual message board and mailing list posts at
diveintomark.org/archives/2002/09/06/history_of_the_rss_fork. You can also
find a more general RSS history by Joseph Reagle at goatee.net/2003/rss-
history.html.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RSS 1.0 is the product of the RSS-DEV Working Group, a committee of individuals, some of whom
had worked on various incarnations of RSS since its inception. Their vision for RSS (RDF Site
Summary) is that it should take full advantage of RDF (a metadata syntax discussed below) and XML
namespaces in order to harness the full power of XML. They added these features into the developing
RSS 0.91 spec in development and called the result RSS 1.0.

On the other side of the debate is David Winer (of Userland Software) who maintains that the reason
RSS became so popular in the first place is because it was so simple to author and use. It achieved
this simplicity specifically because it didn't include RDF or namespaces, and David and others wanted
it to stay that way. David made minor changes to RSS 0.91 and called the result RSS 2.0 (for Really
Simple Syndication). RSS 2.0 is not RDF based, but does address namespaces.

Developers on both sides of the RSS controversy agree that the technology is far too useful to suffer
from conflicting and confusing standards. As of this writing, everyone has agreed to work toward a
unified method, or at least distinctive names, for web syndication.

7.8.2.3. Enter Atom

In June 2003, Sam Ruby set up a wiki to discuss and design "a well-formed log entry." Many of those
frustrated with both the political drama and technical limitations of RSS joined the effort, and in June
2004 formally set up the Atompub Working Group at the IETF (Internet Engineering Task Force, a
volunteer organization that develops Internet standards) to develop and formalize a new feed format
and publishing protocol called Atom (formerly Echo). The Atompub Working Group's goal is to create
a single standard for syndicated content feeds based on experience gained with RSS.

As of this writing, Atom 1.0 has been published and accepted as a proposed standard. Atom is being
backed and implemented by some important syndication tool developers and indexers (e.g., Google
and Technorati).

7.8.2.4. For further reading

For more information on RSS and Atom, visit these online resources:

web.resource.org/rss/1.0/

RSS 1.0 specification

blogs.law.harvard.edu/tech/rss

RSS 2.0 specification

www.intertwingly.net/slides/2003/rssQuickSummary.html

A comparison of RSS specifications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ietf.org/html.charters/atompub-charter.html

IETF's Atom Publishing Format and Protocol Charter

www.intertwingly.net/wiki/pie/FrontPage

The Atom Project

7.8.3. RDF (Resource Description Framework)

RDF is an XML application used to define the structure of metadata for documents; for example, data
that is useful for indexing, navigating, and searching a site. A standard method for describing the
contents of a web site, page, or resource could be useful to automated agents that search the Web
for specific information.

Metadata could be used in the following ways:

For descriptions of resources to provide better search engine capabilities

In cataloging, for describing the content and content relationships available at a particular web
site, page, or digital library

In describing collections of pages that represent a single logical "document"

For digital signatures that allow electronic commerce, collaboration, and other "trust"-based
applications

A simple RDF document that provides author information about a book looks like this (this example is
taken from and describes the O'Reilly book XML in a Nutshell):

<rdf: RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description about="urn:isbn:0596000588">
 <author>Elliotte Rusty Harold</author>
 <author>W. Scott Means</author>
</rdf:Description>
</rdf:RDF>

The first line of code declares the namespace for RDF as http://www.w3.org/1999/02/22-rdf-syntax-
ns#.

For more information about RDF, see the W3C's pages at www.w3.org/RDF/.

7.8.4. SVG (Scalable Vector Graphics)

http://www.w3.org/1999/02/22-rdf-syntax-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The W3C is developing the Scalable Vector Graphics (SVG) standard for describing two-dimensional
graphics in XML. SVG allows for three types of graphic objects: vector graphic shapes (paths
consisting of straight lines and curves), images, and text. The following sample SVG code (taken from
the W3C Recommendation) creates an SVG document fragment that contains a red circle with a blue
outline (stroke):

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"
"http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-20001102.dtd">
<svg width="12cm" height="4cm">
 <desc>Example circle01 - circle expressed in physical units</desc>
 <circle cx="6cm" cy="2cm" r="1cm"
 style="fill:red; stroke:blue; stroke-width:0.1cm" />
</svg>

The SVG standard provides ways to describe paths, fills, a variety of shapes, special filters, text, and
basic animation. When using SVG within another XML document type, identify its namespace as
http://www.w3.org/2000/svg.

To view SVG graphics, you must have an SVG viewer installed. The most popular is Adobe's SVG
Viewer (available as a free download at www.adobe.com), which allows SVG documents to display in
a browser window. Adobe also includes tools for creating SVG files in Illustrator and GoLive. (As of
this writing, it is unclear whether Adobe will continue to support GoLive now that it has acquired
Macromedia.)

For more information on SVG and lists of all available viewers, editors, and converters, see the W3C
pages at www.w3.org/Graphics/SVG. Or, if you want your information in book form, try SVG
Essentials by J. David Eisenberg (O'Reilly) or Fundamentals of SVG Programming: Concepts to Source
Code by Oswald Campesato (Charles River Media).

7.8.5. SMIL (Synchronized Multimedia Integration Language)

SMIL (pronounced "smile") is an XML language for combining audio, video, text, animation, and
graphics in a precise, synchronized fashion. A SMIL file instructs the client to retrieve media elements
that reside on the server as standalone files. Those separate elements are then assembled and
played by the SMIL player.

The SMIL 1.0 Recommendation, released in June of 1998, was one of the first XML-based DTDs
proposed by the W3C. The SMIL 2.0 Recommendation, released in January 2005, greatly expands
upon the functionality established in the initial specification. It is broken into modules to be used with
XHTML 1.1.

7.8.5.1. How SMIL works

The best way to get a quick understanding of SMIL is to look at a simple example. The following SMIL

http://www.w3.org/2000/svg
http://lib.ommolketab.ir
http://lib.ommolketab.ir

code creates a 15-second narrated slideshow, in which an audio track plays as a series of three
images displayed in sequence.

<par dur="15s">
<audio src="audio_file.mp3" begin="0s" />
 <seq>

 </seq>
</par>

Looking at the code, it is easy to pick out the audio and image elements. Each points to a separate
media file on the server.

All elements contained within the <par> element are played in parallel (at the same time); therefore,
the audio will continue playing as the images are displayed. The image elements are contained in the
<seq> element, which means they will be played one after another (in sequence). The begin attribute
gives timing instructions for when each element should be displayed. In the example, the images will
display in slideshow fashion every five seconds.

For more information on SMIL, take a look at SMIL 2.0: Interactive Multimedia for Web and Mobile
Devices by Dick C.A. Bulterman and Lloyd Rutledge (Springer). Or you can check out these online
resources.

W3C SMIL resources

Go right to the source for a good starting place for research or to keep up to date on the latest
developments. See www.w3.org/AudioVideo/. For a thorough explanation of all SMIL elements
and their supported attributes and values, make your way through the SMIL 2.0
Recommendation at www.w3.org/TR/smil20/cover.html.

JustSMIL Home (now part of Streaming Media World)

This is a great site containing tutorials, product reviews, news, tips, and other useful SMIL
information. See smw.internet.com/smil/smilhome.html.

7.8.6. MathML (Mathematical Markup Language)

MathML is an XML application for describing mathematical notation and capturing both its structure
and content. The goal of MathML is to enable mathematics to be served, received, and processed on
the World Wide Web. The MathML 2.0 Recommendation was released by the W3C Recommendation
in October 2003.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because there is no way to reproduce mathematical equations directly using HTML, authors had
resorted to inserting graphical images of equations into the flow of text. This effectively removes the
information from the structure of the document. MathML allows the information to remain in the
document in a meaningful way. With adequate style sheets, mathematical notation can be formatted
for high-quality visual presentation. Several vendors offer applets and plug-ins that allow the display
of MathML information in browser windows.

For examples of MathML, see the Recommendation at www.w3.org/TR/2003/REC-MathML2-
20031021. The main MathML page (www.w3.org/Math) is a good starting place for information.

7.8.7. Other XML Applications

There are far too many XML applications to list in a book. However, you may find that the more
languages you are aware of, the better your grasp of XML's possibilities. The following are just a
handful of the XML applications you may hear about.

DocBook

DocBook is a DTD for technical publications and software documentation. DocBook is officially
maintained by the DocBook Technical Committee of OASIS, and you can find the official home
page located at www.oasis-open.org/committees/docbook/.

Chemical Markup Language (CML)

CML is used for managing and presenting molecular and technical information over a network.
For more information, see www.xml-cml.org.

Open Financial Exchange (OFX)

OFX is a joint project of Microsoft, Intuit, and Checkfree. It is an XML application for describing
financial transactions that take place over the Internet. For more information, see
www.ofx.net/ofx/default.asp.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.9. Where to Learn More

If you are interested in learning more about XML, you will want to check out Learning XML by Erik T.
Ray and XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means, both published by O'Reilly.

The growth and development of XML is well documented online in resources such as the following:

World Wide Web Consortium(www.w3.org)

The World Wide Web Consortium's official web site is the best place to go for the latest news on
new XML standards and proposals.

XML.com(www.xml.com)

XML.com, part of the O'Reilly Network, is a clearinghouse of great articles and information on
XML.

The XML Cover Pages (www.oasis-open.org/cover/xml.html)

The Cover Pages hosted by Oasis provide a comprehensive reference on all XML-related topics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. HTML and XHTML Overview

HTML (Hypertext Markup Language) is the markup language used to turn text documents into web
pages. HTML allows authors to identify elements that give the document structure, such as headings,
paragraphs, lists, and so on. Other elements act as mechanisms for adding hypertext links,
interactive forms, and media such as audio and video to web pages.

HTML has undergone quite a journey since its creation by Tim Berners-Lee in 1991 as a simple way
to indicate the meaning and structure of hypertext documents. It didn't take long for competing
browser developers to add on to the initial minimal set of HTML elements or for the first crop of web
designers to co-opt HTML as a visual design tool.

XHTML is a reformulation of HTML in XML. In other words, it uses the same vocabulary (the same
elements and attributes) as HTML, but the syntactical rules are pulled from XML, which is stricter
than HTML. XHTML is discussed in detail later in this chapter.

Before we delve into HTML and XHTML syntax, let's take a moment to look at the important role
(X)HTML plays as well as the recent groundswell of respect it has earned in the new standards-driven
web design environment.

The W3C

Seeing the need to bring order to the development of HTML, Berners-Lee founded the
World Wide Web Consortium (W3C) in 1994. The W3C continues to oversee HTML and
related web technologies and has been releasing updated and standardized versions of
HTML in publications known as "Recommendations" since 1995. The current standards
are HTML 4.01 (1999) and XHTML 1.0 (2000).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1. The Role of HTML

The marked up HTML document is said to be the structural layer of a web page. It is the foundation
upon which the presentation layer (instructions for how the elements should be delivered or
displayed) and the behavioral layer (scripting and interactivity) are applied.

Did you happen to read the preceding XML chapter? It may seem off the topic of HTML, but there are
some critical XML-based concepts there that guide the way HTML is perceived and handled in
contemporary web design. One guiding concept is that the fundamental purpose of HTML as a
markup language is to provide a semantic description (the meaning) of the content and establish a
document structure. It is not concerned with presentation, such as how the document will look in a
browser. Presentation is the job of Cascading Style Sheets, which is covered in Part III.

That presentational instructions should be kept separate from the semantic and structural markup is
nothing new. It has been the intent of HTML from its beginning as an application of SGML
(Standardized General Markup Language) as noted in the upcoming sidebar. What is new is that the
web community is recognizing that there are measurable advantages (in terms of time and money)
to using HTML for what it was designed to do, and nothing more.

Keeping Presentation Separate from Document Structure

Before HTML, there was SGML (Standard Generalized Markup Language), which
established a complex language for describing documents in terms of their structure,
independent of appearance. SGML is a vast set of rules for developing markup languages
such as HTML, but it is so all-encompassing that HTML uses only a small subset of its
capabilities.

Because HTML is one instance of an SGML markup system, this principle of keeping
presentation information separate from the structure of the document remains inherent
to the HTML purpose. Over the early years of the Web's development, this ideal was
compromised by the creation of HTML tags that contain explicit style instructions, such as
the font element and bgcolor attribute.

The W3C has been taking measures to get HTML back on track. First, the creation of
Cascading Style Sheets gives authors a robust solution for specifying style information
and keeping it out of the document's content. In addition, with each new HTML
Recommendation, the elements and attributes related to presentation have been
deprecated and finally eliminated.

With this system in place, the W3C is more diligent than ever to clean up the HTML
standard to make it work the way it was intended. Slowly the browser and authoring tool
developers are getting on board. Now it is up to web developers and designers to start
creating clean content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1.1. Starting with "Good" Markup

In the interest of building a solid foundation, writing presentation-free, logical, and well-structured
(X)HTML documents has become a cornerstone of modern standards-compliant web design. Web
authors are encouraged to work toward four separate, yet related, goals when marking up content
for distribution on the Web.

8.1.1.1. Write standards-compliant documents

That means using HTML or XHTML markup according to the rules set forth in the Recommendations
and making sure that your documents validate against a declared DTD. Following the standards will
ensure your documents are forward compatible as web technologies and browser capabilities evolve.

8.1.1.2. Use semantic markup

It is also important to mark up elements in your document semantically, that is, in a way that is
descriptive and meaningful. There is a renewed emphasis on choosing elements to appropriately
describe the content and not purely for their presentational effects in the browser. Techniques that
once were common, such as marking up content as a list just to get the text to indent, are now
deemed completely unacceptable.

Semantic markup is not the same as standards compliance. It is possible to create a document out of
font, br, and i elements that validates entirely, but that does zilch for making the content
meaningful. A semantically marked up document ensures accessibility in the widest range of browsing
environments, from desktop computers to cell phones to screen readers. It also allows nonhuman
readers, such as search engine indexing functions, to correctly parse your content and make
decisions about how to handle it.

8.1.1.3. Structure documents logically

Make sure that your content reads in a logical order in the source to improve its readability across all
browsing environments. Information that should be read first should be at the beginning of the
document. You can always use style sheets to position elements where you want them for visual
display.

8.1.1.4. Keep presentation separate from structure

Use style sheets to control presentation. Keeping all presentation information in a separate style
sheet document makes it easier to redesign or repurpose content. In terms of markup, this means
avoiding presentational (X)HTML elements and attributes that are still hanging around in the
Recommendations (such as b for bold text), and using an appropriate semantic alternative (e.g.,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

strong) with a style sheet rule.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. Markup Basics

An HTML or XHTML document is an ASCII (plain text), or more often, Unicode (e.g., UTF-8) document
that has been marked up with tags that indicate elements and other necessary declarations (such as
the markup language it is written in). An element is a structural component (such as a paragraph) or
a desired behavior (such as a line break). This section introduces the key components and behaviors
of HTML documents, including elements, attributes, how elements may be nested, and information in
a document that is ignored by browsers.

8.2.1. Elements

Elements are denoted in the text source by the insertion of special bracketed HTML tags. Most
elements follow this syntax.

<element-name>content</element-name>

The element name appears in the start tag (also called the opening tag) and again in the end (or
closing) tag, preceded by a slash (/). The end tag works something like an "off" switch for the
element. Nothing within the brackets is displayed by the browser or other user agent. It is important
to note that the element includes both the content and its markup (the start and end tags).

In XHTML, all element and attribute names must be lowercase. HTML is not
case sensitive.

Consider this example of HTML markup that identifies the content at the beginning of this section as a
second-level heading element and a paragraph element:

<h2>Elements</h2>
<p>Elements are denoted in the text source by the insertion of special bracketed HTML
tags. Most elements follow this syntax.</p>

In HTML 4.01 and earlier, the end tag for some elements is optional, and the
browser determines when the tag ends by context. This practice is most
common with the p (paragraph) element. Most browsers automatically end a
paragraph when they encounter a new start tag. In XHTML, end tags are always
required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some elements do not have content because they are used to provide a simple directive. These
elements are said to be empty . The image element (img) is an example of such an element; it tells
the browser to call a graphic file from an external location into the current page. Other empty
elements include the line break (br), horizontal rule (hr), and elements that provide information
about a document and don't affect its displayed content, such as the meta and base elements. Table
8-1 lists all the empty elements in HTML.

In HTML 4.01 and earlier, empty elements simply didn't have a closing tag. In XML, termination is
required for all elements. The convention is to use a trailing slash within the tag to signify the
element's termination, as in ,
 , and <hr/> . For reasons of backward compatibility, it is
recommended to add a space before the slash, as shown in Table 8-1 . The space is necessary if you
are sending your XHTML with the HTTP Content-Type of text/html .

Table 8-1. Empty elements

<area /> <frame /> <link />

<base /> <hr /> <meta />

<basefont /> <param />

 <input />

<col /> <isindex />

An excellent resource for HTML element information is Index DOT Html
(www.blooberry.com/indexdot/html/), which was created and is maintained by
Brian Wilson. It provides an alphabetical listing of every HTML element and its
attributes , with explanations, standards details, and browser support
information.

8.2.2. Attributes

An attribute clarifies or modifies an element's actions. Attributes are indicated by attribute name and
value pairs added to the start tag of the element (end tags never contain attributes). Attribute names
and their accepted values are declared in the DTD; in other words, you cannot make up your own.
You can add multiple attributes within a single opening tag. Attributes, if any, go after the tag name,
each separated by one or more spaces. Their order of appearance is not important.

The syntax for an element with attributes is as follows:

<element attribute="value">content</element>

The following are examples of elements that contain attributes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<head profile="http://gmpg.org/xfn/11">...</head>

<table summary="This is a conference schedule.">...</table>

Most browsers cannot handle attribute values more than 1,024 characters in length. Values may be
case-sensitive, particularly filenames or URLs.

XHTML requires that all attribute values be enclosed in quotation marks. Single or double quotation
marks may be used, as long as they are used consistently throughout the document.

In HTML 4.01 and earlier, some values are permitted to go unquoted; for instance, if the value is a
single word containing only letters (a -z or A -Z), digits (0 -9), hyphens (-), periods (.), underscores
(_), and colons (:). It is the best practice to quote all values, regardless of the Recommendation you
are following.

Be careful not to leave out the closing quotation mark, or all the content from
the opening quotation mark until the browser encounters a subsequent
quotation mark will be interpreted as part of the value and won't display in the
browser. This is a simple mistake that can cause hours of debugging frustration.

8.2.3. Nested Elements

HTML elements may contain other elements. This is called nesting , and to do it properly, the entire
element (including its markup) must be within the start and end tags of the containing element (the
parent). Proper nesting is one of the criteria of a well-formed document (a requirement for XHTML).

In this example, list items (li) are nested within an unordered list element (ul).

 Example 1
 Example 2

A common mistake made when nesting elements is to close the parent element before the element it
contains (its child) has been closed. This results in an incorrect overlapping of elements that would
make an XHTML document malformed and may cause rendering problems for HTML documents. In
this example, the elements are incorrectly nested because the strong element should have been
closed before the a (anchor).

INCORRECT: Click here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2.4. Information Browsers Ignore

Some information in an HTML document, including certain markup, is ignored or has little to no
impact on presentation when the document is viewed in a browser or other user agent. These include:

Line breaks

Line returns in the HTML document are treated as spaces, which then typically collapse with
other spaces (see next point). Text and elements wrap continuously until they encounter a p or
br element within the flow of the document text. Line breaks are displayed, however, when text
is marked up as a preformatted (pre) element or styled with the white-space: pre property in
a style sheet.

Tabs and multiple spaces

When a user agent encounters more than one consecutive blank character space in an HTML
document, it displays it as a single space. So, if the document contains:

far, far away

the browser displays:

far, far away

Extra spaces can be added within the flow of text by using the non-breaking space character entity
(). Multiple spaces are displayed, however, when text is marked up as preformatted text (pre)
or with the white-space: pre property in a style sheet. Tabs in the source document are problematic
for some browsers and are best avoided.

Empty p elements

Empty paragraph elements (<p> ...</p> or <p> alone) with no intervening text are interpreted as
redundant by all browsers and displayed as though they were only a single paragraph break.
Most browsers display multiple br elements as multiple line breaks.

Unrecognized element

A browser simply ignores any element it doesn't understand or that was incorrectly specified.
Depending on the element and the browser, this can have varied results. Browsers typically
display the contents of the element and its markup as though it were normal text, although
some older browsers may display nothing at all.

Text in comments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Browsers do not display text between the special <!-- and --> elements used to denote a
comment . Here is a sample comment:

<!-- This is a comment -->
<!-- This is a
multiple line comment
that ends here. -->

There must be a space after the initial <!-- and preceding the final --> , but you can put nearly
anything inside the comment otherwise. You cannot nest comments. Comments are useful for leaving
notes within a long HTML file, for example:

<!-- navigation table starts here -->

HTML markup that is contained within comments will not display, therefore comments may be useful
for temporarily hiding content without permanently removing it from the document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. Introduction to XHTML

With the finalization of the XML Recommendation in hand (see Chapter 7), the W3C had a
streamlined and web-friendly standard for defining markup languages. It should come as no surprise
that one of the top priorities was reformulating HTML (an SGML application) into an XML application.
XHTML is the result.

XHTML 1.0 contains the same list of elements and attributes as HTML 4.01. It even has the same
three associated DTDs: Strict, Transitional, and Frames. The difference is that, as for all XML
applications, correct syntax is suddenly critical. So while browsers are forgiving of a certain amount
of looseness in HTML, XHTML documents are required to be well-formed. The syntax requirement
differences between HTML and XHTML are listed in the upcoming "Well-Formed XHTML" section. The
W3C recognizes the benefit of having a stricter professional standard and a more relaxed standard
that is accessible to anyone who wants to publish on the Web, so both HTML and XHTML standards
are currently maintained and supported by current browsers.

8.3.1. The XHTML Family

XHTML is not just one, but a family of document types. Between January 2000 and June 2001, the
W3C turned out four XHTML Recommendations: XHTML 1.0, XHTML Basic, the Modularization of
XHTML, and XHTML 1.1. They are currently reviewing XHTML 2.0 and XHTML-Print, both based on
modular XHTML. This section takes a brief look at each one. You can find detailed and up-to-date
information on the W3C site at w3c.org/MarkUp. (For example, on May 27, 2005, the seventh
working draft of XHTML 2.0 was published.)

8.3.1.1. XHTML 1.0

The XHTML 1.0 Recommendation (released in January 2000) is just a reformulation of the HTML 4.01
specification according to the rules of XML. Like HTML 4.01, XHTML 1.0 comes in three varietiesStrict,
Transitional, and Frameseach defined by a separate Document Type Definition (DTD). These are
discussed in the next section.

8.3.1.2. The Modularization of XHTML

In a world where HTML content is being used on devices as varied as cell phones, desktop computers,
refrigerator panels, dashboard consoles, and more, a "one-size-fits-all" content markup language will
no longer work. Modularization is the solution to this problem. Instead of one comprehensive set of
elements, this Recommendation defines a way to break XHTML into task-specific modules. A module
is a set of elements that handle one aspect or type of object in a document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modularization is the way of the future for markup standards. This approach has a number of
benefits:

Special devices and applications can mix and match modules based on their requirements and
restraints.

It prevents spin-off, device-specific languages. Authors can create their own XML modules,
leaving the XHTML standard unscathed.

It allows "hybrid" documents in which several DTDs are used in combination. For instance, in
theory, it allows web documents to have SVG (Scalable Vector Graphics) modules or MathML
modules mixed in with the XHTML content, though the details of making this work have yet to
be figured out as of the time of this writing.

The Modularization of XHTML Recommendation was initially released in April 2001. A Second Edition
of the Recommendation was introduced as a Working Draft in February 2004.

8.3.1.3. XHTML Basic

The XHTML Basic Recommendation (released in December 2000) is a stripped-down version of
modularized XHTML. It is a subset of XHTML elements that are appropriate to such mobile web clients
as cell phones, handheld devices, and other information appliances. The definition of a standard, yet
extensible, set of XHTML modules for developers of mobile applications and clients allows this
document type to be shared across those development communities. It gives them a common
starting point. See www.w3.org/TR/xhtml-basic/ for more information.

8.3.1.4. XHTML 1.1

The XHTML 1.1 Recommendation, released in 2001, is a reformulation of XHTML 1.0 (Strict) using the
XHTML modules. It is also the first markup language to be fully liberated from legacy functionality of
HTML by completely eliminating the elements and attributes that control presentation. Authors are
required to put all style and layout information in Cascading Style Sheets.

Some examples of modules in XHTML 1.1 include structure, text, hypertext, lists, object, image,
forms, tables, objects, and image maps.

As of this writing, few browsers support an XHTML 1.1 document when it is properly identified as an
XML application media type. For this reason, although XHTML 1.1 is the most recent
Recommendation, most professional developers use XHTML 1.0 because it can be labeled as HTML
text. XHTML media types are discussed further in Chapter 9.

8.3.1.5. XHTML-Print

This document specifies a simple XHTML-based data stream suitable for printing in environments
where it is not feasible or desirable to install a printer-specific driver and where some variability in
the formatting of the output is acceptable. It is designed to print basic content without regards to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

layout or presentation. This Recommendation is in development.

8.3.1.6. XHTML 2.0

XHTML 2.0 is a markup language intended for rich, portable web-based applications. It is not
intended to be backward compatible with its earlier versions. As of this writing, XHTML 2.0 is in
development as a Working Draft.

8.3.2. Three Flavors of HTML 4.01 and XHTML 1.0

Although the W3C has ideas on how HTML should work, they are also aware that it is going to be a
while before old browsers are phased out and web authors begin to mark up documents properly. For
that reason, both the HTML 4.01 and XHTML 1.0 Recommendations encompass three slightly
different specification documents: one "Strict," one "Transitional," and one just for framed
documents. These documents, called Document Type Definitions (or DTDs), define every element,
attribute, and entity along with the rules for their use. The XHTML DTDs are written following the
rules and conventions of XML (Extensible Markup Language), while the HTML DTDs follow SGML
syntax. See Chapter 7 for more on XML. The browser uses the DTD to "decode" the markup and
check it for validity.

Strict DTD

This version excludes all deprecated elements and attributes (such as font and align) to
reinforce the separation of document structure from presentation. Ideally, documents should
be tagged strictly for meaning and structure, leaving all presentation to be handled by style
sheets.

Transitional DTD

The Transitional DTD includes all deprecated elements and attributes in order to be backwards
compatible with the legacy behavior of most browsers. Deprecated elements and attributes are
permitted but discouraged from use. This DTD provides a way to ease web authors out of their
current habits and toward abiding by standards . Many web authors today choose to use the
Transitional DTD while the industry waits for current browsers to offer perfect and consistent
CSS support and for older browsers to fade away.

Frameset DTD

The Frameset DTD includes the same elements as the Transitional DTD, with the addition of
elements for creating framed web pages (frameset, frame, and noframe). The Frameset DTD is
kept separate because the structure of a framed document (where frameset replaces body) is
fundamentally different from regular HTML documents. Frames are discussed in Chapter 14.

It is important to specify which version you are using in your document using a DOCTYPE declaration,
as modern browsers can use this information to turn on "strict" standards-compliant formatting
(Standards Mode), as opposed to the "quirky" behavior of older, nonstandard HTML (Quirks Mode).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of course, if you do specify the DTD, you must stick to it exactly so that your document will be valid
(in other words, don't break any rules defined by the DTD). DOCTYPE declarations and switching are
discussed further in Chapter 9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4. Which Standard Is Right for You?

With so many co-existing Recommendations, it may be difficult to choose which one is best for your
purposes. The following is a quick summary that will put all of these options into perspective.

XHTML 1.0 Transitional

Use this standard if your authoring style makes use of any of the deprecated elements (such as
font) or attributes (such as bgcolor or align) and you have the discipline (or authoring tools)
it takes to make sure the document is well-formed. This is the most popular choice for
professional web developers because it is forward compatible, yet still allows some of the
legacy techniques required to control presentation in current browsers.

XHTML 1.0 Strict

Use XHTML Strict if you are committed to using style sheets for all presentation and layout
because all of those deprecated tags have been removed from this Recommendation.
Documents must be well-formed as well, of course.

HTML 4.01

Use Transitional, Strict, or Frames if you aren't concerned with site longevity, if you are not
using updated authoring tools, or if you can't bring yourself to close an li element.

XHTML 1.0 Frames or HTML 4.01 Frames

Use if you are creating a framed site. All deprecated attributes are still in there.

XHTML 1.1

This is available for use, but it is difficult to make it work effectively due to lack of browser
support for the XML identifiers that a compliant XHTML 1.1 document requires. For this reason,
it is not commonly used by developers as of this writing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5. Well-Formed XHTML

Web browsers are forgiving of sloppy HTML, but XHTML (being an XML application) requires that you
play by the rigid rules of XML markup syntax. What makes XHTML documents different from HTML
documents is that you need to be absolutely sure that your document follows the syntax rules of XML
correctly (in other words, that it is well-formed). The sections below summarize the requirements of
well-formed XHTML as well as some tips for backward compatibility with older browsers.

8.5.1. All-Lowercase Element and Attribute Names

In XML, all elements and attribute names are case-sensitive, which means that , , and
 are parsed as different elements. In the reformulation of HTML into XHTML, all elements were
interpreted to be lowercase. When writing XHTML documents (and their associated style sheets), be
sure that all tags and attribute names are written in lowercase. Attribute values are not required to
be case-sensitive.

If you want to convert the upper- and mixed-case tags in an existing HTML file
to well-formed, all-lowercase tags, try the HTML Tidy utility
(tidy.sourceforge.net/) or Barebones Software BBEdit (Macintosh only,
www.bbedit.com), which can automate the process.

8.5.2. Quoted Attribute Values

XHTML requires that all attribute values be contained in quotation marks . Double or single quotation
marks are acceptable, as long as they are used consistently throughout the document. So where
previously it was okay to omit the quotes around single words and numeric values, now you need to
be careful that every attribute value is quoted.

8.5.3. Element Termination

In HTML, it is okay to omit the end tag for certain block elements (such as p and li). The beginning
of a new block element is enough to trigger the browser to parse the previous one as closed. Not so
in XHTML. To be well-formed, every container element must have its end tag, or it registers as an
error and renders the document noncompliant.

8.5.4. Empty Elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This need for termination extends to empty elements as well. So instead of just inserting a line break
as
, XHTML requires the element to be terminated. You can simply add a slash before the closing
bracket, indicating the element's ending. So in XHTML, a line break is entered as
.

The notion of closing empty elements can cause some browsers (namely Netscape 4) to complain,
and even new browsers to have problems when content is sent as text/html, so to keep your XHTML
digestible to those browsers, be sure to add a space before the closing slash (
). This allows the
closed empty tag to slide right through. See Table 8-1 for a complete list of empty elements.

8.5.5. Explicit Attribute Values

XML (and therefore XHTML) does not support attribute minimization , the SGML practice in which
certain attributes can be reduced to just the attribute value. So while HTML has many minimized
attributes such as checked and nowrap, in XHTML, the values need to be explicitly declared as
checked="checked" and nowrap="nowrap". Table 8-2 lists the attributes that were minimized in HTML
but require values in XHTML.

Table 8-2. Explicit attribute values

checked="checked" disabled="disabled" noresize="noresize"

compact="compact" ismap="ismap" nowrap="nowrap"

declare="declare" multiple="multiple" readonly="readonly"

defer="defer" noshade="noshade" selected="selected"

8.5.6. Nesting Requirements

It has always been a rule in HTML that elements should be properly nested within one another. The
closing tag of a contained element should always appear before the closing tag of the element that
contains it. In XHTML, this rule is strictly enforced. So be sure that your elements are nested
correctly, like this:

<p>I can fly!</p>

and not overlapping like this:

<p>I can fly!</p>

In addition, XHTML enforces other nesting restrictions that have always been a part of the HTML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specification. The XHTML DTD includes a special "Content Models for Exclusions" note that reinforces
the following:

An a element cannot contain another a element.

The pre element cannot contain img, object, applet, big, small, sub, sup, font, or basefont.

The form element may not contain other form elements.

A button element cannot contain a, form, input, select, textarea, label, button, iframe, or
isindex.

The label element cannot contain other label elements.

8.5.7. Character Entities

XHTML (as a function of XML) is extremely fussy about special characters such as <, >, and &. All
special characters should be represented in the XHTML document by their character entities instead.
Common character entities are listed in Table 10-3, and the complete list appears in Appendix C.

Character entity references should be used in place of characters such as < and & in regular text
content, as shown in these examples:

<p> the value of A < B </p>
<p> Laverne & Shirley </p>

In places where it was common to use special characters, such as in the title of a document or in an
attribute value, it is now necessary to use the character entity instead. For instance, the following
worked just fine in HTML, despite being invalid:

But in XHTML, the value must be written like this:

This applies to ampersands that occur in URLs as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Email Jen<a/>

8.5.8. Protecting Scripts

It is common practice to enclose scripts and style sheets in comments (between <!-- and -->).
Unfortunately, XML software thinks of comments as unimportant information and may simply remove
the comments from a document before processing it. To avoid this problem, use an XML CDATA
section instead. Content enclosed in <![CDATA[...]]> is considered simple text characters and is not
parsed (for more information, see Chapter 7). For example:

<script language="JavaScript">
<![CDATA[
...JavaScript here...
]]>
</script>

The problem with this method is backward compatibility . HTML browsers ignore the contents of the
XML CDATA section , while XML browsers ignore the contents of comment-enclosed scripts and style
sheets. So you can't please everyone. One workaround is to put your scripts and styles in separate
files and reference them in the document with appropriate external links. The common practice is to
avoid CDATA and comments altogether and keep scripts and style externalized. Although not
required, it is heavily recommended as part of XHTML and document management.

8.5.9. id and name Attributes

In HTML, the name attribute may be used for the elements a, applet, form, frame, iframe, img, and
map. The name attribute and the id attribute may be used in HTML to identify document fragments.

In XML, only id may be used for fragments and there may only be a single id attribute per element.
XHTML documents must use id instead of name for identifying document fragments in the
aforementioned elements. In fact, the name attribute for these elements has been deprecated in the
XHTML 1.0 specification.

Once again, we run into an issue with browser compatibility. Some legacy browsers (namely
Netscape 4) do not recognize the id attribute as an identifier for a document fragment (current
standards-conformant browsers handle it just fine). If your fragment identifiers must work in
Netscape 4, use both name and id. Unfortunately, this is likely to cause validation errors if you are
complying to XHTML 1.0 Strict or XHTML 1.1, and therefore you should use only the id attribute
when possible for fragment identifiers. The only remaining valid use of the name attribute is for form
submission semantics on form control elements like input.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6. Web Authoring Tools

HTML documents are simple text files, which means you can use any minimal text editor to write
them. Fortunately, there are a number of tools that make the process of generating HTML documents
more quick and efficient. They fall into two main categories: HTML editors and WYSIWYG (What-You-
See-Is-What-You-Get) web authoring tools .

8.6.1. HTML/XHTML Editors

HTML editors are text editing tools designed especially for writing HTML. They require that you know
how to compose HTML by hand; however, they save time by providing shortcuts for such repetitive
tasks as setting up documents, compiling tables, or simply applying styles to text.

There are scores of simple HTML editors available, and many of them are free. Just enter "HTML
Editor" in the search field of Shareware.com (www.shareware.com) and wade through the results.
For purposes of brevity, I'm going to cut to the chase.

Windows users should check out Macromedia HomeSite. For more information and to download a
demo copy, see www.macromedia.com/software/homesite/.

If you're working on a Macintosh, check out BBEdit, a commercial HTML editor from Bare Bones
Software, Inc. For more information and to download a demo version, see www.bbedit.com.

8.6.2. WYSIWYG Authoring Tools

WYSIWYG HTML editors have graphical interfaces that make writing HTML more like using a word
processor or page layout program. So for instance, if you want to add an image, just drag it from the
desktop onto the page; the authoring tool creates all the HTML coding needed to accomplish the
effect on the screen. In addition to simple style and format shortcuts, many of these tools automate
more complex tasks, such as creating Cascading Style Sheets, adding JavaScript, and adding PHP
functionality.

WYSIWYG tools offer several benefits:

They offer considerable time savings over writing code by hand.

They are good for beginners. They can even be useful for learning HTML, because you can lay
out the page the way you want and then view the resulting code.

They are good for quick prototyping . You can try out design ideas on the fly.

They provide a good head start for creating style sheets, JavaScript behaviors, and other

http://lib.ommolketab.ir
http://lib.ommolketab.ir

features.

On the downside, they are expensive and have steep learning curves. Some experienced web authors
feel that the markup these tools spit out is not as efficient as markup carefully crafted by hand.

If you are a professional web designer and developer, a web authoring tool won't excuse you from
learning HTML altogether. In many cases, you will need to do some manual fine-tuning to the
resulting HTML code.

Some of the most popular tools as of this writing are:

Macromedia Dreamweaver

Dreamweaver has emerged as the industry-standard HTML authoring tool due to its advanced
features and better standards compliance. For more information, see
www.macromedia.com/software/dreamweaver.

Adobe GoLive

Another powerful and professional-level authoring tool, GoLive is well integrated into the suite
of Adobe design tools. For more information, see www.adobe.com/products/golive/main.html.

In April, 2005, Adobe announced that it would be acquiring Macromedia.
As of this writing, there is no word on the future of the Dreamweaver and
GoLive products and brands. It is unclear whether they will both be
maintained, if only one will survive, or if they will be rolled together into
some turbo-charged hybrid. Consult the Adobe web site for updates. In
this edition, all Adobe and Macromedia product names are listed as they
currently exist in the market.

Microsoft FrontPage (Windows only)

FrontPage, part of the Microsoft Office software package, is easy for beginners to learn and is
popular with the business community. It offers wizards, themes, and tools that make web page
creation easy. FrontPage still produces code that many professional web authors consider to be
unsatisfactory due to inefficient and proprietary code. Some FrontPage functions are closely
integrated with Microsoft's Internet Information Server (IIS) , so check with your hosting
service for possible conflicts. For more information, see www.microsoft.com/frontpage/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.7. Good Authoring Practices

This section offers some guidelines for writing "good" HTML documentsmarkup that will be supported
by a wide variety of browsers, handled easily by browsers expecting correct syntax, and extensible to
emerging technologies built on the current HTML specification.

Choose elements that accurately and meaningfully describe the content

Making sure that your document is semantically sound improves accessibility under the wide
range of web browsing environments. If something is a list, mark it up as a list. If you don't
want bullets, it's not a problem. You can use a style sheet to change the presentation of the list
to be anything you want, be it bullet-less or a graphical horizontal navigation bar (see Chapter
24 for this technique).

Avoid choosing elements based on the way that they render in the browser.

For example, don't use a blockquote just to achieve indented text and don't use a series of brs
or <p> </p> for extra whitespace. Again, you can use a style sheet for such presentational
effects.

Avoid using deprecated elements and attributes.

This is actually a round-about way of saying "use style sheets instead of presentational HTML,"
because most elements and attributes have been deprecated in favor of style sheet controls.

Write compliant, valid documents.

Even if you are using HTML 4.01, it is a good idea to follow the XHTML Recommendations for a
compliant, valid document. Although once it was fine to omit closing tags and quotation marks,
browsers in the future may not be so forgiving.

Validate your HTML.

To be absolutely sure about how you're doing conformance-wise, you should run your HTML
code through an HTML validator, such as the one at the W3C site (validator.w3.org). For a list
of other validator services, see The Web Design Group page at
www.htmlhelp.com/links/validators.htm.

Avoid extra returns and character spaces.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These extra keystrokes add to the size of your document because blank spaces are transmitted
just like all other characters. Not only that, line breaks and extra spaces can create unwanted
whitespace in certain contexts. For instance, extra spaces within and between table cells (td
elements) can add unwanted spaces in a table. Adding a line break between consecutive img
elements will introduce whitespace between the images. It is best to keep your file as compact
as possible.

Use comments to delineate sections of markup so that you can find them quickly.

HTML documents can get long and complicated. Adding comments to label portions of the
document can make things easier to find at a glance and may allow you to keep the document
compact without a lot of extra space.

Follow proper filenaming conventions.

Consider these guidelines:

Use the proper HTML document suffix .html or .htm. Suffixes for a number of common file
types can be found in Table 4-1.

Avoid spaces and special characters such as ?, %, #, and so on in filenames. It is best to
limit filenames to letters, numbers, underscores (in place of spaces), hyphens, and
periods.

Filenames may be case-sensitive on your server. Consistently using all lowercase letters
in filenames, although certainly not necessary, may help avoid confusion and make them
easier to remember.

Keep filenames as short as possible. Extra characters add to the file size of the document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Document Structure
Before marking up your actual content, it is necessary to establish the proper global structure of the
(X)HTML document itself. An (X)HTML document is composed of three parts: a declaration of the
HTML or XHTML version used, a header containing information about the document, and the body
containing the document's content.[*] This chapter takes a look at each of these components and, in
doing so, introduces these elements used for establishing the global structure of the document:

[*] Not all documents have a body. Framed documents are composed of a declaration, header, and a frameset that establishes

the number and structure of its frames. Framed documents are discussed in Chapter 14.

html Root element of an (X)HTML document

head Header

body The body of the document

title Document title

meta Meta data (information about the document)

If you use a professional web authoring tool to create web pages, chances are you're accustomed to
the minimal document structural markup inserted for you when you select "New File." This chapter
will give you the tools necessary to peek under the hood and decide if the automatically generated
declarations accurately represent the mode in which you intend to author.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1. Minimal Document Structure

This markup sample shows the structure of a minimal XHTML document as specified in the XHTML 1.0
Recommendation. It provides important context to upcoming discussions of global document
structure.

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>
 <title>Document Title</title>
 </head>

 <body>
 <p>Content of document...</p>
 </body>

 </html>

This example begins with an XML declaration that identifies the version of XML
and the character encoding of the document. XML declarations are encouraged
for XHTML documents; however, they are not required when the character
encoding is the UTF-8 default as in the above example. Because XML
declarations are problematic for current browsers as of this writing, even those
that are standards-compliant, they are generally omitted.

Now, take a closer look at the four major components of XHTML (and HTML) documents.

Document type declaration

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The document type (DOCTYPE) declaration tells the browser which DTD to use to parse the
document. This example specifies XHTML Strict. If this example were an HTML document, it would
use one of the HTML DTDs. The upcoming See Document Type Declaration." section provides more
information on the DTD options and uses for this information.

Root element

 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">...
 </html>

html is the root element for all HTML and XHTML documents. The html element and its declarative
attributes shown here are discussed in the upcoming section, "The Root Element."

Document header

 <head>
 <title>Document Title</title>
 </head>

The head element, or header, contains information about the document that is not considered part of
the document content. The header must include a descriptive title in order to validate. Document
headers are covered in more detail later in this chapter.

Document body

 <body>
 Content of Document...
 </body>

The body element contains all of the content of the documentthe part that displays in the browser
window or is spoken in a speech browser. The body of an (X)HTML document might consist of just a
few paragraphs of text, a single image, or a complex combination of text, images, tables, and
multimedia objects. What you put on the page is up to you.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. Document Type Declaration

To be valid, an (X)HTML document must begin with a document type declaration that identifies which
version of HTML or XHTML is used in the document. This is done using a DOCTYPE declaration that
names the document type definition (DTD) for the document. A DTD is a text document that lists all
the elements, attributes, and rules of use for a particular markup language. See Chapter 7 for more
information on DTDs.

The inclusion of a document type declaration has always been a requirement of valid HTML
documents. With no DOCTYPE declaration, there is no set of rules to validate against. In the years of
fast and loose HTML authoring, the DOCTYPE declaration was commonly omitted. However, now that
standards compliance is a priority in the web development community, and because there are so
many DTDs to choose from, authors are strongly urged to include the DTD declaration and validate
their documents. The DOCTYPE declaration (or its omission) also triggers different browser behaviors,
as discussed in the upcoming "DOCTYPE Switching" section.

9.2.1. DTD Options

HTML 4.01 and XHTML 1.0 offer three DTD versions:

Strict

Transitional

Frameset

XHTML 1.1 has only one DTD. The DTD documents live on the W3C server at a stable URL.

The <!DOCTYPE> (document type) declaration contains two methods for pointing to DTD information:
one is a publicly recognized document identifier; the other is a specific URL in case the browsing
device does not recognize the public identifier. Descriptions and specific markup for each HTML and
XHTML version are listed here.

HTML 4.01 Strict

The Strict DTD omits all deprecated elements and attributes. If you are authoring according to
the strict DTD, use this document type definition:

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/HTML4.01/strict.dtd">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML 4.01 Transitional

The Transitional DTD includes everything from the Strict DTD, plus all deprecated elements and
attributes. If your document includes some deprecated elements or attributes, point to the
Transitional DTD using this DOCTYPE declaration:

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/HTML4.01/loose.dtd">

HTML 4.01 Frameset

If your document contains framesthat is, it uses frameset instead of body for its contentthen
identify the Frameset DTD. The Frameset DTD is the same as the Transitional version (it
includes deprecated yet supported elements and attributes), with the addition of frame-specific
elements. The content-containing HTML documents that are displayed within the frames do not
need to use the Frameset DTD.

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
 "http://www.w3.org/TR/HTML4.01/frameset.dtd">

XHTML 1.0 Strict

The same as HTML 4.01 Strict, but reformulated according to the syntax rules of XML.

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Transitional

The same as HTML 4.01 Transitional, but reformulated according to the syntax rules of XML.

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset

The same as HTML 4.01 Frameset, but reformulated according to the syntax rules of XML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.1

There is only one DTD for XHTML 1.1. It omits every deprecated element and attribute. It
differs from XHTML 1.0 Strict in these ways:

The lang attribute has been replaced with the xml:lang attribute.

The name attribute for the a and map elements has been replaced with id.

A ruby collection of elements has been added. The W3C defines ruby as "short runs of
text alongside the base text, typically used in East Asian documents to indicate
pronunciation or to provide a short annotation."

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

The W3C makes these document type declarations and more available for your
copy-and-paste convenience at www.w3.org/QA/2002/04/valid-dtd-list.html.

9.2.2. DOCTYPE Switching

Years of lax authoring practices and techniques for dealing with inconsistent browser behaviors
resulted in millions of web pages built in a way that worked, but were far from valid against the
current standards. Browser developers were faced with a difficult dilemma: get rigorous about
standards conformance and break nearly every web site in existence, or maintain the status quo.

When building Internet Explorer 5 for the Macintosh, development lead Tantek Çelik invented and
coded a stop-gap solution that served two communities of authors: those writing standards-
compliant documents and those who were authoring web documents based on familiar browser
rendering behaviors.

The method now known as DOCTYPE switching uses the inclusion and content of a DOCTYPE
declaration to toggle the rendering mode in certain browsers. If a modern DOCTYPE declaration is
detected, it indicates that the author is standards-aware, and the browser switches into a standards-
compliant rendering mode (Standards mode). If no (or if an older) declaration is detected, the
browser reverts to Quirks mode. Quirks mode mimics the rendering behavior of old browsers,
allowing for nonstandard code, hacks, and workarounds that are common in legacy web authoring
practices. There is a third mode that some browsers implement known as Almost Standards mode
that is different from true Standards mode in that it implements vertical sizing of table cells

http://lib.ommolketab.ir
http://lib.ommolketab.ir

traditionally and not according to the CSS 2 specification.

9.2.2.1. Browser support

You can use the DOCTYPE declaration to switch rendering modes in the following browsers:

Internet Explorer 6 and 7 (Windows)

Internet Explorer 5 (Mac)

Netscape 6 and higher

Opera 7 and higher

Mozilla (and Mozilla-based browsers like Firefox)

Safari

Konqueror 3.2 and higher

9.2.2.2. Making the switch

Although all of the browsers listed above do some sort of switching, the requirements for switching
them into Standards or Almost Standards mode varies somewhat by browser and is influenced by the
DTD version and the presence of the complete URL for that DTD. For XHTML documents, the
presence of the XML declaration will cause Internet Explorer 6 for Windows and Konqueror to switch
into Quirks mode even if the proper DOCTYPE declaration has been provided.

Figuring out which DOCTYPE triggers which mode in every browser can get pretty confusing. For a
thorough comparison of browsers' responses to every possible (X)HTML DTD and URL combination,
see the chart created and maintained by Henri Sivonen at http://hsivonen.iki.fi/doctype/.

To summarize here, these are your best bets for triggering Standards or Almost Standards mode in
the most browsers that do DOCTYPE switching :

XHTML 1.0 Strict or Transitional or XHTML 1.1, with a complete URL (including http://) and
without the XML declaration. If the URL is omitted or incomplete, some browsers revert to
Quirks mode. Including the XML declaration causes Internet Explorer 6 to revert to Quirks
mode, however, this has been corrected in IE 7.

HTML 4.0 or 4.01 Strict DTD, with or without the URL. (Omitting the URL triggers Quirks mode
in IE 5/Mac with the 4.01 Strict DTD only.)

HTML 4.0 or 4.01 Transitional DTD, with the URL http://www.w3.org/TR/html4/loose.dtd (for all
browsers but Konquerer 3.2). Including http://www.w3.org/TR/1999/REC-html401-
19991224/loose.dtd TRiggers Quirks mode in Netscape 6 and Konqueror.

http://hsivonen.iki.fi/doctype/
http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/1999/REC-html401-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. The Root Element

XML and SGML documents have one and exactly one root element. It is the element that encloses all
following elements. XHTML and HTML define html as the root element.

html

 <html>...</html>

Attributes

Internationalization attributes: lang, xml:lang, dir
id="text" (XHTML only)
xmlns="http://www.w3.org/1999/xhtml" (Required; XHTML only)
version="-//W3C//DTD HTML 4.01//EN" (Deprecated in HTML 4.01)

All elements in the document are contained within the root element (they are said to be descendants
of the root element). As the root element, html may have no ancestors (in other words, it may not be
contained within any other element).

This example shows the root element from a minimal XHTML document:

 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" >

Because this example is an XHTML document, the html element is also used to identify the XML
namespace and language for the document, as discussed next. HTML documents do not use
namespaces.

9.3.1. Namespace

An XML namespace is a collection of element and attribute names as defined by the DTD of a
particular markup language. In XML documents, you must explicitly identify the namespace so the
client (in this case, the browser) knows that you intend the q element in your document to be a
"quote" and not a "question" from some other (theoretical) XML language for exams.

The namespace is specified using the xmlns attribute in the html root element. The value is the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

location of an online documentation of that namespace. The namespace identifier for XHTML 1.0 and
1.1 is xmlns="http://www.w3.org/1999/xhtml".

9.3.2. Language

Because this Web of ours is "World Wide," the HTML specifications take into account that documents
are published in a variety of languages. For that reason, it is important to identify the language in
which the document is written (as in lang="en") and the language of the XML version (as in
xml:lang="en"). These attributes are placed in the html root element along with the namespace
identifier. The XHTML 1.0 Recommendation suggests you include both attributes in the interest of
backward compatibility. See Chapter 6 for a complete list of two-letter language codes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4. The Document Header

The header provides a place to include important information about the document to users, browsers,
and search engines. It is also a common place to stow scripts and embedded style sheets. This
section looks at the head element and the elements it contains.

head

 <head>...</head>

Attributes

Internationalization attributes: lang, xml:lang, dir
id="text" (XHTML only)
profile="URLS"

Every head element must include a title element that provides a description of the document. The
head element may also include any of the following elements in any order: script, style, meta, link,
object, isindex, and base. The head element merely acts as a container of these elements and does
not have any content of its own.

It is recommended that HTML documents (and XHTML documents without an XML declaration) also
include a meta element that specifies the content type and character encoding for the document,
although this element is not required. The meta element is discussed in the upcoming "Providing Meta
Data section.

9.4.1. Titles

The most important (and only required) element within the header is the document title, which
provides a description of the page's contents.

title

 <title>...</title>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This element is required.

Attributes

Internationalization: lang, xml:lang, dir

Starting in HTML 4.01, the title element is required, which means that every HTML document must
have a meaningful title in its header in order to be valid. The title is typically displayed in the top bar
of the browser, outside the regular content window.

Titles should contain only ASCII characters (letters, numbers, and basic punctuation). Special
characters (such as &) should be referred to by their character entities within the title, for example:

 <title>The Adventures of Peto & Fleck</title>

The title is what is displayed in a user's bookmarks or favorites list. Descriptive titles are also a key
tool for improving accessibility, as they are the first thing a person hears when using a screen reader.
Search engines rely heavily on document titles as well. For these reasons, it's important to provide
thoughtful and descriptive titles for all your documents and avoid vague titles, such as "Welcome" or
"My Page." You may also want to keep the length of your titles in check so they are able to display in
the browser's title area.

9.4.2. Other Header Elements

Other useful HTML elements also placed within head of the document include:

base

This element establishes the document's base location, which serves as a reference for all
pathnames and links in the document. For more information, see Chapter 11.

isindex

Deprecated. This element was once used to add a simple search function to a page. It has been
deprecated by HTML 4.01 in favor of form inputs.

link

This element defines the relationship between the current document and another document.
Although it can signify such relationships as index, next, and previous, it is most often used to
link a document to an external style sheet (see Chapter 16).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

script

JavaScript and VBScript code may be added to the document within its header using this
element. For examples of using the script element, see Chapter 27.

style

One method for attaching a style sheet to an HTML document is to embed it in the head of the
document with the style element. For more information, see Chapter 16.

meta

The meta element is used to provide information about a document, such as keywords or
descriptions to aid search engines. It is discussed in detail in the next section.

9.4.3. Providing Meta Data

The meta element has a wide variety of applications but is primarily used to include information about
a document, such as the character encoding, creation date, author, or copyright information.

meta

 <meta />

Attributes

Internationalization: lang, xml:lang, dir
id="text" (XHTML only)
content="text" (Required)
http-equiv="text"

name="text"

scheme="text"

The data included in a meta element is useful for servers, web browsers, and search engines but is
invisible to the reader. It must always be placed within the head of the document.

A document may have any number of meta elements. There are two types of meta elements, using
either the name or http-equiv attribute. In each case, the content attribute is necessary to provide a
value (or values) for the named information or function. These examples show the syntax of both
meta types:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <meta http-equiv="name" content="content" />

 <meta name="name" content="content" />

9.4.3.1. http-equiv

Information provided by an http-equiv attribute is processed as though it had come from an HTTP
response header. HTTP headers contain information the server passes to the browser just before it
sends the HTML document, such as media type information and other values that affect the action of
the browser. Therefore, the http-equiv attribute provides information that will, depending on the
description, affect the way the browser handles your document.

An HTTP header is not the same as the header indicated by the head element
within the HTML document. HTTP headers exist outside the HTML text
document and are tacked on by the server. When a document is requested via
an HTTP request (that is, via the Web), the HTTP header goes along for the ride
to give the browser a heads-up on what kind of document to expect. Its
contents are not displayed.

There is a large number of predefined http-equiv types available. This chapter introduces just a few
of the most useful. For a complete listing, see the Dictionary of HTML META Tags at vancouver-
webpages.com/META.

9.4.3.2. name

The name attribute is used to insert hidden information about the document that does not correspond
to HTTP headers. For example:

 <meta name="author" content="Jennifer Niederst Robbins" />
 <meta name="copyright" content="2006, O'Reilly Media" />

You can make up your own names or use one of the names put forth by search engine and browser
companies for standardized use. A few of the accepted and more useful meta names are discussed
later in this section.

9.4.3.3. Identifying media type and character encoding

It is recommended (although not required) that the media type and character encoding be specified
within (X)HTML documents as a way to keep that information with the document. (For more
information on declaring character encodings, see Chapter 6.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is done using the meta element, as shown in this example:

 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />

The parts are broken down as follows:

Media type identification

The media type, very similar to MIME types used for sending email attachments, is another bit
of information sent in the HTTP header. For HTML documents, the media type is always
text/html. That one is easy. XHTML documents, on the other hand, are not as straightforward.

XHTML 1.0 documents may be served as either XML or HTML documents. Although XML is the
proper method, due to lack of browser support for XML files, many authors choose to deliver
XHTML 1.0 files with the text/html MIME type used for HTML documents. When XHTML
documents are served in this manner, they may not be parsed as XML documents.

XHTML 1.0 files may also be served as XML using the MIME types application/xhtml+xml,
application/xml, or text/xml. The W3C recommends that you use application/xhtml+xml
only.

XHTML 1.1 documents are not permitted to use the text/html media type. This poses a
problem because some browsers do not know what to do with the non-text/html media types.
This is another reason why XHTML 1.1 is still difficult to implement properly and why
developers generally opt for the XHTML 1.0 standard.

For more information on the W3C's recommended media types, see www.w3.org/TR/xhtml-
media-types/.

Character encoding

It is recommended, although not required, that the character encoding be specified for all
documents. The character encoding describes the set of actual glyphs, or character shapes,
that your document uses. Sets of characters are standardized: you can refer to them by
identifying standard numbers. For example, in documents written in English, the most common
character encoding is ISO-8859-1, which consists of all the characters in Western European
languages. For more information on character encoding, see Chapter 6.

Character encoding should be set on the server as part of the HTTP header. It may also be set
in the XML declaration for XHTML documents that use a character encoding other than the XML
standard UTF-8 or UTF-16. For instances when it is necessary to override or guarantee the
server setting (and if the XML declaration is not used), the character encoding may be provided
with a meta element, as shown in the example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For more information on the preferred methods of specifying character
encoding, see Chapter 6 and the Web Standards Project article at
www.webstandards.org/learn/askw3c/dec2002.html.

9.4.3.4. Using the meta element for client-pull

Client-pull refers to the ability of the browser (the client) to automatically request (pull) a new
document from the server. The effect for the user is that the page displays, and after a period of
time, automatically refreshes with new information or is replaced by an entirely new page. This
technique can be used to automatically redirect readers to a new URL (for instance, if an old URL has
been retired).

Be aware, however, that the W3C strongly discourages the use of this method
for automatic forwarding in favor of server-side redirects for reasons of
accessibility.

Client-pull uses the refresh attribute value, first introduced by Netscape. It tells the browser to wait
a specified number of seconds (indicated by an integer in the content attribute) and then to load a
new page. If no page is specified, the browser just reloads the current page. The following example
instructs the browser to reload the page after 15 seconds (assume there's something fancy
happening on the server side that puts updated information in the HTML document):

 <meta http-equiv="refresh" content="15" />

To reload a different file, provide the URL for the document within the content attribute:

 <meta http-equiv="refresh" content="1; url=http://doc2.html" />

Note that there is only a single set of quotation marks around the value for content. Although URLs
usually require their own quotation marks, these are omitted within the context of the content
attribute.

9.4.3.5. Other uses of http-equiv

Here are some other uses of the http-equiv attribute:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

expires

Indicates the date and time after which the document should be considered expired. Web
robots may use this information to delete expired documents from a search engine index. The
date and time format (as shown below) follows the date/time standard for HTTP headers
because the http-equiv attribute is intended to mimic an HTTP header field.

 <meta http-equiv="expires" content="Wed 12 Jun 2001 10:52:00 EST" />

content-language

This may be used to identify the language in which the document is written. The browser can
send a corresponding Accept-Language header, which causes the server to choose the
document with the appropriate language.

This example tells the browser that the document's natural language is French:

 <meta http-equiv="content-language" content="fr" />

The W3C now recommends using the lang and xml:lang attributes in the html element for language
specification, but this method may be used for backward compatibility. For more information on
internationalization and a listing of two-letter language codes, see Chapter 6.

9.4.3.6. meta names for search engines

Search engines introduced several meta names that aid their search engines in finding pages. Note
that not all search engines use meta-data, but adding them to your document won't hurt. There is a
blurry distinction between name and http-equiv in this case, so most of these meta names also work
as http-equiv definitions.

description

This provides a brief, plain-language description of the contents of your web page, which is
particularly useful if your document contains little text, is a frameset, or has extensive scripts
at the top of the HTML document. Search engines that recognize the description may display it
in the search results page. Some search engines use only the first 20 words of descriptions, so
get to the point quickly.

 <meta name="description" content="Jennifer Robbins' resume
 and web design samples" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

keywords

You can supplement the title and description of the document with a list of comma-separated
keywords that would be useful in indexing your document. Note: Search engines have largely
abandoned meta keywords in practice due to both spam and deterioration. There is a larger
trend away from invisible metadata in general for these reasons, and toward more visible data
in the contents themselves of web pages.

 <meta name="keywords" content="designer, web design, branding,
 logo design" />

author

Identifies the author of the web page.

 <meta name="author" content="Jennifer Robbins" />

copyright

Identifies the copyright information for the document.

 <meta name="copyright" content="2005, O'Reilly Media" />

robots

This value was created as an alternative to the robots.txt file, and both are used to prevent
your page from being indexed by search engine "spiders." This value is not as well supported
as the robots.txt file, but some people like to include it anyway. The content attribute can take
the following values: index (the default), noindex (prevents indexing), nofollow (prevents the
search engine from following links on the page), and none (the same as setting "noindex,
nofollow"). The advantage of using this attribute instead of the robots.txt file is that it can be
applied on a page-by-page basis (whereas robot.txt applies to an entire site if it's located in the
root directory).

 <meta name="robots" content="noindex, nofollow" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5. The Document Body

The body of the document comes after the document header. Although the body element markup is
optional in previous versions of HTML, in XHTML it is required. The content of the body element is
what gets displayed in the browser window (or read by a speech browser).

body

 <body>...</body>

Attributes

Core attributes: id, class, style, title
Internationalization: lang, xml:lang, dir
Intrinsic Events: onload, onunload, onclick, ondblclick, onmousedown, onmouseup, onmouseover,
onmousemove, onmouseout, onkeypress, onkeydown, onkeyup

Deprecated Attributes

alink="#rrggbb" or "color name"
background="URL"

bgcolor="#rrggbb" or "color name"
link="#rrggbb" or "color name"
text="#rrggbb" or "color name"
vlink="#rrggbb" or "color name"

The body element may include any combination of block-level elements, inline elements, and forms.
In other words, it contains all the elements in the normal document flow. For visual browsers, the
body acts as a canvas where the content appears. Audio user agents may speak the content of the
body.

The HTML 3.0 Recommendation added a number of presentational attributes for the body element
that had been introduced by browser developers and were in common use. At the time, they were
the only mechanism for setting the color for all the links and text in the document or for adding a
background color or image to the page. A single body opening tag may contain a number of specific
attributes, as shown here:

 <body text="color" link="color" vlink="color" alink="color">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Today, of course, style sheets are the correct way to handle matters of presentation, so all of the
presentational attributes for the body element are officially deprecated and are discouraged from use.

Because they are still in the Transitional DTD and universally supported in browsers, brief
explanations of the deprecated body attributes are provided in Table 9-1. The CSS alternatives are
provided.

Table 9-1. Deprecated body attributes

Body attribute Description Equivalent CSS style

text="color" Sets the color for all the regular text in the
document

body {color: color}

link="color" Sets the color for hyperlinks a:link {color: color}

vlink="color" Sets the color for links that have already
been clicked

a:visited {color: color}

alink="color" Sets the color for a link while it is in the
process of being clicked

a:active {color: color}

bgcolor="color" Sets the color of the background for the
entire page

body {background-color: color}

background="url" Specifies an image to be used as a tiling
background for the page

body {background-image:

url(filename.gif)}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. Text Elements
This chapter gets to the real meat and potatoes of document markup: elements used to structure
text content. It's no surprise that nearly half of all the elements in the (X)HTML Recommendation are
introduced in this chapter. The elements and discussions are organized as follows:

Block elements Generic elements

h# Heading div Block division

p Paragraph span Span of inline content

pre Preformatted text Lists

address Contact information ul Unordered list

blockquote Lengthy quotation ol Ordered list

Inline elements li List item

abbr Abbreviation dl Definition list

acronym Acronym dt Term

cite Citation or reference dd Definition

code Code fragment menu Menu list

dfn Defining term dir Directory

em Emphasized text Presentational elements

q Short inline quotation b Bold

strong Strongly emphasized big Big text

samp Sample output i Italic

kbd Text entered by a user s Strike-through

var Variable or program argument strike Strike-through

sub Subscript tt Teletype

sup Superscript u Underlined

Line breaks

br Inserts line break font Font face, color, and size

Edit notation basefont Sets default font face

ins Inserted text nobr No break

http://lib.ommolketab.ir
http://lib.ommolketab.ir

del Deleted text wbr Word break

 hr Horizontal rule

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1. Choosing Text Elements

This chapter, jam-packed as it is with text elements, is a good opportunity for a reminder about the
importance of well-structured and meaningful (semantic) markup.

In the early years of web design, it was common to choose elements based on their default
formatting in the browser. Don't like the size of the h1? Hey, use an h4 instead. Don't like bullets on
your list? Make something list-like using br elements. Need indents? Blockquote it! Those days are
over and gone.

Now we have Cascading Style Sheets (CSS) to visually format any element any way we like, at last
liberating us from the browsers' default rendering styles. That means you must choose elements that
accurately describe your content. If you don't like how it looks, change it with a style sheet. If you
don't see an HTML element that fits, use a generic div or span element to add appropriate structure
and meaning.

Additional tips on good markup are listed in Chapter 8.

A Word on Deprecated Elements

Many elements and attributes in this book are marked as "deprecated," which means
they are being phased out of HTML and are discouraged from use. Most of the
deprecated elements and attributes are presentational and have analogous style sheet
properties that should be used instead. Others are simply obsolete or poorly supported.

The W3C needed a way to get the HTML specification back on track while acknowledging
legacy browser capabilities and the authoring methods that catered to them. Rather than
yanking them all at once, causing virtually every site in the world to be invalid, they put
the deprecated elements and attributes in a "transitional" DTD that is available while
browsers get up to speed with standards and web authors (and authoring tools) change
their markup practices.

Now that style sheet alternatives to presentational HTML are widely supported, it is time
to start phasing deprecated elements out of your documents as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2. The Building Blocks of Content

Text elements fall into two broad categories: inline and block. Inline elements occur in the flow of
text and do not cause line breaks by default (they are covered later in this chapter). Block-level
elements, on the other hand, have a default presentation that starts a new line and tends to stack up
like blocks in the normal flow of the document. Block elements make up the main components of
document structure.

Compared to inline elements, there are relatively few block elements. This section looks at heading
levels, paragraphs, blockquotes, preformatted text, and addresses. Lists and list items are also block
elements, and they are discussed later in this chapter, as is the generic div element used for defining
custom block elements. The other block-level elements are tables and forms, which are treated in
their own respective chapters.

10.2.1. Headings

Headings are used to introduce ideas or sections of text. (X)HTML defines six levels of headings, from
h1 to h6, in order from most to least important.

h1 through h6

 <hn>...</hn>

Attributes

Core (id, class, style, title), Internationalization, Events

Deprecated attributes

align="center|left|right"

This example defines the element as a first-level heading.

 <h1>Camp Sunny-Side Up</h1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML syntax requires that headings appear in order (for example, an h2 should not precede an h1)
for proper document structure. Doing so not only improves accessibility, but aids in search engine
optimization (information in higher heading levels is given more weight). Using heading levels
consistently throughout a siteusing h1 for all article titles, for exampleis also recommended.

Browsers generally render headings in bold text in decreasing size, but style rules may be applied to
easily change their presentation.

10.2.2. Paragraphs

Paragraphs are the most rudimentary elements of a text document. They are indicated by the p
element.

p

 <p>...</p>

Attributes

Core (id, class, style, title), Internationalization, Events

Deprecated attributes

align="center|left|right"

Paragraphs may contain text and inline elements, but they may not contain other block elements,
including other paragraphs. The following is an example of a paragraph marked up as a p element.

 <p>Paragraphs are the most rudimentary elements of a text
 document. They are indicated by the p element.</p>

Because paragraphs are block elements, they always start a new line. Most browsers also add
margins above and below block elements. Text is formatted flush-left, ragged right for left-to-right
reading languages (and flush-right for right-to-left reading languages). Style sheets may be used to
override any default browser rendering.

HTML 4.01 allows the end </p> tag to be omitted, leaving user agents to parse the beginning of a
new block element as the end of the previous paragraph. In XHTML, however, all elements must be
terminated, and omitting end tags will cause the document to be invalid. For reasons of forward
compatibility, it is recommended that you close paragraphs and all elements regardless of the
markup language you are using.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.3. Quotations (blockquote)

Use the blockquote element for lengthy quotations, particularly those that span several paragraphs
and require line breaks.

blockquote

 <blockquote>...</blockquote>

Attributes

Core (id, class, style, title), Internationalization, Events
cite="URL"

It is recommended that content within a blockquote be contained in other block-level elements, such
as paragraphs, headings, lists, and so on, as shown in this markup example.

 <blockquote cite= "http://www.jenandtheneverendingstory.com">

 <p>This is the beginning of a lengthy quotation (text continues...) </p>

 <p>And it's still going on and on (text continues...) </p>
 </blockquote>

The cite attribute is intended to be used to provide information about the source from which the
quotation was borrowed, but it has very limited browser UI support (only Netscape 6+ as of this
writing) and is not currently in common use.

The HTML specification recommends that blockquotes be displayed as indented text, which, in fact,
they usually are. The blockquote element should not be used merely to achieve indents.

10.2.4. Preformatted Text

Preformatted text is used when it is necessary to preserve the whitespace in the source (character
spaces and line breaks) when the document is displayed. This may be useful for code or poetry where
spacing and alignment is important for meaning. Preformatted text is indicated with the pre element.

pre

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <pre>...</pre>

Attributes

Core (id, class, style, title), Internationalization, Events

Deprecated Attributes

width="number"

Preformatted text is unique in that it displays exactly as it is typed in the HTML source codeincluding
all line returns and multiple character spaces. Long lines of text stay intact and are not reflowed. The
pre element in this example displays as shown in Figure 10-1. The second part of the figure shows
the same content marked up as a p element for comparison.

 <pre>
 This is an example of

 text with a lot of
 curious
 whitespace.
 </pre>

 <p>
 This is an example of

 text with a lot of
 curious
 whitespace.
 </p>

Preformatted text is meant to be displayed in a fixed-width font to preserve the alignment of columns
of characters. Authors are discouraged from changing the font face and whitespace settings with
style sheets. Preformatted elements may include any inline element with the exception of img,
object, big, small, sub, sup, and font, all of which would disrupt the column alignment of the fixed-
width font.

Figure 10-1. Preformatted text compared to a paragraph

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.5. Addresses

The address element is used to provide contact information for the author or maintainer of the
document. It is not appropriate for all address listings. It is generally placed at the beginning or end
of the document, or associated with a large section of content (such as a form).

address

 <address>...</address>

Attributes

Core (id, class, style, title), Internationalization, Events

An address might be used as shown in this markup example.

 <address>
 Contributed by Jennifer Robbins,
 O'Reilly Media
 </address>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3. Inline Elements

Most text elements are inline elements (spans of characters within the flow of text). Inline elements
by default do not add line breaks or extra space.

This section introduces the semantic text elements that describe the enclosed text's meaning,
context, or usage. These elements leave the specific rendering of the element to style sheets, either
the author's or the browser's default rendering. There are other inline elements in the XHTML
specification that are concerned with presentation (for example, the b element for bold text). They
are briefly discussed at the end this chapter.

10.3.1. Phrase Elements

HTML 4.01 and XHTML 1.0 and 1.1 define a collection of phrase elements (also called logical
elements) for adding structure and meaning to inline text. Because phrase elements share syntax
and attributes, they are aggregated into one element listing here.

abbr, acronym, cite, code, dfn, em, kbd, samp, strong, var

 <abbr>...</abbr>, <acronym>...</acronym>, etc.

Attributes

Core (id, class, style, title), Internationalization, Events

Phrase elements may contain other inline elements. The meaning and use of each element is listed
here. When elements have a standardized presentation in browsers (for example, em elements
universally display in an italic font), it is also noted. Authors are reminded, however, to choose
elements based on meaning, not a desired rendering effect.

em

Indicates emphasized text. em elements are nearly always rendered in italics.

strong

Denotes strongly emphasized text. Strong elements are nearly always rendered in bold text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

abbr

Indicates an abbreviated form.

acronym

Indicates an acronym.

cite

Denotes a citation: a reference to another document, especially books, magazines, articles,
and so on. cites are commonly rendered in italics.

dfn

Indicates the defining instance or first occurrence of the enclosed term. It can be used to call
attention to the introduction of special terms and phrases. Defining terms are often rendered in
italics.

code

Denotes a program code sample. By default, code is rendered in the browser's specified fixed-
width font (usually Courier).

kbd

Stands for "keyboard" and indicates text entered by the user. It may be useful for technical
documents. Keyboard text is typically rendered in a fixed-width font.

samp

Indicates sample output from programs, scripts, etc. It may be useful for technical documents.
Sample text is usually rendered in a fixed-width font by default.

var

Indicates the instance of a variable or program argument. This is another element that will be
most useful for technical documents. Variables usually render in italics.

10.3.1.1. Indicating emphasis

The em and strong elements are used for indicating emphasis and even stronger emphasis, as
demonstrated in this example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p>We really need to leave right now!</p>

Although emphasized text renders reliably in italics, it is not always an appropriate substitute for the
i element. For example, if you want to italicize the title of a book, the cite element is the better
choice. If there is no good match, create your own meaningful element using a generic span element
and apply italics with the font-style style property. To use another example, it is a convention to
display words from another language in italics, but that doesn't necessarily mean that those words
are emphasized.

A good rule of thumb is to consider how your document would sound if it were read aloud (as it might
be). Do you want the italic words to be read louder or at a different pitch from the rest of the
sentence? If the answer is no, then it is probably best to find an alternative to em. The same logic
applies to the strong element.

10.3.1.2. Acronyms and abbreviations

The abbr element indicates that text is an abbreviation: a shortened form of a word ending in a
period, such as Mass., Inc., or etc. Acronyms (indicated with the acronym element) are abbreviations
formed from the initial letters or groups of letters of words in a phrase, such as WWW and USA. An
acronym may be pronounced as a word (NATO) or letter by letter (FBI).

The title attribute may be added to either element to provide the full name or longer form. The
value of the title attribute may be displayed as a "tool tip" by visual browsers, or read aloud by a
speech device.

 <acronym title="National Aeronautics and Space Administration">NASA
 </acronym>
 <abbr title="Tablespoons">Tbs.</abbr>

Marking up shorthand terms such as abbreviations and acronyms provides useful information on how
they should be interpreted by user agents such as spellcheckers, aural devices, and search-engine
indexers. It also improves the accessibility of the content.

The CSS 2.1 specification provides the informative speak aural property that
allows authors to specify whether an acronym should be read as a word or
spoken letter by letter, as shown here:

 acronym#FBI {speak: spell-out;}

The speak property is documented in Appendix B.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3.2. Short Quotations

HTML 4 introduced the q element for indicating short inline quotations, such as "To be, or not to be."
Longer quotations should use the blockquote element listed earlier.

q

 <q>...</q>

Attributes

Core (id, class, style, title), Internationalization, Events
cite="url"

The HTML Recommendation suggests that user agents should automatically insert quotation marks
before and after q elements, therefore, authors are advised to omit them in the source. As of this
writing, Internet Explorer 5 for Macintosh, Netscape 6, and Opera do insert generic double quotation
marks, but Internet Explorer 6 for Windows does not.

 As mother always said, <q>a guest is no one to criticize.</q>

Ideally, when used with the lang (language) attribute, the browser may insert language-specific
quotation marks. Contextual quotation marks will be better handled with CSS-based generated text,
as described in Chapter 23, once browser support improves.

The cite attribute is intended to provide a link to additional information about the source of the
quote, but it is not well supported as of this writing. Netscape 6.1 makes the cite link available in a
contextual menu accessed by right-clicking the quotation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4. Deleted and Inserted Text

The ins and del elements are used to mark up changes to the text and indicate parts of a document
that have been inserted or deleted (respectively). They may be useful for legal documents and any
instance where edits need to be tracked.

As HTML elements, ins and del are unusual in that they may be used to indicate both block-level and
inline elements. They may contain one or more words in a paragraph or one or more elements like
paragraphs, lists, and tables. When ins and del are used as inline elements (as in within a p), they
may not contain block-level elements because that violates the allowable content of the paragraph.

del, ins

 ..., <ins>...</ins>

Attributes

Core (id, class, style, title), Internationalization, Events
cite="URL"

datetime="YYYY-MM-DDThh:mm:ssTZD"

The following markup indicates that one name has been deleted and another one inserted in its place.

 Chief Executive Officer: <del title="retired">Peter
Pan <ins>Pippi Longstockings</ins>

Browsers that support the ins and del elements may give it special visual treatment (for example,
displaying deleted text in strike-through text), but authors are encouraged to use style sheets to
provide presentational instructions.

The title attribute may be used with del or ins to provide a short explanation for the change that
may be displayed as a "tool tip" on visual browsers. The cite attribute provides a way to add links to
longer explanations, but it is poorly supported as of this writing.

The datetime attribute may be used to indicate the date and time the change was made (although it,
too, is poorly supported). Dates and times follow the format listed above where YYYY is the four-digit
year, MM is the two-digit month, DD is the day, hh is the hour (00 through 23), mm is the minute (00

http://lib.ommolketab.ir
http://lib.ommolketab.ir

through 59), and ss is the seconds (00 through 59). The TZD stands for Time Zone Designator and
its value can be Z (to indicate UTC, Coordinated Universal Time), an indication of the number of hours
and minutes ahead of UTC (such as +03:00), or an indication of the number of hours and minutes
behind UTC (such as -02:20). This is the standard format for date and time values in HTML. For more
information, see www.w3.org/TR/1998/NOTE-datetime-19980827.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.5. Generic Elements (div and span)

The generic div and span elements provide a way for authors to create custom elements. The div
element is used to indicate block-level elements, while span indicates inline elements. Both generic
elements rely on id and class attributes to give them a name, meaning, or context.

10.5.1. The Versatile div

The div element is used to identify and label any block-level division of text, whether it is a few list
items or an entire page.

div

 <div>...</div>

Attributes

Core (id, class, style, title), Internationalization, Events

Deprecated attributes

align="center|left|right"

By marking a section of text as a div and giving it a name using id or class attributes, you are
essentially creating a custom HTML element. In this example, a heading and a list are enclosed in a
div identified as "sidebar."

 <div id="sidebar">
 <h1>List of links</h1>

 Resource 1
 Resource 2
 Resource 3

 </div>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because a div is a block-level element, its contents will start on a new line (even text not contained
within other block-level elements). Otherwise, div elements have no inherent presentation qualities
of their own.

The div really shines when used in conjunction with Cascading Style Sheets. Once you've marked up
and named a div, you can apply styles to all of its contents or treat it as a box that can be positioned
on the page, for instance, to form a new text column. A div may also be called on by script, applet,
or other processing by user agents.

10.5.2. The Useful span

Like the div element, span allows authors to create custom elements. The difference is that span is
used for inline elements and does not introduce a line break.

span

 ...

Attributes

Core (id, class, style, title), Internationalization, Events

This is a simple example of a span used to identify a telephone number.

 Jenny: 867.5309

Markup like this has a number of uses. Most commonly, it is a "hook" that can be used to apply style
sheet rules. In this example, all elements labeled as telephone may receive the same presentational
instructions, such as to be displayed in bold, blue text.

The span also gives meaning to an otherwise random string of digits to user agents who know what
to do with telephone information. This is discussed a bit more in the next section.

10.5.3. Element Identifiers (class and id)

The previous examples show how the id and class attributes are used to turn generic div and span
elements into elements with specific meanings and uses. It should be pointed out that class and id
attributes may be used with nearly all (X)HTML elements, not just div and span. This section

http://lib.ommolketab.ir
http://lib.ommolketab.ir

discusses the id and class element identifiers and their distinct uses.

10.5.3.1. id identifier

The id attribute is used to give an element a specific and unique name in the document. In the earlier
div example, id was used to label a section of the page as "sidebar." That means there may be no
other element with id="sidebar" in that document (although, it is okay if it appears in other
documents on the same site). ID values must be unique.

The HTML 4.01 Recommendation specifies the following uses for id attribute:

As a style sheet selector

As a target anchor for links (with the same functionality as)

As a means to access an element from a script

As the name of a declared object element

For general purpose processing by user agents, essentially treating the element as data

10.5.3.2. class identifier

The class attribute is used for grouping similar elements. Multiple elements may be assigned the
same class name, and doing so enables them to be treated similarly.

In the span example above, the telephone number was identified as telephone with the class
attribute. This implies that there may be many more telephone numbers in the document. A single
style sheet rule could then be used to make them all bold and blue. Changing them all to green
requires editing just one line of code. This offers an obvious advantage over changing color one by
one with the deprecated font element. In addition to being inefficient to maintain, font doesn't add
any semantic cues for user agents.

According to the HTML 4.01 specification, the class attribute may be used:

As a style sheet selector

For general purpose processing by user agents

In HTML 4.01, id and class attributes may be used with all elements except base, basefont, head,
html, meta, param, script, style, and title. In XHTML, id support has been added to those
elements.

10.5.3.3. Tips on using class

There is a heady exhilaration that comes with the ability to create your own custom elements using

http://lib.ommolketab.ir
http://lib.ommolketab.ir

id and class. The class attribute in particular is prone to misuse. These tips should provide some
basic guidance for keeping your markup clean.

Keep class names meaningful.

The value of the class attribute should provide a semantic description of a div or span's
content. Choosing names based on the intended presentation of the elementfor example,
class="indented" or class="bluetext"--does little toward giving the element meaning and
reintroduces presentational information to the document. It is also short-sighted. Consider
what happens when, in an inevitable future design change, all elements classified as bluetext
are rendered in green.

Don't go class-crazy.

It's easy to go overboard in assigning class names to elements. In many cases, other types of
selectors, such as contextual or attribute selectors, may be used instead. For example, instead
of labeling every h1 element in a sidebar as class="sideread", a contextual selector could be
used, like this:

 div#sidebar h1 {font: Verdana 1.2em bold #444;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.6. Lists

Humans are natural list-makers, so it makes sense that mechanisms for creating lists of information have been
part of HTML since its birth. This section looks at the types of lists defined in (X)HTML:

Unordered information

Ordered information

Terms and definitions

10.6.1. Unordered Lists

Unordered lists are used for collections of related items that appear in no particular order. Most lists fall into this
category. Just about any list of examples, components, thoughts, or options should be marked up as an
unordered list. Most notably, unordered lists are the element of choice for navigational options. Unordered lists
for navigation are discussed later in this section.

In (X)HTML, unordered lists are denoted with the ul element. The content of a ul is limited to one or more list
items (li). List items may contain either block-level or inline elements, or both. Unordered lists and their list
items are block elements, so each will display starting on a new line.

ul

 ...

Attributes

Core (id , class , style , title), Internationalization, Events

Deprecated attributes

compact

type="disc|circle|square"

li

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...

Attributes

Core (id , class , style , title), Internationalization, Events

Deprecated attributes

type=" format "
value=" number "

10.6.1.1. Unordered list syntax

This example shows the markup for a basic unordered list.

 Unordered information
 Ordered information
 Terms and definitions

In HTML 4.01, the end tags for list items are optional, but in XHTML, all end tags are required. It is good practice
to close all elements regardless of the version of HTML you are using.

10.6.1.2. Unordered list presentation

By default, user agents insert a bullet before each list item in an unordered list. Leaving an unordered list
unstyled (that is, applying no style sheet properties to it) is a reliable shortcut to having your information appear
as an indented bulleted list.

But that sells the usefulness of the unordered list element short. By applying style properties, an unordered list
may be presented however you like. You can change the shape of the bullets with the list-style-type property
(this property replaces the deprecated type attribute that is discouraged from use). The list-style-image
property allows you to use your own image as a bullet. Style properties for lists are discussed in Chapter 23 .

And that's just the beginning. You can set lists to display horizontally, too. You can even use unordered list
markup as the structure underlying a rich graphical navigation toolbar with rollover effects, all accomplished with
Cascading Style Sheets. These techniques are outlined in Chapter 24 .

10.6.2. Ordered Lists

Ordered lists are used for lists in which the sequence of the items is important, such as step-by-step instructions
or endnotes. Ordered lists are indicated by the ol element and must include one or more list items (li). Like all
lists, ordered lists and their list items are block-level elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ol

 ...

Attributes

Core (id , class , style , title), Internationalization, Events

Deprecated attributes

compact

start=" number "
type="1|A|a|I|i"

Ordered lists have the same basic structures as unordered lists, as shown in this simple example.

 Get out of bed
 Take a shower
 Walk the dog

By default, user agents automatically number the list items in ordered lists . There is no need to add the number
in the source.

Style sheets may be used to change the numbering system (list-style-type) as described in Chapter 23 . The
list-style-type property replaces the deprecated type attribute that specifies the numbering system for lists,
as shown in Table 10-1 .

Table 10-1. Values of the deprecated type attribute

Type value Generated style Sample sequence

1 Arabic numerals (default) 1, 2, 3, 4

A Uppercase letters A, B, C, D

a Lowercase letters a, b, c, d

I Uppercase Roman numerals I, II, III, IV

i Lowercase Roman numerals i, ii, iii, iv

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the deprecated start attribute to start the counting of the list items at a particular number. This markup
example creates an ordered list using lowercase letters that starts counting at 10.

 <ol type="a" start="10">
 See quirksmode.org/css/tests/
 According to the W3C Working Group
 See the XHTML 1.1 Working Document

The resulting list would look like this, because "j" is the tenth letter in the alphabet:

j. See quirksmode.org/css/tests/
k. According to the W3C Working Group
l. See the XHTML 1.1 Working Document

There is a CSS alternative to the start attribute using the counter-reset property, but it is poorly supported by
browsers at this time.

10.6.3. Definition Lists

Use a definition list for lists that consist of term and definition pairs.

Definition lists are marked up as dl elements. The content of a dl is some number of terms (indicated by the dt
element) and definitions (indicated by the dd element). The dt (term) element may contain only inline content,
but a dd may include block-level or inline elements. All three elements used in definition lists are block-level
elements and will start on a new line by default.

dl

 <dl>...</dl>

Attributes

Core (id , class , style , title), Internationalization, Events
compact

dd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <dd>...</dd>

Attributes

Core (id , class , style , title), Internationalization, Events

dt

 <dt>...</dt>

Attributes

Core (id , class , style , title), Internationalization, Events

The markup structure for definition lists is a little different from the lists discussed so far. The entire list, made
up of dt and dd elements, is contained within the dl element, as shown here.

 <dl>
 <dt>em</dt>
 <dd>Indicates emphasized text. em elements are nearly always rendered in italics. </dd>

 <dt>strong</dt>
 <dd>Denotes strongly emphasized text. Strong elements are nearly always
rendered in bold text.</dd>

 <dt>abbr</dt>
 <dd>Indicates an abbreviated form.</dd>

 <dt>acronym</dt>
 <dd>Indicates an acronym.</dd>
 </dl>

Terms and definitions are not required to appear in alternating order. In other words, it is fine to introduce two
terms and apply one definition, or supply two or more definition elements for a single term. The HTML 4.01
Recommendation provides an informal example of definition list dialogues, where the speaker corresponds to the
term and the spoken words correspond to the definition. Many semantic (X)HTML experts consider this particular
example to be an abuse of the semantics of definitional lists and thus it should be avoided.

The presentation of definition lists should be controlled with style sheet properties. By default, user agents
generally display the definitions on an indent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.6.4. Nesting Lists

List elements may be nested within other lists. For example, you can add an unordered list within a definition
list, or a numbered list as an item within an unordered list. This example shows just one variation. The resulting
list is shown in Figure 10-2 .

 Mix Marinade

 2 slices ginger (smashed)
 1 T. rice wine or sake
 1 t. salt
 2 T. peanut oil

 Saute the seasonings
 Add fish sauce

Figure 10-2. Nested lists

Note that in order for the list markup to be valid, ul and ol elements may contain only li
elements. That means the nested list must be contained within a list item (li) and may
not be a child of the ul or ol element. Authors should also be careful to close all elements
so they are nested properly and do not overlap.

When unstyled unordered lists (ul) are nested within each other, browsers automatically display a different
bullet for each consecutive level, usually disc, then circle, then square. Nested ordered lists all receive the default
Arabic numbering system (1, 2, 3, etc.). Use style sheets to specify the marker system for each nested list level,
as appropriate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deprecated List Elements

The HTML and XHTML Transitional Recommendations include two deprecated list elements, dir and
menu . The dir (directory) element was designed for use in multicolumn displays. The menu element
was designed to be used as a single-column list of menu options. The W3C strongly discourages the
use of these elements and instructs authors to use unordered lists (ul) instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.7. Presentational Elements

There are a handful of (X)HTML elements that are explicitly presentation oriented. Sometimes called
"physical" styles, they provide instructions for the size, weight, or style of the font used to display the
element.

If you've been paying attention, you already know that Cascading Style Sheets are now the preferred
way to specify presentation instructions. Table 10-2 lists the presentational inline elements, along
with the preferred alternative for achieving the same visual effect.

Table 10-2. Presentational inline elements and style sheet alternatives

Element Description Alternative

b Bold Use the strong element instead if appropriate, or use the font-
weight property:

 font-weight: bold

big Big Use a relative font-size keyword to make text display slightly larger
than the surrounding text:

 font-size: bigger

i Italic Use the em element instead if appropriate, or use the font-style
property:

 font-style: italic

s (deprecated) Strike-
through

Use the text-decoration property to make text display with a line
through it:

 text-decoration: line-through

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description Alternative

small

Small

Use a relative font-size keyword to make text display slightly
smaller than the surrounding text:

 font-size: smaller

strike

(deprecated)

Strike-
through

Use the text-decoration property to make text display with a line
through it:

 text-decoration: line-through

tt

Teletype

Use the font-family property to select a specific or generic fixed-
width font:

 font-family: "Andale Mono", monospace;

u (deprecated)

Underline

Use the text-decoration property to make text display with a line
under it:

 text-decoration: underline

10.7.1. Font Elements

The font elementan inline element used to specify the size, color, and font face for the enclosed text
using the size, color, and face attributes, respectivelyis the poster child for what went wrong with
HTML. It was first introduced by Netscape Navigator as a means to give authors control over font
formatting not available with HTML at the time (and for good reason). Netscape was rewarded with a
temporary slew of loyal users, but the HTML standard and web development community paid a steep
price in the long run.

Another deprecated font-related element, basefont, is used to set the font face, color, and size for an
entire document when it is in the head of the document or for subsequent text when it is placed in the
body.

The font element is emphatically deprecated, and you will be ridiculed by your peers for using it. I'm
not kidding. Don't use it. For the sake of historical reference and thoroughness in documenting the
HTML and XHTML Transitional DTDs, it is included in this chapter with some basic explanation.

small

Small

Use a relative font-size keyword to make text display slightly
smaller than the surrounding text:

 font-size: smaller

strike

(deprecated)

Strike-
through

Use the text-decoration property to make text display with a line
through it:

 text-decoration: line-through

tt

Teletype

Use the font-family property to select a specific or generic fixed-
width font:

 font-family: "Andale Mono", monospace;

u (deprecated)

Underline

Use the text-decoration property to make text display with a line
under it:

 text-decoration: underline

10.7.1. Font Elements

The font elementan inline element used to specify the size, color, and font face for the enclosed text
using the size, color, and face attributes, respectivelyis the poster child for what went wrong with
HTML. It was first introduced by Netscape Navigator as a means to give authors control over font
formatting not available with HTML at the time (and for good reason). Netscape was rewarded with a
temporary slew of loyal users, but the HTML standard and web development community paid a steep
price in the long run.

Another deprecated font-related element, basefont, is used to set the font face, color, and size for an
entire document when it is in the head of the document or for subsequent text when it is placed in the
body.

The font element is emphatically deprecated, and you will be ridiculed by your peers for using it. I'm
not kidding. Don't use it. For the sake of historical reference and thoroughness in documenting the
HTML and XHTML Transitional DTDs, it is included in this chapter with some basic explanation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

font

 ...

This element is deprecated.

Attributes

Core (id, class, style, title), Internationalization

Deprecated attributes

color="#RRGGBB" or "color name"
face="typeface" (or list of typefaces)
size="value"

basefont

 <basefont>

This element is deprecated.

Attributes

id="text"

Deprecated attributes

color="#RRGGBB" or "color name"
face="typeface" (or list of typefaces)
size="value"

The font element adds no semantic value to a document and mixes presentation instructions in with
the document structure. Furthermore, it makes updating a site more labor intensive, because each
and every font element needs to be hunted down and changed, unlike style sheets that enable
elements throughout a site to be reformatted with one simple edit.

The font element has three attributes, all of which have been deprecated as well:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

color

Specifies the color of the text using a hexadecimal RGB value or color name.

face

Specifies a font or list of fonts (separated by commas) to be used to display the element.

size

Specifies the size for the font. The default text size is represented by the value "3." Values may
be provided as numbers (1 through 7) or as values relative to 3 (for example, the value -1 is
the same as the value 2, the value +3 is the same as 6).

A single font element may contain all of these attributes as shown:

 ...

All of the functionality of the font element has been replaced by style sheet properties. The font
element in the example could be handled with these style properties:

 em {font-family: sans-serif;
 font-size: 120%;
 color: white; }

For more information on using style sheets to control the presentation of fonts, see Chapter 18, and
kiss your font tags goodbye forever.

10.7.2. Subscript and Superscript

The subscript (sub) and superscript (sup) elements cause the selected text to display in a smaller size
and positioned slightly below (sub) or above (sup) the baseline. These elements may be helpful for
indicating chemical formulas or mathematical equations.

sub, sup

 _{...}, ^{...}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Core (id, class, style, title), Internationalization, Events

Figure 10-3 shows how these examples of subscript and superscript render in a browser.

 <p>H₂0</p>

 <p>E=MC²</p>

Figure 10-3. Subscript and superscript

10.7.3. Line Breaks

Line breaks may be added in the flow of text using the br element. The text following the br element
begins on a new line with no extra space added above. It is one of the few presentational elements
preserved in the XHTML 1.0 Strict and XHTML 1.1 DTDs.

br

Attributes

Core (id, class, style, title)

Deprecated Attributes

clear="none | left | right | all "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The br element is straightforward to use, as shown in this example.

 <p>This is a paragraph but I want
this text to start
on a new line in the browser.</p>

The clear attribute is used with the br element to specify where the next line should appear in
relation to floated elements. For example, if an image has been floated to the right, then adding the
markup <br clear="right" /> in the flow of text causes the new line to begin below the image on the
right margin. The value left starts the next line below any floated objects on the left margin. The
value all starts the next line below floats on both margins. The default, none, causes the next line to
start where it would normally.

10.7.4. Word Wrapping

Another text quality that is inherently presentational is word wrapping : the way lines break
automatically in the browser window. In CSS, you can prevent lines from wrapping by setting the
white-space property to nowrap. The HTML and XHTML Recommendations define no element for
preventing lines from wrapping. However, there are two nonstandard elements, nobr and wbr, that
were introduced by Netscape and are sometimes used to control whether and where lines wrap.

The nobr element, which stands for "no break," prevents its contents from wrapping. The wbr (word
break) element allows authors to specify the preferred point at which a line should break. These have
never been adopted into an HTML Recommendation, but they are still in use and supported by
Internet Explorer (all versions) and Mozilla. They are not supported in Safari and Opera.

Text and graphics that appear within the nobr element always display on one line, and are not
wrapped in the browser window. If the string of characters or elements within the nobr element is
very long, it continues off the browser window, and users must scroll horizontally to the right to see
it. Adding a br within a nobr element text causes the line to break.

The esoteric word-break element (wbr) is used to indicate a recommended word-break point within
content if the browser needs to do so. This may be useful if you have long strings of text (such as
code or URLs) that may need to fit in tight spaces like table cells. If the table cell is wide enough, the
text stays on one line, but if it is scaled smaller on someone's browser, the browser will wrap the line
at the wbr. All of these nonstandard presentational elements should be avoided as well.

There are standard character entities for "soft hyphen" that should perform the same function, but
they are inconsistently supported (the following section provides more information on character
entities). The ​ entity causes a conditional line break in Mozilla, Safari, and Opera, but not
Internet Explorer. The ­ entity works for Opera and Internet Explorer on Windows but is buggy
on Safari and is not supported by Mozilla.

Thanks go to Peter-Paul Koch for his wbr testing and summary on
Quirksmode.org.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.7.5. Horizontal Rules

In some instances, it is useful to add a visual divider between sections of a document. (X)HTML
includes the hr element for adding a horizontal rule (line) to a web page.

hr

 <hr />

Attributes

Core (id, class, style, title), Internationalization, Events

Deprecated attributes

align="center|left|right"

noshade="noshade"

size="number"

width="number" or "number%"

The HR element is a block-level element, so it always appears on its own line, usually with a bit of
space above and below as well. By default, browsers render a horizontal rule as a beveled
dimensional line, as shown in Figure 10-4.

 <p>These are some deep thoughts.</p>
 <hr />
 <p>And this is another paragraph of deep thoughts.</p>

Figure 10-4. A horizontal rule (default rendering)

The hr element includes a number of deprecated attributes for controlling the presentation of the
rule.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

size

Specifies the length of the rule in pixels or percentages.

width

Specifies the thickness of the rule in pixels.

align

Specifies the horizontal alignment of horizontal rules that are not the full width of the
containing element.

noshade

Turns off the dimensional shading on the rule and renders it in black.

It is possible to control the presentation of an hr with style sheets, as shown in this example, that
make the rule a one-pixel solid blue line. Note that the color and background colors are specified for
cross-browser compatibility.

 hr {height: 1px;
 width: 100%;
 color: blue;
 background-color: blue; }

The preferred method is to keep the presentational HR element out of the document entirely and
specify horizontal dividers using borders on the top or bottom edges of specific block elements, such
as before H1s.

 h1 {border-top: 1px solid blue;
 padding-top: 3em; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.8. Character Entity References

Characters not found in the normal alphanumeric character set, such as < and &, must be specified
in HTML and XHTML documents using character references . This is known as escaping the character.
Using the standard desktop publishing keyboard commands (such as Option-G for the © symbol)
within an HTML document will not produce the desired character when the document is rendered in a
browser. In fact, the browser generally displays the numeric entity for the character.

In (X)HTML documents, escaped characters are indicated by character references that begin with &
and end with ;. The character may be referred to by its Numeric Character Reference (NCR) or a
predefined character entity name.

A Numeric Character Reference refers to a character by its Unicode code point in either decimal or
hexadecimal form (for more information on Unicode and code points, see Chapter 6). Decimal
character references use the syntax &#nnnn;. Hexadecimal values are indicated by an "x": &#xhhhh;.

For example, the less-than (<) character could be identified as < (decimal) or <
(hexadecimal).

Character entities are abbreviated names for characters, such as < for the less-than symbol.
Character entities are predefined in the DTDs of markup languages such as HTML and XHMTL as a
convenience to authors, because they may be easier to remember than Numeric Character
References.

XHTML includes the XML entity declaration for the apostrophe ('). In
HTML, the apostrophe character entity was curiously omitted, so its numeric
reference (&039;) must be used instead.

Table 10-3 presents the (X)HTML character entities and numeric character references for commonly
used special characters. The complete list of character entities defined in HTML 4.01 and XHTML
1.0/1.1 appears in Appendix C.

Table 10-3. Common special characters and their character entities

Character Description Entity Decimal Hex

 Character space (nonbreaking space)

& Ampersand & & &

<
Less-than sign (useful for displaying markup on
a web page)

< < <

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Description Entity Decimal Hex

>
Greater-than sign (useful for displaying markup
on a web page)

> > >

' Apostrophe
' (XHTML
only)

' '

" Left curly quotes &lddquo; “ “

" Right curly quotes ” ” ”

™ Trademark ™ ™ ™

£ Pound symbol £ £ £

¥ Yen symbol ¥ ¥ ¥

© Copyright symbol © © ©

® Registered trademark ® ® ®

XML Character Entities

XML 1.0 defines five character entities that must be supported by all XML processors. The
XHTML DTDs explicitly declare these entities as well, in keeping with recommended
practice for XML languages.

Less than (<) < <

Greater than (>) > >

Ampersand (&) & &

Apostrophe (') ' '

Quotation mark (") " "

The only significant change is that XHTML includes an entity for the apostrophe character
('), which was curiously omitted from HTML. For backward compatibility, it is
recommended that authors use the numeric reference for apostrophe (') instead.

>
Greater-than sign (useful for displaying markup
on a web page)

> > >

' Apostrophe
' (XHTML
only)

' '

" Left curly quotes &lddquo; “ “

" Right curly quotes ” ” ”

™ Trademark ™ ™ ™

£ Pound symbol £ £ £

¥ Yen symbol ¥ ¥ ¥

© Copyright symbol © © ©

® Registered trademark ® ® ®

XML Character Entities

XML 1.0 defines five character entities that must be supported by all XML processors. The
XHTML DTDs explicitly declare these entities as well, in keeping with recommended
practice for XML languages.

Less than (<) < <

Greater than (>) > >

Ampersand (&) & &

Apostrophe (') ' '

Quotation mark (") " "

The only significant change is that XHTML includes an entity for the apostrophe character
('), which was curiously omitted from HTML. For backward compatibility, it is
recommended that authors use the numeric reference for apostrophe (') instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. Creating Links
The HTML 4.01 specification puts it simply and clearly: "A link is a connection from one web resource
to another." This ability to create hyperlinks from one document to another is what makes HTML
unique among document markup languages and is the key to its widespread popularity. You can
create a link to any web resource, including (but not limited to) another HTML document, an image, a
program, or a particular element within an HTML document.

This chapter focuses on these HTML elements related to linking and building relationships between
documents.

a Anchor (link)

base Provides a base pathname

link Establishes relationship between documents

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1. Simple Hypertext Links

The anchor (a) element is used to identify a string of text or an image that serves as a hypertext link
to another document.

a

<a>...

Attributes

Core(id, class, style, title)
Internationalization
Events(plus onfocus, onblur)
accesskey="character"

charset="charset"

coords="x,y coordinates"

HRef="URL"

id="text"

hreflang="language code"

name="text"

rel="relationships"

rev="relationships"

shape="rect|circle|poly|default"

tabindex="number"

target="text"

type="media type"

The HRef attribute provides the pathname (URL) of the document to which you want to link. URLs can
be absolute or relative, as discussed in the next sections.

A text link is marked up like this:

I am linking to you!

To make an image a link, enclose the image element in an anchor as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, most graphical browsers display linked text underlined and in blue, but this presentation
can be altered with style sheets. Linked images appear with a blue border by default unless you
change this setting with the border style property or the deprecated border attribute in the img
element.

11.1.1. Absolute URLs

An absolute URL is made up of the following components: a protocol identifier, a hostname (the name
of the server machine), and the path to the specific filename. When you are linking to documents on
other servers, you need to use an absolute URL. The following is an example of a link with an
absolute URL:

...

Here, the protocol is identified as http (HyperText Transfer Protocol, the standard protocol of the
Web), the host is www.littlechair.com, and the pathname is web/index.html.

11.1.2. Relative URLs

A relative URL provides a pointer to another document relative to the location of the current
document. The syntax is based on pathname structures in the Unix operating system, which are
discussed in Chapter 4. When pointing to another document within your own site (on the same
server), it is common to use relative URLs.

For example, if I am currently in resume.html (identified here by its full pathname):

www.littlechair.com/web/work/resume.html

and I want to put a link on that page to a document named bio.html that is in the same directory:

www.littlechair.com/web/work/bio.html

I could use a relative URL as the href attribute value as follows:

...

http://www.littlechair.com/web/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the same example, to link to the file index.html in a higher-level directory (web), I could use
the relative pathname to that file as shown:

This relative URL is the equivalent to the absolute URL http://www.littlechair.com/web/index.html.

11.1.3. Establishing a base

By default, a relative URL is based on the current document. You can change that by placing the base
element in the document header (head) to state explicitly the base URL for all relative pathnames in
the document.

base

<base />

Attributes

id="text"(XHTML only)

href="url"(Required)
target="name"

The base element may appear only in the head of the document, and it should appear before any
other element with an external reference. The browser uses the specified base URL (not the current
document's URL) to resolve relative URLs. The base element is also useful in specifying a target frame
for relative links in a framed document (see Chapter 14).

http://www.littlechair.com/web/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2. Linking Within a Document

By default, when you link to a page, the browser displays the top of that page. You may also link to a
particular point in a web page (called a fragment).

Linking to document fragments is most often used as a navigational aid by creating a hyperlinked
table of contents at the top of a very long scrolling web page. Users can see the major topics at a
glance and quickly get to the portions that interest them. When linking down into a long page, it is
generally a good idea to add links back to the top of the page or to the table of contents. You can
also link to fragments in other documents (as long as they have been named).

Linking to specific destinations in a document is a two-step process in which you give an identifying
name to an element and then make a link to that marker.

11.2.1. Naming a Fragment

HTML provides two ways to identify a document fragment: by inserting an anchor (a) element with
the name attribute (instead of href) or by adding the id attribute to any HTML element. Both methods
act as a marker that can be referenced from a link later.

XHTML documents must use the id attribute for all fragment identifiers in order to be well-structured
XML. Unfortunately, the id attribute is not universally supported by all browsers for this purpose
(support is lacking in Version 4 browsers). To ensure maximum backward and forward compatibility,
the XHTML Recommendation suggests redundant markup using both id and name in the a element.

In this example, a named anchor is used to let users link directly to a "Stock Quotes" section of a
web document called dailynews.html. First, the heading is marked up as a named anchor with the
name "stocks." Named anchors receive no special style treatment by default (in other words, they
are not underlined like anchors with the href attribute).

<h1>Daily Stock Quotes</h1>

The same fragment might also be identified right in the H1 element as shown here (if Version 4
browsers don't need to be supported).

<h1 id="stocks">Daily Stock Quotes<h1>

The value of the name and id attributes must be unique within the document (in other words, two
elements can't be given the same name).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2.2. Linking to a Fragment

The second step is to create a link to the fragment using a standard anchor element with its href
attribute. Fragment identifiers are placed at the end of the pathname and are indicated by the hash
(#) symbol (formally known as an octothorpe).

To link to the stocks fragment from within dailynews.html, the markup would look like this:

Check out the Stock Quotes

11.2.3. Linking to a Fragment in Another Document

You can create a link to a named fragment of any document on the Web by using the complete
pathname immediately followed by the fragment identifier. Of course, the fragment identifiers would
have to be in place already. To link to the stocks section from another document in the same
directory, use a relative pathname as follows:

Go to today's Stock Quotes

Use an absolute URL to link to a fragment on another site, as in:

...

http://www.website.com/document.html#fragment
http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3. Targeting Windows

The problem with a hypertext medium is that when users click on an interesting link that takes them
off your page, they might never come back. One solution to this problem is to make the target
document appear in a second browser window that opens automatically. In that way, your page is
still readily available in the background.

This technique is not without controversy, however. Windows that open automatically, also known as
pop-up windows, are now strongly associated with intrusive web advertising. The population's
distaste for them is so strong that there are a slew of pop-up blocker programs on the market and
even built right into browsers. Consider whether a pop-up window is the best solution given the fact
that some users may not see that content. Pop-up windows are also problematic from the standpoint
of usability and accessibility. If you do use a pop-up window, it is advised that you let users know
what to expect by adding a comment such as "link opens in new window."

The following technique simply opens a new browser window but does not
control its size. To do that, you must use JavaScript.

To launch a new browser window for the linked document, use the target attribute in the a element.
Setting the target attribute to the standardized "_blank" value causes the browser to open a fresh
browser window. For example:

...

Note that _blank opens a new browser window every time. So if you set every link on your page to
target a _blank window, every link will launch a new window, potentially leaving your user with a
mess of open windows.

A better method, especially if you have more than one link, is to give the targeted window a specific
name, which can then be reused by subsequent links. The following link will open a new window
called "display":

...

All links that target a window called "display" will now load into that same browser window.

The target attribute is most often used in conjunction with framed documents. The syntax and
strategy for using the target attribute with framed documents is discussed in Chapter 14.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.4. Alternative Protocols

Linking to other web pages using the HTTP protocol is by far the most common type of link, but there
are several other types of transactions that can be made using other standard Internet protocols.

11.4.1. Mail Link (mailto:)

The mailto protocol can be used in an a element to automatically send an email message to the
recipient, using the browser's email application or an external email application. Note that the
browser must be configured to support this protocol, so it will not work for all users. The mailto
protocol has the following components:

mailto:username@domain

A typical mail link might look like this:

Send Jennifer email

You can also experiment with adding information within the mailto URL that automatically fills in
standard email fields such as Subject or cc:.

mailto:username@domain?subject=subject

mailto:username@domain?cc=person1

mailto:username@domain?bcc=person2

mailto:username@domain?body=body

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Additional variables are appended to the string with an ampersand (&) symbol as shown:

mailto:username@domain?subject=subject&cc=person1&body=body

In XHTML, the ampersand (&) symbol must be escapedthat is, expressed as a character entity
(&) in the stringfor the document to be valid. The same link in XHTML would be marked up like
this:

mailto:username@domain?subject=subject&cc=person1&body=body

Spaces within subject lines need to be written as %20 (the space character in hexadecimal notation).
The following sample mail link employs these additions:

 Email for
 Jen

When you put a link to an email address on a web page, the address is prone
to getting "spidered" (automatically indexed) and added to spam mailing lists.
To avoid getting spammed, do not put your intact email address in the source
document, either as a mailto link or in the content itself. An alternative is to
spell out the email address (such as "jen at oreilly dot com") so it is
understandable to humans but not recognizable to spambots.

11.4.2. FTP Link (ftp://)

You can link directly to a file on an FTP server. When the user clicks on the link, the file downloads
automatically using the browser's built-in FTP functions and is saved on the user's machine. If the
document is on an anonymous FTP server (no account name and password are required), the FTP
link is simple:

...

To link to an FTP server that requires the user to log in, the format is:

...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For security purposes, it is highly recommended that you never include both the username and
password to a server within an HTML document. If you use the syntax user@server/path, the users
will be prompted to enter their passwords in a dialog box.

By default, the requested file is transferred in binary format. To specify that the document should be
transferred as an ASCII file, add ;type=a to the end of the URL:

...

The variable type=d identifies the pathname as a directory and simply displays its contents in the
browser window. The variable type=i specifies image or binary mode, which is the default but may
also be given explicitly.

Here are some examples of FTP links:

...

...

11.4.3. Other Links

Table 11-1 lists URL types that are not as well known or useful as mailto or ftp://, but are available.
As with other links, place these URLs after the href attribute within the anchor element.

Table 11-1. Alternative link protocols

Type Syntax Use

File file://server/path

Specifies a file without indicating the protocol. This
is useful for accessing files on a contained site
such as a CD-ROM or kiosk application, but it is
less appropriate over networks (such as the
Internet).

News
news:newsgroup

news:message_id

Accesses either a single message or an entire
newsgroup within the Usenet news system. Some
browsers do not support news URLs, so you
should avoid using them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Syntax Use

NNTP nntp://server:port/newsgroup/article

Provides a complete mechanism for accessing
Usenet news articles. The article is served only to
machines that are allowed to retrieve articles from
this server, so this URL has limited practical use.

Telnet telnet://user:password@server:port/

Opens a Telnet session with a desired server. The
user and password@ elements are optional and
follow the same rules as described for ftp://.

Gopher gopher://server:port/path

Accesses a document on a gopher server. The
gopher document retrieval system was eclipsed by
the World Wide Web, but some gopher servers are
still operating.

NNTP nntp://server:port/newsgroup/article

Provides a complete mechanism for accessing
Usenet news articles. The article is served only to
machines that are allowed to retrieve articles from
this server, so this URL has limited practical use.

Telnet telnet://user:password@server:port/

Opens a Telnet session with a desired server. The
user and password@ elements are optional and
follow the same rules as described for ftp://.

Gopher gopher://server:port/path

Accesses a document on a gopher server. The
gopher document retrieval system was eclipsed by
the World Wide Web, but some gopher servers are
still operating.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.5. Linking Documents with link

The link element defines a relationship between the current document and another external
document. It is not the same as a hypertext link because it is not accessible by clicking or otherwise
selecting a hyperlink. It is always placed in the header (head) of the document. There can be multiple
link elements in a document.

link

<link />

Attributes

Core(id, class, style, title), Internationalization, Events
charset="charset"

href="URL"

HReflang="language code"

media="all|screen|print|handheld|projection|tty|tv|projection|braille|aural"

rel="relationships"

rev="relationships"

target="name"

type="resource"

The most important attributes are href, which points to the linked file, and rel, which describes the
relationship(s) from the source document to the target document. The rev attribute describes the
reverse relationship(s) (from the target back to the source).

A variety of attributes make the link element very versatile, but it is not currently used to its full
potential. By far, the most popular application of the link element is for referring to an external style
sheet. In this example, the type attribute identifies the MIME content type of the linked document as
a Cascading Style Sheet, which is required in XHTML:

<head>
<link href="wholesite.css" rel="stylesheet" type="text/css" />
</head>

Note the use of the "/" at the end of the link element to explicitly mark it as an empty element for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XHTML, while leaving a space before the "/" for compatibility with Version 4 browsers.

Another use as recommended in the HTML 4.01 specification is to refer to an alternate version of the
document in another language. The following example creates a link to a French version of the
document:

<head>
<link rel="alternate" href="translations/french.html"
 type="text/html" hreflang="fr" />
</head>

By using the next and prev values for the rel attribute, you can establish the document's position in
a sequence of documents, as shown in the next example. This information could be used by browsers
and other tools to build navigation menus, tables of contents, or other link collections.

<head>
<title>Chapter 11: Creating Links</title>
<link rel="prev" href="chapter10.html" />
<link rel="next" href="chapter12.html" />
</head>

Table 11-2 lists the accepted values for the rel and rev attributes and their uses. These attributes
and values can be used in the a element as well as link to define relationships for a specific link.
Again, these features are not widely used, nor are they well supported by browser user interfaces.

Table 11-2. Link types using the rel attribute

Value Relationship

alternate

Substitute version of the current document, perhaps in another language or
optimized for another display medium. This value is used frequently in style sheet
switching.

stylesheet External Cascading Style Sheet; used with type="text/css".

start The first document in a collection or series.

next The next document in a series.

prev The previous document in a series.

contents (or
toc)

A document providing a table of contents.

index A document providing an index for the current document.

glossary A document containing a glossary of terms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Relationship

copyright A document containing copyright information for the current document.

chapter A document serving as a chapter in a collection of documents.

section A document serving as a section in a collection of documents.

subsection A document serving as a subsection in a collection of documents.

appendix A document serving as an appendix.

help A help document.

bookmark
A document that serves as a bookmark; the title attribute can be used to name the
bookmark.

copyright A document containing copyright information for the current document.

chapter A document serving as a chapter in a collection of documents.

section A document serving as a section in a collection of documents.

subsection A document serving as a subsection in a collection of documents.

appendix A document serving as an appendix.

help A help document.

bookmark
A document that serves as a bookmark; the title attribute can be used to name the
bookmark.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. Images and Objects
In addition to text content, web pages may include a wide range of multimedia objects, including
images, image maps, Java applets, video, Flash movies, even other HTML documents. This chapter
focuses on the (X)HTML elements defined for adding images and media objects, including:

img Adds an image

map The map used for an image map

area A geometric region in an image map

object A generic media object

param Specifies values for an object necessary at runtime

embed Embeds media requiring plug-ins (nonstandard)

noembed Content displayed if embedded media is not supported (nonstandard)

applet Adds an applet (deprecated)

iframe A floating frame that displays an external HTML document

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1. Inline Images

Inline images are images that occur in the normal flow of the document's content. As inline elements,
they affect the visual display of other elements in the flow, unlike background images, which render
behind elements. Images are added to the document with the img element. Images are considered to
be replaced elements because the actual content resides in external files rather than in the source
document.

The HTML 4.01 Recommendation allows images to be added using the generic
object element, as demonstrated later in this chapter. Because the object
method is not universally supported, the img element is still the primary
element used to place images in web documents.

img

Attributes

Core (id, class, style, title), Internationalization, Events
alt="text" (Required)
ismap

height="number"

longdesc="URL"

lowsrc="URL"

name="text"

src="URL" (Required)
usemap="URL"

width="number"

Deprecated attributes

align="absbottom|absmiddle|baseline|bottom|center|left|middle|

right|top"

border="number"

hspace="number"

vspace="number"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1.1. Image Formats and Usage

Web images must be in one of the three web-compatible formats: GIF, JPEG, or PNG. Furthermore,
the files should be named with the proper suffixes--.gif, .jpeg or .jpg, and .png, respectivelyso that
your web server sends the proper Content-Type--image/gif, image/jpeg, and image/png,
respectivelywhich the browser uses to recognize the image format. These graphic file formats, as well
as other requirements for putting images online, are discussed in detail in Part V.

Inline images are used in a variety of ways:

As a simple image

An image can be used on a web page much as it is used in printas a static image that adds
information, such as a company logo or an illustration.

As a link

An image can also be used to link to another document as an alternative to text links.

As an image map

An image map is a single image with multiple "hotspots" that link to other documents. There is
nothing special about the image itself; it is an ordinary inline image. Special HTML markup and
map files link pointer coordinates with their respective URLs. The upcoming "Image Maps"
section of this chapter includes a full explanation of how image maps work and how to create
them.

Images (transparent GIFs, in particular) have also been used as spacing
devices, but now that we have better control of space and alignment with
Cascading Style Sheets, this use of spacer images is outdated and must be
avoided in contemporary web design.

With the emergence of standards-driven web design in recent years, there has been a shift away
from using inline images for purely decorative purposes. Images that are not part of the content and
only contribute to the presentation of the page are commonly placed as background images using
CSS instead. Images may be applied to the background of any element (not just body) using the
background-image or shortcut background style properties and they don't need to tile. Chapter 24
includes examples of several CSS image replacement techniques.

There are several benefits to specifying decorative images only in an external style sheet and keeping
them out of the document structure. Not only does it make the document cleaner and more
accessible, it also makes it easier to make changes to the look and feel of a site than when
presentational elements are interspersed in the content. See Chapter 20 for more details on CSS
background images. For inspiration on how visually rich a web page can be with no img elements at
all, see the CSS Zen Garden site at www.csszengarden.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Without further ado, it is time to look at an example of img element markup.

12.1.2. img Element Syntax

There are over a dozen attributes that can be applied to the img element to affect its display, but the
only required attributes are src, which provides the URL of the image file, and alt for providing text
for browsers that cannot (or have been asked not to) display images. The syntax for a minimal image
element looks like this:

The URL provided by the src attribute may be absolute (including the protocol and domain name) or
relative to the current document (using a relative pathname). The conventions for relative
pathnames are described in detail in Chapter 4.

Figure 12-1 shows an inline image resulting from this markup.

<p>Star light Star bright.</p>

Figure 12-1. An image placed within a line of text

12.1.2.1. Default presentation

As the example makes clear, because img is an inline element, it does not introduce any line breaks
or extra space. By default, the bottom of an image aligns with the baseline of surrounding text. The
alignment and position of the image may be changed with style sheet rules as discussed in Chapters
18 and 21. There are also a number of deprecated attributes for controlling the presentation of
images that are briefly introduced later in this chapter.

12.1.2.2. Alternative text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is no guarantee that an image will be displayed. It may be corrupted or not found, or users
may be using a text-only or speech browser that doesn't support images. When an image is not
displayed, graphical browsers display a generic broken image icon in its place. Non-graphical
browsers generally just write out "[image]." Either of these instances can be a dead end for users
and make certain content inaccessible.

The alt attribute allows you to specify a string of alternative text to be displayed in place of the
image when the image is unavailable. It is also what non-graphical browsers write in place of images.
Figure 12-2 shows one possible rendering for this markup if the image file should fail to load.

<p>First star I see tonight.
</p>

Figure 12-2. Alternative text may be displayed when an image is
unavailable

Firefox displays the alternative text as though it were in the text flow. The Safari browser does not
display alternative text for missing graphics. Some browsers display alternative text as a pop-up "tool
tip" when the mouse rests on the image area, but such behavior is nonstandard is not something to
depend on.

The HTML 4.01 specification declared alt to be a required attribute within the img element (although
an image will still display without it). Taking the extra time to provide alternative text for your images
is the simplest way to make your page accessible to the greatest number of readers.

The W3C recommends that alternative text be provided only when the image contains content
relevant to the document, not when the image is purely decorative. For example, the alternative text
"red line" is not useful and only slows down document processing and may be frustrating for users
using spoken browsing devices. An alt attribute with an empty string (alt="") is recommended
instead.

12.1.3. Specifying Width and Height

Although src and alt are the only required attributes in the img element, width and height are often
used because they speed up page display. The width and height attributes simply indicate the
dimension of the image in pixels, such as:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With this information, the browser can lay out the page before the images download.

CSS width and height properties are preferred to the presentational attributes,
and will also ensure that the page can be assembled before the images arrive.

Without width and height values, the page may be redrawn several times, first without images in
place, and again each time new images arrive. It is worthwhile to take the time to include accurate
width and height information in every img element.

If the width and height values specified are different than the actual dimensions of the image, the
browser resizes the image to match the specified dimensions. If you specify a percentage value for
width and height, some later browsers resize the image to the desired proportions.

Although this effect may be convenient and prevent an extra trip to the image editor, in some
browsers, it just results in a pixelated, poor quality image, as shown in Figure 12-3.

Figure 12-3. Resizing an image with width and height attributes

Reducing the dimensions of an image with markup is a bad practice and is
strongly discouraged. In addition to resulting in poor image quality, it forces an
unnecessarily large file download on the user when a much smaller file would
do. Changing the image dimensions for the final presentation does not reduce
the file size.

12.1.4. Deprecated img Attributes

There are a number of attributes in the Transitional DTDs that have been deprecated because they
control presentational aspects of the image. As with most deprecated attributes , they have been
replaced with more versatile style sheet properties. This section provides an introduction to these
attributes and suggests style sheet alternatives.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are authoring using the XHTML Strict or XHTML 1.1 DTDs, using any of these attributes will
cause your document to be invalid. Use the style sheet methods listed instead.

12.1.4.1. Vertical alignment

By default, the bottom of an image aligns with the baseline of the surrounding text (see Figure 12-1),
but there are ways to change the vertical alignment. The preferred method is to use style sheets.
Using HTML markup alone, the HTML 4.01 Recommendation includes the deprecated align attribute
with the values top, middle, and bottom for vertical alignment. The HTML 3.2 Recommendation also
included the values texttop, absmiddle, baseline, and absbottom, but they were dropped from future
specifications and are only partially supported by modern browsers. Figure 12-4 shows the effects of
these alignment values.

Figure 12-4. Vertical alignment values

The preferred CSS method for specifying vertical alignment is via the vertical-align property, which
may be used to change the alignment of an image relative to the baseline or the height of the line it
occupies. The accepted values are top, text-top, bottom, text-bottom, middle, sub, super, and
baseline (the default), as well as specific length or percentage values. See Chapter 18 for
explanations of vertical alignment with CSS.

12.1.4.2. Horizontal alignment

The align attribute is also used to align an image on the left or right margin of the page by using the
values left or right, respectively. What makes left and right alignment special is that, in addition to
placing the image on a margin, it allows the text to wrap around it. This is called floating the image.
Figure 12-5 shows how images are displayed when set to align to the left and right.

<p>An Oak and a Reed were arguing
about their strength...</p>
<p>An Oak and a Reed were arguing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

about their strength...</p>

The CSS float property is the preferred method for positioning images (or any element) against the
right or left edges of the containing block and allowing the following content to wrap around it.
Chapter 21 discusses floating elements.

12.1.4.3. Adding space around aligned images

When text flows around an image, browsers allow it to bump up against the image's edge. Usually, it
is preferable to have a little space between the image and the surrounding text. In HTML, you
provide this space by using the vspace and hspace attributes within the img element.

Figure 12-5. Text wraps around floated images

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Right Alignment Without Text Wrap

Using the align="right" attribute to place an image against the right margin
automatically results in text wrapping around the image. If you want to move an image
to the right without the wrap, put the image in a paragraph (p), and then align the
paragraph to the right, as shown:

<p align="right"></p>
<p>An Oak and a Reed were arguing...</p>

In CSS, to align an element with no text wrap, apply the text-align property to a block-
level element that contains the image.

The vspace (vertical space) attribute holds a specified number of pixels of space above and below an
aligned image. Space to the left and the right is added with hspace (horizontal space). Note that
space is always added symmetrically (both top and bottom, or on both sides), and it is not possible
with these attributes to specify an amount of space along a particular side of the image (you can,
however, do this with style sheets). Figure 12-6 shows an image aligned with the hspace attribute set
to 12.

Figure 12-6. Image alignment with horizontal spacing

The preferred CSS method for adding space around the sides of the image is to simply apply an
amount of margin around it. The various margin properties allow you to apply different amounts of
space to each side of the floated image. CSS margins are discussed in Chapter 19.

12.1.4.4. Stopping text wrap

Text automatically wraps to fill the space along the side of an aligned image (or other inline object).
To stop the text from wrapping and start the next line against the margin (instead of against the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

image), insert a line break (br) with the clear attribute.

The clear attribute gives the browser directions on where to place the new line. It has three possible
values: left, right, and all. If an image is aligned right, insert <br clear="right" /> to begin the
text below the image against the right margin. For left-aligned images, use <br clear="left" />. The
<br clear="all" /> element starts the text below the image on both margins, so it may be the only
value you'll ever need. Figure 12-7 shows the result of this markup.

<p>An
Oak and a Reed were arguing about strength. <br clear="all" />When a strong
wind came up,...

Figure 12-7. The clear attribute starts the next line below an aligned
image

The preferred CSS method for preventing the following element from starting next to the floated
image is to apply the clear property to the following element and specify the side (left, right, or
both) that you want to start below any floated objects. Clearing is discussed in Chapter 21.

12.1.4.5. Borders

By default, when an image is linked, most browsers display a two-pixel-wide border around the
image in the same color as the text links on the page (bright blue by default). In most cases, this
blue border is visually unappealing, particularly around an image with transparent edges, but it is
quite simple to turn it off using the border attribute.

The border attribute specifies the width of the border in number of pixels. Specifying a value of zero
turns the borders off:

Of course, if you are fond of the borders, you could just as easily make them really wide by setting a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

higher number value.

In the preferred CSS method, you set the border width for all the images in a document with one
simple style rule using the border property:

img {border: 0;}

For more information on controlling the borders around images, see Chapter 19.

12.1.5. Image Loading Techniques

A couple of simple practices, which may not be obvious from simply looking at HTML markup, can
help you optimize your pages and improve response time.

12.1.5.1. Reuse images whenever possible

When a browser downloads an image file, it stores it in the disk cache (a space for temporarily
storing files on the hard disk). That way, if it needs to redisplay the page, it can just pull up a local
copy of the HTML and image files without making a new trip out to the remote server.

When you use the same image repetitively in a page or a site, the browser only needs to download
the image once. Every subsequent instance of the image is grabbed from the local cache, which
means less traffic for the server and faster display for the end user.

The browser recognizes an image by its entire pathname, not just the filename, so if you want to
take advantage of file caching, be sure that each instance of your image is pointing to the same
image file on the server (not multiple copies of the same image file in different directories).

12.1.5.2. Link to large images

Remember that when designing for the Web, you must always consider the time it takes to download
files. Images are particularly bandwidth-hungry, so you should use them with care. One successful
strategy for providing access to very large images (with correspondingly large file sizes) is to provide
a postage-stamp-size preview image that links to the full-size image. Be sure to provide information
necessary to help users decide whether they want to spend the time clicking the link, such as a
description of what they're going to get and the file size of the image (so they can make an estimate
of how long they'll need to wait).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.2. Image Maps

Ordinarily, placing an image within an anchor element makes the entire image a link to a single
document when the user clicks anywhere on the image. As an alternative, you can create an image
map that contains multiple links, or "hotspots," within a single image. The effect is created with HTML
markup (some image maps also use scripts on the server) and an ordinary image that serves as a
backdrop for the pixel coordinates.

Favicons

Another type of image you often see in association with web sites is the favicon, a small
icon that appears with the name or URL of a site in the Favorites list (in Internet Explorer
6), or the location bar and tabs in a tabbed browsing interface (Mozilla and Safari).
Favicons are not related to (X)HTML image markup as discussed in this chapter, but this
is as logical a point as any to discuss how to create a favicon for your site.

Creating the Icon

A favicon must be saved in the Windows .ico format. The .ico format is capable of storing
several images and is typically used to hold several size variations of the same image.
The favicons that appear in the browser location bar or favorites list are 16 x 16 pixels.
Some designers also include a 32 x 32 pixel version that may be used for as desktop
shortcut icon.

Once you have designed an icon, it is recommended to save it as a PNG (to take
advantage of transparency) and then convert it to .ico format. File converters for both
Windows and Mac are listed at the end of the sidebar. When you save the file, it must be
named exactly favicon.ico to be recognized by all favicon-supporting browsers.

Installing the Favicon

The simplest way to install a favicon is simply to upload the favicon.ico file to the root
directory of the site. It is also possible to install favicons to other directories for instances
when you wish to use different icons for different areas of the site. While some browsers
will find the favicon with no markup at all, to play it safe, include link elements in the
head of the document that point to the icon you intend to use. A relative URL may also be
provided, such as /favicon.ico.

<link rel="shortcut icon" href="http://domain.tld/path/favicon.ico"
type="image/x-icon" />

<link rel="icon" href=" http://domain.tld/path/favicon.ico" type="image/x-
icon" />

http://domain.tld/path/
http://domain.tld/path/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Providing links for "icon" and "shortcut icon" covers all bases of browser compatibility. A
relative URL may also be provided, such as /favicon.ico.

Favicon Resources

For an in-depth tutorial on creating favicons, I recommend
www.december14.net/ways/rest/favicon.shtml.

To convert a graphic to ICO format on a Macintosh, try the IconBuilder plug-in for
Photoshop, available from IconFactory (www.iconfactory.com/iconbuilder.asp).

Windows users have more options, including RealWorld Icon Editor (www.rw-
designer.com/3D_icon_editor.php) and IconCool Studio
(www.iconcool.com/iconcoolstudio.htm). There is also a free command-line converter,
called png2ico, by Matthias Benkmann, which is available at
www.winterdrache.de/freeware/png2ico/index.html.

There are two types of image maps: client-side and server-side. For client-side image maps , the
coordinate and URL information necessary to create each link is contained right in the document. The
process of putting the pieces together happens in the browser on the user's machine (thus, client-
side). For server-side image maps , as the name suggests, the map information resides on the server
and is processed by the server or a separate CGI script.

Client-side image maps are far more prevalent than server-side, which are rarely used due to critical
accessibility issues. In fact, due to new techniques and philosophies in web design, even client-side
image maps are waning in popularity. Image maps generally require text to be sunk into an image,
which is sternly frowned upon. In terms of site optimization, they force all regions of the image to be
saved in the same file format, which may lead to unnecessarily large file sizes.

That said, take a look at what it takes to make a client-side image map.

12.2.1. Creating Image Maps

The key to making image maps work is a text-based map that associates pixel coordinates with
URLs. This map is handled differently for client-side and server-side (as outlined in the following
sections), but the outcome is the same. When the user clicks somewhere within the image, the
browser passes the coordinates of the mouse pointer to the map, which, in turn, generates the
appropriate link.

12.2.1.1. Available tools

Although it is possible to put together image map information manually, it is much easier to use a
tool to do it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you use any of the Macromedia or Adobe web design software packages, you're in luck, because
there are image map tools built into both their HTML editors and web image programs. The image
map tools in Dreamweaver and GoLive are particularly handy because you can create the image map
right in the current document window.

As of this writing, the future of these specific products is unclear based on the
initial announcement of Adobe's acquisition of Macromedia. It is fairly certain
that some sort of image map tool will be available when the dust settles.

There are also standalone image map creation utilities available as shareware. One popular option is
MapEdit, by Tom Boutell, available at www.boutell.com/mapedit/. It costs $10 and is available for
Windows, Mac OS X, and Unix. A search for "image map tool" on your search engine of choice will
turn up many more options.

12.2.1.2. Creating the map

Regardless of the tool you're using, and regardless of the type of image map you're creating, the
process for creating the map information is basically the same. Read the documentation for your
image map tool to learn about features not listed here.

Open the image in an image map program.1.

Define areas within the image that should be clickable by using the appropriate shape tools:
rectangle, circle, or polygon (for tracing irregular shapes).

2.

While the outline of the area is still highlighted, enter a URL for that area in the text entry field
provided, as shown in Figure 12-8.

3.

Continue adding shapes and their respective URLs for each clickable area in the image.4.

For server-side image maps , you also need to define a default URL, which is the page that
displays if users click outside a defined area. Many tools have a prominent field for entering the
default URL, but on others, you may need to look for it under a pull-down menu.

5.

Select the type of image map (client- or server-side) you want to create. Note that server-side
image maps are strongly discouraged.

6.

Save or export the map information. Server-side image maps are saved in a map definition file
(.map) that resides on the server. For client-side image maps, you may need to copy and paste
the resulting map code into your HTML file.

7.

Figure 12-8. Creating map information (shown in Dreamweaver MX)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you do not have an image map tool, it is possible to write out the map information by hand
following the examples in this chapter. Simply note the pixel coordinates of the shapes as indicated in
an image editing program (in Photoshop, they are provided in the Info palette) and type them into
the appropriate place in the map file.

12.2.2. Client-Side Image Maps

Client-side image maps have three components:

An ordinary image file (.gif, .jpeg, or .png)

A map delimited by the map element containing the coordinate and URL information for each
clickable area (described by area elements contained within the map element)

The usemap attribute within the image element (img) that indicates which map to reference

map

<map>...</map>

Attributes

Core (id, class, style, title), Internationalization, Events
id="text"

name="text"

area

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<area />

Attributes

Core (id, class, style, title), Internationalization, Events, Focus
alt="text" (Required)
coords="values"

href="url"

nohref

shape="rect|circle|poly|default"

target="text"

There are many advantages to using client-side image maps . They are self-contained within the
HTML document and do not rely on a server to function. This means you can test the image map on
your local machine or make working site demos for distribution on disk. It also cuts down on the load
on your server and improves response times. In addition, complete URL information displays in the
status bar when the user mouses over the hotspot (server-side image maps display only
coordinates).

12.2.2.1. Sample client-side image map

This is the markup for the client-side image map pictured in Figure 12-9. While most authors use a
web authoring tool to generate map markup such as this, it is helpful to have an understanding of
what is happening in the map, area, and img elements. Each component of the image map will be
discussed in turn.

<map name="spacey">
<area shape="rect" coords="203,23,285,106"
href=http://www.nasa.gov alt=""/>
<area shape="circle" coords="372,64,40" href="mypage.html" alt=""/>
<area shape="poly"
coords="99,47,105,41,94,39,98,34,110,35,115,28,120,35,133,38,133,
42,124,42,134,58,146,56,157,58,162,63,158,67,141,68,145,72,155,
73,158,75,159,80,148,83,141,83,113,103,87,83,72,83,64,80,64,76,
68,73,77,72,79,63,70,59,67,53,68,47,78,45,89,45,99,47"
href="yourpage.html" alt=""/>
</map>

Figure 12-9. An image map

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<map name="spacey">

This marks the beginning of the map. You must give the map a name. Within the map element
there are area elements for each hotspot within the image.

<area shape="rect" coords="203,23,285,106" href=http://www.nasa.gov alt=""/>

Each area element contains the shape identifier (shape), pixel coordinates (coords), and the
URL for the link (href). In this case, the shape is the rectangle (rect) that corresponds to the
black square in the center of the image. The value of the coords attribute identifies the top-left
and bottom-right pixel positions of the rectangle (coords="x1,y1,x2,y2"). Some browsers also
support the nonstandard rectangle as an equivalent to rect, but this is not widely supported.

In each area element, the alt attribute provides the alternative text for that region of the
image. The alt attribute is a required attribute for the area element.

<area shape="circle" coords="372,64,40" href="mypage.html" alt=""/>

This area corresponds to the circular area on the right of the image in Figure 12-9. Its shape is
circle. For circles, the first two coordinates identify the position of the center of the circle and
the third value is its radius in pixels (coords="x,y,r"). Some browsers also support the
nonstandard circ as an equivalent to circle.

<area shape="poly" coords="99,47,105,41,94,...additional coordinates omitted to save space... "
href="yourpage.html" alt=""/>

This is the area element for the irregular (polygon) shape on the left of the image in Figure 12-
9. For polygons, the coordinates are pairs of x,y coordinates for each point or vertex along the
path that surrounds the area (coords="x1,y1,x2,y2,x3,y3..."). At least three pairs are
required to define a triangle; complex polygons generate a long list of coordinates. Some
browsers also support the nonstandard polygon as an equivalent to poly.

http://www.nasa.gov
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The usemap attribute is required within the image element to indicate that this image is an
image map that uses the map named "spacey."

12.2.3. Server-Side Image Maps

In the first years of the Web, all image maps were server-side image maps (client-side image maps
were introduced later). Because they rely on the server, they are less portable and the information is
not self-contained, which introduces serious accessibility problems if the server is not available. As of
this writing, the use of server-side image maps is strongly discouraged.

For historical interest, a description of how they work is provided here. Server-side image maps have
four elements:

An ordinary image file (.gif, .jpeg, or .png).

HTML markup in the document: the ismap attribute within the img element and an anchor (a)
element that links the image to the .map file on the server.

A map definition file (.map) containing the pixel coordinate and URL information for each
clickable area; the .map file resides on the server, usually in a directory called cgi-bin. The map
file format is server-dependent and may be formatted as either "NCSA" or "CERN."

A CGI script that runs on the server (or a built-in function of the server software) that interprets
the .map file and sends the correct URL to the HTTP server.

Within the HTML file, the image map is set up as shown in this example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.3. Embedded Media

Images aren't the only things that can be displayed as part of a web page. You can also include
content such as QuickTime movies, interactive Flash files, all manner of Java applets, and more. The
browser renders embedded media files using the provided self-contained code (as in the case of an
applet), using its built-in display devices (as for GIF or JPEG images), or by taking advantage of a
plug-in or helper application (as for Windows Media or Flash).

The elements that embed media in (X)HTML are:

object

The W3C recommended element for all media

applet

For Java applets; deprecated in HTML 4.01 and XHTML 1.0

There is a third nonstandard (and therefore, nonvalidating) element for embedding media that is still
used by browsers that use Netscape's plug-in architecture:

embed

For plug-in dependent media; not part of any HTML Recommendation

Now, take a closer look at each of these elements and their uses.

12.3.1. The object Element

According to the HTML 4.01 Recommendation, the object element is an all-purpose object-placer. It
can be used to place a variety of object types on a web page, including applets, movies, interactive
objects (Flash), and even plain old images. As of this writing, browser support does not quite fulfill
the W3C's vision for this element (for example, it still may not be used reliably as a replacement for
the img element), however, the object element is still used for a wide range of embedded media .

object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<object>...</object>

Attributes

Core (id, class, style, title), Internationalization, Events
archive="URLs"

classid="URL"

codebase="URL"

codetype="codetype"

data="URL"

declare="declare"

height="number"

name="text"

standby="message"

tabindex="number"

type="type"

usemap="URL"

width="number"

Deprecated attributes

align="baseline|bottom|left|middle|right|top"

border="number"

hspace="number"

vspace="number"

param

<param />

Attributes

id="text"

name="text" (Required)
value="text"

valuetype="data|ref|object"

type="content type"

The object element began as a proprietary element in Internet Explorer to support ActiveX and later
Java applets. Netscape Navigator initially supported only embed and applet (discussed later in this
chapter) for embedding media, but added limited object support in its Version 4 release, and
improved (yet still improperly implemented) support in Version 6. The W3C intends the object
element, now part of the HTML 4.01 and XHTML Recommendations, to be a replacement for the more
specific img and applet elements as well as the nonstandard embed and bgsound (used for background

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sounds).

The attributes required for the object element vary with the type of content it is placing. The object
element may also contain a number of param elements that pass important information to the object
when it displays or plays. Not all objects require additional parameters.

The object and param elements work together to allow authors to specify three types of information:

The implementation of the object.

That is, the executable code that runs in order to render the object. This may be a tool or
player required to display an external file (such as the QuickTime plug-in for showing a .mov
file), or it may be the object itself, such as a self-contained clock applet. The implementation is
specified with the classid attribute.

The data to be rendered.

The data attribute specifies the URL of the data; in most cases, an external file, such as a
movie or a PDF file. According to the HTML 4.01 spec, the data attribute may also be used to
provide the raw data right there in the object element.

Additional settings required by the object at runtime.

Some embedded media objects require additional settings that get called into play when the
object plays or is rendered. For example, when placing a Windows Media movie, authors have
the option of adding a variety of controls, turning the "AutoStart" feature on or off, and many
more features specific to the Windows Media Player. The runtime settings are provided with
param elements within the object. Examples of the param element are provided later in this
section.

Authors may not need to provide all three types of information for an object. For example, for a self-
contained applet, you may only need to specify the implementation. If you know that the browser
has built-in capacities to render an object (such as a GIF image), then only the data for the image
and a description of the data type are required. And as noted above, not all objects require additional
parameters.

12.3.1.1. Specifying data and type

To get a basic idea of how the object element works, take a look at this minimal markup example
that uses the object element to place an inline image.

<object data="daffodil.gif" type="image/gif">
A color photograph of a daffodil.
</object>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here, the data attribute provides the URL for the source for the embedded object (in this case an
image file) and type tells the browser that the content type is a GIF image. When a type attribute is
provided, the browser uses that information to determine how (and if) to render the object. The
browser's preferences contain a list that specifies how to handle each content type, be it via native
support, a plug-in player, or an external helper application. If the type is not recognized, the browser
may not be able to render the object. In this example, the browser can render a GIF image without
the need of a special player.

While the syntax exists for adding images with the object element, the img
element is still the most common way to go due to lack of browser support of
object for image placement.

12.3.1.2. Specifying an implementation

The object element is also commonly used with the classid attribute for specifying the
implementation, such as an ActiveX control, Java applet, or Python applet. This example shows an
object element used to place a Java applet on a page. (Note that some applets require placement
with the applet element for proper functionality.)

<object classid="java:calendar.class" codetype="application/java"
standby="Calendar loading..." width="200" height="150" title="basic
calendar">...</object>

The Java applet is called with the classid attribute. The optional codetype attribute specifies the
content type of the data that will be downloaded by the classid. A browser may use the value of the
codetype attribute to avoid downloading information for a content type it does not support. The
optional standby attribute provides a message to be displayed while the applet is loading.

Some plug-in media and applets require width and height values in order to play correctly, so be
sure to read any documentation provided for your media type. It is good practice to provide width
and height measurements for every object element.

12.3.1.3. Adding parameters

These days, it is more common to see the object element used to place an ActiveX control (Internet
Explorer's version of plug-ins) than an applet. ActiveX controls are identified by the naming scheme
clsid, followed by a long string of characters specific to the ActiveX control required to render the
media object. ActiveX controls typically require additional settings used to control the display or
playback of the object. These settings are provided by param elements as shown in this example for
embedding a Windows Media movie.

<object classid="clsid:6BF52A52-394A-11d3-B153-00C04F79FAA6" height="280"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

width="320" codebase="http://activex.microsoft.com/activex/controls/mplayer/
en/nsmp2inf.cab#version=6,4,7,111">
 <param name="URL" value="movies/europe.wmv" />
 <param name="autoStart" value="false" />
 <param name="UIMode" value="full" />
</object>

Here, the classid attribute points to the ActiveX control for the Windows Media Player 9. The
codebase attribute is intended to be used to provide a base path used to resolve relative URIs
specified by the classid, data, and archive attributes. In practice, however, it has come to be
(mis)used as a pointer to a location for downloading the current ActiveX control or plug-in if it is not
installed on the user's computer, as is the case in this example.

Within the object element, there are three param elements that pass important information to the
ActiveX control. The parameters and values are provided by the name and value attributes,
respectively. In this example, the URL parameter provides the location of the movie itself, autoStart
is set to false, so the user needs to click to start playback, and the UIMode setting instructs the
player to display the full control panel for playing the movie.

Parameter names and their values are specific to the media object, so these name/value pairs do not
work with any other media type (not even older versions of Windows Media Player).

12.3.1.4. Providing alternate content

If the browser determines that it cannot render the specified object, it then proceeds to render the
content of the object element. In the example from earlier in this section, should the browser not
have the capacity to render the GIF, it will display the alternative content ("A color photograph of a
daffodil") instead.

<object data="daffodil.gif" type="image/gif" width="150" height="125" >
A color photograph of a daffodil.
</object>

The alternative content may also be another object element. Authors may provide several layers of
alternate content by nesting objects with different implementations. The user agent will keep looking
inside each object element until it finds an object that it can render.

In this example, borrowed from the HTML 4.01 Recommendation, a Python applet is embedded on
the page with the object element. If the browser can't render the applet, an MPEG video is provided
as a backup. If the video cannot be rendered, there is a static GIF image, and finally, a text
description is provided if all else fails.

<object title="The Earth as seen from space" classid="http://www.observer.
mars/TheEarth.py">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <object data="TheEarth.mpeg" type="application/mpeg">
 <object data="TheEarth.gif" type="image/gif">
 The Earth as seen from space.
 </object>
 </object>
</object>

12.3.1.5. Cross-browser compatibility

In an ideal world, authors could embed objects by simply specifying the data and data type for the
media file and perhaps a few additional parameters, as shown in this example that should be
sufficient for placing a QuickTime movie:

<object type="video/quicktime" data="/movies/arlo.mov" width="320"
height="256">
 <param name="autostart" value="false" />
 <param name="controller" value="true" />
</object>

Unfortunately, while most standards-compliant browsers correctly interpret the object element, the
markup required to make embedded media play correctly with all their features on all browsers is
determined by the individual media players, not the browsers. For example, as of this writing, the
QuickTime plug-in player does not accept settings from param elements, so it still requires the
nonstandard embed element for all but the default playback settings. The embed element is discussed
further in the next section.

To ensure that the embedded media renders or plays for the widest range of browsers and platforms,
developers use this strategy that takes advantage of nesting within object elements for providing
alternate content:

Typically, the top-level object element contains the classid for an ActiveX control that will do
the trick for the 80% or so of users with Internet Explorer on Windows.

Within that object, provide an alternate object specifying the data and data type that allows
other browsers to choose their own method for rendering the object based on the data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is a bug in Internet Explorer for Windows that causes both object elements to
be rendered, even though according to the HTML 4.01 Recommendation, only the
first supported object element should appear. Therefore, it is necessary to take
measures to make sure only one object appears, such as those in these examples:

A tutorial on standards-compliant QuickTime embedding uses style sheets to
hide the redundant object element
(realdev1.realise.com/rossa/rendertest/quicktime.html).

This exploration on the "right" way to embed Flash movies uses Internet
Explorer's conditional comments to display just one object based on browser
version (see
weblogs.macromedia.com/accessibility/archives/2005/08/in_search_of_a.cfm).
The resulting code is provided in the example below.

At this point, the page should be tested for full functionality on all the browsers
that must be supported. If the object renders or plays fine, you're done. If not,
there is one more option...

The ultimate fallback is the embed element that works with all browsers that use
the Netscape plug-in architecture. An embed element with attributes for
controlling runtime parameters may be used within or in place of the inner
data/type object. While this ensures that the media will play in most browsers,
the trade-off is that it is a nonstandard element that will cause your document
to be invalid. Authors must determine whether their greatest priority is a valid
(X)HTML document or complete media support for users without IE for
Windows.

The following examples show two approaches to providing alternate content for an embedded Flash
movie that ensures the widest browser support. The first uses the default code generated by the
Flash authoring tool for embedding the Flash object on the page. It uses the object element with an
ActiveX classid for Internet Explorer and the nonstandard embed element for browsers that use plug-
ins.

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.
cab#version=6,0,40,0"
 width="300" height="120">
 <param name="movie" value="/flash.swf" />
 <param name="quality" value="high" />
 <param name="bgcolor" value="#FFFFFF" />

 <embed src="/flash.swf" type="application/x-shockwave-flash"
 quality="high" bgcolor="#FFFFFF" width="300" height="120"
 pluginspage="http://www.macromedia.com/go/getflashplayer">
 <noembed>You need the Flash player</noembed>
 </embed>
</object>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This version uses standards-compliant nested objects with Microsoft's proprietary conditional
comments to make sure only the correct object renders in Internet Explorer. The inner object may be
used by Gecko-based browsers.

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.
cab#version=6,0,40,0"
 width="300" height="120">
 <param name="movie" value="/flash.swf" />
 <param name="quality" value="high" />
 <param name="bgcolor" value="#FFFFFF" />

 <!--[if !IE]> <-->
 <object data=" /flash.swf" type="application/x-shockwave-flash"
width="300" height="120" >
 <param name="quality" value="high" />
 <param name="bgcolor" value="#FFFFFF" />
 <param name="pluginurl" value="http://www.macromedia.com/go
/getflashplayer" />
 You need the Flash player.
 </object>

 <!--> <![endif]-->

 </object>

There are other methods for ensuring cross-browser compatibility that use
JavaScript and browser-sniffing techniques, but they are beyond the scope of
this chapter.

12.3.2. The embed Element

The nonstandard embed element was addressed briefly in the previous section. Here it is covered in
more detail. The embed element was originally created by Netscape for use with plug-in technologies.
It is currently supported by most browsers; however, because it is not included in any HTML
Recommendation, it will cause (X)HTML documents to be invalid. Whenever possible, authors are
advised to use object for multimedia objects and use embed as a last resort fallback. All available
attributes for the embed element are described in Appendix A.

embed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<embed>...</embed> or (<embed />)

Attributes

align="left|right|top|bottom"

height="number"

hidden="yes|no"

name="text"

palette="foreground|background"

pluginspage="URL"

src="URL" (Required)
width="number"

Netscape Navigator only

border="number"

frameborder="yes|no"

hspace="number"

pluginurl="URL"

type="media (MIME) type"

vspace="number"

There is conflicting documentation inline as to whether the embed element requires an end tag. Some
sources say an end tag is required, as shown here:

<embed src="url" type="content-type" height="n-pixels" width="n-pixels">
</embed>

Microsoft documentation shows embed as an empty element and modern browsers seem to support
the empty embed syntax, shown here:

<embed src="url" type="contenttype" height="n-pixels" width="n-pixels" />

The src attribute is required to tell the browser the location of the media file to be played. The type
attribute specifies the content type of the embedded media. The browser uses the content-type
information (or the suffix of the media file) to find the appropriate plug-in to render or play the file.
Many media types require that width and height values (the dimensions of the plug-in element in
pixels) be specified in order for the plug-in to function.

The optional pluginspage attribute provides the URL of a page where the user can download
information for the required plug-in should it not be found on the client machine. Netscape 4.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

introduced the pluginurl attribute, which specifies a link to a function that installs the plug-in
automatically. To hide the media file or object from view, use the hidden attribute with a value of
yes.

The embed element uses special attributes and their values for additional runtime settings (the same
settings provided with param elements in the object element). These attributes are specific to the
media type and the plug-in. For example, the autoplay and playeveryframe attributes are used by
the QuickTime player only. (The attributes listed for the embed element work for all embedded
media.)

12.3.2.1. noembed

The noembed element is used within the embed element and provides alternative content that displays
if the browser cannot display the specified media file.

noembed

<noembed>...</noembed>

Attributes

None

In the following example, the browser would display a GIF image and brief message in place of the
media object.

<embed src="movies/vacation.mov" width="240" height="196" autoplay="false"
pluginspage="http://www.apple.com/quicktime/download/">
 <noembed> You do not seem to have the plugin.
 </noembed>
</embed>

12.3.2.2. Using embed

Although the embed element is still in common use as of this writing, and is actually recommended by
multimedia format developers such as Macromedia and Apple, eventually full plug-in functionality will
be possible using the standard object element alone. If you do use embed elements, consider making
a note of where they appear so you can clean up your documents and make them valid when that
day arrives.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.4. Java Applets

Java is an object-oriented programming language developed by Sun Microsystems. It is not related to
JavaScript, which is a scripting language developed by Netscape to run within an HTML document in a
browser. Because Java is a full programming language (like C or C++), it can be used to create
whole applications.

Java's primary contribution to web content, however, has been in the form of Java applets , which
are self-contained, mini-executable programs. These programs, named with the .class suffix, can be
placed right on the web page, like an image. Java applets can be used for all sorts of interactive and
multimedia gadgets, such as clocks, calculators, spreadsheets, scrolling marquees, games, text
effects, and digital "guitars," just to name a few.

There was a great buzz among web developers when Java applets first hit the scene, but since then,
enthusiasm has waned in the face of performance issues (applets take a long time to initialize and
tend to crash browsers) and the dominance of Flash for multimedia and interactivity.

12.4.1. Where to Get Applets

If you need a customized applet for your site, your best bet is to hire a programmer to create one to
your specifications. However, there are a number of applets available for free or for a licensing fee
that you can download from libraries on the Web.

A good place to start is the applets section of Sun's Java site at java.sun.com/applets/. This page
provides a list of links to applet-related resources.

If you are looking for cool applets you can use right away, try the JavaBoutique at
javaboutique.internet.com. Here you will find hundreds of applets available for download as well as
clear instructions for their use. It's a great way to add interactivity to your site without learning any
programming.

12.4.2. Adding an Applet to a Page

There are currently two methods for adding an applet to a web page: the object element,
recommended by HTML 4.01, and the better supported, though deprecated, applet element.

applet

<applet>...</applet>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This element is deprecated.

Attributes

Core (id, class, style, title)
alt="text"

archive="URLs"

code="class" (Required)
codebase="URL"

height="number"

name="text"

object="text"

width="number"

Deprecated attributes

align="left|right|top|middle|bottom"

hspace="number"

vspace="number"

The W3C has deprecated the applet element and all its attributes in favor of the object element.
Despite this, the applet element may still be the better choice, because browser support for object-
embedded applets is so inconsistent that it is difficult to find an approach that works in all browsers.
In addition, some applets require that applet be used, so read the documentation for the applet first.
This section looks at both methods.

12.4.2.1. Adding applets with applet

The applet element is a container for any number of parameter (param) elements. The following is an
example of how an applet element for a game might look:

<applet codebase=class code="Wacky.class" width="300" height="400">
 <param name="Delay" value="250" />
 <param name="Time" value="120" />
 <param name="PlaySounds" value="YES" />
</applet>

The applet element contains a number of standard attributes:

code

Tells the browser which applet will be used. Applets end with the suffix .class or .jar. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attribute is required.

codebase

This tells the browser in which directory to find the applets. If the applets are in the same
directory as the page, the codebase attribute is not necessary.

width, height

These specify the pixel dimensions of the "window" the applet will occupy. These attributes are
required for the Java applet to function properly.

The applet element may also use many of the same attributes used for images, such as alt for
providing alternative text if the applet cannot be displayed, and presentational attributes such as
align (for positioning the applet in the flow of text), and hspace/vspace (used in conjunction with
align).

Special parameters for the applet are provided by any number of parameter elements (sometimes
there are none). The param element always contains the name of the parameter (name) and its value
(value). Parameters provide special settings and controls that are specific to the particular applet, so
you need to follow the parameter coding instructions provided by the programmer of the applet.

12.4.2.2. Adding applets with object

You can add a simple, self-contained applet to an HTML document using the object element like this:

<object classid="applet.class" codebase="http://somedomain.com/classes/">
An applet with some useful function should display in this space.
</object>

The classid attribute points to the applet itself (its implementation). It has the same function as the
code attribute in the applet element when used for Java applets. classid may not contain any
pathname information, so the location of the class file is provided by the codebase attribute.

When using object for Java applets, the object element may contain a number of parameter (param)
elements, as with the applet element. (Note that Netscape 4.0 does not support param elements
within object, so it may not play applets correctly if placed this way.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.5. Inline (Floating) Frames

Microsoft Internet Explorer 3.0 introduced a feature called inline frames (also called floating frames)
that are identified with the iframe element. They enable an HTML document to be embedded within
another HTML document, viewed in a scrollable frame. An iframe is placed in the document flow as
an inline element, much like an image.

iframe

<iframe> ... </iframe>

Attributes

Core (id, class, style, title)
frameborder="1|0"

height="number"

longdesc="URL"

marginheight="number"

marginwidth="number"

name="text"

scrolling="yes|no|auto"

src="URL"

width="number"

Deprecated attributes

align="top|middle|bottom|left|right"

Nonstandard attributes

hspace="number"

vspace="number"

The iframe element is part of the HTML 4.01 and XHTML 1.0 Transitional DTD. As such, it is also
included in the Frameset DTD, but it is not a frameset-related element. It is supported by standards-
compliant browsers. It is however deprecated, and the preferred strict alternative is to use the object
element instead, its type attribute explicitly set to text/html, and its data attribute set to the URL of
the external document. Inline frames do not work in Netscape 4, but that accounts for a less than
.5% of users as of this writing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The iframe element places an external HTML document on a web page in a scrolling window. The src
attribute provides the URL of the external document. The width and height attributes provide the
dimensions of the floating frame. Figure 12-10 shows the resulting inline frame specified in this
markup example.

<body bgcolor="black" text="white">

<h1>Inline (Floating) Frames</h1>

<p><iframe src="list.html" width="200" height="100" align="left">
Your browser does not support inline frames. Read the list <a href="list.
html">here.</iframe></p>

<p>Consectetuer adipiscing elit. Sed eu nibh eget magna dictum egestas...
</p>
</body>

Figure 12-10. Inline (floating) frame

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13. Tables
HTML table elements, first introduced in Netscape 1.1, were developed to give authors a way to
present rows and columns of tabular data. In fact, that has always been and remains their intended
use. But it didn't take long for designers, fed up with the one-column, full-width web pages, to co-opt
tables as a tool for controlling page layout. For the last 10 years, complex table-based layouts have
been the norm. Nobody cared much that it was a misuse of the table elementsthere weren't any
other options. Today, we do have an option. Cascading Style Sheets offer the ability to create
multicolumn pages and sophisticated layouts that were previously achievable only with tables. With
improved browser support, pure style sheet layouts are finally a viable solution.

So tables-for-layout are out, but that doesn't mean that the whole set of table elements has been
tossed in the dustbin. In fact, tables are still the appropriate markup choice for real tabular data,
such as schedules, statistics, and so on.

This chapter takes on the topic of HTML tables, starting with their basic structure and markup and
moving on to methods that make data tables accessible when rendered non-visually. Tips for using
layout tables responsibly are included as well. Along the way, the following table-related elements will
be addressed.

table Establishes a table

TR Table row

td Table cell

th Table header cell

caption Provides a table caption

thead Identifies a table header

tbody Identifies the body of the table

tfoot Identifies a table footer

col Declares a column

colgroup Declares a group of columns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.1. Table Uses

HTML tables fall into two broad categories: data tables and layout tables . This section takes a look at
both types.

13.1.1. Data Tables

Data tables, the arrangement of information in rows and columns, are the intended use of HTML table
elements. In visual browsers, the arrangement of data in rows and columns gives users an instant
understanding of the relationships between data cells and their respective header labels. These
relationships may be lost for users without the benefit of visual presentation unless care is taken to
author the data table with accessibility in mind. These techniques are discussed in the upcoming
"Accessible Tables" section.

Tables may be used to present calendars, schedules, statistics, or other types of information as
shown in Figure 13-1. Note that "data" doesn't necessarily mean numbers. A table cell may contain
any sort of information, including numbers, text elements, even images or multimedia objects.

Figure 13-1. Examples of data tables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.1.2. Layout Tables

Layout tables, unlike data tables, are used purely as a presentational device for controlling the layout
of a page. The HTML 4.01 Recommendation specifically discourages this use of tables, but it wasn't
until CSS became a viable alternative that they have been condemned by the professional web
community at large as well.

You can't turn around on the Web without bumping into a siteeven big-name sitesthat still uses
tables for layout . Some sites use tables as a minimal framework; others have complex tables nested
several layers deep to hold things together. Figure 13-2 shows just a few examples of layout tables
of varying levels of complexity. The borders have been enhanced to reveal the table structure. (As
not to point any fingers, these "old-school" examples are all my own work; I assure you, I've
changed my ways.)

Figure 13-2. Examples of layout tables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While we are still in a period of transition from table-based design to totally CSS-based design (with
flawless browser support, of course), some authors still choose to use tables to establish the basic
column structure of the page. While not ideal, it can be done responsibly by using style sheets to
keep the table markup minimal and with a mind toward accessibility. These strategies are discussed
in the "Responsible Layout Tables" section at the end of this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.2. Basic Table Structure

Put simply, web tables are made up of cells (which is where the content goes), arranged into rows.
The HTML table model is said to be "row primary" because rows are identified explicitly in the
document structure, while columns are just implied. The following examples illustrate the basic
structure of an HTML table.

13.2.1. Rows and Cells

The minimum elements for defining a table are table, for establishing the table itself, tr for declaring
a table row, and td for creating table cells within the row. Explanations and examples of how these
elements fit together follow these element and attribute listings.

table

<table>...</table>

Attributes

Core(id, class, style, title), Internationalization, Events
border="number"

cellpadding="number of pixels or %"

cellspacing="number of pixels or %"

frame="void|above|below|hsides|lhs|rhs|vsides|box|border"

rules="all|cols|groups|none|rows"

summary="text"

width="number, percentage"

Deprecated attributes

align="left|right|center"

bgcolor="#rrggbb" or "color name"

Nonstandard attributes

height="number, percentage"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tr

<tr>...</tr>

Attributes

Core(id, class, style, title), Internationalization, Events
align="left|center|right|justify|char"

char="character"

charoff="length"

valign="top|middle|bottom|baseline"

Deprecated attributes

bgcolor="#rrggbb" or "color name"

td

<td>...</td>

Attributes

Core(id, class, style, title), Internationalization, Events
abbr="text"

align="left|right|center|justify|char"

axis="text"

char="character"

charoff="length"

colspan="number"

headers="id references"

rowspan="number"

scope="row|col|rowgroup|colgroup"

valign="top|middle|bottom|baseline"

Deprecated attributes

bgcolor="#rrggbb" or "color name"
height="pixels, percentage"

nowrap="nowrap"

width="pixels, percentage"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To see how the basic table elements are applied, consider a simple table with two rows and two
columns (four content or "data" cells). The diagram on the left in Figure 13-3 shows the table with its
cells and rows labeled in the way they are recognized in HTML. The diagram on the right shows the
HTML elements that correspond with each component.

Figure 13-3. Basic table structure

Written out in an HTML source document, the markup for the table in Figure 13-3 would look more
like this:

 <table>
 <tr>
 <td>cell 1</td><td>cell 2</td>
 </tr>
 <tr>
 <td>cell 3</td><td>cell 4</td>
 </tr>
 </table>

The entire table is indicated by the table element, which has no content of its own, but acts as a
containing element for one or more of table row elements (tr). The table in the example contains two
rows. Each tr element, in turn, contains two data cells, which are indicated by the td elements. The
cells are the elements that contain real content; the table and tr elements are purely for table
structure. A table cell may contain any data that can be displayed in a document, including formatted
text, images, multimedia elements, and even other tables.

As mentioned earlier, the table system in HTML is row-primary. Rows are labeled explicitly, but the
number of columns is just implied by the number of cells in the longest row. In other words, if all the
rows have three cells (three td elements), then the table has three columns. If one row contains four
td elements and all the others contain two, the browser displays the table with four columns, adding
blank cells to the shorter rows. HTML 4.01 introduced an advanced standard system for describing
table structure that includes explicit column elements. This system is discussed in the "Columns and
Column Groups" section of this chapter.

13.2.2. Spanning Rows and Columns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data cells in a table can occupy more than one space in the grid created by the rows and columns.
You expand a td element horizontally or vertically using the colspan and rowspan attributes,
respectively.

13.2.2.1. Column span

In Figure 13-4, <td colspan="2"> tells the browser to make "cell 1" occupy the same horizontal space
as two cellsto make it "span" over two columns. The resulting spanned cell is indicated in Figure 13-
4. Note that the row containing the spanned cell now only has one TD element instead of two.

 <table>
 <tr>
 <td colspan="2">Cell 1</td>
 </tr>
 <tr>
 <td>Cell 3</td><td>Cell 4</td>
 </tr>
 </table>

Figure 13-4. The colspan attribute expands cells horizontally to the right

Setting the colspan to a number greater than the actual number of columns (such as colspan="4" for
the example) may cause some browsers to add empty columns to the table , possibly throwing your
elements out of alignment.

13.2.2.2. Row span

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Similar to colspan, the rowspan attribute stretches a cell to occupy the space of cells in rows below.
Include the rowspan attribute in the row where you want the cell to begin and set its value equal to
the number of rows you want it to span downward.

In Figure 13-5, note that the bottom row now contains only one cell. The other has been incorporated
into the vertical spanned cell. Browsers ignore overextended rowspan values. There can never be
more rows than explicitly stated tr elements.

 <table>
 <tr>
 <td rowspan="2">Cell 1</td><td>Cell 2</td>
 </tr>
 <tr>
 <td>Cell 4</td>
 </tr>
 </table>

Figure 13-5. The rowspan attribute expands cells vertically

You may combine colspan and rowspan attributes to create a cell that spans
both rows and columns.

13.2.3. Descriptive Elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The basic table model also includes two elements that provide descriptions of the table's contents.
Table header cells (th) are used to describe the cells in the row or column that they precede. The
caption element gives a title to the whole table.

13.2.3.1. Table headers

Table header cells (indicated by the th element) are used to provide important information or context
about the cells in the row or column that they precede. The th element accepts the same list of
attributes as td.

th

<th>...</th>

Attributes

Core(id, class, style, title), Internationalization, Events
abbr="text"

align="left|right|center|justify|char"

axis="text"

char="character"

charoff="length"

colspan="number"

headers="id references"

rowspan="number"

scope="row|col|rowgroup|colgroup"

valign="top|middle|bottom|baseline"

Deprecated attributes

bgcolor="#rrggbb" or "color name"
height="pixels, percentage"

nowrap="nowrap"

width="pixels, percentage"

In terms of markup and table structure, headers are placed in the tr element, the same as a td, as
shown in this example.

 <table>
 <tr><th>Planet</th><th>Distance from Earth</th></tr>
 <tr><td>Venus</td><td>pretty darn far</td></tr>
 <tr><td>Neptune</td><td>ridiculously far</td></tr>
 </table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

User agents usually render the contents of table headers slightly differently than regular table cells
(most often in bold, centered text); however, their appearance may easily be changed with style
sheets.

The difference between th and td elements is not merely presentational, however. Table headers
perform an important function in binding descriptive labels to table cells for non-visual browsers.
They are discussed in more detail in the "Accessible Tables" section later in this chapter. Table header
elements should not be used in layout tables.

13.2.3.2. Captions

The caption element provides a title or brief description of the table.

caption

<caption>...</caption>

Attributes

Core(id, class, style, title), Internationalization, Events

Deprecated attributes

align="top|bottom|left|right"

The caption element must immediately follow the opening table tag and precede all other table
elements, as shown in this example and Figure 13-6.

 <table>
 <caption>Planetary Distances</caption>
 <tr><th>Planet</th><th>Distance from Earth</th></tr>
 <tr><td>Venus</td><td>pretty darn far</td></tr>
 <tr><td>Neptune</td><td>ridiculously far</td></tr>
 </table>

Figure 13-6. A table with a caption

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, the caption appears at the top of the table. Its width is determined by the width of the
table. You can use the caption-side style property to move the caption below the table. There is also
a deprecated align attribute that does the same thing. The left and right values are not well
supported, so authors generally have the option of putting the caption above or below the table.

Captions are a useful tool for table accessibility and will be addressed again briefly in the "Accessible
Tables" section later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.3. Row Groups

HTML and XHTML define three "row group" elements that enable authors to organize rows into a
table header (thead), footer (tfoot), and a table body (tbody). Because these elements share syntax
and attributes, they have been aggregated into one element listing, presented here.

thead, tbody, tfoot

<thead>...</thead>, <tbody>...</tbody>, <tfoot>...</tfoot>

Attributes

Core(id, class, style, title), Internationalization, Events
align="left|center|right|justify|char"

char="character"

charoff="length"

valign="top|middle|bottom|baseline"

Internet Explorer 3.0 first introduced this system for grouping rows so they can be treated as units
by user agents or style sheets. The W3C included the row group elements in the HTML 4.0
Recommendation as a way to allow more meaningful labeling, improve accessibility, and provide
more flexibility for applying style sheet properties. Row groups are advantageous for data tables but
should be avoided for layout tables.

The rows in a table may be grouped into a table head (thead), a table footer (tfoot), and one or
more table bodies (tbody). The head and footer should contain information about the document and
may someday be used to display fixed elements while the body scrolls independently. Another
possibility is that the table head and foot would print on every page of a long table that has been
divided over several pages.

The W3C requires that the tfoot element (if there is one) appear before tbody in the markup so the
table can render the foot before downloading all the (potentially numerous) rows of data. An example
of a simple table marked up with row groups is shown here.

 <table>

 <thead>
 <tr><th>Employee</th><th>Salary</th><th>Start date</th></tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </thead>

 <tfoot>
 <tr><td colspan="3">Compiled by Buster D. Boss</td></tr>
 </tfoot>

 <tbody>
 <tr><td>Wilma</td><td>5,000</td><td>April 6</td></tr>

 <tr>... more data cells...</tr>

 <tr>... more data cells...</tr>
 </tbody>

 </table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.4. Columns and Column Groups

As mentioned earlier in this chapter, the columns in a table are just implied by the number of cells in
the longest row. In some instances, however, it is desirable to identify conceptual columns of data
cells or groups of columns. The col (column) and colgroup (column group) elements allow authors to
conceptually join a group of cells that appear in a column (or columns).

Column and column groups offer a number of conveniences. Their original intent was to speed up the
display of tables in visual user agents. By specifying the width of each column, the user agent does
not need to parse the contents of the entire table in order to calculate column and table. Columns
and column groups are also useful for applying attributes (such as width or align) to all the cells they
include. They may also be used as "hooks" for a limited number of style properties (see note). When
used with the scope attribute (discussed in the upcoming accessibility section), they may also provide
helpful context for screen readers and other non-visual browsing devices.

The CSS 2.1 Recommendation states that only the following four style
properties may be applied to the col and colgroup elements: border,
background, width, and visibility. For an in-depth explanation of why this is
the case, read Ian Hickson's blog entry, "The mystery of why only four
properties apply to table columns" at ln.hixie.ch/?start=1070385285&count=1.
See also Chapter 22 of this book for more information on style properties for
tables.

col

<col />

Attributes

Core(id, class, style, title), Internationalization, Events
align="left|center|right|justify|char"

char="character"

charoff="length"

span="number"

valign="top|middle|bottom|baseline"

width="pixels, percentage, n*"

colgroup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<colgroup>...</colgroup>

Attributes

Core(id, class, style, title), Internationalization, Events
align="left|center|right|justify|char"

char="character"

charoff="length"

span="number"

valign="top|middle|bottom|baseline"

width="pixels, percentage, n*"

The col element is used to label or to apply attribute specifications to an individual column (or across
several columns via the span attribute) without actually grouping the columns together structurally or
conceptually. An empty element, col is used only to apply attributes or styles to the columns to
which it refers.

The colgroup element defines a conceptual group of columns. The number of columns included in the
group is indicated with the span attribute or by the total of col elements (with their span values)
within the column group. Attributes, such as width or align, applied to the colgroup element apply to
every column within that group.

The colgroup and/or col elements must appear before any row or row group elements. They are
placed either immediately after the table start tag or immediately after the caption element, if there
is one. In this example, column group information has been added to the previous sample table
markup.

 <table>

 <colgroup id="employinfo">
 <col span="2" width="100" />
 <col span="1" width="50" class="date" />
 </colgroup>

 <thead>
 <tr><th>Employee</th><th>Salary</th><th>Start date</th></tr>
 </thead>

 <tfoot>
 <tr><td colspan="3">Compiled by Buster D. Boss</td></tr>
 </tfoot>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tbody>
 <tr><td>Wilma</td><td>5,000</td><td>April 6</td></tr>

 <tr>... more data cells...</tr>

 <tr>... more data cells...</tr>
 </tbody>

 </table>

The colgroup element identifies the three columns as part of the same structural group. (There may
be many column groups in a table, but for simplicity's sake, this example has just one.) Within the
colgroup, the first col element identifies two columns (span="2"), each with a width of 100 pixels.
The remaining col has a width of 50 pixels. If all the columns in the table were to be the same width,
the width could have been specified in the colgroup element. The third column is identified with a
class attribute that could later be targeted with a style property (such as background).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.5. Table Presentation

As for all matters of presentation , style sheets are the preferred method for changing the
appearance of tables and offer more fine-tuned control than HTML attributes. See Chapter 22 for
more information on CSS specifically for tables.

That said, there are a number of non-deprecated attributes that may be used to control cell spacing ,
dimensions, borders, and alignment (although, even most of those have style sheet alternatives).
This section takes a look at those presentation-related attributes and also points out the preferred
CSS methods.

13.5.1. Table Cell Spacing

There are two types of space that can be added in and around table cells: cell padding and cell
spacing . The cellpadding and cellspacing attributes are used with the table element and apply to
the whole table; you can't specify padding or spacing for individual cells using HTML alone.

13.5.1.1. Cell spacing

Cell spacing refers to the amount of space that is held between the cells in a table. It is specified with
the cellspacing attribute in the table element. Values are specified in number of pixels. Increasing
the cell spacing results in wider shaded borders between cells. In the second image in Figure 13-7,
the darker gray areas indicate the 10 pixels of cell spacing added between cells. The default value for
cellspacing is 2; therefore, if no cellspacing is specified, browsers will automatically place two
pixels of space between cells.

Figure 13-7. Cell spacing versus cell padding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.5.1.2. Cell padding

Cell padding refers to the amount of space between the cell's border and the contents of the cell (as
indicated by the third image in Figure 13-7). It is specified using the cellpadding attribute in the
table element. Values are specified in number of pixels; the default value is 1. Relative values
(percentages of available space) may also be used.

13.5.1.3. CSS alternatives

Cell padding may be handled by applying the padding property to the td element. By using class, id,
or more specific selectors, it is possible to apply different amounts of padding to different cells within
a table (the cellpadding attribute applies the same amount of padding to all cells).

There is no CSS property that is exactly equivalent to the cellspacing attribute, although you can
adjust the amount of space between cells by setting the border-collapse property for the table to
separate and then use the border-spacing property to specify the amount of space between cell
borders . The difference is that with the cellspacing attribute, the border is rendered thicker
between cells, while the border-spacing property adds empty space between them.

Unfortunately, the border-spacing property is not supported by Internet Explorer 6 and earlier
(support in IE 7 is not documented as of this writing), so authors are left with no practical CSS
cellspacing substitute for the time being.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Many authors also explicitly set both the cellspacing and cellpadding to 0
(zero) to override default browser settings and clear the way for style sheet
properties.

13.5.2. Table and Cell Dimensions

By default, a table will render just wide enough to contain all of its contents. You can explicitly specify
the width of a table using the width attribute in the table element. The HTML specifications provide
no way to specify the height of a table, preferring the height to be automatically determined by the
table's contents. However, there is a nonstandard height attribute that is well-supported for
providing minimum height for the overall table.

You can control the width and height of individual cells by using the (you guessed it) width and
height attributes in the td or th element. Height values are considered to be minimum heights and
cells may expand downward to accommodate their contents.

The width and height attributes have been deprecated for td and th elements,
but they are not deprecated for use in the table element. Style sheet
properties are still the preferred method for specifying table dimensions.

13.5.2.1. CSS alternative

Use the width and height properties to set the size of any table-related element. Heights set on table
and table cells are considered minimum heights, and the actual height may expand to fit the content.

13.5.3. Borders

The table element accepts the following attributes for controlling borders and rules between cells and
around the table. All of the attributes introduced here apply to the table element only. None of these
attributes are deprecated, but authors are urged to use CSS for drawing borders around table
elements instead.

border

Controls the width of the frame around the table. The default value is 1.

frame

Specifies the sides of the table on which the frame should render. By default, the frame is
rendered as a shaded, 3D style rule. The frame attribute uses these keyword values: void (no
frame), above (top side only), below (bottom side only), hsides (horizontal sides), lhs (lefthand

http://lib.ommolketab.ir
http://lib.ommolketab.ir

side), rhs (righthand side), vsides (vertical sides), box (all four sides), and border (all four
sides).

rules

Specifies which rules render between the cells of the table. One use for this attribute might be
to display rules only between certain sets of columns or rows, as defined by colgroup or the
row group elements (thead, tbody, and tfoot). The accepted values for the rules attribute are
all, cols, groups, none, and rows.

13.5.3.1. CSS alternative

The collection of border properties in CSS allows you to specify the style (such as solid, dotted,
dashed, and so on), color, and width of borders around any table-related element. With style sheets,
it is possible to apply different borders to different sides of tables, their rows, or cells. See Chapter 19
for details on the border properties and Chapter 22 for how borders are handled in tables specifically.

13.5.4. Cell Content Alignment

The align and valign attributes are used to specify the horizontal and vertical alignment
(respectively) of content within cells. Alignment may be specified for the following elements: td, th,
tr, thead, tbody, tfoot, col, and colgroup.

Adding the align attribute to the table element aligns the entire table in the
width of its containing element and does not affect the alignment within the
cells.

13.5.4.1. Horizontal alignment

The align attribute accepts the usual values left, right, center, and justify. Text is left-justified by
default in left-to-right reading languages.

The align attribute also includes the char value that specifies that the table contents should be
aligned on a specific character, such as a decimal point for a column of currency amounts. The
character used for alignment is provided by the char attribute. The charoff attribute specifies the
offset distance to the first alignment character. Although it's a nifty idea, the char and charoff
attributes are not supported by current browsers.

Alignment settings for individual cells (td or th) always override settings at the higher levels.
Alignment set on elements within a cell (a p element, for example) override the cell's alignment. If
the table includes a col or colgroup, the align settings on the columns override any alignment
applied to a row or row group element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.5.4.2. Vertical alignment

The valign attribute is used to vertically position the contents of the cell at the top, bottom, or middle
of the cell. The baseline value of valign ensures that the first lines of each cell in a row share the
same baseline.

13.5.4.3. CSS alternatives

Authors may use the text-align property to specify the horizontal alignment for the contents of any
table element (including the table element itself). The text-align property may also be applied to
any element contained within a table cell, thus overriding the cell- or row-level alignment settings.

For vertical centering, applying the vertical-align style property to the td or th element has the
same effect as the valign attribute. The available values for vertical-align when applied to table
cells are baseline, top, middle, and bottom.

13.5.5. Backgrounds

The (X)HTML Recommendations have deprecated the bgcolor attribute used to apply background
colors to cells, rows, and tables. Use the background style sheet property to apply colors and
background images instead. The background property is explained in Chapter 20, and background
behavior in tables is covered in Chapter 22.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.6. Accessible Tables

Presenting data in rows and columns is a highly effective device in visual media for adding meaning to data. Consider
the simple table example in Figure 13-8 .

Figure 13-8. A simple table example

Sighted users can easily trace up a column or across a row to a header cell that explains the data's meaning and
context. Blind or severely sight-impaired users do not have this luxury. When using a screen reader or Braille device,
the contents of each cell may be read one after another (a process called linearization). The table in Figure 13-8 might
be presented like so: "Planet Diameter measured in earths Orbital period in years Moons Mercury .38 .24 0 Venus .95
.62 0 Jupiter 317.8 11.9 63." It's easy to lose track of the meaning of each statistic for a table as simple as this. For
complex data tables, such as those pictured in Figure 13-1 , it's nearly impossible.

The (X)HTML specification provides several mechanisms for adding meaning to cell data even when the table is
presented non-visually. This section outlines the basics of authoring accessible data tables. For more in-depth tutorials,
see these online resources:

"Techniques for Accessible HTML Tables" (from Papers on Section 508), by Steve Ferg
(www.ferg.org/section508/accessible_tables.html)

"Bring on the Tables," by Roger Johansson (www.456BereaStreet.com/archive/200410/bring_on_the_tables/)

"Creating Accessible Tables," at WebAIM (www.webaim.org/techniques/tables/2)

13.6.1. Table Metadata

The first step in making a table accessible is to provide descriptions of the table using the caption element and summary
attribute.

The caption element introduced earlier in this chapter provides a short descriptive title for the table. Visual browsers
display the contents of the caption element above or below the table, as specified by an attribute or style property.

The summary attribute in the table element may provide a more lengthy description of the table. It is analogous to the
alt attribute for images. Unlike the caption element, the value of the summary attribute is not rendered by visual
browsers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The summary may give visually impaired users a better understanding of the table's contents and organization that
sighted users could understand at a glance. This alleviates the need to read through several rows of data to decide
whether a table will be useful. Although the summary is available for longer descriptions, authors are advised to keep
summary descriptions clear and succinct and use them only when necessary.

The table in Figure 13-8 might be given the following caption and summary (note that summaries are more useful for
tables that are more complex than this one).

 <table summary=" A comparison of major features for each planet in the solar system, relative to
 characteristics of the Earth.">
 <caption> Solar System Summary</caption>

 <tr> (table continues...)

13.6.2. Table Headers

The most important element in creating accessible data tables is the table header (th). Table headers provide a
description or context for the data cells in a column or row. Non-visual user agents rely on the th element for
descriptions of each table cell. While it is possible to use styles to make the first row of table cells (td) look like headers
(for example, by making them bold and arranging them in shaded boxes), a td element alone will not perform the same
function as a th , and important information will be lost.

Here is the same table from the previous figure rewritten with table headers (Figure 13-9). Notice that by default,
browsers render headers in bold, centered text, but you can easily change the way they look with CSS properties. By all
means, do not avoid using th elements properly just because you don't like the browser's default rendering.

 <table summary="A comparison of major features for each planet in the solar system,
 relative to characteristics of the Earth.">
 <caption>Solar System Summary</caption>
 <tr>
 <th>Planet</th>
 <th abbr="diameter">Diameter measured in earths</th>
 <th abbr="orbit">
Orbital period in years</th>
 <th>Moons</th>
 </tr>
 <tr>
 <td>Mercury</td><td>.38</td><td>.24</td><td>0</td>
 </tr>
 <tr>
 <td>Venus</td><td>.95</td><td>.62</td><td>0</td>
 </tr>
 <tr>
 <td>Jupiter</td><td>317.8</td><td>11.9</td><td>63</td>
 </tr>
 </table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 13-9. A table with a caption and table header elements

With headers in place, a screen reader may be configured to read each row of data like this: "Planet: Mercury, Diameter
measured in earths: .38, Orbital period in years: .24, Moons: 0," and so on. It is clear how headers alone go a long way
toward attaching meaning to the data in each cell.

It is also easy to see how this might be cumbersome, particularly if the header titles are long. The abbr attribute allows
authors to provide an alternate version of the header title that may be used instead, as shown in example.

 <th abbr="diameter">Diameter measured in earths</th>

Instead of repeating "Diameter measured in earths" before each measurement, a screen-reader could say simply
"diameter" instead.

13.6.3. Associating Headers with Data

As table structure gets more complex, additional markup is required to keep the associations between table headers
and their respective data clear. The remaining attributes for the th element, scope and headers , are used to
conceptually attach headers to groups of data cells.

13.6.3.1. Scope

In the simple table shown in Figure 13-9 , it is easy to tell that the headers apply to their respective columns of data. In
more complex tables, the relationships between headers and data may not be so straightforward. The scope attribute in
the th element is used to explicitly declare associations between table headers and the rows, columns, row groups, or
column groups in which they appear (using the values row , column , rowgroup , and colgroup , respectively)

The table example in Figure 13-10 has been altered slightly to include table headers for each row.

Figure 13-10. Table with row and column headers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case, it is desirable to make it clear that the headers in the left column apply to each data cell in the rows in
which they appear. It is helpful to indicate the relationship of the cells with their respective column header as well. This
revised markup shows how the scope attribute is used to indicate these relationships.

 <table summary="A comparison of major features for each planet in the solar system,
 relative to characteristics of the Earth.">
 <caption>Solar System Summary</caption>
 <tr>
 <td></td>
 <th scope="column"abbr="diameter">Diameter measured in earths</th>
 <th scope="column"
abbr="orbit">Orbital period in years</th>
 <th scope="column">Moons</th>
 </tr>
 <tr>
 <th scope="row">Mercury</th>
 <td>.38</td>
 <td>.24</td>
 <td>0</td>
 </tr>

 <tr>
 <th scope="row">Venus</th>
 <td>.95</td>
 <td>.62</td>
 <td>0</td>
 </tr>
 <tr>
 <th scope="row">Jupiter</th>
 <td>317.8</td>
 <td>11.9</td>
 <td>63</td>
 </tr>
 </table>

This line from the table markup example extends the description "Mercury" to all the cells in that row. The relationship
may be visualized as shown in Figure 13-11 .

<th scope="row">Mercury</th>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 13-11. A header is associated with a row with the scope attribute

The scope attribute may also be used in a data cell element (td) to apply its content as a label to the remaining cells in
its row, column, row group, or column group. This is useful for cells that contain data themselves but also carry
meaning about other data cells, such as the planet names in the sample table. If the "Planets" table header were
reinserted, the planet names could go back to being regular td elements yet still be associated with each row.

13.6.3.2. ID and headers

In Figure 13-11 , it was possible to indicate the scope of the header by drawing a box across the row. The same would
be true when applying scope to columns or groups: the scope extends in a rectangle that encompasses the specified
table cells.

For very complex tables with spanned and/or nested table headers , the relationships between headers and the data
they describe may not fit into neat rectangles. The headers attribute is used to associate data cells with specific table
headers by referencing them by name (provided in an id value).

The solar system table has been altered once again to include a (fairly contrived) nested header as shown in Figure 13-
12 .

Figure 13-12. Table with a nested header

The first step in using this method to associate headers and cells is to give each table header (th) element a name
using the id attribute. Then, each td uses the headers attribute to specify the table headers that apply to it. The value
may include several header names, separated by spaces, as shown in this example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <table cellpadding="4" summary="A comparison of major features for each planet in the
 solar system, relative to the Earth's characteristics.">
 <caption>Solar System Summary</caption>
 <tr>
 <td rowspan="2"></td>
 <th colspan="2" id="measure" abbr="measurements">Measurements relative
 to Earth</th>
 <th rowspan="2" id="moons">Moons</th>
 </tr>
 <tr>
 <th id="diameter" abbr="diameter">Diameter measured in earths</th>
 <th id="orbit" abbr="orbit">Orbital period in years</th>
 </tr>
 <tr>
 <th id="mercury">Mercury</th>
 <td headers="mercury measure diameter">.38</td>
 <td headers="mercury measure orbit">.24</td>
 <td headers="mercury moons">0</td>
 </tr>
 <tr>
 <th id="venus">Venus</th>
 <td headers="venus measure diameter">.95</td>
 <td headers="venus measure orbit">.62</td>
 <td headers="venus moons">0</td>
 </tr>
 <tr>
 <th id="jupiter">Jupiter</th>
 <td headers="jupiter measure diameter">317.8</td>
 <td headers="jupiter measure orbit">11.9</td>
 <td headers="jupiter moons">63</td>
 </tr>
 </table>

The headers method is complicatedeven for a simple table such as the one in this exampleand should be used only when
scope won't adequately do the trick.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.7. Responsible Layout Tables

You've surely heard (throughout this book and elsewhere) that table-based layout has been replaced
by CSS for positioning elements on the page. However, during this time of transition, as browser
developers work out the kinks in CSS support, some authors still choose to use tables to establish the
basic grid of the page. It is possible to rely on a table for layout, but be in line with the current trends
of standards compliance and accessibility in contemporary web design.

Layout tables are not inherently evil (or even inaccessible), as long as they are handled the right
way. This section recommends ways to use layout tables that do the least harm.

13.7.1. Stick to Basic Table Elements

When using a table strictly for layout, use only the minimal table elements:

table

Use to establish the table

tr

Use for table rows

td

Use for table cells

Captions, table headers, row groups, and all features for improving table accessibility as listed in the
previous section should be avoided. They will only serve to confuse or slow down readers with
assistive devices.

13.7.2. Keep It Simple and Lightweight

The problem with most layout tables in terms of accessibility is complexity. It is not uncommon for
tables aiming to achieve pixel-precise layouts to use techniques such as:

Tables nested within tables, some many levels deep

Empty rows inserted for the sole purpose of establishing column widths

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table cells that contain only one-pixel GIFs used for spacing

Numerous spanned rows and columns

Repetitive presentational table attributes

These typically result in overly complicated table structures and bloated markup. Non-sighted users
may become disoriented trying to navigate from cell to cell in an attempt to make sense of the
content. The complexity and size of the source document isn't doing any favors for visual browsers
either.

An example of a typically convoluted table-based layout is shown in Figure 13-13 (another one of my
own old-school designs). The borders have been enhanced to reveal the complexity of the table
structure.

By contrast, responsible layout tables are simple and lightweight. The table in Figure 13-14 contains
similar content to the example in Figure 13-13, but a single

Figure 13-13. An overly complex nested table layout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

stripped-down layout table is used to establish the basic grid structure of the page. The borders have
been turned on to reveal the table structure. There are no nested tables, and every table cell is filled
with real content. All matters of visual formatting are handled with style sheets (as discussed in the
next section).

Figure 13-14. A lightweight table used for layout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The markup for the table in Figure 13-14 is shown here. It has been simplified to reveal the structure
of the table markup.

 <table>
 <tr>
 <td colspan="2" id="masthead">
 <div id="welcome">The Jenville Show is ...</div>
 </td>
 </tr>

 <tr>
 <td id="intro">
 <p>I've been conducting interviews...</p>
 </td>

 <td id="bandlist">

 <li id="wrens">...
 <li id="gibbard">...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <li id="beulah">...
 <li id="jackblack">...

 </td>
 </tr>

 <tr>
 <td colspan="2"><p class="copyrt">All content...</p></td>
 </tr>
 </table>

13.7.3. Use Style Sheets for Presentation

The secret to keeping a layout table simple and streamlined is to use it only to establish a basic
layout grid and to use Cascading Style Sheets for everything else related to presentation. The good
news is with style sheets, the need for most of the layout table hacks listed earlier is eliminated.

For example, one of the main reasons for nesting tables was to get different amounts of cell padding
in different parts of the table. With CSS, padding can be applied on a cell-by-cell basis. Similarly,
where once it was necessary to put text in a single-celled table to display it in a colored box, style
sheets now allow any element to be presented in that fashion by setting dimensions and a
background color.

In the complicated layout in Figure 13-13, the list of artists is held together in a two-part nested
table. In the lightweight example in Figure 13-14, the bands are now marked up semantically as an
unordered list. The one-pixel rules that had been created with table cells filled with one-pixel
transparent GIFs and background colors are now created simply by applying borders to the bottom of
list item (li) elements.

Using the background images, image replacement, and rounded-corner techniques listed in Chapter
24, this single-table layout could be made to approximate the look and feel of the original even
further.

These are just a few examples of how style sheets could be used in tandem with a minimal layout
table. The table takes care of the structure, and style sheets handle the presentation of all the
content in a way that alleviates the need for additional tables and table cells. Once you've weaned
yourself this far, it's not a big leap to CSS positioning and table-free design.

13.7.4. Check for Linearization

When creating a layout table, it is important to be aware of how well your table will linearize when
presented in a non-visual browser. Linearization refers to the order of the content when all the table
formatting is removed. Screen readers read content in the order in which it appears in the source
document, as though there were no markup there at all.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tables are said to linearize well when their contents appear in a logical order in the source document.
In general, it is preferable to get readers to the main content as quickly as possible. Unfortunately,
the way many layout tables are constructed leads to the side column content (long lists of links and
other sidebar-like information) appearing before the main content. The table in Figure 13-15 shows a
typical (albeit simple) three-column layout table with a masthead.

Figure 13-15. A typical layout table

While it is perfectly clear what to read first when rendered visually, a look at the source reveals that
users with screen readers will need to listen to the big long navigation list in "Sidebar 1" before they
hear the main feature. This is a simplified example of a table that does not linearize well. Complex
layout tables that are typical in everyday practice have far more egregious linearization problems.

 <table width="700" border="0" cellpadding="4">
 <tr>
 <td colspan="3">
 <h2>Exciting Page Masthead </h2>
 </td>
 </tr>
 <tr>
 <td><p>Sidebar 1</p>
 <p>Big long navigation list</p>
 ...
 </td>

 <td><p>MAIN CONTENT</p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p>This is what we want our readers to read first,
 even those using screen readers and other assistive devices.</p>...
 </td>

 <td><p>Sidebar 2</p>
 <p>This is some tangental information ... </p>
 </td>
 </tr>
 </table>

Layout tables can be designed to linearize in a logical order, but it takes some careful planning, and
at times, a little finagling. One technique that works for the three-column layout shown in the
example is to put the main content cell in a new row just after the masthead and use the rowspan
attribute to present it side by side with the sidebar cells, as shown in this example. The resulting
table is shown in Figure 13-16.

 <table>
 <tr>
 <td colspan="3"><div align="center">
 <h2>Exciting Page Masthead </h2>
 </div></td>
 </tr>

 <tr>
 <td></td>
 <td rowspan="2"><p>MAIN CONTENT</p>
 <p>This is what we want our readers to read first....</p>
 </td>
 <td></td>
 </tr>

 <tr>
 <td><p>Sidebar 1</p>
 <p>Big long navigation list</p>...
 </td>
 <td><p>Sidebar 2</p>
 <p class="style1">This is some tangental information...</p></td>
 </tr>

 </table>

The empty table cells in the second row have been left unstyled in this example to reveal the table's
structure, but obviously, they could be minimized by tinkering with styles. The important thing to
notice is that the main content is now the first thing users read after the masthead when the table is
linearized.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 13-16. A table with preferred linearization

Creating tables that linearize logically can be a tricky business and may require rethinking the design.
As an alternative, using CSS with absolute positioning allows you to start with markup that is in the
preferred order and then place each element wherever you want on the page. This may be another
motivation for cutting the tether to table-based design.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 14. Frames
Frames are a method for dividing the browser window into smaller subwindows, each displaying a
different HTML document. This chapter covers the structure and creation of framed documents,
controls for affecting their display and function, and some advanced tips and tricks. The following
frame-related elements will be addressed.

frame Defines a single frame

frameset Establishes the structure for frames or other framesets

noframes Content displayed if frames are not supported

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.1. Introduction to Frames

Frames allow authors to display several HTML documents in the browser window at one time, each in
its own scrollable subwindow. Introduced by Netscape Navigator 2.0, frame support was soon added
by other popular browsers. The HTML 4.01 and XHTML 1.0 Recommendations include a Frameset
DTD for framed documents. XHTML 1.1 omits all frame elements.

Framed documents are typically used as a navigation device in which all of the navigation options
stay put in one frame while the linked content documents are displayed in another frame. Because
frames may include scrollbars and scroll independently of one another, frames are a method for
making sure one page component stays put on the page while the rest of the page is free to scroll.

It is important to note that frame-like functionality (in which one element stays fixed and the rest of
the page scrolls) can also be accomplished with CSS using the position: fixed property.
Unfortunately, Internet Explorer 6 for Windows and earlier do not support fixed positioning , but
there are workarounds as noted in Chapter 25.

Due to reliable browser support, frames are still an option for navigation and other uses. However,
they do present certain problems and peculiarities that have led to their currently controversial
status. Like most things, frames are neither all good nor all bad. It is your responsibility to be familiar
with both sides of the coin so you can help present the best solution for your or your clients' needs.

14.1.1. Advantages

Consider these advantages to using frames:

They enable parts of the page to remain stationary while other parts scroll. This is useful for
elements you may not want to scroll out of view, such as navigational options or banner
advertising.

Frames unify resources that reside on separate servers. For instance, you may use frames to
combine your own material (and navigation graphics) with threaded discussion material
generated by software on a vendor's server.

With the noframes element, you can add alternative content for browsers that do not support
frames. This accessibility feature is built into the frames system.

14.1.2. Disadvantages

Also keep in mind these disadvantages:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Frames may make site production more complicated because you need to produce and organize
multiple files to fill one page.

Navigating through a framed site may be prohibitively challenging for some users (especially
users with disabilities who are using alternative browsing devices).

Documents nested in a frameset may be more difficult to bookmark.

A large number of frames on a page may significantly increase the load on the server because
so much of the load on a server is initial document requests. Four requests for 1K files (the
frameset and the contents of three frames) is more work for your server than a single request
for a 4K document.

Multiple documents for each web page makes the site more difficult to manage and update.

Framed documents can be a nuisance for search engines. Content-level documents may be
missed in searches. If a contained document is found by a search engine, it will probably be
displayed out of context of its frameset, potentially losing important navigational options.

It is more difficult to track actual page (or ad) impressions when the pages are part of a framed
document.

With the pros and cons in mind, take a look at how framed documents are constructed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.2. Basic Frameset Structure

A web page that is divided into frames is held together by a top-level frameset document.

Frameset documents are fundamentally different from other HTML documents in that they use the
frameset element instead of a body element. The frameset element may not contain any content, but
instead defines and names some number of frames (or other framesets), arranged in rows and/or
columns. Each frame is indicated with a frame element within the frameset. A frameset document
contains a regular header portion (as indicated with the head element).

frameset

<frameset>...</frameset>

Attributes

Core (id, class, style, title), onload, onunload
cols="list of lengths" (number, percentage, or *)
rows="list of lengths " (number, percentage, or *)

Nonstandard attributes

border="number"

bordercolor="#rrggbb" or "color name"

frameborder="1|0"; "yes|no" (NN 3)

This is an example of a minimal frameset document in XHTML. The resulting frameset, shown in
Figure 14-1, has two frames occupying two columns of equal width.

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Simple Framed Document</title>
 </head>

 <frameset cols="*,*">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <frame src="left.html" />
 <frame src="right.html" />
 </frameset>

 <noframes>
 <body>
 <p>Your browser does not support frames.</p>
 <p>Go to the left</p>
 <p>Go to the right</p>
 </body>
 </noframes>

 </html>

Figure 14-1. Basic frameset document

The frameset document is displaying two external HTML documents, each in its own frame. The job of
the frameset document is simply to build a framework that holds them together. It also includes the
noframes element for providing alternative content for browsers that don't support frames.

Take a look for a moment at the frameset source document. It begins with the DOCTYPE declaration
that tells the browser to use the XHTML 1.0 Frameset DTD when rendering this file. Next is the html
root element and an ordinary header containing the document's title.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A DOCTYPE declaration that points to a Frameset DTD will throw browsers that
support DOCTYPE switching into Quirks mode. That means that most browsers
will support nonstandard and deprecated elements and attributes. For more
information on DOCTYPE switching, see Chapter 9.

This is the point at which a frameset document diverges from regular HTML documents. Instead of a
body, it uses the frameset element that specifies that the document should display in two columns
(cols) of equal width. The frameset is merely a container for two frame elements. The primary job of
the frame element is to provide the URL of the document that should display in that frame. The
example above has two frames. One pulls in a document called left.html and the other displays
right.html.

It is important to note that left.html and right.html are ordinary (X)HTML documents, each consisting
of a head and body element. In other words, documents that are displayed within a frame are not
frameset documents and do not need to use the Frameset DTD. They may be authored according to
the Strict or Transitional DTDs. It is possible to display another frameset document in a frame;
however, there are more efficient methods for nesting frames as discussed in the "Nesting Frames"
section later in this chapter.

frame

<frame />

Attributes

Core (id, class, style, title)
frameborder="1|0" (IE 3+ and W3C Rec.); "yes|no" (NN 3+)
longdesc="URL"

marginwidth="number"

marginheight="number"

name="text"

noresize="noresize"

scrolling="yes|no|auto"

src="URL"

Nonstandard attributes

bordercolor="#rrggbb" or "color name" (Nonstandard)

14.2.1. Alternate Content

The sample frameset document contains one other element in addition to frameset. The noframes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element contains content that will be displayed in browsers and devices that don't support frames;
therefore, it is an important tool for ensuring the accessibility of framed documents.

noframes

<noframes> ... </noframes>

Attributes

Core (id, class, style, title), Internationalization, Events

The noframes element should be placed after the frameset element. This is the noframes element
provided in the example.

 <noframes>
 <body>
 <p>Your browser does not support frames.</p>
 <p>Go to the left</p>
 <p>Go to the right</p>
 </body>
 </noframes>

The content of the noframes element might be just a few lines or an entire page of information.

Ideally, the content of the noframes element is a complete alternative to the framed interface. It
should include the entire content of the page within a body element. If the complete content is too
large (in terms of byte size), opt for the list of descriptions and links instead.

At minimum, noframes content should provide a brief description of each frame with a link to access
the individual (X)HTML documents. Without links, the frameset document is a dead end to users and
search engines.

14.2.2. Establishing Rows and Columns

Rows (horizontal frames) and columns (vertical frames) are established with the frameset element,
using the rows and cols attributes, respectively. These attributes divide the frameset in a grid-like
manner. Frames are filled from left to right for columns and from top to bottom for rows.

The number of rows or columns in the frameset is determined by the number of size values provided.
For example, to create a frameset with three columns, you write cols="25%,50%,25%" (or three other
size values). In this case, the user agent creates a column for each of the provided measurements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rows work in the same manner. Figure 14-2 shows a simple framed document divided into two
equal-sized rows (on the left) and columns (right).

Figure 14-2. Simple horizontal and vertical frameset layouts

14.2.2.1. Specifying sizes

Frame size can be listed in one of three ways:

Absolute pixel values

The browser interprets an integer as an absolute pixel value. The frameset element <frameset
cols="150,650"> creates two columns, one exactly 150 pixels wide and the other exactly 650
pixels wide. If the browser window is larger than the total specified pixels, it enlarges each
frame proportionally to fill the window.

Percentages

Percentages are based on the total width of the frameset. The total should add up to 100%.
The frameset element <frameset rows="25%,50%,25%"> creates three rows; the top and bottom

http://lib.ommolketab.ir
http://lib.ommolketab.ir

frames each always occupy 25% of the height of the frameset, and the middle row makes up
50%, regardless of how the browser window is resized.

Relative values

Relative values, indicated by the asterisk (*) character, are used to divide up the remaining
space in the frameset into equal portions (as shown in Figure 14-2). For instance, the frameset
<frameset cols="100,*"> creates two columnsthe first is 100 pixels wide, and the second fills
whatever portion is left of the window.

You can also specify relative values in multiples of equal portions and combine them with other
measurement values. For example, the frameset defined by <frameset cols="25%,2*,*">
divides the window into three columns. The first column always occupies 25% of the window
width. The remaining two divide up the remaining space; however, in this case, the middle
column will always be two times as big as the third. (You may notice that this results in the
same division as the percentages example.)

14.2.2.2. Combining rows and columns

You can specify both rows and columns within a single frameset, creating a grid of frames, as shown
in Figure 14-3. When both cols and rows are specified for a frameset, frames are created left to right
in each row, in order. Rows are created top to bottom. The order of appearance of frame elements
within the frameset determines where their contents display. The order in which documents are
displayed is demonstrated in Figure 14-3.

Figure 14-3. Frameset with rows and columns

14.2.3. Nesting Frames

It is possible to nest a frameset within another frameset, which means you can take one row and
divide it into several columns (or, conversely, divide a column into several rows), as shown in Figure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14-4. Nesting gives you more page layout flexibility and complexity than simply dividing a frameset
into a grid of rows and columns.

Figure 14-4. Document with nested framesets

In Figure 14-4, the top-level frameset specifies two columns. The first column is a frame 100 pixels
wide. The second column (which occupies the remainder of the window) is filled with another
frameset, this one with three rows.

There is no technical limit on the number of levels that frames can be nested, only practical ones. If
you nest frames, be careful to close each successive frameset or the document will not display
correctly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.3. Frame Function and Appearance

By default, frames are separated by borders with 3D beveled edges, and each frame has a scrollbar if
its contents do not fit in their entirety. You may want to change these settings using the attributes for
controlling frame functionality and presentation.

14.3.1. Scrolling

The scrolling attribute within the frame element controls whether scrollbars appear within the
frame, regardless of the frame's contents.

The default setting is auto, which behaves like any browser windowno scrollbars display unless the
contents are too big to fit entirely within the frame. The yes value should make scrollbars appear,
even for mostly empty frames, however, most current browsers seem to treat it the same as auto.
To make sure scrollbars never appear, even when the content is larger than the available space, set
scrolling="no".

In Figure 14-5 both frames display the same text document, but scrolling is set to auto in the top and
no in the bottom frame.

14.3.2. Disabling Resize

By default, any user can resize your framesoverriding your size settingssimply by clicking and
dragging on the border between frames. You can prevent users from doing that by adding the
noresize attribute to the frame element.

Figure 14-5. Setting scrollbars with the scrolling attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Be careful that you're not disabling functionality the user needs, though; if the frame contains text,
chances are good that some users may need to resize.

14.3.3. Frame Margins

As you probably already know, browsers hold a margin space on all sides of the browser window,
preventing a document's contents from displaying flush against the edge of the window. The width of
the margin varies from browser to browser.

Frames have margin attributes that allow you to control (or remove) the margins on any frame-
enabled browser. To adjust the top and bottom margins of a frame, specify a number of pixels for the
marginheight attribute. Use the marginwidth attribute to specify the amount of space for the left and
right margins. They can be combined as shown in the example in Figure 14-6.

The example shows the same HTML document (containing only a graphic) loaded into two frames
within a frameset. The left frame has specific margins set. The right frame has its margins set to
zero, allowing the contents of the frame to be positioned right up against the edges of the frame.

14.3.4. Frame Borders

By default, framed documents display with a 3D border between each frame. These borders visually
divide the sections and also serve as a handle for resizing. The HTML 4.01 specification allows for
borders to be controlled only at the frame level (in the frame element).

Most browsers also support the nonstandard method of setting borders and
border thicknesses for the whole page in the frameset element. Bear in mind
that this nonstandard use of border attributes will cause a document to be
invalid because it does not conform to any DTD.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-6. Effects of setting frame margins

Browsers vary in their support of border attributes. It is best to do plenty of testing (including in older
browsers) to be sure you can live with the different results.

14.3.4.1. Turning borders on and off

The frameborder attribute is used to turn the 3D borders between frames on (with a value of 1) and
off (0), like a toggle switch. The W3C Recommendations specify that the frameborder attribute should
be used for each individual frame element, but most browsers support frameborder in the frameset
element as well (see previous note). Applying a frame border to a single frame draws the border on
all sides of that frame. It will look as though the neighboring frames have their borders turned on as
well, even if they are turned off.

14.3.4.2. Border thickness

You can use the nonstandard border attribute in the frameset element to specify the thickness of the
frame borders in pixels. The default thickness varies by browser. Although border is not part of the
Frameset DTD, it is fairly well supported by current browsers.

Turning the frameborder off removes only the 3D border, but it leaves a gap
between the frames. To remove this gap and give the page a smooth, seamless
appearance, use the border attribute with a setting of 0 pixels: <frameset
frameborder="0" border="0">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.4. Targeting Frames

One of the challenges of managing a framed document is coordinating where linked documents
display. By default, a linked document loads into the same window as the link; however, it is often
desirable to have a link in one frame load a page into a different frame in the frameset. For instance,
this is the desired effect for a list of navigation links in a narrow frame that loads content into a larger
main frame on the page.

To load a new linked page into a particular frame, you first need to assign a name to the targeted
frame using the name attribute in the frame element, as follows:

<frame src="original.html" name="main" />

Names must start with a letter (upper- or lowercase).

Now you can specify that frame by name within any anchor (a) element with the target attribute, as
shown in this example:

...

In this example, the document new.html will load into the frame named "main."

If a link contains a target name that does not exist in the frameset, a new browser window is opened
to display the document, and that window is given the target's name. Subsequent links targeted to
the same name will load in that window.

14.4.1. The base Element

If you know that you want all the links in a given document to load in the same frame (such as from
a table of contents into a main display frame), you can set the target once using the base element
instead of setting the target within every link in the document (saving a lot of typing and extra
characters in the HTML document).

Placing the base element in the head of the document, with the target frame specified by name,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

causes all the links in the document to load into that frame. The following is a sample targeted base
element:

 <head>
 <base target="main" />
 </head>

Targets set in individual links override the target set in the base element at the document level.

14.4.2. Reserved Target Names

There are four standard target names for special redirection actions. Note that all of them begin with
the underscore (_) character. Do not give your frames names beginning with an underscore, as they
will be ignored by the browser (names must start with a letter). The four reserved target names are:

_blank

A link with target="_blank" opens a new, unnamed browser window to display the linked
document. Each time a link that targets _blank is opened, it launches a new window,
potentially leaving the user with a mess of open windows. Note that this value can be used with
any link, not just those in a frames context.

Opening pages in new windows is problematic for accessibility. When
opening a document in a new window, be sure to include a note that says
"link opens in a new window" or something similar. This gives all users,
but particularly those with non-visual browsers who won't see a new
window open, a heads-up that the context of the page is going to change.

_self

This is the default target for all a elements; it loads the linked document into the same frame
or window as the source document. Because it is the default, it is not necessary to use it with
individual a elements, but it may be useful for the base element.

_parent

A linked document with target="_parent" loads into the parent frame (one step up in the
frame hierarchy). If the link is already at the top-level frame or window, it is equivalent to
_self. Figure 14-7 demonstrates the effects of a link targeting the parent frame.

The _parent target name works only when the nested framesets are in separate documents. It
does not work for multiple nested framesets within a single frameset document as shown in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-4.

Figure 14-7. In nested framesets, the _parent target links to the
parent frameset

_top

This causes the document to load at the top-level window containing the link, replacing any
frames currently displayed. A linked document with target="_top" "busts out" of its frameset
and is displayed directly in the browser window, as shown in Figure 14-8.

Links to other web sites should use the target attribute set to _top or another
named window to prevent the site from loading within the current frameset.

Figure 14-8. Linking with the _top target replaces the entire frameset

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.5. Frame Design Tips and Tricks

Perhaps the most common bit of design advice regarding frames is "don't use them." Although
frames once had their heyday, they are no longer used in professional, standards-driven web design.

If you do choose to use frames for a project, there are a few pointers and tricks you should be aware
of that go beyond a simple familiarity with the elements and attributes.

14.5.1. All-Purpose Pages

Designing a web page to be part of a framed document doesn't guarantee that it will always be
viewed that way. Keep in mind that some users might end up looking at one of your pages on its
own, out of the context of its frameset (this is possible if a search engine returns the URL of the
content, for example). Since frames are often used for navigation, this orphaned content page could
be a dead end for a user.

For that reason, you should try to design your content pages so that they stand up on their own.
Adding a small amount of redundant information to the bottom of each page can make a big
difference in usability. First, indicate the name of the site with a link to its home page on each
content document. This helps to orient a newcomer who may have just dropped in from a search
engine.

It is important to pay particular attention to the navigational options available on content pages
viewed without their frameset. At the very least, provide a small link on every page to a more
appropriate (and framed) starting point, such as the top level of your site. Be sure to set the
target="_top" attribute so the link won't load the home page frameset within the current frameset.

14.5.2. External Links

By default, any link within a frame loads the new document into that same frame. To prevent
external links from loading into the current frame, be sure to add target="_top" to all your external
links; the new site will open in the full browser window. As an alternative, set the target to "_blank"
to open the link in a new browser window.

As noted earlier, always provide a note or some indication that a link is going to
open in a new window so as not to confuse your users.

It is never appropriate to load whole external sites into the context of another framed document,
unless you are doing so with the expressed permission of the owners and operators of the external
site.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.5.3. Improving Frame Accessibility

Framed content, while accessible to screen readers, may be disorienting. The content may be read
from each frame in a linear fashion (users may skip to each frame with a keyboard shortcut) or it
may be presented as a list of links to the individual HTML documents.

There are a few measures you can take to improve the accessibility of your site.

14.5.3.1. Give frames titles

One of the best ways to make framed content easier to use for visitors with alternative browsing
devices is to give each frame a short but descriptive title using the title attribute in the frame
element, as shown here:

 <frame src="navigation.html" title="navigation options" name="links" />
 <frame src="welcome.html" title="main content" name="main" />

Users can use the titles to decide whether to access that frame. In the absence of titles, the name
attribute may be used, but authors typically give frames names that are minimal and not adequately
descriptive.

14.5.3.2. Provide complete noframes content

Framesets should always include a noframes element to provide content if the user cannot or chooses
not to view the framed content. It is a good idea to make the complete content from the framed page
available in the noframes element and to enclose it in the body element. At the very least, the
noframes content should be as descriptive as possible rather than just "you need frames to see this
site."

Adding links to the individual HTML documents, particularly those containing links to the other parts
of your site, helps users get to your content without relying on the frameset.

14.5.4. Helping Search Engines

Search engines all work differently but pretty much uniformly do not understand frames or any
content within a frameset or frame element. This means search engines will not find any links that
require burrowing through a site for indexing purposes, and all the content of your framed site will be
missed.

The same measures for improving accessibility for users with non-visual browsing devices (i.e.,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

providing frame titles and complete noframes content) will also make it easier for search engines to
index your content.

In addition, you may include a meta element with information about your site in the frameset
document. Although not all search engines use meta information, meta elements can be useful tools
for those that do. If your top-level frameset document contains limited noframes content, you can use
the meta element to add a site description and keywords to the page for the search engine to index.
Values for the meta element related to search engines are provided in Chapter 9.

For more information about search engines and how they work, see the Search Engine Watch site at
www.searchenginewatch.com (from which the previous information was gathered).

For information on how MSN TV handles frames, see
developer.msntv.com/Develop/Frames.asp.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 15. Forms
Forms provide an interface allowing users to interact in some way with your site. In most cases, they
are used to gather data, either for later use or to provide a customized response on the fly. Forms
have a wide range of uses, from functions as simple as search boxes, mailing list signups,
guestbooks, and surveys to as complex as online commerce systems.

Forms collect input via controls, such as buttons, text fields, or scrolling menus. Controls are placed
on the page using special elements in the markup. These elements are merely an interface for
collecting user information and do not actually process the data. The real work is done by forms-
processing applications on the server, such as CGI scripts, ASP, ASP.NET, ColdFusion, PHP, or Java
servlets.

The programming necessary for form processing is beyond the scope of this book. This chapter
focuses on the frontend aspects of forms: the elements and attributes for building the form interface
as well as the elements used to improve accessibility.

form Establishes the form

input Creates a variety of controls

button Generic input button

textarea Multiline text entry control

select Multiple-choice menu or scrolling list

option An option within a select control

optgroup Defines a group of options

label Attaches information to controls

fieldset Groups related controls and labels

legend Assigns a caption to a fieldset

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.1. The Basic Form Element

The form element is used to designate an area of a web page as a form.

form

 <form> ... </form>

Attributes

Core (id , class , style , title), Internationalization, Events, onsubmit , onreset, onblur
accept=" content-type-list "
accept-charset=" charset list "
action=" URL " (Required)
enctype=" content type "
method="get|post"

name=" text " (Deprecated in XHTML in favor of id attribute)
target=" name "

The form may contain any web content (text, images, tables, and so on), but its function is to be a
container for a number of controls (checkboxes, menus, text-entry fields, buttons, and the like) used for
entering information. It also has the attributes necessary for interacting with the form-processing program.
You can have several forms within a single document, but they cannot be nested, and you must be careful
they do not overlap.

When the user completes the form and presses the "submit" button, the browser takes the information,
arranges it into name/value pairs, encodes the information for transfer, and then sends it off to the server.

Figure 15-1 shows the form resulting from this simple form markup example.

 <h2>Sign the Guestbook:</h2>
 <form action="/cgi-bin/guestbook.pl" method="get">
 <p>
 First Name: <input type="text" name="first" />

 Nickname:
<input type="text" name="nickname" />

 <input type="submit" /> <input type="reset" /> </p> </form>

15.1.1. The action Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The action attribute in the form element provides the URL of the program to be used for processing the
form. In the example in Figure 15-1 , the form information is going to a Perl script called guestbook.pl ,
which resides in the cgi-bin directory of the current server (by convention, CGI programs are usually kept in
a directory called cgi-bin).

Figure 15-1. A simple form

15.1.2. The method Attribute

The method attribute specifies one of two methods, either get or post , for submitting the form information
to the server. Form information is typically transferred in a series of variables with their respective content,
separated by the ampersand (&), as shown here:

 variable1=content1&variable2=content2&variable3=content3

The name attributes of form control elements provide the variable names. The content the user enters
makes up the content assigned to the variable.

Using the form in Figure 15-1 as an example, if a user entered "Josephine" next to "First Name" and "Josie"
next to "Nickname," the form passes the variables on in this format:

 name=Josephine&nickname=Josie

With the get method, the browser transfers the data from the form as part of the URL itself (appended to
the end and separated by a question mark) in a single transmission. The information gathered from the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nickname example would be transferred via the get method as follows:

 get http://www.domainname.com/cgi-bin/guestbook.pl?name=
 Josephine&nickname=Josie

The post method transmits the form input information separated from the URL, in essentially a two-part
message. The first part of the message is simply the special header sent by the browser with each request.
This header contains the URL from the form element, combined with a statement that this is a post request,
plus some other headers we won't discuss here. This is followed by the actual form data. When the server
sees the word "post " at the beginning of the message, it stays tuned for the data. The information
gathered with the name and nickname form would read as follows using the post method:

 post http://www.domainname.com/cgi-bin/guestbook.pl HTTP1.0
 ... [more headers here]
 name=Josephine&nickname=Josie

Whether you should use post or get may depend on the requirements of your server. In general, if you
have a short form with a few short fields, use the get method. Conversely, long, complex forms are best
sent via post . If security is an issue (such as when using the input type="password" element), use post ,
because it offers an opportunity for encryption rather than sending the form data straight away tacked onto
the URL. One advantage of get is that the request can be bookmarked, because everything in the request is
in the URL. This isn't true with post .

It is possible to send a query string via a URL in the document source, as shown here:

 <a href="http://www.domainname.com/cgi-bin/guestbook.pl?name=Josephine&
nickname=Josie">...

Note that in XHTML documents, it is necessary to escape the ampersand character (that is,
provide its character entity, &) in the URL. It will be correctly parsed as an ampersand by
the processing agent.

15.1.3. Encoding

Another behind-the-scenes step that happens in the transaction is that the data gets encoded using
standard URL encoding . This is a method for translating spaces and other characters not permitted in URLs
(such as slashes) into their hexadecimal equivalents. For example, the space character translates to %20 ,
and the slash character is transferred as %2F .

The default encoding format, the Internet Media Type (application/x-www-form-urlencoded), will suffice

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for most forms. If your form includes a file input type (for uploading documents to the server), you should
use the enctype attribute to set the encoding to its alternate setting, multipart/form-data .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.2. Form Controls

A variety of form control elements (also sometimes called "widgets ") are used for gathering information from a
form. This section looks at each control and its specific attributes. Every form control (except submit and reset)
requires that you give it a name (using the name attribute) so the form-processing application can sort the
information. For easier processing of form data on the server, the value of name should not have any character
spaces (use underscores or periods instead).

The name attribute works like a variable name. The value provided for name becomes the variable's name. The
content entered by the user into the form control is then assigned to the variable. Of all the attributes, the name
attribute is key in passing data from the HTML form to any other place in the page, another page, or out through
middleware to a database.

15.2.1. Input Controls

The input element is used to create a variety of form input controls , including:

Single-line text entry fields

Password entry fields

Hidden controls

Checkboxes

Radio buttons

Submit and reset buttons

File upload mechanisms

Custom and image buttons

The type attribute in the input element specifies the control type. The value of the type attribute also determines
which other attributes may be used with the element. The input element and all of its accepted attributes appears
here. Control-specific attribute listings appear along with the discussion of each control type.

input

 <input />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Core (id , class , style , title), Internationalization, Events, onfocus , onblur , onselect , onchange
alt=" text "
accept=" MIME type "
accesskey=" character "
checked="checked"

disabled="disabled"

maxlength=" number "
name=" text " (Required by all input types except submit and reset)
readonly="readonly"

size=" number "
src=" URL "
tabindex=" number "
type="text|password|checkbox|radio|submit|reset|file|hidden| image|button"

value=" text "

15.2.1.1. Text entry field

The simplest type of form element is the text entry field (type="text"). Text is the default setting for the input
element.

input type="text"

Attributes

Core (id , class , style , title), Internationalization, Events,
Focus (accesskey , tabindex , onfocus , onblur)
disabled="disabled"

maxlength=number

name=" text " (Required)
readonly="readonly"

size=" number "
value=" text "

This field allows the user to enter a single word or a line of text. By default, the browser displays a text-entry box
that is 20 characters wide, but you can set it to be any length using the size attribute.

By default, the user can type an unlimited number of characters into the field (the display scrolls to the right if the
text exceeds the width of the supplied box), but you can set a maximum number of characters using the maxlength
attribute.

Use the value attribute to specify the initial value, that is, the text to appear when the form is loaded. The user can
change this default text. If you have a form that consists of only one text input element , pressing the Enter key
submits the form without requiring a specific Submit button in the form. The following markup creates a text field
with a size of 15 characters, a maximum length of 50 characters, and the text "enter your name" displayed in the
field (Figure 15-2).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p>What is your name?</p>
 <input type="text" name="name" size="15" maxlength="50" value="enter your name" />

Figure 15-2. Text entry input control

15.2.1.2. Password text entry

A password field (type="password") works just like text entry, except the characters are obscured from view using
asterisk (*) or bullet (•) characters (or another character determined by the user agent).

input type="password"

Attributes

Core (id , class , style , title), Internationalization, Events,
Focus (accesskey , tabindex , onfocus , onblur)
disabled="disabled"

maxlength=" number "
name=" text " (Required)
readonly="readonly"

size=" number "
value=" text " (Required)

The attributes and syntax for password entry fields are the same as for the text input type. The only difference is
that values (such as the one provided as an initial value in this markup) are replaced with neutral characters, as
shown in Figure 15-3 .

 <p>What is your password?</p>
 <input type="password" name="password" size="8" maxlength="8" value="abcdefg" />

Figure 15-3. Password input control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although the characters entered into the password field are not visible to casual onlookers,
the form does not encrypt the information entered and should not be considered to be a
real security measure.

15.2.1.3. Hidden entry (type="hidden")

The hidden input (type="hidden") adds a control that isn't displayed in the browser, but is supplied to the form
processor when the form is submitted.

input type="hidden"

Attributes

accesskey=" character "
tabindex=" number "
name=" text " (Required)
value=" text " (Required)

Hidden controls are useful for sending information to be processed along with the user-entered data, such as labels
used by the script to sort forms. Users cannot see or alter hidden controls. Some scripts require specific hidden
fields be added to the form in order to function properly. Here is a hidden element (Figure 15-4):

 <p>This is a hidden element</p>
 <input type="hidden" name="extra_info" value="important" />

Figure 15-4. Hidden input

15.2.1.4. Checkbox (type="checkbox")

Checkboxes (type="checkbox") are like on/off switches that can be toggled by the user. Several checkboxes in a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

group may be selected at one time, which makes them useful for multiple-choice questions where more than one
answer is acceptable. When a form is submitted, only the "on" checkboxes submit values to the server.

input type="checkbox"

Attributes

Core (id , class , style , title), Internationalization, Events, Focus (accesskey , tabindex , onfocus ,
onblur)
align="left|right|top|texttop|middle|absmiddle|baseline|bottom| absbottom"

checked="checked"

disabled="disabled"

name=" text " (Required)
readonly="readonly"

value=" text " (Required)

Checkboxes can be used individually to transmit specific name/value coordinates to the server when checked. By
default, a checkbox is not checked; to make it checked when the page loads, simply add the checked attribute to
the corresponding input element. In XHTML, you must provide a value for every attribute, so the correct syntax is
checked="checked" .

When the box is checked, the corresponding value is transmitted with the form to the processing program on the
server. The values for unchecked boxes are not sent.

If you assign a group of checkboxes the same name, they behave like a multiple-choice list in which the user can
select more than one option for a given property, as shown in the following markup and in Figure 15-5 .

 <p>Which of the following operating systems have you used?</p>
 <input type="checkbox" name="os" value="WinXP" /> Windows XP
 <input type="checkbox" name="os" value="Linux" checked="checked" /> Linux
 <input type="checkbox" name="os" value="OSX" checked="checked" /> Macintosh OSX
 <input type="checkbox" name="os" value="DOS" /> DOS

Figure 15-5. Multiple checkboxes in a group may be selected

15.2.1.5. Radio button

Radio buttons (type="radio ") are another kind of button that users can toggle on and off. Unlike checkboxes,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

when a group of radio buttons share the same control name, only one button within the group can be "on" at one
time, and all the others are "off." They are used when the options are mutually exclusive.

input type="radio"

Attributes

Core (id , class , style , title), Internationalization, Events,
Focus (accesskey , tabindex , onfocus , onblur)
checked="checked"

disabled="disabled"

name=" text " (Required)
readonly="readonly"

value=" text " (Required)

In this example (Figure 15-6), only one operating system may be selected. The checked attribute makes the
button "on" by default when the page loads. Only data from the "on" radio button is sent when the form is
submitted.

 <p>Which of the following operating systems have you used?</p>
 <input type="radio" name="os" value="WinXP" /> Windows XP
 <input type="radio" name="os" value="Linux" /> Linux
 <input type="radio" name="os" value="OSX" checked="checked" /> Macintosh OSX
 <input type="radio" name="os" value="DOS" /> DOS

Figure 15-6. Only one radio button in a group may be selected

15.2.1.6. Submit and reset buttons

Submit buttons, used for sending the form data to the processing agent, are added with the submit input element
type. Reset buttons return all form controls to their initial values and are added with the reset input element type.

input type="submit"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Creates a submit button control; pressing the button immediately sends the information in the form to the server
for processing.

Attributes

Core (id , class , style , title), Internationalization, Events,
Focus (accesskey , tabindex , onfocus , onblur)
disabled="disabled"

name=" text "
value=" text "

input type=" reset"

Creates a reset button that clears the contents of the elements in a form (or sets them to their default values).

Attributes

Core (id , class , style , title), Internationalization, Events,
Focus (accesskey , tabindex , onfocus , onblur)
disabled="disabled"

value=" text "

Every form (unless it consists of exactly one text field) needs a submit button control to initiate the transmission of
information to the server. A form may have more than one submit button. By default, the submit button
(type="submit") says "Submit" or "Submit Query," but you can change it by adding your own text after the value
attribute.

The reset button (type="reset") reverts all form controls back to the state they were in when the form loaded
(either blank or with values provided by the author with the value attribute). The default value (and hence the
label for the button) is "Reset," but like the submit button, you can change its text by specifying its value, as
shown in Figure 15-7 .

 <p>You have completed the form.</p>
 <input type="submit" /><input type="reset" value="Start Over" />

Figure 15-7. Submit and reset buttons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some developers opt to leave the reset button out entirely, because there is no error-checking mechanism. If a
user presses it accidentally, all the data already entered is lost. This isn't an uncommon occurrence.

15.2.1.7. Custom button

Authors may create a custom "push" button for use with client-side scripting (JavaScript) controls by setting the
input type to button .

input type="button"

Attributes

Core (id , class , style , title), Internationalization, Events,
Focus (accesskey , tabindex , onfocus , onblur)
align="left|right|top|texttop|middle|absmiddle|baseline|bottom| absbottom"

disabled="disabled"

name=" text "
value=" text "

This button (type="button") has no predefined function, but rather is a generic tool that can be customized with a
scripting language such as JavaScript (the scripting language should be declared with a meta element). Use the
value attribute to write your own text on the button, as shown in the following markup and in Figure 15-8 . The
data from a type="button" input element is never sent when a form is submitted; this type is useful only with
script programs on the browser.

 <p>This does something really exciting.</p>
 <input type="button" value="Push Me!" />

Figure 15-8. Custom button

15.2.1.8. Image button

If you want to use your own image for a submit button, use the image input type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

input type="image"

Attributes

Core (id , class , style , title), Internationalization, Events,
Focus (accesskey , tabindex , onfocus , onblur)
align="top|middle|bottom"

alt=" text "
disabled="disabled"

name=" text " (Required)
src=" URL "

You can replace the submit button with a graphic of your choice by using the image input (type="image"), as
shown in the markup example and in Figure 15-9 . Clicking on the image submits the form to the server and
includes the coordinates of the mouse click with the form data. You must provide the URL of the graphic with the
src attribute. It is recommended that you use alternative text (with the alt attribute) for image buttons.

 <input type="image" src="graphics/sendme.gif" alt="Send me" />

Figure 15-9. Using an image for a button

15.2.1.9. File selection

The file input type allows users to submit external files with their form submission. The form control includes a
text field and a "Browse" button that accesses the contents of the local computer.

input type="file"

Attributes

Core (id , class , style , title), Internationalization, Events, Focus (accesskey , tabindex , onfocus ,
onblur)
accept=" MIME type "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

disabled="disabled"

maxlength=" number "
name=" text " (Required)
readonly="readonly"

size=" number "
value=" text "

The file-selection form field (type="file") lets users select a file stored on their computer and send it to the server
when they submit the form. It is displayed as a text entry field with an accompanying "Browse" button for selecting
the file, as shown in the following markup and in Figure 15-10 . As for other text fields, you can set the size and
maxwidth values as well as the field's default text. When using the file input type, you should specify
enctype="multipart/form-data" in the form element.

 <form enctype="multipart/form-data">
 <p>Send this file with my form information:</p>
 <input type="file" size="28" />
 </form>

Figure 15-10. The file-selection form field

15.2.2. Multiline Text Areas

The textarea element creates a multiline, scrollable text entry box that allows users to input extended text entries.

textarea

 <textarea>...</textarea>

Core (id , class , style , title), Internationalization,
Events, plus onselect , onchange
Focus (accesskey , tabindex , onfocus , onblur)
cols=" number " (Required)
disabled="disabled"

name=" text " (Required)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

readonly="readonly"

rows=" number " (Required)

A textarea form control and its markup are presented here (Figure 15-11).

 <p>What did you dream last night?</p>
 <textarea name="dream" rows="4" cols="45">Tell us your dream in 100 words or less</textarea>

Figure 15-11. The textarea form field

Specify the number of lines of text the area should display using the rows attribute. The cols attribute specifies the
width (measured in characters). These attributes are required. Scrollbars are provided if the user types more text
than fits in the allotted space.

The text that appears within the textarea element is the initial content of the text entry window when the form is
displayed. When the form is transmitted, the browser sends the text along with the name specified by the required
name attribute.

15.2.3. Creating Menus with the select Element

The select element creates a menu of options that is more compact than groupings of checkboxes or radio
buttons. A menu displays as either a pull-down menu or as a scrolling list of choices, depending on how the size is
specified. The select element works as a container for any number of option elements. It may also contain one or
more optgroup s, which are used to define a logical group of option elements.

select

 <select> ... </select>

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Core (id , class , style , title), Internationalization, Events, onfocus , onblur , onchange
disabled="disabled"

multiple="multiple"

name="text" (Required)
size=" number "
tabindex=" number "

option

 <option> ... </option>

Attributes

Core (id , class , style , title), Internationalization, Events
disabled="disabled"

label=" text "
selected="selected"

value=" text "

optgroup

 <optgroup>...</optgroup>

Attributes

Core (id , class , style , title), Internationalization, Events
disabled=" disabled "
label=" text " (Required)

15.2.3.1. Pull-down menus

The select element displays as a pull-down menu of options when no size specification is listed (the default) or
when size="1" . In a pull-down menu, only one item may be selected at a time. (Note that adding the multiple
attribute turns the menu into a scrolling list, as described in the next section.) Clicking on the arrows or bar pops
up the full menu, as shown in Figure 15-12 .

 <p>What is your favorite ice cream flavor?</p>
 <select name="ice_cream">
 <option>Rocky Road</option>
 <option>Mint Chocolate Chip</option>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <option>Pistachio</option>
 <option selected="selected">Vanilla</option>
 <option>Chocolate</option>
 <option value="swirl">Fudge Ripple</option>
 <option label="Praline Pecan">Super-duper Praline Pecan Smashup</option>
 <option>Bubblegum</option>
 </select>

Figure 15-12. Items in a select menu can be set to display after the menu is
collapsed

By default, the first option element in the list displays when the form loads. Use the selected attribute in an
option element to make it the default value for the menu (the option will be highlighted when the form loads).

The text within each option element is the value that is sent to the server. If you want to send a value for that
choice that is not displayed in the list, provide it with the value attribute in the option element. In the sixth option
element in the example, users will see "Fudge Ripple," but the value "swirl" will be sent to the form processing
agent.

The label attribute, when provided, is displayed instead of the option element content. In the seventh option in
the example, users will see "Praline Pecan," but the form will send the data "Super-duper Praline Pecan Smashup,"
because it is the default value provided in the option element.

15.2.3.2. Scrolling menus

To make the menu display as a scrolling list, simply specify the number of lines you'd like to be visible in the list
using the size attribute, or add the multiple attribute to the select element, as shown in the following markup
and in Figure 15-13 . The multiple attribute makes it possible for users to select more than one option from the
list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p>What are your favorite ice cream flavors?</p>
 <select name="ice_cream" size="6" multiple="multiple">
 <option>Rocky Road</option>
 <option>Mint Chocolate Chip</option>
 <option>Pistachio</option>
 <option selected="selected">Vanilla</option>
 <option selected="selected">Chocolate</option>
 <option value="swirl">Fudge Ripple</option>
 <option>Super-duper Praline Pecan Smashup</option>
 <option>Bubblegum</option>
 </select>

This example also uses the selected attribute to preselect options and the value attribute for providing a value for
the option that is different from the displayed text.

Figure 15-13. Use the size attribute to display a select menu as a scrolling list

15.2.3.3. Option groups

Conceptual groups of options may be organized into option groups , indicated with the optgroup element. This
could be used by browsers to display hierarchical cascading menus. The value of the required label attribute is
displayed as a heading for the following options.

The content of the optgroup element is one or more option elements. An optgroup element may not contain other
optgroup elements. This example shows how the optgroup element could be used to structure a list of ice cream
flavors similar to those in the previous examples. The label attribute provides a name for the group of options.

 <p>What are your favorite ice cream flavors?</p>
 <select name="ice_cream" size="6" multiple="multiple">
 <optgroup label="traditional">
 <option>Vanilla</option>
 <option>Chocolate</option>
 <option>Mint Chocolate Chip</option>
 <option>Pistachio</option>
 <option>Fudge Ripple</option>
 </optgroup>
 <optgroup label="specialty">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <option>Inside-out Rocky Road</option>
 <option>Super-duper Praline Pecan Smashup</option>
 <option>Bubblegum</option>
 </optgroup>
 </select>

When a user selects an option from the list (such as "Pistachio" from the example), the content of that option is
passed on with the variable name specified in the select element:

 ice_cream=Pistachio

15.2.4. Buttons

The button element defines a custom "button" that functions similarly to buttons created with the input tag. The
button element may contain images (but not image maps) and any other content with the exception of a , form ,
and form control elements. Buttons may be rendered as shaded "3D" buttons with up/down motion when clicked
(like submit and reset buttons), unlike the image input type, which is just a flat image.

button

 <button> ... </button>

Attributes

Core (id , class , style , title), Internationalization, Events,
Focus (accesskey , tabindex , onfocus , onblur)
disabled="disabled"

name=" text "
value=" text "
type="submit|reset|button"

This example shows button elements used in place of "submit" and "reset" buttons. Note that the button elements
include both images and text content.

 <button type="submit" name="submit"><img src="thumbs-up.gif" alt="thumbs-up
icon" /> Finished. Ready for step two.</button>

 <button type="reset" name="reset"><img src="thumbs-down.gif" alt="thumbs-down
icon" /> Try again.</button>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the text that appears in the button (for example, "Try again") does not necessarily have to match the
variable name (reset). Usability experts recommend using clear and descriptive labels for buttons such as "Please
press when completed." The variable name for that button that is passed along for processing can be more
utilitarian.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.3. Accessibility Features

The HTML 4.01 Recommendation added a few form elements and attributes that aid in accessibility .
Some provide improved ways to group and label form structure and content. Others provide
keyboard alternatives for selecting and activating (such as bringing focus to) form fields.

The added benefit of elements that describe the structure and relationships
within form content is that they provide good "hooks" for applying style sheet
rules, as addressed briefly at the end of this chapter.

15.3.1. Labels

The label element is used to associate some descriptive text with a form field. This provides
important context for users accessing the form with a speech-based browser. Each label element is
associated with exactly one form control.

label

 <label> ... </label>

Attributes

Core (id, class, style, title), Internationalization,
Events, plus onfocus, onblur
accesskey="character"

for="text"

There are two ways to apply a label to a form control. One is to nest the control and its associated
description within the label element. Following is an example of labels being applied to a simple form
with this method.

 <form action="/cgi-bin/guestbook.pl" method="GET">
 <label>Login account: <input type="text" name="login" /></label>
 <label>Password: <input type="password" name="password" /></label>
 <input type="submit" />
 </form>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The other method is to associate the label with an id value specified in the input form. The for
attribute says which control the current label is for. This method is useful for form fields that are not
juxtaposed with their descriptions, such as when they span across different table cells. The following
is an example of the label element referencing an id.

 <form action="/cgi-bin/guestbook.pl" method="GET">
 <label for="log">Login account:</label>
 <input type="text" name="login" id="log" />

 <label for="pswd">Password:</label>
 <input type="password" name="password" id="pswd" />
 <input type="submit" />
 </form>

id and name in Form Elements

When applied to form control elements (such as input, select, etc.), the id and name
attributes have different and distinct functions. The value of the name attribute is passed
to the forms processor when the form is submitted. The id attribute is used to give the
element a unique identifier that may be accessed by a style sheet rule, script, or the
label element as shown in the previous example. An id attribute may not be used in
place of name, because its value will not be submitted with the form.

This is not the case for the form element itself. For the form element, id and name have a
similar role in assigning a unique name to the form. Which one you use depends on the
markup language you are using. In HTML, the name attribute may be used to give the
form a name to make it accessible to scripts. In XHTML, only id may be used, and the
name attribute has been removed from the DTD.

15.3.2. fieldset and legend

The fieldset element is used to create a logical group of form controls. The fieldset may contain a
legend element, a description of the enclosed fields that may be useful for non-visual browsers.

fieldset

 <fieldset> ... </fieldset>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Core (id, class, style, title), Internationalization, Events

legend

 <legend> ... </legend>

Attributes

Core (id, class, style, title), Internationalization, Events
accesskey="character"

align="top|bottom|left|right" (Deprecated)

The following form is structured into groups using fieldset elements and includes descriptive
legends.

 <form>
 <fieldset>
 <legend>Customer Information</legend>
 <label>Full name <input type="text" name="name" /></label>
 <label>Email Address <input type="text" name="email" /></label>
 <label>State <input type="text" name="state" /></label>
 </fieldset>

 <fieldset>
 <legend>Mailing List Sign-up</legend>
 <label>Add me to your mailing list <input type="radio" name"list"
value="yes" checked="checked" /></label>
 <label>No thanks <input name"list" value="no" /></label>
 </fieldset>
 </form>

15.3.3. accesskey and tabindex

As part of the W3C's efforts to improve the accessibility of web content and interactivity to users
without visual browsers or traditional point-and-click browser capabilities, the HTML 4.01
Recommendation introduced several attributes designed to make selecting form fields easier from the
keyboard. To use a form control, it must be selected and active. In the web development world, this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

state is called focus . The following attributes bring focus to a form element without the traditional
method of pointing and clicking on it with the mouse. Every user can enjoy these shortcuts for
moving around in a form.

The accesskey attribute specifies a character to be used as a keyboard shortcut to an element. The
actual functionality of the access key may require a keystroke combination such as Alt-key
(Windows) or Command-key (Macintosh).

The accesskey attribute can be used with the button, input, label, legend, and textarea form control
elements. Netscape 4 and other pre-standards browsers do not support access keys. When an access
key brings focus to a label element, the focus is passed onto the respective form control.

Authors should provide some indication of the access key, such as providing an access key legend in
the site or pointing out the access key in context by putting it in parentheses or making it bold or
underlined, as shown in the following example.

 Address<input type="text" name="address" accesskey="1" />

Accessibility specialists suggest using numbers instead of letters so as not to
conflict with other software keystroke combinations. Others suggest that access
keys should not be used because they are not transparent to the user and rely
on the author providing access key legends or cues.

Another method for bringing focus to form fields is by hitting the Tab button to move from one field
to the next. By default, browsers that support tabbing will tab through in order of appearance in the
document. Use tabindex if you want to rearrange the order of focus without rearranging the source
markup. It may be used with the button, input, select, and textarea elements. Elements with a
tabindex of zero (0) are accessed after elements with positive specified values. Elements with
negative tabindex values are left out of the tabbing order. Disabled elements are also left out. Adding
tabindex is very straightforward.

 Address <input type="text" name="address" tabindex="1" />
 Zip code <input type="text" name="zip" tabindex="3" />
 Phone number <input type="text" name="phone" tabindex="2" />

Although tabindex is intended to be an accessibility feature, many accessibility experts don't
necessarily recommend it. In most cases, the order of appearance of form controls in the document
source should be logical and sufficient. Changing that order may defy the user's expectations,
potentially leading to confusion. Take care using tabindex and only use it with good reason.

As of this writing, tab indexing is poorly supported in Safari 1.0 and Firefox 1.0
on the Macintosh OS X. Because of bugs and incomplete implementation,
tabindex may be assumed to apply to text-input fields only in these browsers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.3.4. title Attribute

Another attribute for improving the accessibility of form fields (as well as links, images, and other
resources) is title. Use it to provide a description of the field or special instructions. Speech
browsers may speak the title when the form field is brought into focus. Visual browsers may render
titles as "tool tips" that appear when the pointer pauses over the control.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.4. disabled and readonly

The disabled and readonly attributes inhibit the user's ability to select or change the form field.
When a form element is disabled, it cannot be selected. Visual browsers may render the element as
grayed-out. The disabled state can only be changed with a script. This is a useful attribute for
restricting access to some form fields based on data entry earlier in the form.

The readonly attribute prevents the user from changing the value of the form field (although, it can
still be selected). This enables developers to set values for controls contingent on other data entry
using a script.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.5. Affecting Form Appearance

The way a form control appears in the browser depends on that browser's rendering engine. In HTML
alone, there are no attributes for affecting the presentation of a form control other than specifying
character lengths for text fields. We are left with the knowledge that controls will be rendered slightly
differently on different browsers and platforms.

Using Cascading Style Sheets to change the presentation and positioning of the form controls , you
can take measures to improve the appearance of your forms. Layout tables have also traditionally
been used to align form elements, but tables for layout are no longer the preferred option now that
CSS is better supported.

15.5.1. Styling Form Controls with CSS

As for any HTML element, you can use Cascading Style Sheets to alter the font, colors, and size of
form controls. The form element and the form control elements accept the id, class, and style
attributes, so you can alter the font, size, color, and so on as you would for any other web page
element. The label, fieldset, and legend elements intended for accessibility also make useful
"hooks" for styling form content.

Some browsers, particularly old versions, do not support resizing fields or positioning forms with style
sheets, so do so with caution and test thoroughly. Cascading Style Sheets are explained in Part III.

This simple example uses an inline style to create a black submit button with white text in the Impact
font face (Figure 15-14):

 <input type="submit" value="SUBMIT" style="font-family: Impact, sans-serif;
 color: white; font-size: 14px; background: black" />.

Figure 15-14. A submit button altered with style sheets

In this example, a style sheet is used to highlight the required fields (last name and phone number)
using class attributes in a minimal form (Figure 15-15):

 <!-- Style information in head of document -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <style type="text/css">
 input.required { background-color: darkred; color: white }
 </style>

 <!-- In the form... -->

 <p>First Name:

 <input type="text" name="first" size="30"></p>
 <p>Last Name:

 <input type="text" name="last" size="30" class="required" /></p>
 <p>Phone Number:

 <input type="text" name="number" size="12" class="required" /></p>

Figure 15-15. Style sheets alter the appearance of certain fields

15.5.2. Aligning Form Elements

A page with lots of form elements can get ugly in a hurry. The best favor you can do for a form is to
align the elements in some orderly fashion.

15.5.2.1. Layout tables

The traditional method (and most reliable if you choose to support Version 4 browsers) is to align
form content with tables, as shown in Figure 15-16. When laying out a form with a table, it usually
works best to put the table element in the form element (rather than the other way around). Keep in
mind that unstyled form controls will render at varying sizes depending on the user's browser and
preferences, so allow for a certain amount of flexibility. If you do use tables for layout , make sure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that they use minimal markup and linearize well. (See Chapter 13 for tips on layout tables .)

15.5.2.2. CSS-only alignment

You can align form elements in a similar fashion using CSS alone, without applying layout tables, as
shown in the simple example in Figure 15-17.

This is the minimal and semantic markup for the form. Each component of the form uses a label and
input element, except for the submit button, which has an input element only.

Figure 15-16. Using a table to align a form

Figure 15-17. Using CSS to align a form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <form action="/cgi-bin/guestbook.pl" method="get">
 <fieldset id="signup">
 <label for="first">First Name:</label>
 <input type="text" name="firstname" id="first" />

 <label for="nick">Nickname: </label>
 <input type="text" name="nickname" id="nick" />

 <label for="desc">Famous for:</label>
 <textarea rows="10" cols="25" id="desc">What is your claim to
 fame?</textarea>

 <input type="submit" value="submit" id="subbutton" />
 </fieldset>
 </form>

The goal for this form was to have the label and inputs appear side by side, with the labels on a right
alignment. This is handled by floating both the label and input elements so they are adjacent, and
then changing the text-align on the label to right. A margin on the label element keeps the label
text from bumping into the inputs.

When using the float property, it is important to clear the following elements to make them start on
a new line after the floated element. In this example, the clear property is applied to both the label
and br elements for cross-browser compatibility. Note that because the submit button does not have
a label, its float property is set to none and it is cleared. The style sheet used to align the form is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provided here.

 fieldset {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: 12px;
 background-color: #CCCCCC;
 padding: 12px;
 border: medium double #666;
 width: 30em; }

 label {
 width: 6em;
 float: left;
 text-align: right;
 margin: .5em 1em;
 clear: both; }

 input, textarea {
 float: left;
 margin: .5em 0;
 width: 250px; }

 #subbutton {
 float: none;
 width: auto;
 margin-bottom: 1em;
 margin-left: 7em;
 clear: both; }

 br {clear: both; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part III: The Presentation Layer: Cascading
Style Sheets

Chapter 16, Cascading Style Sheets Fundamentals

Chapter 17, Selectors

Chapter 18, Font and Text Properties

Chapter 19, Basic Box Properties

Chapter 20, Color and Backgrounds

Chapter 21, Floating and Positioning

Chapter 22, CSS for Tables

Chapter 23, Lists and Generated Content

Chapter 24, CSS Techniques

Chapter 25, Managing Browser Bugs: Workarounds,Hacks,and Filters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 16. Cascading Style Sheets
Fundamentals
Cascading Style Sheets (CSS) is a W3C standard for defining the presentation of web documents.
Presentation refers to the way a document is displayed or delivered to the user, whether it's on a
computer monitor, a cell phone display, or read aloud by a screen reader. This book focuses primarily
on the visual aspects of presentation, such as typography, colors, alignment, layout, and so on. CSS
is the mechanism for providing these types of style instructions to elements in a document that has
been marked up with XHTML, HTML, or any XML language. Most important, CSS keeps these
presentation instructions separate from the content and its structural and semantic markup.

Before CSS, web designers were at the mercy of the browser's rendering engine and internal style
sheets for the way HTML elements looked in the browser window. Presentational elements and
attributes added to HTML, such as the font tag and the bgcolor attribute, granted some additional
control over visual display, but the integrity of markup suffered. Cascading Style Sheets (or just
"style sheets" in these chapters) hand visual display decisions back to designers and authors. This
comes as good news both for designers who want more control over presentation and for those who
are eager to see HTML get back to the exclusive business of defining document structure and
meaning. Style sheets make both of these goals possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.1. CSS in a Nutshell

The chapters in this section provide a solid overview and reference of CSS and its properties. This
book focuses on CSS used with documents written in (X)HTML, although CSS can also be used with
any XML language.

This chapter lays an important foundation for understanding how CSS works, including rule syntax
and how style sheets are applied to documents. It also covers some critical key concepts at the core
of CSS, such as inheritance, handling conflicting styles (the cascade), how elements display, and the
box model. Browser issues are briefly addressed as well. The chapter finishes with a section on
specifying values in CSS.

Chapter 17 explains all the various ways elements can be targeted for style application, and Chapters
18 through 23 cover the CSS visual display properties as they are specified in the CSS 2.1
Recommendation. These chapters document how CSS is designed to work. Browser support varies, of
course, so this book provides notes if a property or its values are particularly problematic in a
browser.

Finally, Chapters 24 and 25 put everything together in real-world applications. Chapter 24 is a
cookbook of some of the most popular CSS techniques, such as CSS rollovers and multicolumn
layouts. All of the browser-related problems and solutions are aggregated in Chapter 25, making it a
handy reference if you encounter problems down the road.

In the interest of keeping everything "in a nutshell," the chapters in this section stick to visual media
properties. The CSS properties related to interface, paged media, and aural (speech) media are
included in Appendix B.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.2. The Benefits of CSS

The benefits of using web standards for web page production were covered in detail in Chapter 1,
however, it won't hurt to start off with a refresher of the advantages style sheets offer.

Greater typography and page layout controls

With style sheets, you can specify traditional typography features that you could never do with
HTML alone (even with its presentational extensions).

Less work

Not only can you format all similar elements in a document with a single style rule, external
style sheets make it possible to edit the appearance of an entire site at once with a single style
sheet edit.

Potentially smaller documents

Redundant font tags and nested tables make for bloated documents. Stripping presentational
HTML out of the document saves on file size.

Potentially more accessible documents

Well-structured and semantically rich documents are accessible to a wider variety of devices
and the people who use them. Techniques based on presentational (X)HTML, such as using the
font element to format headings and breaking up content into complex nested tables, damage
the integrity of the source document.

Presentational HTML is on its way out

The W3C has deprecated all presentational elements and attributes in the HTML and XHTML
specifications. One day, browsers will not be required to support them.

It's well supported

As of this writing, nearly every browser in current use supports nearly all of the CSS 1
specification. Most also support the majority of the Level 2 and 2.1 Recommendations.

As for the disadvantages...there aren't any, really. Some people complain that style sheets can be
misused, but you can't fault CSS for that. There are some lingering hassles from inconsistent browser
support that require workarounds and extra planning (see Chapter 25), but that is by no means an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

argument against using style sheets for presentation right away.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.3. How CSS Works

What follows is a simplified explanation of how style sheets work. At its heart, the process actually is
this simple.

Start with an XHTML (or HTML) document. Ideally, this document will have been given a logical
structure and semantic meaning using the appropriate XHTML elements. The XHTML markup is
commonly referred to as the structural layer of the web page. It forms the foundation upon
which the presentation layer is applied.

1.

Write style rules for how each element should ideally look. Each rule targets the element by
name, and then lists propertiessuch as font, color, and so onto be applied to the element. The
specifics of writing style rules are covered in the upcoming "Rule Syntax" section.

2.

Attach the styles to the document. The style rules may be gathered up into a separate
document and applied to a whole site, or they may appear in the header and apply only to that
document. Style instructions may appear within an XHTML element itself as well. Each of these
methods for attaching style rules to the content document is discussed in the "Adding Styles to
a Document" section in this chapter.

3.

Needless to say, there's a bit more to each step than is described here. The next section begins to
get into the nitty gritty of style sheets by looking at the parts of a style rule.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.4. Rule Syntax

Style sheets consist of one or more rules for describing how a page element should be displayed. The
following example contains two rules. The first rule makes all the h1s in a document gray; the second
specifies that paragraphs should be set in 12-pixel high Verdana or some sans-serif font:

 h1 {color: #eee;}
 p {font-size: 12px;
 font-family: Verdana, sans-serif; }

Figure 16-1 shows the components of a style sheet rule.

The two main sections of a style sheet rule are the selector (which identifies the element to be
styled) and the declaration (the style or display instructions to be applied to that element). In the
previous sample code, the h1 and p elements are the selectors. The complete list of selectors in the
CSS 2.1 specification is covered in Chapter 17.

CSS History and Standards Development

HTML was never intended to be a presentational language, so the idea of using separate
style sheets with HTML documents (in the manner style sheets were used in desktop
publishing) has been around since 1990 when the Web was just a twinkle in Tim Berners-
Lee's eye. As early as 1993, before the release of the Mosaic browser, there were already
several HTML style sheet proposals in circulation.

Cascading Style Sheets as we know them got their start in 1994 when Håkon Lie
published his first draft of Cascading HTML Style Sheets. He was quickly joined by Bert
Bos, who had been working with a similar style sheet system for his Argo browser. What
set their style sheet proposal apart was the notion that the system must strike a balance
between author and reader style preferences and that it must have a mechanism for
dealing with multiple style sheets and conflicting styles (thus, the "cascade," discussed in
an upcoming section in this chapter).

After presentations at WWW conferences and much lively discussion in the www-style
mailing list, development of Cascading Style Sheets continued. In 1995 when the World
Wide Web Consortium (W3C) became operational, an official working group dedicated to
CSS was formed. By this time, "HTML" had been dropped from its title, because it was
recognized early on that other languages would need a presentation language as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first formal CSS Recommendation was CSS Level 1, released in 1996, which contains
all the basics for attaching font, color, and spacing instructions to elements on a page.
The first browser to implement aspects of CSS 1 was Internet Explorer 3, followed soon
after with a half-hearted effort to stay competitive by Netscape 4.

CSS Level 2 was released in 1998. It is most notable for the addition of properties for
positioning elements on the page (originally released as CSS-P, then later rolled into CSS
Level 2), but it also introduced media types, table layout properties, aural style sheets,
and more sophisticated methods for selecting elements, among other features.

As of this writing, there are two other Recommendations in the works. CSS Level 2,
Revision 1 is a working draft (downgraded from Candidate Recommendation) that makes
minor adjustments to CSS2 based on experience working with it from 1998 to 2004. It
fixes errors, deletes properties that were not adopted by the CSS community, and moves
some unsupported features to the upcoming CSS 3 specification.

The module-based CSS Level 3 Recommendation adds support for vertical flowing text,
improved table handling, international languages, and better integration with other XML
technologies such as SVG (Scalable Vector Graphics), MathML, and SMIL (Synchronized
Multimedia Interchange Language). The W3C is also working on special CSS sets
targeted to specific media such as CSS Mobile, CSS Print, and CSS TV. It is clear that
CSS is an integrated part of the W3C's vision for the future of web content.

To keep up to date with the W3C's CSS-related activities, visit www.w3.org/Style/CSS/.

Figure 16-1. Parts of a style sheet rule

The declaration is made up of a property and its value. The curly braces allow for multiple
declarations, which make up a declaration block . A property is a stylistic parameter that can be
defined , such as color, font-family, or line-height. Properties are separated from their values by
the colon (:) character followed by a space. Style properties are the real meat of CSS; therefore,
they are treated in detail in Chapters 18 through 23.

A declaration may contain several property/value pairs. Multiple properties must be separated by
semicolons (;), as shown in this example.

 p {font-size: 11px; font-weight: bold; color: #C06; }

Note that because CSS ignores whitespace and line returns, this same rule could be written like this
to make the properties easier to find on the page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 p {
 font-size: 11px;
 font-weight: bold;
 color: #C06;
 }

Technically, the last property in a declaration block does not require a semicolon, but developers
usually include it anyway to make it easy to append the rule later. In addition, the inclusion of the
trailing semicolon avoids a rare bug in older browsers.

Properties take several types of values, including predefined keywords, percentage values, specific
length measurements, color values, integers, and URLs. When using a style property, it is critical to
know which values it accepts. Accepted values for each property are provided with the property
listings in each CSS chapter as well as in Appendix B. The syntax for length measurement and color
values is discussed in the upcoming "Specifying Values" section of this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.5. Adding Styles to a Document

Style rules can be applied to documents in three ways: as inline style directions, as style elements
embedded at the top of the document itself, and as external files that can be either linked to or
imported into the document.

When attaching styles to a document, it is important to keep in mind that other
style sheets may apply to your document as well. User agents, such as
browsers, have built-in style sheets for rendering content. In addition,
individual users may create their own style sheets and apply them to a single
site or to all the sites they visit in order to make the text comfortable to read or
to meet special needs. Which style sheet takes precedence is covered in the
upcoming "Document Structure and Inheritance" section.

16.5.1. Inline Styles

You can add style information to an individual element by using the style attribute within the HTML
tag for that element. The value of the style attribute is one or more standard style declarations, as
shown here:

 <h1 style="color: red">This Heading will be Red</h1>

 <p style="font-size: 12px; font-family: 'Trebuchet MS', sans-serif" >
 This is the content of the paragraph to be set with the
 described styles.</p>

Note that if the style attribute uses double quotation marks as shown, quoted values within the list
(such as the font name "Trebuchet MS" in the example) must use single quotation marks. The
reverse is also valid: if the document uses single quotes for attributes, then contained quoted values
require double quotes.

Although a perfectly valid use of style information, inline styles are equivalent to the font extension
to HTML in that they pollute the document with presentation information. With inline styles,
presentation information is still tied to individual content elements, so any changes must be made in
each individual tag in every file. Inline styles are best used only occasionally to override higher-level
rules. In fact, the style attribute has been deprecated in XHTML 1.1 and does not appear in other
XML languages.

16.5.2. Embedded Style Sheets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A more compact method for adding style sheets is to embed a style block in the top of the HTML
document using the style element summarized here.

style

 <style> ... </style>

Attributes

Internationalization (lang, dir, xml:lang)
media="all|aural|braille|handheld|print|projection|screen|tty|tv"

title="text"

type="content type" (Required)

The following example shows these sample rules embedded in an XHTML document:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <style type="text/css">
 h1 {color: #666;}
 p {font-size: 90%;
 font-family: Verdana, sans-serif; }
 </style>
 <title>Style Sheets</title>
 </head>
 ...
 </html>

The style element must be placed within the head tags in the document. Currently, Cascading Style
Sheets is the only widely supported style sheet language, but the W3C has prepared for the
possibility of additional languages to be added in the future by providing the type attribute within the
style element. The only viable style type as of this writing is text/css. The type attribute is required
in both HTML and XHTML; if it is omitted, some browsers may ignore the entire style sheet.

In addition, the media attribute in the style element (not shown in the example) may be used to
target the medium (screen, print, handheld, etc.) to which the style sheet should be applied. If it is
not present, the default is "all" media. The media attribute is discussed in the "CSS for Other Media"
section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Browsers that do not support style sheets (such as Version 2 browsers) will not
recognize the style element and may display the style rules on the page. If for
some reason you need to support non-CSS browsers, you can prevent the
contents from displaying by placing them within comments, as shown in this
example:

 <style type="text/css">
 <!--
 h1 {color: #36C;}
 -->
 </style>

Although once standard markup, the inclusion of comments in the style
element is no longer conventional as older browsers disappear from use.

16.5.3. External Style Sheets

The most powerful way to use CSS is to collect all the style rules in a separate text document and
create links to that document from all the pages in a site. In this way, you can make stylistic changes
consistently across a whole site by editing the style information in a single document. This is a
powerful tool for large-scale sites (and small ones, too, for that matter).

16.5.3.1. Style sheet content

The style sheet document is a plain-text document that contains at least one style sheet rule. It may
not contain HTML tags (after all, it isn't an HTML document) and so including HTML tags may cause
parts of the style sheet to be ignored. HTML comments are also not permitted, however, comments
may be inserted in the style sheet by using the CSS comment syntax shown here:

 /* This is the end of the chapter */

There are two ways to refer to external style sheets (which should be named with the .css suffix)
from within a document: the link element and the @import directive.

16.5.3.2. Using link

The best-supported method for referring to external style sheets is to create a link to the CSS
document using the link element in the head of the document, as shown in this example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <head>
 <link rel="stylesheet" href="/pathname/stylesheet.css" type="text/css" />
 </head>

The rel attribute defines the linked document's relation to the current documenta "style sheet." The
href attribute provides the URL of the style sheet document. Authors may link to more than one style
sheet in a document and both will apply.

16.5.3.3. Importing

An alternative to linking is to import an external style sheet into a document using the @import
function in the style element:

 <style type="text/css">
 <!--
 @import url(http://pathname/stylesheet.css);
 p {font-face: Verdana;}
 -->
 </style>

In this example, an absolute URL is provided, but a relative URL may also be used. @import
commands must come before anything else (except @charset).

Alternate Style Sheets

CSS 2 introduced the ability to specify alternate style sheets by setting the value of the
rel attribute to alternate stylesheet, as shown in the following example.

 <link rel="stylesheet" type="text/css"
 href="/pathname/basic.css" title="Basic Style" />
 <link rel="alternate stylesheet" type="text/css"
 href="/pathname/largetype.css" title="Larger type" />
 <link rel="alternate stylesheet" type="text/css"
 href="/pathname/minimal.css" title="Minimal Design" />

When the document in the above example loads into the browser, the basic.css style
sheet is applied by default because it is the one specified as stylesheet. Browsers that
support alternate style sheets would create a drop-down menu in the browser interface
where users can select the other style options by title.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Alternate style sheets are supported in Mozilla, Netscape 6+, and Opera 7+. Internet
Explorer Versions 6 and earlier do not support alternate style sheets except through an
optional extension called a favelet (see www.favelets.com for more info). IE7 (in beta as
of this writing) does not have built-in support either.

It is possible to use JavaScript and/or server-side scripting such as PHP to give your
users the choice of alternate style sheets without relying on the browser's interface to
support the alternate style sheet method in the previous example. A List Apart has two
articles that serve as a good starting point for learning more.

"Alternative Style: Working with Alternate Style Sheets," by Paul Sowden
(www.alistapart.com/articles/alternate). Discusses using JavaScript and the DOM.

"Build a PHP Switcher," by Chris Clark (www.alistapart.com/articles/phpswitch/).
Shows how to use PHP to switch style sheets.

Importing allows multiple style sheets to be applied to the same document. When additional @import
functions are added within the style element, the style information from the last file read (the one at
the bottom of the list) takes precedence over the previous ones.

The @import directive may also be used in the style sheet itself to reference information in other
external .css files. See the sidebar "Modular Style Sheets" for more information.

@import is not supported by Netscape 4, Internet Explorer 3, and Opera 3. This limitation is often
used as part of a technique for hiding unsupported style information from these browsers.
Fortunately, they make up a small fraction of browsers in use as of this writing.

16.5.4. CSS for Other Media

CSS 2 introduced the ability to target style sheets to specific presentation media. This is done using
the media attribute in the link element or @media or @import rules in a style sheet. The complete list
of accepted values for the media attribute follows, but currently, only screen, print, and all are
widely supported. Support for handheld is getting a lot of attention by the W3C's Mobile Web
Initiative. Multiple values may be provided in a comma-separated list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modular Style Sheets

The @import command may also be used within a style sheet document (the .css file) to
pull style information in from other style sheets. With this method, one external style
sheet attached to the HTML document accesses style rules from multiple .css files. This
functionality is used strategically as a way to modularize styles and reuse them
efficiently.

For example, frequently used styles related to navigation could be stored in a navigation
style sheet. Basic typography settings could be stored in another, form styles in another,
and so on. These style modules are added to the main style sheet with the @import
command as shown here:

 /* basic typography */
 @import url("type.css");

 /* form inputs */
 @import url("forms.css");

 /* navigation */
 @import url("list-nav.css");

all

Used for all media.

aural

Used for screen readers and other audio versions of the document. This value is deprecated in
favor of speech in future versions of CSS.

braille

Used when rendering the document with a Braille device.

embossed

Used with Braille printing devices.

handheld

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Used for web-enabled cell phones or PDAs.

print

Used for printing the document or for displaying a "print preview."

projection

Used for projection media such as a slideshow presentation.

screen

Used for display on a computer monitor. This is the media that applies to all browsers running
on computers.

speech

This value is reserved for spoken output in the CSS 2.1 Recommendation. Its properties,
however, will be defined in a later CSS Level release.

tty

Used for teletype printers or similar devices.

tv

Used for presentation on a television.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.6. Key Concepts

To become comfortable with the way CSS behaves, it is important to have an understanding of its
guiding concepts . This section provides a basic introduction to these fundamental ideas:

Document structure and inheritance

Conflicting style rules: the "cascade"

Element types

The box model

16.6.1. Document Structure and Inheritance

XML, XHTML, and HTML documents have an implicit structure or hierarchy. For instance, the html
root element usually contains a head and a body, and the body, in turn, contains some number of
block-level elements, such as paragraphs (p). A paragraph may include inline elements such as
anchors (a) or emphasized text (em). This hierarchy can be visualized as a tree, branching out from
the root. Figure 16-2 shows the document tree structure of a very simple XHTML document.

Figure 16-2. Document tree structure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.6.1.1. The parent-child relationship

The document tree becomes a family tree when it comes to referring to the relationship between
elements. An element that is directly contained by another element is said to be the child of that
element. In Figure 16-2, the p element is the child of body, and body is said to be its parent. Elements
that have the same parent are called siblings . In the example, the li element is the child of ol, its
parent, and the other li elements are its siblings. This parent-child relationship is fundamental to
how CSS works.

Notice in the example that the p element contains an a element, which in turn contains the inline
element strong. Technically, the strong element is contained by the p element as well. All the
elements a given element contains are said to be its descendants . To be considered a child, an
element needs to be directly under its parent element in the hierarchy (therefore, a child is just a
special kind of descendant). As you might expect, the terminology extends in the other direction as
well, as all elements higher than a particular element in the hierarchy are known as its ancestors. The
root element is called the root element because it has no ancestors.

This may all seem academic, but as you'll see, an awareness of the structure tree of your document
comes into play in practical ways when working with CSS.

16.6.1.2. Inheritance

Related to structural relationships is the concept of inheritance, in which most styles are passed down
from an element to its descendants. In other words, a child may inherit property values from its
parent. For example, if a style rule applies a text color to a ul list, then every list item (li) within
that list will be that color as well, because they inherit the property from their parent element. In
CSS, most properties are inherited , but some (such as margins and backgrounds) are not.
Inheritance is noted in the property descriptions throughout this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Styles applied to specific elements override settings higher in the hierarchy. With planning,
inheritance can be used to make style specification more efficient. For example, if you'd like all the
text on the page to be blue except for list items, you can set the color property at the body level to
apply to the whole document and then use another rule to make lis a different color.

This notion of some rules overriding others brings us to an important concept: the cascade .

16.6.2. Conflicting Style Rules: The Cascade

It is possible (even common) for elements in a document to get presentation instructions from
several sources. Conflicts are certain to arise. The working group that developed CSS anticipated this
situation and devised a hierarchical system that assigns different weights to various sources' style
information. The cascade (of Cascading Style Sheets) refers to what happens when several sources
of style information vie for control of the elements on a page; style information is passed down until
it is overridden by a style command with more weight.

The cascade order provides a set of rules for resolving conflicts between competing style sheets.
When a user agent (such as a browser) encounters an element, it looks at all of the style declarations
that might possibly apply to it, and then sorts them all out according to style sheet origin, selector
specificity, and rule order to determine which one applies.

16.6.2.1. Style sheet origin

At the top level, user agents look at the origin of the style declarations. Browsers give different
weight to style sheets from the following sources, listed from the least weight to greatest:

User agent style sheets

This is the style information that is built into the browsing device for rendering HTML elements
and sets their default appearance.

Reader style sheets

The reader (or user) may also create a style sheet. Reader style sheets override the default
browser styles.

Author style sheets

When the author of a document attaches a style sheet to it, those declarations take precedence
over the reader and user agent style sheets (with an "important" exception, listed next).

Reader !important style declarations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In CSS 2, reader style declarations marked as !important (see the sidebar "Assigning
Importance") trump all style declarations, even those from author style sheets.

In CSS 1, any style marked as "important" by the author took precedence over
all reader styles. This was reversed in CSS 2.

After considering the source of the style sheet, there is another hierarchy of weights applied to style
sheets created by the document's author. As discussed in this chapter, authors may attach style
information to documents as inline styles, an embedded style element, or one or more external style
sheets. These points of origin within the author style sheets are given varying weights as well
(remember, all author styles override reader and user agent styles unless the reader marks a style
!important). The following list indicates the weight of various author style declarations, from least to
most weight. In other words, style rules farther down in the list override those higher in the list.

Linked external style sheets (using the link element)

If there are multiple linked style sheets, the style rules in style sheets listed lower in the
document take precedence over those listed above it. For example, if an HTML document links
to two style sheets, like this:

 <head>
 <link rel="stylesheet" href="style1.css" type="text/css" />
 <link rel="stylesheet" href="style2.css" type="text/css" />
 </head>

Assigning Importance

If you want a rule not to be overridden by a subsequent conflicting rule, include the
!important indicator just after the property value and before the semicolon for that rule.
For example, to always set all paragraph text to blue, use the following rule in a style
sheet for the document:

 p {color: blue !important;}

Even if the browser encounters an inline style later in the document (which should
override a document-wide style sheet), like this one:

 <p style="color: red">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that paragraph will still be blue, because the rule with the !important indicator cannot be
overridden by other styles in the author's style sheet.

The only way an !important rule may be overridden is by a conflicting rule in a reader
(user) style sheet that has also been marked !important. This is to ensure that special
reader requirements, such as large type for the visually impaired, are never overridden.

Based on the previous style examples, if the reader's style sheet includes this rule:

 p {color: black;}

the text would still be blue, because all author styles (even those not marked important)
take precedence over the reader's styles. However, if the conflicting reader's style is
marked !important, like this:

 p {color: black !important;}

the paragraphs will be black and cannot be overridden by any author-provided style.

If a style rule provided in style2.css conflicts with a style rule in style1.css, the rule located in
style2.css will take precedence because that style sheet is listed lower in the source document.

Imported external style sheets (using @import)

Imported style information overrides linked styles. If there are multiple @import directives, the
rules provided in the style sheets lower in the list override the ones above.

Embedded style sheets (with the style element)

Styles applied to a specific document override those set externally.

Inline styles (using the style attribute in an element tag)

Inline styles override all other style declarations that may reference that element, with one
exception.

Style declarations marked as !important

Any style marked as !important overrides all other conflicting style rules. The only thing that
can override an important rule in an author style sheet is an important rule created by the user

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(as noted earlier).

16.6.2.2. Selector specificity

So far, we've looked at the priorities given to various sources of style information and methods for
attaching style to markup. Once the set of applicable style rules has been chosen, there may still be
conflicts. For this reason, the cascade continues at the rule level.

In the following example, there are two rules that reference the strong element.

 strong {color: red;}
 h1 strong {color: blue;}

The user agent assigns different levels of weight to the various selector types. The more specific the
selector, the more weight it is given to override conflicting declarations. In the previous example, all
the strong text in the document will render in red. However, if the strong text appears within a first-
level heading, it will be blue instead, because an element in a particular context is more specific and
carries more weight than the element alone.

The following is a list of selector types in order by weight from least to most. The selector types and
terminology are explained in Chapter 17.

Individual element and pseudoelement selectors (e.g., p, or :first-letter)

Contextual selectors (e.g., h1 strong)

Class selectors (e.g., p.special)

ID selectors (e.g., p#intro)

Keep in mind that any rule marked !important will override conflicting rules regardless of specificity
or order.

16.6.2.3. Rule order

Finally, once styles have been sorted by author, attachment method, and specificity, there may still
be conflicts within a single style sheet source. When a style sheet contains several conflicting rules of
identical weight, whichever one comes last has the most weight and overrides the others in the list.
For instance, in the following example, all of the first-level headings in the document would be red,
because the last rule wins.

 h1 {color: green;}
 h1 {color: blue;}
 h1 {color: red;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This "last-one-listed wins" scenario was mentioned earlier in relation to multiple link elements and
@import commands. It also applies within a single declaration block. In the following example, the
first declaration makes the border on all sides of a div gray using the shorthand border-color
property. The second declaration conflicts with the first by specifying that the top border should be
black. Because the declaration listed second overrides the first, the resulting div will have a black top
border and gray borders on the three remaining sides.

Calculating Specificity

There is more to the story of how specificity is determined. The W3C developed a
numbering system that expresses a selector's weight value in four parts (a, b, c, d), in
which each part is a tally of the selector's particular components:

a equals 1 if the rule is a style attribute value rather than a selector. For rules
using selectors, a=0. In this way, inline styles will always win out over embedded or
external style sheets.

b equals the number of ID attributes given in the selector.

c equals the number of class attributes, attribute selections, or pseudoclasses in the
selector.

d equals the number of every element and pseudoelement in the selector.

Here are a few simple examples to show specificity calculation at work. These rules are
listed in order from least to most weight:

p {color: #FFFFFF;}: One element selector (0,0,0,1)

ol li em {color: red;}: Three element selectors (0,0,0,3)

.hot {color: red;}: One class selector (0,0,1,0)

#tip em {color: blue;}: One ID selector, one element selector (0,1,0,1)

Weight is calculated from left to right, so the last example (#tip em) with a 1 in the b slot
would have more weight than the second example (p em) with a 3 in the d slot. That
means if there were an em element that matched both these rules, it would be blue,
because the selector with the 0,1,0,1 weight value wins.

For more information on calculating selector specificity , see the CSS Recommendation at
www.w3.org/TR/CSS21/cascade.html#specificity. Eric Meyer provides a lengthier,
illustrated explanation in his book Cascading Style Sheets: The Definitive Guide
(O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 div#side {border-color: gray;
 border-color-top: black; }

16.6.3. Block and Inline Elements

If you are familiar with (X)HTML, you already know something about block-level and inline elements .
CSS uses the terms "block" and "inline" as well, but it is important to understand that it is not the
same as what makes elements either block or inline in (X)HTML.

In (X)HTML, the distinction between block-level and inline elements is based on containment rules, or
in other words, what elements can be nested within what other elements. In general, block-level
elements may contain both block and inline elements , while inline elements may contain only data
and other inline elements. Paragraphs (p), headings (such as h1), lists (ol, ul, dl), and divs are the
most common block-level elements . However even some of those block-level elements must obey
special rules in (X)HTML; e.g., paragraphs, headings, and address (<address>) may only contain
inline elements and content. Emphasized text (em) and anchors (a) are examples of common inline
elements. It is invalid markup to nest a paragraph within an anchor element, for example.

In CSS, however, the notion of block-level and inline is purely presentational. block and inline are
two possible display roles that are used to tell user agents how to present the element in the layout.
Display roles are assigned using the display property. The following descriptions summarize the
presentational differences between block-level and inline elements in CSS.

A CSS block-level element (display: block) always generates breaks before and after itself. It fills
the available width of the parent element that contains it, whether it's the full width of the body of the
document or a smaller defined space like a sized div. You can't place anything next to a block
element in the normal flow of the document.

CSS Inline-level elements (display: inline) do not generate any line breaks. They appear in the
flow of the line and will break only when they run out of room, at which point they wrap onto a new
line.

Unlike the XHTML notions of block and inline, a CSS block-level element may be nested inside an
inline-level element and vice versa. Using CSS, any (X)HTML (or XML for that matter) element may
be made block-level or inline-level.

There are other values for the display property. The most commonly used and well supported is
none, which causes the element not to display at all and essentially removes it from the document
flow. Other values include list-item (like a block item, only it displays a number or bullet), run-in
(makes an otherwise block element, like a heading, run into the following element, like a paragraph),
and a collection of table-related display roles. Table display values are discussed in Chapter 22.

It is worthy of note that elements defined as block-level elements in (X)HTML typically also have a
default presentation of display: block when rendered in browsers. Likewise, the default display role
of HTML inline elements is display: inline. It is possible to override the default display roles of
(X)HTML elements using the CSS display property. In fact, making list items (li) display inline
instead of block-level (their default) is a common web design practice (see Chapter 24).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, bear in mind that changing the presentation of an HTML element with CSS does not change
the definition of that element as block-level or inline in HTML. Putting a block-level element within an
inline element will always be invalid (X)HTML, regardless of the display role.

While (X)HTML elements have default display roles, elements in other XML languages typically do not.
The display property is the tool authors may use to explicitly declare display roles for individual
elements.

Authors are advised not to reassign display roles for table-related (X)HTML elements.

Having an awareness of an element's display role is useful for understanding the CSS box model,
discussed in the next section.

16.6.4. Introduction to the Box Model

The box model forms the cornerstone of the CSS visual formatting system. It is a critical concept for
understanding how style sheets work. This section provides only a basic introduction to the box
model. The specifics of applying styles and laying out pages using the box model are provided in
Chapters 19 and 21.

According to the box model, every element, whether block or inline, generates a rectangular box
around itself called an element box (although block and inline boxes are handled somewhat
differently). Properties such as borders, margins, and backgrounds (among others) can be applied to
an element's box. Boxes can also be used to position elements and lay out the page. Figure 16-3
shows the resulting boxes for this small sample of markup.

 <body>
 <h1>Headline</h1>
 <p>This is a paragraph of text. Lorem ipsum
 dolor sit amet, consecteteur adipiscing elit. Praesent tellus ante,
laoreet in, ultrices at, vehicula ut, leo. Vivamus velit.
 Nullam massa odio, condimentum ut, porttitor in,
suscipit eu, risus.</p>

 This is a list of list items
 And another item
 And another item

 </body>

Figure 16-3. XHTML elements and their resulting boxes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element boxes are made up of four main components. At the core of the box is the element's
content. The content is surrounded by some amount of padding, then the border, which is
surrounded by the margin, as shown in Figure 16-4.

There are a few fundamental characteristics of the box model worth pointing out:

Figure 16-4. Structure of an element box

Padding, borders, and margins are optional. If you set their values to zero, they are effectively
removed from the box.

The padding area is the space between the edge of the content area and the border (if there is
one). Any background color or image applied to the element will extend into the padding area.

Borders are generated by style properties that specify their style (such as solid or dashed),
width, and color. When a border has gaps, the background color or image shows through those
gaps. In other words, backgrounds extend behind the border to its outer edge.

Margins are always transparent, which means that the background color or pattern of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parent element will show through. The boundary of the margin (the element's outer edge) is not
visible, but is a calculated amount.

The width of an element applies to the width of the content area only. This means that when
you specify that an element should be 200 pixels wide, the actual contents will display 200
pixels wide, and the cumulative widths of the padding, border, and margins will be added to that
amount. (Internet Explorer 5 for Windows is notorious for implementing the width of the box
incorrectly. See Chapter 25 for details.)

The top, right, bottom, and left sides of an element box may be styled independently of one
another. For example, you can add a border to only the bottom of an element, or to only the
left and right sides.

This should get you started visualizing your document according to the CSS model, but it's only the
beginning. To put these ideas into practical use, see the box properties and positioning discussions in
Chapters 19, 21, and 24.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.7. Specifying Values

It is important to use the proper syntax for specifying length and color values in style sheet rules.

16.7.1. Length Units

CSS allows measurements to be specified in a variety of units. Some of the units (such as em and
pica) are taken from the traditional print publishing world. When specifying lengths, keep the
following in mind:

Do not add space between the number and the two-letter unit abbreviation. It must be 24px,
not 24 px.

The only value that does not require a unit abbreviation is 0 (zero).

Measurements may contain decimal fractions, such as 14.5cm.

Some properties, such as margins, accept negative values: margin: -500px

Table 16-1 lists units of measurements that you can specify in style sheet values.

Table 16-1. Units of measurements for style sheet values

Code Unit Description

px Pixel Pixel units are relative to the monitor resolution.

pt Point A traditional publishing unit of measurement for type. In CSS, a point is equal to
1/72 of an inch.

pc Pica
A traditional publishing unit of measurement equal to 12 points (or 1/6 of an
inch).

em Em A relative unit of measurement that traditionally equals the width of the capital
letter "M" in the current font. In CSS, it is equal to the point size of the font
(e.g., an em space in 24pt type is 24 points wide) and is used for both vertical
and horizontal measurements.

ex Ex A relative unit of measurement that is the height of the lowercase letter "x" for
that font (approximately half the length of an em).

in Inches Standard unit of measurement in the U.S.

mm Millimeters Metric measurement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Unit Description

cm Centimeters Metric measurement.

16.7.2. Specifying Color

As in HTML, there are two methods for specifying color in style sheets: by name and by numerical
value.

16.7.2.1. By name

You can specify color values by name as follows:

 h1 {color: olive;}

The CSS 2.1 specification accepts only 17 color names for use in style sheets (CSS 1 and CSS 2 had
only 16 names; orange was added in Version 2.1.) The color names are:

aqua green orange white

black lime purple yellow

blue maroon red

fuchsia navy silver

gray olive teal

Other names from the complete list of color names may be supported by some browsers. For the
complete list, see Appendix D.

16.7.2.2. By RGB value

Within style sheets, RGB colors can be specified by any of the following methods:

 {color
: #0000FF;}
 {color: #00F;}
 {color: rgb(0,0,255);}
 {color: rgb(0%, 0%, 100%);}

cm Centimeters Metric measurement.

16.7.2. Specifying Color

As in HTML, there are two methods for specifying color in style sheets: by name and by numerical
value.

16.7.2.1. By name

You can specify color values by name as follows:

 h1 {color: olive;}

The CSS 2.1 specification accepts only 17 color names for use in style sheets (CSS 1 and CSS 2 had
only 16 names; orange was added in Version 2.1.) The color names are:

aqua green orange white

black lime purple yellow

blue maroon red

fuchsia navy silver

gray olive teal

Other names from the complete list of color names may be supported by some browsers. For the
complete list, see Appendix D.

16.7.2.2. By RGB value

Within style sheets, RGB colors can be specified by any of the following methods:

 {color
: #0000FF;}
 {color: #00F;}
 {color: rgb(0,0,255);}
 {color: rgb(0%, 0%, 100%);}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first method uses three two-digit hexadecimal RGB values (for a complete explanation, see
Appendix D). The second method uses a three-digit syntax, which is essentially converted to the six-
digit form by replicating each digit (therefore, #00F is the same as #0000FF).

The last two methods use a functional notation specifying RGB values as a comma-separated list of
regular values (from 0 to 255) or percentage values (from 0 to 100%). Note that percentage values
can use decimals, e.g., rgb(0%, 50.5%, 33.3%).

16.7.3. Percentage Values

Percentage values are indicated by a number followed by the percentage sign (%). Percentage values
are calculated relative to other values in the document. When specifying percentage values for
measurements, it is important to pay attention to how they will be calculated for the given property.
Sometimes percentages are relative to the current element. In other instances, they are calculated
based on the properties of the parent element. The CSS Recommendation specifies how percentage
values are calculated for each value, and there are notes provided in the descriptions in this book as
necessary.

16.7.4. Keyword Values

Most properties also have values that are described in keywords. You'll find keywords for each
property in the property listing in the CSS Recommendation and throughout this book. Note that a
keyword like normal may have different functions depending on the context of the property to which
it is applied.

All properties in CSS 2.1 have the keyword inherit that forces the value of the property to be the
same as that of the parent element. Most properties inherit by nature, but the inherit keyword is a
tool for overriding assigned styles when necessary.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.8. Browser Support

For years, web designers and developers grappled with inconsistencies in the ways browsers
supported HTML, but eventually, reliable support for nearly the entire HTML 4.01 Recommendation
arrived. Now, the browser developers are working on getting up to speed with CSS, so support of
some features (particularly in the newer CSS 2.1 Recommendation) are buggy and inconsistent
across browsers.

Chapter 25 specifically addresses the most notorious browser bugs and how to deal with them, but
you'll also find browser alert notes when appropriate for each property in Chapters 18 through 23.

No browser support chart is provided with this book, because it would no doubt be obsolete before
this book is retired. However, there are several excellent online resources that publish CSS browser
support information.

West Civ Browser Support Page
(www.westciv.com/style_master/academy/browser_support/index.html)

West Civ provides free support charts online for properties tested on IE, Netscape, and Opera.
A complete, more detailed report is available for a nominal fee.

Index DOT Css, by Brian Wilson (www.blooberry.com/indexdot/css/index.html)

This is a remarkably thorough site (albeit somewhat out of date) that documents browser
support for every CSS selector, property, and value for Internet Explorer, Netscape/Mozilla,
and Opera browsers. It also provides notes on particular bugs and behaviors.

Internet Explorer Blog (blogs.msdn.com/ie/)

Here you can keep up with what the developers are up to at Microsoft.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.9. For Further Reading

CSS is a rich topic. Not surprisingly, there are mountains of information about it in print and on the
Web. These are just a few resources that I found invaluable in writing the CSS chapters of this book.

16.9.1. Books

There are many good books on CSS on the shelves these days. These are the ones that helped me
out the most and that I recommend wholeheartedly.

Cascading Style Sheets: The Definitive Guide, Second Edition, by Eric Meyer (O'Reilly)

Web Standards Solutions: The Markup and Style Handbook, by Dan Cederholm (Friends of Ed)

The Zen of CSS Design: Visual Enlightenment for the Web, by Dave Shea and Molly E.
Holzschlag (New Riders)

Eric Meyer on CSS: Mastering the Language of Web Design, by Eric A. Meyer (New Riders)

16.9.2. Online Resources

These sites are good starting points for online exploration of style sheets.

W3C (www.w3c.com/Style/CSS)

The World Wide Web Consortium is where the standards, including CSS, are developed and
overseen. Go right to the source for the nitty-gritty details and latest developments.

A List Apart (www.alistapart.com)

This online magazine features some of the best thinking and writing on cutting-edge,
standards-based web design. It was founded in 1998 by Jeffrey Zeldman and Brian Platz.

css-discuss (www.css-discuss.org)

This is a mailing list devoted to talking about CSS and how to use it.

16.9.2.1. Inspirational CSS showcase sites

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are looking for excellent examples for what can be done with CSS and standards-based design,
check out these sites:

CSS Zen Garden (www.csszengarden.com)

This is a showcase site for what can be done with CSS, a single HTML file, and the creative
ideas and techniques of hundreds of designers. Its creator and keeper is standards expert Dave
Shea. See the companion book listed above.

CSS Beauty (www.cssbeauty.com)

A showcase of excellent sites designed with CSS.

The Weekly Standards (www.weeklystandards.com)

This web site highlights recently launched corporate web sites that take advantage of
standards-based development techniques.

16.9.2.2. Informative personal sites

Some of the best CSS resources on the Web are the blogs and sites of individuals with a passion for
standards-based design. Most feature articles, tutorials, and lists of links to other great online
resources. These are only a few of the many inspirational blogs, but from these, it's easy to access
the CSS community network.

Stopdesign (www.stopdesign.com)

Douglas Bowman, CSS and graphic design guru, publishes articles and trend-setting tutorials.

Quirksmode (www.quirksmode.org)

His own description says it best: "QuirksMode.org is the personal and professional site of Peter-
Paul Koch, freelance web developer in Amsterdam, the Netherlands. It contains more than 150
pages with CSS and JavaScript tips and tricks, and is one of the best sources on the WWW for
studying and defeating browser incompatibilities."

Mezzoblue (www.mezzoblue.com)

This is the personal site of Dave Shea, the creator of the CSS Zen Garden.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Meyerweb.com (www.meyerweb.com)

This is the personal site of the king of CSS, Eric Meyer.

Tantek Çelik (tantek.com/log)

Tantek was the developer of Internet Explorer 5 for the Mac, an author of the W3C CSS
Recommendations, and the creator of the famous "Box Model Hack." He's got his finger on the
pulse, to say the least.

Molly.com (www.molly.com)

This is the blog of prolific author and web-standards activist, Molly E. Holschlag.

Simplebits (www.simplebits.com)

This is the personal site of standards guru and author, Dan Cederholm.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 17. Selectors
The selector is the part of the style rule that identifies the element (or elements) to which the
presentation instructions are applied. For instance, if you want all of the h1s in a document to be
green, write a single style rule with h1 as the selector. But that's just the beginning. CSS provides a
variety of selector types to improve flexibility and efficiency in style sheet authoring. This chapter
introduces the selectors included in the CSS 2.1 specification, including:

Type (element) selectors

Contextual selectors (descendant, child, and adjacent sibling)

Class and ID selectors

Attribute selectors

Pseudoclasses

Pseudoelements

Not all of these forward-thinking selectors are supported by today's browsers, so if a particular
selector is not quite ready for prime time, it will be noted.

The W3C Selectors specification introduces additional selectors above and beyond those in CSS 2.1,
which modern browsers are still in the process of implementing. This book does not describe them.
For more information on those new selectors in particular, see the W3C Selectors specification
(www.w3.org/TR/css3-selectors).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.1. Type (Element) Selector

The most straightforward selector is the type selector that targets an element by name, as shown in
these examples:

 h1 {color: blue;}
 h2 {color: blue;}
 p {color: blue;}

Type selectors can be grouped into comma-separated lists so a single property will apply to all of
them. The following code has the same effect as the previous code:

 h1, h2, p {color: blue;}

CSS 2 introduced a universal element selector (*) that matches any element (like a wildcard). The
style rule * {color: gray} makes every element in a document gray. The universal selector may be
a useful tool when used in relation to other elements, as discussed in the next section.

The universal selector causes problems with form controls in some browsers. If
your page contains form inputs, the safest bet is to avoid the universal
selector.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.2. Contextual Selectors

Type selectors, such as those in the previous example, apply to all instances of that element found in
a document. By contrast, contextual selectors allow you to apply style properties to select elements,
based on their context or relation to another element. There are several types of contextual
selectors: descendant, child, and adjacent sibling. This is where being familiar with the document tree
structure of your document comes in handy.

Contextual selectors use a specific character to signify the type of relationship between the elements
in the selectors. This character is known as the combinator.

17.2.1. Descendant Selector

Descendant selectors target elements that are contained within (therefore descendants of) another
element. They are indicated in a list separated by a character space (the combinator for descendant
selectors), starting with the higher-level element. For example, the following rule specifies that em
elements should be olive, but only when they are descendants of a list item (li). All other em
elements are unaffected by this rule.

 li em {color: olive;}

Like simple type selectors , contextual selectors can be grouped together in comma-separated lists.
The following code makes emphasized (em) text red only when it appears in the context of a first-,
second-, or third-level heading:

 h1 em, h2 em, h3 em {color: red;}

Descendant selectors may also be nested several layers deep, as shown in this example that targets
only emphasized text (em) within anchors (a) within ordered lists (ol).

 ol a em {font-weight: bold;}

17.2.2. Child Selector

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A child selector is similar to the descendant selector, but it targets only direct children of a given
element. In other words, the element must be contained directly within the higher-level element with
no other element levels in between. Child selectors are separated by the greater-than symbol (>).
The rule in the following example makes the background of emphasized text gray, but only when it is
the child of a paragraph:

 p > em {background-color: gray;}

Therefore, in the following markup example, only the first instance of em receives a gray background,
because the second one is the child of an intervening strong element:

 <p>I've got laser eyes, and I know what you're
thinking.</p>

17.2.3. Adjacent Sibling Selector

The adjacent sibling selector is used to target an element that comes immediately after another
element with the same parent element. The combinator for adjacent sibling selectors is a plus (+)
sign. For example, if you wanted to give special presentation treatment to the first paragraph
following a first-level heading, the resulting rule would look like this:

 H1 + p {padding-left: 40;}

Browser alert: Child selectors and adjacent sibling selectors are not supported
by Netscape 4 or Internet Explorer Version 6 and earlier. Support in Internet
Explorer 7, in beta as of this writing, is not yet documented.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.3. Class and ID Selectors

So far, all of the selectors we've seen have been tied to specific elements. Class selectors and ID
selectors give you the opportunity to target elements that you've named yourself, independent of the
document element.

Elements are named using the class and id attributes. They can be applied to all XHTML elements
except base, head, html, meta, script, style, and title. In addition, class may not be used in
basefont and param. Class and ID selectors work in slightly different ways.

17.3.1. class Selector

Use the class attribute to identify a number of elements as being part of a conceptual group.
Elements in a class can then be modified with a single style rule. For instance, you can identify all the
items in a document that you classify as "special":

 <h1 class="special">Attention!</h1>
 <p class="special">You look marvelous today.</p>

To specify the styles for elements of a particular class, add the class name to the type selector,
separated by a period (.).

 h1.special {color: red;}
 p.special {color: red;}

To apply a property to all the elements of the same class, omit the tag name in the selector (be sure
to leave the periodit is the character that indicates a class):

 .special {color: red;}

Note that class names cannot contain spaces; use hyphens or underscores instead if necessary
(although underscores are discouraged due to lack of support in some browsers).

When choosing a name for a class, be sure that it is meaningful. For example, naming a class redtext
merely reintroduces presentational information to the document and does nothing to describe the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

type of information in the element. It may also be confusing if in a future redesign, the color of those
elements changes to blue.

Authors should resist going overboard with class creation (a syndrome commonly referred to as
"class-itis"). In many cases, other types of selectors with higher specificity, such as contextual or
attribute selectors, may be used instead.

17.3.2. id Selector

The id attribute is used similarly to class, but it is used for targeting a single element rather than a
group. id must be used to name an element uniquely (in other words, two elements can't have the
same id name in the same document). It is not a problem for an id value to be used in multiple
documents across a site; it only needs to be unique within each document. If you have several
elements that need a similar treatment, use class instead.

The following example gives a paragraph a specific ID (note that the value of an id attribute must
always begin with a letter):

 <p id="j042801">New item added today</p>

ID selectors are indicated by the octothorpe (#) symbol within the style sheet as follows:

 p#j061998 {color: red;}

The element name may be omitted:

 #j061998 {color: red;}

In modern web design, id attributes are frequently used to identify main sections (usually divs)
within a page. Some common id values for this purpose are content, header, sidebar, navigation,
and footer. Establishing sections of the page makes it easier to create contextual selectors so that
elements can be styled based on where they appear on the page without the need to create extra
classes.

Like class attributes, id names should be chosen based on the semantic role of the element, not its
presentation. For example, for a sidebar on the left side of the page that contains news, it is
preferable to name the div id="sidebar-news" rather than id="sidebar-left".

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The id attribute is also used in scripting to identify and access unique page
objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.4. Attribute Selectors

CSS 2 introduced a system for targeting specific attribute names or values. This may be useful for
XML languages other than XHTML that may not contain class and id attributes . There are plenty of
uses for attribute selectors within XHTML as well, but unfortunately, attribute selectors are not widely
supported at this time.

Browser alert: Attribute selectors are not supported by Internet Explorer
Versions 6 and earlier. As of this writing, support is rumored in IE 7, but it has
not been documented. Gecko-based browsers (Mozilla and Netscape 6+),
Safari, and Opera 7 do support them, but represent a smaller portion of
browser usage.

There are four variations on attribute selectors:

Simple attribute selection

The broadest attribute selector targets elements with a particular attribute regardless of its
value. The syntax is as follows:

 element[attribute]

Example: img[title] {border: 3px red;}

Specifies that all images in the document that include a title attribute get a red border.

Exact attribute value

This selects elements based on an attribute with an exact attribute value.

 element[attribute="exactvalue"]

Example: img[title="first grade"] {border: 3px red;}

Only images with the title value first grade are selected. The value must be an exact character
string match.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Partial attribute value

For attributes that accept space-separated lists of values, this attribute selector allows you to
look for just one of those values (rather than the whole string). The tilde (~) in the selector
differentiates this selector from those that match an exact value.

 element[attribute~="value"]

Example: img[title="grade"] {border: 3px red;}

This selector looks for images that contain the word grade in the list of title values. Images with the
attributes title="first grade" or title="second grade" would be selected by the example selector.

Hyphen-separated attribute value

This selector is intended to target hyphen-separated values. The selector matches the value
you specify, or that value followed by a hyphen. This type of attribute selector is indicated by a
vertical bar (|). This will make more sense in the example.

 element[attribute|="value"]

Example: *[HReflang|="es"] {color: red;}

This selector looks for all elements in which the HReflang attribute is es or begins with es-. Elements
with the language of their target HRef identified as es, es-ar, or es-es would be selected (in other
words, it finds all variations on the Spanish language). Selecting language subcodes is a common use
for this type of attribute selector (e.g., to put language flags next to hyperlinks that link to sites and
pages of a different language), but by no means its only application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.5. Pseudoselectors

Style rules are normally attached to elements in the document tree structure, such as those we've
discussed in the chapter so far. But some elements are not necessarily found in the document markup, such
as which links have been visited or the first line of a paragraph. To apply style to these instances in a
document, CSS provides several pseudoselectors . Instead of targeting a particular element in the
document, pseudoselectors are interpreted by the browser based on context and function. Pseudoselectors
are indicated by the colon (:) character. Pseudoselectors are divided into pseudoclasses and
pseudoelements.

17.5.1. Pseudoclasses

As the name implies, pseudoclasses work as though there is a class applied to a group of elements, most
often the anchor (a) element. These "phantom" classes (to use Eric Meyer's term) do not appear in the
markup, but rather are based on the state of those elements or the document itself.

17.5.1.1. Anchor pseudoclasses

There are several pseudoclasses that can be used to apply styles to various states of a link:

 a:link {color: red;}
 a:visited {color: blue;}
 a:hover {color: fuchsia;}
 a:active {color: maroon;}

Similar to their body attribute counterparts in the body element, :link applies to hypertext links that have
not been visited, :visited applies to links to pages that have been visited, and :active applies during the
act of clicking. The difference is that you can do much more than just change color with CSS. Following are
popular rules for turning off the underline under linked text.

 a:link {color: red; text-decoration: none;}
 a:visited {color: blue; text-decoration: none;}

The :hover selector is used to create rollover effects in which the link changes in appearance when the
mouse pointer moves over it. The examples above turned off underlines for links. The following rule uses
:hover to make the underline appear as a rollover.

 a:link {color: red; text-decoration: none;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 a:hover {color: red; text-decoration: underline;}

According to CSS 2, :active and :hover may be used with elements other than
anchors, but this use is not supported in Internet Explorer (through Version 6) or
Netscape 4.

Love, HA!

Anchor pseudoclasses need to appear in a particular order in a style sheet in order to function
properly. The initials LVHA (or according to a popular mnemonic, love, HA!) remind developers
that the correct order is :link , :visited , :hover , :active . This has to do with order and
specificity. Putting :link or :visited last would override the :hover and :active states,
preventing those styles from appearing.

17.5.1.2. Other CSS 2.1 pseudoclasses

In addition to the anchor pseudo-classes, the CSS 2 specification introduced additional pseudoclass
selectors. Be warned, however, that they are not well supported at this time.

:focus

This targets elements that have focus, such as a form element that is highlighted and accepting user
input. Although CSS 2 permits :focus to be applied to any element, it is currently only supported for
use with the form elements. Netscape 6 supports :focus with a , input , textarea , and select .

Example: input:focus {background-color: yellow;}

:first-child

This targets an element that is the first occurring child of a parent element. It allows you to select the
first paragraph of a div or the first li in a ul , for example.

Example: li:first-child {font-weight: bold;}

:lang()

This targets an element that targets elements for which a language has been specified. It functions
the same as the lang|= attribute selector, but may be more robust.

Example: p:lang(de) {color: green;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Browser alert: Internet Explorer for Windows does not support :focus or :first-
child in Versions 6 and earlier. Support in IE 7 (in beta as of this writing) is
undocumented. Internet Explorer 5 for Macintosh, Netscape 6+ and Opera 7+ do
support them. Internet Explorer 5 for Macintosh is the only browser that supports the
:lang pseudoclass as of this writing.

17.5.2. Pseudoelements

Pseudoelement selectors work as though they are inserting fictional elements into the document structure
for styling. Pseudoelements are generally parts of an existing element based on context, such as its first line
or first letter. Four pseudoelements are included in CSS 2.1:

:first-line

As it sounds, this selector applies a style rule to the first line of the specified element. The properties
for the :first-line pseudoelement are limited to color , font , background , word-spacing , letter-
spacing , text-decoration , vertical-align , text-TRansform , line-height , and text-shadow .

The following code adds extra letter spacing in the first line of text for every paragraph:

 p:first-line {letter-spacing: 6pt;}

:first-letter

Attaches a style to the first letter of an element. The properties for :first-letter are limited to font
, color , background , margin , padding , border , text-decoration , vertical-align , text-transform
, line-height , and float . CSS 2.1 added the letter-spacing and word-spacing properties to this
pseudoclass.

The following sample makes the first letter of any paragraph classified as "opener" big and red:

 p.opener:first-letter {font-size: 300%; color: red;}

:before and :after

CSS 2 introduced these pseudoelements that insert generated content before and/or after a specified
element and declare a style for that content.

This example inserts exaggerated quotation marks before and after a blockquote (&8220; and &8221;
are the character entities for left and right curly quotation marks):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 blockquote:before {content: "“"; font-size: 24px; color: purple;}
 blockquote:after {content: "”"; font-size: 24px; color: purple;}

Browser alert: Internet Explorer does not support generated content (:before or
:after) in Versions 6 and earlier. Support in IE 7, in beta as of this writing, is
doubtful but is not specifically documented. Netscape 6+, Firefox/Mozilla, and Opera
7+ do support generated content.

All current CSS-compliant browsers support the :first-letter and :first-line
pseudoelement selectors reasonably well.

17.5.3. Selector Summary

Table 17-1 provides a quick summary of the selectors covered in this chapter. Put a sticky-note on this
page.

Table 17-1. Summary of selectors

Selector
Type of
selector

Description

* Universal
selector

Matches any element.

 * {font-family:serif;}

A Type selector Matches the name of an element.

 div {font-style: italic;}

A B Descendant
selector

Matches element B only if it is a descendant of element A.

 blockquote em {color: red;}

A>B Child selector Matches any element B that is a child of any element A.

 div.main>p {line-height:1.5;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Selector
Type of
selector

Description

A+B Adjacent
sibling selector

Matches any element B that immediately follows any element A.

 p+ul {margin-top:0;}

.classname

A.classname

Class selector Matches the value of the class attribute in all elements or a specified
element.

 p.credits {font-size: .8em;}

#idname

A#idname

ID selector Matches the value of the id attribute in an element.

 #intro {font-weight: bold;}

A[att] Simple
attribute
selector

Matches any element A that has the given attribute defined, whatever
its value.

 table[border] {background-color: white;}

A[att="val"] Exact attribute
value selector

Matches any element B that has the specified attribute set to the
specified value.

 table[border="3"] {background-color: yellow;}

A[att~="val"] Partial
attribute value
selector

Matches any element B that has the specified value as one of the
values in a list given to the specified attribute.

 table[class~="example"] {background-color: orange;}

A[hreflang|="es"] Hyphenated
prefix attribute
selector

Matches any element A that has an attribute hreflang with a hyphen-
separated list of values beginning (from the left) with "es".

 a[hreflang|="es"] {background-image: url(flag-es.png);}

A+B Adjacent
sibling selector

Matches any element B that immediately follows any element A.

 p+ul {margin-top:0;}

.classname

A.classname

Class selector Matches the value of the class attribute in all elements or a specified
element.

 p.credits {font-size: .8em;}

#idname

A#idname

ID selector Matches the value of the id attribute in an element.

 #intro {font-weight: bold;}

A[att] Simple
attribute
selector

Matches any element A that has the given attribute defined, whatever
its value.

 table[border] {background-color: white;}

A[att="val"] Exact attribute
value selector

Matches any element B that has the specified attribute set to the
specified value.

 table[border="3"] {background-color: yellow;}

A[att~="val"] Partial
attribute value
selector

Matches any element B that has the specified value as one of the
values in a list given to the specified attribute.

 table[class~="example"] {background-color: orange;}

A[hreflang|="es"] Hyphenated
prefix attribute
selector

Matches any element A that has an attribute hreflang with a hyphen-
separated list of values beginning (from the left) with "es".

 a[hreflang|="es"] {background-image: url(flag-es.png);}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Selector
Type of
selector

Description

a:link Pseudoselector Specifies a style for links that have not yet been visited.

 a:link {color: purple;}

a:visited Pseudoselector Specifies a style for links that have already been visited.

 a:visited {color: gray;}

:active Pseudoselector Applies a style to elements (typically links) while in their active state.

 a:active {color: red;}

:after Pseudoselector Inserts generated text at the end of the specified element and applies
a style to it.

 p.intro:after {content: "fini"; color: gray;}

:before Pseudoselector Inserts generated text at the beginning of the specified element and
applies a style to it.

 p.intro:before {content: "start here "; color: gray;}

:firstchild Pseudoselector Specifies a style for an element that is the first child of its parent
element in the flow of the document source.

 p:firstchild {text-style: italic;}

:first-letter Pseudoselector Specifies a style for the first letter of the specified element.

 p:first-letter {font-size: 60px;}

a:link Pseudoselector Specifies a style for links that have not yet been visited.

 a:link {color: purple;}

a:visited Pseudoselector Specifies a style for links that have already been visited.

 a:visited {color: gray;}

:active Pseudoselector Applies a style to elements (typically links) while in their active state.

 a:active {color: red;}

:after Pseudoselector Inserts generated text at the end of the specified element and applies
a style to it.

 p.intro:after {content: "fini"; color: gray;}

:before Pseudoselector Inserts generated text at the beginning of the specified element and
applies a style to it.

 p.intro:before {content: "start here "; color: gray;}

:firstchild Pseudoselector Specifies a style for an element that is the first child of its parent
element in the flow of the document source.

 p:firstchild {text-style: italic;}

:first-letter Pseudoselector Specifies a style for the first letter of the specified element.

 p:first-letter {font-size: 60px;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Selector
Type of
selector

Description

:first-line Pseudoselector Specifies a style for the first line of the specified element.

 p:first-line {color: fuchsia;}

:focus Pseudoselector Specifies a style for elements (typically form controls) that have focus
(selected and ready for user input).

 input[type="text"]:focus {background-color: yellow;}

:hover Pseudoselector Specifies a style for elements (typically links) that appears while the
pointer is over them.

 a:hover {text-decoration: underline;}

:lang(ab) Pseudoselector Specifies a style for an element for which its language matches the
given language code (or language code prefix).

 a:lang(de) {color: green;}

:first-line Pseudoselector Specifies a style for the first line of the specified element.

 p:first-line {color: fuchsia;}

:focus Pseudoselector Specifies a style for elements (typically form controls) that have focus
(selected and ready for user input).

 input[type="text"]:focus {background-color: yellow;}

:hover Pseudoselector Specifies a style for elements (typically links) that appears while the
pointer is over them.

 a:hover {text-decoration: underline;}

:lang(ab) Pseudoselector Specifies a style for an element for which its language matches the
given language code (or language code prefix).

 a:lang(de) {color: green;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 18. Font and Text Properties
Cascading Style Sheets offer a degree of control over text formatting that approaches desktop
publishing. This certainly comes as a relief after years of misusing HTML markup for presentation
purposes. Controls for specifying fonts and text formatting are undeniably the most popular use of
style sheets and they are the properties that browsers support the most reliably.

This chapter discusses the challenges of typography on the Web and introduces the following text-
related CSS 2 properties:

font-family text-decoration letter-spacing

font-size text-transform word-spacing

font-weight line-height white-space

font-style text-indent direction

font-variant text-align unicode-bidi

font vertical-align

Text color is discussed in the "Foreground Color" section of Chapter 20.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.1. Typography on the Web

For those accustomed to print, the Web offers some unique challenges, usually requiring the
relinquishing of control. Typography is a prime example. In print, designers may choose a typeface
and point size for headlines and body copy, and as long as the proper font is provided when the
printed piece is output, everything looks just the way the designer intended. On the Web, it's not so
easy.

18.1.1. Font Issues

Specifying fonts for use on web pages is made difficult by the fact that browsers are limited to
displaying fonts that are already installed on the user's local hard drive. So, even though you've
specified text to be displayed in the Frutiger font, if users do not have Frutiger installed on their
machines, they will see the text in whatever their default browser font happens to be. Fortunately,
CSS allows you to specify a list of alternative fonts if your first choice is not found (as discussed in
the section "Font Family").

This problem is compounded by the fact that fonts are named inconsistently across platforms and
based on the foundry they come from. So even though you want text to show up in plain Times, the
font name for that typeface may be Times New Roman or TimesNR or Times Roman. Browsers don't
know the difference. This makes it difficult to find a font face even if it (or something like it) is in fact
there.

18.1.2. Type Size Issues

The other web typography challenge is type size. Size is problematic due to varying screen
resolutions and different default font sizes built into browsers and operating systems. What looks
perfectly fine on your monitor may be too small to read for someone else. On top of that, to keep
content accessible, text should be sized in a way that allows the end user to resize it (usually larger)
to meet special needs. The specific problems of setting text size along with recommendations will be
covered in the upcoming "Font Size" section, but for now, suffice it to say that it is not as
straightforward as print. It requires knowledge of the medium and occasionally some tough decisions.

18.1.3. Alternatives to Browser Text

Although CSS offers far more control over text formatting than any presentational HTML hack, keep
in mind that it is still working in an environment that is somewhat hostile toor, at the very best, naïve
abouttypography. From the Web's earliest days, there have been efforts to circumvent the limitations
and achieve beautiful typography on web pages. After more than 10 years of trying, there is still no
ideal solution, but there are a few options to be aware of.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.1.3.1. Text in graphics

It didn't take long for designers (this author included) to start replacing ugly browser text with text
set in an inline graphic. For a while, it was not uncommon to run across sites with all every last word
of their "content" sunk into a graphic. While this may achieve the short-term goal of preserving the
intended font design, it comes at a steep cost. Not only does it increase the file size of the page, but
the content is essentially removed from the document. Alternative text (using the alt attribute)
helps, but does not solve the problem.

18.1.3.2. Image-replacement techniques

In modern, CSS-based web design, there is a new way to replace text with an image that preserves
the text in the source document. There are several variations, but all image-replacement techniques
are based on applying the image as a background in the text element and then finding a way to hide
the text using CSS. The various image-replacement techniques are covered in detail in Chapter 24.

18.1.3.3. sIFR text

One of the most interesting web typography solutions to come along is sIFR, which stands for
Scalable Inman Flash Replacement. It draws inspiration from the image-replacement techniques that
were growing popular in CSS-based designs, but uses small Flash movies instead of bitmapped GIF,
JPEG, or PNG images. The advantage is that text in Flash movies is vector-based, so it is smooth,
anti-aliased, and able to resize with the page. Using a combination of CSS, JavaScript, and Flash
technology, sIFR allows authors to "insert rich typography into web pages without sacrificing
accessibility, search engine friendliness, or markup semantics."

sIFR (in Version 2.0 as of this writing) was created by Mike Davidson, who built upon the original
concept developed by Shaun Inman (the "I" of sIFR). Here's how the process works (taken from the
official sIFR site at www.mikeindustries.com/sifr).

A normal (X)HTML page is loaded into the browser.1.

A JavaScript function is run that first checks that Flash is installed and then looks for whatever
tags, IDs, or classes you designate.

2.

If Flash isn't installed (or obviously if JavaScript is turned off), the (X)HTML page displays as
normal and nothing further occurs. If Flash is installed, JavaScript traverses through the source
of your page, measuring each element you've designated as something you'd like "sIFRed."

3.

Once measured, the script creates Flash movies of the same dimensions and overlays them on
top of the original elements, pumping the original browser text in as a Flash variable.

4.

ActionScript inside of each Flash file then draws that text in your chosen typeface at a 6 point
size and scales it up until it fits snugly inside the Flash movie.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.

In optimal browser conditions, this all happens in a split-second, so all of the checking, replacing, and
scaling is not visible to the user. Some browsers may struggle with sIFR.

sIFR is not perfect, but it is a promising technique that could lead to more powerful typography
solutions. To find out more about sIFR, visit www.mikeindustries.com/sifr. There is also an interesting
historical document with the history of web typography and the first release of sIFR at
www.mikeindustries.com/blog/archive/2004/08/sifr.

18.1.3.4. Embedded fonts

In the mid-1990s, there were concerted efforts made by Microsoft and Bitstream (partnered with
Netscape) to develop embedded font technologies. With embedded fonts , a separate file containing
the necessary character set for the document is provided with the HTML document via the link
element.

Not surprisingly, at the height of the Browser Wars, there was no spirit of cooperation in the
embedded font field, so the result was two competing and incompatible embedded font technologies.
Microsoft's Embedded Open Type worked only on Internet Explorer on Windows. Bitstream (a font
design company) created TrueDoc Dynamic fonts that were initially supported by Netscape 4, but
then dropped in Gecko-based Netscape 6. Bitstream has since thrown in the towel on TrueDoc
technology for the Web due to lack of browser support. For now, embedded fonts are largely an
ignored technology.

For information on Embedded Open Type, see
www.microsoft.com/typography/web/embedding/default.aspx. For information on Bitstream's
TrueDoc technology, see www.truedoc.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.2. Font Family

The CSS specification provides the font-family property for specifying the font face for text
elements.

font-family

Values:

 [[<family-name> | <generic-family>] [,<family-name> |
 <generic-family>]*] | inherit

Initial value:

Depends on user agent (the default font in the browsing device)

Applies to:

All elements

Inherited:

Yes

Use the font-family property to specify any font (or list of fonts, separated by commas), as shown in
these examples:

 h1 {font-family: Arial; }
 tt {font-family: Courier, monospace; }
 p {font-family: "Trebuchet MS", Verdana, sans-serif; }

The value of the property is one or more font names, separated by commas. This allows authors to
provide a list of fonts, starting with a first choice, followed by a list of alternates. The user agent
(typically a browser) looks for the first font on the user's machine and, if it is not found, it continues

http://lib.ommolketab.ir
http://lib.ommolketab.ir

looking for the next font in the list until a match is made.

Note that in the third example, the "Trebuchet MS" is enclosed in quotation marks. Font names that
contain character spaces must be enclosed in quotation marks (single or double). If the font name
appears in an inline style, be sure to use single quotes if the style attribute uses double (or vice
versa).

18.2.1. Generic Font Families

You should include a generic font family as the last option in your list so that if the specified fonts are
not found, a font that matches their general style will be substituted. Generic family names must
never be enclosed in quotation marks.

The five possible generic font family values are:

serif (e.g., Times New Roman)

Serif typefaces have decorative serifs, or slab-like appendages, on the ends of certain letter
strokes (Figure 18-1, left).

sans-serif (e.g., Helvetica or Arial)

San-serif typefaces have straight letter strokes that do not end in serifs (Figure 18-1, right).

monospace (e.g., Courier or New Courier)

In monospaced typefaces, all characters take up the same amount of horizontal space on a line
(Figure 18-2). For example, a capital W will be no wider than a lowercase i. Compare this to
normal typefaces that allot different widths to different characters.

cursive (e.g., Zapf-Chancery or Comic Sans)

Cursive fonts emulate a script or handwritten appearance.

fantasy (e.g., Western, Impact, or some display-oriented font)

Fantasy fonts are purely decorative and would be appropriate for headlines and other display
type. Fantasy is not commonly used for web sites, because it is difficult to anticipate which font
will be used and whether it will be legible online.

Figure 18-1. Serif and sans-serif font characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 18-2. Monospace and normal font characters

18.2.2. Commonly Available Fonts

Because a font will display only if it is available on a user's hard drive, it makes sense to design with
the most commonly available fonts, particularly for sites with wide-reaching audiences. So, which
fonts can you rely on?

In general web design practice, designers tend to specify fonts from Microsoft's Core Web Fonts
collection. This is a set of TrueType fonts (for both Windows and Mac) that have been specially
designed to be easy to read on screens at small sizes. Microsoft released the fonts in 1996 and
initially made them available for download. Today, they are installed automatically with Internet
Explorer and other Microsoft software, so you can count on the majority of users having them
available. Table 18-1 lists the fonts in the Core Web Fonts collection.

Table 18-1. Core Web Fonts from Microsoft

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Serif Georgia

Times New Roman

Sans Serif Arial Arial Black

Trebuchet MS

Verdana

Monospace Courier New

Andale Mono

Miscellaneous Comic Sans MS

Impact

Webdings

Microsoft publishes an interesting online resource that lists which fonts are
installed with its various popular applications and each version of the Windows
operating system. There are also lists of the fonts that come installed with
Macintosh OS X, Unix systems, and Adobe Type Manager. You'll find the font
lists at www.microsoft.com/typography/fonts/default.aspx.

If you know your audience might have more specialized fonts installed, by all means, make a
statement and go off the beaten path. You can always provide a more commonly available font as a
backup in the list of font names.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3. Font Size

CSS provides the font-size property for specifying the size of text. There are many value options for
specifying font size , each with its own pros and cons. This section discusses the various keyword and unit
options and their impact on usability.

font-size

Values:

 xx-small | x-small | small | medium | large | x-large |
 xx-large | smaller | larger | <length> | <percentage> | inherit

Initial value:

 medium

Applies to:

All elements

Inherited:

Yes

These examples demonstrate the font-size property used with several different value types.

 p.copyright {font-size: x-small;}
 strong {font-size: larger;}
 h2 {font-size: 1.2em;}
 p#intro {font-size: 120%;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3.1. Absolute Versus Relative Sizes

Before diving into the details of specifying type size, it is worth pausing to clarify the difference between
absolute and relative sizes. Absolute sizes have predefined meanings or an understood real-world
equivalent. In CSS, absolute values may be expressed as keywords, such as small or x-large (discussed
next) or by using absolute length values, such as cm (centimeter), in (inch), or pt (point, 1/72 of an inch).

Relative sizes , on the other hand, are based on the size of something else, like the parent element or the
em measurement of the text (see the sidebar "A Word About Ems "). Relative values, such as em and
percentages, are generally preferred for web text for reasons that are covered in the upcoming sections.

18.3.2. Absolute Size Keywords

Absolute sizes are descriptive terms that reference a table of sizes kept by the browser. There are seven
absolute size keywords in CSS: xx-small , x-small , small , medium , large , x-large , and xx-large . The
keywords do not correspond to a particular measurement, but rather are scaled consistently in relation to
one another. The default size is medium in current standards-conformant browsers.

Figure 18-3 shows how the following examples of text sized with absolute keywords look in Firefox 1.0.

 xx-small
 x-small
 small
 medium
 large
 x-large
 xx-large

A Word About Ems

In traditional typography, the em has been a measurement of width approximately equal to
the width of the capital letter M for the given typeface. Using that measurement, you arrive at
the width of an em-space or an em-dash.

As typography has adapted to digital media, the em has become a measure of width and
height, or often height alone. For purposes of CSS, the em is calculated as the distance
between the baselines when the font is set without any additional interlinear space , also called
leading (extra space added between lines of text for legibility).

This distance forms the basis of an implied em-square measurement based on the design of
the typeface (also called the em-box). It is possible that ascenders and descenders of a
particular typeface may exceed the boundaries of the em-square, or that no characters of
another face fill it completely. The font's em-box measurement can be used as a relative unit
of measurement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 18-3. Text sized with absolute keywords

This figure and other figures in this book use inline styles as a means to save space
on the page. In the real world, inline styles should be avoided in favor of external or
embedded style sheets.

The CSS 2.1 specification leaves the scaling factor (how much each consecutive keyword is enlarged or
reduced) up to the user agent. Chances are, it will be somewhere around 1.2 (the most recent
recommended scaling factor) or as large as 1.5 (the CSS 1 recommended scaling factor), varying between
different browsers.

At a scaling factor of 1.2, if medium (default) text is 16 pixels, then large text would be 19 pixels (after some
rounding). The upshot of it all is absolute size keywords vary in size from browser to browser, so they are
not the best option if you are looking for consistency.

Internet Explorer 5 and 5.5 for Windows use small as the default, which can seriously
throw off an attempt to use absolute size keywords throughout a document.

18.3.3. Relative Size Keywords

There are two relative keywords: larger and smaller . They are used to shift the size of the text relative to
the parent object according to the seven-step absolute-size scale (using the same scaling factor). For
example, if the text of a paragraph is set to large , applying the keyword smaller to a child em element
would cause the emphasized text to display at medium size. Figure 18-4 's examples use relative size
keywords.

 There are two relative keywords: larger
 and smaller. They are used...

Figure 18-4. Relative size keywords

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3.4. Percentage Measurements

One fairly reliable way to specify text size is in percent values. Percent values are calculated relative to the
inherited size of the parent text. That "inherited" part is important, because it means that if you nest similar
elements with percentage values, the affect is cumulative. It doesn't take many levels of nesting before the
text is unreadable.

In Figure 18-5 , the ul element is set to a relative size of 80%. If the body of the document is 16 pixels,
that means the ul text will be 13 pixels (after rounding). The nested ul within that list takes the same size
setting (80%), but this time it is applied to its inherited size (13 pixels), resulting in 10 pixel text, and so on
for each nested level.

Figure 18-5. Nested elements with percentage size values

Style sheet

 body {font-size: 24px;}
 ul {font-size: 80%;}

Markup

 Lorem ipsum dolor sit amet.

 Lorem ipsum
 Dolor sit amet

 Consectetuer adipiscing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Elit pellentesque

 Pharetra urna
 In laoreet tincidunt

18.3.5. Length Measurements

The final way that type size may be specified is in a specific number of units. Some units are absolute and
some are relative.

The absolute length units are:

pt (points, 1/72 of an inch in CSS 2.1)

pc (picas, 1 pica is equal to 12 points)

mm (millimeters)

cm (centimeters)

in (inches)

The relative length units are:

em (distance from baseline to baseline with no extra line space),

ex (approximately the height of the letter "x" in the font)

px (pixels; in CSS, pixels are relative because their actual size can vary by display resolution when the
resolution is very different from the typical 75-100 dpi, e.g., on 300 dpi printers)

Specifying a unit length with the font-size property is simple. Just be sure that the value is immediately
followed by the unit abbreviation, with no extra space between, like this:

 p {font-size: 12px; }
 h1 {font-size: 1.6em; }

The tricky part comes in knowing which units are the most appropriate for the job. Some units are
problematic in terms of accessibility while others are victims of browser inconsistencies.

18.3.5.1. The problem with absolute values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because real-world measurements, such as inches and picas, aren't relevant on computer screens (see
Chapter 26 for an explanation of why inches are useless), none of the absolute values make sense for web
page text. If you are creating a style sheet for print, however, absolute length units may be just the ticket.

Recommendation: Avoid pt , pc , mm , cm , and in measurements for web pages.

18.3.5.2. The problem with pixels

You may be thinking that because elements on web pages are measured in numbers of pixels, and because
pixels are considered a relative measurement, that they are the answer to all font size problems. It would
be nice if they were. For some designers, control over text at the pixel level is intoxicating.

Unfortunately, there are a few reasons why pixels have come to be shunned for text size. We know that all
pixels are not created equal, so that means that what is tidy yet readable on your monitor may require a
magnifying glass on someone else's screen.

On most current browsers, starting with Internet Explorer 5 for Macintosh in March 2000, that is not a
problem, because users have a "text zoom" function that allows them to increase the size of text regardless
of the style sheet settings. Ironically, Internet Explorer for Windows (Version 6 and earlier) does not allow
text zoom on text specified in pixels (it will resize text set in ems and percentages). IE 7 (in beta as of this
writing) promises a zoom function on pixels, but for the time being, there is a significant percentage of
users who cannot override pixel size settings. This is a big no-no in terms of accessibility.

Recommendation: If accessibility is important to you (and it should be), avoid using px measurements for
text until IE 5 for Windows and IE 6 for Windows are just a memory.

18.3.5.3. The problem with ems

Ems turn out to be the best length unit for the Web, but they too have a couple of potential snags. The first
is that em measurements are relative to the browser's base size. For most browsers, the default base size is
16 pixels, which is quite large. Designers tend to want to reduce the text size slightly across a whole page
or a whole site.

But that 16 pixel base size is not a sure thing. Some users may have reset their base text smaller already in
the browser preferences, in which case, making text smaller again in the author style sheet may make it
unreadable. Fortunately, all current version browsers allow text zoom on text specified in ems, so users can
make the text large enough to read easily (that is, if they know about the zoom function).

The other issue with ems is that, due to rounding errors, there is a lot of inconsistency among browsers and
platforms when text size is set in fractions of an em. One or two pixels can make a big difference when text
is displayed at low resolutions. Not only that, some browsers have problems with text set at less than one
em. Percentages are a more reliable way to provide relative measurements, but then you may run into
problems with cumulative resizing.

Recommendation: One popular solution is to use a combination of percentages and ems to avoid the
problems associated with both. This method was first introduced by Owen Briggs as a conclusion to his deep
exploration of browser font-size differences. The method works by making the text slightly smaller with a
percentage at the body level. Then use ems on the individual elements that you'd like to be larger than the
surrounding text. Here is an example using his suggested values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 body {font-size: 76% } /* results in 12 pixel text when the base size is 16 pixels */
 p {font-size: 1em; }
 h1 {font-size: 1.5em; }

The advantage is that the percentage value gives you more fine-tuned control, and the em sizing doesn't
compound the way percentages do. The disadvantage is that if the base size is less than 16 pixels,
everything may appear too small. However, because the sizes are specified in ems, resizing text in the
browser is an option for users.

See all 264 of Owen Briggs' screenshots, as well as solutions for dealing with
inconsistent font sizing, at
thenoodleincident.com/tutorials/box_lesson/font/index.html .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.4. Other Font Settings

Compared to the hassles of font-face and font-size , the other font-related properties are a walk in the
park (albeit, a short walk). This section introduces style properties for adjusting font weight, style, and
"small caps" display.

18.4.1. Font Weight

The font-weight property specifies the weight, or boldness, of the type.

font-weight

Values:

 normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900
| inherit

Initial value:

 normal

Applies to:

All elements

Inherited:

Yes

Font weight can be specified either as a descriptive term (normal , bold , bolder , lighter) or as one of the
nine numeric values listed above. The default font weight is normal , which corresponds to 400 on the
numeric scale. Typical bold text corresponds to 700 on the numeric scale. There may not be a font face
within a family that corresponds to each of the nine levels of boldness (some may come in only normal and
bold weights). Figure 18-6 shows the effect of each of the values on the popular Verdana web font face in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Firefox browser (note that bold kicks in at 600, not 700).

It is evident that the numeric font-weight values are not useful when multiple weights are not available for
the font. There's no harm in using them, but don't expect them to change the weights of an existing font. It
merely looks for font weights that are already available.

Figure 18-6. The effect of font-weight values

Unfortunately, the current browsers are inconsistent in support of the font-weight property, mainly due to
the lack of available fonts that fit the criteria. The values that are intended to make text lighter than normal
weight are particularly unsuccessful. Of the possible values, only bold and bolder will render reliably as bold
text. Most developers stick to those values and ignore the rest.

18.4.2. Font Style

font-style controls the posture of the font, that is, whether the font is italic, oblique, or normal.

font-style

Values:

 normal | italic | oblique | inherit

Initial value:

 normal

Applies to:

All elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inherited:

Yes

Italic and oblique are both slanted versions of the font. The difference is that the italic version is usually a
separate typeface design with more curved letter forms, while oblique text takes the normal font design and
displays it on a slant using mathematical calculations, as shown in Figure 18-7 (top). At small text sizes on
low resolution monitors, italic and oblique text may look exactly the same (Figure 18-7 , bottom).

 <p style="font-style: oblique">This is a sample of oblique Times
as rendered in a browser.</p>
 <p style="font-style: italic">This is a sample of italic Times
as rendered in a browser. </p>

Figure 18-7. Comparison of oblique and italic type set with the font-style
property

18.4.3. Font Variant

The sole purpose of the font-variant property is to specify that text should appear as small caps. Small
caps fonts use smaller uppercase letters in place of lowercase letters. More values may be supported for this
property in future style sheet versions.

font-variant

Values:

 normal | small-caps | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

 normal

Applies to:

All elements

Inherited:

Yes

If a true small caps font face is not available, the browser may simulate small caps by displaying all caps at
a reduced size. Figure 18-8 shows such a simulation using this style rule.

 lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Pellentesque pharetra, urna in laoreet tincidunt, nunc quam
eleifend libero, a tincidunt purus augue eu felis. Phasellus quis ante. Sed mi.

Figure 18-8. Using font-variant for small caps

Unlike a true small caps typeface design, the proportions of the capital and small cap letters do not blend
well because the line weight of the small caps has been reduced. One use of small caps typefaces in the
print world is to reduce the size of acronyms so they do not stand out like sore thumbs in the flow of text.
Unfortunately, the font-variant property only transforms lowercase letters, so it cannot be used for this
purpose.

There are two additional font-related properties in CSS 2 that were dropped in CSS
2.1 due to lack of support. The font-stretch property was for making a font's
characters wider or more narrow using these keyword values: normal , wider ,
narrower , ultra-condensed , extra-condensed , condensed , semi-condensed , semi-
expanded , expanded , extra-expanded , ultra-expanded , and inherit . The other
dropped property is font-size-adjust , which was intended to compensate for the
varying x-heights of fonts at the same size settings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.4.4. Putting It All Together with the font Property

Specifying multiple font properties for each text element could get repetitive and lengthy, so the authors of
CSS provided the shorthand font property that compiles all the font-related properties into one rule.
Technically, font is more than just a shorthand property, because it is the only property that allows authors
to specify fonts from the operating system of the user agent.

font

Values:

 [[<'font-style'> || <'font-variant'> || <'font-weight'>]? <'font-size'>
[/<'line-height'>]? <'font-family'>] | caption | icon | menu | message-box |
small-caption | status-bar | inherit

Initial value:

Uses individual property default values

Applies to:

All elements

Inherited:

Yes

When using the font property as shorthand for a number of font properties, the order in which the property
values appear is important. All of these font rules show correct usage of the font property.

 h1 { font: 1.75em sans-serif; } /* minimum value list for font */
 h1 { font: 1.75em/2 sans-serif; }
 h1 { font: bold 1.75em sans-serif; }
 h1 { font: oblique bold small-caps 1.75em Verdana, Arial, sans-serif; }

The rule may include values for all of the properties or a subset, but it must include font-size and font-
family , in that order, as the last two properties in the list. Omitting one or putting them in the wrong order
causes the entire rule to be invalid. These examples are invalid:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 h1 { font: sans-serif; } /* font-size omitted */
 h1 { font: 1.75em/2 sans-serif oblique; } /* size and family come first */

Once you've met the font-size and font-family requirement, the rule may also include optional font-style
, font-variant , or font-weight properties at the beginning of the rule. They may appear in any order, as
long as they precede font-size . Another optional value is the line-height property (for adding space
between lines) that appears just after font-size , separated by a slash (/), as shown here:

 p { font: italic 12px/18px Georgia, Times, Serif }

It is important to know that when you use the shorthand font property, any property that is omitted will be
reset to the initial setting (default) for that property. Be aware that an incomplete shorthand rule could
accidentally override settings made earlier in the style sheet by resetting the values to the default.

18.4.5. Using System Fonts

The font property provides a number of keywords that allow authors to apply font styles from the operating
system into their web documents. This may be a useful tool for making a web application blend in with the
surrounding desktop environment. The values are:

caption

The font used for captioned controls (e.g., buttons, drop-down menus, etc.)

icon

The font used to label icons

menu

The font used in menus (e.g., drop-down menus and menu lists)

message-box

The font used in dialog boxes

small-caption

The font used for labeling small controls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

status-bar

The font used in window status bars

Choosing one of these keywords applies all aspects of that font (family, size, weight) at once,
although they may be overridden with specific font properties. If a particular font is not found, the
user agent should approximate the font or substitute a default font. System font values are well-
supported by current standards-compliant browsers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.5. Text Transformation (Capitalization)

The font-variant property uses capital letter shapes for lowercase letters, but doesn't really affect
the capitalization of the text, only the character shapes of the font. There is another CSS property,
text-transform, for altering the capitalization of text without needing to retype it in the source
document. It works by toggling between the upper- and lowercase characters as specified.

text-transform

Values:

 none | capitalize | lowercase | uppercase | inherit

Initial value:

 none

Applies to:

All elements

Inherited:

Yes

Use the text-transform property to change the capitalization of an element without retyping it in the
source. This can make changing capitalization of a particular element (like headers) for an entire site
as easy as changing one style sheet rule.

The default value is none, which leaves the text as it appears in the source (and resets any inherited
value). The capitalize value displays the first letter in each word of the element in uppercase. The
lowercase value makes all letters in the element lowercase, and likewise, the uppercase value makes
all characters uppercase. The effects of these text-transform property examples are shown in Figure
18-9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 18-9. The text-transform property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.6. Text Decoration

Use the text-decoration element to specify underlines , overlines (a line over the text), strike-
throughs , and the blinking effect .

text-decoration

Values:

 none | underline | overline | line-through | blink

Initial value:

 none

Applies to:

All elements

Inherited:

No, but a text decoration is "drawn through" any child elements (see explanation in this section).

The values for text-decoration are fairly intuitive: underline causes an element to be underlined,
overline draws a line over the element, and line-through draws a line through the middle of the
element and replaces the deprecated strike and s elements in HTML. text-decoration variations are
shown in Figure 18-10 .

Figure 18-10. The text-decoration property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is also an optional blink value that causes the text to flash on and off like the dreaded Netscape
blink element (the blink value is deliberately still not supported by Internet Explorer).

The text-decoration property has one strange behavior you should be aware of. Although text-
decoration values applied to a block element are not inherited by the block's child elements, the line
gets drawn through the child elements anyway. The line (such as an underline , overline , or line-
through) will go through the inline elements even if they explicitly have text-decoration set to none ,
as shown in this example and the bottom of Figure 18-10 .

 <p style="text-decoration: underline">Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. <strong style="text-decoration: none">This strong
element is not underlined. Pellentesque pharetra, urna in laoreet
tincidunt, nunc quam eleifend libero, a tincidunt purus augue eu felis. Phasellus quis
ante. Sed mi. </p>

There is currently no way to turn decoration off for child elements. The solution is to apply the style to
spans in the desired parts of the text instead of the block element itself.

The most popular use of the text-decoration property is to turn off the underlines that automatically
appear under links by setting text-decoration to none , as shown here:

 a:link, a:visited { text-decoration: none; }

This should be done with some care, however, as the underline is a strong visual cue that text is
clickable. Removing the underline may cause the link to be missed. If you turn the underline off, be
sure that other cues such as color or weight contrast compensate.

Similarly, because underlines have become so associated with hypertext , adding an underline to text
that is not a link may be misleading and even frustrating. In the days of typewriters, underlines were
used in place of italic text. Consider whether italics may be an acceptable alternative to underlines.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.7. Line Height

In CSS, the line-height property defines the minimum distance between the baselines of adjacent
lines of text. A baseline is the imaginary line upon which the bottoms of characters sit. Line height is
analogous to leading or interlinear space (the amount of space between lines) in traditional
typesetting. Adjusting the line height can change the color of a block of text. In this case "color"
refers not to hue (like blue or green), but rather the overall density or darkness of the text.

This section looks at both the line-height property and the method by which CSS calculates the
actual height of lines. CSS line height handling has an impact on vertical alignment within text,
discussed later.

line-height

Values:

 normal | <number> | <length> | <percentage> | inherit

Initial value:

 normal

Applies to:

All elements

Inherited:

Yes

These examples demonstrate three alternative methods for specifying the same amount of line
spacing. If the font size is 10 pixels, the resulting line height for each of the examples listed would be
20 pixels. Figure 18-11 shows the results (bottom) compared to a paragraph with the default line
height (top).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 p.open {line-height: 2; } /* uses a scaling factor */
 p.open {line-height: 2em; } /* unit of length */
 p.open {line-height: 200%; } /* percentage */

The default value is normal, which most browsers display at 120% of the font size. When a number is
specified alone (as in the first example), it acts as a scaling factor that is multiplied by the current
font size to calculate the line-height value. Line heights can also be specified using any of the length
units. Relative values (em, ex, and %) are calculated by the font size of the element. Negative values
are allowable and will cause the lines of text to overlap.

It is important to note that child elements inherit the computed line height value from their parent
element, not the specified value. For example, the line height for

Figure 18-11. The line-height property

a div with a font size of 12 and a line height of 1 em calculates to 12 pixels. A paragraph element
that is the child of that div will inherit the 12-pixel line height, not the relative 1 em value. If that
paragraph happens to have a font size larger than 12 pixels, the lines of text will overlap.

The same is not true for scaling factors . When you specify a numerical scaling factor, that value is
applied to the selected element and all of its child elements.

18.7.1. Calculating Line Height

Although specifying line heights numerically is fairly straightforward, it is worthwhile to take a look
under the hood to see how CSS is actually handling the calculation.

The difference between the line height and the font size values is the leading . Half of the leading is
applied above the text's content area and the other half is placed below. The net result is the same
as the baseline-to-baseline measurement for line height. Figure 18-12 shows how leading is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

distributed for text with a font size of 14 pixels and a line height of 22 pixels.

Figure 18-12. Line height and leading

When there is an odd number of pixels, the user agent decides where the larger value is placed
(although, most place the extra pixel below the content area).

The text 's content area plus its leading form an implied inline box, which is the total amount of
vertical space the text occupies in a line. Being able to visualize the inline box will come in handy
later when we discuss vertical alignment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.8. Text Alignment Properties

One of the ways text can be formatted to improve visual hierarchy and readability is through
alignment. CSS provides several properties for adjusting the horizontal and vertical alignment of text.

18.8.1. Indents

Use the text-indent property to specify an amount of indentation for the first line of text in an
element.

text-indent

Values:

 <length> | <percentage> | inherit

Initial value:

 0

Applies to:

Block-level elements and table cells

Inherited:

Yes

The value of text-indent may be any unit of length or a percentage value (calculated as a percentage
of the parent element width), as shown in these examples and Figure 18-13 :

 p#1 { text-indent: 3em; }
 p#2 { text-indent: 50%; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 p#3 { text-indent: -20px; }

The third rule in this list shows an allowable negative text-indent value. Negative values can be used
to create hanging-indent effects. This feature should be used with care, as it may cause text to
disappear off the left edge of the browser (add left padding to compensate) or may not be supported
properly in older browser versions.

One last thing to know about indents is that a child element inherits the computed indent value from
its parent, not the specified value. So if a div is set to 800 pixels wide with a 10% margin, the
computed indent will be 80 pixels. A paragraph within the div will inherit the 80-pixel indent, not the
10% text-indent value.

Designers may be accustomed to specifying indents and margins in tandem, but
to be consistent with the CSS model, margins will be discussed in relation to the
box model in Chapter 19 .

Figure 18-13. The text-indent property

18.8.2. Horizontal Alignment

Use the text-align property to adjust the horizontal alignment of text within block elements.

text-align

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values:

 left | right | center | justify | inherit

Initial Values:

left for languages that read left to right

right for languages that read right to left

Applies to:

Block-level elements and table cells

Inherited:

Yes

The resulting text behavior of the various text-align property keyword values should be fairly
intuitive as illustrated in Figure 18-14 .

 p { text-align: left; }
 p { text-align: right; }
 p { text-align: center; }
 p { text-align: justify; }

It is worth pointing out that the text-align property controls the horizontal alignment of the inline
elements within the element, not the alignment of the element itself. In other words, it is not
equivalent to the deprecated center element. Notice that the paragraph elements in Figure 18-14
remain aligned on the left margin.

Figure 18-14. The text-align property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The proper way to horizontally align elements is through manipulation of their
left and right margins, as discussed in Chapter 19 .

18.8.3. Vertical Alignment

Use the vertical-align property to specify the vertical alignment of an inline element. Vertical
alignment values are relative to the baseline, text height (font size), or the total height of the text
line. In the course of looking at vertical alignment values, this section introduces other important CSS
concepts such as replaced elements and the inline box model.

vertical-align

Values:

 baseline | sub | super | top | text-top | middle |
 text-bottom | bottom | <percentage> |<length> | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

 baseline

Applies to:

Inline elements and table cell elements

Inherited:

No

The vertical-align property applies to inline text elements as well as nontext elements that may
appear in the flow of text, such as images or form inputs. Images and inputs are examples of
replaced elements, because the source document contains only a reference to the element that is
replaced by the actual content when the page is assembled. Most XHTML elements are non-replaced
elements, which means their content appears in the source document, like the text of a paragraph (p
).

18.8.3.1. Aligning relative to the baseline

Many of the vertical-align values move inline elements with respect to the baseline of the
surrounding text. The default value is baseline , which aligns the baseline of textor the bottom edge
of a replaced elementwith the baseline of the parent element.

The sub and super values allow subscripting and superscripting. The sub value causes the element to
be lowered relative to the baseline. super causes the element to be raised relative to the baseline.
CSS does not prescribe the distance it should be raised or lowered, so it depends on the browser. It is
significant to note that aligning an element with sub or super does not reduce the font size of the
element.

These examples of baseline , sub , and super are shown in Figure 18-15 .

 <p>Aliquam erat volutpat</p>
 <p>Aliquam erat volutpat</p>
 <p>Aliquam erat volutpat</p>

Figure 18-15. vertical-align relative to baseline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.8.3.2. Aligning relative to text height

The text-top and text-bottom values align an element relative to the top and bottom edges of the
surrounding text, respectively. Although it depends on the font design, the "top" of text corresponds
roughly to the top of the ascenders and the "bottom" of text corresponds roughly to the bottom of the
descenders. More accurately, it is the top and bottom of the text box for that font and is derived from
the font size of the parent element. Replaced elements in the line are ignored in the calculation of the
top and bottom of the text box.

The inline box model for the calculation of line height is discussed in detail in
Chapter 19 .

Figure 18-16 shows elements aligned with text-top and text-bottom . It is easy to see that the
aligned elements are positioned relative to the text and not to the overall height of the line.

 <p>A tall <img style="vertical-align: middle" src="img/placeholder_tall.gif" alt=
 "" /> image and a short <img style="vertical-align: text-top" src="img/
 placeholder_short.gif" alt="" /> image.</p>

 <p>A tall <img style="vertical-align: middle" src="img/placeholder_tall.gif" alt=
"" /> image and a short <img style="vertical-align: text-bottom" src="img/
 placeholder_short.gif" alt="" /> image</p>

Figure 18-16. Text-top and text-bottom

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The final text-based alignment is middle , which aligns the vertical midpoint of the element (typically
an image) with an imaginary line drawn through the middle of the x-height of the parent. A font's x-
height is the height of its lowercase letters, but browsers usually calculate it as .5 em. According to
the specification, then, the line against which an element will be vertically centered is only .25 em
above the baseline, as indicated by the gray line in Figure 18-17 .

 <p>A tall <img style="vertical-align: middle" src="img/
 placeholder_tall.gif" alt="" /> image and a short <img style="vertical-
 align: middle" src="img/placeholder_short.gif" alt="" /> image.</p>

Figure 18-17. Text aligned with the middle value

18.8.3.3. Aligning relative to line height

The top and bottom values align elements relative to the top and bottom of the line box for that line.
The line box is an implied box that is generated for each line of text in a block element. It is drawn
high enough to enclose the tallest inline element, including its leading. Replaced elements, like

http://lib.ommolketab.ir
http://lib.ommolketab.ir

images, are included in the calculation of the line box height, so they influence the position of
elements aligned with top and bottom .

Figure 18-18 shows elements aligned with top and bottom in relation to the line box.

 <p>A tall <img style="vertical-align: middle" src="img/placeholder_tall.gif" alt=
 "" /> image and a short <img style="vertical-align: top" src=
 "img/placeholder_short.gif" alt="" /> image.</p>

 <p>A tall <img style="vertical-align: middle" src="img/placeholder_tall.gif" alt=
 "" /> image and a short <img style="vertical-align: bottom"
src="img/placeholder_short.gif" alt="" /> image</p>

Figure 18-18. Text aligned top and bottom relative to the line box

18.8.3.4. Aligning with percentage values

When you use a percentage value with vertical-align , the baseline of the element is moved by your
specified amount relative to the baseline. The distance is calculated as a percentage of the element's
line-height value. Both positive and negative percentage values are accepted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.9. Text Spacing

CSS provides several tools for adjusting the space between words or characters in text. Adding space
within a line is another way to affect the character or color of a block of text. For example, adding a
little extra space between letters is a common technique for calling more attention to a headline or
the first line of text on a page. This section introduces the letter-spacing, word-spacing, and white-
space properties.

18.9.1. Letter Spacing

Use the letter-spacing property to specify an amount of space to be added between characters.

letter-spacing

Values:

 normal | <length> | inherit

Initial value:

 normal

Applies to:

All elements

Inherited:

Yes

Figure 18-19 shows an example of a style sheet rule that adds 3 pixels of extra space between the
characters in the first line of text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 p {letter-spacing: 8px; }

 <p>Nunc a nisl.</p>

Figure 18-19. Letter spacing

The default value normal is equivalent to a numeric setting of zero (0). In other words, whatever
value you specify is added to the standard character-spacing text. Negative values are permitted and
will cause the characters to overlap.

Note that when specifying relative lengths (such as em, which is based on font size), the calculated
size will be passed down to child elements, even if they have a smaller font size than the parent.

18.9.2. Word Spacing

Use the word-spacing property to specify an additional amount of space to be placed between the
words of the text element.

word-spacing

Values:

 normal | <length> | inherit

Initial value:

 normal

Applies to:

All elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inherited:

Yes

Similar to letter-spacing, the value of word-spacing gets added to the standard space between
words. A setting of zero (0) is equivalent to normal and will leave the word spacing unaltered. These
examples of word spacing are shown in Figure 18-20.

 p {word-spacing: 1em;}

 <p>Nunc a nisl.</p>

Figure 18-20. Word spacing

Note that when specifying relative lengths (such as em, which is based on font size), the calculated
size will be passed down to child elements, even if they have a smaller font size than the parent.

18.9.3. Whitespace

By default, strings of character spaces in the source for an element are collapsed down to one space
and line breaks are ignored. In XHTML, the pre element preserves that whitespace and displays the
source just as it is typed. The white-space property in CSS does the same thing, and more.

white-space

Values:

 normal | pre | nowrap | pre-wrap | pre-line | inherit

Initial value:

 normal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

All elements (as of CSS 2.1)

Inherited:

Yes

The normal value treats text normally, with consecutive spaces collapsing to one. The pre value
displays multiple characters, like the pre element in (X)HTML, except that it has no effect on the font
of the element (browsers tend to display pre elements in the monospace font).

Figure 18-21 shows a simple use of the white-space property as specified in this example style and
markup.

 p.haiku {white-space: pre; }

 <p class="haiku">
 Love's pure silver flame
 gives each innermost spirit
 invisible warmth.
 </p>

Figure 18-21. The white-space property

nowrap prevents the text element from wrapping unless designated by a
. Without a
,
the text may extend beyond the browser window, requiring horizontal scrolling.

CSS 2.1 introduced two new values for white-space. The pre-wrap value preserves multiple character
spaces but allows long lines of text to wrap. Line breaks in the source are also honored. The pre-line
value makes multiple character spaces collapse to one, but it preserves new lines in the source. As of
this writing, no browser supports the pre-line and pre-wrap values for white-space.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.10. Text Direction

To accommodate languages that read right to left, such as Hebrew and Arabic, the CSS
Recommendation provides two properties that affect the direction of the flow of text.

direction

Values:

 ltr | rtl | inherit

Initial value:

 ltr

Applies to:

All elements

Inherited:

Yes

The direction property affects the direction of text in a block-level element. It also changes the
order of column layout, the behavior of text overflow, and margin alignment for justified text. The
default is ltr (left to right) unless the browser has an internal style sheet for displaying text from
right to left.

unicode-bidi

Values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 normal | embed | bidi-override | inherit

Initial value:

 normal

Applies to:

All elements

Inherited:

No

The unicode-bidi property is provided to take advantage of the directionality features in Unicode.
Unicode and directionality are discussed in Chapter 6. Setting directionality falls outside the realm of
the average web designer, but it is a useful feature for multilingual sites. For details on how these
properties work, see the CSS 2.1 specification online at www.w3.org/TR/CSS21/. For more
information on the internationalization efforts at the W3C, see www.w3c.org/International.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 19. Basic Box Properties
The box model was briefly introduced in Chapter 16 as one of the fundamental concepts of CSS visual
formatting. According to the box model, every element in a document generates a box to which such
properties as width, height, margins, padding, and borders may be applied.

These element box properties (as well as those for positioning as discussed in Chapter 21), are at the
heart of CSS-driven layout and design. Effects that once required tables, such as putting text in a
colored box, can now be handled entirely with style sheets. This is just one way that style sheets
have liberated developers from the inappropriate use of (X)HTML elements for visual effects. And
that's just scratching the surface. Many visual effects created with CSS box properties simply weren't
possible before using (X)HTML alone.

The box model is also at the core of some of the most notorious headaches for web developers,
namely, the fact that all versions of Internet Explorer for Windows (except IE 6 and 7 running in
Standards mode, as described in Chapter 9) interpret the width of the box differently than all other
CSS-compliant browsers. This has made it necessary for web developers to jump through all sorts of
hoops to replicate layouts consistently on all browsers. For more on the IE/Windows box model
problem, see Chapter 25.

This chapter covers the box model in more depth and introduces the basic box properties for
specifying size and adding margins, borders, and padding, as listed next.

height border-top-style border-top

width border-right-style border-right

max-height border-bottom-style border-bottom

max-width border-left-style border-left

min-height border-style border

min-width border-top-width padding-top

margin-right border-right-width padding-right

margin-left border-bottom-width padding-bottom

margin-top border-left-width padding-left

margin-bottom border-width padding

margin border-top-color

 border-right-color

 border-bottom-color

 border-left-color

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 border-color

The box model will be addressed again in Chapter 21 as it relates to positioning
and the layout of the page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.1. The Box Model, Revisited

According to CSS, every element in a document, both block-level and inline-level, generates a
rectangular box called an element box. Figure 19-1 shows all the areas and boundaries defined by the
CSS box model.

At the core of the element box is the content itself, called the content area. Its sides are referred to
as the inner edges of the element box. The width and height of an element are calculated as the
distance between these inner edges.

The padding is the area held between the content area and an optional border. The border is one or
more lines that surrounds the element and its padding.

Background colors and images applied to an element are visible in the padding and extend behind the
border (if there are gaps in the border style, the background color will show through).

Finally, on the outside of the element border, there is an optional amount of margin. The margin area
is always transparent, which means that the background of the parent element shows through.

The outside edges of the margin area make up the outer edges of the element box. The total width
that an element box occupies on the page is measured from outer edge to outer edge and includes
the width of the content area plus the total amount of padding, border, and margins .

Keep in mind that when you specify the width value for an element, that sets the width of the
content area only, so there's some extra math to do before you know the total width of the element.
This calculation may be critical for positioning elements precisely on a page.

Here is where the IE/Windows box model problem comes into play. With the exception of IE 6 and 7
in Standards mode, Internet Explorer for Windows

Figure 19-1. The box model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applies the width property to the entire width of the element box, from outer edge to outer edge.
When margins, borders, or padding are also applied, this results in potentially large discrepancies
between how the element should be sized and how it will appear in IE/Windows.

19.1.1. Inline Boxes

The element box is not the only implied box in the CSS visual formatting model. Every character and
element in a line of text also generates a box on the fly. These inline boxes are used by the user
agent (the browser) behind the scenes to calculate the height of each line in the flow of text and the
space around elements. Line boxes and inline boxes are not elements, they are merely a device of
the visual layout model. Therefore, you cannot use a selector to target line or inline boxes and apply
styles to them (you can apply styles to inline elements, of course).

Having a familiarity with the various inline boxes at work behind the scenes is useful for predicting
and controlling line height as well as for specifying the vertical alignment of inline elements. They also
come into play when specifying box properties, particularly to inline elements. Figure 19-2 highlights
the various inline boxes for a line of text.

The four invisible boxes that the user agent keeps track of when formatting each line of text include:

Em box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In CSS, the this is a square unit that is equal to the font-size of the element. Its relation to
the actual characters in the font is dependent on the typeface design, but in general, it
encloses the ascenders and descenders of the font.

Figure 19-2. Inline boxes

Content area

Every element in a line has a content area box that corresponds to the content area in the box
model (Figure 19-1). For text elements (also called non-replaced elements because their
content appears in the source), the height of the content area is determined by the element's
font-size. For anonymous text (text not specifically contained within an inline element), the
font-size is inherited from the parent element. For images (and other replaced elements), the
content area is the width and height of the image in pixels.

Inline box

The height of the inline box is calculated as the total of the element's content area plus the
leading added above and below it (see Figure 18-12 in Chapter 18). Leading is the difference
between the element's font-size and line-height values. It may be a negative value, which
means that lines may overlap. For images (and replaced elements), the inline box is the height
of the image in pixels, plus the height of any added borders and margins on the img element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Line box

The line box is drawn around the top of the highest inline box and the bottom of the lowest
inline box. It represents the total required vertical space for the line and all its elements. The
vertical-align values top and bottom are relative to the top and bottom edges of the line box.

In the sections that follow, we'll see how the line box (the total height of a line) is affected (or not
affected) by the addition of margins, borders, and padding on inline elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.2. Width and Height

Use the width and height properties to specify the dimensions of a block-level element or an inline
replaced element (like an image). The width and height properties do not apply to inline text (non-
replaced) elements and will be ignored by standards-conformant browsers. In other words, you
cannot specify the width and height of an anchor (a) or a strong element unless you change its
display role to a block-level display value like block, list-item, or inline-block.

height

Values:

 <length> | <percentage> | auto | inherit

Initial value:

 auto

Applies to:

Block-level elements and replaced elements (such as images)

Inherited:

No

width

Values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <length> | <percentage> | auto | inherit

Initial value:

 auto

Applies to:

Block-level elements and replaced elements (such as images)

Inherited:

No

Using the height and width properties is straightforward, as shown in these examples and Figure 19-
3.

 div#tall {width:100px; height:200px; }
 div#wide {width:200px; height:100px; }

 <div id="tall" style="position:absolute;">
 Lorem ipsum ...
 </div>

 <div id="wide" style="position:absolute; left: 205px;">
 Lorem ...
 </div>

There are only a few special behaviors to be aware of:

width and height properties apply to the content area of the element only. Padding, borders,
and margins are added onto the width and height values to arrive at the total element box
dimensions. (See the sidebar "The IE/Windows Box Model Problem" for details regarding the
notoriously incorrect implementation of box model measurements in Internet Explorer for
Windows.)

Figure 19-3. The height and width properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An element's height is calculated automatically and is just large enough to contain the element's
contents; therefore, it is less common to specify height. The height of the content may change
based on font-size, user settings, or other factors. If you do specify a height for a text
element, be sure to also consider what happens should the content not fit (the overflow
property is discussed in Chapter 21).

For images, it is recommended that both width and height values be provided.

CSS 2 introduced percentage values for width and height. Percentage values are calculated as a
percentage of the width of the parent element. This means that if the size of the parent element
changes, the width and height of its child elements will change proportionately.

The IE/Windows Box Model Problem

One of the most notorious browser inconsistencies is that Internet Explorer for Windows
(all versions except IE 6 and 7 running in Standards mode) has its own implementation
of the box model . In these versions of IE/Windows, the width property is applied to the
entire element box, from outer margin edge to outer margin edge, not just the content
area, as it should be. This causes valid CSS layouts that apply padding, borders, and
margins to elements of a specific width to be rendered inconsistently. By using a proper
DOCTYPE declaration, you can switch IE 6 and 7 into Standards mode, and widths and
heights will apply to the content area, as expected (see Chapter 9 for details on
DOCTYPE switching).

Until all versions of IE 5.x/Windows fade away completely, there is the "box model hack,"
a well-known workaround developed by Tantek Çelik that serves up a separate set of
width values just for IE. This and other browser workarounds are discussed in Chapter
25.

19.2.1. Maximum and Minimum Heights

CSS 2 introduced properties for setting minimum and maximum heights and widths for block
elements. They may be useful if you want to put limits on the size of an element when positioning it
on a page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

max-width, max-height

Values:

 <length> | <percentage> | none | inherit

Initial value:

 none

Applies to:

All elements except non-replaced elements (i.e., inline text elements) and table elements

Inherited:

No

min-width, min-height

Values:

 <length> | <percentage> | none | inherit

Initial value:

 none

Applies to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All elements except non-replaced elements (i.e., inline text elements) and table elements

Inherited:

No

There are a few behaviors of the minimum and maximum size properties to keep in mind:

These properties are for use with block-level and replaced elements (like images) only.

Once again, the measurements apply only to the content area of the element. If you add
padding to an element, it will be applied on the outside of the content area and make the overall
element box larger, even if a maximum height and width have been specified.

Internet Explorer through Version 6 does not support the min-width, min-
height, max-width, and max-height properties. The CSS community has
devised some workarounds for the min-height problem. These resources
are a good starting point for investigation:

Dustin Diaz's "Min-height Fast Hack" at www.dustindiaz.com/min-
height-fast-hack/

Dave Shea's Mezzoblue.com:
www.mezzoblue.com/dailies/2005/01/05/index.php

Grey Wyvern's solution at www.greywyvern.com/code/min-height-
hack.html

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.3. Margins

Margins are an amount of space that may be added around the outside of the element's border.
There are properties for specifying a margin amount for one side at a time or by using the shorthand
margin property.

margin-top, margin-right, margin-bottom, margin-left

Values:

 <length> | <percentage> | auto | inherit

Initial value:

 0

Applies to:

All elements (except elements with table display types other than table and inline-table)

Inherited:

No

margin

Values:

 [<length> | <percentage> | auto]{1,4} | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

See individual properties

Applies to:

All elements (except elements with table display types other than table and inline-table)

Inherited:

No

With the margin-top, margin-right, margin-bottom, and margin-left properties, you can specify a
margin for one side of an element. Margin size may be specified in any of the accepted units of
length. Negative values are permitted. Figure 19-4 shows examples of adding margins to individual
sides of an element. Note that the dotted lines are a device to point out the outer edge of the margin
and would not display in the browser.

 h1 { margin-top: 3px; }
 h1 { margin-right: 20px; }
 h1 { margin-bottom: 3px; }
 h1 { margin-left: 20px; }

Percentage values are also permitted, but be aware that percentages are calculated based on the
width of the parent element. If the parent element gets narrower (perhaps as the result of the
browser window resizing) the margins on all sides of the child elements will be recalculated.

Margins may also be set using the keyword auto, which allows the user agent to fill in the amount of
margin necessary to fit or fill the containing block.

Figure 19-4. Individual margin settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The proper way to horizontally center an element in CSS is to set the left and
right margins to auto. This technique (as well as the workaround required for
Internet Explorer in anything but Standards mode) is addressed in Chapter 24.

19.3.1. The Shorthand margin Property

As an alternative to setting margins one side at a time, there is the shorthand margin property. The
accepted values are the same as those previously listed. What changes slightly is the syntax as the
margin property provides a lot of flexibility for specifying values.

In the values listed for margin above, the {1,4} notation means that you can provide one, two, three,
or four values for a single margin property. Here's how it works.

When you provide four values, the values are applied around the edges of the element in clockwise
order, like this (some people use the mnemonic device "TRouBLe" for the order Top, Right, Bottom,
Left):

 { margin: top right bottom left }

The four margin properties listed in Figure 19-4 could be condensed using the margin property as so:

 { margin: 3px 20px 2px 20px; }

When one or more of the four values is missing, certain provided values are replicated for the missing
values.

If three values are provided, it is assumed the value for the left margin is missing, so the value for
right is used for left ({margin: top right/left bottom}). This rule, therefore, is equivalent to the
previous example:

 { margin: 3px 20px 3px; }

If two values are provided, the right value is replicated for the missing left value, and the top value is
replicated for the missing bottom value ({margin: top/bottom right/left}). Again, the same effect
achieved by the previous two examples could be accomplished with this rule:

 { margin: 3px 20px; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, if only one value is provided, it is replicated for all four values. This declaration applies 20
pixels of space on all sides of an element:

 { margin: 20px; }

19.3.2. Margin Behavior

It is helpful to be aware of these general margin behaviors.

Margins are always transparent, allowing the background color or image of the parent element
to show through.

Elements may have negative margins, which may cause elements to break out of containing
blocks of their parent elements or overlap other elements on the page.

The vertical (top and bottom) margins of adjacent block elements in the normal document flow
will collapse. That means that the space held between adjacent block elements will be the larger
of the two margin values, rather than the sum of their margin values. The collapsing margins in
the following examples are demonstrated in Figure 19-5.

 h2#top {margin: 10px 20px 10px 20px;}

 h2#bottom {margin: 20px 20px 20px 20px; }

 <h2 id="top" >Lorem ipsum dolor sit amet,</h2>
 <h2 id="bottom" >consectetuer adipiscing elit.</h2>

Figure 19-5. Collapsing margins

The vertical margins do not collapse for floated elements, absolutely positioned elements, and
inline block elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In CSS 2.1, horizontal (left and right) margins never collapse.

Top and bottom margins applied to non-replaced inline elements (text elements such as em or
strong) have no effect on the height of the line. In other words, top and bottom margins are not
calculated as part of the element's inline box or the height of the line box for that line.

Left and right margins applied to non-replaced inline (text) elements do cause the specified
amount of space to be held before and after (to the left of the first character and right of the
last character) the inline element, even if it is broken over two lines.

Top and bottom margins applied to replaced inline elements (i.e., images and form inputs) do
affect the height of the line. In other words, the margin is included in the inline box for replaced
elements , and the line box is drawn larger to accommodate it.

When an image has a margin, the bottom outer edge of the margin is placed on the baseline of
the line (unless placement is altered with the vertical-align property on the img). The image
in Figure 19-6 has 20 pixels of margin on all sides. The result is that the image is raised off the
baseline by 20 pixels and the line height opens up to accommodate the image and its margin.

Figure 19-6. Margin settings on inline images

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.4. Borders

A border is simply a line drawn around the content area of an element and its (optional) padding. The
three aspects of a border that can be specified are its style, width (thickness), and color. As for
margin, each of these qualities may be specified for an individual side at a time or for several sides at
once using shorthand properties.

There are only a few things to know about border style behavior:

Borders are drawn on top of an element's background, so the background color or image will
show through the gaps in the intermittent border styles.

Borders applied to non-replaced inline elements (text elements) have no effect on the line
height for that line. In other words, they are not included in the inline box for the element.

Borders applied to replaced elements, however, do affect line height, just as margins do.

19.4.1. Border Style

The border style is the most important of the border qualities because, according to the CSS
specification, if there is no border style specified, the border does not exist. In other words, you must
always declare the style or other border settings will be ignored.

Figure 19-7 shows the nine border styles you have to choose from.

Figure 19-7. The nine available border styles

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is a bug in Internet Explorer 6 for Windows that causes borders specified
as dotted to render as dashed.

Border styles can be applied one side at a time or by using the border-style shortcut property.

border-top-style, border-right-style, border-bottom-style,
border-left-style

Values:

 none | dotted | dashed | solid | double | groove | ridge
| inset | outset

Initial values:

 none

Applies to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All elements

Inherited:

No

border-style

Values:

 [none | dotted | dashed | solid | double | groove | ridge
| inset | outset]{1,4} | inherit

Initial value:

Not defined

Applies to:

All elements

Inherited:

No

As you might expect, the border-top-style, border-right-style, border-bottom-style, and border-
left-style properties allow you to specify a border style to one side of the element. If you do not
specify a width for the border, the medium width value (the default) will be used. If there is no color
specified, it uses the foreground color of the element (i.e., the text color). This example shows single-
side border attributes in action (Figure 19-8).

 div {border-top-style: solid;
 border-right-style: dashed;
 border-bottom-style: dotted;
 border-left-style: double; }

Figure 19-8. The border-style property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The border-style shortcut property works the same as the margin shortcut described earlier. Border
style values for each side are provided in clockwise order: top, right, bottom, left. If fewer values are
provided, some values are replicated. The right value will be used for a missing left value, the top
value will be replicated for a missing bottom value; and if only one border style is provided, it will be
applied to all four sides of the element.

The same effect shown in Figure 19-8 can be replicated using this border-style declaration:

 div {border-style: solid dashed dotted double; }

19.4.2. Border Width (Thickness)

The thickness of the rule is controlled with one of the border width properties. As we've seen for
margin and border-style, you can control the width of each individual side or use the border-width
shorthand property to specify several sides at once. The shorthand values are provided in clockwise
(top, right, bottom, left) order and replicate as described for the margin shorthand property earlier in
this chapter.

border-top-width, border-right-width, border-bottom-width,
border-left-width

Values:

 thin | medium | thick | <length> | inherit

Initial values:

 medium

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

All elements

Inherited:

No

border-width

Values:

 [thin | medium | thick | <length>]{1,4} | inherit

Initial value:

Not defined

Applies to:

All elements

Inherited:

No

The properties may use the keyword values thin, medium, and thick, in order of increasing width. The
actual pixel value for each keyword is left up to the user agent, but must be consistent throughout
the document. Border width can be specified in units of length as well (pixels are common). Negative
length values are not permitted for borders.

Figure 19-9 shows an example of keyword and pixel-measurement border widths.

 div {border-style: solid;
 border-top-width: thin;
 border-right-width: medium;
 border-bottom-width: thick;
 border-left-width: 12px; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 19-9. The border-width property

19.4.3. Border Color

Use one of the side-specific color properties or the border-color shorthand to specify a color for the
border. Values for border-color are provided in clockwise (top, right, bottom, left) order and
replicate as described for the margin shorthand property earlier in this chapter.

border-top-color, border-right-color, border-bottom-color,
border-left-color

Values:

 <color> | transparent | inherit

Initial values:

The value of the color property for the element

Applies to:

All elements

Inherited:

No

border-color

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values:

 [<color> | transparent]{1,4} | inherit

Initial value:

Not defined

Applies to:

All elements

Inherited:

No

Colors values may be specified in any of the methods outlined in Chapter 16 and Appendix D. If no
border color is declared, the default is the foreground color for the element (i.e., the text color for
text elements).

The border-color shorthand property is demonstrated in this example and in Figure 19-10.

 div {border: 6px solid;
 border-color: #333 #666 #999 #CCC; }

Figure 19-10. The border-color property

CSS 2 added the TRansparent value that allows the background of the parent element to show
through the border, yet holds the width of the border as specified. This may be useful when creating
rollover effects with CSS (this technique is explained in Chapter 24), because the space where the
border will appear is maintained when the mouse is not over the element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unfortunately, the TRansparent value is not supported in Internet Explorer for
Windows through Version 6. Support in IE 7 (in beta as of this writing) is
possible, but not documented.

19.4.4. Combining Style, Width, and Color

There is no shortage of shortcuts for specifying border appearance. Once again, we have rules that
apply combinations of style, width, and color to one side at a time and the border property that
applies the values to all sides of the element.

border-top, border-right, border-bottom, border-left

Values:

 [<border-style> || <border-width> || <border-color>] | inherit

Initial value:

Not defined

Applies to:

All elements

Inherited:

No

border

Values:

 [<border-style> || <border-width> || <border-color>] | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

Refer to individual properties

Applies to:

All elements

Inherited:

No

The side-specific and the shorthand border properties may include a border-style value, a border-
width value, and a border-color value. They do not need to be in any particular order. You do not
need to declare all three border qualities, but keep in mind that if the border-style is not declared,
there will be no border.

The border shorthand is somewhat different from the other shorthand properties discussed so far in
that it can be used to apply border properties to all four sides of the element only. It does not provide
a way to target certain borders and there is no system of value replication.

The rules listed here are all valid examples of the border shortcut properties.

 h1 {border-left: .5em solid blue; }
 h1 {border-left: solid blue .5em; }
 h1 {border-left: solid .5em; }

 p.example {border: 2px dotted #666633; }
 p.example {border: dotted 2px; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.5. Padding

The padding area is an optional amount of space held between the content area of an element and its
border. If you are putting a border on an element, it is usually a good idea to add a bit of padding as
well to keep the border from bumping against the content.

Now that you've seen margins and borders at work, the padding properties should look familiar.
There are side-specific properties for setting an amount of padding on each side by name, and a
shorthand padding property that applies padding to combinations of four sides.

Overriding Shorthand Properties

One of the principles of the cascade is that rules that appear later in a style sheet
override previous rules. You can use this principle to override shorthand settings for one
side of an element box.

In this example, all four sides of a box are given a solid red border, but then the right
edge is immediately overridden by a rule that sets the border to none (thus removing it).

 p.tip { border: solid red 3px;
 border-right: none; }

In addition to borders, this trick can be used with any of the shorthand and side-specific
properties in this chapter.

padding-top, padding-right, padding-bottom, padding-left

Values:

 <length> | <percentage> | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

 0

Applies to:

All elements

Inherited:

No

padding

Values:

 [<length> | <percentage>]{1,4} | inherit

Initial value:

 0

Applies to:

All elements

Inherited:

No

The padding properties specify the width of the padding area. Values may be provided in units of
length or as percentages. Negative values are not permitted for padding.

It is important to note that, as for margins, percentage values are always calculated based on the
width of the parent element (even for top and bottom padding). So if the width of the parent element
should change, so will the percentage padding values on all sides of the child element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 19-11 shows examples of element padding.

 h2#A {padding: 4px; background: #CCC;}
 h2#B {padding: 20px; background: #CCC;}

 <h2 id="A">Sed ultrices ligula at metus.</h2>
 <h2 id="B">Sed ultrices ligula at metus.</h2>

Figure 19-11. Adding padding around elements

Background colors and images applied to an element will display in its padding area (this sets it apart
from margins, which are always transparent). So if you want an element to appear in a colored box,
with or without an explicit border, padding is the way to put a little space between the edge of the
box and the content.

Padding does not collapse as margins do. The total padding between elements will be the sum of the
padding for the adjacent sides of the elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 20. Color and Backgrounds
Once upon a time in 1993, when Mosaic was the only widely distributed browser in town, all web
pages had black text on a gray background with blue hyperlinks and purple visited hyperlinks (unless
the user changed it in the browser preferences to something more jazzysay, lime green on purple).
Then in 1994, along came Netscape, and HTML extensions for coloring text and backgrounds were
born. Even those limited controls came as a welcome relief to web designers and users clamoring for
color.

CSS offers control over color and backgrounds that is worlds away from the effects possible with
HTML extensions alone. This chapter introduces the properties for adding color and backgrounds to
elements listed here.

color background-position

background-color background-attachment

background-image background

background-repeat

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.1. Foreground Color

Say goodbye to forever. You can pitch the text, link, vlink, and alink attributes for
the body element while you're at it.

The color property is used to describe the text (a.k.a. "foreground") color of an element. The
foreground color is also used for an element's border unless it is specifically overridden with a border
color rule.

color

Values:

 <color> | inherit

Initial value:

Depends on user agent

Applies to:

All elements

Inherited:

Yes

20.1.1. Color Values

The value of the color property is any of the valid color types and system colors. Here's a refresher.

RGB colors can be specified in any of the following formats:

 {color: #0000FF;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {color: #00F;}
 {color: rgb(0,0,255);}
 {color: rgb(0%, 0%, 100%);}

The first example uses three two-digit hexadecimal RGB values (for a complete explanation, see
Appendix D). The second example uses a shorthand three-digit syntax, which is converted to the six-
digit form by replicating each digit (therefore, 00F is the same as 0000FF).

The last two formats use a functional notation specifying RGB values as a comma-separated list of
regular values (from 0 to 255) or percentage values (from 0 to 100%). Note that percentage values
can use decimals, e.g., rgb(0%, 50.5%, 33.3%).

CSS 1 and 2 also recognize 16 valid color names: aqua, black, blue, fuchsia, gray, green, lime,
maroon, navy, olive, purple, red, silver, teal, white, and yellow. The CSS 2.1 Recommendation
adds orange, for a total of 17.

The color property is easy to use, as shown in these examples (Figure 20-1). Unfortunately, in this
book we are limited to the full spectrum of gray.

Note that this example and others in this chapter use inline styles purely as a
space-saving device, not as a recommended markup practice. It is preferable to
put style information in an external or embedded style sheet in the head of the
document.

 <p style="color: #000">Aenean congue bibendum ligula.</p>
 <p style="color: #666">Aenean congue bibendum ligula.</p>
 <p style="color: #CCC">Aenean congue bibendum ligula.</p>

Despite being fairly straightforward, there are still a few aspects of the foreground color property and
the way browsers interpret it to keep in mind.

The color property is inherited. It makes sense that when you set a color to the text of a
paragraph, any emphasized or strong text within it would be that color, too.

Figure 20-1. Changing the foreground color

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is valid to add a foreground color to images. The content of the image won't be affected by it,
of course, but the color will be used for the image border if one is specified.

If there is both a foreground color and a border color property applied to an element, the
border-color property always overrides color for the border color.

If you want to change the color of all the text in a document, apply the color property to the
body element. Color may be assigned globally to the html element or by using the universal
selector (*) as well, but this is less common due to irregularities in inheritance and problems
with form elements in some browsers. Be aware, however, that on some older browsers, table
elements do not properly inherit properties from the body, so text within tables would go back to
the default text color. To be on the safe side, you can make a color declaration for body and the
relevant table elements, like this:

 body, table, td, th { color: fuschia; } /* ok, maybe not fuschia */

You can apply the color property to form input elements like buttons and pull-down menus .
Although it's valid use of CSS, it is not supported consistently across browsers. Make sure that
your design is legible even if your chosen form input colors do not display the way you intended.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.2. Background Color

It's been common practice to add a background color to a page using the bgcolor attribute in the
body element in HTML. With CSS, not only can you provide a background color for a whole page, but
for any element in the document, both block-level and inline. Boxes of color anywhere you want them
. . . and no tables required!

Background color is declared with the (no surprise here) background-color attribute.

background-color

Values:

 <color> | transparent | inherit

Initial Value:

 transparent

Applies to:

All elements

Inherited:

No

Background properties are applied to the "canvas" behind an element. With regard to the box model,
background colors fill the content area, the padding area, and extend behind the border to its outer
edge. This means that if the border has gaps, the background color will show through.

Background properties are not inherited, but because the default value is transparent, the parent's
background color shows through its child elements. Figure 20-2 shows an example of the background-
color property. Note how a little padding added to the element gives the content a little breathing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

room inside the resulting rectangular colored box.

 p {padding: 5px;}
 p.a {background-color: #333333;}
 p.b {background-color: #666666;}
 p.c {background-color: #CCCCCC;}

 <p class="a">Fusce rhoncus facilisis sapien.</p>
 <p class="b">Fusce rhoncus facilisis sapien.</p>
 <p class="c">Fusce rhoncus facilisis sapien.</p>

Figure 20-2. The background-color property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3. Background Images

Once again, CSS beats HTML hands down in the background department (but then, HTML was never
intended to be fussing around with things like background images). With CSS, you're not stuck with a
repeating tile pattern, and you can position a background image wherever you like. You can also
apply a background image to any element in the document.

This section covers the CSS properties for adding and manipulating background images, with the
basic background-image property as a starting point and moving on to more advanced background
image behaviors such as controlling repeating patterns, positioning the image within the element,
and preventing the image from scrolling off the page.

Background Image Tips

When working with background images, keep these guidelines and tips in mind:

Use an image that won't interfere with the legibility of the text over it.

As usual for the Web, it is important to keep the file size as small as possible for
background images, which may lag behind the display of the rest of the page.

Provide a background-color that matches the primary color of the image in the
background. If the background image fails to display, at least the overall design of
the page will be similar. This is particularly important if the text color would be
illegible against the default white (or light gray) browser background.

background-image

Values:

 <uri> | none | inherit

Initial value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 none

Applies to:

All elements

Inherited:

No

background-image is the basic property for adding an image to the background (the "canvas") of an
element. When applied to the body element, it functions just like the background attribute, causing
the image to tile horizontally and vertically until it fills the browser window. Unlike the background
attribute, the background-image property can be applied to any element in the document, both block
and inline.

Figure 20-3 shows background images applied to a whole page and to an individual paragraph using
these style rules.

 body {background-image: url(stripes.gif);}
 p.highlight {background-image: url(dots.gif);}

The background-image property is not inherited (in fact, none of the background properties are).
Instead, the pattern merely shows through the descendant elements because their background colors
are transparent by default. If tiling images were inherited, the result would be a mess in which a new
tiling pattern would begin in the top-left corner of each new element on the page.

If a background-color property is also specified, the image is overlaid on top of the color. Always
provide a similar background color for an element when you add a background image. That way, if
the image fails to load, the text and foreground elements maintain a readable contrast against the
background.

Figure 20-3. The background-image property applied to an entire page
and a single paragraph

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3.1. Background Tiling (Repeat)

Use the background-repeat property to prevent the background image from tiling (repeating) or to
make it tile in one direction only.

background-repeat

Values:

 repeat | repeat-x | repeat-y | no-repeat | inherit

Initial value:

 repeat

Applies to:

All elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inherited:

No

By default, background images tile both horizontally and vertically. You can turn this behavior off and
make the image appear just once by using the no-repeat keyword value as shown in Figure 20-4.

 div.ringo {background-image: url(starr.gif); background-repeat: no-repeat}

Figure 20-4. Turning off tiling with no-repeat

repeat-x allows the image to repeat only horizontally. Similarly, repeat-y allows the image to repeat
only on the vertical axis. Examples of both are shown in Figure 20-5.

 div.horiz {background-image: url(starr.gif); background-repeat: repeat-x;}
 div.vert {background-image: url(starr.gif); background-repeat: repeat-y;}

Figure 20-5. Horizontal and vertical tiling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that in the examples in Figure 20-4 and Figure 20-5, the tiling begins in the top-left corner of
the viewing area (in most cases, the browser window). But the background image doesn't necessarily
need to start there, as discussed next.

20.3.2. Background Position

The background-position property specifies the position of the origin image in the background of the
element. You can think of the origin image as the first image that is placed in the background. It's
also the starting point from which repeated (tiling) images extend.

background-position

Values:

 [[<percentage> | <length> | left | center | right] [<percentage>
|<length> | top | center | bottom]? } | [[left | center | right] || [top |
center | bottom]] | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

 0% 0% /* same as left top */

Applies to:

All elements

Inherited:

No

The background-position property specifies the initial position of the origin image. Measurements are
relative to the top-left corner of the padding area for the element (the default position). It is not
placed behind the border, although if the image is set to repeat, the repeating images will extend and
show through the border area when the border style has gaps.

Figure 20-6 shows a simple example of the background-position property, The background-repeat
property has been set to no-repeat to make the position of the origin image clear.

 body { background-image: url(bigstar.gif);
 background-position: top center;
 background-repeat: no-repeat; }

Figure 20-6. The background-position property

There are a number of methods for specifying the value of background-position. The options after
"Values" above may look like gobbledy-gook, but it boils down to three general systems: keywords,
lengths, and percentages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3.2.1. Keyword positioning

The keyword values for positioning are left, right, top, bottom, and center. Each value (except
center) places the specified edge of the image all the way to the respective edge of the element. For
example, the left value pushes the left edge of the image all the way to the left edge of the
background area. The center value places the center of the image in the center of the element. And
so on.

Keywords are usually used in pairs, as in these examples:

 {background-position: left top;}
 {background-position: right center;}
 {background-position: center bottom;}

Each of these positions is demonstrated in Figure 20-7.

The order of the keywords is not important according to the CSS 2 Recommendation, but Netscape 6
and related browsers require that the horizontal measurement be provided first, so it's good practice
to provide them in horizontal/vertical order just to be safe.

Figure 20-7. Positioning with keywords

If you only provide one keyword, the missing keyword is assumed to be center. Therefore the second
and third previous examples could also be written like this:

 {background-position: right;}
 {background-position: bottom;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3.2.2. Length measurements

It is also possible to specify the position of the origin image in units of length . When length units are
provided, they are interpreted as the distance from the top-left corner of the padding area to the top-
left corner of the image. Length values must be provided with the horizontal measurement first.

In this example, the top-left corner of the image will start 150 pixels from the left edge and 15 pixels
from the top of the intro paragraph, as shown in Figure 20-8.

 p.intro { background-image: url(something.gif);
 background-position: 150px 15px;
 background-repeat: no-repeat;}

Figure 20-8. Positioning with length measurements

It is valid CSS to specify negative length measurements, thus pulling the image out of the visible
background area of the element. Not all browsers currently support negative background image
values, so be sure to test on your targeted browsers.

20.3.2.3. Percentage values

Percentage values follow the same basic positioning model as keywords, but they provide a more
fine-tuned control over the image placement. Percentage values are given in horizontal/vertical pairs,
with a default value of 0% 0%, which places the upper-left corner of the image in the upper-left corner
of the element.

Each percentage value specified applies to both the background canvas area and the image itself. A
few simple examples should make this clear.

The percentage values 50% 50% place the center of the image in the center of the element.

The percentage values 100% 100% place the bottom-right corner of the image in the bottom-right

http://lib.ommolketab.ir
http://lib.ommolketab.ir

corner of the element.

The percentage values 10% 25% match a point that is 10% from the left and 25% from the top
edge of the image with the same point in the element.

As for keywords, when only one percentage value is provided, the other is assumed to be 50%.

It is fine to mix length and percentage values, which makes it easy to specify that an image should
be centered horizontally in the element but appear exactly 25 pixels from its top edge. CSS 2.1 also
allows length and keywords to be combined, but not all browsers support that combination as of this
writing.

20.3.2.4. Positioning repeating images

In the previous examples, the background-repeat property was set to no-repeat for the sake of
clarity. The principles of positioning do not change when the image is allowed to tile. When both
properties are provided, the positioned origin image functions as the starting point for the repeating
pattern.

It is significant to note that the tile pattern extends in both directions from the origin image.
Therefore, if an image is positioned in the center of the element and the repeat is set to horizontal,
the tiles will repeat on both the left and right of the centered image. Similarly, a vertical pattern
extends both up and down from the origin image. There is currently no way to make the repeat go in
one direction only in CSS 2.1, but that functionality may be added to a later specification.

In Figure 20-9, both the background-position and background-repeat properties are used to
guarantee that one image is always centered in the browser window.

 body { background-image: url(something.gif);
 background-position: center;
 background-repeat: repeat-x; }

20.3.3. Background Attachment

The default behavior for a background image in CSS is to scroll along with the document when the
document scrolls, as though it is stuck to the element. This is the also the way background images
applied with the body element function.

CSS provides the background-attachment property that frees the background image from the content
and allows it to stay in a fixed position when the content of the document scrolls. In effect, it
disconnects the image from the content flow and attaches it to the viewing area (typically a browser
window).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 20-9. Combining position and tiling

background-attachment

Values:

 scroll | fixed | inherit

Initial value:

 scroll

Applies to:

All elements

Inherited:

No

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default value is scroll, so the origin image will scroll if you do not specify the background-
attachment property. The other alternative is fixed, which fixes the image in one place relative to the
viewing area.

In this example, the background image is fixed, as demonstrated in Figure 20-10.

 body { background-image: url(img/star.gif);
 background-position: top;
 background-repeat: no-repeat;
 background-attachment: fixed; }

The other primary difference between a fixed origin image and a scrolling one is that for fixed
images, the values of background-position are relative to the top-left corner of the viewing area, not
the element itself.

This creates an interesting effect when a fixed background pattern is applied to an element other
than body. The image stays in the same place and the element's containing box reveals a rectangular
slice of the background at a time. Unfortunately, Internet Explorer for Windows Versions 6 and earlier
do not support fixed background images on elements other than body. Non-body support is promised
in Version 7, in beta as of this writing.

Figure 20-10. Preventing scrolling with the background-attachment
property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Eric Meyer demonstrates some interesting effects using fixed images as
backgrounds for several elements on a page on his page
www.meyerweb.com/eric/css/edge/complexspiral/glassy.html. To see the full
effect, make sure you are using a standards-compliant browser other than
Internet Explorer.

20.3.4. Combining Background Properties

CSS provides a handy background shorthand property that allows all the background properties to be
combined in one style rule, similar to the font shorthand property (see Chapter 18).

background

Values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [<'background-color'>||<'background-image'>||
 <'background-repeat'>||<'background-attachment'>||
 <'background-position'>]|inherit

Applies to:

All elements

Inherited:

No

The background shorthand property takes a value from any of the background-related properties.
There are no required values, and the values may appear in any order. The only restriction is that if
two values are provided for background-position they must appear together and with the horizontal
value first, followed immediately by vertical.

The following are valid examples of the background shorthand property:

 body {background: url(superstar.gif) fixed top center no-repeat; }
 div.intro {background: repeat-x url(topborder.gif) red; }
 p {background: #336600; }

Watch for Accidental Overrides

Bear in mind that because background is a shorthand property, values that are omitted
will be reset to the default for those properties. That combined with the fact that later
rules in a style sheet override previous rules makes it easy to accidentally override
previously declared background properties with the defaults. In this example, the
background image dots.gif will not be applied to h3 elements, because by omitting a
value for background-image, it essentially set that value to none.

 h1, h2, h3 { background: red url(dots.gif) repeat-x;}
 h3 {background: blue; }

To override particular properties, be sure to use the specific background property you
intend to change (background-color would be appropriate for the H3 in the example).
When using the background (or any shorthand) property, pay attention to related rules
earlier in the style sheet, or be sure that every property is specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 21. Floating and Positioning
CSS isn't limited to just "prettying up" elements in the flow of the document. You can also use it to
achieve basic page layout such as multiple columns, text wrap, and even positioning with pixel
precision. This chapter introduces floating and positioning, the CSS methods for arranging elements
on the page.

It should be noted that this chapter covers the CSS 2.1 specification for layout-related properties as
they are intended to work. There are some notorious browser bugs that make implementing the tools
illustrated here challenging. Browser issues will be noted here, but the details about specific browser
problems and how to compensate for them are discussed further in Chapter 25.

This chapter covers these CSS 2.1 properties for controlling the positioning of elements.

float bottom overflow

clear top clip

position left visibility

bottom right z-index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.1. Normal Flow

Before jumping into methods for positioning elements, it is useful to have an understanding of what is
meant by the "normal flow " of a document according to the CSS layout model. In the normal flow,
text elements are laid out from top to bottom, and from left to right in left-to-right reading languages
(or from right to left in right-to-left reading languages). This is the default behavior of the web
browser.

In the normal flow, block-level elements stack on top of one another and inline elements fill the
available space. When the browsing window is resized, the block elements expand or contract to the
new width, and the inline content reflows to fit. Objects in the normal flow influence the position of
the surrounding content (sibling elements).

In CSS positioning, blocks are defined as being either in the normal flow or removed from the normal
flow. Floating and positioning elements changes their relationship to the normal flow, as discussed in
the following sections.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.2. Floating

If you've ever aligned an image to the right or left margin and allowed text to wrap around it, then
you understand the concept behind floats in CSS. In fact, that is precisely the functionality that the
float property was created to provide. The primary difference is that you can float any element with
CSS (paragraphs, lists, divs, and so on), not just images.[*] It is important to note that floating is
not a positioning scheme; it is a unique feature with some interesting behaviors to be aware of, as
discussed later in this section.

[*] Some browsers allow table elements to be floated with the align attribute as well.

Floats are useful for far more than just occasionally pushing an image off to one side. In fact, they
are one of the primary tools used in modern CSS-based web design. Floats are used to create
multicolumn layouts, navigation toolbars from unordered lists, table-like alignment without tables,
and more. See Chapter 24 for examples.

To make an element float to the left or right and allow the following text to wrap around it, apply the
float property to the element.

float

Values:

 left | right | none | inherit

Initial value:

 none

Applies to:

All elements

Inherited:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No

In this simple example, the float property is used to float an image to the right (Figure 21-1).

 img {float: right; margin: 20px;}

 <p>Aliquam pulvinar volutpat...</p>

As you can see in Figure 21-1, the float property applied to the img element effectively replaces the
deprecated align attribute. In this image example, the margin does the work of the deprecated
hspace and vspace attributes. The advantage of margin is that you can apply different amounts of
margin space on each side of the

Figure 21-1. Floating an image to the right

image (hspace and vspace apply the same amount of space on opposite sides). Padding may also be
used to add space around the contents of a floated element.

Although the behavior in this example should be familiar to those who have worked with HTML, it is
quite interesting when considered in terms of the CSS visual layout model. Floated elements are
removed from the normal flow of the document, yet they still have an effect on other elements in the
layoutsurrounding content is reflowed to stay out of their way. To use one popular analogy, they are
like islands in a streamthey are out of the normal flow, but the stream has to flow around them.
Floated elements are unique in this regard, because elements removed from the flow normally cease
to have influence on other elements (this will be discussed in the upcoming positioning sections).

21.2.1. Floating Basics

The float property is not limited to images; it can be applied to any element. In this slightly more
ambitious example shown in Figure 21-2, the float property is applied to a selection of text (known

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in CSS as an "inline non-replaced element"). Note that the dotted lines are a device for pointing out
the parts of the element boxes in this figure and would not actually appear in the browser.

 span.note {
 float: right;
 width: 200px;
 margin: 20px;
 background-color: #999;
 font-weight: bold; }

 p {border: solid 2px #666; padding: 30px;}

 <p>I'm going to go over here for a little while. Don't
mind me. Lorem ipsum dolor sit amet, consectetuer . . .

The results reveal some basic behaviors of element floating :

All floated elements (even inline elements, as shown in the example) take on block behaviors. It
is equivalent to setting display: block (although it is not necessary to do so).

Figure 21-2. Floating an inline text element

When floating a non-replaced (i.e., text) element, it is necessary to specify the width for the
element. Not doing so can result in the content area box collapsing to its narrowest possible
width.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The floated element stays within the content area of its containing block (the nearest block-level
ancestor element). It does not cross into the padding.

Margins are maintained on all sides of the floated element. In other words, the entire element
box (from outer edge to outer edge) is floated, and the surrounding content flows around it.

Unlike normal elements, margins around floated elements never collapse (even vertically).

The elements following the floated element exhibit unusual behavior as well. In the following example
and Figure 21-3, the floated graphic is taller than its parent paragraph element and hangs down over
the following paragraph. The second paragraph (named "boxed") has been given a background and
border to show the boundaries of its element box compared to its contents.

 img { float: left; }
 p.boxed { background-color: #999; border: solid 2px #333; }

Figure 21-3. Wrapped element behavior

The border and background position show that the position of the second paragraph's element box is
unchanged by the presence of the floated image element. Only its content moves over to make way
for the floated image. Notice also that the floated image overwrites (appears "in front of") the
background and border for the following paragraph. This is the prescribed behavior for floated
elements. Other overwriting behaviors are discussed in the "Negative Margins and Overlap" section
ahead.

21.2.2. Floating Behavior

The CSS 2.1 specification provides eight precise rules restricting the positioning of floated objects ,
which are summarized here. If you need the details, go right to the source, at
www.w3.org/TR/CSS21/visuren.html#float-position. Eric Meyer provides a useful translation and
illustration of the rules in his book Cascading Style Sheets: The Definitive Guide (O'Reilly).

In addition to requiring that floated elements stay within the inner edge (or content area) of their
containing blocks, there are a number of rules designed to prevent the overlapping of floated objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Browsers (even current standards-conformant browsers) may be inconsistent
in the way they handle floated objects due to a certain amount of leeway in the
specification and because they follow historical and expected practice. Be sure
to test.

Floated elements in close proximity in the source document are not permitted to overwrite one
another. Instead, the rules prescribe:

If elements are floated in the same direction, each subsequent floated object should move in
that direction until it reaches the inner edge of the containing block or until it bumps into
another floated element. This rule results in multiple floated elements accumulating against the
targeted edge.

If there is not enough room for floated elements to appear side by side, then the second floated
object should move down until there is enough room for it to display without overlapping the
first object.

The effects of these rules are demonstrated in Figure 21-4.

Figure 21-4. Floated objects accumulate or bump down instead of
overlapping

Other rules restrict how high the top edge of a floated element may be positioned.

The top of a floated element must stay within the top inner edge of its parent element.

The top of a floated element that is not contained in a block element may not be higher than a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

preceding block-level element. The float is essentially "blocked" from floating above it.

The top of a floated element may not start higher than a floated element that precedes it in the
document source.

If a floated element starts in the middle of the text flow of an element, it does not float to the
top of that element, but rather starts at the top of the line box for the surrounding text (Figure
21-5).

Figure 21-5. Top edge restrictions on floated elements

Floating elements are also not permitted to stick out of the edge of their containing elements, unless
they are too wide to fit (like a wide image). This prevents sequential floated elements from
accumulating against an edge and growing wider than the containing block. When the stack grows
too wide, the element that doesn't fit gets bumped down so that it clears the floated elements above.

The final two rules state, given all of the established restrictions, floated objects should be put as far
left or right (as specified) and as far upward as possible until they reach a defined constraint. A
higher position is preferable to one that is farther left or right. I like to picture floated objects on a
page jockeying for position, pushing upward and outward until they bump into the edge of the
containing block, another floated element, or an imposed ceiling from a previous block element or the
like.

21.2.3. Negative Margins and Overlap

The two big rules for the placement of floated objects are that they should never go beyond the
content area of their containing block and they should not overlap other elements. These guidelines
seemingly get tossed out the window when you apply negative margins to a floated element, as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown in this example and in Figure 21-6.

 img { float: left; margin: -10px; }

Figure 21-6. A floated element with negative margins

The negative margin setting pulls the content area of the floated element out of its positioned
element box, allowing the content to fall outside the confines of the containing block. There are no
rules preventing elements with negative top margins from overwriting preceding content that has
already been displayed, so negative vertical margins are best avoided.

Negative margins may also cause the flowed content to overlap the floated object. In these
instances, the CSS 2.1 specification prescribes different rules for inline boxes and block boxes.

When an inline box overlaps with a float, the entire element box (including the content,
background, and border) overwrites or appears "in front of" the floated element. Be prepared
that if you have a floated element with negative margins and you apply backgrounds or borders
to inline elements in the wrapped text, those inline boxes may obscure the floated element.

When block boxes overlap a float, the content of that box appears "in front of" the floated
element, but the background and border of the element are overwritten by (appear "behind")
the float. This is consistent with the example in Figure 21-3, but allows the text to go in front of
the float in the instance of negative margins.

21.2.4. Clearing

Wrapping can be a nice, space-saving layout effect, but it is not always appropriate. There are
certainly cases in which you want the area on the side of the floated element to be held clear and the
following element to start at its normal position in the containing block. For those instances, use the
clear property to prevent an element from appearing next to a floated element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

clear

Values:

 left | right | both | none | inherit

Initial value:

 none

Applies to:

Block-level elements

Inherited:

No

The clear property may be applied only to block elements. It is best explained with a simple
example. The left value starts the element below any elements that have been floated to the left
edge of the containing block. The rule in this example ensures that all first-level headings in the
document start below left-floated elements, as shown in Figure 21-7.

 img {float: left; margin-right: 10px; }
 h1 {clear: left; top-margin: 2em;}

Figure 21-7. Clearing a left-floated element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you might guess, the right value works in a similar manner and prevents an element from
appearing next to an element that has been floated to the right. The value both moves the element
down until it is clear of floated elements on both sides. User agents are instructed by CSS 2.1 to add
an amount of clearance space above the margins of block elements until the top edge of the content
fits below the float.

Notice in Figure 21-7, that although there is a top margin applied to the h1 element, the text is
touching the bottom of the floated image. That is a result of collapsing vertical margins on the H1
block element. If you want to be sure that there is space below a floated element, add a bottom
margin to the float itself, because margins on floated elements never collapse. This remains true
when a floated element is set to clear other floated elements on the same side of the page. In that
case, adjacent margins of the floated elements add up and don't collapse.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.3. Positioning Basics

It is obvious by how readily web designers co-opted HTML tables that there was a need for page-like layout on
web pages. Cascading Style Sheets provides several methods for positioning elements on the page relative to
where they would normally appear in the document flow.

If you thought tables were tricky to manage, get ready for CSS positioning! While the positioning properties are
fairly simple at face value, inconsistent and buggy browser implementation can make it challenging to achieve
the results you're after on all browsers. If fact, positioning can be complicated even when the CSS
Recommendation is followed to the letter. It's a recipe for frustration unless you get to know how positioning
should behave and then know which browsers are likely to give you trouble (some notorious browser bugs are
listed in Chapter 25). This section introduces the positioning-related properties as they are defined in CSS 2.1
as well as some key concepts.

21.3.1. Types of Positioning

To get the ball rolling, we'll look at the various options for positioning elements and how they differ. There are
four types of positioning, specified by the position property.

position

Values:

 static | relative | absolute | fixed | inherit

Initial value:

 static

Applies to:

All elements

Inherited:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No

The position property identifies that an element is to be positioned and selects one of four positioning methods
(each will be discussed in detail in upcoming sections in this chapter):

static

This is the normal positioning scheme in which element boxes are rendered in order as they appear in the
document flow.

relative

Relative positioning moves the element box, but its original space in the document flow is preserved.

absolute

Absolutely positioned objects are completely removed from the document flow and are positioned relative
to their containing block (discussed in the next section). Because they are removed from the document
flow, they no longer influence the layout of surrounding elements, and the space they once occupied is
closed up. Absolutely positioned elements always take on block behaviors.

fixed

Fixed positioning is like absolute positioning (the element is removed from the document flow), but
instead of a containing element, it is positioned relative to the viewport (in most cases, the browser
window).

21.3.2. Containing Blocks

The CSS 2.1 Recommendation states that "The position and size of an element's box(es) are sometimes
calculated relative to a certain rectangle, called the containing block of the element." It is critical to have an
awareness of the containing block for the element you want to position.

Unfortunately, it's not entirely straightforward and depends on the context of the element. CSS 2.1 lays out a
number of rules for determining the containing block.

The containing block created by the root element (html) is called the initial containing block . The
rectangle of the initial containing block fills the dimensions of the viewport. The initial containing block is
used if there is no other containing block present. Note that some browsers base the initial containing
block on the body element; the net result is the same in that it fills the browser window.

For elements (other than the root) that are set to static or relative , the containing block is the content
edge of the nearest block-level, table cell, or inline-block ancestor.

For absolutely placed elements, the containing block is the nearest ancestor element that has a position
other than static . In other words, the ancestor element must be set to relative , absolute , or fixed to
act as a containing block for its children. Once an ancestor element is established as the containing block,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

its boundaries differ based on whether it is a block-level or inline element.

For block-level elements, the containing block extends to the element's padding edge (just inside the
border).

For inline-elements, the containing block is set to the content edge . Its boundaries are calculated based
on the direction of the text. For left-to-right languages, it begins in the top-left corner of the first line
generated by the element and ends in the bottom-right corner of the last line generated by the element.
For right-to-left languages, it goes from top-left corner of the first line to bottom-left corner of the last
line.

If there are no ancestor elements, then the initial containing block is used.

21.3.3. Specifying Position

Once the positioning value has been established, the actual positioning is done with the four offset properties.

top, right, bottom, left

Values:

 <length> | <percentage> | auto | inherit

Initial value:

 auto

Applies to:

Positioned elements (where position value is relative , absolute , or fixed)

Inherited:

No

The values provided for each of the offset properties defines the distance that the element should be offset
from that edge. For instance, the value of top defines the distance from the outer edge of the positioned
element to the top edge of its containing block. Positive values move the element down (toward the center of
the block); negative values move the element up (and out of the containing block). Similarly, the value
provided for the left property specifies a distance from the left edge of the containing block to the left outer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

edge of the positioned element. Again, positive values push the element in toward the center of the containing
block while negative values move the box outward.

CSS 2 positioned elements from their content edges, not their margin edges, but this
was changed in 2.1.

This rather verbose explanation should be made clearer with a few examples of absolutely positioned elements.
In this example, the positioned element is placed in the bottom-left corner of the containing block using
percentage values (Figure 21-8).

 div {position: absolute; height: 120px; width: 300px; border: 1px solid #000;}
 img {position: absolute; top: 100%; left: 0%;}

Figure 21-8. Positioning with percentage values

In this example, pixel lengths are provided to place the positioned element at a particular spot in the containing
element (Figure 21-9).

 div.a {position: absolute; height: 120px; width: 300px; border: 1px solid #000;
background-color:#CCC}

 div.b {position: absolute; top: 20px; right: 30px; bottom: 40px; left: 50px;
 border: 1px solid #000; background-color:#666}

 <div class="a">
 <div class="b"></div>
 </div>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 21-9. Positioning with pixel values

Notice that it is possible to set the dimensions of an element indirectly by defining the positions of its four sides
relative to the containing block. The space that is leftover becomes the width and height of the element. If the
positioned element also has specified width and height properties that conflict with that space, a set of CSS
rules kicks in for settling the difference (these are addressed in the upcoming "Calculating Position " section).

Setting the width and height of elements is covered in Chapter 19 .

This final example demonstrates that when negative values are provided for offset properties, the element can
break out of the confines of the containing box (Figure 21-10).

 div.a {position: absolute; height: 120px; width: 300px; border: 1px solid #000;
background-color:#CCC}

 div.b {position: absolute; top: -20px; right: -30px; bottom: 40px; left: 50px;
border: 1px solid #000; background-color:#666}

 <div class="a">
 <div class="b"></div>
 </div>

21.3.4. Handling Overflow

When an element is set to a size that is too small to contain all of its contents, it is possible to specify what to
do with the content that doesn't fit using the overflow property.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 21-10. Negative offset values

overflow

Values:

 visible | hidden | scroll | auto | inherit

Initial value:

 visible

Applies to:

Block-level and replaced elements

Inherited:

No

There are four values for the overflow property:

visible

The default value is visible , which allows the content to display outside its element box.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hidden

When overflow is set to hidden , the content that does not fit in the element box gets clipped and does
not appear beyond its edges.

scroll

When scroll is specified, scrollbars (or an alternate scrolling mechanism) are added to the element box
to allow scrolling through the content while keeping the content visible in the box area only. Be aware
that the scroll value causes scrollbars to be rendered even if the content fits comfortably in the content
box.

auto

The auto value allows the user agent to decide how to handle overflow. In most cases, scrollbars are
added only when the content doesn't fit and they are needed.

Figure 21-11 shows examples of each of the overflow values as applied to an element that is 150 pixels square.
The gray background color makes the edges of the content area clear.

Figure 21-11. Overflow values

21.3.5. Clipping Areas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the overflow of an absolutely positioned element box is set to hidden , scroll , or auto , the CSS
specification allows you to restrict which part of the content is visible by creating a clipping area for the
element. A clipping area is a rectangular arealike the mat in a picture framethat lets the content show through.
Other shapes may be included in future CSS versions. Specify the size and position of the clipping area with the
clip property.

clip

Values:

 rect(top, right, bottom, left) | auto | inherit

Initial value:

 auto

Applies to:

Absolutely positioned elements

Inherited:

No

The default auto property sets the edge of the clipping path at the content edge for the given side. Values for
clip must be provided in length values (percentage values are not permitted).

It is important to note that the top , right , bottom , and left values for the clip property are measured from
the top-left corner of the element, not the sides as is the case for the offset properties. For languages that read
right to left, distances are measured from the top-left corner.

This is a simple example of a clipping area applied to an element (Figure 21-12).

 div.a {position: absolute; height: 150px; width: 150px; background-color:#CCC;
 clip: rect(10px, 130px, 130px, 10px);}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 21-12. A clipping area

21.3.6. Visibility

The visibility property is used to make an entire element invisible.

visibility

Values:

 visible | hidden | collapse | inherit

Initial value:

 visible

Applies to:

All elements

Inherited:

Yes

Obviously, if the value of visibility is visible (the default), the element will be visible. When it is set to
hidden , the element is invisible, but it maintains its spot in the document flow; you just can't see it. This
makes it distinctly different from display: none , which removes the element from of the document flow
completely and closes up the space it once occupied.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, an inline text element is hidden (Figure 21-13). It is easy to see that the space for its element
box is preserved. Notice also that all aspects of the element (including its content, background, and border) are
invisible as well.

 span.a {background-color:#CCCCCC; border: 1px solid #000; visibility: visible;}
 span.b {background-color:#CCCCCC; border: 1px solid #000; visibility: hidden;}

<p>Aliquam pulvinar volutpat nibh. Integer convallis nulla sit amet magna. Maecenas imperdiet turpis ac augue. Integer malesuada mauris a
odio vulputate blandit. Etiam accumsan. Proin eros massa, condimentum sit
amet, semper vitae, pulvinar non, augue. </p>

<p>Aliquam pulvinar volutpat nibh. Integer convallis nulla sit amet magna. Maecenas imperdiet turpis ac augue. Integer malesuada mauris a
odio vulputate blandit. Etiam accumsan. Proin eros massa, condimentum sit
amet, semper vitae, pulvinar non, augue. </p>

Figure 21-13. Setting visibility to hidden

The collapse property value is recommended for use with CSS table row and column elements . Applying the
collapse value to a non-table element may make it hidden, but it is best avoided. Internet Explorer 6 for
Windows and earlier does not support collapse (support has not been confirmed in Version 7, which is in beta
as of this writing).

21.3.7. Stacking Order

One of the side effects of positioning is that elements can overlap each other. By default, elements stack in the
order in which they appear in the document, with later elements rendering on top of preceding elements in the
source. You can change the stacking order for an element by setting the z-index property. You can picture the
direction of the z-axis as a line that runs from your nose through this page and out the other side.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

z-index

Values:

 <integer> | auto | inherit

Initial value:

 auto

Applies to:

Positioned elements

Inherited:

No

The value of the z-index is any integer (whole number), positive or negative. The higher the number, the
higher the element will appear in the stack. Lower numbers and negative values move the element lower in the
stack.

Consider this source and style sheet that changes the stacking order for three positioned paragraphs (Figure
21-14). Although Paragraph 1 appears first in the source and would normally be overlapped by the subsequent
positioned elements, it has been set to render on top by assigning it a higher z-index value.

 p {position: absolute; padding: 5px; color: #000;}

 #p1 {top: 70px; left: 140px; width: 300px; z-index:19; background-color: #666;}

 #p2 {top: 30px; left: 30px; width: 300px; z-index: 1; background-color: #999;}

 span.b {position: absolute; top: 96px; z-index: 72; font-weight: bold; background: #999;}

 <p id="p1">PARAGRAPH 1: Z-INDEX=19
Integer convallis nulla sit
amet magna. Maecenas imperdiet turpis ac augue. Integer malesuada mauris a odio vulputate
blandit.</p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <p id="p2">PARAGRAPH 2: Z-INDEX=1

Z-INDEX=72 Integer convallis nulla sit amet magna. Maecenas imperdiet turpis
ac augue.Integer malesuada mauris a odio vulputate blandit.</p>

Figure 21-14. Adjusting stacking order with z-index

There are a few other points of interest in this example. First, notice that the z-index values don't need to be
consecutive. If you want to guarantee that an element is always on top, you can give it an extremely high z-
index value that isn't likely to be topped.

It is also important to note that each positioned element creates its own z-index context. Although the strong
text contained in Paragraph 2 has a very high z-index of 72, it still appears behind Paragraph 1 with its z-index
of 19. That's because the z-index settings within each element are relative only to the other descendants of
that element. In effect, the strong element in Paragraph 2 shares the z-index value of its parent in relation to
its parent's siblings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.4. Absolute Positioning

There have been examples of absolute positioning throughout this chapter, but this section examines this popular
method of positioning in more detail.

An absolutely positioned element has these basic characteristics:

It is declared using {position: absolute;} .

It is positioned relative to the edges of its containing block using one or more of the offset properties (top ,
right , bottom , left). Properties that are not specified are set to auto (the default). The offset values apply
to the outer edge of the element box (including the margin value, if there is one).

It is completely removed from the document flow. The space it would have occupied in the normal flow is
closed up and it no longer has an affect on other elements (for instance, text won't wrap around it).

These points are demonstrated in this simple example of an absolutely positioned list element (Figure 21-15).

 div {position: absolute; background-color: #999; width: 440px;}
 ul {position: absolute; left: 60px; top: 30px; background-color: #CCC; margin: 0px;}

 <div>
 <p>Phasellus feugiat eros at mi. Integer leo tellus, hendrerit non, euismod
non, condimentum in, sem. </p>

 Lorem ipsum dolor
 Sit amet, consectetuer
 Adipiscing elit
 Vel nonummy ligula
 Tempus dignissim

 <p>Fusce suscipit, ligula eget tempus ...</p>
 </div>

Figure 21-15. Absolute positioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In all of the previous examples, elements have been positioned using length measurements for the offset property
values. The auto value has some interesting behavior that bears attention. When any of the offset properties other
than bottom are set to auto , the edge of the element box is positioned in its "static" position, that is, where it
would have been in the normal document flow. In Figure 21-16 , the dollar sign slug will always stay next to its line
of origin, because its top offset property is set to auto .

 p {position: relative; margin-right: 10px; left: 10px;"}

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Pellentesque
<span style="position: absolute; top: auto; left: -1em; background-color:
#CCC;">$pharetra, urna in laoreet tincidunt,...</p>

Figure 21-16. Setting offset properties to auto

Notice that the top of the positioned element is in the vertical position that it would have had if the element were
still in the line. Only its horizontal position has been changed, as specified. Notice also that the space that the
element occupied on the line has been closed up because it has been absolutely positioned. If the left offset
property had been set to auto as well, the left edge of the element would be placed in the spot at which the
content originated, but it would overlap with the following text (because its space is closed up).

This can be a useful method for adding margin notes that stay with their respective text. Just be sure that there
are few or no constraints on the other positioning and sizing properties that might override the auto placement.

21.4.1. Absolute Positioning and Containing Blocks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first step to absolutely positioning an element is to identify or create its containing block. The containing block
is critical to positioning because all absolute measurements are based on its sides. Containing blocks were
discussed in more detail earlier in this chapter, but it's worth a brief refresher.

For an ancestor element to be a containing block, it must have a position value of absolute , relative , or fixed
(in other words, it must not be static, either declared or by default). If no ancestor element qualifies as a
containing block, then the initial containing block is used (html , body , or the viewport , as determined by the user
agent).

In the example in Figure 21-15 , the containing block for the list is a div that has its position set to relative (but
its position has not been altered). It is common practice to declare the position of an ancestor element as relative
explicitly and leave it in place, or to insert a new positioned element (like a div) to set up the containing block for
absolutely positioned elements.

To force the browser to use the body element as the initial containing block, add this style
rule:

 body {position: relative;}

Another important thing to note is that by setting the position of the unordered list element (ul) to absolute, it
thereby becomes the containing block for its descendant elements. If an li element were to be absolutely
positioned, its offset properties become relative to the sides of the ul , as shown here and in Figure 21-17 .

 div {position: absolute; background-color: #999; width: 440px;}
 ul {position: absolute; left: 60px; top: 30px; background-color: #CCC; margin: 0px;}
 li#callout {position: absolute; left: 60px; top: 30px; background-color: #CCC; margin: 0px;}

 <div>
 <p>Phasellus feugiat eros at mi. Integer leo tellus, hendrerit non, euismod
non, condimentum in, sem. </p>

 First list item
 <li id="callout">Second list item
 Third list item
 Fourth list item
 Fifth list item

 <p>Fusce suscipit, ligula eget ...<p>
 </div>

Figure 21-17. The absolutely positioned list becomes the containing block for the
positioned list item

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.4.2. Calculating Position

While specifying a position using the offset properties is a fairly straightforward affair, things can get complicated
when offset measurements are combined with the margins and content width of the element and the width
constraints of the containing block. In fact, the CSS 2.1 specification provides a dizzyingly detailed list of rules and
constraints for dealing with conflicting and unspecified values.

In the interest of brevity, this section provides a general and practical summary of those rules that should serve
you well in most instances.

The CSS 2.1 specification provides a formula for all the values that make up the width of a containing block. It is
presented in Figure 21-18 in graphical form because it is helpful to visualize the values that span across a
containing block. Bear in mind that the calculated sum of all the interior values must be equal to the width of the
containing block. This same structure applies in the vertical direction as well.

Figure 21-18. The sum of values in the containing block

In very generalized terms, when values are conflicting or unspecified, the space tends to be adjusted on the right
side for left-to-right (ltr) languages (or the left side for right-to-left languages). Height issues are resolved by
adjusting the space at the bottom of the positioned element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In instances where all values have been specified (i.e., none of them are auto), and the values do not add up
to the width of the containing block, user agents are instructed to just ignore the right (for ltr languages)
and bottom offset values and make up the discrepancies on those sides.

If the width of the positioned element is specified, it is not altered. However, if the width for a text (non-
replaced) element is set to auto , the content area will "shrink to fit" and be just wide enough to
accommodate the contents. For replaced elements such as images, the inherent pixel dimensions of the
object are used when width is auto .

The width of an element's content area gets resized only when it is set to auto and all the other properties
have specific measurement values. As the only parameter set to auto , the element width is the last resort
and gets resized.

User agents look for an auto value (on the margin or offset) on the right side first (for ltr languages) to make
necessary space adjustments. For vertical adjustments, adjustments are made to properties set to auto on
the bottom.

When the top and left properties are set to auto , the element is placed in its "static" position (as mentioned
above). This is overridden only as a last resort when all of the other parameters have specific values and left
(for horizontal placement) and top (for vertical placement) are the only available auto values. Only then is
space adjusted on those sides.

Given these constraints and behaviors, the most simple and predictable approach to absolute positioning is to
provide a specific width for the positioned element and specific top and left offsets. That way, the margins on the
positioned object will be preserved and the space on the right and bottom can flex as necessary to fit in the
containing block. Granted, this won't work for all situations, but it's a starting point. It usually involves a bit of
math to get it right.

These positioning rules are based on the correct behavior as defined in the CSS 2.1 spec
and describe the basic behavior of standards-compliant browsers. Be aware, however, that
because of a problem with the box model implementation in Internet Explorer for Windows
(all versions except IE 6 and 7 running in Standards mode), these browsers have a different
method of calculating position based on applying the padding, borders, and margin within
the specified width.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.5. Fixed Positioning

Fixed positioning is essentially the same as absolute positioning, only the containing block is the
viewing area (or viewport ; typically the browser window). The distinguishing feature of fixed
elements is that they do not scroll with the document, but are persistent on the page. On printed
pages, fixed elements may appear in the same place on all pages.

In addition to not scrolling, fixed elements share these basic characteristics:

They are declared using {position: fixed;}.

They are positioned relative to the edges of the viewport (browser window) using one or more
of the offset properties (top, right, bottom, left). Properties that are not specified are set to
auto (the default). The offset values apply to the outer edge of the element box (including the
margin value, if there is one).

Like absolutely positioned elements, they are completely removed from the document flow, and
the space they would have occupied is closed up.

Fixed elements can be used to create frame-like interfaces or to place persistent elements on the
page. In this example, a fixed element is used as a short sidebar that stays put as the document
scrolls (Figure 21-19).

 ul {position: fixed; top: 0px; left: 0; width: 100px; background-color:
#999; margin: 0; padding: 10;}
 p, h1 {margin-left: 150px;}

Figure 21-19. Fixed positioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Internet Explorer 6 and earlier for Windows does not support fixed positioning.
Objects with fixed positioning are treated as though they are static, and
therefore behave as though they have not been positioned at all. There are
workarounds available; to find them, search for "CSS fixed position in IE" or
something similar in your favorite search engine. Support in IE 7 for Windows
(in beta as of this writing) has not been confirmed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.6. Relative Positioning

Relative positioning works differently than absolute and fixed positioning. The critical difference is
that although the element is moved around, the space where it would have appeared in the normal
flow is preserved and continues to influence the elements that surround it.

Relatively positioned elements have these characteristics:

They are declared using {position: relative ;}.

They are positioned relative to their initial position in the normal flow using one or more of the
offset properties (top, right, bottom, left). Properties that are not specified are set to auto (the
default).

Their original space in the document flow is preserved.

Because they are positioned elements, they can potentially overlap other elements.

This example of a relatively positioned emphasized (em) element demonstrates the basic syntax and
behavior of relative positioning (Figure 21-20). Notice that when the element is moved, its space is
left behind and the surrounding elements behave as though it is still there.

 em {position: relative; top: -36px; right: -36px; background: #ccc; }

Figure 21-20. Relative positioning

In relative positioning, the top, right, bottom, and left properties move the element relative to its
original position. Specifying a positive value for top moves the element down by that amount.
Specifying a value for left moves the element to the right, and so on, such that a positive value for
one side is equivalent to a negative value on the opposite side (the computed values are right=-left
and bottom=-top).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The CSS 2.1 specification advises that when conflicting values are provided, the provided value for
right is ignored in left-to-right languages (left is ignored for right-to-left languages) and is
understood to be -left. When top and bottom values conflict, the provided bottom value is ignored
and reset to -top. As such, this overconstrained style rule:

 em {top: 10; bottom: 50; left: 50: right -4;}

would be rendered as though it had specified like this:

 em {top: 10: bottom: -10; left: 50; right: -50;}

Relative positioning is often used to establish a containing block by specifying the position of the
element as relative, but not altering its position. The result is that its child elements can then be
absolutely positioned relative to the rectangle created by the element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 22. CSS for Tables
Tables have gotten a bad reputation in web design circles because of their notorious misuse as page
layout devices. Although CSS now offers alternatives to tables for presentation purposes, it's not
necessary to kick tables to the curb entirely. In fact, they serve an important purpose: the
presentation of tabular data. Using CSS table properties with the full set of HTML table elements
allows tables to go back to their original calling, but with more sophisticated tools for handling them.

This chapter explains these CSS 2 properties for controlling table presentation:

caption-side border-spacing

table-layout empty-cells

border-collapse display (table-related values)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.1. The Essence of Tables

If you are familiar with table structure in HTML, then the way CSS handles tables should not be a big
surprise. For reasons of backward compatibility, the CSS specification used the row-based table
layout model as the starting point for additional layout models and properties for controlling
presentation. CSS is broader in its scope, however, because it is designed to work with document
languages other than just HTML and XHTML. The system for providing table layout capabilities for
non-HTML languages is discussed in the "Table Display Values" section at the end of this chapter.

The CSS 2.1 Recommendation is very detailed in its description of the defined behaviors for the table
layout model. For a deeper look into the CSS table model , read the specification online at
www.w3.org/TR/CSS21/tables.html. Once again, Eric Meyer's Cascading Style Sheets: The Definitive
Guide (O'Reilly) is the book to turn to for making sense of the spec.

This section provides a summary of some of the key concepts of the CSS table model.

22.1.1. Rows and Columns

At the most basic level, tables are divided into rows and columns. CSS 2.1 describes the model as
row primary, because rows are identified explicitly in the document structure. Cells are always
descendants of rows, not columns. Columns are merely derived based on the number of cells in the
rows.

The intersection of all the rows and columns in a table forms a grid and defines a basic grid cell unit.
The actual cells (the boxes that contain the content) in the table may be composed of more than one
grid cell, as is the case when cells are set to span rows or columns. Figure 22-1 shows the structure
of the CSS table model.

Figure 22-1. Table structure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In addition to cell boxes, the CSS visual box model for tables generates (implied) boxes around rows,
row groups, columns, column groups, and the table itself. These boxes correspond to the row,
rowgroup, col, colgroup, and table elements in HTML. The table caption (identified with the caption
element) is treated as its own box as well (as discussed later in this chapter).

One last table box to be aware of is the inline table. Inline tables are block elements that can appear
inline (tables are normally block-level elements). Inline tables are created by setting the display
property to inline-table. They are not discussed in detail in this chapter, but are sometimes
referenced in terms of property application. Only the Opera browser supports this display role as of
this writing.

22.1.2. Internal Table Elements

CSS 2.1 makes a distinction between table elements and internal table elements. A table element is
any part of a table (including table and caption). Internal elements are just those elements that
generate a cell (such as td or th), a row (tr), a row group (rowgroup), a column (col), or a column
group (colgroup).

Internal table elements may have content, padding, and borders. Internal elements may not have
margins and any margin settings provided will be ignored.

22.1.3. Table Captions

HTML 4.0 introduced the caption element for providing a descriptive title to a table. CSS 2.1 assigns
it special behaviors and its own property, caption-side, for positioning the caption above or below
the table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Internet Explorer for Windows (Versions 6 and earlier) do not support the
caption-side property. Support in IE 7, in beta as of this writing, is currently
undocumented.

caption-side

Values:

 top | bottom | inherit

Initial value:

 top

Applies to:

Table-caption elements (caption in HTML)

Inherited:

Yes

By default, the table caption is placed on top of the table block (top), but the caption-side property
allows it to be placed below the table (bottom). Table captions are block elements, but they have
some peculiarities. Figure 22-2 shows the relationship of the caption to the table body.

Figure 22-2. Table and caption

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As block elements, they can be given their own properties, such as margins. However, they are also
treated as children of the table element, and therefore will inherit properties applied to the table. So
although it occupies a separate block with its own margins, if the color of the table is set to blue, the
caption will be blue as well.

The margins between the caption and table block collapse to equal the greater specified value.

There is an implied or (anonymous) box that encloses the table box and the caption box. It is this
anonymous box that is used when the table element is positioned with properties such as float,
position, margin-*, top, right, bottom, or left.

22.1.4. Stacking Order

In the visual formatting model for tables , the various table elements are understood to occupy
separate superimposed layers. These are used to determine which backgrounds are visible. Elements
are transparent by default, allowing the backgrounds of the layers "below" to show through. A
background applied to a particular element will be visible if all the elements "above" it are
transparent.

The stacking order for table element layers is, from "top" to "bottom": cell, row, row group, column,
column group, table, as shown in the diagram in Figure 22-3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 22-3. Table layer order

Or in other words, applying a background color in a cell will paint over any backgrounds provided in
rows, row groups, and so on. This system is similar to the way in which color attributes in HTML table
cells (td) override row settings (tr), which in turn override settings at the table level (table). One
significant aspect of the CSS model is that table rows and row groups are given precedence over
columns and column groups.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.2. Styling Tables

For the most part, you don't need any special properties to control the presentation of tables and
their content. Most of the properties listed in the previous chapters apply to table elements as well,
although some may have different values when applied to table objects. This list is an overview of the
styles to use for formatting typical aspects of a table and its content.

Text content

Style the text content within tables, rows, and cells as you would any other text element in a
document. You can apply the following properties to any table element.

font and all font-related properties

All text-formatting properties

color (changes the text color)

Alignment of content in cells

You can use style properties to adjust the horizontal and vertical placement of cell content.
Note that applying text-align: center to the table element does not center the table on the
page, but rather centers all the content within each table cell.

text-align for horizontal alignment within a cell. The values left, right, and center
apply.

vertical-align for vertical alignment within a cell. When used with tables, the values
baseline, top, bottom, and middle apply. The values sub, super, text-top, and text-
bottom; length measurements; and percentage values should not be used with table
elements.

Background color and images

You can change the background of table cells, rows, row groups, columns, column groups, or
the entire table with color or a background image. Whether the background is visible or
overridden is related to the table layer order discussed in the previous section.

background and all background-related properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Borders

You can apply borders to tables and cells at any time. Borders may not be applied to rows, row
groups, columns, and column groups when the table uses the separated border model
(discussed in the upcoming "Borders" section).

border and all border-related properties (see the special table border properties later in
this chapter)

Margins

Apply a margin around the outside of the table element with any of the margin properties.
Margins may not be applied to such internal elements as cells, rows, and columns.

margin and all margin-related properties (see Chapter 19)

Padding

To add extra space around the content in table cells, add padding to the cell (td). The table
element, although it may have a margin, does not accept padding. This may take some getting
used to if you are accustomed to controlling cellpadding at the table level in HTML. The good
news is that, with CSS, you can specify padding amounts cell by cell, not just globally for all the
cells in the table.

padding and padding-related properties may be applied to table cells.

Cell spacing

In (X)HTML, space between cells is specified with the cellspacing attribute. It is most
commonly used to remove extra spacing between cells (cellspacing="0"). There is no directly
analogous CSS property for handling space between cells.

The closest thing to cellspacing is to set the border-collapse property to separate and use
the border-spacing property to add space between cells. The difference is that with
cellspacing, browsers render 3D borders between the cells, while with the CSS border-
spacing property, the space is held blank. Unfortunately, border-spacing is not supported in
Internet Explorer (Versions 6 and earlier), so it is not a viable alternative at this time. Support
in IE 7, in beta as of this writing, is undocumented.

Table size and positioning

It is possible to position a table as you would any other block element. Position measurements
apply to the anonymous box that contains both the table and caption boxes (see Figure 22-2).
Applying float to a table cell may remove it from the table and is not advised.

All positioning properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

width (except rows and row groups)

height (may not be used on table columns and column groups)

Column properties

Table cells are always descendants of table rows, however, CSS 2.1 describes four permissible
column properties that influence cells (each with qualifications).

border (using the collapsing border model, discussed in the next section)

background (colors applied to row groups, rows, and cells override column backgrounds)

width (values provided are minimum values only)

visibility (when the value is set to collapse, the whole column will not display and any
spanned cells it contains will be clipped)

For an in-depth explanation of why columns support only four properties, read
Ian Hickson's blog entry, "The mystery of why only four properties apply to
table columns" at ln.hixie.ch/?start=1070385285&count=1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.3. Borders

There are two models for handling borders in CSS 2.1. In one, the borders around cells are separated
from each other. In the other, borders are said to "collapse" and are continuous from one cell to the
next. The border-collapse property allows authors to choose which model the table should follow.

border-collapse

Values:

 collapse | separate | inherit

Initial value:

 collapse

Applies to:

table and inline-table elements

Inherited:

Yes

22.3.1. The Separated Borders Model

In the separated borders model , the border is drawn on all four sides of each cell (or as specified by
the border properties), and an amount of space can be added between cells with the border-spacing
property.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The border-spacing property is not supported by Internet Explorer Versions 6
and earlier. Support in IE 7, in beta as of this writing, is not documented.

border-spacing

Values:

 <length> <length>? | inherit

Initial value:

 0

Applies to:

table and inline-table elements

Inherited:

Yes

The values for border-spacing are two length measurements. The horizontal spacing value comes
first and is applied between the cells in each row of the table. The vertical value always comes second
and is applied between cells in each column. If you provide just one value, it will be applied both
horizontally and vertically. The table in Figure 22-4 uses the separated border model.

 table {border-collapse: separate;
 border-spacing: 10px 3px;
 border: none;}

 td { border: 1px solid black; }

Figure 22-4. A table with border-spacing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default value for border-spacing is 0, which causes adjacent borders to touch, essentially
"doubling up" the borders on the inside grid of the table.

When using the separated border model, rows, row groups, columns, and column groups cannot have
borders.

If you have a few years of web design experience, you may remember how Netscape 4 required
every cell in a table to have content in it or the cell would collapse and the background wouldn't
display. In the CSS separated borders model, you get to decide whether you want empty cells to
display their backgrounds and borders or whether they should be hidden using the empty-cells
property.

Internet Explorer for Windows (Versions 6 and earlier) do not support the
empty-cells property. IE 5 for the Mac shows and hides cells as expected, but
it makes the empty cells too large. Support in IE 7, in beta as of this writing, is
currently undocumented.

empty-cells

Values:

 show | hide | inherit

Initial value:

 show

Applies to:

Table cell elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inherited:

Yes

The default value for empty-cells is show, which shows the background and borders for cells that do
not contain any content. The hide value hides the cell's background and borders and is equivalent to
visibility: hidden.

For a cell to be "empty," it may not contain any text or replaced elements, non-breaking spaces
() or whitespace. It may contain carriage returns (CR), line feeds (LF), and space characters.

Figure 22-5 shows the previous table border example, this time with empty elements set to hide.

 table {border-collapse: separate;
 border-spacing: 10px 3px;
 empty-cells: hide;
 border: none;}

 td { border: 1px solid black; }

Figure 22-5. Empty cells hidden with the empty-cells property

The empty-cells property is not supported by Internet Explorer through Version
6. Version 7 promises improved support of CSS 2.1, but as of this writing,
support for empty-cells is not specifically documented.

22.3.2. The Collapsing Border Model

In the collapsing border model , the borders of adjacent borders "collapse" so that only one of the
borders is visible and extra space between borders is removed. Figure 22-6 shows the table from the
previous examples, only this time, the border-collapse property has been set to collapse.

 table {border-collapse: collapse;
 border: none;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 td { border: 1px solid black; }

Figure 22-6. A table with collapsed borders

Borders between cells are centered on the grid lines between cells. Therefore, if two adjacent cells
have a border that is eight pixels wide, four pixels will fall in one cell and four pixels will fall in the
other. If a border has an odd number of pixels, it is left to the user agent to decide where the extra
pixel goes. Wide borders on the outside edge of the table may extend into the table's margin.

Explicitly declaring border-collapse: collapse for tables removes any extra
space and little gaps in the border that may be automatically inserted by the
browser.

22.3.2.1. Border pecking order

If there can only be one border between each pair of cells, what happens when neighboring cells have
conflicting border styles? The authors of CSS anticipated this problem and devised a system for
resolving border conflicts.

Borders with border-style set to hidden take precedence over all other border styles, so the
border will not display.

Borders with a style of none have the lowest priority. That means that if there is any border
specified at all, it will win out and display on the edge of a cell with borders set to none.

Wider borders win over narrower ones, regardless of the border style.

If the neighboring borders are the same width, then it comes down to a battle of styles. The
CSS 2.1 specification establishes this pecking order for border styles (in order from most to
least precedence): double, solid, dashed, dotted, ridge, outset, groove, and (the lowest) inset.
That means if one cell has a five-pixel dashed border and its neighbor has a five-pixel groove
border, the dashed border will "win" and display between the cells.

If the border styles differ only in color, then it comes down to the table layer order (Figure 22-3)
to determine which border is visible. Styles set on cells win out over rows, and row settings win
over row groups, columns, column groups, and finally table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.4. Table Layout (Width and Height)

User agents (typically browsers) may use one of two algorithm-driven approaches to calculate the
width of a table: fixed-width layout and automatic-width layout. Web page authors may specify which
layout approach to use for a specific table using the table-layout property.

table-layout

Values:

 auto | fixed | inherit

Initial value:

 auto

Applies to:

table and inline-table elements

Inherited:

No

22.4.1. Fixed-Width Layout

The fixed value for table-layout tells the browser or other user agent to calculate the size of the
table using the "fixed" algorithm. This method requires the least work of the user agent because the
table width is determined by the width values of the table, columns, and cells within the table.

First, the user agent takes the widths of column elements that are set to a specific width (not auto).
Then it looks at the cells in the first row of the table. Cells with specific width values (not auto) set
the width for their columns. Any remaining columns that have the width set to auto are sized so their

http://lib.ommolketab.ir
http://lib.ommolketab.ir

widths are roughly equal to fill the remaining space in the table.

The final width of the table is the sum of the column widths or the table element's width value,
whichever is greater.

The important aspect of this model is that only width values provided for cells in the first row of the
table apply. Therefore, if the top cell in a table is set to 200 pixels and another cell farther down in
the same column is set to 350 pixels, the column will be 200 pixels wide. The setting in the lower row
is simply ignored in the fixed layout model.

The advantage of the fixed-width layout is that it's much faster than the automatic method. Because
it depends on declared width values for the table and columns, and because it only takes into
consideration the first row of cells, there is no need to parse and calculate sizes for the entire table
content to arrive at a size calculation.

For web developers, declaring the table-layout as fixed may speed up display rates. Just be sure
that all column widths are declared explicitly or that cell widths are provided in the first row.

22.4.2. Automatic Layout

The automatic layout model is essentially the same model used for HTML tables for years in which
tables expand to fit the width of the content. In CSS, the auto value for table-layout ensures this
method will be used to size the table regardless of the browser default.

Because automatic layout is content dependent, the browser must calculate the width of the content
in every cell. The real process is fairly complicated, but what it boils down to is this:

First, the browser calculates the minimum and maximum width of every cell in the table.

A comparison of the cells in a column sets the minimum and maximum width for that column.
The result is that columns are forced to be as wide as their widest cell.

Once the column widths are determined, the browser turns to the table width setting. If the
table width is auto, then the width of the table will be the sum of the column widths, borders,
and cell spacing. In other words, it will only be as wide as it needs to be to accommodate the
content.

If it is something other than auto, then the sum of the columns plus borders and spacing are
compared to the computed width of the table (the width of the table based on other page
criteria such as browser window width). If the table's computed width is larger, then the
columns are expanded equally to fill the space.

Even with this brief summary of the automatic width calculation method, it is easy to see why this
method is more labor-intensive for the browser. Despite the extra processing time, it may still be
desirable to have tables and cells resize automatically to fit the content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.5. Table Display Values

CSS was designed to work with all XML document languages, not just XHTML. It's likely that other
languages may have the need for tabular layouts, but will not have elements like table, TD, or tr in
their vocabularies.

To this end, the CSS 2.1 specification allows authors to assign table element roles to any element
using the display property. The display property was discussed in Chapter 16 in relation to block and
inline elements. This section covers the values listed in bold.

display

Values:

 inline | block | list-item | run-in | inline-block | table | inline-table
 | table-row-group | table-header-group | table-footer-group
 | table-row | table-column-group | table-column
 | table-cell | table-caption | none | inherit

Initial value:

 inline

Applies to:

table and inline-table elements

Inherited:

No

Using the table-related display values , the elements from any markup language can be "mapped" to
table elements. A simple example should make this clear. Consider this markup written in a
hypothetical XML language.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <platter>
 <cheese>
 <name>Brie</name>
 <origin>France</origin>
 </cheese>
 <cheese>
 <name>Manchego</name>
 <origin>Spain</origin>
 </cheese>
 </platter>

By attaching these style rules:

 platter { display: table; }
 cheese { display: table-row; }
 name, origin { display: table-cell; }

The example would display in the user agent as though it were marked up like this:

 <table>
 <tr>
 <td>Brie</td>
 <td>France</td>
 </tr>
 <tr>
 <td>Manchego</td>
 <td>Spain</td>
 </td>
 </table>

The complete list of table display values is provided here. Their HTML equivalents are listed in
parentheses.

table

Makes an element a block-level table element (table).

inline-table

Makes the element an inline table. Inline tables are rectangular blocks that behave as inline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

objects (there is no HTML equivalent).

table-row

Specifies that the element is a row of cells (tr).

table-row-group

Specifies that the element is a group of one or more rows (rowgroup).

table-header-group

Like a row group, only it is always displayed before other rows and after captions. For print, it
may be repeated at the top of each page (thead).

table-footer-group

Like a row group, but it is always displayed after the other rows and before any bottom
captions. It may be repeated at the bottom of each page (tfoot).

table-column

Specifies that the element is a column (col).

table-column-group

Specifies that the element is a group of columns (colgroup).

table-cell

Makes the element a table cell (td, th).

table-caption

Specifies a caption for the table (caption).

22.5.1.

22.5.1.1. Anonymous table elements

Because other languages may not have all the elements necessary to make up the table layout model
used by CSS, missing elements are assumed for the layout to work. According to the CSS 2.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specification, a table element will automatically generate necessary anonymous table objects (a
table, row, or cell) around itself.

Anonymous table objects are a function of the user agent's rendering engineno code is changed. To
use the earlier example and its table display values, if the row-equivalent element is missing, the
browser generates an anonymous table-row object between the cells and the table level.

 <platter>

 [begin anonymous table-row object]
 <name>Brie</name>
 <origin>France</origin>

 [end anonymous table-row object]
 </platter>

For a more detailed explanation of how anonymous table elements function, see the CSS 2.1
specification online at www.w3.org/TR/CSS21/tables.html.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 23. Lists and Generated Content
One of the advantages to using an ordered list element on a web page is that the browser numbers
list each item automatically. This makes it easier to add, delete, or move list items around without
manually editing the numbers, because they aren't in the source document in the first placethey're
generated by the user agent. CSS 2.1 provides a number of properties for controlling the style,
content, and position of numbers and bullets (called markers) used for unordered and ordered lists .

The creators of the CSS 2.1 specification realized there might be other instances in which it would be
useful to have user agents generate content that isn't actually present in the document tree. The
generated content features of CSS 2.1 provide a mechanism for inserting any specified text or
counters (automatic numbering) before or after any element in an (X)HTML or XML document.

This chapter covers the CSS 2.1 properties related to controlling markers for list items as well as the
properties associated with generated content.

 list-style-type list-style
 list-style-image display: list-item
 list-style-position content
 quotes counter-reset
 counter-increment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.1. CSS for Lists

Bulleted and numbered lists have been around since the very beginning of HTML.[*] Extensions to the
ul and ol elements gave designers the ability to choose a bullet shape or numbering format, but
beyond that, authors have had little control over list presentation. CSS 2.1 offers some
improvements, most notably the ability to replace bullets with your own images.

[*] One of the earliest documentations of the HTML language (dated 1992) defines the ul tag and describes ordered lists. To

learn about HTML's humble beginnings, visit www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html.

In modern standards- and accessibility-driven web design, lists are being used
in interesting ways to create navigation that previously would have been
created with graphics and JavaScript (see Chapter 24).

23.1.1. Choosing a Marker

Ordered and unordered lists are unique elements in that they automatically add a marker (a bullet or
a number) to the page that isn't part of the document source. Use the list-style-type property to
select the type of marker that appears with each list item. This property replaces the deprecated type
attribute in XHTML.

list-style-type

Values:

disc | circle | square | decimal | decimal-leading-zero |
lower-roman | upper-roman | lower-greek | lower-latin |
upper-latin | lower-alpha | upper-alpha | none | inherit

Initial value:

disc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

Elements whose display value is list-item (in XHTML, the ul, ol, and li elements)

Inherited:

Yes

Three values for list-style-type (disc, circle, and square) generate a bullet shape, just as
browsers have been doing for unordered lists for years. The actual design and rendering of each
bullet shape is left to the user agent. In other words, there is no way to alter the color, size, or other
presentation attributes of a generated bullet. Figure 23-1 shows each of the bullet markers .

Figure 23-1. list-style-type: disc, circle, and square

The remaining value keywords specify various numbering and lettering styles. Table 23-1 lists the
keyword and numbering types provided in CSS 2.1.

Table 23-1. Lettering and numbering system keywords in CSS 2.1

Keyword System

decimal 1, 2, 3, 4, 5...

decimal-leading-zero 01, 02, 03, 04, 05...

lower-alpha a, b, c, d, e...

upper-alpha A, B, C, D, E...

lower-latin a, b, c, d, e... (same as lower-alpha)

upper-latin A, B, C, D, E... (same as upper-alpha)

lower-roman i, ii, iii, iv, v...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Keyword System

upper-roman I, II, III, IV, V...

lower-greek Lowercase classical Greek symbols

A handful of numbering keywords that were included in CSS 2 were removed
from 2.1 due to the difficulty in implementing them and the resulting poor
browser support. They include: hebrew, cjk-ideographic, and the Japanese
numbering systems katakana, katakana-iroha, hiragana, and hiragana-iroha.
Additionally, the values armenian and georgian were in a CSS 2.1 Candidate
Recommendation but at risk of being dropped due to lack of implementation.
The various international list numbering styles are defined in far more detail in
the CSS 3 Lists Module.

The user agent controls the presentation of the generated numbers and letters, although they usually
match the font properties of the associated list items. There is no way to change the font, size, color,
or other presentation features of number or letter markers . When numbers run several digits long,
the user agent determines whether the markers should be left or right justified.

The CSS specification also does not specify what should be done when a lettering system runs out of
letters. For long lists, true numbering systems are recommended.

If you want to turn the marker off for a list item, choose the value none. Setting the list-style-type
to none for an item or items does not prevent that item from being counted by the counting
mechanism; it merely causes the number not to display.

Be aware that even though list-style-type is an inherited property, it may be
necessary to explicitly declare styles for each level of nested list element in
order to override browsers' built-in style sheets for nested list marker types.

23.1.2. Marker Position

By default, the marker hangs outside the content area for the list item, usually displaying as a
hanging indent. The list-style-position property allows you to pull the bullet inside the content
area so it runs into the list content.

list-style-position

Values:

upper-roman I, II, III, IV, V...

lower-greek Lowercase classical Greek symbols

A handful of numbering keywords that were included in CSS 2 were removed
from 2.1 due to the difficulty in implementing them and the resulting poor
browser support. They include: hebrew, cjk-ideographic, and the Japanese
numbering systems katakana, katakana-iroha, hiragana, and hiragana-iroha.
Additionally, the values armenian and georgian were in a CSS 2.1 Candidate
Recommendation but at risk of being dropped due to lack of implementation.
The various international list numbering styles are defined in far more detail in
the CSS 3 Lists Module.

The user agent controls the presentation of the generated numbers and letters, although they usually
match the font properties of the associated list items. There is no way to change the font, size, color,
or other presentation features of number or letter markers . When numbers run several digits long,
the user agent determines whether the markers should be left or right justified.

The CSS specification also does not specify what should be done when a lettering system runs out of
letters. For long lists, true numbering systems are recommended.

If you want to turn the marker off for a list item, choose the value none. Setting the list-style-type
to none for an item or items does not prevent that item from being counted by the counting
mechanism; it merely causes the number not to display.

Be aware that even though list-style-type is an inherited property, it may be
necessary to explicitly declare styles for each level of nested list element in
order to override browsers' built-in style sheets for nested list marker types.

23.1.2. Marker Position

By default, the marker hangs outside the content area for the list item, usually displaying as a
hanging indent. The list-style-position property allows you to pull the bullet inside the content
area so it runs into the list content.

list-style-position

Values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inside | outside | inherit

Initial value:

outside

Applies to:

Elements whose display value is list-item (in XHTML, the ul, ol, and li elements)

Inherited:

Yes

Figure 23-2 shows the difference between the outside and inside marker positions as indicated by the
following styles. Note that the dotted lines are a device to indicate the edges of the content area only
and would not actually display.

li.one {list-style-position: outside;}
li.two {list-style-position: inside; }

Figure 23-2. list-style-position

Unfortunately, that's about all you can do with list-style-position. It does not provide a way for
authors to adjust the distance or position of the marker relative to the list item. CSS 2.1 leaves the
distance to the user agent. Interestingly, CSS 2 included the marker-offset property for this very
purpose, but it was dropped in CSS 2.1 because it was determined not to be the best solution for the
problem. Look for improved control over marker placement in CSS Level 3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Internet Explorer for Windows always includes the bullet in the content area
box. This can cause some inconsistent results when positioning list blocks or
adding borders, padding, and margins to list items.

23.1.3. Make Your Own Bullets

The one juicy feature that CSS does provide for list presentation is the ability to provide an image to
be used as a bullet. In the past, to use images, the list needed to be faked with line breaks or a table.
Now the markup can remain semantically and structurally intact while a style sheet swaps the
browser's bullet for one of your own.

To specify an image to be used as a marker, use the list-style-image property.

list-style-image

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

Elements whose display value is list-item (in XHTML, the ul, ol, and li elements)

Inherited:

Yes

This example shows the syntax for providing the URL of an image for use as a marker. The list-
style-type is set to disc as a backup in case the image doesn't display or the property can't be
interpreted by the user agent. The resulting list is shown in Figure 23-3.

ul { list-style-image: url(happy.gif);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 list-style-type: disc;
 list-style-position: outside; }

Figure 23-3. Using an image as a marker

Remember that the URL is always interpreted as relative to the style sheet,
whether it's embedded in the document or in an external .css file elsewhere on
the server. Make sure that relative URLs are correct or use absolute URLs
(including http:// and the domain) to be safe.

23.1.4. list-style Shorthand Property

The three list properties (type, position, and image) can be combined in the shorthand list-style
property.

list-style

Values:

[<list-style-type> || <list-style-image> ||
<list-style-position>] | inherit

Initial value:

See individual properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

Elements whose display value is list-item (in HTML and XHTML, the ul, ol, and li elements)

Inherited:

Yes

The values for each property may be provided in any order and any may be omitted. Keep in mind
that omitted properties are reset to their default values in shorthand properties. Be careful not to
override list-style declarations earlier in the style sheet. Each of these examples of list-style
duplicates the effects of the separate rules provided in the example shown in Figure 23-4.

ul {list-style: url(skull.gif) disc outside;}
ul {list-style: disc outside url(skull.gif);}
ul {list-style: url(skull.gif) disc;}

23.1.5. List-item Display

You may have noticed that all of the properties in this chapter apply to "elements whose display
value is list-item." In XHTML, there are explicit elements for lists and list items (ol, ul, and li), but
in other XML languages, that may not be the case. The CSS specification allows any element to
perform like a list item, complete with marker, by setting its display property to list-item. This
applies to other elements within XHTML as well, as shown here and in Figure 23-4.

p.bulleted {
 display: list-item;
 list-style-type: disc;
 list-style-position: inside; }

<p>Aliquam pulvinar volutpat nibh. ...</p>
<p>Etiam accumsan. Proin eros ...</p>
<p>Aenean id nulla sed nibh accumsan ...</p>

Figure 23-4. Using another element as a list-item

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.2. Generated Content

Generated content refers to content that is not in the document tree, yet is inserted in the page when
it is displayed in a browser window, printed on paper, projected on a screen, read aurally, or
otherwise delivered. Generated content may be specified text, images, or other media (or even the
values of attributes) added before or after an element. It could be used to insert the name of the
person making an edit after deleted text (del element). Used together with media-specific style
sheets, generated content could be used to write out the URL after links only when the document is
printed, or to say "end of table" at the end of a long table only when the document is read aurally.

There are also several properties that control counters, the mechanisms that keep track of the
numbering for ordered list. Used together with generated text, it is possible to insert the word
"Section" before each automatically numbered section heading. Allowing the user agent to
automatically insert labels and numbers makes it easier to reorganize and relabel long documents
because the numbers don't need to be edited manually in the source.

Unfortunately, no version of Internet Explorer as of this writing supports
generated content , because IE doesn't support the :before and :after
pseudoselectors . If you do specify generated content, IE will just ignore it, so it
does no harm. You can begin using it immediately to provide a richer
experience for users with browsers that do support it (Mozilla, Firefox,
Netscape 6+, Opera). Safari offers partial support as noted in the chapter.

23.2.1. Inserting Generated Content

Generated content is specified in the style sheet with the :before and :after pseudoelements
(pseudoelements are discussed in Chapter 17). The :before selector inserts content (most
commonly, but not limited to, text characters, an image, or quotation marks) immediately before the
targeted element. The :after pseudoelement inserts the generated content just after the targeted
element.

Both pseudoelements are used in conjunction with the content property, which is used to specify
where the generated content is to be inserted.

content

Values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

normal | [<string> | <uri> | <counter> | attr(<identifier>) |
open-quote | close-quote | no-open-quote | no-close-quote]+ |
inherit

Initial value:

normal

Applies to:

:before and :after pseudoelements

Inherited:

No

The values for content fall into three broad categories: counters, quotation marks, and "whatever."
Counters and quotation marks are discussed in upcoming sections. This section takes on "whatever,"
which more formally refers to character strings, URIs, and attribute values.

The simplest example of generated text is to insert a string of text before or after an element. In this
example, initials are inserted after each del element (indicating deleted text) to show who made the
change. The resulting page is shown in Figure 23-5.

del:before { content: "[JNR] "; }
del { text-decoration: line-through; border: solid 1px; padding: 2px; }

<p>Praesent tincidunt aliquet urna. vel consectetuer velit tellus a quam.
Vestibulum rutrum, magna at tempor aliquet, pede mi imperdiet
purus,
Vivamus eleifend. Fusce bibendum. Nam molestie dictum sem.</p>

Figure 23-5. Inserting text before an element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can tell from the border applied to the del element that the generated content is included in the
content area for the element. It also inherits whatever styles are applied to the targeted element,
such as line-through in the example.

There are a few syntax requirements when inserting text strings:

By default, the inserted text will butt right against the beginning or end of the targeted element.
If you want space between them, add a character space to the value of content. For example, it
was necessary to explicitly add a character space after the closing bracket within the value of
the content property, as shown here:

content: "[JNR] ";

If that space were omitted, the closing bracket would be placed right next to the "V" in the
element.

The value of content is not parsed, which means that if you add HTML markup or character
entities, it will appear on the final page just as it's typed in.

To insert a line break in generated text, it is necessary to use the string \A (the CSS way of
inserting a new line when the br element isn't an option). If you have a long selection of content
that must break over multiple lines in the source, escape out the line feeds with the \ character
at the end of each line. The text will wrap as normal when it displays. Unfortunately, escaped
content is not well supported by current browsers.

It is also possible to use the value of an element's attribute as the generated text by specifying
attr(attribute-name) in the value of the content property. One very practical use is to display the

URL for links when the document is printed so the reader can follow up on linked resources later.

The styles in this example appear in a style sheet that gets used only when the document prints
(print style sheets are discussed in detail in Chapter 36). The markup is also provided.

a {text-decoration: none;
a[href]:after {content: " (" attr(href) ")";}

<p>Read my book.</p>
<p>Visit my site.</p>
<p>Visit my other site.</p>

The a[href] attribute selector applies the rule only to anchors that have the href attribute and not to
named anchors used to identify document fragments.

The value of the content property directs the user agent to generate this content after the a element:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Insert a character space and an open parentheses character.1.

Insert the value of the href attribute.2.

Insert a closing parentheses character.3.

When the document is printed, the URL will be written out, as shown in Figure 23-6.

Figure 23-6. Inserting the attribute value of href

23.2.2. Quotation Marks

The content property also provides a way to insert quotation marks automatically before and after an
element using the open-quote, close-quote, no-open-quote, and no-close-quote values. They are
designed to work in tandem with the quotes property, which is used to specify which style of
quotation marks to use before and after elements. It will be helpful to cover the quotes property first,
then demonstrate the content values mentioned earlier.

quotes

Values:

[<string><string>]+ | none | inherit

Initial value:

Depends on user agent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

All elements

Inherited:

Yes

The quotes property allows authors to specify which characters to use as quotation marks before and
after elements. This may be useful for delivering documents with different styles of quotation marks
based on audience (and style sheet) without having to go back and edit the document.

The value of quotes is one or more pairs of character strings. The first value is applied at the
beginning of the quote, and the last value is applied at the close of the quote. This example specifies
standard English double quotes at the open and close of a quote element.

q {quotes: '"' '"'; }

Additional pairs specify quotation styles for each consecutive nesting level, as shown in this style rule.
Notice that the quotation marks that enclose the provided values must not match the specified
quotation character (in other words, when specifying a single quote, use double quotes, and vice
versa).

q {quotes: '"' '"' "'" "'"; }

The double and single quotes specified in this example render as the straight up-and-down ASCII
characters. For curly quotes and other more sophisticated quotation characters, the characters must
be escaped. In style sheets, characters are escaped with a backslash (\) preceding the hexadecimal
Unicode code point (number). The (X)HTML method of escaping characters (&#nnn;) is not valid in
style sheets. Character escaping is discussed further in Chapter 6.

This example specifies curly double quotes before and after quotations.

q {quotes: '\201C' '\201D'; }

Table 23-2 lists the Unicode equivalents for common quotation characters.

Table 23-2. Unicode equivalents for quotation mark glyphs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Unicode (hex) Description

" 0022 Quotation mark (the ASCII double quotation mark)

' 0027 Apostrophe (the ASCII single quotation mark)

< 2039 Single left-pointing angle

> 203A Single right-pointing angle

<< 00AB Left-pointing double angle

>> 00BB Right-pointing double angle

' 2018 Left single curly quotation mark

' 2019 Right single curly quotation mark

" 201C Left double curly quotation mark

" 201D Right double curly quotation mark

, 201E Double low quotation mark

Once the quotation mark characters have been specified, the content property with the open-quote
and close-quote keyword values applies the quotation marks at the beginning and end of the quote.

q {quotes: '\201C' '\201D'; }
q:before { content: open-quote; }
q:after { content: close-quote; }

The standard treatment for long quotations that span several paragraphs is to omit the closing
quotation mark at the ends of paragraphs (except the final paragraph of the quotation). The no-
close-quote value allows you to specify that the quotation mark should be omitted from the end of
the element, but it closes the quotation such that the proper nesting levels are preserved. When
using the no-close-quote value, you must specifically add a quote to the last paragraph in the quote.
Similarly, the no-open-quote value maintains the nesting level as though there were a quotation mark
there, but it suppresses the display of the quotation character.

23.2.3. Automatic Numbering and Counters

If you have ever used an ordered list in a web page, then you have some basic experience with
counters. The CSS 2.1 specification provides properties that allow counters to be added to any
element, not just lists. With these tools, you could automatically number the headings in a document
and never need to edit the source when new headings are inserted.

Unfortunately, as of this writing, CSS counters are only supported by Opera Versions 5 and higher (a
very small slice of web traffic). For that reason, this section provides only a brief introduction to the
properties and how they are used. For more information, see the CSS 2.1 specification online
(www.w3.org/TR/CSS21/generate.html). Once again, Cascading Style Sheets: The Definitive Guide

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by Eric Meyer (O'Reilly) provides an excellent tutorial on using counters .

Automatic numbering is controlled by the counter-reset and the counter-increment properties used
in conjunction with the content property for generated content. counter-reset establishes a starting
point for the numbering.

counter-reset

Values:

[<identifier> <integer>?]+ | none | inherit

Initial value:

Depends on user agent

Applies to:

All elements

Inherited:

No

The value of the counter-reset property is an identifier (a label set by the author such as "chapter"
or "section") and an optional number that serves as the starting number. The default is zero (0), so
simply declaring an identifier for counter-reset sets it to 0. Any integer may be specified as the
starting number, including negative values. In this simple example, a "chapter" counter is established
and starts at 3.

h1 {counter-reset: Chapter 3; }

Now that a starting point has been established, the counter-increment property is used to indicate
that an element triggers the counter to go up.

counter-increment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values:

[<identifier> <integer>?]+ | none | inherit

Initial value:

Depends on user agent

Applies to:

All elements

Inherited:

No

The value of counter-increment provides the name of the identifier (such as "chapter" or "section")
and an optional number that serves as the increment amount. The default is 1, so each instance of
the element adds 1 to the counter unless it is specified otherwise. It is possible to specify negative
values to make the counter count backward. In this example, the "chapter" counter from the
previous example is given the default counter increment of 1.

h1 {counter-increment: chapter; }

This is the same as specifying

h1 {counter-increment: chapter 1; }

These counter functions are useful only when used with the counter() and counters() values of the
content property.

The provided values for counter() are the identifier name and an optional style (one of the list-
style-type values such as upper-alpha). The counter style is decimal (1, 2, 3, etc.) by default. In this
example, the content property is used to insert the automatic counter and the colon character (:)
followed by a space before each h2 element in a document.

h2:before {counter(section) ": "
 counter-increment: section; } /* defaults to 1 */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The counters() function is used to specify counters that are several levels deep (e.g., 1.0, 1.1.,
1.2., 1.3., 2.0, 2.1., 2.1.1, 2.1.2, 2.1.3., and so on) without needing to specify counter rules for each
nesting level individually. The hitch is that they must all be given the same identifier name. It is a
good idea to provide a separator character such as a period or a comma to visually separate the
string of counters.

Consider for a moment what happens when you put an ordered list inside an ordered list in HTML. By
default, the nested ordered list starts counting at "1" by default. That is because lists are self-nesting.
When the user agent detects a new nesting level (or "scope," to use the lingo), the counters()
function knows to trigger the appropriate counter in the string.

This example creates a nested-counter style that counts sections and two levels of subsections (as
listed above).

ol {counter-reset: ordered;}
ol li:before {counter-increment: ordered;
 content: counters(ordered, ".");}

The counting mechanisms provided by CSS 2.1 are much more powerful than the tiny glimpse
provided in this section. One day, when browsers catch up in support, they'll be a useful tool for
content handling.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 24. CSS Techniques
The previous chapters introduced the CSS tools available in web designers' tool-belts: the properties
and values provided in the CSS specification. This chapter puts them together in a few of the most
popular design and layout techniques used in CSS-driven web design, including:

Centering a fixed-width page

Multicolumn layouts

Boxes with rounded corners

Replacing text with background images

CSS rollovers

List-based navigation

As in so many web-related tasks, there are seemingly endless variations on accomplishing the same
goal. Each example in this chapter represents just one solution (you may know of better
approaches). The intent is to demonstrate basic style sheet strategy and to provide "starter kits" for
achieving basic visual and layout effects with CSS. There is usually much more to be said about each
technique, so references to additional resources are provided when available. The "CSS Techniques
Resources" section at the end of the chapter lists recommended reading for those interested in
learning more about what can be done with CSS-driven design.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.1. Centering a Page

As a strategy for controlling the width of a page while allowing for varying monitor resolutions, it is
common for web designers to create fixed-width pages that are then centered in the width of the
browser window. In the past, this was achieved by slapping a center tag (or <div
align="center">...</div>) around a table. In this section, we'll look at three CSS methods for
centering a fixed-width page: the official CSS way, a way that works in Internet Explorer, and an
effective "hack." All three examples have the effect shown in Figure 24-1.

Figure 24-1. Centering a fixed-width page element

In CSS, the proper way to center a fixed-width element is to specify a width for the element that
contains all the page's contents (a div is the usual choice), and then set the left and right margins to
auto. According to the CSS visual formatting model, this will have the net effect of centering the
element in the initial containing block.

 div#page {
 width: 500px

; margin-left: auto; margin-right: auto; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method works for all current standards-compliant browsers, including Internet Explorer 6 for
Windows when it is in "Standards" mode (see Chapter 2 about triggering standards-compliance mode
in browsers using the DOCTYPE declaration). It will not work with in IE 6/Windows in "Quirks" mode
or any earlier version.

An alternative, yet inelegant, solution is to center the whole page using the text-align property on
the body element. This technique ultimately amounts to a hack, because it takes a text property and
uses it to center any number of items.

The problem with this method is that because horizontal alignment is inherited, all the text on the
page will be centered in its element boxes. It is necessary to override the inherited centering by also
specifying left alignment for every descendant of the body element. In this example, the universal
selector (*) targets all elements that appear within the body of the document and sets text-align to
left. Notice also that the margin-left and margin-right values have been replaced in the example
with the margin shorthand property. Although not necessary, this reduces the amount of code and
keeps the style sheet lean and mean.

 body { text-align: center ; }

 body * {text-align: left; }

 div#page {

 width: 500px ;
 margin: 0 auto; }

The third centering method uses negative margins to effectively center a containing block on the
page for all browsers that support basic absolute positioning (including Netscape 4). First, the "page"
(the name of the div in the examples) is absolutely positioned so its left edge is 50% across the
initial containing block (i.e., the width of the browser window). Then, a negative left margin is applied
that pulls the page back to the left by half its width, thus aligning the midpoint of the block with the
midpoint of the window. And voilà, it's centered. (This method is taken from The Zen of CSS Design
by Dave Shea and Molly E. Holzschlag [Peachpit Press]. It was originally used by Jon Hicks in his Zen
Garden submission.)

 div#page {
 position: absolute;
 left: 50%

 width: 500px ;
 margin-left: - 250px ; } /* half the width measurement */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.2. Two-Column Layouts

Multicolumn layouts that once required HTML tables are now achievable using CSS alone. Column
layouts can be done using floats or absolute positioning (see Chapter 21 for details on both).

Of course, there are endless variations on two-column layouts in terms of page components,
measurements, backgrounds, and so forth. The examples in this section represent just a few very
basic possibilities. They reveal the general strategy for approaching two-column designs and should
serve as a good head start toward implementing your own layouts. It should be noted, however, that
they are based on the assumption that the main content column will be longer than the side columns.
If your side columns are longer, it may be necessary to make adjustments to the code examples
shown here.

24.2.1. Using Floats

The markup and styles in this example produce a page with a header area, a main column of content,
a sidebar of links, and a footer for copyright information, as shown in Figure 24-2.

This markup provides the necessary elements for the two-column layout . The masthead and footer
are optional and could be omitted for a minimal two-column structure.

 <div class="masthead">
 Masthead and headline
 </div>

 <div class="main">
 Main article
 </div>>

 <div class="sidebar">
 list of links
 </div>

 <div class="footer">
 copyright information
 </div>

Figure 24-2. Two-column layout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The source document has been divided into four divs, one each for the masthead, content, sidebar,
and footer. The content has been placed before the sidebar in the source document so that it is
accessed first by users with non-graphical browsers. That means that we can't float the sidebar
because it will not float above the preceding block element to the top of the page. Instead, the main
content div is floated to the left and set to 70% of the page width, and the sidebar div flows around
it. The style rules that take care of the floating are provided here:

 .masthead {

 background: #CCC ;

 padding: 15px ;}

 .main {
 float: left;
 width: 70%

; margin-right: 3%; /* adds space between columns */ margin-left: 3% ; } .footer { clear:

left; /* starts the footer below the floated content */ padding: 15px ; background: #666 ; }

A right margin is applied to the main content div to add some space between the columns. Padding
and a border could be added as well to clarify the division between columns. Of course, this is just
the minimal styling to set up the column framework. Additional styles would likely be added to format
the content on the page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.2.2. Using Absolute Positioning

You can also use absolute positioning to create a multicolumn page. This method absolutely positions
the sidebar div element in its place on the right side of the page and gives the main content div a
right margin wide enough to make a space for the newly positioned box. With absolute positioning,
the order of the source document is not as critical as it was in the float method, because boxes can
be picked up and placed anywhere. However, absolutely positioned elements can overlap one
another, which isn't an issue with floating.

This example starts with the same markup as before, but places the sidebar on the right using
absolute positioning. The resulting layout is shown in Figure 24-3. Again, the masthead and footer
elements could be omitted for a simple two-column format. This example uses percentage width
values to create a fluid design that resizes with the browser window.

 <div class="masthead">
 Masthead and headline
 </div>

 <div class="main">
 Main article...
 </div>>

 <div class="sidebar">
 list of links
 </div>

 <div class="footer">
 copyright information
 </div>

Figure 24-3. Two-column layout with absolute positioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the style sheet that positions the elements as shown in Figure 24-3. Comments throughout
explain the effects of significant rules.

 body {margin: 0; padding: 0;} /* clears default spacing around the page */

 .masthead {

 height: 70px ;

 background: #CCC ;}

 .main {margin-right: 30% ; /* makes room for the positioned sidebar */

 margin-left: 5%; }

 .sidebar {
 position: absolute;

 top: 70px ; /* places the sidebar below the masthead */

 right: 0px ; /* places it against the right edge of the window */

 width: 25% ;

 background: #EEE ;}

 .footer {

 padding: 15px ;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 background: #666 ;

 margin-right: 30% ; /* keeps the footer aligned with content */

 margin-left: 5% ; }

Notice that in this example, the margins applied to the main content were also applied to the footer
element. That is to prevent the footer from being overlapped by a long sidebar.

24.2.3. More Two-Column Layouts

These examples demonstrate the basics of formatting columns with CSS. For additional information, I
recommend these online resources:

From Table Hacks to CSS Layout: A Web Designer's Journey, by Jeffrey Zeldman
(www.alistapart.com/articles/journey)

Join Jeffrey Zeldman through the trials and tribulations of converting a table-based layout into
a CSS-based design.

Creating Liquid Layouts with Negative Margins, by Ryan Brill
(www.alistapart.com/articles/negativemargins)

In this demonstration, Ryan creates a two-column layout using negative margins to make way
for the sidebar element. It is testament to the fact that CSS design problems come with many
solutions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.3. Three-Column Layouts

Three-column layouts are fundamentally the same as the previous two-column examples; they just
require some extra planning for the third column. These examples use length values instead of
percentages to create fixed layouts. In addition, padding, borders, and margins are added in one of
the examples, requiring a fix for a well-known browser bug. Browser bugs and fixes are briefly
addressed here but are covered in detail in Chapter 25. Again, these examples assume that the main
content column will be longer than the side columns, which of course, is not always the case in the
real world. It may be necessary to make adjustments to these examples to make them work for your
content, but they are a good push in the right direction.

24.3.1. Floating Three Columns

This example uses floated elements to create a three-column layout (a main content column flanked
by left and right sidebars) with optional header and footer (Figure 24-4). The advantage of floating is
that you can set the footer to start below the longest column without knowing its height ahead of
time (usually not possible). Remember that with floating, the order that the elements appear in the
source document is significant. To keep this example straightforward, the content div has been
moved between the sidebar divs in the source.

Figure 24-4. Three-column layout using floats

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The basic structure of the markup for the layout is shown here. In this example, all of the elements
have been placed in a container div so the width of the entire layout can be specified. A border has
been added to the container to reveal its edges.

 <div id="container">

 <div id="masthead">
 Masthead and headline
 </div>

 <div id="links">
 list of links
 </div>

 <div id="main">
 Main article...
 </div>>

 <div id="news">
 Announcements...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </div>

 <div id="footer">
 copyright information
 </div>

 </div>

The style sheet floats the links, main, and news div elements to the left. The result is that they
accumulate against the left edge of the containing block, thus creating three columns. The
clear:both property has been added to the footer to make sure it starts below all of the floated
elements. Because there are no padding, border, or margin settings for each floated element, the
sum of their widths is equal to the width of the outer container. Space within each content div could
be added with margins or padding on the content elements (H1, p, etc.). Without further ado, the
style sheet...

 h1, p {margin: 6px 12px ; } /* adds space between columns */

 #container {width: 700px ; border: solid 1px ; }

 #masthead {

 background: #CCC ;

 padding: 15px ; }

 #links {

 width: 150px ;
 float: left;

 background: #EEE ; }

 #main {
 float: left;

 width: 400px ; }

 #news {
 float: left;

 width: 150px ;

 background: #EEE ; }

 #footer {
 clear: both; /* starts the footer below the floated content */

 padding: 15px ;

 background: #666 ; }

24.3.2. Absolute Three-Column Positioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, this section demonstrates how to create a three-column layout with absolute positioning. The
examples in this section start with the same markup used in the previous examples, unless otherwise
noted. Several variations will be demonstrated.

24.3.2.1. Positioning the sidebars

In this example, only the left and right sidebars are positioned. Margins are used on the remaining
main content and footer elements to make room for the resulting column (Figure 24-5). The
advantage here is that it is possible to keep the footer information below the content, although the
footer still does not run across the whole bottom of the page as in the float example.

It should be noted that if the main content element were also positioned, it too would be removed
from the document flow. This would cause the footer to float up to the top of the page. There are
JavaScript workarounds for positioning a footer element below absolutely positioned elements, but
they are beyond the scope of this chapter.

Figure 24-5. Positioning the sidebars only

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The style sheet that makes this layout happen is provided here. Comments have been inserted to
point out key style rule functions. The first thing to notice is that the container div has been relatively
positioned (but not moved) to establish it as the containing block for its positioned descendant
elements.

 body {margin: 10px; padding: 10px ; }

 #container {
 position: relative; /* establishes containing block */
 width: 700px;
 border: solid 1px; } /* border added to show container edges */

 #masthead {
 height: 70px;
 background: #CCC; }

 #main {
 margin: 0 160px; } /* makes space left and right for the sidebars */

 #links {
 position: absolute;
 top: 70px;
 left: 0px; /* positioned on left edge of container */
 width: 150px;
 background: #EEE; }

 #news {
 position: absolute;
 top: 70px;
 right: 0px; ; /* positioned on right edge of container */
 width: 150px;
 background: #EEE; }

 #footer {
 margin:0 160px; ; /* same as content to make room left & right */
 padding: 15px;
 background: #666; }

24.3.2.2. Positioning three columns

In this example, all three columns are absolutely positioned. Background colors are included for the
sidebars to indicate their size and position. The resulting layout (Figure 24-6) is slightly different from
the previous example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 24-6. Absolutely positioning all three columns

You may notice that the footer and the rule around the page have been omitted. That is because
when all three elements between the masthead and footer are absolutely positioned, they are
removed from the document flow. That causes the footer to rise up to just below the masthead.
Similarly, the rule around the container would only enclose the masthead and the footer at the top of
the page, which is not the intended effect. To avoid complications that would require JavaScript and
other complicated hacks, the footer and rule have been removed from this example.

This is the style sheet used to make this very basic three-column layout. Comments have been added
to point out significant style rules and their functions.

 body: {margin: 0; padding: 0; }

 #container {
 position: relative; /* establishes the containing block */

 width: 700px ; }

 #masthead {

 height: 70px ;

 background: #CCC ; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 #main {
 position: absolute;
 top: 70px;

left: 150px; /* fixed design allows pixel length values */ width: 400px ; } #links { position:

absolute; top:
70px;

left: 0px; /* positioned against left edge of container */ width:
150px;

background: #EEE ; } #news { position: absolute; top:
70px;

left: 550px; /* third column starts 550 pixels from left */ width:
150px;

background: #EEE ; }

24.3.2.3. Centering with borders and margins

The final three-column example improves on the previous absolute positioning example. First,
padding, borders, and margins are added to the center column in a way that works for Internet
Explorer 5 for Windows as well as current browsers. Then the entire layout is centered in the browser
window using one of the techniques covered at the beginning of this chapter. The resulting layout is
shown in Figure 24-7. Background colors have been added to the sidebar elements to reveal their
size and position.

The source document hasn't changed, but there are three basic changes to the style sheet as pointed
out in the comments and discussed in more detail following the example.

Figure 24-7. Adding padding, borders, and margins

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 body {
 margin: 0px;
 padding: 0px;
 text-align: center; } /* to allow centering in IE */

 #container {
 position: relative ; /* makes "container" the containing block */
 margin: 0 auto; /* the proper CSS way to center */

 width: 700px ;
 text-align: left; /* overrides text-align rule on body */
 }

 #masthead {

 height: 70px ;

 background: #CCC ; }

 #main {
 position: absolute;
 top: 70px

; left:
150px

; width:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

400px

; border-left:
solid 1px black

; border-right:
solid 1px black

; margin:
0 10px

; padding:
0 10px

; /* This is the box-model hack for IE 5 */ voice-family: "\"}\""; voice-family:inherit;

width:358px; } /* provides the correct width value */ /* This is the "Be Nice to Opera" hack

*/ body>#main {width:
358px

; } #links { position: absolute; top: 70px ; left: 0px ; width: 150px ; background: #EEE ; }

#news { position: absolute; top: 70px ; left: 550px ; width: 150px ; background: #EEE ; }

The changes are as follows:

Adding padding, borders, and margins to the "main" column

The sum of the widths of the three positioned column elements must equal 700 pixels (the
width of the container in this example). Given that the sidebars take up 300 pixels of width
(150 + 150), that allots 400 pixels to the center column.

Keep in mind that the width property is applied to the content area only. All padding, margins,
and border amounts are added onto it according to the CSS box model (see Chapter 19). In
this example, there is a total of 20 pixels of padding (10 pixels left and right), 20 pixels of
margin, and 2 pixels of border. That means that we need to reduce the width of the element by
42 pixels to 358 (as specified in the final line of the #main style rule). There's more going on
here related to element width, as explained next.

Setting a width for Internet Explorer 5 for Windows

IE 5/Windows incorrectly implements the box model and applies the width property to the
outer edges of the element. To make the page display correctly in IE 5/Windows and all current
browsers, we've added the well-known "Box Model Hack" to the style sheet. It works by
supplying a width just for IE 5/Windows and then tricking IE 5/Windows into thinking the rule is
over with a } value in the non-understood voice-family property. Then, when IE 5/Windows
has stopped listening, the correct width value is provided for all compliant browsers. Because
some older versions of Opera are also fooled by the Box Model Hack, the body>#main rule gets
Opera back on track. These hacks are commonly used together.

The Box Model Hack is discussed in more detail in Chapter 25.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Centering the layout in the window

The final adjustment made to the style sheet is to center the container element by setting its
side margins to auto and including the text-align workaround for Internet Explorer. This
centering technique is discussed at the beginning of the chapter.

Faux Columns

In the previous column examples, the background color ends at the bottom of the
element box and does not extend to the bottom of the page. Unfortunately, there is no
supported way of setting the height of an element to 100% of the height of the longest
column without the use of JavaScript workarounds (which is beyond the scope of this
book).

To get column backgrounds that fill the height of the page (or the containing element),
you have to do a little trickery using a background graphic. The column shading in the
example shown here was accomplished by setting a horizontal graphic with bands of
color as a background image that is tiled vertically only. The result is stripes over which a
multicolumn layout may be positioned. Of course, this works only with fixed-width
layouts.

column-backgroung.gif

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This column background trick is courtesy of Dan Cederholm who documented it at A List
Apart and in his book, Web Standards Solutions(Friends of Ed).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.4. Boxes with Rounded Corners

Rounded corners are de rigeur in contemporary graphic design. Due to the rectangular nature of web
design, there's no getting around using graphics for the rounded corners. But prior to CSS, the only
option for creating an expanding box with rounded corners was to set up a nine-celled table. The
same effect can be achieved using CSS styles and logical markup (and no tables, of course). As for
most web design problems, there are many related solutions, the most simple of which are presented
here. Other resources are listed at the end of this section.

24.4.1. Simple Rounded Box

The box in the first example creates a simple expandable rounded box filled with a solid color, as
shown in Figure 24-8.

Figure 24-8. Simple box with rounded corners

These separate images could be combined into a single image file and applied in
varying positions to each corner of the box. The advantage is the need to load
or preload only one image, as opposed to four. This technique is discussed in
more detail in the upcoming "CSS Rollovers" section.

This technique takes four image files (one for each corner) and applies them as background images
to four elements in the markup. Figure 24-9 shows each image file used in the example.

Figure 24-9. The corner graphics for the simple box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The trick is making sure that the markup has four available elements for background image
placement. This is what CSS designers commonly refer to as finding hooks in the markup to which
styles can be applied. If your document structure has fewer than four elements, it may be necessary
to add a div or two to get the necessary number of hooks (see note below). This generic, all-purpose
example is created entirely out of divs, but it is preferable to use actual elements that have been
marked up semantically.

 <div class="box">
 <div class="top">
 <div></div>
 </div>

 <div class="content">
 <h1>Header</h1>
 <p>The content goes here</p>
 </div>

 <div class="bottom">
 <div></div>
 </div>
 </div>

Adding meaningless empty elements damages the semantic integrity of the
source document and is generally frowned upon. Still, it may be necessary to
achieve certain visual effects. As a designer and developer, you need to
consider the trade-offs and implement a solution based on your own priorities
or the priorities of your project.

The style sheet shown here applies background images to each of the top and bottom divs and the
divs they contain. The background of the whole box is set to a matching RGB value in this example,
but it could also be a small tiling image to ensure the color matches exactly.

 /* set background images for corners */

 .box { background: #CCC; } /* could also use a repeating image */

 .top div { background: url(top_left.gif) no-repeat top left; }

 .top { background: url(top_right.gif) no-repeat top right; }

 .bottom div { background: url(bottom_left.gif) no-repeat bottom left; }

 .bottom { background: url(bottom_right.gif) no-repeat bottom right; }

 /* height and width details */
 /* each image-holding div is set to the full width of the container */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 .top div, .top, .bottom div, .bottom {
 width: 100%;

 height: 14px; /* match the width of your corner graphic */
 font-size: 1px;
 }

 .content { margin: 0 14px; } /* match the width of your corner graphic */

 .box { width: 20em; } /* the box can be any width */

This markup and style sheet was adapted with permission from an article by
Douglas Livingstone. See the original tutorial and additional CSS tests at
www.redmelon.net.

The Future of Background Images

The CSS Level 3 specification allows multiple background images to be applied to
different locations within a single element. This would greatly simplify the markup
required to create the expanding box in the previous example, because the images could
be applied to a single containing element. As of this writing, multiple background images
are supported only in the Macintosh Safari browser, but one day, it will be a useful tool
that offers to greatly reduce the amount of non-semantic markup required for visual
effects.

24.4.2. Fancier Boxes

If your design calls for more graphical embellishments on the edges of the box, yet you still need the
box to be expandable, then a slightly different approach is in order. This example produces the
expanding box style shown in Figure 24-10.

Figure 24-10. Fancier box edges

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To achieve graphic effects on all four sides of the box, we start with the set of images shown in
Figure 24-11.

Figure 24-11. Image elements for the fancier box

In this example, the markup must provide five hooks for background image styles. Instead of all
divs, this time, we'll take advantage of the existing H2 and p elements in the markup and add divs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only as needed. This is the markup used in the example.

 <div class="sidebar">
 <h2>Sidebar Title</h2>

 <div class="content">
 <p>This is the content of the sidebar</p>

 <p>And a little more
content for good measure.</p>
 </div>

 <div class="footer">
 <p>A paragraph containing author information</p>
 </div>
 </div>

The style sheet that pulls it all together applies images to the divs, the h2, and the paragraph (p) in
the article footer. The style sheet also includes 2 em vertical margin shifts to compensate for a gap
inserted by carriage returns in paragraphs. This measurement may need to change based on the font
size and line height in your content, so be sure to test in several browsers, especially Internet
Explorer. Note that this method is not supported by Netscape 4.

 div.sidebar {

 background: url(top_left.gif) top left no-repeat;

 width:35%; }

 div.sidebar h2 {

 background: url(top_right.gif) top right no-repeat;
 font-size:1.3em;
 padding:20px;
 margin:0; }

 div.content {

 background: url(right_side.gif) top right repeat-y;
 margin:0;
 margin-top:-2em;
 padding:20px; }

 div.footer {

 background: url(bottom_left.gif) bottom left no-repeat; }

 div.footer p {

 background: url(bottom_right.gif) bottom right no-repeat;
 display: block;
 padding: 20px;
 padding-bottom: 30px;
 margin:-2em 0 0 0; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This example appears in the article"CSS Design: Creating Custom Corners &

Borders" by S ren Madsen, published in A List Apart. It is included here by
permission. I recommend reading the original text, which includes step-by-step
explanations of how the styles were written, at
www.alistapart.com/articles/customcorners/. While at A List Apart, see also
Dan Cederholm's article related to expanding rounded boxes entitled "
Mountaintop Corners"(www.alistapart.com/articles/mountaintop/).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.5. Image Replacement

Web designers frustrated with typography limitations on the Web have been replacing text with inline
images for more than a decade. The problem with swapping out real text, such as an H1 element, for
an img is that the text is removed from the source document entirely. Providing alternative text
improves accessibility, but it does not repair the damage to the semantic structure of the document.
Not only that, in terms of site maintenance, it's preferable to control matters of presentation from the
style sheet and leave the source free of purely decorative elements.

The year 2003 saw the dawn of CSS image replacement techniques that replace a text element with
a background image specified in a style sheet. The text element itself is still present in the source
document, but is prevented from displaying via some CSS sleight of hand. It should be noted that, as
of this writing, there is no ideal solution for CSS image replacement, just different approaches and
trade-offs. Most techniques rely on users being able to read the content in images when the text is
hidden, which means users who have CSS turned on but images turned off (or who are simply
waiting for images to load over a slow connection) are not well served. This problem remains to be
solved.

This section introduces the most popular image replacement techniques as of the end of 2005, along
with the advantages and disadvantages of each. To check in with the state of image replacement, see
David Shea's (of Zen Garden fame) list and articles at www.mezzoblue.com/tests/revised-image-
replacement/.

The Future of Image Replacement

In CSS Level 3, image replacement may be accomplished using the expanded capabilities
of generated content. To replace an h1 element with an image in CSS 3, the rule would
look like this;

 h1 { content: url(headline.gif); }

Unfortunately, current browsers do not support this use of generated content well
enough for it to be a viable option as of this writing. Hopefully, one day that will change
and the image replacement trickery in this chapter will be a quaint blip in web design's
past.

24.5.1. The Original (FIR)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The image replacement technique that started it all is the Fahrner Image Replacement (FIR)
technique created by Todd Fahrner and popularized by Doug Bowman. (See the original article at
www.stopdesign.com/articles/replace_text/.) It is now discouraged from use due to serious
drawbacks (noted later), but it is included here both for historical purposes and because it so clearly
illustrates the basic concepts of image replacement.

In FIR, the content of an element is wrapped in a span that is used to hide the text, while a
background image is applied to the element and appears in its place. The markup goes like this:

 <h1 id="header">This is the headline.</h1>

The styles that hide the text and replace it with a background image are extremely straightforward.

 #header {
 background: url(headline.gif

) top left no-repeat; width:
240

; height:
20

; } #header span { display: none; }

The fatal flaw of FIR is that, although the content of the h1 element is preserved in the source
document, presumably ensuring its accessibility to all users and devices, it turns out that some
screen readers will honor the display: none property and simply not read the element. So FIR fails
the accessibility test (as tested and documented by accessibility specialist Joe Clark).

The other aspect of FIR that is generally frowned upon is that it requires the insertion of a
meaningless span element into the source, which is considered to be "bad" markup.

Like most other IR techniques, this one won't work if for some reason a user can't see the images but
has CSS support turned on in his browser (the "CSS-on/Images-off" scenario).

24.5.2. Leahy/Langridge Image Replacement (LIR)

This technique developed simultaneously by Seamus Leahy and Stuart Langridge hides the text by
setting the height of the element to 0 (zero) and setting its text overflow to hidden. The background
image is applied to the padding area, which has been set to the height of the image.

 <h1 id="header">This is the headline.</h1>

 #header {
 /* background image shows through top padding, set to image height */
 padding: 20px

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0 0 0; overflow: hidden; background-image: url(headline.gif); background-repeat: no-
repeat; height: 0px !important; /* this is the IE Explorer hack */ height /**/:
20px

; }

This method offers the following advantages:

No extra span element

Screen reader-accessible

Disadvantages include the following:

It requires a hack to overcome box model problems in Internet Explorer 5 for Windows. Internet
Explorer ignores the !important rule (because it doesn't support !important) and overrides it
with the second height declaration. Compliant browsers recognize and enforce the first height
declaration and ignore the second.

It won't work under the CSS-on/Images-off scenario.

24.5.3. The Rundle/Phark Technique

This technique was developed by Mike Rundle for use on his Phark site. It hides the element text by
setting an extremely large negative text-indent that pushes the text off the screen to the left where
it can't be seen.

 <h1 id="header">This is the headline.</h1>

 #header {

 height: 20px ;

 text-indent: -5000px ;

 background: url(headline.gif) no-repeat;
 }

This method offers the following advantages:

No extra span element.

Screen reader-accessible.

It doesn't use any hacks.

Disadvantages include the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It causes problems in Internet Explorer 5.0 for Windows (the background may be moved with
the text).

It won't work under the CSS-on/Images-off scenario.

Some search engines look down upon pages that use large negative text-indent values.

24.5.4. The Gilder/Levin Method

This technique, named after Tom Gilder and Levin Alexander, is a bit different than the others in that
it displays the text but immediately covers it up with an opaque image placed in an empty span. This
is the only image replacement technique that does not suffer from the CSS-on/Images-off
accessibility issue.

 <h1 id="header">
 This is the Headline
 </h1>

 #header {

 width: 240px ;

 height: 20px ;
 position: relative; } */ makes this the containing block */

 #header span {

 background: url(headline.gif) no-repeat;
 position: absolute;
 width: 100%;
 height: 100%; }

This method offers the following advantages:

Screen reader-accessible.

The text displays if the image doesn't, solving the CSS-on/Images-off dilemma.

Disadvantages include the following:

It uses a non-semantic empty span.

Transparent images allow the text behind them to show through.

Resizing text very large may allow the text to show around the image edges.

24.5.5. Which Should You Use?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Which image replacement technique you use (or whether you use one at all) depends upon your
personal priorities and the priorities of your project or client. It might be that one method is
appropriate for one site while a different method is appropriate for another.

If you require 100% accessibility, including for users without images, then the Gilder/Levin "cover-
up" method is the only option. You'll have to sacrifice semantic purity of the document and allow an
empty span. You'll have to stick with opaque images as well.

If you can live with the CSS-on/Images-off scenario, the Rundle/Phark method is the most popular
among the standards-conscious designers as of this writing and works well in all browsers. The
original FIR method is obsolete and should not be used due to fundamental accessibility issues.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.6. CSS Rollovers

A rollover is a visual effect in which an item on the page changes when the pointer is placed over it. It
has proven to be an effective interface device for indicating that a button or link is interactive and is
ready to be clicked. Previously, it was necessary to use JavaScript to create rollover effects, but the
same thing can be accomplished with CSS alone using the :hover pseudoclass selector.

It should be noted that Internet Explorer 6 (and earlier) does not support :hover on elements other
than links (a), so this section focuses on text and image link rollovers . The good news is that IE 7
expands the use of :hover to apply to all elements.

24.6.1. Text Rollovers

A rollover can be used to change any aspect of an element's appearance. You can change the size or
color of the text, its background color, its decoration, or virtually any property that can be used to
style text. Figure 24-12 shows just a few examples. Styles are applied to the a element, and an
alternate style is specified with the a:hover selector for the rollover state.

Remember, to work correctly, the pseudoclass selectors must appear in the style sheet in the
following order: :link, :visited, :hover, :active (think LVHA, or "Love, Ha!").

In all three examples, the default link is set in gray text with its underline turned off using this rule.

Figure 24-12. Examples of text rollover effects on links

 a:link {
 text-decoration: none;
 color: #666;
 }

In Example 1, the rollover changes the link to black and makes the underline appear.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 a:hover {
 text-decoration: underline;
 color: #000; }

Example 2 demonstrates a popular technique of using a fancy bottom border instead of the generic
underline. A little padding is added to give the link enough space.

 a:hover {
 text-decoration: none;
 color: #000;
 padding-bottom: 2px;
 border-bottom: dotted 2px #999; }

In Example 3, both the foreground and background colors change on rollover. A border is thrown in
for good measure.

 a:hover {
 text-decoration: none;
 color: #FFF;
 padding: 2px;
 background-color: #666;
 border: solid 1px black; }

24.6.2. Image Rollovers

Image rollovers work on the same principle as described in the previous examples, only the value of
background-image is changed for the hover state. Again, because Internet Explorer 6 and earlier
support :hover on the a element only, a link is used in this example.

This example style sheet applies a background image (button.gif) to all links in a document. The a
element is set to display as a block so that width and height values (matching the image dimensions)
can be applied to it. The a:hover rule specifies a different background image (button_over.gif) to
display when the mouse is over the link (Figure 24-13).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Changing Styles on "Focus"

For users who navigate web sites using the keyboard alone, it is common to tab from link
to link rather than "mousing" over it. When a link is activated in this manner, it is said to
have focus (the same as form controls that are activated and ready for user input). The
:focus pseudoclass selector allows authors to apply a style to a link (or form control)
when it is in focus. The added visual cue aids in accessibility for keyboard users.

When specifying styles for the focus state, the pseudoclass selectors must appear in the
style sheet in the following order: :link, :visited, :focus, :hover, :active.

Unfortunately, Internet Explorer (Version 6 and earlier for Windows) does not support
the :focus selector, so the effect will be lost for users of those browsers. The :active
selector may be used instead.

 a {
 display: block; /* allows width and height to be specified */
 width: 150px;
 height: 30px;
 background: url(button.gif) no-repeat #666;
 color: #FFF;
 /* the next properties center the text horizontally and vertically*/
 text-align: center;
 text-decoration: none;
 line-height: 30px;
 vertical-align: middle;
 }

 a:hover {
 background: url(button_over.gif) no-repeat #eee;
 color: #333; }

Figure 24-13. Simple image rollover

In some instances, such as graphical navigation bars, it is desirable for each link to have its own
background and rollover images. In this case, it is necessary to give the containing elements unique
identifiers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <li id="info">more info
 <li id="contact">contact us

 a {display: block; width: 150px; height: 30px; }

 #info a {background url(info.gif) no-repeat #666; }
 #info a:hover {background url(info_over.gif) no-repeat #666; }

 #contact a {background url(contact.gif) no-repeat #eee; }
 #contact a:hover {background url(contact_over.gif) no-repeat #eee; }

24.6.2.1. Rollovers without preloading

Another popular method for handling image rollovers is known as the "Pixy No-Preload Rollover"
technique introduced by Petr Staníek (aka "Pixy") in his article "Fast Rollovers without Preload"
(wellstyled.com/css-nopreload-rollovers.html). In this method, all the rollover states are placed in
one image, and only the background-position is changed for each link state. This avoids the need to
load or preload multiple images for each rollover and can speed up display.

Figure 24-14 shows the image that contains both the default background image and the hover state.
The style rule shifts the position of the initial background image down by the height of the element,
revealing the appropriate portion of the image.

 a { display: block;
 width: 150px;
 height: 30px;
 background: url(allbuttons.gif) top left no-repeat #666; }

 a:hover {
 background url(allbuttons.gif) 30px left no-repeat #eee; }

Figure 24-14. Containing all rollover states in one image

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applying background images and rollovers can cause a flickering effect in
Internet Explorer on Windows. One solution is to apply the background image
to both the link (a) and its containing element. For an in-depth look at this
problem and possible solutions, see the article, "Minimize Flickering CSS
Background Images in IE6" by Ryan Carver at
www.fivesevensix.com/studies/ie6flicker/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.7. List-Based Navigation Bars

Horizontal navigation toolbars are a staple of web interface design. Traditionally, they were created
with some number of adjacent text links or a line-up of images. Either way, there wasn't much
meaning to their markup in the document source. When you think about it, it makes sense for a list
of navigational options to be marked up as a list in the source. With CSS, it is possible to give it the
appropriate semantic markup while visually presenting the options as a familiar horizontal bar.

There are two methods for changing a bulleted list into a horizontal navigation bar. The first makes
the list items display inline instead of stacked (the default display mode for block elements). The
second uses floats to line up the list items and links. Both examples below use this markup for an
ordinary unordered (bulleted) list with five list items. Figure 24-15 shows how it looks using the
default browser styles.

 <ul id="nav">
 Water
 Fire
 Air
 Earth
 Beyond

Figure 24-15. The unstyled list

24.7.1. Inline List Items

We'll start with the minimum style rules for removing the bullets (list-style-type: none) and
making the list items appear next to each other instead of in a list (display: inline). The margins
and padding are set to 0 to prepare for anchor (a) element styling. The results of the styles thus far
are shown in Figure 24-16.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ul#nav {
 list-style-type: none;
 margin: 0px;
 padding: 0px; }

 ul#nav li {
 display: inline; }

Figure 24-16. Making a list display horizontally

With the pieces in place, you can then apply any style to the anchor (a) elements. In this example,
the link underlines have been removed and a border, a background color, and padding have been
added. An alternate style has been specified for the rollover state as demonstrated in the previous
section. The resulting navigation list in Figure 24-17 is just one simple example of what can be done.

 ul#nav li a {

 padding: 5px 20px;

 margin: 0px 2px;

 border: 1px solid #666;

 background-color: #CCC;

 text-decoration: none;

 text-align: center; }

 ul#nav li a:hover {

 background-color: #333;

 color: #FFF;

Figure 24-17. Adding styles to the inline list

24.7.2. Floated List Items

The other method for creating horizontal lists uses the float property to cause the list items to line
up next to one another. When using float, it is important to set the following element in the source

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to clear: both to ensure that no page content wraps around the list.

This is just one of many variations on formatting navigation with floated list items. The primary steps
are turning off the bullets (list-style: none), floating each list item (float: left), and then
applying styles to the links (a) as block elements.

 ul#nav {
 list-style: none;
 margin: 0;
 padding: 0; }

 ul#nav li {
 float: left;

 margin: 0 2px ;

 padding: 0 ; }

 ul#nav li a {
 display: block; /* allows width and height settings on a element */
 float: left; /* provided only to fix display in IE-Mac */

 width: 100px ;

 height: 28px ;

 line-height: 28px ;

 background: url(tab.gif) #CCC no-repeat;

 text-decoration: none ;

 text-align: center ; }

 /* Commented backslash hack hides rule from IE5-Mac */
 ul#nav li a { float: none; }
 /* End IE5-Mac hack */

 ul#nav li a:hover {

 background: url(tab_over.gif) #333 no-repeat;

 color: #FFF ; }

This time instead of a solid background color, each link is styled with a background image that
changes for rollovers, as shown in Figure 24-18.

Figure 24-18. Tabbed navigation created with floated list items

24.7.3. More List and Tabbed Navigation Tutorials

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The example in this section is only the most elementary introduction to how CSS can be used to
create tabbed navigation from semantically logical list markup. For more sophisticated techniques
and in-depth tutorials , these are just a few of the numerous resources online.

"Sliding Doors of CSS (Parts I and II)," by Douglas Bowman
(www.alistapart.com/articles/slidingdoors and www.alistapart.com/articles/slidingdoors2)

A problem with the floated list example above is that if a user resizes the text, it will bust out of
the tab graphic. In this article, Doug Bowman introduces his ingenious technique for graphical
tabs that resize larger with the text.

"Accessible Image-Tab Rollovers," by David Shea
(www.simplebits.com/notebook/2003/09/30/accessible_imagetab_rollovers.html)

This tutorial combines list-based tabbed navigation with image-replacement techniques.

"CSS Design: Taming Lists" by Mark Newhouse (www.alistapart.com/stories/taminglists)

This article demonstrates a number of CSS tricks for controlling the presentation of lists,
including various inline list item applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24.8. CSS Techniques Resources

With CSS (and a little know-how), you can make your page as hip, pretty, gothic, mod, or corporate
as you like. It's limited only by your imagination. To see just how sophisticated CSS-based web
design can be, I enthusiastically refer you to the CSS Zen Garden site at www.csszengarden.com. It
is a showcase of stunningly varied designs, all based on the same marked-up XHTML document. The
spin-off book, The Zen of CSS Design: Visual Enlightenment for the Web by Dave Shea and Molly E.
Holzschlag (Peachpit Press) dissects design elements in 36 designs and demonstrates the CSS
techniques behind them.

For more detailed demonstrations of what you can do with CSS, I recommend Eric Meyer on CSS and
More Eric Meyer on CSS, written by (surprise) Eric Meyer (New Riders).

Another book that has served as a reference and inspiration for this chapter is Web Standards
Solutions: The Markup and Style Handbook by Dan Cederholm (Friends of Ed).

There are also a number of online resources that offer CSS tips, techniques, and tutorials.

A List Apart (www.alistapart.com)

A List Apart is the go-to source for articles on CSS and other web design matters. Their all-star
contributing writers are authorities in all matters of web design.

Stopdesign (www.stopdesign.com)

Doug Bowman is one of the top dogs in standards-based web design. His site offers useful
tutorials and commentary on designing with CSS.

Mezzoblue (www.mezzoblue.com)

This is the personal site of Dave Shea, the creator and cultivator of the CSS Zen Garden.

Meyerweb (www.meyerweb.com)

The reigning king of CSS, Eric Meyer, publishes his tests, tricks, and tutorials here.

SimpleBits (www.simplebits.com)

This is the personal and professional site of Dan Cederholm, a prominent web designer and the
author of Web Standards Solutions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

css-discuss wiki (css-discuss.incutio.com)

A "wiki" is a type of collaborative web site . This wiki is the companion to the popular css-
discuss mailing list (www.css-discuss.org) and serves as a repository of CSS techniques and
ideas generated by the css-discuss community.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 25. Managing Browser Bugs:
Workarounds, Hacks, and Filters

by Aaron Gustafson

In an ideal world, software would be flawless, W3C Recommendations would be clear, and this
chapter would never have to be written. Welcome to reality.

This chapter will address most of the common browser bugs you will encounter when designing with
CSS and will help you quickly and easily wrangle those bugs into submission by using each browser's
own misinterpretation or ignorance of the specs against them (in the form of hacks and filters). First,
the chapter will tackle the buggy browsers on a per-browser basis and then, it will wrap with a hack
management strategy that will make your life much easier, today and in the future.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.1. Working with "Troubled" Browsers

Before getting into listing all of the problems that we, as CSS designers, have to deal with when it
comes to browsers, it is important to take a step back and realize why we have browser bugs in the
first place.

As anyone who has tried reading them can attest, the W3C specifications aren't exactly clear in many
areas and they certainly are not a roadmap to implementation for browser manufacturers. In many
cases, browser developers have to interpret what they read in the specs and try to make them work
while simultaneously trying to get the browser out the door on time. In other cases, decisions have
been made to deviate from the specs to make life "easier" for the designer or developer (see Internet
Explorer's box model problem, later in this chapter).

We could spend countless hours discussing the problems with any one browser, but it's really best to
take a step back and realize that no browser is perfect. Making yourself aware of each browser's
inadequacies and figuring out what can be done (if anything) to overcome these problems is far more
constructive. And this chapter will help you do exactly that.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.2. The Browsers

This section will address the most common browsers and the hacks and filters that can be used to
make sure they get the CSS rules they need (or don't get the ones they don't understand) to render
pages appropriately. We'll start with some of the older browsers that are still kicking around and
work toward modernity.

25.2.1. Netscape Navigator 4.x

Thankfully, this archaic browser is finally on its way out with less than 0.3% market share according
to most statistics, and probably even lower by the time you read this. Originally launched in 1997,
Netscape Navigator 4 (NN4.x) was an impressive browser. Needless to say, it hasn't aged all that
well.

NN4.x's CSS support is pretty basic and, although some people still spend time designing for it, most
sites do not get the kind of traffic that would warrant spending much time discussing its numerous
issues. In fact, most CSS designers and web standards advocates have, instead, embraced the idea
of "graceful degradation" and provide only the most rudimentary styling (mostly fonts and colors) to
this outdated browser.

Be sure to consult your own site's browser statistics to decide when, and if, you need to degrade your
design for a particular browser. Remember that percentages can be misleading: 0.3% of users who
visit your personal photo gallery is likely to be a far cry from the same percentage visiting eBay. To
make a design degrade gracefully for NN4.x, you need to serve it a simple style sheet and hide the
stuff it doesn't understand. This is easily accomplished by using NN4.x's basic understanding of CSS
against it in one of two ways. The first involves use of the @import rule, which is not understood by
NN4.x:

 <link rel="stylesheet" type="text/css" href="my_basic.css" />
 <style type="text/css">@import(my_advanced.css)</style>

In the above example, NN4.x applies the first style sheet because it understands how to "link" a style
sheet. The second style sheet it ignores, because Netscape has no idea what @import is.

For years, this was the preferred method of degrading designs for NN4.x, but it has the side effect of
causing a flash of unstyled content (FOUC) in Internet Explorer on Windows if the head of the
document does not contain any link or script elements. (For more information on the FOUC, visit
www.bluerobot.com/web/css/fouc.asp.)

A new method has emerged for leaving NN4.x out in the cold involving media type assignment.
NN4.x only understands the screen media type, so by adding additional media types to the link tag:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <link rel="stylesheet" type="text/css" media="screen,projection"
 href="my_advanced.css" />

you can easily avoid NN4.x, and get the added benefits of hiding your more advanced styles from
many handheld devices, sidestepping the FOUC altogether.

25.2.2. Internet Explorer 5.x on Windows

When it comes to CSS hacks, Internet Explorer 5.x on Windows (IE 5.x/Win) really started it all. This
browser version has caused many problems for CSS designers, and perhaps the worst was its flawed
implementation of the box model, which led to the first CSS hack. We'll get to that hack in a
moment, but first you should examine why it was created.

The W3C box model is perhaps best explained as additive. For example, the overall width of an
element's "box" is the sum total of its border-left-width, padding-left, width, padding-right, and
border-right-width. In contrast, the box model implemented by IE 5.x/Win, sometimes called the
border box model, is subtractive. In this incorrect interpretation, the overall width of an element is
the value set as its width, while the padding and border widths are subtracted from that.

Take a look at a simple example:

 div {
 border: 5px;
 margin: 20px;
 padding: 20px;
 width: 200px;
 }

To illustrate the vast ocean of difference between the two box models, consider Figure 25-1.

Figure 25-1. A comparison of the W3C and border box models

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clearly, this might present a problem, particularly with column-based layouts. In browsers that
render according to the spec, the total width of the element's box is 250 pixels, or the following:

5px + 20px + 200px + 20px + 5px

The border box model would keep the overall width of the box at 200 pixels, squeezing the
contentwithin the border and paddinginto a mere 150 pixels, or:

200px - 5px - 20px - 20px - 5px

To get IE 5.x/Win to play well, Tantek Çelik, a Microsoft employee working on the Macintosh version
of IE, invented something he dubbed the Box Model Hack. The hack uses the voice-family property
(which is not supported by the browsers) along with some CSS-escaped quotes to trick IE 5.x/Win
into thinking the declaration block has been closed. The following example demonstrates its use on a
problem div:

 div {
 border: 5px;
 margin: 20px;
 padding: 20px;
 width: 240px; /* <-- 1 bad width fed to WinIE5.x */
 voice-family: "\"}\""; /* <-- 2 WinIE5.x sees the end of the rule */
 voice-family: inherit; /* <-- 3 proper parsing browers reset here */
 width: 200px; /* <-- 4 the real width */
 }

This hack caused a little problem in the Opera version available at the time (which, likewise, did not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

understand the voice-family property), newer versions of Opera do not have the problem, so you
can safely ignore the old workaround.

More recently, Tantek devised an even better way to target these two problem browsers using what
are called filters. Similar to how you hide styles from NN4.x, you can now show a particular style
sheet to either of these two browsers. For example, to feed a specific style sheet to IE 5/Win, you
would use the following @import within a style element in the head of your document or (better yet)
within a linked or imported style sheet:

 @media tty {
 i{content:"\";/*" "*/}}; @import 'hacks.pc.ie5.css'; {;}/*";}
 }/* */

To do the same for IE 5.5/Win, you would use:

 @media tty {
 i{content:"\";/*" "*/}}@m; @import 'hacks.pc.ie55.css'; /*";}
 }/* */

In a volume such as this, we can't discuss the hows and whys of these filters, but, if you want to
know more, visit Tantek's site at www.tantek.com/CSS/Examples.

Using filters such as these, you can keep your hacks separated from your proper CSS, which is the
best way to manage CSS hacks over the long term, but more on that later.

Many of the browser issues encountered when dealing with IE 5.x/Win are also present in Internet
Explorer 6, so the discussion can be found in that section. Also, if you are having trouble tracking
down a computer old enough to still be running these browsers, you can download standalone
versions from browsers.evolt.org/?ie/32bit/standalone. Now it's time to leave the Windows
environment for a brief moment and check in with Internet Explorer's wiser (yet still buggy)
counterpart on the Mac.

25.2.3. Internet Explorer 5.x on Macintosh

At the time, Internet Explorer 5 for Macintosh (IE 5.x/Mac) was tops for CSS-based design. IE
5/Mac's rendering code, dubbed The Tasman layout engine (which Tantek Çelik led the development
of), was the first to offer complete support for CSS Level 1, HTML 4.01, PNG 1.0, as well as child and
adjacent sibling selectorspretty advanced stuff for 2000. That said, IE 5.x/Mac has its share of
problems, too.

Many of IE 5.x/Mac's issues revolve around positioned elements and floats, resulting in unnecessary
scrollbars, elements that are too wide, incorrect wrapping, and phantom margins. Though there are
fairly straightforward workarounds for these bugs, some CSS designers have started to degrade their
designs for IE 5.x/Mac as well. That said, there are many who continue to support IE 5.x/Mac to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

serve the numerous folks (often in public schools) using Macs that can only run Mac OS 9.x, where IE
5.1/Mac is the best browser they can use. Again, consulting your server logs is a good idea before
dropping complete support for any browser.

You can find a compendium of many IE 5.x/Mac bugs (as well as fixes for them)
at www.macedition.com/cb/ie5macbugs/index.html.

There are a few different ways to hide CSS rules from IE 5.x/Mac. The first is known as the
Commented Backslash Hack (www.sam-i-am.com/work/sandbox/css/mac_ie5_hack.html):

 div {
 color: red; /* <-- shown to IE5.x/Mac backslash --> */
 color: green; /* <-- hidden from IE5.x/Mac reset --> */
 }

IE 5.x/Mac sees the backslash (\) and escapes the asterisk (*) in order to read it as a literal
character, making it miss the close of the first comment. The browser assumes that everything that
follows is still part of the comment and does not apply the rules. When it reaches the next comment,
it sees the comment close normally and it assumes that to be the close of the original comment.
Figure 25-2 gives a little better idea of how IE 5.x/Mac parses the above rule (minus the comments'
contents) and how normal browsers parse it.

Figure 25-2. The correct interpretation of the Commented Backslash rule
and the IE5.x/Mac interpretation

You also can exploit this particular bug in the IE 5.x/Mac parser to show certain styles (or an entire
stylesheet) to that browser, as is the case with the IE 5/Mac Band Pass Filter developed by Tantek
Çelik and documented by Douglas Bowman (www.stopdesign.com/examples/ie5mac-bpf):

 /**//*/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 @import "hacks.mac.ie5.css";
 /**/

This filter inverts the Commented Backslash Hack , showing the imported style sheet to IE 5.x/Mac
and hiding it from every other browser. If your site needs to support IE 5.x/Mac, this is a very useful
tool, allowing you to quarantine all the fixes this browser needs (see Table 25-1). Similarly, if you can
get away with degrading your design in that browser, you can import the style sheet you want to
hide from IE 5.x/Mac into the style sheet you want to show it.

The W3C spec allows for an @import rule to receive a string or a URL as an
argument. As the W3C recognizes strings as any value between either single or
double quotes, it is perfectly legit to use any of the following three means of
importing a style sheet:

 @import "my.css";
 @import 'test2.css';
 @import url(my.css);

For example, in your document, you could add a linked style sheet:

 <link rel="stylesheet" type="text/css" media="screen"
 href="simple.css" />

and then inside that linked style sheet, import another, more advanced style sheet, being careful to
use single instead of double quotes:

 @import 'test2.css'; /* <-- import for all other browsers */

 /* The rules for IE5.x/Mac go here */

This particular filter does double duty, as it works to serve only the basic styles to NN4.x as well, so
you can ensure consistency in your degraded site design.

Table 25-1. IE5.x/Mac bugs and fixes at a glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bug Fix

Elements absolutely positioned to the right/bottom edge
of the screen cause horizontal/vertical scrollbars:

div {
 position: absolute;
 bottom: 0;
 right: 0;
}

Negate the hidden 15px margins:

div {
 right: 15px;
 margin-right: -15px;
 bottom: 15px;
 margin-bottom: 15px;
}

Shorthand margins will not center a table:

table {
 margin: 0 auto;
}

Use longhand properties for setting the
margins:

table {
 margin-left: auto;
 margin-right: auto;
}

An applied background-image is always positioned
underneath the border of an element.

Use another element for the border if the
border must be outside the background-
image.

Use of overflow: auto can cause the page to expand to
fit the entire contents of the elementeven though part
of it is hiddencreating scrollbars.

Always set width and height properties on
any element on which you set overflow:
auto.

clear is inherited into floated elements when the parent
element has a clear value, even when the floated
element is styled to clear: none.

No fix available.

25.2.4. Internet Explorer 6

This Windows-only browser is the bane of many a CSS designer's existence, mostly because its CSS
parser and layout engine (Trident) has not seen an upgrade since the browser was released in late
2001. The major differences between Internet Explorer 6 (IE 6) and the IE 5 series for the PC (first
introduced in 1999) were the inclusion of the DOCTYPE switch and the fixing of numerous CSS 1 bugs
in "Standards mode."

Because IE 6/Windows's rendering engine has remained largely unchanged since its release, its bugs
(see Table 25-1) are fairly well-documented and there are several ways to show/hide particular
styles. You can find information about these bugs and more at
www.positioniseverything.net/explorer.html.

To show a particular declaration block to IE 5+, you can use the Tan Hack

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(www.info.com.ph/~etan/w3pantheon/style/starhtmlbug.html or as it is sometimes known, the *
html (Star HTML) Hack:

 div {
 color: green;
 }
 * html div { /* <-- will target IE5+ */
 color: red;
 }

In any (X)HTML document, html is the root element (it has no parent). What the Tan Hack is
essentially selecting is an element (in the example, a div) that is a descendant of html, which is a
descendant of anything (using the universal selector: *). Theoretically, that is impossible to do, but
IE 5+ apparently has an implied parent of the html element in its internal model, and that implied
parent matches the initial *, making it a means for targeting particular rules to overcome its bugs.

It is possible to hide style rules from IE 5+/Win by using selectors that are not understood by the
browser. A few examples are:

 body>div#content {
 color: green;
 }
 div+div#content {
 color: green;
 }
 div[id='content'] {
 color: green;
 }

All of the rules above use CSS 2 selectors (child, adjacent sibling, and attribute, respectively) that IE
5+/Win does not understand. In the interest of being forgiving (and somewhat forward compatible),
when browsers encounter something they don't understand, they ignore it, so IE 5+/Win ignores all
of the above rules.

Warning: whenever you use more advanced selectors (from CSS 2 or CSS 3) to hide rules from older
browsers that don't support those selectors, make sure that the style rules you are writing are valid
CSS (which you should always do anyway), and that the results you are expecting from those rules
are in line with the specs. Don't use advanced selectors to send "fix up" style rules to non-compliant
browsers.

When considering CSS hacks and filters , if at all possible, use them only for targeting
older/obsolete/abandoned browsers. Avoid using hacks for current versions of browsers, as such code
will likely break when those browsers are updated. With that in mind, Table 25-2 lists some IE
5+/Windows bugs and workarounds to consider.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 25-2. IE5+/Windows bugs and fixes at a glance

Bug Fix

Content appearing alongside a floated element
inside a box with width: 100%; will disappear
(Peek-a-boo Bug; IE 6 only).

Apply height: 1% to the containing box (but hide it
from IE 5.x/Mac):

 /**/ * html div {
 height: 1%;
 }/**/

This is known as the Holly Hack . It works by
setting the height of a block to a small value (1%
works almost universally). IE 5+/Win will make a
box taller to fit the content (treating height like
min-height) and trigger IE 5+/Win to behave as it
should in many situations.

Disappearing backgrounds on lists (dl, ol, and
ul) inside a block that is positioned relatively
and floated.

Relatively position the offending list (but hide it
from IE 5.x/Mac, which does not have this bug):

 /**/ * html ul {
 position: relative;
 }/**/

Although not technically a hack, using position:
relative; can get you out of a lot of sticky
situations with IE 5+/Win. There are many cases
when you would not want to apply this rule, as it
would create a new containing block where you
might not want one, so use it sparingly.

The bottoms of floated elements are chopped
off when certain links are hovered in the
containing block (Guillotine Bug).

Apply the Holly Hack to the containing box.

An absolutely positioned element within a
relatively positioned element has content that
overflows off the bottom of the page without
triggering scrollbars (Unscrollable Content Bug).

Apply the Holly Hack to the containing box.

When multiple elements are floated alongside
one another, text from the final float is
occasionally duplicated below it. (See
www.positioniseverything.net/explorer/dup-
characters.html.)

Drop the width of the floated elements so they do
not reach the edge of the container or make the
margin-right on the final floated element in the
row -3px or less.

Margins on the same side of a floated element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bug Fix Margins on the same side of a floated element
as the direction it is floated are doubled:

 div {
 float: left;
 margin-left: 100px;
 }

Set the display: inline; on the floated element.
According to the W3C, display should be ignored
on floated elements unless its value is none
(www.w3.org/TR/CSS2/visuren.html#floats).

There is a 3px gap between text in a block-level
element and a floated element around which it
flows (3 Pixel Jog Bug).

Apply the Holly Hack to the block-level element.

A block-level element that clears a float will
have its padding-top doubled if the content
flowing around the float does not go beyond the
bottom of it (affects IE 5.5/6 for Windows).

Apply the Holly Hack to the block-level element
that clears the float.

Anchors inside a relatively positioned container
will lose their applied background-image.

Relatively position the anchors.

When a box with a margin is nested in a box
with padding, the margin-top of the inner box
and padding-top of the outer box are not
added.

Double the margin-top on the inner box.

class or id names that begin with an
underscore (_) are ignored.

Avoid using class or id names that begin with an
underscore.

The left value of an absolutely positioned
element is calculated with regard to the left
edge of the first element in the containing
block, not the left edge of the containing block
itself (IE 5.5 and 6 for Windows).

Adjust the left value accordingly or position the
containing block absolutely.

Margins applied to a table are ignored (IE 6
ignores margin altogether, IE 5.x/Win ignores
only margin-top and margin-bottom).

Put the table inside a div and apply the margins
to the div instead.

25.2.5. The Mozilla Family (Mozilla, Firefox, and Netscape)

Mozilla has always been a popular browser among Linux programmers, and while its latest
incarnation, Firefox, was still in alpha, it began causing quite a stir in the CSS world due to
advancements made to its layout engine, Gecko . At the time of Firefox 1.0's launch, Gecko was the
layout engine rendering closest to the W3C specs and supported enough CSS 3 to make the hardcore
CSS designers salivate. All browsers in the Mozilla family (Camino, Firefox, Mozilla, and Netscape)
use Gecko.

Margins on the same side of a floated element
as the direction it is floated are doubled:

 div {
 float: left;
 margin-left: 100px;
 }

Set the display: inline; on the floated element.
According to the W3C, display should be ignored
on floated elements unless its value is none
(www.w3.org/TR/CSS2/visuren.html#floats).

There is a 3px gap between text in a block-level
element and a floated element around which it
flows (3 Pixel Jog Bug).

Apply the Holly Hack to the block-level element.

A block-level element that clears a float will
have its padding-top doubled if the content
flowing around the float does not go beyond the
bottom of it (affects IE 5.5/6 for Windows).

Apply the Holly Hack to the block-level element
that clears the float.

Anchors inside a relatively positioned container
will lose their applied background-image.

Relatively position the anchors.

When a box with a margin is nested in a box
with padding, the margin-top of the inner box
and padding-top of the outer box are not
added.

Double the margin-top on the inner box.

class or id names that begin with an
underscore (_) are ignored.

Avoid using class or id names that begin with an
underscore.

The left value of an absolutely positioned
element is calculated with regard to the left
edge of the first element in the containing
block, not the left edge of the containing block
itself (IE 5.5 and 6 for Windows).

Adjust the left value accordingly or position the
containing block absolutely.

Margins applied to a table are ignored (IE 6
ignores margin altogether, IE 5.x/Win ignores
only margin-top and margin-bottom).

Put the table inside a div and apply the margins
to the div instead.

25.2.5. The Mozilla Family (Mozilla, Firefox, and Netscape)

Mozilla has always been a popular browser among Linux programmers, and while its latest
incarnation, Firefox, was still in alpha, it began causing quite a stir in the CSS world due to
advancements made to its layout engine, Gecko . At the time of Firefox 1.0's launch, Gecko was the
layout engine rendering closest to the W3C specs and supported enough CSS 3 to make the hardcore
CSS designers salivate. All browsers in the Mozilla family (Camino, Firefox, Mozilla, and Netscape)
use Gecko.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Netscape 8 (currently only available for Windows) allows the user to switch
between the standard Gecko layout engine and the Trident layout engine from
Internet Explorer. Also, America Online (AOL), the former parent of Mozilla, has
released its own browser that sits on top of Internet Explorer 6.

Despite its best efforts, the Gecko engine still has a few quirks that need to be worked out (see Table
25-3), but, thankfully, they don't get in the way all that often. At the time of this writing, the Mozilla
Foundation has released a beta of Firefox 1.5, and there have yet to be any new bugs discovered.

Table 25-3. Gecko bugs and fixes at a glance

Bug Fix

position: relative; is not supported on table
elements.

Wrap the table in another block-level
element that can be positioned relatively,
such as a div.

Any floated element following a heading (H1, h2, etc.)
will be overlayed by the first line of text that should
flow around it.

No fix available.

25.2.6. Safari

Safari is the Apple-built browser that began shipping with OS X 10.3 (Panther) in late 2003 and is
now the default browser for Macintosh. It uses the WebCore layout engine, which is based on
Konqueror's KHTML layout engine . Safari 2.0 (also known as Safari RSS) was released in 2005 along
with OS X 10.4 (Tiger), just two days after David Hyatt, the lead developer on Safari, and his team
managed to make Safari the first browser to pass the Web Standards Project's Acid2 test . Until
Safari 2.0.2, which is just getting disseminated, no significant improvements to CSS handling or
support had been made since Version 1.1, so that is what we will address here.

The Acid2 test (www.webstandards.org/act/acid2/) was released in mid-April
2005 by the Web Standards Project as a way for makers of web browsers and
web design tools to test their adherence to mature web standards. As of this
writing, development versions of iCab and Konqueror have passed the test, and
Opera should pass by the time this book publishes. On October 31, 2005, Safari
2.0.2 became the first publicly released, non-beta, non-preview browser to pass
Acid2.

Konqueror is the web browser and file manager/viewer part of the K Desktop
Environment (KDE) and is quite popular on Linux/Unix operating systems.
Currently, its market share is too small for it to be discussed here, but the
developers are working to integrate much of the work on Safari's WebCore
layout engine back into KHTML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point in time, there are no reliable Safari filters or hacks and, with the release of the revised
WebCore layout engine, the market share of the older Safari versions may drop off before any are
invented. Likewise, although initial (1.x) versions of Safari had numerous bugs and quirks, as of
Version 2.0+ there are relatively few layout bugs remaining in the Safari browser (see Table 25-4).

Table 25-4. Safari bugs and fixes at a glance

Bug Fix

Setting the display property of a fieldset to inline will make form
controls unclickable.

 fieldset {
 display: inline;
 }

Position the fieldset:

 fieldset {
 display: inline;
 position: relative;
 }

Combining the :hover pseudoclass with an adjacent sibling in a
selector causes erratic behavior.

 dt:hover+dd {
 color: green;
 }

No fix available.

When the font size is enlarged, generated content can cause text to
be pushed outside of its bounding box.

No fix available.

25.2.7. Opera

Historically, Opera has had a few CSS quirks, but the last few versions have been relatively stable.
Market share for this browser has been low, yet steady. As of September 2005, with the release of
Opera 8.5, the browser became free to the public (and free of ads), meaning its market share will
likely increase. That same year, Opera made major inroads in the mobile market with Opera 8 and
Opera Mini, making this a browser to watch closely.

As of this writing, Opera is readying Version 9 of its browser, which uses the Presto layout engine and
is close to passing the Acid2 test. Versions 8 and 8.5 have very few bugs to speak of (see Table 25-
5), making this browser very easy to support, and making filters and hacks unnecessary.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 25-5. Opera bugs and fixes at a glance

Bug Fix

Using the border-width property on a block absolutely
positioned to the bottom of its container will result in a
padding-bottom equal to the border-top value (affects Opera
7.5-8.5).

 div {
 position: absolute;
 bottom: 0;
 border: solid #000;
 border-width: 20px 10px 10px 5px;
 }

Set different border widths via the
individual border-width-* properties:

 div {
 position: absolute;
 bottom: 0;
 border: 10px solid #000;
 border-top-width: 20px;
 border-left-width: 5px;
 }

Combining the :hover pseudoclass with an adjacent sibling
in a selector doesn't work.

 dt:hover+dd {
 color: green;
 }

No fix available.

When inside a containing block that is positioned on a page
by text-align: center or text-align: right, an absolutely
positioned element will be positioned based on where the
containing block would have been if it were not affected by
the text alignment.

No fix available.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

25.3. Hack and Workaround Management 101

Now that your head is spinning with all of the browser hacks and workarounds needed to make most
of the modern browsers fall in line, it's time to bring some order to the chaos. In the browser world,
change is steady, if not rapid. You need to plan for the future and for the eventuality of "retiring"
certain browsers. You need to craft a strategy for long-term hack management .

Molly E. Holzschlag wrote an excellent article on long-term hack management for InformIT called
"Integrated Web Design: Strategies for Long-Term CSS Hack Management," which you can find at
www.informit.com/articles/article.asp?p=170511&rl=1. As her article outlines, you can manage the
use of browser hacks and workarounds by making deliberate and thoughtful choices about what
hacks you use and how you integrate them with the rest of your CSS. How might you organize your
screen media CSS for a site that has the following requirements?

Full support for IE 5.5+/Win, Netscape 7.1+, Firefox, Safari, and Opera

Degraded support for NN4.x (typography) and IE 5.x/Mac (typography and color)

Easy-to-add/change the color information for the site

Sometimes drawing the page out on paper gives the clearest picture. Figure 25-3 outlines one way
you might address the requirements.

Figure 25-3. A basic outline of CSS file and rule management

If you start on the left with the (X)HTML page, you see this link to a single CSS file (main.css)

 <link rel="stylesheet" type="text/css" media="screen" href="main.css" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

That file includes the basic rules you want to show NN4.x and IE 5.x/Mac as well as two @import
rules. The first @import uses single quotes (') to hide the import of layout.css from IE 5.x/Mac; the
second uses double quotes (") to allow IE 5.x/Mac to see the color.css file.

 /*---
 Main CSS for MySite.com
 ---*/

 /* =LAYOUT (HIDDEN FROM IE5.x/MAC USING ') */
 @import 'layout.css';

 /* =COLOR */
 @import "color.css";

 /* =START CSS FOR TYPOGRAPHY */

Continuing along the outline brings you to the layout.css file, which contains a series of @import rules
but little else. Here is how that file might look:

 /*---
 Layout CSS for MySite.com
 Notes: This file links to the other files
 we need for layout
 ---*/

 /* =W3C COMPLIANT BROWSERS */
 @import "/css/w3c.css";

 /*---
 HACKS & WORKAROUNDS
 ---*/
 /* =IE 6 (ALL RULES BEGIN * html) */
 @import "hacks.ie6.css";
 /* =IE 5.5 (FILTER) */
 @media tty {
 i{content:"\";/*" "*/}}@m; @import 'hacks.ie55.css'; /*";}
 }/* */

Notice how much commenting there is.[*] This ensures that whoever views this filebe it a colleague,
client, or a new developer on the projectsees and immediately understands what is going on at any
given point.

[*] These code samples also make use of Douglas Bowman's CSS comment flags (www.stopdesign.com/log/2005/05/03/css-tip-

flags.html).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now imagine the site has launched and you see a large influx of users on IE 5.x/Mac, so a decision is
made to offer that browser full layout support. Adding it in becomes a snap: you change @import for
the layout.css file to use double instead of single quotes:

 /* =LAYOUT */
 @import "layout.css";

and add the IE 5.x/Mac Band Pass filter under the "Hacks & Workarounds" heading:

 /*---
 HACKS & WORKAROUNDS
 ---*/
 /* =IE6 (ALL RULES BEGIN * html) */
 @import "hacks.ie6.css";
 /* =IE5.5 (FILTER) */
 @media tty {
 i{content:"\";/*" "*/}}@m; @import 'hacks.ie55.css'; /*";}
 }/* */
 /* =IE5.x/Mac (FILTER) */
 /**//*/
 @import "hacks.mac.ie5.css";
 /**/

Similarly, if the stats showed IE 5.5/Win was not being used and, therefore, not worth supporting
anymore, you might simply drop the IE 5.5 filter block altogether.

By organizing your files using this technique (a technique Tantek Çelik dubbed surgical correction),
you can save yourself some grief later. You won't need to hunt through hundreds of lines of CSS
looking for a hack you used for a particular problem browser when you no longer need to support it.
With your CSS neatly organized and prepared, you can easily remove hacks once they become
obsolete, leaving behind clean, hack-free CSS, which is ideal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part IV: The Behavioral Layer: JavaScript
and the DOM

Chapter 26, Introduction to JavaScript

Chapter 27, DOM Scripting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 26. Introduction to JavaScript
by Aaron Gustafson

A web page that is semantically marked up and beautifully designed (with CSS, of course) is
wonderful, but to really make it an experience, it needs some interactivity. This is what we call the
"behavior layer" and, in most cases, it is made possible through use of a technology called JavaScript
. This chapter will walk you through a little history of the JavaScript language and then discuss the
basic building blocks of modern JavaScript.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

26.1. A Little Background

JavaScript is an object- and prototype-based programming language that got its start in 1995 as the
creation of Brendan Eich at Netscape. It was originally named "Mocha" and then "LiveScript" before
being confusingly re-christened JavaScript in conjunction with its release in Netscape Navigator 2.0
Beta 3 in December of 1995.

It is important to note that JavaScript is not Java. Both are similar to the C programming language
and share a similar syntax, but that is pretty much where their similarity ends. The Java
programming language was creating quite a stir in the computer world when Netscape was readying
LiveScript for release, and, somehow, the decision was made to rename the language JavaScript to
cash in on some of the buzz. Unfortunately, it did more to confuse the programming world than it did
to improve the popularity of JavaScript.

JavaScript was standardized in 1996 when it was turned over to the European Computer
Manufacturer's Association (ECMA) for maintenance and further development. The latest version,
JavaScript 1.5, arrived in 1999 and corresponds to ECMA-262 Edition 3. Consequently, JavaScript is
sometimes referred to as ECMAScript.

Microsoft offers a competing language, VBScript , based on Visual Basic, but as it is only supported in
Internet Explorer, it is a poor choice for the Web. It should also be noted that Microsoft offered its
own port of JavaScript, JScript, which supports most of the standard JavaScript functions (albeit in
sometimes peculiar ways) and extends some functionality, but, again, only for Internet Explorer.

JavaScript does have uses beyond the browser as well. It is available in PDF documents, is a primary
driver in the Mozilla platform, and even powers the Dashboard Widgets in Apple's Mac OS X 10.4
(Tiger). Using JavaScript outside of a web context is beyond the scope of this chapter, but there are
many resources online if you are interested in exploring.

One thing to keep in mind about JavaScript is that it is a client-side scripting language, which means
it runs on the client's machine and not on the server. This is an important distinction as it means its
implementation depends on the capabilities and settings of the browser viewing the page. That is
why, before we get into the nuts and bolts of writing JavaScript, we should talk about the best ways
to use JavaScript.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

26.2. Using JavaScript

Like many tools, JavaScript can be used for good or evil. The evil uses of JavaScript are all around:
rapid-fire pop-ups that open faster than you can close them, sites that automatically set themselves
as your home page, the list goes on and on. If that's what you're interested in doing, please stop
reading now.

26.2.1. JavaScript Dos and Don'ts

As web professionals, we have a duty to make the user experience as positive as possible and make
our sites both usable and accessible. We always need to consider how our choices as programmers
impact our users. Not only should we not wield JavaScript maliciously, but we should take care to use
it in such a way that a page or site can be used without it.

What? No JavaScript?!

There are many situations in which users may not have JavaScript turned on, even if
their browser supports it. In many corporate environments, security concerns around
web browsers have led to JavaScript being disabled. Also, several accessibility experts
have advocated for users of assistive devices (such as screen readers) to disable
JavaScript because of the massive amount of obtrusive JavaScript in use that makes it
difficult for them to easily navigate and use the Web.

As with CSS, JavaScript should "degrade gracefully," in other words, your scripts should be written in
such a way that they know if they will be able to run or not and quietly fail if methods they make use
of are not supported. It is also important, for many reasons, including accessibility, that your scripts
be unobtrusive. This is easily tested by turning off JavaScript support entirely in your browser to
make sure the page can still be used.

This is a topic that will be touched on several times throughout this chapter and the next, but we'll
begin by discussing how to use JavaScript in your pages.

26.2.2. Implementation Methods

JavaScript can be implemented on a single page or on an entire site. As with CSS, it can be
embedded in a document, or externalized from that document. Both methods are accomplished using
the script element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We'll start with an embedded example:

 <script type="text/javascript">
 // <![CDATA[
 ... JavaScript code goes here ...
 //]]>
 </script>

As you can see, the script element establishes the block as being a script and the MIME-type is set
(using the type attribute) to be text/javascript (text/ecmascript would also be acceptable).

The // <![CDATA[and //]]> may be unfamiliar to you, but you can find out more about CDATA in
Chapter 7. As for the //, which you see in front of each part of the CDATA designation, those are one
of the ways of designating comments in JavaScript, and we are telling the script above to ignore the
remainder of each of those lines.

Externalizing your JavaScript is the preferred method of implementation, as it affords you the
opportunity to include the same functions or functionality on multiple pages (and you can avoid
declaring the content as CDATA). Here is how you would externalize a script:

 <script type="text/javascript" src="my_script.js"></script>

In this example, we have moved our JavaScript into a separate file and simply included it in our
document by calling its filename as the source (src) of the script element. You can include as many
scripts as you like in this way and even combine this approach with embedded script calls, as in this
example from Google Analytics (www.google.com/analytics/):

 <script src="http://www.google-analytics.com/urchin.js"
 type="text/javascript"></script>
 <script type="text/javascript">
 // <![CDATA[
 _uacct = "UA-XXXXXX-X";
 urchinTracker();
 //]]>
 </script>

The external script resides on the Google server and is the same for everyone using Google Analytics.
The embedded script establishes the user account (the _uacct variable) and then triggers the
urchinTracker function to run.

It is recommended that you keep script elements in a common area in the head of your (X)HTML
pages. This is more out of convention and maintainability than anything else. After all, who wants to
have to hunt for a script within a several hundred- or thousand-line document? That said, script is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

perfectly valid within the body as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

26.3. JavaScript Syntax

Once you get the hang of it, JavaScript can be a very easy language to write. In fact, it is very similar
to other common web languages, including ActionScript (which is itself an ECMA scripting language
and is the underlying language of Flash) and PHP (which is a server-side scripting language). We'll
begin with the basics of syntax.

26.3.1. Statements

Each script we write consists of a series of statements . Statements can be terminated with a line
break

 first statement

 second statement

or with a semicolon (;)

 first statement; second statement;

For readability, and to avoid potential statement termination problems, it is recommended that you
use both:

 first statement;

 second statement;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File Size Versus Readability

Using whitespace to improve readability does have one drawback: increased file size.
Each whitespace character (tab, space, carriage return, or newline) is still a character in
the document. With lots of whitespace (and comments , for that matter), a script file can
get quite large.

To balance the need for whitespace and comments for legibility and the desire for fast
downloads, many JavaScript developers keep two copies of every script they work on: a
"working" copy with whitespace intact and a production version, which is "compressed"
by stripping out all unnecessary whitespace and comments.

26.3.2. Comments

Sometimes it is helpful to make notes for yourself to keep track of what is going on in a script. As in
HTML, JavaScript allows you to make comments in your code but offers a few different ways to do it.
The first style of comment uses two forward slashes:

 // this is a comment

This type of comment makes the interpreter ignore the remainder of the line. The second method
allows you to comment out multiple lines:

 /* this is a multi-line
 or block comment */

Apart from using comments to make notes to yourself, they are also quite useful in the debugging
process: if you can't seem to figure out where an error is coming from, you can comment out a line
or section of the code to see if it is the culprit.

26.3.3. Variables

Though not a strictly typed language, in JavaScript , you still need to declare variables before you
begin using them. That said, you have a lot of flexibility in how you name and declare your variables.

Variables are declared using the reserved keyword var. Variable names can be any length and
contain numbers, letters, and certain non-alphanumerics. Arithmetic operators (+, -, *, /) and quotes
(' and ") need to be avoided in variable names . You also need to watch that your variable names do

http://lib.ommolketab.ir
http://lib.ommolketab.ir

not conflict with JavaScript's reserved keywords (this, for, function, etc.). A text editor with a good
syntax highlighter should help you avoid those pitfalls.

Variable names can be written in numerous cases and styles. And as JavaScript is case-sensitive,
each of the following would be a unique variable:

 var MYVAR; // uppercase
 var myvar; // lowercase
 var myVar; // camel case
 var MyVar; // initial caps
 var MyVaR; // mixed case

It is common practice to separate words in multiword variable (or function) names with an
underscore or to write them in "camelCase":

 var my_cat;
 var myCat;

You may consider writing all variables using one convention and all function names using the other to
make it easier to distinguish them at a glance:

 var my_variable;
 function myFunction(){ ... }

Variables can also have their values assigned when they are declared:

 var cat = 'Sabine';

or not:

 var cat;

You can also declare multiple variables (again with or without value assignment) simultaneously:

 var girl_cat = 'Sabine', boy_cat = 'Dakota', tortoise;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

26.3.4. Data Types

JavaScript variables can be one of several different data types . Those data types fall into two
different categories: scalars and arrays . Scalar variables have one value at a time. That value can be
a string, a number, or a Boolean. Arrays can contain multiple values. We will discuss each type in
turn.

26.3.4.1. Strings

Strings are enclosed by either single (') or double (") quotes and can contain zero or more
characters:

 var empty = '';
 var girl_cat = 'Sabine';
 var boy_cat = "Dakota";
 var zip_code = '06517';

Your string can also contain quotes, but you need to be careful to escape any quotes that match the
quotes you are using to enclose your string:

 var my_string = 'This "quoted text" is fine';
 my_string = "This 'quoted text' is fine";
 my_string = 'This string\'s "quote" is escaped';
 my_string = "This string's \"quotes\" are escaped';

It can get a little confusing if you don't maintain some form of consistency. Most JavaScript
developers tend to use single quotes to wrap strings . This is likely a holdover from other languages
where double-quoted strings are processed differently than single-quoted ones.

26.3.4.2. Numbers

Numeric values are pretty self-explanatory, but here are a few examples

 var my_age = 28;
 var birth_year = 1977;
 var negNum = -1.9304;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

26.3.4.3. Booleans

Booleans are true/false values. They can be represented by the keywords true or false (without
quotes around them) or the numbers 1 and 0, respectively:

 var bald = false; // I am not bald (yet -- fingers crossed)
 var bearded = 1; // I do have a beard

26.3.4.4. Arrays

Arrays allow you to group multiple values (called members) in a single variable. Standard array
values are numerically indexed beginning with 0 and counting upward. They can be declared in a few
different ways as well:

 var array_1 = new Array(); // empty array
 var array_2 = new Array(2); // array with two undefined members
 var array_3 = []; // shorthand empty array

As with scalars, an array's values can be set when it is declared:

 var cats = new Array('Sabine', 'Dakota');
 var names = ['Aaron', 'Kelly'];

or the values can be assigned afterward:

 var cats = new Array();
 cats[0] = 'Sabine';
 cats[1] = 'Dakota';

An array can contain any sort of data in its members:

 var sabine = ['cat', 'female', 9, true];
 // Sabine is a 9-year-old female cat that is spayed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

even other arrays :

 var cats = new Array(2);
 cats[0] = ['Sabine', 'cat', 'female', 9, true];
 cats[1] = ['Dakota', 'cat', 'male', 8, true];

An array member can also have its value assigned by a variable:

 var cats = new Array(2);
 var sabine = ['cat', 'female', 9, true];
 var dakota = ['cat', 'male', 8, true];
 cats[0] = sabine;
 cats[1] = dakota;

Associative arrays are a specialized form of array (sometimes referred to as a "hash") that use
keywords as their indexes. The following example uses a few different forms of arrays and scalars:

 var cats = new Array(2);
 cats['sabine'] = ['cat', 'female', 9, true];
 cats['dakota'] = ['cat', 'male', 8, true];
 var reps = [];
 reps['sheldon'] = ['tortoise', 'male', 5, false]
 var animals = [];
 animals['cats'] = cats;
 animals['reptiles'] = reps;

Got all that? If not, here's a little translation:

We establish the variable cats as an array with two members.

The first member is indexed as sabine and is, itself, an array of mixed data about her.

The second member is indexed as dakota and is an array of mixed data about him.

We then declare a new array (using shorthand) called reps and create a member indexed as
sheldon containing mixed data about him.

Finally, we declare an array called animals and assign the variables cats and reps to be
members of that array, indexed as cats and reptiles, respectively.

26.3.5. Operators

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are two categories of operators in JavaScript , arithmetic (or mathematical) and comparison .

26.3.5.1. Arithmetic operators

As you can probably guess, arithmetic operators are used to perform mathematical functions:

 var add = 1 + 1; // 2
 var subtract = 7 - 3; // 4
 var multiply = 2.5 * 2; // 5
 var divide = 4 / 2; // 2

These arithmetic operators can also be applied to variables with numeric values:

 var my_num = 1 + 1; // 2
 var new_num = my_num * 5; // 10
 var my_arr = Array(2, new_num); // an array of numeric values
 var big_num = my_arr[0] * my_arr[1]; // 20

In addition to addition, the + operator has another purpose: concatenation. Concatenation is the
combining of two or more values into a new value. It is usually applied to strings:

 var sentence = 'This is one phrase' + ' ' +
 'and this is another' + '.';

but also applies to combining numbers and strings:

 var new_str = 10 + '20'; // '1020'

When concatenating numbers with strings, the result is always a string.

There are also a few shorthand arithmetic operators you can use in specific cases, such as having a
string or number add to itself:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 var str = 'Hello there';
 str += ', pilgrim.'; // 'Hello there, pilgrim.'
 var num = 2;
 num += 2; // 4

There is a shorthand for incrementing or decrementing a number by one:

 var num = 2;
 num++; // 3
 num--; // 2

26.3.5.2. Comparison operators

The other type of operators available in JavaScript are comparison operators . They are used to
make assertions about the equality of two values (see Table 26-1).

Table 26-1. Comparison operators for equality

Operator Meaning

> Greater than

< Less than

== Equal to

!= Not equal to

>= Greater than or equal to

<= Less than or equal to

There are also comparison operators that are used to assert identity (see Table 26-2).

Table 26-2. Comparison operators for identity

Operator Meaning

=== Identical to

!== Not identical to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To understand what identity is, take a look at two variables:

 var bool = true;
 var num = 1;

bool is true, which is a Boolean value, and num is 1, a numeric value. If you recall back to the
discussion of Booleans, however, you may recall that 1 and 0 are aliases for true and false,
respectively. Therefore:

 bool == num; /* bool is equal to num -or-
 true and 1 are equal */

An identity-check, however, allows you to tell the two apart:

 bool !== num; /* bool is not identical to num -or-
 true is not identical to 1 */

and that is why identity comparison operators are nice to have in your toolbox.

26.3.6. Control Structures

There are numerous control structures available to you in JavaScript. They are broken up into a few
broad categories: conditionals, loops, switches, and functions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On alert

alert is a helpful tool for alerting you to certain events occurring in your code. It creates
a little dialog box with whatever statement you passed, along with an "OK" button that
you can use to close it.

alert('send this message');

For times when you only want a little information, this can be very helpful, but if you are
calling alert many times throughout a large script, it can get a little frustrating to have
to close each of the dialog boxes as they appear. Several tools have been developed to
aid in JavaScript debugging that assist you in outputting information to the screen
without using alert(). On the simple end, there is jsTrace (www.easy-
designs.net/code/jsTrace/), a port of the ActionScript trace window, and for more robust
debugging, there is fvLogger (www.alistapart.com/articles/jslogging), which is very
similar to the JavaScript Console that comes with most Mozilla-based browsers and
Opera.

26.3.6.1. Conditional statements

There are a few different ways to handle conditional statements . The first is the simple if statement.
It tests a condition and then, if the condition is met, it executes:

 if(2 < 1){ alert('Something is wrong'); }

This same statement could also be written in shorthand (without the curly braces):

 if(2 < 1) alert('Something is wrong');

If you wanted to know the outcome either way, you would use an if...else statement:

 if(2 < 1){
 alert('Something is wrong');
 } else {
 alert('Everything is fine');
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also write this in shorthand, using what is called the ternary operator:

 (2 < 1) ? alert('Something is wrong')
 : alert('Everything is fine');

The ternary operator functions like this:

 (test condition) ? statement if true : statement if false;

and can even be used for value assignment to variables:

 var total = (money > 1000000) ? 'over $1Million'
 : 'less than $1Million';

Now, suppose you wanted to know if one or more conditions were met. You could use an if...else if
statement:

 if(height > 6){
 alert('You\'re tall');
 } else if(height > 5.5){
 alert('You\'re average height');
 } else {
 alert('You\'re shorter than average');
 }

or a switch statement:

 switch(true){
 case (height > 6):
 alert('You\'re tall');
 break;
 case (height > 5.5){
 alert('You\'re average height');
 break;
 default:
 alert('You\'re shorter than average');
 break;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In each of these instances, a comparison is performed, and if the condition is not met, the next
comparison is tried.

A switch statement is a little different than a traditional conditional statement, and it acts almost like
a hybrid of a conditional and a loop (which we will discuss momentarily). In a switch statement, each
case is tested against the argument of the switch and if they are equal, the statements in that case
are evaluated and the switch is exited (using break). In the above example, the argument is true, so
the first case to test true will be evaluated (in this case, triggering an alert). We will examine more
switch statements below.

There are a few operators we have not discussed yet as they come more into play when you are
working with control structures. They are called logical operators and there are three of them: and,
or, and not (see Table 26-3).

Table 26-3. Logical operators

Operator Meaning

&& and

|| or

! not

"Not" should already be somewhat familiar to you from the comparison operators "not equal to" and
"not identical to." It is used to negate a statement or condition or group of either:

 if(!(num < 10)){ alert('num is greater than 10'); }

"And" and "or" are used to group conditions together so you can ensure they are either both met or
at least one is:

 if((num > 10) && (num < 20)){
 alert('num is between 11 and 19');
 }
 if((num <= 10) || (num >= 20)){
 alert('num is not between 11 and 19');
 }

The second example above could also be rewritten using the logical operator "not" in combination
with "and":

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if(!(num > 10) && !(num < 20)){
 alert('num is not between 11 and 19');
 }

Or, we could use some additional parentheses to group the conditionals, negating them both at once:

 if(!((num > 10) && (num < 20))){
 alert('num is not between 11 and 19');
 }

As you can see, there's more than one way to test the same condition.

26.3.6.2. Loops

Loops are another group of control structures, normally used to keep your code smaller by evaluating
a statement or collection of statements a specified number of times.

Let's say we want to alert a countdown from 10 to 0. Without loops, we'd have to write:

 var i = 10;
 alert(i);
 i--; // 9
 alert(i);
 i--; // 8
 alert(i);
 i--; // 7
 alert(i);
 i--; // 6
 alert(i);
 i--; // 5
 alert(i);
 i--; // 4
 alert(i);
 i--; // 3
 alert(i);
 i--; // 2
 alert(i);
 i--; // 1
 alert(i);
 i--; // 0
 alert(i);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

That's 22 lines of code and a lot of repetition. Using loops we can perform the same task. First let's
see how we'd do it with a simple while loop:

 var i = 10;
 while (i >= 0){
 alert(i);
 i--;
 }

Using while, we were able to compress the whole thing down to five lines, which is pretty cool. What
while does is test the condition set in the argument and then perform the statements within its curly
braces over and over until the condition is no longer met. In pseudocode, that looks like this:

 initialize;

 while(condition){

 statement;

 alter condition;
 }

It is important to remember, when dealing with loops, that you need to pay attention to both your
condition and how you alter your condition to make sure you loop will not execute ad infinitum. For
example:

 var i = 11;
 while(i > 10){
 i++;
 }
 alert(i); /* this statement is never reached because the
 while loop's condition is always met */

A similar loop type is do...while. The difference between do...while and while is that a do...while loop
is executed at least once, whereas a while loop may never execute at all:

 var i = 10;
 while(i > 10){
 i--;
 }
 alert(i); // 10, the while loop never executed
 do{
 i--;
 }while(i > 10)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 alert(i); // 9, because the do...while loop executed once

Here's the pseudocode for a do...while loop:

 initialize;

 do{

 statement;

 alter condition;

 }while(condition)

A do...while loop won't really shorten our countdown, but another loop type will. It is the for loop
and is perhaps the most common of all loop types. To rewrite our countdown requires only three lines
of code:

 for(var i = 10; i >= 0; i--){
 alert(i);
 }

That may seem a little odd, but it is really quite simple. Take a look at the pseudocode:

 for(initialize; test condition; alter){

 statement;
 }

To glance back at our example, what we did was initialize the for loop by declaring the variable i to
be equal to 10. We then say we want the loop to run as long as i is greater than or equal to 0.
Finally, we say that we want i to be decremented each time an iteration of the loop completes.

You will use for loops quite often when working with arrays , as they are useful for iterating through
its members, usually in the form

 for(var i=0; i < some_array.length; i++){
 // do something
 }

This example also serves as a good introduction to object properties, which will be discussed in a
moment. length is a property of arrays that tells you how many members an array has.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is a slight variant of the for loop called a for...in loop. This is very similar to the for loop, but
it loops through all of the members of an array without the need for initialization, condition, or
alteration. The pseudocode for a for...in loop is as follows:

 for(member in array){

 statement involving array[member];
 }

There are several nice things about for...in loops: they work well for iterating through both normal
arrays and associative arrays, and you don't need to know the length of the array you are iterating
through.

26.3.6.3. switch

Now that you understand a few more control structures, it's time to revisit the switch statement. As
you saw in the previous switch example, each case within a switch is tried and, if it matches the
argument of the switch, its statements are evaluated and the switch is exited (via break). There is
also normally a default case (simply called default) that can act as a fallback (or an error alert) if
none of the other cases are met.

To demonstrate the power of the switch, let's spice up the countdown loop a bit:

 for(var i=10; i >=0; i--){
 switch(i){
 case 2:
 alert('Almost...');
 break;
 case 1:
 alert('There...');
 break;
 case 0:
 alert('BOOM!');
 break;
 default:
 alert(i);
 break;
 }
 }

This code would initiate a countdown from 10 to 0, alert-ing each number, but replacing 2 with
Almost..., 1 with There..., and 0 with BOOM!.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

26.3.6.4. Functions

Now things get a little more interesting. Functions allow you to create discrete bits of reusable code,
which you can call at any given time. These will make up the bulk of what you write in JavaScript.

Creating a function is easy. Here's the pseudocode for making one:

 function functionName(arguments){

 statements;
 }

The function keyword designates the block as a function, and the arguments can be either a single
variable or a comma-separated list of variables. Let's make a basic one and then put it to use:

 function addThese(a, b){
 var combination = a + b;
 return combination;
 }
 var my_var = addThese(2, 10); // 12
 var my_str = addThese('A', ' string'); // 'A string'

The function we created adds/concatenates the two supplied arguments and then returns that new
value using the return keyword.

Functions do not need to return a value.

Functions can also be unnamed. These functions , called anonymous functions, are usually either
assigned to a variable for use as objects or are used in event handling, both of which we will discuss
shortly.

Before we move on, it is important to touch on the concept of variable scope. In JavaScript there are
two kinds of variables: global and local . Global variables are initialized outside of any functions and
are available for any function to use. Local variables are those variables that are declared within a
function. No other functions will have access to those variables. The var keyword plays an important
role in determining variable scope. Let's take a look at a quick example:

 function square(num){
 total = num * num;
 return total;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 var total = 50;
 var number = square(20);
 alert(total);

In this instance, the alert-ed value will be 400. The reason for that is that the square function sets
the variable total equal to the argument2 (squared). total is initialized outside of the function, so it's
value is changed from 50 to 400 when the square() runs. To keep the value of the global total from
changing, we need to make the total variable used in the function a local variable:

 function square(num){
 var total = num * num;
 return total;
 }
 var total = 50;
 var number = square(20);
 alert(total);

26.3.7. Objects

JavaScript is an object-based language and as such, many of its components are themselves objects
. Some of the native objects in JavaScript we've already discussed: Array and Function. Some others
are Element, Math, and Date. You can also create custom objects, which we'll get to in a moment.

An object is essentially a self-contained collection of data. There are two data types available to it:
properties and methods. Properties are values, while methods are functions. What makes objects
useful is that they share access to their properties and methods.

Let's look at two examples of the built-in JavaScript objects in action:

 var num = 1.76543;
 num = Math.round(num); // 2
 var now = new Date();
 var days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday'];
 var day = days[now.getDay()];
 alert('Today is ' + day);

In the first example, we used a method of the Math object to round our variable up. In the second
example, we created a new instance of the Date object and then used its getday() method to tell us
what today is by selecting the day name from an array of day names (the geTDay() method returns
the index number of the weekday, 0 through 6 starting with Sunday, which is why that worked).
Table 26-4 has a listing of a few native JavaScript objects and their most commonly used properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and methods.

What Is this?

this is a reserved keyword in JavaScript that has many uses but is often poorly
understood.

In the scope of an object, this is used to make the object reference itself. It is the owner
of the property or method. Such is the case with:

 function Cat(name, age){
 this.name = name;
 this.age = age;
 }

What this code does is set the name property of the Cat object (Cat.name) equal to the
argument passed the Cat object as name. The same goes for age. this can also be used
to assign methods to an object that are external to it. Take this example:

 function Cat(){
 this.purr = purr;
 }
 function purr(){
 alert('purrrrrrrrr');
 }

this can also be used to refer to the owner of a function. This usually occurs when
handling events, but it is where things can get really confusing.

The default owner (or this) of any function is the window, but there are ways of
attaching a function to an event (onclick, for example) that can make this reference the
element whose action it is associated with. Take the following code:

 function change(){
 this.style.color = '#ff0000';
 }
 element.onlick = change;

By assigning a function to an event in this way, we are copying the entire contents of
change() to the onclick of element. Whereas, if we were to assign it like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 function change(){
 this.style.color = '#ff0000';
 }
 element.onlick = function()(
 change();
 };

we would only be referencing the function, and this would still reference the owner of
change(): window. When it was triggered, the function would likely not produce the
desired effect.

To ensure that event-driven functions always target the intended element, it is
recommended that you pass a reference to it:

 function change(obj){
 obj.style.color = '#ff0000';
 }
 element.onlick = function()(
 change(this);
 };

By adding this simple fix, we can rest assured that our functions will behave as we intend
them to and limit any possible confusion with this.

Table 26-4. Native objects and their commonly accessed methods

Object
Property or
method

Use

Array length Sets or returns the number of members in an array

 concat() Joins two or more arrays and returns the result

 join() Puts all the members into a string, separated by the specified delimiter

 pop() Removes and returns the last element of an array

 push()
Adds one or more members to the end of an array and returns the new
length

 reverse() Reverses the order of the members in an array

 shift() Removes and returns the first member of an array

 slice() Returns selected members from an existing array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object
Property or
method

Use

 sort() Sorts the members of an array

 splice() Removes and adds new members to an array

 unshift()
Adds one or more members to the beginning of an array and returns the
new length

Date Date() Today's date and time

 getdate() The day of the month

 geTDay() The day of the week

 getFullYear() The year, as a four-digit number

Math abs(x) Returns the absolute value of a number

 ceil(x) Returns the value of a number rounded up to the nearest integer

 floor(x) Returns the value of a number rounded down to the nearest integer

 max(x,y) Returns the number with the highest value of x and y

 min(x,y) Returns the number with the lowest value of x and y

 random() Returns a random number between 0 and 1

 round(x) Rounds a number to the nearest integer

String length Returns the number of characters in a string

 concat() Joins two or more strings

 indexOf()
Returns the position of the first occurrence of a specified string value in
a string

 lastIndexOf()
Returns the position of the last occurrence of a specified string value,
searching backward from the specified position in a string

 match() Searches for a specified string value in a string

 replace() Replaces some characters with others in a string

 slice() Extracts a part of a string and returns the extracted part in a new string

 split() Splits a string into an array of strings

 substring() Extracts the characters in a string between two specified indexes

 toLowerCase() Displays a string in lowercase letters

 toUpperCase() Displays a string in uppercase letters

Now let's make a custom object, Cat, and provide two properties to it: name and age. We can also
define two methods for it: purr() and hiss(). Let's take a look at the construction of that object:

 function Cat(name, age){

 sort() Sorts the members of an array

 splice() Removes and adds new members to an array

 unshift()
Adds one or more members to the beginning of an array and returns the
new length

Date Date() Today's date and time

 getdate() The day of the month

 geTDay() The day of the week

 getFullYear() The year, as a four-digit number

Math abs(x) Returns the absolute value of a number

 ceil(x) Returns the value of a number rounded up to the nearest integer

 floor(x) Returns the value of a number rounded down to the nearest integer

 max(x,y) Returns the number with the highest value of x and y

 min(x,y) Returns the number with the lowest value of x and y

 random() Returns a random number between 0 and 1

 round(x) Rounds a number to the nearest integer

String length Returns the number of characters in a string

 concat() Joins two or more strings

 indexOf()
Returns the position of the first occurrence of a specified string value in
a string

 lastIndexOf()
Returns the position of the last occurrence of a specified string value,
searching backward from the specified position in a string

 match() Searches for a specified string value in a string

 replace() Replaces some characters with others in a string

 slice() Extracts a part of a string and returns the extracted part in a new string

 split() Splits a string into an array of strings

 substring() Extracts the characters in a string between two specified indexes

 toLowerCase() Displays a string in lowercase letters

 toUpperCase() Displays a string in uppercase letters

Now let's make a custom object, Cat, and provide two properties to it: name and age. We can also
define two methods for it: purr() and hiss(). Let's take a look at the construction of that object:

 function Cat(name, age){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.name = name;
 this.age = age;
 this.purr = function(){
 alert('purrrrrrrrr');
 };
 this.hiss = function(){
 alert('hissssssss!');
 };
 }

Now we can access the properties and methods of any Cats we create:

 var sabine = new Cat('Sabine', 9);
 var dakota = new Cat('Dakota', 8);
 alert('I should give Dakota ' + sabine.age +
 dakota.age + 'treats, because he is soooo good.');
 // that's 17 treats, by the way
 sabine.hiss();

There are numerous ways to create objects. One, which has become quite common lately, is called
an object literal. Here is the Cat object defined in that way:

 var Cat = {
 name: false,
 age: false,
 purr: function(){
 alert('purrrrrrrrr');
 },
 hiss: function(){
 alert('hissssssss!');
 }
 };

As you can probably guess, this method is not nearly as flexible, as you can't create multiple
instances of the Cat object. It can also be referred to as a singleton object as there can only be one
instance of that object type. This approach is usually reserved for creating discrete objects that will
not be replicated. Beyond that, however, the object's use is pretty much the same:

 Cat.name = 'Sabine';
 Cat.age = 9;
 Cat.hiss();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

26.4. Event Handling

With HTML 4.0, we were given the ability to tie scripts to certain events triggered on a web page. The
most famous use of events is still probably JavaScript rollovers on links, triggered by the onmouseover
and onmouseout events. Of course, CSS can handle that much easier now, but it doesn't render
events useless, as there are many we can tap into (see Table 26-5) and put to good use.

Table 26-5. Common events

Event handler Event

onblur An element loses focus (note: buggy).

onchange The content of a field changes.

onclick The mouse clicks an object.

onerror An error occurs when loading a document or an image.

onfocus An element gets focus.

onkeydown A keyboard key is pressed.

onkeypress A keyboard key is pressed or held down.

onkeyup A keyboard key is released.

onload A page or an image is finished loading.

onmousedown A mouse button is pressed.

onmousemove The mouse is moved.

onmouseout The mouse is moved off an element.

onmouseover The mouse is moved over an element.

onmouseup A mouse button is released.

onsubmit The submit button is clicked on a form.

Tapping into events is not all that difficult to do. That said, there are good ways and bad ways. The
old way to tap into an event was to place it inline as an attribute of the element you wanted the
event handled on:

 <a href="http://www.oreilly.com"
 onmouseover="window.status='Go to the O\'Reilly website';
 return true;" onmouseout="window.status='';
 return true;">O’Reilly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, we are updating the status bar of the browser window with the text "Go to the
O'Reilly website" when the mouse passes over the O'Reilly link and resetting it when the mouse
moves off of it. This example also goes against the central tenet of web standards: separation of
content from presentation and behavior.

This particular means of event handling is just poor form, but there are plenty of examples on the
Web of event handling actually decreasing the accessibility and usability of the page. Take this
hypothetical example:

 <a href="#"
 onclick="popup('http://www.oreilly.com');">O’Reilly

Apart from the use of what we can only imagine is a pop-up function (which has its own accessibility
and usability issues), what is wrong with this picture? What happens to that link if a user doesn't
have JavaScript enabled in her browser? It doesn't work, plain and simple.

When we work with events, we need to be considerate of our users and conscious of any potential
limitations they may have. After all, if they can't use your site, it is unlikely they will stay, let alone
return.

There are better ways to write this link. This example still keeps the behavior and the content tied
together, but at least it degrades gracefully:

 <a href="http://www.oreilly.com"
 onclick="popup(this.href); return false;">O’Reilly

The onclick event handler is now using the DOM (discussed in Chapter 27) to access the href of the
anchor element and pass that to the pop-up function. If JavaScript were not available or disabled, the
link would function as links normally do, opening the target in the current window.

An even better way to handle events is outside of the (X)HTML altogether. Using methods discussed
in Chapter 27, you can identify elements on the page and tie events to them. Here's a little sneak
peek at how:

 function setPopups(){
 var links = document.getElementsByTagName('a');
 for(var i=0; i < links.length; i++){
 if(links[i].href.indexOf('http://') != -1){
 links[i].onclick = function(){
 popup(this.href);
 return false;
 };
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 window.onload = function(){
 setPopups();
 };

This is by no means a production-quality script, it is simply a demonstration of how to assign a
function to an event. In this example, we set two event handlers, one to the onclick event of all links
on the page (provided http:// is found in the HRef) and another to the onload of the window.

There are other methods of assigning event handlers as well. In fact, a search has been underway to
find the best means of adding and removing events. Dean Edwards recently offered the most robust
solution (see http://dean.edwards.name/my/events.js). Using his addEvent() function, we could
rewrite our little pop-up script to read:

 function setPopups(){
 var links = document.getElementsByTagName('a');
 for(var i=0; i < links.length; i++){
 if(links[i].href.indexOf('http://') != -1){
 addEvent(links[i], 'click', function(){
 popup(this.href);
 return false;
 });
 }
 }
 }
 addEvent(window, 'load', setPopups);

and, like the previous example, we would not need any inline event handlers. The other benefit to
Dean's function is the ability to add multiple events to a single event handler.

http://dean.edwards.name/my/events.js
http://lib.ommolketab.ir
http://lib.ommolketab.ir

26.5. The Browser Object

Finally, you should at least briefly consider the Browser Object Model or Browser Object. Using
JavaScript, you can not only read and control the page and its contents, but also read and adjust
properties of the browser displaying it. This can be in the form of resizing the window, or simply
getting the value of the URI displayed in the address bar. Table 26-6 summarizes a few of the
common properties and methods available to you in the Browser Object, which is accessed
programmatically as window.

Table 26-6. Browser Object properties and methods

Property/method Description

event Represents the state of an event

history Contains the URLs the user has visited within a browser window

location Gives read/write access to the URI in the address bar

opener Sets or returns a reference to the window that created the window

parent Returns the parent window

screenLeft
Returns the x-coordinate of the upper-left corner of the browser relative to the
upper-left corner of the screen

screenTop
Returns the y-coordinate of the top corner of the browser relative to the top
corner of the screen

status Sets or returns the text in the status bar of the window

alert() Displays an alert box with a specified message and an OK button

close() Closes the current window

confirm() Displays a dialog box with a specified message and an OK and a Cancel button

focus() Sets focus on the current window

open() Opens a new browser window

print() Prints the contents of the current window

setTimeout()
Calls a function or evaluates an expression after a specified number of
milliseconds

http://lib.ommolketab.ir
http://lib.ommolketab.ir

26.6. Where to Learn More

For a more in-depth discussion of JavaScript and access to a lot more properties and methods of
native objects, be sure to check out JavaScript: The Definitive Guide by David Flanagan and
JavaScript and DHTML Cookbook by Danny Goodman, both of which are published by O'Reilly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 27. DOM Scripting
by Aaron Gustafson

The Document Object Model (DOM) is an Application Programming Interface (API) for working with
structured documents or, in layman's terms, a means of accessing and manipulating the content of
an HTML (or XML) file. The DOM is language agnostic and can be accessed by numerous languages,
including C++, Java, Perl, PHP, Python, and Ruby. This chapter, however, will focus solely on how
JavaScript interfaces with the DOM. Though our main focus will be working with (X)HTML documents,
many of these same techniques will work equally well on XML documents.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.1. A Sordid Past

During the Browser Wars of the late '90s, the two major players in the web browser world, Netscape
and Microsoft, enabled developers to manipulate a web page to create what marketing folks termed
Dynamic HTML (DHTML). DHTML was essentially a combination of HTML for markup, CSS for style,
and JavaScript for manipulating both of those (mostly in the forms of mouseovers and form
validation).

DHTML was good in theory, but the two companies pushing the technology each developed distinct
ways of coding the same behavior and accessing the same parts of a document. This led many
developers down the dark path to "code forking" --that is, writing code to do the same thing in at
least two different ways, in order to supply each browser with code only it understands through an
intricate (and often fragile) system of browser-detection scripts.

For instance, Netscape enabled you to interact with its proprietary label elements when you gave
them a unique ID:

document.layers['myLayer'];

Microsoft enabled similar access, but through a slightly different method:

document.all['myLayer'];

And the differences didn't end there.

Programming in DHTML was time-consuming both in initial development as well as maintenance.
Scripts, which should have been short and sweet, sprawled out over hundreds of lines of code. It was
incredibly inefficient and frustrating for many. Eventually, DHTML became something of a black art,
and the topic wasn't often discussed in polite web design circles. You will sometimes hear the
collective access methods of this period in the history of the DOM referred to as "DOM Level 0."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.2. Out of the Dark Ages

October 1998 saw the release of DOM Level 1 by the web standards body, the World Wide Web
Consortium (W3C). A collective effort on the part of Microsoft, Netscape, and many other W3C
members, the standardized DOM finally enabled DHTML to deliver on its promise of bringing
interactivity to the web page through JavaScript. Moreover, it provided a means to manipulate any
structured document using any programming language (as discussed above). The W3C defines the
DOM as a "platform- and language-neutral interface that will allow programs and scripts to
dynamically access and update the content, structure, and style of documents."

Thanks in a large part to the lobbying efforts of the Web Standards Project (WaSP), the newly
standardized DOM found a home in Internet Explorer 5 and Netscape 6, making life easier for web
developers everywhere. Unfortunately, this change went largely unnoticed in the web community,
and many developers continued to ignore DHTML because of the stigma it gained early on.

With the arrival of 2003 came a resurgence of interest in the DOM and a shift in language away from
the term DHTML to the new term: DOM Scripting. The shift in nomenclature is a conscious attempt to
distance standards-based DOM manipulation from its checkered past. DOM Scripting encourages
feature sniffing, browser independence, and graceful degradation. Sounds like a tall order, but in
reality, more than 95% of the browsers on the market support at least DOM Level 1, with many even
supporting the current standard, DOM Level 2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.3. The DOM

Perhaps the easiest way to think of the DOM is to think of the document tree . Let's take the
following XHTML document as an example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>Sample XHTML</title>
 <meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
 <meta http-equiv="Content-Language" content="en-us" />
</head>
<body>
 <h1>This is a heading, level 1</h1>
 <p>This is a paragraph of text with a
 link.</p>

 This is a list item
 This is another
 And another

</body>
</html>

This is a pretty basic web page, making use of a few different elements. If we were to visualize this
as a document tree , it would look something like Figure 27-1.

Figure 27-1. A sample document tree

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A document tree like this is roughly akin to a very high level view of the DOM's node tree.

Essentially, the DOM is a collection of nodes. These nodes usually take one of three forms:

Element nodes

Attribute nodes

Text nodes

These nodes are arranged in a hierarchy that we sometimes refer to using a familial model. In
(X)HTML, the hierarchy begins with the html element, which is the root element, meaning it has no
ancestors. In the above example, html has two child nodes (head and body). The head element has
three child nodes of its own (a title and two meta elements), as does body (h1, p, and ul). The
relationship goes in the other direction as well, with each child having a parent node. Similarly,
elements that share a parent are referred to as sibling nodes.

If you are familiar with using selectors in Cascading Style Sheets (CSS), referring to element nodes in
a familial structure should make perfect sense. There are, however, a few differences between the
document tree used in CSS and node tree of the DOM, which bear further discussion.

Figure 27-1 is a very high-level view of the DOM because it is only showing the element nodes. Using
the DOM, we can dig deeper. Figure 27-2 examines the paragraph element of the example above.

Figure 27-2. An examination of the p element in Figure 27-1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, the paragraph contains three child nodes of its own: two text nodes (the rounded
white boxes) and an anchor element (a). The a, itself, has a child node that is a text node and it also
has an attribute node: its href (the gray rounded box).

Using the DOM, we can leverage these relationships to do all sorts of things to our documents.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.4. Manipulating Documents with the DOM

The majority of your DOM Scripting work will likely center around reading from and writing to the
document. But before you can do that, you need to understand how to traverse the node tree.

27.4.1. Finding Your Way Around

The DOM offers many ways to move around and find what you want. As any HTML or XML document
is essentially a collection of elements arranged in a particular hierarchy, we traverse the DOM using
the elements as markers . In fact, a lot of what we do in the DOM is akin to wayfinding: using
elements (especially uniquely id-ed ones) as signposts, which let us know where we are in our
documents and help us get deeper and deeper into our documents without losing our way.

Let's take the following snippet of (X)HTML, for example:

<div id="content">
 <h1>This is a heading</h1>
 <p>This is a paragraph.</p>
 <h2>This is another heading</h2>
 <p>This is another paragraph.</p>
 <p>Yet another paragraph.</p>
</div>

If you wanted to find the H2 in this snippet, you would need to use two of JavaScript's interfaces to
the DOM, getElementById() and getElementsByTagName():

var the_div = document.getElementById('content');
var h2s = the_div.getElementsByTagName('h2')
var the_h2 = h2s[0];

In the first line, you use the DOM to find an element on the page with an id equal to content and
assign it to the variable the_div.

If you don't already have an element reference to begin with, default to the
document object, which refers to the page. getElementById() is always used
with document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you have your container div assigned to the_div, you can proceed to find the h2 you want,
using getElementsByTagName() (line 2). That method returns an array of elements (H2s), referred to
as a collection. Finally, you know that the desired h2 is the first one in that collection and, as Chapter
26 showed, the first element in an array has an index of 0, therefore, the h2 we want is h2s[0].
There's a shorter way to write all of this, too:

var the_h2 = document.getElementById(
 'content').getElementsByTagName('h2')[0];

On a side note, if you ever want a collection of all of the elements in a given document, you can use
the universal selector (*) in combination with the getElementsByTagName() method:

var everything = document.getElementsByTagName('*');

Although not a horribly efficient means of collecting information from a page, this approach can be
useful in certain instances.

The methods getElementById() and getElementsByTagName() are both quite useful, but sometimes
you need to be able to move around without knowing the id, or even the type of the element you are
accessing. For this reason, there are numerous properties available to move about the document
easily: parentNode, firstChild, lastChild, nextSibling, and previousSibling. Each does exactly
what you would expect: allows you to access any element filling the specified role. To access the first
paragraph after the h2, for instance, you could write:

var the_el = document.getElementById(
 'content').getElementsByTagName('h2')[0].nextSibling;

Another property available to you is childNodes, which is a collection of the element's children
(element and text nodes). In certain instances, it may also be useful to test for child nodes before
attempting to access them programmatically, using the hasChildNodes() method.

If you are moving around in the DOM using parentNode, nextSibling, and the like and want to know
more information about the element you are targeting, there are a few properties available to you to
provide more information. The first is nodeType, which, as you would expect, returns the type of node
you are targeting. There are three commonly used nodeTypes, which are numbered:

1

Element node

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2

Attribute node

3

Text node

The Empty Text Node Problem

It is important to keep in mind how much your (X)HTML source affects the DOM.
Browsers with a strict interpretation of the DOM, such as the Mozilla family, will include
whitespace used to indent your elements as text nodes. This behavior, although correct,
can wreak havoc on your scripts if you are looking to use such properties as firstChild,
lastChild, nextSibling, and so on. Take the following code snippet for example:

 This is a list item
 This is another list item

In the code, the DOM sees a ul with five children:

A text node with a carriage return and two spaces

A list item (li)

Another text node with a carriage return and two spaces

Another list item

A final carriage return

If you're not paying attention to this and hope to grab the first list item with firstChild,
you are likely to be surprised when an element is not returned.

To avoid this problem, you can either eliminate all unnecessary whitespace from your
document or you could use a little script on those elements that you want to access the
children of, by using this method:

function stripWS(el){
 for(var i = 0; i < el.childNodes.length; i++){
 var node = el.childNodes[i];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if(node.nodeType == 3 &&
 !/\S/.test(node.nodeValue))
 node.parentNode.removeChild(node);
 }
}

A similar function called cleanWhitespace() is available as an Element method in the
Prototype library (prototype.conio.net), which also includes several other helpful
functions and methods.

You can also find the name of the node using the property nodeName. In the case of element and
attribute nodes , nodeName is the element name or attribute name, respectively. Even if you are using
XHTML, which requires lowercase tag and attribute names, the value returned by nodeName may be in
uppercase, so it is considered a best practice to consistently convert the returned value to either
upper- or lowercase when using it in a comparison. Using the (X)HTML example from earlier:

<div id="content">
 <h1>This is a heading</h1>
 <p>This is a paragraph.</p>
 <h2>This is another heading</h2>
 <p>This is another paragraph.</p>
 <p>Yet another paragraph.</p>
</div>

we could trigger an alert() using nodeType and nodeName whenever an element node is
encountered, letting us know what it is:

var the_div, children, node, name;
the_div = document.getElementById('content');
if(the_div.hasChildNodes()){
 children = the_div.childNodes;
 for(node in children){
 if(children[node].nodeType == 1){
 name = children[node].nodeName.toLowerCase();
 alert('Found an element named "'+name+'"');
 }
 }
} else {
 return;
}

As you can see, there are many ways to "walk" the DOM: the direct route of getElementById(), the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

meandering path of getElementsByTagName(), and the step-by-step method of parent, child, sibling
traversal. There are also numerous tools at your disposal to aid in orienting yourself, such as id
attributes, but also node types and names.

27.4.2. Reading and Manipulating Document Structure

Once you can find your way around the DOM, it is easy to collect and alter the content of elements on
the page. The content you collect can be in the form of other elements, attribute values, and even
text content. The primary means of doing this is by using what are sometimes referred to as the
"getters and setters" of the DOM: innerHTML, nodeValue, getAttribute(), and setAttribute().

27.4.2.1. innerHTML

When compared to the surgical precision of other DOM methods and properties, innerHTML has all the
subtlety of a sledgehammer. Originally part of the Internet Explorer DOM (i.e., not part of the W3C
DOM), but now widely supported, this element property can be used to get and set all of the markup
and content within the targeted element. The main problem with using innerHTML to get content is
that the collected content is treated as though it is a string, so it's pretty much only good for moving
large amounts of content from one place to another.

Using the example above, you could collect all of the contents of the content div by writing:

var contents = document.getElementById('content').innerHTML;

Similarly, you could replace contents of the div by setting its innerHTML equal to a string of text that
includes HTML:

var contents = 'This is a new sentence.';
document.getElementById('content').innerHTML = contents;

It is also possible to append content to an element using innerHTML:

var div = document.getElementById('content').innerHTML;
div.innerHTML += '<p>This is a paragraph added using innerHTML.</p>';

27.4.2.2. nodeValue

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another property you can use to get and set the content of your document is nodeValue. The
nodeValue property is just what it sounds like: the value of an attribute or text node. Assuming the
following (X)HTML snippet:

Easy Designs

you could use nodeValue to get the value of the text node in the link and assign it to a variable
named text:

var text = document.getElementById('easy').firstChild.nodeValue;

This property works in the other direction as well:

document.getElementById(
 'easy').firstChild.nodeValue = 'Easy Designs, LLC';

In the above example, we set the text of the link equal to Easy Designs, LLC, but we could just as
easily have used concatenation to add the , LLC to the text:

document.getElementById('easy').firstChild.nodeValue += ', LLC';

27.4.2.3. getAttribute()/setAttribute()

You can collect the value of an element's attributes using the getAttribute() method. Assuming the
same (X)HTML as the example above, you could use getAttribute() to collect the value of the
anchor's href attribute and place it in a variable called href:

var href = document.getElementById('easy').getAttribute('href');

The value returned by getAttribute() is the nodeValue of the attribute named as the argument.

Similarly, you can add new attribute values or change existing ones using the setAttribute()
method. If you want to set the href value of a specific page on easy-designs.net, you could do so
using setAttribute():

var link = document.getElementById('easy');

http://lib.ommolketab.ir
http://lib.ommolketab.ir

link.setAttribute('href', 'http://www.easy-designs.net/index.php');

You could also add a title to the link using setAttribute():

link.setAttribute('title', 'The Easy Designs, LLC homepage');

This brings us to our next topic: creating document structure using the DOM.

HTML Versus XML

There are a few differences between the HTML DOM and the XML DOM that can cause
some confusion. Both are equally valid approaches, although the XML DOM is preferred
for its forward compatibility.

Using the HTML DOM, you have quick access to element attributes, with each available
as a property of that element:

link.href

To read the same attribute using the XML DOM, you would need to use the
getAttribute() method:

link.getAttribute('href');

Not only that, but accessing attributes as properties in the HTML DOM gives you the
ability to both get and set the value of the attribute:

 var old_href = link.href;
link.href = '/new/file.html';

There are also a few instances when you must use the HTML DOM method for cross-
browser compatibility. Internet Explorer, for instance, does not allow read/write access to
the class attribute using getAttribute() or setAttribute(). Instead, you must use the
className property of an element. Luckily, this property is well supported on other
browsers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When accessing the for attribute (used to associate label elements with form controls),
you are in a similar situation. IE does not understand label.getAttribute('for'), but,
instead, forces you to use label.htmlFor.

You can use both the HTML DOM and the XML DOM approach in (X)HTML documents. If
you plan on serving your XHTML files as XML, however, HTML DOM properties (which
also include innerHTML) will not work.

27.4.3. Creating Document Structure

JavaScript has a host of methods available for creating markup on the fly. We've already seen that
setAttribute() can be used to add new attributes, in addition to modifying existing ones, but by
using createElement() and createTextNode() methods, we can do so much more.

27.4.3.1. createElement()

As you'd expect, the createElement() method (which is used on the document object) creates and
returns a new element. To build a div for example, do the following:

var new_div = document.createElement('div');

This assigns your newly created element to the variable new_div. To actually see the newly created
div on the page, we should probably put some content in it.

name and Element Creation in IE

Internet Explorer has a few DOM-related peculiarities, some of which we've already
discussed. This one is particularly odd, however. In IE, elements that are generated
through the DOM are incapable of being assigned a name attribute in any standard way.
The following example should work (it does in all other browsers):

var input = document.createElement('input');
input.setAttribute('name', 'fname');

You might think that this is another special case like that of class or for, but the
following HTML DOM method doesn't work either:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

input.name = 'fname';

This is not normally a problem unless you are working with forms. If you are planning to
use a generated form field to collect a response that will be used only by JavaScript, you
should be fine as you can address a field by giving it an id. On the other hand, if you are
planning on the form being submitted to the server, the value for the generated field will
not go with it as it has no name to associate with the value.

The solution? A bastardization of the createElement() method that only works in IE:

var input = document.createElement('<input name="fname">');

In a standards-compliant browser, this fails because it tries to generate an element
named <input name="fname">, which is not valid. So what do we do? We work around it.

The createNamedElement() method, when added to the document object as seen here,
will allow you to generate named elements with the DOM that will work everywhere:

document.createNamedElement = function(type,

 name){
 var element;
 try {
 element = document.createElement(
 '<' + type + ' name="' + name + '">');
 } catch(e){}
 if(!element || !element.name){
 element = document.createElement(type);
 element.name = name;
 }
 return element;
}

Here's a quick breakdown of what the script does:

Creates the variable element.1.

Tries createElement() the IE way (using try...catch to trap any errors).2.

If element or element.name is false when the script reaches the conditional, the
script generates the element the correct way.

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

Returns element.4.

To use it, simply call document.createNamedElement(), passing it the element you want
to generate and the name you want to give it:

 input = document.createNamedElement('input',
 'fname');

For more information, view the discussion at easy-
reader.net/archives/2005/09/02/death-to-bad-dom-implementations.

27.4.3.2. createTextNode()

Using the createTextNode() method (also on the document object), we can generate a text node to
attach to our newly created div. Let's assign the new text node to the variable text:

var text = document.createTextNode('This is a new div');

We now have two newly created nodes, but they aren't connected. To do that, we need to use the
DOM to make the text node a child of the div. We can accomplish this in a number of ways.

27.4.3.3. appendChild()

The most common means of making one node a child of another is to use the appendChild()
method.

new_div.appendChild(text);

appendChild() is a method available to any element node, and it takes only a single argument: the
node you want to insert. With appendChild(), you can also skip the intermediate step of assigning
the text node to a variable, and directly append the new text node to the div:

new_div.appendChild(document.createTextNode('This is a new div'));

Of course, this only puts those two nodes together, so we still need to put our div into the body of
the document to have it show up in the browser. Using appendChild(), we can add the div to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

body of the page, but appendChild() simply does what it says: appends the argument to the target
element. The div would become the last element in the body. What if we wanted our new div to be
the first element in the body?

Scalpel Versus Sledgehammer

As we discussed earlier, innerHTML originated from the Internet Explorer DOM, but now
enjoys widespread (though occasionally begrudging) acceptance. When compared to the
surgical precision of the W3C's node-based content insertion and manipulation methods,
innerHTML just feels, well, imprecise.

That said, there are some times where innerHTML can make your life a little easier. Take
the insertion of special characters, for instance. Let's say we wanted to insert
grammatically correct curly quotes into the content of a paragraph. Using a node-based
approach would look like this:

 var p, text;
 p = document.createElement('p');
 text = 'Here we have some \u201Cquotes.\u201D.';
 p.appendChild(document.createTextNode(text));

Chances are, you know the HTML entities a lot better than you know the Unicode
character codes, so having to look them up each time you want to use a special
character is a bit of an annoyance. Using innerHTML, you could simply set the content of
the p using a more comfortable syntax:

p.innerHTML = 'Here we have some “quotes.”';

Similarly, adding numerous text nodes and inline elements as content within an element,
such as a paragraph, can be an arduous process. Even something as simple as creating a
sentence with an emphasis can be annoyingly convoluted:

 p.appendChild(document.createTextNode('This content is '));
 var em = document.createElement('em');
 em.appendChild(document.createTextNode('emphasized'));
 p.appendChild(em);
 p.appendChild(document.createTextNode('.'));

The above example uses a lot of shortcuts, but it is still a ton of steps. Using innerHTML
would make the process a whole lot easier:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

p.innerHTML += ' This content is emphasized.';

Of course, one benefit of using the DOM method is that the inserted nodes, if assigned to
a variable, remain accessible through that variable even after being inserted into the
document. So if we used the node-based example above, we could quickly swap out that
em element (assigned to the em variable) for another text node:

 em.parentNode.replaceChild(
 document.createTextNode('not emphasized'), em);

The choice of approach is ultimately up to you. There certainly are benefits to each
though, again, it should be stressed that documents served as XML must use the DOM
node method.

27.4.3.4. insertBefore()

Well, in that case, we can use the insertBefore() method.

var body = document.getElementsByTagName('body')[0];
body.insertBefore(new_div, body.firstChild);

insertBefore() takes two arguments: the first is the node you want to insert, and the second is the
node you want to insert it in front of. In our example, we are inserting the new div in front of the
firstChild of the body element.

27.4.3.5. replaceChild()

Let's suppose that instead of inserting our new div before the firstChild of the body element, we
wanted it to replace the firstChild.

To do so, we could use the replaceChild() method:

body.replaceChild(new_div, body.firstChild);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Like insertBefore(), replaceChild() takes two arguments: The first argument is the node you
want inserted in the place of the node that is the second argument.

27.4.3.6. removeChild()

Because we're on the topic of node manipulation, we should take a look at the removeChild()
method as well.

Using removeChild(), we can remove a single node or an entire node tree from the document. This
method takes a single argument: the node you want to remove. Suppose we wanted to remove the
text node from our div. We could accomplish that easily using removeChild():

div.removeChild(div.firstChild);

We could even use removeChild() to delete the entire body from the page, which would not be a
good thing, but demonstrates its power:

body.parentNode.removeChild(body);

27.4.3.7. cloneNode()

One final method available to you when working with DOM nodes is cloneNode(). Using this powerful
method, you can replicate an individual node (by supplying the method with an argument of false)
or the node and all of its descendant nodes (by supplying it with an argument of TRue). Here is an
example of cloneNode() in use:

var ul = document.createElement('ul');
var li = document.createElement('li');
li.className = 'check';
for(var i=0; i < 5; i++){
 var new_li = li.cloneNode(true);
 new_li.appendChild(document.createTextNode('list item ' + (i + 1)));
 ul.appendChild(new_li);
}

The benefits may not seem immediately apparent by looking at this example, but there is a major
benefit in performance: cloning a node is a much faster process than building a new one from
scratch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.5. Working with Style

Once you've mastered the art of structural manipulation with the DOM, you should turn your focus to
working with Cascading Style Sheets. The DOM allows access to add, modify, and remove CSS styles.
DOM-based CSS manipulation works just like applying inline style using the style attribute.

It is possible, in most modern browsers, to use the setAttribute() method to assign a value to the
style attribute of an element:

var div = document.getElementById('content');
div.setAttribute('style', 'color: #f00; font-weight: bold;');

Unfortunately, Internet Explorer (at least through Version 6) does not support this method of style
application. Thankfully, there is an HTML DOM convention that is available consistently in all
browsers: the style property.

div.style.color = '#f00';
div.style.fontWeight = 'bold';

Although not nearly as efficient as using setAttribute(), this convention does allow granular control
of styles.

The style property can be used to get or set style values.

var old_color = div.style.color; // red
div.style.color = '#f90'; // orange

Individual CSS properties are available as properties of the style property. Hyphenated property
names are shortened to camel case to avoid conflict with the subtraction operator (-) in JavaScript.
For example, font-weight becomes fontWeight, border-left-width becomes borderLeftWidth, and so
on.

The DOM also gives you the ability to disable and enable entire style sheets. To do this, you simply
tap into the link elements within the head of the page and then use getAttribute() to find the style
sheet you want to disable/enable. Setting the disabled property of a style sheet's link element to
true will disable it. Setting it to false will enable it again.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.5.1. Resources

Before we dive into some real-world examples, here are a few great resources to help you on your
way:

WaSP DOM Scripting Task Force (domscripting.webstandards.org)

DOM Scripting: Web Design with JavaScript and the Document Object Model by Jeremy Keith
(Friends of Ed)

DHTML Utopia: Modern Web Design Using JavaScript & DOM by Stuart Langridge (SitePoint)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.6. DOM Scripting in Action

To better appreciate the power of DOM Scripting, take a look at two relatively simple examples .
Instead of breaking down the JavaScript into chunks, helpful JavaScript comments have been added
that discuss what the script is doing at each step in the process. The reasoning for this is twofold: it
lets you see the script as a whole and it gets you used to seeing comments in code (a habit which is
worth picking up to ease long-term maintenance).

27.6.1. Example 1: Style Sheet Switcher

This function is an extreme simplification of the technique employed in Invasion of the Body
Switchers (alistapart.com/articles/bodyswitchers) by Andy Clarke and James Edwards. It also makes
use of John Resig's addEvent() function
(quirksmode.org/blog/archives/2005/10/_and_the_winner_1.html) for simple event management. It
uses a single external CSS file to handle three different font sizes for the browser. We are going to
change the font size of the page by changing a class on the body element.

We start with the external style sheet (switcher.css):

body.normal {
 font-size: 80%;
}
body.large {
 font-size: 100%;
}
body.huge {
 font-size: 150%;
}
h1 {
 font-size: 2em;
}
p {
 font-size: 1em;
}

Then we have our XHTML page, with a link to our CSS file, and a placeholder script referring to our
JavaScript file (switcher.js):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>Switcher Example</title>
 <meta http-equiv="content-type" content="text/html;
 charset=iso-8859-1" />
 <meta http-equiv="Content-Language" content="en-us" />
 <link rel="stylesheet" type="text/css" media="screen"
 href="switcher.css" />
 <script type="text/javascript" src="switcher.js"></script>
</head>
<body class="normal">
 <div id="content">
 <h1>Title</h1>
 <p>This is a paragraph.</p>
 <p>This is another paragraph.</p>
 </div>
 <div>
 <form id="switcher_form" action="switch.php">
 <fieldset>
 <legend>Please choose a font size</legend>
 <select name="size">
 <option value="normal" selected="selected">Normal</option>
 <option value="large">Large</option>
 <option value="huge">Huge</option>
 </select>
 <input type="submit" value="Apply It" />
 </fieldset>
 </form>
 </div>
</body>
</html>

Before we get to the JavaScript, let's take a quick look at the XHTML being used. Notice that the
switcher form has an action (switcher.php). Even though we will be taking control of this form with
JavaScript, we've provided a server-side alternative for non-JavaScript-enabled browsers. This is a
prime example of graceful degradation.

All right, now on to the JavaScript. As this script will have only one use per page, I am going to
create it as an object literal (see Chapter 26):

var switcher = {
 body: false, // the body element of the page
 form: false, // the switcher form
 controller: false, // the controlling form element
 init: function(){ // the initialization function
 /* check for method availability,
 return if used methods are unsupported
 or id-ed elements used are not available */
 if(!document.getElementById ||

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 !document.getElementsByTagName ||
 !document.getElementById('switcher_form')) return;
 // assign the body
 switcher.body = document.getElementsByTagName('body')[0];
 // assign the form
 switcher.form = document.getElementById('switcher_form');
 // assign the select element to the controller
 switcher.controller = switcher.form.getElementsByTagName(
 'select')[0];
 // add an event
 switcher.addEvent(switcher.controller, // to the controller
 'change', /* trigger with the
 onchange event */
 function(){ // run this function
 /* set the body's class equal to
 the value of the controller */
 switcher.body.className = this.value;
 });
 // get the submit button
 var input = switcher.form.getElementsByTagName('input')[0];
 // delete it as our onchange event has made it redundant
 input.parentNode.removeChild(input);
 },
 addEvent: function(obj, type, fn){ // the add event function
 if (obj.addEventListener)
 obj.addEventListener(type, fn, false);
 else if (obj.attachEvent) {
 obj["e"+type+fn] = fn;
 obj[type+fn] = function() {
 obj["e"+type+fn](window.event);
 };
 obj.attachEvent("on"+type, obj[type+fn]);
 }
 }
};
/* using the object's built-in addEvent function,
 trigger this object's init() method on page load */
switcher.addEvent(window, 'load', switcher.init);

27.6.2. Example 2: Page Glossary

This script is pageGlossary from Easy Designs (easy-designs.net/code/pageGlossary/). It traverses a
specified portion of the document (identified by an id), collecting all of the abbreviation, acronym,
and definition elements, and writes them out to the designated portion of the page (also identified by
an id) as a formal page glossary. The script also removes duplicate entries and sorts the contents
alphabetically. Here it is:

var pageGlossary = {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 getFrom: false, // where to collect terms from
 buildIn: false, // where to place the glossary
 glossArr: [], // the working glossary as an array
 usedArr: [], // terms we've used (to track duplicates)
 init: function(fromId, toId){ /* init() takes two arguments:
 * id of the collection area
 * id of the destination */
 // make sure the required methods and elements are available
 if(!document.getElementById ||
 !document.getElementsByTagName ||
 !document.getElementById(fromId) ||
 !document.getElementById(toId)) return;
 // set the collection area
 pageGlossary.getFrom = document.getElementById(fromId);
 // set the destination area
 pageGlossary.buildIn = document.getElementById(toId);
 // run the collection method (below)
 pageGlossary.collect();
 // if the glossary array has no members, quit now
 if(pageGlossary.usedArr.length < 1) return;
 // resort the array in alphabetical order using ksort (below)
 pageGlossary.glossArr = pageGlossary.ksort(
 pageGlossary.glossArr);
 // run the build method (below)
 pageGlossary.build();
 },
 collect: function(){ // the collection method
 /* get all the abbr, acronym and dfn elements
 inside the collection area */
 var dfns = pageGlossary.getFrom.getElementsByTagName('dfn');
 var abbrs = pageGlossary.getFrom.getElementsByTagName('abbr');
 var acros = pageGlossary.getFrom.getElementsByTagName('acronym');
 var arr = []; // a temp array to hold the collections
 // populate the temp array
 arr = arr.concat(dfns, abbrs, acros);
 // quit if nothing was collected
 if((arr[0].length == 0) &&
 (arr[1].length == 0) &&
 (arr[2].length == 0)) return;
 // save processing time by storing the length of the raw array
 var arrLength = arr.length;
 // interate through the raw array
 for(var i=0; i < arrLength; i++){
 // store the nested array length
 var nestedLength = arr[i].length;
 // skip this array if it has no members
 if(nestedLength < 1) continue;
 // iterate through the array
 for(var j=0; j < nestedLength; j++){
 // make sure the element has some children
 if(!arr[i][j].hasChildNodes()) continue;
 // collect the term

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 var trm = arr[i][j].firstChild.nodeValue;
 // collect the definition
 var dfn = arr[i][j].getAttribute('title');
 // if this term is not in the used array
 if(!pageGlossary.inArray(trm, pageGlossary.usedArr)){
 // push it to the used array
 pageGlossary.usedArr.push(trm);
 /* and store its definition in the glossary array,
 using the term as its key value */
 pageGlossary.glossArr[trm] = dfn;
 }
 }
 }
 },
 build: function(){ // the builder method
 // create a level heading
 var h2 = document.createElement('h2');
 // have it read "Page Glossary"
 h2.appendChild(document.createTextNode('Page Glossary'));
 // create the definition list
 var dl = document.createElement('dl');
 // give it a class of pageGlossary
 dl.className = 'pageGlossary';
 // iterate through the glossary array
 for(key in pageGlossary.glossArr){
 // create a definition term element
 var dt = document.createElement('dt');
 // make its text the term
 dt.appendChild(document.createTextNode(key));
 // append it to the list
 dl.appendChild(dt);
 // create the definition data element
 var dd = document.createElement('dd');
 // make its text the definition
 dd.appendChild(document.createTextNode(
 pageGlossary.glossArr[key]));
 // append it to the list
 dl.appendChild(dd);
 }
 // append the h2 to the target element
 pageGlossary.buildIn.appendChild(h2);
 // append the dl to the target element
 pageGlossary.buildIn.appendChild(dl);
 },
 addEvent: function(obj, type, fn){ // the add event function
 if (obj.addEventListener) obj.addEventListener(type, fn, false);
 else if (obj.attachEvent) {
 obj["e"+type+fn] = fn;
 obj[type+fn] = function() {
 obj["e"+type+fn](window.event);
 };
 obj.attachEvent("on"+type, obj[type+fn]);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 },
 ksort: function(arr){ // the key sorting function
 var rArr = [], tArr = [], n=0, i=0, el;
 for(el in arr) tArr[n++] = el + '|' + arr[el];
 tArr = tArr.sort();
 var arrLength = tArr.length;
 for(var i=0; i < arrLength; i++){
 var x = tArr[i].split('|');
 rArr[x[0]] = x[1];
 }
 return rArr;
 },
 inArray: function(n, h){ // the inArray test
 var l = h.length;
 for(var i=0; i < l; i++){
 if(h[i] === n) return true;
 }
 return false;
 }
};
// add pageGlossary.init() method to the page's onload event
pageGlossary.addEvent(window, 'load', function(){
 pageGlossary.init('content',
 'extras');
 });

http://lib.ommolketab.ir
http://lib.ommolketab.ir

27.7. Supplement: Getting Started with Ajax

The start of 2005 saw the rise of a relatively new technology, dubbed "Ajax" by Jesse James Garrett
of Adaptive Path. Ajax stands for Asynchronous JavaScript and XML. In a nutshell, it is the use of the
nonstandard XMLHttpRequest() object to communicate with server-side scripts. It can send as well
as receive information in a variety of formats, including XML, HTML, and even text files. Ajax's most
appealing characteristic, however, is its "asynchronous" nature, which means it can do all of this
without having to refresh the page. This allows you to update portions of a page based upon user
events and provides one of the cornerstones of Rich Internet Applications (RIA) referred to in
discussions of "Web 2.0."

The DOM plays into Ajax in a number of ways. How you use the DOM depends a good deal on how
you handle the content returned from the server. You can treat the content as simple text using the
responseText property of the server response, or you can treat it as XML using responseXML.
Assuming the content you pull back from the server is an (X)HTML snippet and you've gotten it as
responseText, you could drop that content into a particular spot on the page using innerHTML. On the
flip side, if the content you pull back is XML and you've gotten it as responseXML, you can traverse its
DOM, cherry-picking or performing functions on the elements, attributes, and text nodes.

This probably sounds very confusing, but it is pretty easy once we go over a few simple examples.
For these examples, we are using the XHConn library for simplifying our interaction with
XMLHttpRequest(). The XHConn library is freely available at xkr.us/code/javascript/XHConn/ and
allows simple access to XMLHttpRequest() by creating a new XHConn object and then initiating its
connect() method as you will soon see.

As with the DOM Scripting examples (above), for a blow-by-blow of what the script is doing, read the
JavaScript comments.

27.7.1. Example 1: Ajax with innerHTML

For a simple innerHTML-based Ajax example, we'll create a quasi-functional address book application.
We'll start with the XHTML page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>Ajax Address Book</title>
 <meta http-equiv="content-type" content="text/html;
 charset=iso-8859-1" />
 <meta http-equiv="Content-Language" content="en-us" />
 <script type="text/javascript" src="XHConn.js"></script>
 <script type="text/javascript" src="addressBook.js"></script>
</head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<body>
 <h1>Simple Ajax Address Book</h1>
 <form action="getAddress.php" method="POST">
 <fieldset>
 <legend>Please Choose a Person</legend>
 <select id="person" name="person">
 <option value="">Choose Someone</option>
 <option value="1">Bob Smith</option>
 <option value="2">Janet Jones</option>
 </select>
 <input type="submit" id="submit" name="submit"
 value="Get the Address" />
 </fieldset>
 </form>
 <pre id="address"></pre>
</body>
</html>

As you can see, we have a simple form with a select, from which to choose a person. Again, we are
providing a fallback action for the form, in case our JavaScript cannot run. Below the form, we have
a simple pre element that will be displaying the address information from the database.

And now for the JavaScript. Basically, we will be commandeering the select and using its onchange
event handler to trigger an XMLHttpRequest() call to obtain the address information for the selected
individual. The server will be returning this information as a string like this:

Bob Smith
123 School Street
Anytown, NY 12345

We will take this return as a string and dump it into the pre element using innerHTML. Take a look at
the code:

var addressBook = {
 myConn: false, // the XMLHttpRequest
 body: false, // the body element
 target: false, // the target container
 loader: false, // the loader
 init: function(controlId, sbmtBtnId, targetId){
 /* init() takes three arguments:
 * the id of the controller (select)
 * the id of the submit button
 * the id of the target container */
 // test for methods & elements
 if(!document.getElementById ||
 !document.getElementsByTagName ||

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 !document.getElementById(controlId) ||
 !document.getElementById(sbmtBtnId) ||
 !document.getElementById(targetId)) return;
 // set and test XHConn, quitting silently if it fails
 addressBook.myConn = new XHConn();
 if(!addressBook.myConn) return;
 // get the body
 addressBook.body = document.getElementsByTagName('body')[0];
 // get the controller
 var control = document.getElementById(controlId);
 // get the submit button
 var sbmtBtn = document.getElementById(sbmtBtnId);
 // remove the submit button
 sbmtBtn.parentNode.removeChild(sbmtBtn);
 // get the target
 addressBook.target = document.getElementById(targetId);
 // add the onchange event to the controller,
 addressBook.addEvent(control,
 'change',
 function(){
 if(this.value != ''){ /* if there's a
 value, trigger
 getAddress */
 addressBook.getAddress(this.value);
 } else { // otherwise empty the target
 addressBook.target.innerHTML = '';
 }
 });
 },
 getAddress: function(id){ // the Ajax call
 // let's let the user know something is happening (see below)
 addressBook.buildLoader();
 // this is the function that is run once the Ajax call completes
 var fnWhenDone = function(oXML) {
 // get rid of the loader
 addressBook.killLoader();
 // insert the returned address information into the target
 addressBook.target.innerHTML = oXML.responseText;
 };
 // use XHConn's connect method
 addressBook.myConn.connect('index.php', 'POST',
 'id='+id, fnWhenDone);
 },
 buildLoader: function(){ // builds a loader
 // create a new div
 addressBook.loader = document.createElement('div');
 // give it some style
 addressBook.loader.style.position = 'absolute';
 addressBook.loader.style.top = '50%';
 addressBook.loader.style.left = '50%';
 addressBook.loader.style.width = '300px';
 addressBook.loader.style.lineHeight = '100px';

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 addressBook.loader.style.margin = '-50px 0 0 -150px';
 addressBook.loader.style.textAlign = 'center';
 addressBook.loader.style.border = '1px solid #870108';
 addressBook.loader.style.background = '#fff';
 // give it some text
 addressBook.loader.appendChild(
 document.createTextNode('Loading Data, please wait\u2026'));
 // append it to the body
 addressBook.body.appendChild(addressBook.loader);
 },
 killLoader: function(){ // kills the loader
 // remove the loader form the body
 addressBook.body.removeChild(addressBook.loader);
 },
 addEvent: function(obj, type, fn){ // the add event function
 if (obj.addEventListener) obj.addEventListener(type, fn, false);
 else if (obj.attachEvent) {
 obj["e"+type+fn] = fn;
 obj[type+fn] = function() {
 obj["e"+type+fn](window.event);
 };
 obj.attachEvent("on"+type, obj[type+fn]);
 }
 }
};
/* run the init() method on page load, passing it
 the required arguments */
addressBook.addEvent(window, 'load', function(){
 addressBook.init('person',
 'submit',
 'address');
 });

To see this script in action, visit easy-designs.net/books/WDN3/27/Ajax1/index.php.

27.7.2. Example 2: Ajax with Nodes

Let's alter the example, and instead of returning a string from the server, this time, make it XML:

<file>
 <name>
 <first>Bob</first>
 <last>Smith</last>
 </name>
 <address>
 <street>123 School Street</street>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <city>Anytown</city>
 <state>NY</state>
 <zip>12345</zip>
 </address>
</file>

The XHTML page remains the same, but we need to make some minor adjustments to the JavaScript.
To highlight the differences, I will touch on each change individually.

The first change, to the onchange event handler of the select, is pretty simple:

...
 addressBook.addEvent(addressBook.control,
 'change',
 function(){
 if(this.value != ''){
 addressBook.getAddress(this.value);
 } else {
 addressBook.target.removeChild(
 addressBook.target.firstChild);
 }
 });
...

Instead of setting the content of the target to empty using innerHTML, the DOM is removing the node
that is the target's first child.

Next up is the getAddress() method:

...
 getAddress: function(id){
 addressBook.buildLoader();
 var fnWhenDone = function(oXML) {
 addressBook.killLoader();
 if(addressBook.target.hasChildNodes()){
 addressBook.target.removeChild(addressBook.target.firstChild);
 }
 xml = oXML.responseXML;
 var name = addressBook.getNodeValue(xml, 'first') + ' ' +
 addressBook.getNodeValue(xml, 'last');
 var address = addressBook.getNodeValue(xml, 'street');
 var csz = addressBook.getNodeValue(xml, 'city') + ', ' +
 addressBook.getNodeValue(xml, 'state') + ' ' +
 addressBook.getNodeValue(xml, 'zip');
 var txt = document.createTextNode(name+"\n"+address+"\n"+csz);
 addressBook.target.appendChild(txt);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 };
 addressBook.myConn.connect('getAddress.php', 'POST',
 'id=' + id, fnWhenDone);
 },
...

As we are working with XML, we can use the responseXML property to get the return from the server
as a node tree. Then we can traverse that tree, collecting the tidbits of information we need. In this
example, we added a new method (getNodeValue()) that makes working with XML returns easier:

...
 getNodeValue: function(tree, el){
 return tree.getElementsByTagName(el)[0].firstChild.nodeValue;
 },
...

This method takes two arguments: the node tree (tree) and the element (el) whose content is
wanted. It returns the nodeValue of the firstChild of the first el within tree or, in other words, the
text value of the node requested from the node tree.

Once we have collected all of the requested contents from the XML, the text string is rebuilt and
generated with the DOM before being appended to the target. The end result can be seen at easy-
designs.net/books/WDN3/27/Ajax2/index.php.

You may be wondering, why do both examples do the exact same thing? It shows how you can work
with two completely different backend systems and still get the results you want. In Ajax, as in many
things, flexibility is important to get the job done.

27.7.3. Ajax Resources

For more information on Ajax, consult:

Foundations of Ajax by Ryan Asleson and Nathaniel T. Schutta (Apress)

Fiftyfoureleven's XMLHttpRequest Examples (see
www.fiftyfoureleven.com/resources/programming/xmlhttprequest/examples)

The Ajaxian Blog (ajaxian.com)

AHAH, a microformat for dealing with XMLHttpRequest() and innerHTML
(microformats.org/wiki/rest/ahah)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part V: Web Graphics
Chapter 28, Web Graphics Overview

Chapter 29, GIF Format

Chapter 30, JPEG Format

Chapter 31, PNG Format

Chapter 32, Animated GIFs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 28. Web Graphics Overview
Simply put, web graphics must be low-resolution, bitmapped images saved in GIF, JPEG, or PNG
format. That statement may be loaded with new terms and acronyms, but rest assured, this chapter
provides an explanation of each component. It also takes a look at how color works on monitors and
in web browsers, and how that may impact your design decisions. Finally, it provides tips on finding
and producing web graphics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

28.1. Web Graphic File Formats

Although there are dozens of graphic file formats out there in the world, only three are supported by
web browsers for use on web pages: GIF (pronounced "jif"), JPEG ("jay-peg"), and PNG ("ping").
These formats were selected for use on the Web by browser creators because they are easily ported
from platform to platform over a network.

What follows is a brief introduction to each of these online graphic formats. More detailed descriptions
are provided in the upcoming chapters dedicated to each format.

28.1.1. GIF (Graphic Interchange Format)

The GIF (Graphic Interchange Format) file format is the traditional darling of the Web. It was the first
file format to be supported by web browsers, and it continues to be the format for the vast majority
of graphics on the Web today.

GIFs are indexed color files with a maximum 8-bit palette capacity, which means that a GIF can
contain a maximum of 256 pixel colors. Because they compress color information by rows of pixels,
GIF files are most appropriate for graphics that contain areas of flat color, such as logos, cartoon-like
illustrations, icons, and line art. GIFs are not efficient at saving photographic images.

GIFs have other advantages. You can make parts of a GIF file transparent, allowing your background
image or color to show through. They can also contain multiple images, allowing for simple, self-
contained animations. The vast majority of animated ad banners you see on the Web are animated
GIFs.

See Chapter 29 for complete information on the GIF file format. Animated GIFs are discussed in
Chapter 32.

28.1.2. JPEG (Joint Photographic Experts Group)

JPEG (Joint Photographic Experts Group) files contain 24-bit color informationthat's millions of colors,
as opposed to a GIF file's 256. They use what is called a lossy compression scheme, which means
that some image information is thrown out in the compression process, but in most cases, the
degradation of the image is not detrimental or even noticeable. You can control the amount of
compression when you save an image as a JPEG, so you can prioritize smaller file sizes or better
image quality, based on your needs. JPEG offers excellent image quality packed into smaller files.

Photographic images, or any images with subtle gradations of color, are best saved as JPEG files,
because JPEG compression is most efficient on continuous tones of color. JPEGs, however, are not a
good solution for flat, graphical images, because the compression scheme may blur sharp edges,
mottle colors, and result in a file that will generally be a lot larger than the same image saved as a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GIF.

See Chapter 30 for complete information on the JPEG file format.

28.1.3. PNG (Portable Network Graphic)

Unlike GIF and JPEG, PNG (Portable Network Graphic) was developed specifically with the Web in
mind. PNGs can support 8-bit indexed color, 16-bit grayscale, or 24-bit true color images with a
lossless compression scheme, which means higher image quality and, in some cases, file sizes even
smaller than their GIF counterparts. Not only that, but PNG files also have some nifty features such
as built-in gamma control and variable transparency levels (which means you can have a background
pattern show through a soft drop shadow).

Despite PNG being a robust file format, browsers and graphics tools were slow to fully support the
format (variable transparency levels weren't supported in Internet Explorer until Version 7). For that
reason, it lags significantly behind GIF and JPEG in popularity.

See Chapter 31 for complete information on the PNG file format.

28.1.4. Choosing the Right Format

Part of the trick to making quality web graphics that download quickly is choosing the appropriate file
format for the job. Table 28-1 provides a good starting point.

If you use Adobe Photoshop/ImageReady or Macromedia Fireworks, you can
preview your image and resulting file size in various file formats to help make
choosing a format easier; you can even do side-by-side comparisons.

Table 28-1. Choosing the right file format

If your image... Use... Because...

Is graphical, with flat colors
GIF or
8-bit
PNG

It excels at compressing flat color.

Is a photograph or contains
graduated color (such as a
watercolor painting)

JPEG
JPEG compression works best on images with blended color,
and the format can display millions of colors, resulting in
better image quality at smaller sizes.

Is a combination of flat and
photographic art

GIF or
8-bit
PNG

In most cases, it is preferable to prevent dithering in the flat
colors and to tolerate some dithering in the photographic
areas. JPEG is notoriously inefficient at compressing flat
colors and may blur text and fine details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If your image... Use... Because...

Requires transparency
GIF or
PNG

Only GIF and PNG allow transparent areas within the
graphic.

Requires animation GIF GIF is the only file format that can contain animation frames.

Requires transparency
GIF or
PNG

Only GIF and PNG allow transparent areas within the
graphic.

Requires animation GIF GIF is the only file format that can contain animation frames.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

28.2. Image Resolution

GIFs, JPEGs, and PNGs are pixel-based, or bitmapped (also called raster), images. When you zoom
in, you can see the image is like a mosaic made up of many pixels (tiny, single-colored squares).
These are different from vector graphics that are made up of smooth lines and filled areas, all based
on mathematical formulas (Figure 28-1).

Figure 28-1. Bitmapped versus vector graphics

When dealing with bitmapped images , you must be aware of the resolution, usually measured in the
number of pixels per inch (ppi) of the image. On the Web, graphics are always displayed on low-
resolution monitors, so high resolutions typical of print are unnecessary. Web designers typically
create graphics at a resolution of 72 ppi as compared to 266 ppi, 600 ppi, or even higher resolutions
common to print design.

Working at a low resolution may be an adjustment for a designer accustomed to handling the hi-res
images appropriate for print. Most notably, the image quality is lower because there is not as much
image information in a given space. This tends to make the image look more grainy or pixelated, and
unfortunately, that's just the nature of images on the Web.

28.2.1. Image Size

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a graphic is displayed on a web page, the pixels in the image map one to one with the display
resolution of the monitor. Monitors with a higher display resolution use smaller pixels. Therefore, a
graphic that appears to be about one inch square on your 72 ppi monitor may actually appear to be
quite a bit smaller on a monitor with a resolution closer to 100. See Figure 28-2.

Figure 28-2. The size of an image is dependent on monitor resolution

28.2.2. Good Bye Inches, Hello Pixels

Because the final dimensions of a graphic are dependent on the resolution of the monitor, the whole
notion of "inches" and even "pixels per inch" becomes irrelevant in the web environment. So while 72
ppi has become the de facto standard, in the end, the only meaningful measurement of a web
graphic is its actual number of pixels.

After a while, thinking in pixels comes quite naturally. What's important is the size of the graphic
relative to other graphics on that page and to the overall size of the browser window. For instance, if
I want a header graphic to fit in an 800 x 600 monitor, I would make sure that it measures 760 pixels
wide or less (to allow for the margins and scrollbar). Other graphics on the page will be measured in
pixels relative to that image.

After this example, it should be fairly clear why graphics scanned in or shot on a digital camera at
high resolutions (such as 300 dpi) are inappropriate for the Web. At higher resolutions, it's typical for
images to be several thousand pixels across. With browser windows as small as 750 pixels wide, all
those pixels are unnecessary and result in graphics that extend well beyond the browser window.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

28.3. Color on the Web

It is an inescapable fact of web design that there is no guarantee that users will see the colors on
your page the way you do. For some, they will look brighter; for others, darker. Some may see a
dither pattern where you see smooth color . This is the nature of designing for a medium that is
dependent on computer monitors for final display.

Although you can't absolutely control the end display of colors on your page, you can understand the
ways monitors handle color. This understanding may influence the decisions you make when
designing.

28.3.1. RGB Color

Computer monitors use the RGB color model to display colors. RGB color combines red, green, and
blue light (thus, RGB) in various amounts to create a range of colors between black and white. The
model is additive, which means the more light you add, the closer the resulting color is to white.

Although all monitors use the RGB color model, the actual hues of red, green, and blue light vary
from monitor to monitor. This means that even specific RGB colors that are identified numerically
may look quite different on different machines. As a web designer, you need to allow for a certain
amount of variation in the way your chosen colors will look to your site's visitors.

28.3.2. Color Depth

The number of colors from the RGB color space a monitor can display at one time is known as its
color depth. More specifically, color depth is the number of bits of data used to represent the color of
a single pixel on the screen (also called bits per pixel or bpp).

The vast majority of monitors fall into one of three color depth categories: Truecolor (millions of
colors), Highcolor (also called HiColor; thousands of colors), or Indexed color (256 colors or fewer).
How these systems work has a direct impact on the quality of your colors and tasks such as matching
colors in graphics and backgrounds.

28.3.2.1. Truecolor (24- or 32-bit)

Truecolor uses 24 bits of information per pixel, with 8 bits devoted to each color channel (red, green,
and blue). Now we're going to do a little math. Eight bits of data can describe 256 colors (28 = 256),
so that's 256 shades of red, 256 shades of green, and 256 shades of blue. The total possible number
of combined colors is calculated by multiplying 256 x 256 x 256 for a total of 16,777,216 (usually
referred to as "millions of colors").

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specific colors from the Truecolor space are identified by their numerical RGB values. Each value is an
integer from 0 to 255. For instance, the RGB values for a particular dark orange color are R:198,
G:83, B:52.

32-bit monitors also display Truecolor (16.7 million colors) but they include 8 bits of empty space
that may be used to represent an alpha channel. 32-bit monitors have become popular because
many modern computer systems work in units of 32, allowing for better optimization in graphics
display.

Professional quality image editing programs, such as Photoshop, use 48-bit color (that's 16 bits, or
65,536 tones per channel) to track colors in images internally. Although the extra colors do not
display on the monitor, the finer level of mathematical granularity is useful for Photoshop to handle
subtle and repetitive image adjustments without rounding errors.

As of August 2005, approximately 80% of users viewed the Web with 24- or
32-bit monitors (statistics from TheCounter.com).

28.3.2.2. Highcolor (15- or 16-bit)

Highcolor systems are capable of displaying thousands of colors. The most popular variation of
Highcolor monitor is 16 bit, which assigns 5 bits of data to the red channel, 6 bits to green (because
the human eye can discern more shades of green), and 5 bits to blue. This is often referred to as the
565 model. If you do the math, that's 32 x 32 x 64 for a total of 65,536, or "thousands of colors."

15-bit monitors use a 555 model, with 5 bits of data assigned to each color channel, resulting in
32,768 colors. 15-bit monitors are extremely rare these days, so this section focuses on Highcolor in
16-bit monitors.

It is important to understand that the 16-bit high color spectrum is fundamentally different from 24-
bit color. It is not merely a subset of the colors in the Truecolor space. It is an entirely different set of
colors. To better understand, consider just the red color channel. In 24-bit color, the range of shades
from 0% (black) to 100% (white) is divided into 256 increments. In 16-bit Highcolor, the range of
shades from black to white is divided into 32 increments. Aside from black and white, the shades on
the two scales do not coincide; they are always slightly different. Apply this across all three color
channels and it should be clear how you get a completely different set of colors (at least
mathematically) on 16-bit monitors.

What this means for web designers is that whatever color you specify by RGB color values on a scale
from 1 to 255 (as is the case in image-editing programs and in HTML), that color will always be
slightly shifted to the nearest available color on 16-bit monitors. Whether it gets bumped a shade
lighter or darker often depends on the platform, the browser, and whether the color is in HTML, an
inline graphic, or a background graphic. The upcoming "Matching Web Colors" section addresses
these issues in more detail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As of August 2005, approximately 20% of users viewed the Web with 16-bit
monitors (statistics from TheCounter.com).

28.3.2.3. Indexed color (8-bit)

In 8-bit color systems, there are 8 bits of data to handle all the color in the monitor, which means
that the monitor can display only 256 (28 = 256) colors at one time. There are also monitors with
lower color depths, such as 1-bit (two colors: black and white) and 2-bit color (four colors), but they
are fading out of use by the general public.

Indexed color is fundamentally different from the previous two models. Rather than assigning bits per
channel, an indexed color system keeps a set of colors (called a palette or color map) that are
available to be displayed at any one time. In 8-bit displays, each color in the palette is assigned a
number, or an index , from 0 to 255. The color of each pixel in the display is represented by its index
number, which then corresponds to the respective color in the palette.

Indexed color palettes consist of colors from the full RGB color space (in other words, 8-bit color is a
subset of Truecolor). The 8 bits of data merely limit the number of colors that can be displayed at one
time.

Understanding indexed color in monitors is useful for understanding how color
works in graphics in the GIF format, which also use 8-bit, indexed color.

For system-level operations, computers use a specific set of 256 colors called the system palette .
Macs and PCs use slightly different sets of 256 colors in their system palettes. Specific applications
may use their own palettes; for instance, browsers have a built-in palette, known as the web palette,
discussed in the following section.

When an 8-bit system or application encounters a color that is not in its current palette, it does its
best to approximate it. This can happen in two ways: shifting and dithering. Sometimes colors are
simply replaced by, or shifted to, the nearest available palette color. Alternately, the monitor may try
to approximate a color by dithering, mixing pixels of similar colors available in the palette, resulting in
a random dot pattern.

Either method can result in large discrepancies between how color graphics and pages are rendered
on a 24-bit display versus an 8-bit display.

As of August 2005, fewer than 1% of consumers used 8-bit monitors (according
to TheCounter.com). The percentage of 8-bit monitors has been steadily
declining as computers become faster and more powerful.

28.3.3. The Web Palette

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Web browsers running on 8-bit monitors reduce and remap colors to their own built-in palette known
as the web palette . It is also known as the web-safe palette, browser-safe palette, non-dithering
palette, the Netscape palette, and the 6 x 6 x 6 cube.

The web palette consists of the 216 colors shared by the Macintosh and Windows system palettes;
therefore, theoretically, colors chosen from the web palette render accurately on Mac or Windows
displays. The web palette was optimized for Macs and Windows; Unix machines use a different color
model for their system palette , so "web-safe" colors may still shift or dither when viewed on Unix
systems.

The remaining 40 colors that make up the difference between the 216 browser colors and the
maximum 256 palette colors are taken from the system palette.

You can see samples of all 216 colors online at
www.learningwebdesign.com/webpalette.html.

28.3.3.1. The web palette growing obsolete

It is important to note that the web palette gets called into play on 8-bit monitors only. As mentioned
earlier, 24- and 16-bit monitors do not use palettes and are capable of displaying colors without
dithering.

Back in the mid-1990s, the majority of users had 8-bit monitors, making it necessary to ensure web
pages would look more or less the same on all 8-bit systems.

As of this writing, 8-bit monitors account for less than 3% of traffic on the Web (or less than 1%
percent, depending on whose statistics you use), and that share is continuing to shrink as old
systems are retired. Many handheld devices still use 8-bit displays, but at the tiny size, there are
more pressing graphic concerns than minor color shifts. As 8-bit displays vanish, so does the
usefulness of the web palette.

For an excellent and in-depth technical explanation of monitor color and how
the web-safe palette fails to be web safe, I highly recommend "Death of the
Websafe Color Palette?" by David Lehn and Hadley Stern on Webmonkey
(hotwired.lycos.com/webmonkey/00/37/index2a.html). Although they wrote it
in 2000, their findings still hold true.

Despite the fact that the web palette is on its way out, it is common to hear the name bandied about
by clients and to find it handy in web authoring tools. For that reason, you may find it useful to have
some level of familiarity with the palette and how to use it.

28.3.3.2. The web palette in numbers

In web production, we most often manipulate colors in the web palette by their numerical values. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

web palette recognizes 6 shades of red, 6 shades of green, and 6 shades of blue, resulting in 216
possible color values (6 x 6 x 6 = 216). This is sometimes referred to as the 6 x 6 x 6 color cube.

In image editing programs, colors are specified by their decimal RGB values on a scale from 0 to 255.
Web-safe colors use the following six values: 0, 51, 102, 153, 204, and 255 (ranging from black to
white) for each color channel.

In HTML and CSS, colors are identified by the hexadecimal (base-16) equivalents of the same RGB
values: 00, 33, 66, 99, CC, and FF. See Appendix D for a more thorough explanation of hexadecimal
notation.

Table 28-2 shows the decimal, hexadecimal, and percentage values for each of the six component
values in the web palette.

Table 28-2. Numerical values for web palette colors

Decimal Hexadecimal Percentage

0 (darkest) 00 0%

51 33 20%

102 66 40%

153 99 60%

204 CC 80%

255 (lightest) FF 100%

28.3.3.3. Designing with the web palette

The primary advantage to designing with the web palette is that you know that the colors in your
graphics (and HTML web page elements) will not dither or shift on 8-bit monitors. If that audience is
still a concern, you can select colors from the web palette when you are creating your graphics and
web page elements. The web palette is available in all web authoring tools via a handy pop-up palette
usually located right near where you need to enter a color value. In Photoshop, you can load the
web-safe palette into the swatches for easy access.

28.3.4. Gamma (Monitor Brightness)

Gamma refers to the overall brightness of a computer monitor's display. In more technical terms, it is
a numerical adjustment for the nonlinear relationship of voltage to light intensitybut feel free to think
of it as brightness. The default gamma setting varies from platform to platform. Images and pages
created on a Macintosh generally look a lot darker when viewed on a Windows or Unix/Linux system.
Images created on a Windows machine generally look washed out when seen on a Mac. The higher
the gamma value, the darker the display. Table 28-3 shows the standard gamma settings for the
major platforms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 28-3. Common default gamma settings

Platform Gamma

Macintosh 1.8

PC 2.2

Unix 2.3-2.5

Because the vast majority of users are viewing the Web from the Windows environment, gamma
differences are of particular concern to developers who are designing pages and graphics on a
Macintosh. However, if you are designing under Windows and anticipate a large percentage of Mac
traffic to your site (such as a site for graphic designers), be sure to test your pages under Macintosh
gamma conditions.

Both Adobe Photoshop and Macromedia Fireworks have controls for simulating the gamma of
alternate platforms. In Photoshop, select View Proof Setup Windows RGB or Macintosh RGB.
In Fireworks, select View Windows Gamma if you are on a Mac or vice versa. These adjustments
affect only how the image appears on your monitor; they do not in any way affect the actual
brightness of the image. If you find that your image is too dark or too light under the alternative
gamma settings , you need to make manual adjustments to the image brightness to fix it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

28.4. Web Graphics Production Tips

The nature of the Web and web browsers requires some special considerations when producing
graphics. The unique limitations and techniques may take some getting used to, especially if you are
more familiar with creating graphics for print.

This section presents a number of production tips that apply to web graphics in general. Additional
format-specific techniques can be found in the respective GIF, JPEG, and PNG chapters.

28.4.1. Use Web Graphics Tools

Nearly all commercial graphics programsboth bitmap image editors and vector drawing
programsinclude some function for saving or exporting graphics in GIF and JPEG format. But if you
are serious about creating high-quality images at small file sizes, it is highly recommended that you
invest in a tool with web-specific features, such as Adobe Photoshop and ImageReady or Macromedia
Fireworks. If you work on a PC and are on a budget, you might want to try out Corel Paint Shop Pro ,
which has many of the same features as Photoshop, but at a much lower cost.

Without a doubt, the de facto standard for creating web graphics is Adobe Photoshop and its web-
specific sidekick, ImageReady. Since Version 5.5, Photoshop has included many web-specific features
such as a Save to Web option that shows previews of your graphic in different file formats and at
different compression rates.

The other major contender is Macromedia Fireworks, which has similar web graphics features as
ImageReady with the addition of vector drawing tools. As this book goes to print, the fate of
Fireworks is unclear as a result of Macromedia's acquisition by Adobe.

One of the greatest benefits of using these tools is that they offer previews of your optimization
settings (even providing side-by-side comparisons), so you can make adjustments to the settings
while keeping an eye on the resulting file size and overall image quality. Both offer very similar
controls for file format, color depth, palette dithering, loss, and color palette editing.

28.4.2. Keep File Sizes Small

Here is the single most important guideline a web designer can follow:

Keep the file sizes of your graphics as small as possible!

The nature of publishing over a network creates a new responsibility for designers to be sensitive to
the issue of download times. In fact, many corporate clients will set a kilobyte limit (sometimes
referred to as the K-limit) that the sum of all the files on a page cannot exceed. Even if keeping files
small is not a priority for you, it may be for your clients.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Detailed strategies for minimizing graphic file size for each file format appear in the format-specific
chapters. Here are a few general strategies that help graphics load more quickly:

Limit dimensions

Though fairly obvious, the easiest way to keep file size down is to limit the dimensions of the
graphic itself. There aren't any magic numbers; just don't make graphics any larger than they
need to be.

Design for the compression scheme

One of the key ways to make your files as small as possible is to take full advantage of their
compression schemes. For instance, because you know that GIF compression likes flat colors,
don't design GIF images with gradient color blends when a flat color will suffice. And Because
JPEGs like soft transitions and no hard edges, you can try strategically blurring images that will
be saved in JPEG format. These techniques are discussed further in the "Optimizing" sections of
the GIF and JPEG chapters.

Reuse and recycle

A browser temporarily stores files it has displayed in a cache, making them immediately
available if that page is called up again. You can take advantage of the browser's cache by
reusing graphics whenever possible on your site. That way, each graphic will need to download
only once, speeding up the display of subsequent pages.

The only trick is that each instance of the graphic must have the exact same URL in its
element; that is, it must be a single graphic in a single directory. If you make copies of a
graphic and put them in different directories, even though the file has the same name, the
browser will do a fresh download when it sees the new pathname.

28.4.3. Work in RGB Mode

When you are creating graphics for the Web, it is important to work in the RGB color mode. CMYK
mode, although common to the print world, is not appropriate for web graphics . JPEGs in CMYK
mode may not display at all in some browsers.

If you work in Adobe Photoshop/ImageReady or Fireworks, it is easy to create and save an RGB
original while merely exporting compressed JPEGs and indexed color GIFs or PNGs using the Save to
Web or Export feature.

If you need to make an adjustment to an existing GIF, you should convert the color mode back to
RGB before editing. This allows colors to be added from the full RGB spectrum to create blends and
smooth text edges. If you work in index color mode, you will be limited to the colors in that GIF's
index color palette (which may only be a handful of pixel colors).

The only exceptions to this rule are black and white images , which you can edit in grayscale mode.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

28.4.4. Resize Images with Care

Although you know to limit your graphics' dimensions, take care when resizing them. Here are some
useful tips:

Convert to RGB before resizing

To resize an image, Photoshop (or any bitmap image editing tool) needs to create new
transitions between areas of color in the image. Indexed color images (such as GIFs) are
limited to the colors in the image's color table, which does not give Photoshop enough colors to
create convincing "in-between" colors for these transitions.

Don't resize larger

As a general rule, it is a bad idea to increase the dimensions of a low-resolution image (such as
72 ppi images typically used on the Web). Image editing tools cannot add image information to
the filethey can only stretch out what's already there. This results in a pixelated and blotchy
image.

Resize smaller in increments

Images can be made slightly smaller without much degradation in image quality; however,
drastic resizing (making a snapshot-sized image postage-stamp size) usually results in an
unacceptably blurry image. When acquiring an image (whether by scanning or from a CD-
ROM), it is best to choose an image that is slightly larger than final size. That way, you don't
need to make it larger, and you won't have to scale it down too much. If you must make a very
large image very small, try doing it in a number of steps, fixing quality or sharpening at each
stage.

Keep an original

Be sure to keep a clean copy of the original image in case you make something too small.
Starting over is better than enlarging the image or resizing repeatedly.

28.4.5. Use Anti-Aliased Text

In general, to create professional-looking graphics for the Web, you should use anti-aliased text .
Anti-aliasing is the slight blur used on curved edges to make smoother transitions between colors.
Aliased edges, by contrast, are blocky and stair-stepped. Figure 28-3 shows the effect of aliasing
(left) and anti-aliasing (right).

Figure 28-3. Aliased and anti-aliased edges

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One case in which anti-aliasing is not the best option is when using very small text (10 to 12 points
or smaller, depending on the font design), for which anti-aliased edges blur the characters to the
point of illegibility. Text at small sizes may fare better when anti-aliasing is turned off or set to None.
You need to experiment on your own.

The trade-off for better-looking graphics is file sizeanti-aliasing adds to the number of colors in the
image and may result in a slightly larger file size. In this case, the improved quality is usually worth a
couple of extra bytes.

28.4.6. Matching Web Colors

In the course of designing web pages, it is common to need to match the color of a graphic to an
adjoining graphic, a background graphic, or an HTML color. Unfortunately, matching colors on web
pages is not always possible due to the way monitors and graphic formats tend to slightly shift RGB
colors. Even graphics and HTML elements with identical numeric RGB values will not necessarily
match perfectly, as explained in the following scenarios.

28.4.6.1. Inline and background colors on 16-bit monitors

Often, you'll want a graphic in the foreground to blend seamlessly with the background HTML color or
a background graphic. As mentioned earlier, this is problematic on 16-bit monitors, because all RGB
colors need to be remapped to the available 16-bit color space. Unfortunately, the same RGB value
may be shifted in different directions depending on whether it appears as an inline graphic or a
background graphic. The result is that you can see the rectangular edges of the graphic standing out
against the background color. This is possible even if the same image file is used in the foreground
and background. The outlines may be subtle, or they may be glaring. It's unpredictable and
unavoidable.

The solution for avoiding mismatched colors is to make the inline graphic a transparent GIF or PNG.
That way, the background color merely shows through the edges of the graphic, and the rectangle is
gone.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

28.4.6.2. Adjacent GIFs and JPEGs

There are times when you want abutting GIF and JPEG graphics to blend seamlessly together, as in
the case of an image that has been sliced up and held together with a table. Unfortunately, there is
no way to preserve specific numerical RGB settings in a JPEG because of its lossy compression
scheme. So although the images may start out with the exact same RGB color in the abutting edges,
in the JPEG, that color has the potential to get blotchy and shift, while in the GIF, it is preserved in an
index color table. The severity of this effect is dependent on the type of image and the degree of
JPEG compression.

The only true solution is to make all adjacent graphics GIFs or 8-bit PNGs so the RGB values can be
maintained. Otherwise, play around with higher quality JPEG compressions to minimize the
difference.

28.4.7. For Further Reference

For more information on graphic production principles as they apply to the Web, see Lynda
Weinman's very popular books, Designing Web Graphics.4, Fourth Edition (New Riders) or Photoshop
CS2 for the Web: Hands On Training (Peachpit Press).

One of the best online resources for designers is Joe Gillespie's site, Web Page Design for Designers
(www.wpdfd.com). It is packed with very detailed explanations of how type and graphics work on the
Web.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 29. GIF Format
GIF (Graphic Interchange Format) was the first graphic file type to be displayed by early web
browsers, and it remains one of the most popular and versatile formats for distributing color images
on the Web to this day. The GIF format was originally developed by CompuServe in 1987 to distribute
images over their network to a variety of platforms (this is why you sometimes see GIFs referred to
as "CompuServe GIF").

GIF files have the following characteristics:

They are indexed color images with a maximum of 8-bit color information (256 colors).

They use LZW compression, which is a lossless compression algorithm.

They may be interlaced, displaying in a number of passes on download.

They may contain transparent areas.

They may contain multiple images, allowing for simple animations.

Any image can be saved as a GIF, but the format is most appropriate for images with areas of flat,
solid color, such as logos, icons, charts, and so on (see Figure 29-1). Even if the image contains some
photographic elements, if the majority of the image is flat color, GIF is your best bet. GIF is also a
good option if you want portions of your image to be transparent, and it's your only option if you
want the graphic to contain animation.

The GIF format is not particularly good for photographic images, because quality suffers as a result of
the reduction to 256 colors and its compression scheme cannot work efficiently, resulting in larger
files. Use JPEG for photos instead.

This chapter begins with further explanation of each of the features listed at the beginning of this
chapter (with the exception of animation, which is covered in detail in Chapter 32). The second half of
the chapter provides tips for creating GIFs, minimizing file size, and working with the web palette.

Figure 29-1. Examples of images well suited for GIF format

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GIF History

CompuServe developed the GIF format to distribute color images over its network. The
first version, GIF87a, was introduced in 1987 and featured LZW compression and the
option of being interlaced. CompuServe released the improved GIF89a in 1989, which
added transparency and animation capabilities. Both formats use the suffix .gif and are
supported by all graphical browsers, however, the later GIF89a has become the standard
because of its improved capabilities.

LZW Patent Controversy

When CompuServe based GIF on the LZW compression algorithm, they were not aware
that it was covered by a U.S. patent held by Unisys corporation. In 1994, Unisys caused
quite a stir when they decided to enforce their patent and charge royalties to all software
developers that supported the GIF format. In the face of fees and legal hassles, the
Internet population rushed to find nonproprietary alternatives to the GIF format, leading
to the development of PNG. The U.S. patent on LZW compression ended in 2003, and will
end worldwide by mid-2006.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

29.1. 8-Bit Indexed Color

GIF files are indexed color images that can contain a maximum of 8-bit color information (they can
also be saved at lower bit rates). This means they can contain up to 256 colorsthe maximum number
that 8 bits of information can define (28 = 256). GIFs may be saved at lower bit depths as well.
Lower bit depths result in fewer colors and also reduce file size. This is discussed in the section
"Minimizing GIF File Sizes" later in this chapter.

Indexed color means that the set of colors in the image, its palette, is stored in a color table (also
called a color map). Each pixel in the image contains a reference (or "index ") to a position in the
color table. Figure 29-2 illustrates how a 2-bit indexed color image references its color table for
display. In Adobe Photoshop, you can view the table for an indexed color image by selecting Image

 Mode Color Table. The color table is also displayed when you choose GIF in the Save for Web
window in Photoshop and the Optimize panel in Adobe ImageReady and Macromedia Fireworks.

Figure 29-2. A 2-bit indexed color image and its color table

When you convert a 24-bit (millions of colors) image to GIF, the colors in the image must be reduced
to a palette of 256 colors or fewer. In Photoshop and Fireworks, the conversion to indexed color
happens as part of the Save to Web or Export function. Other image editing programs may require
you to convert the image to indexed color manually prior to export. In either case, you are usually
asked to choose a palette for the resulting image. The sidebar "Common Palettes" outlines the
various options available in the most popular image tools.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

29.2. LZW Compression

The GIF format uses LZW (Lempel-Zev-Welch) compression, which takes advantage of repetition in
data streams. Translated into graphic terms, this means that LZW compression is extremely efficient
at condensing strings of pixels of identical color. To use an extremely simplified example, when the
compression scheme encounters a row of 15 identical blue pixels, it makes up a shorthand notation
that means "15 blue pixels." The next time it encounters 15 blue pixels, it uses only the code
shorthand. By contrast, when it encounters a row that has a gentle gradation from blue to black, it
needs to store a description for every pixel along the way, requiring more data. This is why GIFs are
efficient at storing simple graphical images; the areas of flat color take advantage of the LZW
compression.

One of the advantages of LZW compression is that it is "lossless," meaning no image information is
lost in the compression process, and the decompressed image is identical to the original. While some
information may be lost in the conversion process from RGB to indexed color format, once it is
converted, the compression itself is lossless.

Common Palettes

All indexed color images (such as GIF or PNG-8) use a palette of colors to define the
colors in the image. The standard available palettes along with explanations are listed
here. Some, like Adaptive, are methods for producing a custom palette based on the
colors in the image. Others, like Grayscale or Web216 apply a preexisting palette to the
image.

Exact

If the image contains fewer than 256 colors, the Exact palette option makes a
palette out of the actual colors that are found in the image.

Adaptive

This is a custom palette generated with the most commonly used pixel colors in the
image. It allows for color-depth reduction while preserving the original character of
the image. Because the number of colors is being reduced, some dithering and
color shifting will occur.

Perceptual (Photoshop/ImageReady only)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This creates a custom palette by giving priority to colors for which the human eye
has greater sensitivity. Unlike Adaptive, it is based on algorithms, not just a pixel
count. It generally results in images with better color integrity than Adaptive
palette images.

Selective (Photoshop/ImageReady only)

This is similar to Perceptual, but it gives preference to areas of broad color and the
preservation of web-safe colors. It is the preferred palette for web graphics created
with Photoshop/ImageReady.

Web Adaptive (Fireworks only)

This is an adaptive palette in which colors that are near in value to web palette
colors are converted to the closest web palette color.

Restrictive (Photoshop/ImageReady) or Web216 (Fireworks)

This remaps the colors in the image to the 216 colors in the web-safe palette.

Mac OS or Windows

Choosing either system palette converts the image to the palette of 256 colors as
defined by each operating system.

Uniform

This contains an evenly stepped sampling of colors from the RGB spectrum.

Custom

This allows you to load a palette that was previously saved and apply it to the
current image. Otherwise, it preserves the current colors in the palette.

Optimized Median Cut (Paint Shop Pro only)

This reduces the image to a few colors using something similar to an Adaptive
palette.

Optimized Octree (Paint Shop Pro only)

Use this palette if the original image has just a few colors and you want to keep
those exact colors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

29.3. Interlacing

Normal GIFs are either displayed one row of pixels at a time, from top to bottom, or all at once when
the entire file has downloaded. On slow connections, this can mean potentially long waits with empty
space and generic graphic icons on the screen.

As an alternative, you can save a GIF87a or 89a with interlacing . An interlaced GIF is displayed in a
series of four passes, with the first hint of the upcoming image appearing after only 1/8th (12.5%) of
the file has downloaded. The first pass has the appearance of a blurry mosaic; as more data flows in,
the blurred areas are filled in with real image information, and the image becomes more defined
(Figure 29-3). The three subsequent passes fill in 25%, 50%, and 100% of the image information,
respectively.

Graphics programs that support the GIF format provide an interlacing option (usually a checkbox) in
the Save As or Export dialog box. Simply turn the interlacing on or off when you save the GIF.

Figure 29-3. Interlaced GIFs display in a series of passes

The advantage to using interlacing is that it quickly gives the viewer some idea of the graphic to
come. This peek may be enough to make some important decisions. For instance, if the graphic is a
familiar image map, the user can use the link to go to another page before the entire image has
downloaded. In some cases, the partially downloaded image might be enough for the viewer to
decide that he doesn't want to wait for the rest. Now that broadband has become the norm,
interlacing is less relevant than it used to be.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The main trade-off in choosing to make a GIF interlaced is that it slightly increases the file size of the
resulting graphic. There are also aesthetic considerations involved that come down to a matter of
personal taste. Some viewers would rather see nothing at all than look at the temporary visual chaos
an interlaced GIF creates. For these reasons, you may choose to limit interlacing to instances when it
makes sense, such as for large image maps, instead of using it for every graphic on a page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

29.4. Transparency

The GIF89a format introduced the ability to make portions of graphics transparent. Whatever is
behind the transparent area (most likely the background color or pattern of the page) will show
through. With transparency , graphics can appear to be shapes other than rectangles (Figure 29-4).

Figure 29-4. The same GIF image with transparency (left) and without
(right)

GIF offers only binary transparency, meaning an area is 100% transparent, or it is 100% opaque
(PNG one-ups GIF by offering variable levels of transparency). To understand how transparency
works, you need to start with the color table (the table that contains the palette) for the indexed
color image. In transparent GIFs , one position in the color table is designated as "transparent," and
whatever pixel color fills that position is known as the Transparency Index Color (usually gray by
default). All pixels in the image that are painted with that color will be transparent when viewed in a
browser.

29.4.1. Creating Transparent GIFs

In image editing tools that use layers, such as Photoshop and Fireworks, you can choose to preserve
transparent areas in your layered file when you save or export the GIF. In other graphics tools, the
transparent area is specified by selecting a specific pixel color in the image with a special
transparency pointer or eyedropper tool.

29.4.2. Preventing "Halos"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Occasionally, you see transparent graphics on the Web with light-colored fringe around the edges
(called a "halo") that doesn't blend into the background color (see Figure 29-5).

Figure 29-5. A "halo" effect created by anti-aliased edges in a
transparent graphic

This effect is the result of anti-aliasing , the slight blur used on curved edges to make smoother
transitions between colors (like the image on the right in Figure 29-6). Aliased edges, by contrast,
are blocky and stair-stepped (like the image on the left). The images below have been enlarged to
make pixel-level detail more prominent.

Figure 29-6. Aliasing versus anti-aliasing

When the color around an anti-aliased edge is made transparent, the blur along the edge remains
intact, and you can see all those shades of gray between the graphic and the darker background.
Halos make graphics look messy and unprofessional.

Unfortunately, once an image is saved as a GIF, the only way to fix a halo is to get in there and erase
the anti-aliased edge, pixel by pixel. Even if you get rid of all the edges, you'll be left with blocky
edges, and the quality of the image will suffer.

However, halos are very easy to prevent. Following are a few techniques to avoid that unwanted
fringe in transparent graphics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

29.4.2.1. Use aliased edges

One way to avoid halos is to keep your image and text edges aliased (as shown in Figure 29-7). That
way there are no stray pixels between your image and the background color.

Figure 29-7. Transparent graphic with aliased edges (no halo effect)

In Photoshop, the Marquee, Lasso, and Magic Wand selection tools all have the option of turning off
anti-aliasing in their respective Option palettes. You can also choose to turn off anti-aliasing when
creating text.

The advantages to aliased edges are that they are halo-proof and require fewer pixel colors (which
potentially means smaller file sizes). The disadvantage is that the blocky edges often look just as
bad.

29.4.2.2. Use the Matte color tool

If you are using Photoshop/ImageReady or Fireworks, the best way to prevent a halo is to use the
Matte color tool. The tool requires that you start with a layered file that already contains transparent
areas. In other words, the image must not have already been "flattened." The parts of the layered
image that are transparent will remain transparent when exported to GIF format .

In the tool's optimization palette, simply set the Matte color to the same color as the background of
the page on which the GIF will appear (Figure 29-8). When the GIF is exported with Transparency
selected, the anti-aliased edges of the image blend with the selected Matte color. That blend ensures
there will be no halo.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

29.5. Minimizing GIF File Sizes

When you are designing and producing graphics for the Web, it is of utmost importance to keep your
file sizes as small as possible. The standard "lowest common denominator" guideline for estimating
download time over a modem is one second per kilobyte. Of course, actual download times will vary
widely, but this gives you a ballpark number to use for comparisons.

Following are a few simple strategies you can follow to minimize the size of your GIF files while
keeping an eye on image quality.

29.5.1. Design Strategically

You can help keep file size under control by the design decisions you make. After a while, designing
graphics for the Web becomes second nature.

Figure 29-8. The Matte color tool (shown in Photoshop CS)

29.5.1.1. Limit dimensions

Though it may seem obvious, the easiest way to keep file size down is to limit the dimensions of your
graphic. There aren't any numerical guidelines here; just don't make graphics larger than they need

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to be.

Scale down large images.

Crop out any extra space around the important areas of your image.

Avoid large graphics if they are not absolutely necessary.

29.5.1.2. Design with flat color

If you design your graphics with flat color from the beginning, you are basically giving the LZW
compression the kind of file it likesrows of repetitive pixel colors.

Fill areas with solid colors rather than gradients (fades from one color to another).

Limit the amount of photographic material in your GIFs. Use JPEGs for photographic images.

Favor horizontal fields of color in your designs when applicable; for example, horizontal stripes
condense better than vertical stripes.

Turn off anti-aliasing when it isn't necessary. The blur that makes smooth, not stair-stepped
contours also adds to the number of colors in the image.

29.5.2. Use Optimization Tools

Photoshop/ImageReady and Fireworks provide a similar arsenal of tools for fine-tuning the
optimization of GIF files. Most of these methods work to make the LZW compression as efficient as it
can be.

29.5.2.1. Reduce the number of colors (bit depth)

Although GIF format can support 8-bit color information with a maximum of 256 colors, you don't
necessarily have to use all of them. In fact, you can reduce the size of a file considerably by saving it
at a lower bit depth, which corresponds to fewer colors. Photoshop and Fireworks allow you to select
the number of colors you'd like in the image. Other tools may ask you to choose from a list of bit
depths. The effect is the same; it's just useful to know how bit depth translates into numbers of
colors for the latter (see Table 29-1 for translations).

Table 29-1. Color depth equivalents for bit depths

Bit depth Number of colors

1-bit 2 (black and white)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bit depth Number of colors

2-bit 4

3-bit 8

4-bit 16

5-bit 32

6-bit 64

7-bit 128

8-bit 256

The goal is to find the minimum number of colors (smallest bit depth) that still maintains the integrity
and overall character of the image. You may be surprised to find how many images survive a
reduction to just 32 colors. Of course, the bit depth at which the image quality becomes unacceptable
depends on the specific image and your personal preferences. I personally look at most images at 32
colors first, and add colors from there if I can't live with the results.

Reducing the number of colors decreases the file size in two ways. First, lower bit depths include less
data in the file. In addition, clusters of similarly colored pixels become the same color, creating more
pockets of repeating pixels for LZW compression to work on. For that reason, fewer image colors take
better advantage of GIF's compression scheme, resulting in smaller files. The real file size savings
kicks in when there are large areas of flat color. Even if an image has only eight pixel colors, if it has
a lot of blends and gradients, you won't see the kind of file size savings you might expect with that
kind of severe color reduction.

29.5.2.2. Limit dithering

Dithering is the random dot pattern that results when colors are approximated by mixing similar
colors from a limited palette. Dithering is relevant to GIF file size because it interrupts the clean areas
of flat color that are conducive to efficient LZW compression, and can make the file size larger than it
needs to be.

Nearly all image editing tools allow you to turn dithering on and off. Current web graphics tools
(Fireworks and Photoshop/ImageReady) go one step further by allowing the amount of dithering to
be selected on a sliding scale from 0 to 100. You can preview the results of various settings, making
it easy to select the best balance of file size and image quality.

Bear in mind, however, that dithering is usually beneficial to image quality in photographic or
continuous tone areas, as it prevents "banding" of colors in the image. Dithering may even permit the
image to be saved at a lower bit depth, which generally results in smaller file sizes, so it is not
appropriate to simply set dithering to zero. The optimal setting will depend on the image.

29.5.2.3. Play with the "Loss" setting

As explained earlier in this chapter, GIF compression is "lossless," meaning every pixel in the image is

2-bit 4

3-bit 8

4-bit 16

5-bit 32

6-bit 64

7-bit 128

8-bit 256

The goal is to find the minimum number of colors (smallest bit depth) that still maintains the integrity
and overall character of the image. You may be surprised to find how many images survive a
reduction to just 32 colors. Of course, the bit depth at which the image quality becomes unacceptable
depends on the specific image and your personal preferences. I personally look at most images at 32
colors first, and add colors from there if I can't live with the results.

Reducing the number of colors decreases the file size in two ways. First, lower bit depths include less
data in the file. In addition, clusters of similarly colored pixels become the same color, creating more
pockets of repeating pixels for LZW compression to work on. For that reason, fewer image colors take
better advantage of GIF's compression scheme, resulting in smaller files. The real file size savings
kicks in when there are large areas of flat color. Even if an image has only eight pixel colors, if it has
a lot of blends and gradients, you won't see the kind of file size savings you might expect with that
kind of severe color reduction.

29.5.2.2. Limit dithering

Dithering is the random dot pattern that results when colors are approximated by mixing similar
colors from a limited palette. Dithering is relevant to GIF file size because it interrupts the clean areas
of flat color that are conducive to efficient LZW compression, and can make the file size larger than it
needs to be.

Nearly all image editing tools allow you to turn dithering on and off. Current web graphics tools
(Fireworks and Photoshop/ImageReady) go one step further by allowing the amount of dithering to
be selected on a sliding scale from 0 to 100. You can preview the results of various settings, making
it easy to select the best balance of file size and image quality.

Bear in mind, however, that dithering is usually beneficial to image quality in photographic or
continuous tone areas, as it prevents "banding" of colors in the image. Dithering may even permit the
image to be saved at a lower bit depth, which generally results in smaller file sizes, so it is not
appropriate to simply set dithering to zero. The optimal setting will depend on the image.

29.5.2.3. Play with the "Loss" setting

As explained earlier in this chapter, GIF compression is "lossless," meaning every pixel in the image is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

preserved during compression. The current web graphics tools allow you to force some pixels out
during the conversion process using the "Loss" or "Lossy" setting. Throwing out stray pixels is all in
the name of maximizing repeated strings of pixel colors, thus allowing the LZW compression to work
more efficiently. Depending on the image, a loss value of 5 to 30% will maintain the integrity of the
image while reducing file sizes significantly. This technique works best on images with areas of
continuous tone (blended colors) and photographic content.

29.5.2.4. Weighted optimization (Photoshop/ImageReady)

Photoshop and ImageReady offer yet another advance in graphic optimization. Their weighted
optimization feature allows you to apply varying amounts of optimization to different parts of the
image. This preserves the integrity of the most important areas while maximizing file size savings for
the remainder.

Weighted optimization uses an alpha channel (called a mask) to select areas of the image for various
optimization levels. The white areas of the mask correspond to the highest level of image quality,
while black areas describe the lowest (gray areas are on a linear scale in between). Channels can be
used to control color reduction, dithering, and lossiness in a GIF image.

To access the Modify dialog box (Figure 29-9), click the Channel button next to each of these controls
on the Optimization palette. In the dialog box, use the sliders to set the maximum (white tab on the
left) and minimum (black tab on the right) levels of optimization.

In Photoshop, create the alpha channel by saving a selection and giving the channel a name (the
channel can then be accessed from the Modify dialog boxes). In ImageReady, you can create a new
channel based on a selected image area on the fly when you click the Channel button.

Weighted color reduction

When you use the alpha channel to reduce colors in parts of an image, the white areas of the
mask determine what areas of the image are most important. Colors in those areas will be
weighted more heavily when calculating the color table for the image.

Figure 29-9. Weighted Optimization dialog box in ImageReady

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Weighted dithering

When using the alpha channel with dithering, the white areas of the mask correspond to the
areas that receive the most dithering. Black areas yield the least dithering. Set the percentage
amounts for each using the black and white tabs on the slider. With weighted dithering , you
can allow photographic areas of an image to dither and keep flat colors flat.

Weighted lossiness

Similarly, when using the alpha channel with lossiness, the white areas of the mask correspond
to the highest image quality. However, because more lossiness results in less quality, the
settings are reversed. To set the highest level of quality drag the white tab or enter a value in
the Minimum text box. For lowest level of quality, drag the right (black) tab or enter a value in
the Maximum text box.

29.5.2.5. Optimize to a File Size function (Photoshop/ImageReady)

In some cases, you may know ahead of time what you'd like the file size of your GIF file to be, for
example, when designing an ad banner with a specific file size limitation.

Photoshop offers an Optimize to File Size function that automatically optimizes an image to meet a
target file size. This enables you to achieve your desired file size without having to test a variety of
file size settings. The Optimize to File Size function is accessible from the Save for Web dialog box as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown in Figure 29-10.

Figure 29-10. Optimize to File Size shown in Photoshop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

29.6. Designing GIFs with the Web Palette

When your GIF is viewed in a browser on an 8-bit monitor, the colors in the image get remapped to
the browser's built-in web-safe palette. This often results in unwanted dithering in areas of flat color.
You can prevent dithering on 8-bit monitors by designing with colors from the web palette in the first
place. It requires a little extra effort and an adjustment to a limited color choice, but the payoff is
that you, not the browser, control whether and how the image dithers. Figure 29-11 shows how
dithering can be avoided by using a web-safe color in the design.

29.6.1. Should You Worry About the Web Palette?

Remember that the web palette comes into play only on 8-bit monitors. 24-bit and 16-bit monitors
do not use palettes and are capable of rendering your colors without dithering (although, there may
be some slight color shifting on 16-bit monitors). For general web traffic, a mere 1 to 3% of users
view web pages on 8-bit monitors, and those web users are probably used to reduced image quality
by nature of the limited color display.

For a general consumer site, sacrificing color choice for 8-bit performance may not be worth it.
However, if you know that a significant share of your audience may be using older systems with 8-bit
monitors (such as schools), you may want to continue using the web palette in your designs to avoid
unwanted dithering in flat color areas.

There are two opportunities to apply the web palette in the image creation process. The first is to
choose web-safe colors when designing the image. As an alternative, you can apply the web palette
to the image when reducing it to indexed color before saving or exporting a GIF or 8-bit PNG.

Figure 29-11. Designing with the web-safe palette prevents dithering

http://lib.ommolketab.ir
http://lib.ommolketab.ir

29.6.2. Selecting Web-Safe Colors

If you are making graphics from scratch, especially graphics such as logos or simple illustrations that
contain areas of flat color, you can use web palette colors right from the start. The major drawback is
that with only 216 colors to choose from (a good 30 of which you wouldn't be caught dead using for
anything), the selection is extremely limited. The trick is to have the web palette colors loaded into
the Swatches palette or in whatever device your graphics program uses for making colors handy. You
should be aware, however, that even if you select web colors for fills, any shades of colors created by
soft drop shadows or anti-aliased edges between areas of color probably will not be web-safe.

29.6.3. Converting to the Web Palette

Designing with web colors is one option. The other opportunity is to add (or preserve) web-safe
colors in the conversion process from RGB to Indexed Color. As part of this process you will be asked
to select a palette for the GIF.

To make all the colors in the image web-safe in Photoshop/ImageReady, apply the Restrictive (Web)
palette when you choose Save for Web. In Fireworks, select the Web216 palette. This ensures that
every pixel in your resulting GIF will be web-safe.

A better alternative is to make sure the colors in flat areas are web-safe to prevent dithering, but to
allow colors in photographic or blended areas to dither as necessary to preserve image quality.

To do this in Photoshop/ImageReady, choose the Selective palette, which creates a custom palette
while preserving web colors and broad areas of color. You can also use the Web Snap slider tool to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

control how many colors shift to their nearest web-safe neighbor. You can view the results of your
choices immediately in the Optimized view when you choose Save for Web.

In Fireworks, the Web Adaptive palette creates a custom palette for the image but snaps colors to
web-safe if they are close to a web palette color.

29.6.4. Web Palette Strategies

There are no hard and fast rules, since every image has its own requirements. The following are
some basic guidelines for usingand resistingthe web palette if you are concerned about performance
on 8-bit monitors.

29.6.4.1. Flat graphical images

To keep flat color areas from dithering while maintaining smoothness in the anti-aliased edges, use
colors from the web palette to fill flat color areas when you are designing the image. Do not apply the
strict web palette option when saving or exporting because you'll lose the gradations of color in the
anti-aliasing. It is better to choose an Adaptive palette with a Web Snap option, if it is available. In
Photoshop, set the amount of web snap with the slider scale. In Fireworks, apply the Web Adaptive
palette. This will maintain the web colors in your flat areas but allow some non-web-safe colors in the
anti-aliasing and other blends to remain.

29.6.4.2. Photographic images

To maintain clarity and color fidelity for the maximum number of users, first, if it is an entirely
photographic image, consider saving it in JPEG format. Otherwise, choose the Selective or Adaptive
palette to preserve the original color range in the image. That way, the image will look the best it
possibly can for users with 16- and 24-bit monitors (the vast majority). For users with 8-bit monitors,
the image will map again to the web palette, but dithering is usually not detrimental in photographic
images. The only advantage to applying the web palette to a continuous-tone image in the saving
process is that you know it will look equally bad to everyone.

29.6.4.3. Combination images (flat and photographic areas)

To keep the flat areas from dithering while allowing the continuous tone areas to dither with an
Adaptive palette, use web-safe colors in the flat areas when you are designing the image. When it's
time to save or export to GIF format, choose an Adaptive palette with a Web Snap option if it is
available. Using the Adaptive or Selective palette preserves the color fidelity in the photographic
areas, while the Web Snap option preserves the web-safe colors in the flat areas.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 30. JPEG Format
Developed by and taking its name from the Joint Photographic Experts Group, JPEG is a compression
algorithm used by files in the JFIF format, commonly referred to as "JPEG files." JPEGs use either the
.jpg or .jpeg suffix. Like any graphics file format in widespread use on the Web, JPEGs are platform-
independent.

JPEG files have the following characteristics :

They are 24-bit color images.

They use JPEG's "lossy" compression scheme.

They may be "progressive" (interlaced), displaying in a number of passes on download.

Any image can be saved in JPEG format, but due to its true color capacity and the way JPEG
compression works, the format is ideal for photographic and other continuous tone images, such as
paintings, watercolor illustrations, and grayscale images with the 256 shades of gray (see Figure 30-
1). JPEGs do not support transparency or animation .

JPEGs are notably not good at compressing graphical images with large areas of solid color, such as
logos, line art, type, and cartoon-like illustrations. Not only could the image end up blotchy, but the
file usually will be quite a bit larger than a GIF file of the same image. JPEG compression is also not
good at sharp edges or typography because it tends to leave artifacts that "ripple" the edges.

This chapter begins with further explanations of the JPEG features listed earlier. It also discusses
strategies for keeping JPEG file sizes at a minimum.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

30.1. 24-Bit Color

JPEG images contain 24-bit RGB color information, which means they are composed of colors from
the Truecolor space of millions of colors (see Chapter 28 for a description of 24-bit color). JPEG files
can also carry grayscale images. 24-bit color allows for higher image quality and richer and more
subtle color variations. Unlike GIF files, JPEGs do not use palettes for referencing color information.

Figure 30-1. Examples of images appropriate for JPEG format

Be aware that specific RGB color values may not be maintained after an image is compressed as a
JPEG. So although you may fill an area with a color using its numeric RGB values, the way the JPEG
compression scheme samples and compresses the image may result in blotchy color or overall color
shifting. The effect is lessened at higher image quality levels (using less JPEG compression), but there
is still no guarantee a specified color will remain numerically exact. If you need to match a graphic to
a specific RGB color (such as the background color of a page), use a GIF with its fixed color table.

The color in a JPEG may also be altered (or more accurately, approximated) when the image is
viewed on an 8-bit monitor. On 8-bit monitors, the browser will remap the colors in the JPEG to its
built-in web palette. This dithering is generally acceptable in photographic image areas.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

30.2. JPEG Compression

JPEG uses what is known as a "lossy" compression scheme, meaning that some image information is
actually thrown out in the compression process. Fortunately, for photographic images at most
compression levels, this loss is not discernible to the human eye, particularly when the image is
displayed on a monitor at screen resolution (and even less so for images saved at print resolutions).

Using "lossy" compression algorithms, JPEG is able to achieve 10:1 to 20:1 data-compression ratios
without visible loss in quality. Of course, the savings in file size at any given compression depends on
the content of the specific image, and results vary. If maintaining high image quality is not a priority,
these ratios can go even higher.

The efficiency of JPEG compression is based on the spatial frequency, or concentration of detail, of
the image. Image areas with low frequency (smooth gradients, like a blue sky) are compressed much
further than areas with higher frequency (lots of detail, like blades of grass). Even a single sharp
color boundary, although not giving "lots of detail," represents a surge in spatial frequency and
therefore poses problems for JPEG compression.

The compression algorithm samples the image in 8 x 8-pixel squares and then translates the relative
color and brightness information into mathematical formulas. These sampling squares may become
visible when images are compressed with the highest compression ratios (lowest quality settings).

It is perhaps most meaningful to compare JPEG and GIF compression on photographic images. A
detail-rich photographic image that takes up 85K of disk space as a GIF image may require only 35K
as a JPEG. Again, the rate of compression depends on the specific image, but in general, a JPEG
compresses a photographic image two to three times smaller than GIF. For flat-color graphics,
however, GIF is far more efficient than JPEG.

30.2.1. Image Loss

Once image quality is lost in JPEG compression, you can never get it back again. Loss in image
quality is also cumulative, meaning you lose a little bit more information each time you decompress
and compress an image. Each time you open a JPEG and resave it, you degrade the image further.
Not only that, you may introduce new artifacts to the image that prevent the second compression
from working as efficiently as the first, resulting in higher file sizes.

It is a good idea to hang on to one copy of the original digital image if you anticipate having to make
changes, so your final image only goes through the compression process once. You should also start
from an original image each time to experiment with different compression levels. Current web
graphics tools (Adobe Photoshop/ImageReady and Macromedia Fireworks) make this easy because
they always retain the original and allow you to export graphics with your chosen settings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

30.2.2. Variable Compression Levels

One advantage to JPEGs is that you can control the degree to which the image is compressed. The
higher the quality, the larger the file. The goal is to find the smallest file size that still maintains
acceptable image quality.

The quality of a JPEG image is denoted by its "Q" setting, usually on a scale from 0 to 100. In nearly
all programs, the lower numbers represent lower image quality but better compression rates (and
smaller files). The higher numbers result in better image quality and larger files.

For the most part, the Q setting is an arbitrary value with no specific mathematical significance. It is
just a way to specify the image quality level you'd like to maintain. When JPEG compression goes to
work, it compresses as much as it can while maintaining the targeted Q setting. The actual
compression ratio depends on the content of the individual image.

The scales for specifying Q-settings (or "Quality") vary among tools that create JPEGs. Most current
web tools use a scale from 0 to 100; however, you will still find some that use a scale from 0 to 10 or
0 to 12. The numbers themselves are not significant (a 30 in one program may be radically different
than a 30 in another); what matters is the way the image looks and its resulting file size.

30.2.3. JPEG Decompression

JPEGs need to be decompressed before they can be displayed; therefore, it takes a browser longer to
decode and assemble a JPEG than a GIF of the same file size. Bear in mind that a small portion of the
download time-savings gained by using a JPEG instead of a GIF is lost to the added time it takes to
display. (Not much though, so don't sweat it.)

JPEGs in AOL Browsers

America Online members generally use some flavor of Internet Explorer for viewing the
Web; however, the pages they see have passed through the AOL proxy servers before
they reach their browser window.

En route to AOL users, all web page graphics are run through Johnson & Grace
compression software for faster downloads. The J&G compression can wreak havoc on
image quality and has some particularly sticky issues with JPEGs. Although users can
turn off the Use Compressed Graphics option in their Preferences, you can't count on
them to do so. Unfortunately, there's nothing you can do about it as a developer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

30.3. Progressive JPEGs

Progressive JPEGs are just like ordinary JPEGs except they display in a series of passes (like
interlacing in the GIF format). Each pass contains more detailed information, until the whole image is
rendered clearly. Graphics programs allow you to specify the number of passes it takes to fill in the
final image (3, 4, or 5 scans). Bear in mind that over a fast Internet connection, the image may load
and render so quickly the user may not see any passes at all.

The advantage to using Pro-JPEGs is that like interlaced GIFs, they provide some indication of the full
image for the reader to look at without having to wait for the entire image to download. Progressive
JPEG files are also generally slightly smaller than standard JPEG files.

One disadvantage to Progressive JPEGs is that they require more processing power to display. The
higher the specified number of passes, the more power it takes the user's machine to render the
image. The other disadvantage is that this feature of JPEG is not supported by Internet Explorer, so it
will be lost on the vast majority of your audience.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

30.4. Creating JPEGs

Because JPEG is a standard file format, it is supported by all the popular graphics tools. Adobe
Photoshop/ImageReady, JASC Paint Shop Pro, and Macromedia Fireworks all provide similar options
for saving JPEGs. All of these products allow you to set the quality/compression level and save
images in Progressive JPEG format .

Make sure your file is in RGB or grayscale format. You can apply JPEG compression to CMYK files in
some applications, but these files are not compatible with web browsers. Be sure to name your file
with the suffix .jpg or .jpeg. This is necessary for the browser to recognize it as a readable JPEG file
type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

30.5. Minimizing JPEG File Size

As for all files intended for web delivery, it is important to optimize JPEGs to make the file size as
small as possible. Because JPEGs are always 24-bit by nature, reducing bit-depth is not an option.
For the most part, all you have to play with is the Quality setting, but it is possible to prepare an
image prior to compression. There are a number of strategies and tools available for making JPEGs
as small as they can be while letting you make decisions about image quality.

30.5.1. Aggressive Compression Ratios

The most direct way of optimizing a JPEG is to adjust its Quality setting. If your image has a lot of
continuous tone or gradient colors, you can be pretty aggressive with the compression level and not
worry too much about loss of quality in the resulting JPEG. Even at some of the lowest quality
settings, the image quality is still suitable for viewing on web pages. Of course, this depends on the
individual image. A low quality setting (for example, below 30 in Photoshop) usually results in a
blocky or blotchy image, which may be unacceptable to you.

Each tool provides sliders for controlling quality/compression ratios, although they use different
numbering systems. Fireworks uses a percentage value from 1 to 100%. Paint Shop Pro uses a scale
from 1 to 100, but it works as the inverse of the standard scale: lower numbers correspond to higher
image quality and less compression.

Photoshop uses a scale of 0 to 12 when you select JPEG from the Save As dialog box. When you
choose Save for Web in Photoshop or Save Optimized in ImageReady, the quality rating is on a scale
from 0 to 100. It should be noted that Photoshop is much less aggressive with its numbering; 0 on
the Photoshop scale corresponds to about 30 on the standard scale.

The easiest way to get the balance of compression and image quality just right is to watch the effects
of your settings in the image preview available in Photoshop/ImageReady and Fireworks.

30.5.2. "Optimized" JPEGs

Standard JPEGs use a precalculated, general purpose compression table (called the Huffman table)
for compressing an image. Some tools offer the ability to create an "optimized" compression table
that is customized for the particular image. This results in better color fidelity and slightly smaller file
sizes. To optimize a JPEG in Photoshop/ImageReady, simply put a check next to "Optimize" in the
Save for Web or Optimize palettes.

30.5.3. Softening the Image for Better Compression

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JPEG compression does an admirable job of condensing photographic images without requiring much
extra attention. However, if you are serious about making your JPEGs as compact as possible, you
may want to maximize JPEG compression's strengths by feeding it the kind of image it likesan image
with subtle gradations, fewer details, and no hard edges. By applying a slight blur to all or part of the
image, you allow the compression scheme to do its work more efficiently.

If you are using Photoshop/ImageReady or Fireworks, you will find a setting with the optimization
options that softens the image. In Photoshop, the tool is called Blur; in Fireworks, it's Smoothing. If
you apply a soft blur, the JPEG compression works better, resulting in a smaller file. If you don't have
these tools, you can soften the whole image manually by applying a slight blur to the image with the
Gaussian Blur filter (or similar). Compare the file sizes of the original image (left) and the slightly
blurred image (center) in Figure 30-2.

A more sophisticated approach is to apply aggressive blurs to areas of the image that are not
important and leave areas of detail alone. For instance, if you are working with a portrait, you could
apply a blur to the background while maintaining detail in the face, as shown in the example on the
right in Figure 30-2.

Figure 30-2. Blur all or part of an image for smaller file sizes

30.5.4. Weighted Optimization (Photoshop/ImageReady)

Photoshop and ImageReady offer a Weighted Optimization function that lets you smoothly vary the
optimization settings across an image using an alpha channel (also called a mask). This allows you to
let Photoshop know in which areas of the image quality should be preserved, and where quality may
be sacrificed to achieve a smaller file size.

To save a JPEG with Weighted Optimization in Photoshop, first select the portion of the image that
you want to retain the highest quality. Save the selection (using the Select menu) and give it a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name. This creates the alpha channel that will be referenced when optimizing the image.

From the Save for Web dialog box, select the channel button to the right of the Quality text box (see
Figure 30-3). In the Modify Quality Setting dialog that appears, select your named channel from the
pop-up menu. Use the sliders to set the minimum (applied to black areas of the mask) and maximum
(applied to white areas of the mask) quality levels. The results of your settings can be seen in the
Optimized Preview.

Figure 30-3. Weighted Optimization for JPEGs using ImageReady

30.5.5. Selective Quality (Fireworks)

Fireworks has a function called Selective Quality that works similarly to Photoshop's Weighted
Optimization by allowing you to compress different areas of a JPEG at different levels.

To compress selected areas of a JPEG, select an area of the image and choose Modify Selective
JPEG Save Selection as JPEG Mask. In the Optimize panel, click the edit icon next to Selective
Quality and enter the compression value in the box. Entering a low value compresses the Selective
JPEG area more than the rest of the image. Entering a high value compresses the Selective JPEG
area less than the rest of the image. You can also elect to preserve quality of text items and/or
button quality, automatically exporting them at a higher quality level.

30.5.6. Optimize to File Size (Photoshop/ImageReady)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you know ahead of time the size you'd like your JPEG to be, try using the Optimize to File Size
feature in Photoshop/ImageReady. Optimize to File Size (accessible via the Save for Web dialog box)
allows you to achieve your target file size automatically without trying out lots of different
optimization settings. The Optimize to File Size function as it applies to GIFs is discussed in Chapter
29 (see Figure 29-10).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 31. PNG Format
The Portable Network Graphic format (PNG for shortpronounced "ping") is a versatile and full-
featured graphics file format. Despite some attractive features and the fact that it was created with
web use specifically in mind, the PNG has been slow to catch on in the web development world. This
is due in part to initial poor browser support and the lack of tools capable of making PNG files as
small as they ought to be. But all that is changing, and PNG is poised to live up to its full potential.

PNGs offer an impressive lineup of features:

They can store 24- or 48-bit color, 16-bit grayscale, or 8-bit indexed color images.

They use a lossless compression scheme that offers better compression than GIF for indexed
color images and no cumulative degradation like JPEG.

They offer 8- or 16-bit alpha-channel transparency information, which means pixels can have
256 or up to 65,000 shades of transparency. They also offer binary (on/off) transparency like
GIFs.

They may use progressive display (similar to, yet more sophisticated than GIF interlacing).

They may contain gamma adjustment and color correction information.

They may contain embedded text for information like author, copyright, and so on.

This chapter introduces these impressive features and provides basic guidelines for creating and
optimizing PNG graphics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31.1. When to Use PNGs

PNG is capable of supporting both indexed and Truecolor image types, so there's no bitmapped
graphic it can't handle. Virtually all browsers in use today support PNGs as inline images, although
they may not support all the bells and whistles, as you'll see in the "Platform/Browser Support"
section later in this chapter.

The PNG Story

PNG was developed in early 1995 as an effort to find a nonproprietary alternative to GIF.
This was in response to the decision by Unisys to enforce its patent on LZW compression
and begin collecting licensing fees from developers of GIF-supporting programs. A flurry
of outrage and activity followed.

Days after the announcement, Thomas Boutell posted the first draft of the PNG
specification to the comp.graphics newsgroup. A community of programmers then quickly
cooperated in specifying and implementing PNG's feature list. The key was that it used a
nonpatented compression scheme, free from licensing restrictions.

The PNG format became an official W3C Recommendation in October of 1996 and
updated to a second edition in 2003 (see www.w3.org/Graphics/PNG/). It is now also an
International Standard (ISO/IEC 15948:2003). Unfortunately, with lagging browser and
image editing tool support, PNG has not yet come close to replacing GIF as the primary
web graphics format.

For web design purposes, there are a few criteria to consider for choosing PNG over another format
for an image.

31.1.1. Potential GIF Substitute

For images with sharp edges and areas of flat color that would typically be saved as GIFs, the 8-bit
PNG is a viable option. It can even handle transparency. You may find that a PNG version of an
image has a smaller file size than the GIF version of the same image, but that depends on whether
your image editing tool handles PNG compression properly and efficiently. Adobe
Photoshop/ImageReady and Macromedia Fireworks now do an impressive job of creating PNGs. Using
the Preview function in both tools, it's easy to compare the file sizes of each format. If the PNG is
smaller, use it with confidence.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31.1.2. Not a JPEG Substitute

Although PNG does support 24-bit color and higher, its lossless compression scheme nearly always
results in larger files than JPEG's lossy compression when applied to the same image. The high bit
depth support was developed so PNGs could take the place of TIFF files for saving highly detailed
images where loss of image information is unacceptable (such as medical images). For web purposes
where every byte counts, photographic and continuous tone images are still best saved as JPEGs.

31.1.3. For Multiple Levels of Transparency

If you want a background pattern to show through a soft drop shadow, PNG is the only graphic file
format to offer multiple levels of transparency, and is thus your only choice. Unfortunately, not all
browsers (Internet Explorer 6 and earlier being the most notable) support this type of transparency.
PNG's transparency features are discussed in detail later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31.2. PNG Features

PNG is like a superhero of the graphics format world. This section takes a more detailed look at PNG's
capabilities.

31.2.1. 8-bit Palette, Grayscale, and Truecolor

PNG was designed to replace GIF for online purposes and the inconsistently implemented TIFF format
for image storage and printing. As a result, there are three types of PNG files: indexed color (palette
images), grayscale , and Truecolor.

31.2.1.1. 8-bit palette images

Like GIFs, PNGs can be saved as 8-bit indexed color, containing up to 256 colors, the maximum
number that 8 bits of information can define. Indexed color is discussed in detail in Chapter 29.

Although 8-bit is the maximum, PNGs may be saved at 1-, 2-, and 4-bit depths as well, thus reducing
the maximum number of colors in the image (and the file size).

31.2.1.2. Grayscale

PNGs can also support 16-bit grayscale images that's as many as 65,536 shades of gray (216),
enabling black-and-white photographs and illustrations to be stored with enormous subtlety of detail.
This is useful for medical imaging and other types of imaging where detail must be maintained, but it
is not much of an advantage for images intended for web delivery due to the inherent limitations of
low-resolution images. Grayscale images are supported at 1-, 2-, 4-, and 8-bit depths as well.

31.2.1.3. Truecolor

PNG can support 24- and 48-bit Truecolor images. The term "Truecolor" refers to the full color range
(millions of colors) that can be defined by combinations of red, green, and blue (RGB) light on a
computer monitor (see Chapter 28 for more information). Truecolor images do not use color tables
and are limited only by the number of bits available to describe values for each color channel. In PNG
format , each channel can be defined by 8- or 16-bit information. It should be noted that 48-bit
images are useless for the Web. Even 24-bit should be used with care (JPEG usually offers smaller file
sizes with acceptable image quality).

31.2.2. PNG Compression

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The most notable aspect of PNG compression is that it is "lossless," meaning no information is lost in
the compression process. A decompressed PNG image is identical to the original.

PNGs use a "deflate" compression scheme (the same engine used to "zip" files with gzip, WinZip, and
similar programs). Like GIFs, PNG's compression works on rows of pixels, taking advantage of
repetition in bytes of information. By use of internal filters , it can take advantage of some vertical
patterns as well. PNG's compression engine typically compresses images 5 to 25% better than GIF
(and up to 39% better under optimal conditions). Not all tools implement PNG compression to its full
potential. See "Creating PNG Files" later in this chapter.

31.2.2.1. Filters

Before PNG compresses an image, it first runs the image data, row by row, through one of five filters
(Sub, Up, Average, Paeth, or Adaptive). The filters use different methods for finding patterns in the
image information that can then be condensed more efficiently. The process is similar to how LZW
compression takes advantage of horizontal repetition in GIFs, but PNG can look for vertical repetition
as well.

In most applications, the filters are applied internally and are hidden from the end user (as they
should be). If your tool provides filter options, there are only two you need to remember:

Use None for all indexed color images (or grayscale images with fewer than 16 shades).

Use Adaptive for all other image types.

31.2.3. Transparency

Both 24- and 8-bit indexed color PNGs can have variable levels of transparency. This sophisticated
transparency function allows for smooth transitions between foreground and background elements
(Figure 31-1). Transparency works for grayscale images as well. PNGs also support simple binary
transparency (like transparent GIFs), in which a pixel is either totally transparent or totally opaque.

PNGs use two methods for handling variable levels of transparency. The first uses an alpha channel
(think of it as a separate layer) that keeps track of the transparent areas of the image). The other
method works for 8-bit indexed images and uses the index color table to store transparency
information.

31.2.3.1. Alpha channel transparency

In addition to the standard channels for RGB color values for Truecolor images, PNGs may contain
another alpha channel used for transparency information. Each pixel is then defined by its RGBA
values. For 24-bit images, the alpha channel can contain up to 8 bits of information for 256 levels of
transparency for every pixel in the image (resulting in a 32-bit image). The alpha channel may also
contain simple binary transparency information, like GIFs. Keep in mind, however, that an RGB PNG
file with alpha channels will be about 20% larger than one without.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 31-1. A PNG with variable transparency and how it looks in a
browser (IE 6) without alpha channel support (right)

Not all browsers have native support alpha-channel transparency, most notably Internet Explorer 6
and earlier (see the sidebar "Alpha Transparency in Internet Explorer" for workarounds). Figure 31-1
shows what happens when transparency is not supported. It is interesting to know that 48-bit PNGs
may contain an alpha channel with 16 bits of informationthat's over 65,000 levels of transparency.
48-bit images, however, are inappropriate for the Web and are poorly supported elsewhere.

Alpha Transparency in Internet Explorer

Although IE 6 and earlier do not have native support for multiple levels of transparency,
there are solutions using Microsoft's proprietary AlphaImageLoader filter and a bit of
JavaScript. The details of the process are beyond the scope of this chapter, but these
resources are good places to start if you want to ensure cross-browser support for your
transparent PNGS.

Start with the AlphaImageLoader filter documentation on the MSDN (Microsoft
Developers Network) site at
msdn.microsoft.com/workshop/author/filter/reference/filters/alphaimageloader.asp.

These articles introduce variations and alternative techniques:

"PNG Behavior," webfx.eae.net/dhtml/pngbehavior/pngbehavior.html

"Cross-Browser Variable Opacity with PNG: A Real Solution,"
www.alistapart.com/articles/pngopacity

"Cross-browser semi-transparent backgrounds," www.daltonlp.com/daltonlp.cgi?
item_type=1&item_id=217

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31.2.3.2. 8-bit transparency

Indexed color PNGs can also contain variable levels of transparency (up to 256 levels); however, this
information is not handled in a distinct alpha channel as for 24-bit images. Instead, each
transparency level occupies a position in the index color table. So, if you have a red area that fades
out using eight levels of transparency, that red would be present in eight slots in the color table, each
with its own transparency setting. In other words, each slot in the color table can store RGBA
information. So while it is alpha channel-like (because it has variable levels), it's not true alpha-
channel transparency.

Other than adding to the number of pixel colors in the color table, adding transparency to an 8-bit
PNG does not significantly increase its file size, making it the preferable of the two methods for web
use. Unfortunately, it faces the obstacle of poor tool and browser support. PNGs with palette
transparency may display as binary (on/off) transparency by browsers that don't support them.

Saving transparent PNGs in Fireworks and Photoshop is discussed in the
upcoming "Creating PNG Files" section.

31.2.4. Progressive Display (Interlacing)

Like GIFs, PNGs can be encoded for interlaced display. When this option is selected, the image
displays in a series of passes; the first pass displays after only a portion of the file has been
downloaded, and each subsequent pass increases in detail and clarity until the whole image is
rendered.

Interlaced PNGs display over a series of seven passes (using a method known as Adam7, named for
its creator, Adam Costello). The first rendering of the image appears after only 1/64 of the file has
downloaded (that's eight times faster than GIF). Unlike GIF, which fills in horizontal rows of
information, PNGs fill in both horizontally and vertically. Interlacing can add to the file size of PNGs,
especially on small images (which don't really need to be interlaced anyway). To keep file sizes as
small as possible, turn interlacing off.

31.2.5. Gamma Correction

Gamma refers to the brightness setting of a monitor (for more information on gamma, see Chapter
28). Because gamma settings vary by platform (and even by manufacturer), the graphics you create
may not look the way you intend. In general, graphics created on Macs look dark on PCs and
graphics created on PCs look washed out on Macs.

PNGs can be tagged with information regarding the gamma setting of the platform on which they
were created. This information can then be interpreted by software on the user's end (the browser)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to make appropriate gamma compensations. When this is implemented on both the creator and end
user's side, the PNG retains its intended brightness and color intensity. Unfortunately, as of this
writing, this feature is poorly supported.

31.2.6. Embedded Text

PNGs also have the ability to store strings of text . This is useful in permanently attaching text to an
image, such as copyright information or a description of what is in the image. The only tools that
allow text annotations to PNG graphics are Corel Paint Shop Pro and the GIMP (a free image editor
for the X Window System on Unix). Fireworks will preserve embedded text information in PNGs.
Ideally, the meta-information in the PNG could be accessible via right-clicking on the graphic in a
browser window, but this feature is not implemented in current browsers.

PNGs in Motion

One of the only features PNG is missing is the ability to store multiple images for
animation . The first effort to add motion to PNGs was the MNG format (Multiple-image
Network Graphic). It gained some browser support, but its popularity suffered from the
fact that MNGs were not backward compatible with PNGs. If a browser didn't support
MNG, it would display a broken graphic.

More recently, there has been a proposed extension to PNG called APNG (Animated
Portable Network Graphic) that addresses the issue of backward compatibility. If a
browser does not support an APNG, it displays the first frame as a static image PNG
instead.

Both of these formats are in development and are not well supported as of this writing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31.3. Platform/Browser Support

PNG was designed to be network-friendly, so naturally it is recognized and supported on all
platforms. Fortunately, as of this writing, PNGs can be displayed as inline images in virtually all
browsers (initially, PNGs required plug-ins such as PNG Live). However, not all of the advanced
features, such as progressive display and embedded text, are supported. In fact, Internet Explorer
didn't start natively supporting alpha-channel transparency until its Version 7 release.

Table 31-1 lists the more popular browsers capable of displaying PNGs and the features they support.
Note that there are myriad lesser-known browsers out there that also support PNG in all its glory.
Some older browsers are included in the table for historical interest. For a complete list of PNG
behavior on all browsers, see the browser support page on the official PNG web site at
www.libpng.org/pub/png/pngapbr.html.

Table 31-1. Browser support for PNG

Browser
Progressive
display

Binary
transparency

Alpha channel
transparency

Gamma
correction

Windows

IE 7 (beta) Yes Yes Yes Yes

IE 6 Yes Partial Yes

IE 5.5 Yes Partial Yes

IE 4.0 Yes Partial

Mozilla/Firefox Yes Yes Yes Yes

NN 6 Yes Yes Yes Yes

NN 4.x Yes

Opera 5 Yes Broken Yes

Macintosh

Mozilla/Firefox Yes Yes Yes Yes

Safari Yes Yes Yes Yes

IE 5 Yes Yes Yes Yes

NN 6 Yes Yes Yes Yes

NN 4.x Yes

iCab Yes Yes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Browser
Progressive
display

Binary
transparency

Alpha channel
transparency

Gamma
correction

Unix

Mozilla/Firefox Yes Yes Yes Yes

IE 6 beta Yes Partial Yes

NN 6 Yes Yes Yes Yes

Unix

Mozilla/Firefox Yes Yes Yes Yes

IE 6 beta Yes Partial Yes

NN 6 Yes Yes Yes Yes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31.4. Creating PNG Files

While browser support played a part in PNG's slow adoption, the other side of the coin was the lack of
image tools that could do the PNG format justice. For a while, decent PNGs could be created only with
fairly obscure command-line utilities (see the sidebar "For PNG Geeks Only"). Fortunately, decent
(albeit often incomplete) PNG support is now available in most professional graphics programs. This
section outlines the ins and outs of creating PNGs in the two most popular professional web graphics
tools, Photoshop/ImageReady and Fireworks.

For a comprehensive list of image editing tools and graphics file converters that
support PNG compression (as well as their known bugs), see the official PNG
site at www.libpng.org/pub/png/pngaped.html.

31.4.1. Adobe Photoshop/ImageReady

Adobe Photoshop introduced read/write PNG support in Version 4, but due to poor support for the
PNG compression engine, the resulting PNG file sizes couldn't compete with their GIF counterparts,
thus knocking PNGs temporarily out of the race. Compression support has since improved, and the
later versions of Photoshop (CS2 is the latest as of this writing) are able to squeeze an 8-bit image
smaller in PNG format than GIF at the same settings.

31.4.1.1. Saving as PNG

To save an image as a PNG in Photoshop, simply select PNG-8 or PNG-24 from the file format pop-up
menu in the Save for Web dialog box. In ImageReady, select PNG-8 or PNG-24 in the Optimize panel.
Creating a PNG-8 is essentially the same as making a GIF, and the same optimization tools and
guidelines apply. 24-bit PNGs may be interlaced or contain transparency, but there are no settings
for optimization.

31.4.1.2. PNG transparency in Photoshop/ImageReady

File size aside, the "killer feature" that PNG has over GIF is the ability to contain multiple levels of
transparency (commonly referred to as "alpha-channel transparency"). Unfortunately, Photoshop
CS2 and earlier allows you to apply true alpha-channel transparency to 24-bit PNGs only. For 8-bit
GIFs, binary (GIF-style) transparency is the only option.

To save a PNG with transparency in Photoshop or ImageReady, start with a layered image that has
transparent areas you'd like to preserve. For alpha-channel transparency, select PNG-24 from the file
format pop-up window, and click Transparency. For PNG-8, the interface for working with
transparency and matte colors works the same as for GIFs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 31-2 shows the available transparency options and resulting images for 24- and 8-bit PNGs in
ImageReady.

Figure 31-2. PNG transparency options in ImageReady

31.4.2. Macromedia Fireworks

Macromedia Fireworks is currently the best commercial software for creating PNG graphics. Not only
does it have the most efficient PNG compression among its competitors, it also supports all varieties
of PNG transparency, including the coveted multilevel 8-bit palette transparency. Fireworks also uses
PNG as its native source file format because of its lossless compression.

31.4.2.1. Exporting PNG files

When creating a PNG in Fireworks, it is important to use the Export function rather than just saving
the file (resulting in a Fireworks-native PNG file with loads of extra data). The Export Preview dialog
box allows you to choose 8-, 24-, or 32-bit PNG format . The 8-bit PNG option gives you the same
controls used for GIF compression: palette selection, color reduction, dither control, and
transparency.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31.4.2.2. PNG transparency in Fireworks

Start with a layered image that has transparent areas (the checkerboard pattern shows through). To
apply true alpha-channel transparency to a 24-bit PNG, choose 32-bit PNG in the Optimize palette. To
save variable levels of transparency in an 8-bit PNG, check Transparency, and then select Alpha
Transparency from the pull-down menu. If you view the color table for the image, you will see that it
is full of colors that are marked with transparent areas. Choosing Index Transparency results in
on/off binary transparency, similar to GIF transparency.

The GIMP

The GIMP (GNU Image Manipulation Program) is a free, Photoshop-like image-editing
tool that runs on the X Window System under Unix. There is also a Microsoft Windows
port available. The GIMP is virtually unknown by most professional graphic designers, but
it bears mention here due to its superior implementation of the PNG format.

The GIMP offers excellent compression, full transparency support, gamma correction,
and embedded text entry. You can apply compression incrementally using the deflate
compression level knob (a sophisticated tool that no other image program offers). For
more information, see www.gimp.org.

Figure 31-3 shows the available transparency options and resulting images for 32- and 8-bit PNGs in
Fireworks. Notice that the cells in the 8-bit indexed color table give an indication that they contain
transparency information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31.5. PNG Optimization Strategies

The following are a few strategies for keeping PNG file sizes small and for using PNGs wisely.

Figure 31-3. PNG transparency options in Fireworks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use 8-bit (or smaller) PNGs.

Index color PNGs are always smaller than their 24-bit RGB counterparts.

Use JPEGs instead of RGB (24-bit) PNGs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Photographic images are best saved in JPEG format for use online. The resulting file sizes are
smaller (with only minimal image quality loss) and more appropriate for web delivery.

Use GIF optimization techniques.

8-bit PNGs benefit from all the same tactics used to minimize GIFs, including limiting dithering
and reducing the number of colors and bit depth. See Chapter 29 for more information on
optimization methods.

Avoid interlacing.

Interlacing always adds to the size of a PNG. It is usually unnecessary anyway for small
graphics or any graphic accessed via a high-bandwidth connection or locally (as from disk or
CD-ROM).

Use maximum compression (if available) for final images.

If your image tool offers control over compression, use level 9 (or "max" or "slowest") for the
final version of your image. Use lower compression (3 or 6) for intermediate saves. Most
commercial programs (such as Fireworks and Photoshop) handle compression and filter
application internally, so you may not have control over specific levels.

For PNG Geeks Only

If you are serious about optimizing PNGs, you should download Glenn Randers-Pehrson's
pngcrush application (freeware, available at pmt.sourceforge.net/pngcrush/). It is a
command-line DOS application, but it can run in batch mode. pngcrush takes existing
PNGs and makes them smaller, losslessly.

To convert RGB alpha-channel transparency (32-bit) into 8-bit palette transparency, try
the pngquant command-line utility (written by Greg Roelofs, one of the creators of the
PNG format). The resulting PNG will be significantly smaller and more suitable for web
use.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

31.6. For Further Reading

If you are interested in learning more about the PNG format, definitely check out PNG: The Definitive
Guide by Greg Roelofs (O'Reilly). There are also a few good resources available online:

PNG home page (www.libpng.org/pub/png/)

This site is written and maintained by Greg Roelofs. It contains a complete history of PNG's
birth, descriptions of its features, and up-to-date lists of applications that support the new
format. It also includes a copy of the PNG Specification and the official PNG extensions
documents (as well as the draft MNG Spec). It is written with so much enthusiasm that you
can't help but become a PNG fan.

PNG Specification (www.w3.org/TR/png.html)

This is the complete PNG specification (Version 1.0) as published by the W3C. For a technical
document, it is very user-friendly to nonprogrammers and offers detailed information on how
PNGs work, as well as some useful background information and tutorials. The updated Version
1.2 of the specification is available at the PNG web site at www.libpng.org/pub/png/spec/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 32. Animated GIFs
It's just about impossible to browse the Web without seeing the flashing, bouncing, and wiggling of
GIF animation. The animated GIF is ubiquitous, and there are many reasons for its popularity.

Users need no special software or plug-in.

All they need is a browser that supports GIF animation, which is true of nearly all graphical
browsers available today.

GIF is the standard file format for the Web.

Animated GIFs are not a unique file format in themselves, but merely take advantage of the
full capabilities of the original GIF89a specification. Even if a browser cannot display all of its
frames, the GIF will still be visible as a static image.

They're easy to create.

There are scores of GIF animation tools available (some are built into larger web graphics
applications), and they're simple to learn and use.

They require no server configuration.

Because they are standard GIF files, you do not need to define a new file type on the server.

They use streaming technology.

Users don't need to wait for the entire file to download to see something. Each frame displays
as soon as it downloads.

The only drawback to animated GIFs is that they may cause some extra work for the user's hard disk
to keep refreshing the images. And they can be annoying, but more on that later.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

32.1. How They Work

Animated GIFs work a lot like traditional cell animation. The file contains a number of frames layered
on top of each other. In simple animations, each frame is a complete scene. In more sophisticated
animations, the first frame provides the background and subsequent frames just provide the
changing portion of the image.

A GIF animation file consists of a number of images and a set of instructions that specify the length
of delay between frames, as well as other attributes like transparency and palettes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

32.2. Using Animated GIFs

Nowhere has GIF animation made a larger impact than in banner advertising. Ad agencies aren't
stupid; they know that adding motion and flashing lights to a web page is a sure-fire way to attract
attention. And it's trueadding animation is a powerful way to catch a reader's eye.

But beware that this can also work against you. Many users complain that animation is too
distracting, making it difficult to concentrate on the content of the page. Although it adds a little
"pizzazz" to the page, overall, too much animation can quickly spoil the user's enjoyment of your
page.

Use animated GIFs wisely. A few recommendations:

Avoid more than one animation on a page.

Use the animation to communicate something in a clever way (not just as gratuitous flashing
lights).

Avoid animation on text-heavy pages that might require concentration to read.

Consider whether the extra bandwidth to make a graphic "spin" is actually adding value to your
page.

Decide whether your animation needs to loop continuously.

Experiment with timing. Sometimes a long pause between loops can make an animation less
distracting.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

32.3. Tools

You don't need to search very far to find a GIF animation toolthere seem to be scores of them
available. Regardless of the tool you choose, the interface is basically the same. Tools tend to differ
somewhat in the degree to which they are able to optimize (shrink the file size of) the resulting
graphic. The following sections provide an overview of the most popular and/or recommended tools.

32.3.1. Applications That Include GIF Animation Tools

GIF animation tools are built in or bundled with many popular graphics applications, eliminating the
need to jump between different software packages.

Adobe ImageReady (Mac and Windows)

Adobe ImageReady is a tool (bundled with Photoshop 5.5 and higher) especially for preparing
and optimizing web graphics. It includes a GIF animation tool that converts layers into frames
and allows easy layer editing. ImageReady offers advanced optimization methods for making
the smallest possible animations. For more information, see Adobe's site at www.adobe.com.

Macromedia Fireworks (Mac and Windows)

Macromedia Fireworks was designed specifically for the creation of web graphics. It supports
multiple layers that can be converted to multiple animation frames. Among other features are
automatic super-palette optimization and the ability to perform LZW optimization. For more
information, see Macromedia's site at www.macromedia.com/software/fireworks/. As of this
writing, Fireworks' fate is unknown, as Macromedia has been acquired by Adobe.

Animation Shop (Windows only)

Animation Shop is a tool that complements Paint Shop Pro, an inexpensive and powerful
graphics creation application from Corel (it was originally developed by JASC Software, Inc.).
For more information, see Corel's web site at www.corel.com.

32.3.2. GIF Animation Utilities

The following are just a few dedicated tools for creating animated GIF files. For a complete list, see
the article "Optimizing Animated GIFs" by Andrew King,
www.webreference.com/dev/gifanim/index.html.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GIFmation (Mac and Windows)

This is commercial software from BoxTop Software that comes highly recommended by web
developers. It features sophisticated palette-handling options and a bandwidth simulator. It
also uses the efficient "frame differencing" method (discussed later in this chapter) for
optimizing animations significantly better than its competition. GIFmation costs $49.95 and is
available at www.boxtopsoft.com.

Ulead GIF Animator 5.0 (Windows only)

Ulead's GIF Animator features wizards for quickly and easily constructing animations, 200
levels of undo, pixel-level optimization, built-in transition and animation effects, a plug-in
architecture for adding new animation modules, and support for AVI and QuickTime videos and
layered Photoshop files. GIF Animator is $44.95. You can download a preview copy from
www.ulead.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

32.4. Creating Animated GIFs

Regardless of the tool you choose, the process of creating an animated GIF is about the same and
involves making decisions about a standard set of features and options. The exact terminology may
vary from tool to tool, but the concepts and settings are consistent.

32.4.1. Frame Delay

Also called "interframe delay ," this setting specifies the amount of time between frames. Frame
delays are measured in 1/100ths of a second. You can apply a different delay time to each frame in
the animation to create pauses and other timing effects. This differs from digital video formats, in
which the delay between all frames is consistent.

32.4.2. Transparency

You can set transparency for each frame within an animation. Previous frames will show through the
transparent area of a later frame if disposal methods are set correctly.

If the background frame is made transparent, the browser background color or pattern will show
through.

Don't be surprised if the transparent areas you specified in your original graphics are ignored when
you import them into a GIF animation utility. You may need to set transparency in the animation
package. Some standard transparency options include:

None

No transparency.

White

All the white pixels in the image will become transparent.

Based on first pixel

The color of the "first pixel"that is, the top-left pixel, the one at coordinates 0,0is transparent.
This is a handy option, because you'll often have an image in the center, and the four corners
will be transparent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other

This option lets you select one of the palette colors as transparent.

32.4.3. Disposal Methods

The disposal method gives instructions on what to do with the previous frame once a new frame is
displayed.

Most GIF animation utilities offer "optimization," a file size-reducing process that takes advantage of
the fact that previous frames will "show through" transparent areas of a later frame. In order for this
process to work, the disposal method must be set to Do Not Dispose (or Leave Alone, Leave As Is,
and the like). With this method, areas of previous frames continue to display unless covered up by an
area in a succeeding frame.

The most common disposal method choices are listed here, but not all of these are available in all
animation tools.

Unspecified (Nothing)

Use this option to replace one full-size, nontransparent frame with another.

Do Not Dispose (Leave As Is)

In this option, any pixels not covered by the next frame continue to display. Use this when you
want a frame to continue to show throughout the animation.

Restore to Background

The background color or background tile shows through the transparent pixels of the new
frame (replacing the image areas of the previous frame).

Restore to Previous

This option restores to the state of the previous, undisposed frame. For example, if you have a
static background that is set to Do Not Dispose, that image will reappear in the areas left by a
replaced frame.

This disposal method is not correctly supported in Netscape Navigator (it is treated like Do Not
Dispose), leading to all the frames being visible and stacking up. Although it can produce better
optimized animation files, it is safest not to use it.

Automatic (ImageReady)

This selects the disposal method automatically based on whether there are transparent areas in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the frames.

The effects of each of these disposal methods are compared in Figure 32-1.

Figure 32-1. Disposal method comparison

In ImageReady, you access the disposal method by right-clicking (Windows) or Control-clicking (Mac)
to reveal the disposal options (Automatic, Do Not Dispose, and Restore to Background). In Fireworks,
you access the disposal settings via a trash can icon on the Animation panel of the Export Preview.
Select the frame and then choose from Unspecified, None, Restore to Background, or Restore to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Previous.

32.4.4. Color Palette

Animated GIFs, like static GIF files, use a list of up to 256 colors that can be used in the image. They
can have multiple palettes (one for each frame) or one global palette. The palette choice affects how
well the images appear on the inevitable variety of systems and monitor setups.

One problem with using multiple, frame-specific palettes is that they can cause a flashing effect on
some early versions of Navigator (it cannot load the frames and their respective palettes in sync). In
any case, multiple palettes dramatically increase file size. It is recommended you use one global
palette for the whole animation. GIFMation and Ulead GIF Animator allow you to create a customized
global palette. In fact, any image editor can be used to create a global palette. Just place all images
to be used in one document, and then index the document. The resulting palette will be a global
palette for the entire animation.

32.4.5. Other Options

The following are descriptions of other aspects of animated GIF files that can be set within most
animation programs.

Loop

You can specify the number of times an animation repeatsnone, forever, or a specific number.
As noted earlier, not all browsers support a specific number of loops (the animation either loops
or does not). One workaround to this problem is to build looping right into a file by repeating
the frame sequence a number of times; of course, this increases the file size and download
time.

Interlaced

Like ordinary GIF89a graphics, you can set animated GIFs to interlace, which causes them to
display in a series of passes (starting blocky, finishing clear). It is recommended that you leave
the interlacing option set to No or Off, because each frame is on the screen for only a short
amount of time.

Color depth

This option allows you to limit the bit depth of the image to some number less than 8 (the
default for GIF). Bit depth and its effect on file size is discussed in detail in Chapter 28. Note
that if you select the web (6 x 6 x 6) palette, you will need to keep the bit depth set to 8.

Dithering

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dithering is a way to simulate intermediate color shades. It should be used with continuous-
tone images.

Background color

Regardless of what color you select in the background color option, Navigator and Internet
Explorer display the background color or image you specify in your HTML page. So, this option
doesn't affect the display of the GIF in a browser, only within the tool itself.

32.4.6. Starting Points

These settings are a good starting point for creating full-frame animations:

Color Palette:

Global, adaptive palette

Interlacing:

Off

Dithering:

On for photographic images; Off for drawings with few colors

Image Size:

Minimum Size

Background Color:

Black

Looping:

None or Forever

Transparency:

Off

Disposal Method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do Not Dispose

http://lib.ommolketab.ir
http://lib.ommolketab.ir

32.5. Optimizing Animated GIFs

As with any file served over the Web, it is important to keep animated GIFs as small as possible. I
highly recommend reading "Optimizing Animated GIFs," an article and tutorial by Andrew King in
WebReference.com, from which many of the following tips were summarized (with permission). You
can find it at www.webreference.com/dev/gifanim/index.html. It is a little dated, but it is still an
excellent starting point for understanding how GIF animations work and the tools available for
optimizing them.

32.5.1. Image Compression

Start by applying the same file size-reduction tactics used on regular, static GIF files to the images in
your animation frames. For more information, see "Minimizing GIF File Sizes" in Chapter 29. These
measures include:

Reducing the number of colors/bit depth.

Eliminating unnecessary dithering.

Applying the "loss" feature available in Adobe ImageReady and Macromedia Fireworks.
ImageReady allows you to do weighted optimization where loss can be applied more
aggressively to selected areas of the image. If your tool does not include a loss function, you
can manually remove stray pixels from otherwise solid areas.

32.5.2. Optimizing Methods

In addition to the standard image-compressing methods, GIF animation tools optimize animations by
eliminating the repetition of pixels in unchanging image areas. Only the pixels that change are
recorded for each frame. Different tools use different optimizing methods, which are not equally
efficient. These methods, in order from least to most compression, include:

Bounding box (also called "minimum bounding rectangle")

In this method, the changed portion of the image is saved, but it is always saved in the
smallest rectangular area necessary to contain the changed pixels.

Redundant pixel removal (or frame differencing)

In frame differencing, only the individual pixels that change are stored for each frame. This is a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

more efficient method than minimum bounding rectangle, which includes a lot of unnecessary
pixel information to make up the rectangle.

LZW interframe optimization

This optimization method uses the LZW compression scheme to minimize the frequency of
changes in pixel patterns between frames. This compression method, when used in conjunction
with frame difference, is capable of producing the smallest possible file sizes. Macromedia
Fireworks, SuperGIF 1.0, and WebPainter 3 all take advantage of LZW compression for
animations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part VI: Media
Chapter 33, Audio on the Web

Chapter 34, Video on the Web

Chapter 35, The Flash Platform

Chapter 36, Printing from the Web

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 33. Audio on the Web
Simple audio files found their way onto the Web in its earliest days when they could be linked to and
downloaded like any other file. The drawback to this technique is that traditional audio files are
generally quite large and may take a prohibitively long time to download. As the Web evolved, some
major breakthroughs have been made in web audio. First, streaming audio (files that play as they
download) made long-playing audio and even live broadcasts possible. Then the MP3 format exploded
into popularity around 1999. MP3's ability to crunch audio files to one-tenth their original size while
maintaining very good quality made it a perfect solution for sharing music over the Internet.

Obviously, audio, even specialized for the Web, is a rich and complex topic that cannot be thoroughly
treated in a single chapter of a Nutshell reference book. This chapter introduces general audio
concepts and a number of popular web audio file formats, including MP3, QuickTime, RealAudio,
Windows Media, Flash audio, MIDI, and AAC. It also discusses the many options for adding audio to a
web site. It begins with an introduction to basic audio terminology that will be useful to know when it
comes time to create and optimize sound files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

33.1. Basic Digital Audio Concepts

To distribute recorded speech or music over the Internet, an analog signal must be converted to
digital information (described by bits and bytes). This process is called encoding . It is analogous to
scanning a photograph to a digital bitmap format, and many of the same concepts regarding quality
and file size apply. Some audio file formats (such as MPEG) are compressed in size during encoding
using a specialized audio compression algorithm to save disk space. In the encoding process, you
may be asked to provide settings for the following aspects of the audio file.

Sampling rate

To convert an analog sound wave into a digital description of that wave, samples of the wave
are taken at timed intervals (see Figure 33-1). The number of samples taken per second is
called the sampling rate. The more samples taken per second, the more accurately the digital
description can recreate the original shape of the sound wave, and therefore the better the
quality of the digital audio. In this respect, sampling rate is similar to image resolution for
digital images.

Sample rates are typically measured in kilohertz (kHz). On the high end, CD-quality audio has
a sampling rate of 44.1 kHz (or 44,100 samples per second). On the low end, 8 kHz produces a
grainy sound quality that is equivalent to a transistor radio. Standard sampling rates include 8
kHz, 11.025 kHz, 11.127 kHz, 22.05 kHz, 44.1 kHz, and 48 kHz. The high-end standard is 96K,
which may be seen in DVD audio but is not applicable to the Web. The higher the sampling
rate, the more information is contained in the file, and therefore the larger the file size.

Figure 33-1. Audio wave after lowering sample rate and bit depth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bit depth

Like images, audio files are measured in terms of their bit depth (also called sampling
resolution or word length). The bit depth corresponds to the resolution of the amplitude (or
volume) of the sound file. The more bits, the better the quality of the audio, and of course, the
larger the resulting audio file. This is similar to bit depth in imagesthe more bits, the more
colors the image can contain.

Some common bit depths are 8-bit (which can sound thin or tinny, like a telephone signal) and
16-bit, which is required to describe music of CD quality. High-end digital audio is now capable
of 20-, 24-, 32-, and 48-bit depths. The higher the bit depth, the larger the file.

Channels

Audio files may contain one or more channels of audio information. The most familiar channel
configurations are mono (one channel) and stereo (two channels), but some file formats can
support multichannel surround sound such as 5.1, 6.1, and 7.1. Most file formats support only
mono and stereo, but we will be seeing a lot more support for multichannel surround formats in
the coming years. Here again, more channels translates to more data, which makes for a
larger file.

Bit rate

All of the above come together to determine the overall bit rate, the number of bits per second
devoted to storing audio data. Bit rate is a function of the file's bit depth, sampling rate, and
channel count, so you reduce the bit rate by reducing a combination of those settings. Bit rate
is measured in kilobits per second (Kbps) and can be calculated by dividing the file size by the
length of the audio clip in seconds. In general, it is advisable for the bit rate of streaming audio
files to be lower than the bit rate of the user's connection to the Internet to ensure smooth
playback. Conveniently, most Internet connections are also measured in Kbps, so it is easy to
figure out how to target audio files for a 56 Kbps dial-up modem or a 256 Kbps DSL line.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It stands to reason that before you can put your own audio files on the Web, you first need to create
them. Your options are to find existing audio resources (such as from a royalty-free CD) or to record
them yourself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

33.2. Using Existing Audio

The simplest way to add audio to a site is to use found music, sound effects, or other resources. But
before you start featuring music and sound effects from your personal CD collection, it is important to
be aware of copyright issues.

33.2.1. Copyright Restrictions

With few exceptions, it is illegal to reproduce, distribute, or broadcast a sound recording without the
permission of the copyright owner. Copyright issues have been brought to the forefront with the
growing popularity of MP3 distribution through peer-to-peer networks, but they apply to all audio
published on the Internet. To get permission, you usually need to pay licensing fees.

Be aware that simply posting somebody else's music or recordings from a CD without her expressed
written permission is a copyright violation. Record companies, entertainment corporations, and the
RIAA (Recording Industry Association of America) are taking measures to crack down on the illegal
use of copyrighted material. So be smart and be sure that you have the rights to the sound you use
on your site.

33.2.2. Royalty-Free Audio Resources

Fortunately, collections of prerecorded sound effects and music are available for multimedia and
Internet use. Many are royalty-free, meaning once you've purchased the package of sounds, you can
use them however you wish and pay no licensing fees. Search Google for "royalty-free audio" for a
list of vendors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

33.3. Preparing Your Own Audio

Recording and producing your own audio can require a significant investment in hardware, software,
and time spent learning. If you need to put professional-quality audio on your site but aren't likely to
make the investment in time and equipment yourself, consider outsourcing the work to professionals.

The final product may be anything from a simple personal greeting to a live concert broadcast. The
preparation of original audio requires a number of standard steps: recording , basic sound editing,
and then optimization for web delivery.

33.3.1. Recording

The first step is to make a recording of the music, spoken word, or sound effects for your site. As for
most things, when it comes to sound quality, you get what you pay for. It is possible to capture
sound using available resources (such as the microphone that came with your computer), but the
quality will not be appropriate for a professional site. The cost of recording equipment escalates
quickly for each level of sound quality. An investment of $800 to $4,000 in equipment (not counting
the computer) is enough to get started on creating a home or small business studio. Getting a studio
up and running also requires investments of time, effort, and education.

Although this may be a good choice for a business, it may be too expensive for many hobbyists and
garage bands. It may be more cost-effective for an individual or organization on a strict budget or
tight deadline to hire the services of a professional studio. Depending on how well the studio is
equipped, it can cost from $30 to $250 per hour, and up.

33.3.2. Basic Sound Editing and Effects

Once you've recorded raw audio, the next step is to clean up the recording. This can involve
removing unwanted sounds, setting the beginning and end of the file, and/or making a loop. You may
want to apply effects to the sound, such as reverb or a delay.

Consider also using mastering processing techniques such as normalization or compression that can
balance out the level of your audio such that no part is too loud or too quiet.

There is a huge selection of software for audio editing and format conversion . The software ranges
from single-purpose utilities available via free download to professional digital-audio editing suites
costing thousands of dollars. Some popular professional-level tools are listed in the following sections.

33.3.2.1. Cross-platform audio tools

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These tools are available for multiple operating systems:

Audacity (audacity.sourceforge.net/)

Audacity is an open source audio recording and editing application for Windows, Mac, and
Linux. With many built-in effects and editing tools, it can't be beat for the price (free).

Cubase (Steinberg, www.steinberg.net)

This multitrack recording environment offers both MIDI and audio editing with lots of effects
plug-ins, virtual instruments, and recording tools for creating an entire virtual studio inside
your computer. Cubase is available for Windows and Mac. Street price is around $600, while a
more limited entry-level "SE" version is available for around $100 as of this writing.

ProTools (Digidesign, www.digidesign.com)

Long the industry standard for multitrack computer recording, ProTools offers everything you'd
ever need for a professional-quality recording studio in your computer. The company's high-
end "Mix" systems, including both software and custom hardware, start at $7,000 and go up
from there, but Digidesign has recently started making consumer-level solutions such as the
Digi001 and the MBox which offer ProTools software and a hardware input/output box for
around $900 and $400, respectively.

33.3.2.2. Windows audio tools

The following tools are available for use on Windows:

Sound Forge (Sony, www.sonicfoundry.com)

Sound Forge is limited to editing stereo files, but it includes many plug-ins for effects such as
chorus, delay, distortion, reverb, and compression. Street price is about $250.

Audition (Adobe, www.adobe.com/products/audition/)

In 2003, Adobe purchased Syntrillium Software and turned Cool Edit into Adobe Audition, a full-
fledged multitrack recording and mixing environment with many included effects, processors,
and tools for everything from audio restoration to surround sound encoding and CD burning.
Adobe Audition sells for about $300.

33.3.2.3. Mac audio tools

These tools can be used on Mac systems:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Peak (Bias, www.bias-inc.com)

With built-in batch processing and a street price of less than $400, this application has been
the Mac standard when it comes to stereo editing. Bias also offers the more streamlined Peak
LE for $99. This "Light Edition" may be sufficient for most entry-level users.

Garage Band (Apple, www.apple.com/ilife/garageband/)

Apple offers several levels of audio editing software and Garage Band is their entry-level
multitrack audio application. It comes free with most Macs or as part of Apple's $60 iLife
bundle. Garage Band comes bundled with several virtual instruments and effects including a
guitar amp emulator. For the price, it can't be beat.

Digital Performer (MOTU, www.motu.com)

Performer software has evolved from a MIDI sequencing application into a full-fledged digital
recording studio environment offering top-quality effects plug-ins and audio editing. Musicians
can make entire recordings with this software, but it is also just as capable at adding audio to
video or mixing radio programs. Street price is around $550.

Logic (Apple, www.apple.com/logicpro/)

Apple's high-end audio application is Logic. It offers most of the features that you'll find in
ProTools or Digital Performer and comes bundled with a huge assortment of digital effects and
virtual instruments. Logic sells for about $1,000.

33.3.3. Optimizing for the Web

After the sound files have been recorded and edited, it is time to convert them to their target web
audio format and make them as small as possible for web delivery. The tool you use may depend on
the file format. There are also several tools specialized for the creation of MP3s. Tools are discussed
with their respective file formats later in this chapter.

One great all-purpose tool is Autodesk's Cleaner, which is available for the Mac and Windows
systems. This program is designed to get the best quality files at the smallest size in whatever format
you choose. Cleaner can compress a number of file formats, including QuickTime and RealMedia. It
can also do batch processing. The program sells for about $500 as of this writing. Regardless of the
tool you use, there are standard ways to reduce the size of an audio file so it is appropriate for
downloading via a web page. Not surprisingly, this usually requires sacrificing quality. The aspects of
the audio file you can control are:

Length of the audio clip

It might seem obvious, but you should keep the audio sample as short as possible. For

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example, consider providing just part of a song rather than the whole thing. If you are
recording a greeting, make it short and sweet.

Number of channels

A mono audio file requires half the disk space of a stereo file and may be adequate for some
audio uses.

Bit depth

Audio files for the Web are often saved at 8 bits, which will result in a file that is half the size of
a 16-bit file. MP3s can handle 16-bit due to their efficient compression.

Sampling rate

Cutting the sampling rate in half cuts the file size in half (e.g., a sampling rate of 22.05 kHz
requires half the data than one of 44.1 kHz). As a general guideline, audio files that are voice-
only can be reduced to 8 kHz. Sound effects work at 8 kHz or 11.025 kHz. Music sounds
acceptable at 22 kHz.

Using these guidelines, if you start with a one-minute music sample at CD quality (10 MB) and
change it to a mono, 8-bit, 22 kHz WAV file, its size is reduced to 1.25 MB, which is much more
reasonable for downloading. Using MP3 compression, you can keep the quality of that one-minute
sample at 16-bit, 44.1 kHz stereo (similar to CD quality) with a resulting file size of less than 1 MB.
Combining these methods (a mono, 8-bit, 22 kHz MP3), you can offer one-minute clips at acceptable
audio quality at only a few hundred K.

Obviously, just how stingy you can be with your settings while retaining acceptable quality depends
on the individual audio file. You should certainly do some testing to see how small you can make the
file without sacrificing essential audio detail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

33.4. Streaming Audio

Once upon a time, the only way to play audio from a web page was to link to it and wait for it to
download to the hard drive so it could be played. With this method, once the file finishes
downloading, the browser either launches an external player or uses a plug-in (or ActiveX control in
Internet Explorer on Windows) to play the audio. The most common players are QuickTime, Windows
Media Player, and RealPlayer , all of which are available on Mac and Windows.

Downloaded audio has a few distinct disadvantages. First, because the file needs to download to the
hard disk in its entirety before it can begin playing, users may be faced with a very long wait before
they hear any sound. In addition, because the audio file is copied to the hard drive, it is more difficult
for artists and publishers to limit distribution and protect copyrights.

Although it is still possible and common to deliver static audio files in this manner, it is far more
effective to use one of several streaming media technologies. Streaming media (be it audio or video)
begins playing almost immediately after the request is made and continues playing as the audio data
is being transferred. Streaming audio technology was developed to address the problem of
unacceptable download times. It can even be used to broadcast live programs, such as concerts or
baseball games.

The advantages to streaming audio are:

Audio begins playing soon after the stream begins.

Using new technologies and formats, sound quality doesn't need to be as severely sacrificed.

Artists and publishers can better control distribution and protect copyright because the user
never gets a copy of the audio file.

Consider also these disadvantages:

The potentially high cost of server software may be prohibitive.

Some formats require a dedicated or preconfigured server, which may be problematic with
some hosting services.

Sound quality and stream may be adversely affected by low speed or inconsistent Internet
connections.

For more information on streaming audio , consult Streaming Audio: The
FezGuys' Guide, by Jon Luini and Allen Whitman (New Riders).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

33.4.1. Streaming File Formats

It used to be that if you wanted audio to stream, you had to use RealAudio technology. Not so
anymore. As it became obvious that streaming was the best way to deliver sound to the Web, we've
seen the development of a number of competing proprietary technologies, as well as solutions for
streaming standard file formats such as MP3 and QuickTime. The following formats have streaming
functionality:

RealNetwork's RealMedia and RealAudio

Apple's QuickTime

Microsoft's Windows Media

Streaming MP3s (using a streaming MP3 server like SHOUTcast)

Macromedia Flash

These file formats are discussed in more detail later in the chapter.

33.4.2. Server Software and Protocols

True streaming relies on special server software that permits the uninterrupted flow of data. The
information in the song is broken up into little "packets" and sent out in order over the lines. These
packets are then reassembled on the user's end. The audio player collects a number of packets
before playback begins (a process called buffering) to increase the likelihood of smooth playback.

Streaming media takes advantage of UDP (User Datagram Protocol) , RTSP (RealTime Streaming
Protocol) , or RTP (RealTime Transfer Protocol) for the transmission of data. What makes these
protocols effective at streaming is that if a packet of information is dropped or missing, the data
transmission continues without it. This is in contrast to HTTP, the traditional protocol of the Web,
which stops and tries to resend lost packets, potentially halting the stream.

UDP was the first protocol used for streaming media because of its improvements over HTTP. The
newer RTSP is more efficient than UDP. RTSP is a two-way streaming protocol, allowing the user to
send messages back to the server (such as rewinding the tape). By contrast, RTP (used by Apple
QuickTime) is a one-way stream (similar to HTTP in this regard), only the file never downloads
completely to the user's hard drive as it does in HTTP or FTP transfers.

Commercial streaming server software such as Windows Media and Helix Server can handle
thousands of simultaneous streams. It provides robust administrative tools and offers advanced
functions such as bandwidth negotiation (where the proper bit rate version is delivered based on the
connection speed). The software and hardware to set up a dedicated streaming server can be quite
costly. On top of that, some services charge licensing fees based on number of streams.

33.4.3. Pseudostreaming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some media formats are designed to begin playing before they've completely downloaded, producing
a streaming effect even when the files are served from an HTTP server. This is known as
pseudostreaming or HTTP-streaming .

The advantage to pseudostreaming is that it requires no special (and costly) server software. You
just put the files on your server as you would a GIF or JPEG. This is a good solution for broadcasting
relatively short audio tracks to just a few simultaneous listeners.

There are a number of key limitations to serving streaming media from a web server. It cannot
handle heavy server loads and multiple simultaneous connections. You also sacrifice the advanced
administration tools and bandwidth negotiation (users have to choose the appropriate file for
themselves). This method also makes it impossible to do live broadcasts since the whole file needs to
be available for download.

With the proper player on the user's end, Windows Media, RealMedia, QuickTime, MP3, and Flash files
will pseudostream from an HTTP server.

There are legal copyright differences between streaming and pseudostreaming
formats. The issue involves whether the media becomes "affixed" to your hard
drive or not. In this sense, the download and pseudostreaming methods are
seen as giving away a recording of the audio, while streaming is seen more like
broadcast and is subject to different copyright terms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

33.5. Audio Formats

At last, we get to the heart of web audiothe various file formats . This section provides an
introduction to some of the most common formats for web audio.

33.5.1. WAV/AIFF (.wav, .aif, .aiff)

The WAV and AIFF audio formats are very similar in performance and these days are probably ill
suited for most web audio. However, these formats remain the standard for high-quality
uncompressed audio before it gets converted for use on the Web. The Waveform Audio File Format
(.wav) was originally developed as the standard audio format for the Microsoft Windows operating
system, but it is now supported on the Macintosh as well. WAV files can support arbitrary sampling
rates and bit depths, although 8 kHz and 11.025 kHz at 8 or 16 bits are most common for Web use.

The Audio Interchange File Format (.aif or .aiff) was developed as the standard audio format for the
Macintosh platform, but it is now supported by Windows and other platforms. It can support up to six
channels and arbitrary sampling rates and bit depths, with 8 kHz and 11.127 kHz at 8 and 16 bits
being the most common online.

WAV and AIFF files are less commonly used on the Web than they once were, now that we have
audio formats that are better suited for web delivery (MP3) or designed specifically for the Web
(streaming formats). They sound good when uncompressed, but they suffer drastic loss of quality
when compressed to small file sizes. For this reason they are useful for very short, downloadable
audio clips, such as short greetings. They are usually added to web pages via a link for download.

The following summarizes the WAV and AIFF formats:

Good
for...

Storing high-quality source audio before converting to web formats, delivering short
clips where pristine sound quality is not important, reaching the lowest common
denominator (because everyone can play them).

Delivery Download.

Creation
tools

The majority of sound editing tools can save files in WAV and AIFF format.

Player WAVs and AIFFs generally play using the browser's default function for sound handling
(such as Windows Media Player or the QuickTime plug-in).

33.5.2. MP3 (.mp3)

MP3's explosion in popularity is nothing short of a phenomenon and has changed the way we use and
view the Internet. The key to its success is MP3's ability to maintain excellent sound fidelity at very

http://lib.ommolketab.ir
http://lib.ommolketab.ir

small file sizes. In fact, its compression scheme can reduce an audio source to just one-tenth of its
original size. For instance, four minutes of high-quality music in WAV format requires 40 MB of disk
space; as an MP3, the same file weighs in at just 3.5 MB! With the discovery of MP3, it was suddenly
feasible to transfer songs over the Internet without prohibitive download times. The rest is history.

33.5.2.1. MPEG compression

The MP3s that we've grown to love are technically MPEG-1, Layer-III files. MPEG is actually a family
of multimedia standards created by the Moving Picture Experts Group. It supports three types of
information: video, audio, and streaming (which, in the context of MPEG compression, is
synchronized video and audio).

MPEG uses a lossy compression scheme that is based on human auditory perception. Sounds that are
not discernible to the human ear are thrown out in the compression process. The resulting file sounds
nearly the same, but contains much less data than the original.

There are a number of MPEG standards: MPEG-1 was originally developed for video transfer at VHS
quality and is the format used for MP3s; MPEG-2 is a higher-quality standard that was developed for
television broadcast; other MPEG specs that address other needs (such as MPEG-7) are currently in
development. MPEGs can be compressed using one of three schemes: Layer-I, -II, or -III (the "3" in
MP3 refers to its compression scheme layer). To learn more about MPEG, visit the MPEG web site
(www.mpeg.org).

33.5.2.2. Creating MP3s

Any audio source file (usually a WAV or AIFF file) can be turned into an MP3 using an MP3 encoder
such as Xing AudioCatalyst, iTunes (Mac), or MusicMatch Jukebox. For a complete list of MP3 creation
tools, see MP3-Converter.com (www.mp3-converter.com).

To make an MP3, begin with raw audio saved in WAV or AIFF format. If the audio is coming from a
CD, it will need to be "ripped" first (extracted from the CD format and saved in a format a computer
can understand). The next step is to encode the raw audio into the MP3 format. Many MP3 tools rip
and encode audio tracks in one step.

When encoding, you'll be asked to set the quality level, or bit rate. The standard quality setting for
putting music on the Internet is 128 Kbps (which is near-CD quality sound) at 44.1 kHz. For personal
use (to play from your computer or portable MP3 player), you can use the next higher levels (160 or
192 Kbps). To keep file sizes extra small, choose 112 Kbps or lower, but expect a loss in audio
quality. To stream MP3s at rates acceptable for 28.8 modem users, many MP3 online "radio" stations
use 22.05 K mono files compressed at a mere 24 Kbps.

When encoding, you'll also need to decide whether you want to make CBR (constant bit rate) or VBR
(variable bit rate) files. Variable bit rate MP3s adjust their bit rate based on the complexity of the
current audio passage. Variable bit rate MP3s can provide an enormous increase in quality at similar
bit rates, but because VBR is inconsistently supported, the most reliable choice is CBR. Most of the
new MP3 players support VBR, so keep an eye out for VBR to gain more support in the coming years.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

33.5.2.3. Serving MP3s

MP3s can be served from a traditional FTP or HTTP server. MP3s can also be streamed using server
solutions such as SHOUTcast (discussed later in this section). Along with the main advantages of
streaming, this means that the MP3 file is not actually downloaded to the user's computer, providing
better copyright protection.

And speaking of copyright, remember that although there is no problem creating MP3s for your own
personal use, it is illegal to upload and distribute audio if you do not hold the copyright for it.

One of the most popular software packages used for streaming MP3s is SHOUTcast from Nullsoft. It
makes it possible for people to broadcast audio from their PCs with a minimum amount of hardware
and knowledge, over any speed Internet connection (although more bandwidth certainly helps). You
can broadcast MP3s to individual users or to many users at once by redirecting your stream to a
high-bandwidth server. To listen to a SHOUTcast server stream, open Winamp, iTunes, or any other
stream-capable MP3 player and bring up the Open Location dialog box. Enter the URL of the server
you want to listen to and hit Enter. For a list of SHOUTcast servers (and for more information), visit
www.shoutcast.com. SHOUTcast server licenses are free.

The following summarizes the MP3 format:

Good
for...

Distribution and sale of high-quality audio (like music tracks), radio broadcast-style
transmissions at lower bit rates.

Delivery Streaming, download.

Creation
tools

One of dozens of MP3 encoding programs. See www.mp3-converter.com for a complete
list.

Player One of dozens of free MP3 players, such as WinAmp (Windows) or iTunes; browsers
may support MPEG audio via the QuickTime or Windows Media players. You can select a
program for MP3 playback in the browser's application preferences.

33.5.3. Apple QuickTime Audio (.mov)

Although QuickTime is best known as a video technology, it is also possible to create audio-only
QuickTime Movies (.mov). QuickTime is a container format, meaning it can contain a wide variety of
media. In fact, the QuickTime format can store still images (JPEG, BMP, PICT, PNG, and GIF), a
number of movie formats including MPEG-1, 360-degree panoramic images, Flash movies, MP3
audio, and other audio formats. Once you package up media in a QuickTime .mov file, you can take
advantage of QuickTime features such as dependable cross-platform performance, excellent
compression, and true streaming.

Although the QuickTime system extension is needed to play a .mov file, it is widely distributed and
available for both Windows and Macintosh systems. In addition, with the QuickTime plug-in, a
QuickTime audio player can be embedded right on the page. And QuickTime has proven itself as a
reliable format since you can assume most users have the appropriate plug-in or player.

QuickTime is discussed further in Chapter 34. For more information on QuickTime, see
www.apple.com/quicktime/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following summarizes the QuickTime format:

Good for... Continuous-play audio (music, narration).

Delivery True streaming via RTP or RTSP (using QuickTime Server on Mac OS X Server or the
open source Darwin Streaming Server on Unix and NT), pseudostreaming on HTTP
servers, download.

Creation
tools

QuickTime Pro for $29.95.

Player QuickTime plug-in for viewing within a web browser or QuickTime Player (standalone
utility).

33.5.4. MIDI (.mid)

MIDI (which stands for Musical Instrument Digital Interface) is a different breed of audio file format.
It was originally developed in the early 1980s as a standard way for electronic musical instruments to
communicate with each other.

A MIDI file contains no actual audio information (the digital representation of analog sound), but
rather numeric commands that trigger a series of notes (with instructions on each note's length and
volume). These notes are played by a MIDI player using the available "instrument" sounds in the
computer. The function is similar to the way a player piano roll creates a song when run through on
the player piano.

As a result, MIDI files are incredibly compact and ideal for low-bandwidth delivery. They are capable
of packing a minute of music into just 10K, which is 1,000 times smaller than a one-minute
uncompressed WAV file (approximately 10 MB).

QuickTime and most other MIDI file handlers install a General MIDI (GM) soundset with instruments
like piano, drums, bass, orchestral strings, and even vocal "oohs" and "aahs" in standardized MIDI
locations. Although these sounds may vary in quality and timbre from player to player, General MIDI
files can depend on getting a piano sound when they send to Program 1, Channel 1 of the GM Player
(built into QuickTime, etc.). These sound sets can be surprisingly good, but they still can't compete
with recordings created in a studio. In general, MIDI files will always sound "computery."

Despite this limitation, MIDIs are an extremely attractive alternative for adding instrumental music to
your web site with very little download time.

Because of the incredibly small download size and the availability of inexpensive
tiny GM sound chips, MIDI has become a very popular format for mobile phone
rings.

The following summarizes the MIDI format :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Good
for...

Background music and loops. Mobile phone rings.

Delivery Download.

Creation
tools

Requires special MIDI sequencer software, such as Vision, Cakewalk, and Digital
Performer. Creating and editing MIDI files can be complicated. Consider using an
existing MIDI file if you are inexperienced with music composition and digital audio.

Player QuickTime plug-in or Windows Media Player. MIDI sound engines are built into most of
the current web browsers.

33.5.5. RealMedia/RealAudio (.rm, .ra)

RealNetworks was a pioneer in producing a viable technology for bringing streaming audio to the
Web. Despite heavy competition, it continues to lead the pack in terms of widespread use and
popularity, and it has grown to be the standard for streaming audio, including live broadcasts.

RealAudio is a server-based streaming audio solution. Real's Helix server offers advanced features for
streaming audio delivery, including bandwidth negotiation (the proper bit rate version is delivered
based on the speed of the connection), RTSP transmission for smooth playback, and administrative
tools for tracking usage and minimizing server load. Using the SureStream feature, the bandwidth
can be adjusted on the fly (while the file is streaming) to accommodate bit rate fluctuations.

A robust Helix system can allow thousands of simultaneous listeners. The server software requires a
large investment, and RealNetworks charges licensing fees for the number of streams. There is,
however, a free version that allows five simultaneous listeners. For more information, see the
RealNetworks site at www.realnetworks.com.

If you aren't ready to commit to Helix, RealMedia and RealAudio files can be pseudostreamed from an
ordinary HTTP server for sites with a limited amount of traffic.

To listen to RealAudio files, users must have RealPlayer, which is available for Windows, Mac, and
Unix systems. The RealPlayer plug-in comes installed with most systems and makes it possible to
embed a RealMedia player right in the web page.

RealNetworks also offers tools for creating RealAudio and RealMedia files. The latest version (as of
this writing) is RealProducer Plus, which provides complete tools for converting audio and video to
streaming format. Audio can be saved in either the current and preferred RealMedia format (.rm) or
the RealAudio format (.ra) for support in older versions of RealPlayer.

The process for adding RealAudio to a web page is covered in detail later in this chapter. For more
information, visit the RealNetworks site at www.realnetworks.com. For consumer-oriented
information and downloads, see www.real.com.

The following summarizes the RealAudio format:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Good for... Continuous-play audio and live broadcasts to large numbers of people.

Delivery Streaming (via RTSP), pseudostreaming (via HTTP).

Creation
tools

One of the RealNetworks encoders (such as RealProducer Plus) or a third-party tool
such as Cleaner from Autodesk.

Player Freely available RealPlayer, Commercial RealPlayer Plus (with added features),
RealPlayer plug-in.

33.5.6. Windows Media (.wma, .asf)

Microsoft's Windows Media is a streaming media system similar to RealMedia. Like RealMedia, it
comes with the standard components for creating, playing, and serving Windows Media files.
Windows Media wraps all media elements into one Active Streaming File (.asf), Microsoft's
proprietary streaming media format. Audio may also be saved as nonstreaming Windows Media Audio
format (.wma). Because Media Player is part of the Windows operating system, it is widely distributed
and stable on the Windows platform. A version of Media Player is available for the Mac as well, but it
generally lags behind the Windows release and may not support the latest Windows Media codec
standards.

Windows Media Audio files are encoded using the special Windows Media Audio codec (currently in
Version 9), which is ideal for all types of audio at bit rates from 16 Kbps to 192 Kbps. For voice-only
audio at low bit rates (8 Kbps), use the alternative ACELP codec.

The Windows Media system has its advantages and disadvantages. On the good side, the server
software comes free with Windows NT Server 4.0 and later, and there are no charges for streams as
there are with RealMedia. Administration tools make it easy to track performance and bill per view or
per minute. The disadvantages to Windows Media are that the server only runs on Windows NT and it
doesn't support Flash or SMIL (Synchronized Multimedia Integration Language) like RealMedia.

For more information on Windows Media, see
www.microsoft.com/windows/windowsmedia/default.mspx. The FAQ is a good starting point.

The following summarizes the Windows Media format:

Good
for...

Continuous-play audio and live broadcasts.

Delivery Streaming, download.

Creation
tools

Windows Media Encoder for converting to Windows Media format, Windows Media Author
for creating synchronized multimedia presentations. See the Windows Media site for a
complete list of creation tools at
www.microsoft.com/windows/windowsmedia/forpros/AudioProd.aspx.

Flash (.swf), developed by Macromedia, is an ideal format for adding high-impact interactivity and
animation to web sites. Audio (from short clips to long-playing audio) can be embedded in a Flash
movie and triggered instantly by user actions. Recent versions of Flash can also embed streaming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and pseudostreaming MP3 audio (and video). The popularity and power of the Flash browser plug-in
and standalone Flash Player have quickly made Flash a viable alternative for custom players and
interactive audio. Creating Flash audio players can be a challenge, but the payoff can be very
impressive custom audio players only limited by imagination. Flash is covered in more detail in
Chapter 35. For more information, see Macromedia's site, www.macromedia.com.

The following summarizes the Flash formats:

Good for... Interactive sound effects, specialized web applications with embedded long-playing
sound.

Delivery Streaming (via QuickTime 8 or RealServer), pseudostreaming (via HTTP), download.

Creation
tools

Macromedia Flash, Adobe LiveMotion.

33.5.7. AAC (.m4a, .m4p, .mp4)

The Advanced Audio Coding (AAC) format was developed by the MPEG group as an improvement on
MP3 and other previous MPEG audio formats. It is the audio format at the core of the new MPEG-4
standard and offers several considerable improvements over MP3. Probably the most notable is that
it offers higher sound quality at lesser bit rates than MP3s. The format supports multichannel
surround sound capability and takes less computing power to decode. In 2003, Apple added AAC
support to the iPod and since that time has used copy-protected AAC (.m4p) as the format for
distribution of audio from the iTunes Store. Look for this format to take over for MP3 in the coming
years.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

33.6. Choosing an Audio Format

Which audio format or system you choose depends on your communication goals, the scale of your
site, and your budget. Table 33-1 provides suggestions for some common scenarios. Consider them
only as starting points for researching the solution that best meets your needs.

Table 33-1. Suggested audio formats

Audio needs Suggested formats

Short voice greetings QuickTime (via regular HTTP server), MP3, AAC

Narration (news broadcasts,
interviews, and other voice-only
content)

Streaming solutions such as RealAudio, Windows Media, or
QuickTime for large audiences; RealAudio or QuickTime via HTTP
server for limited traffic and few simultaneous listeners

Background music (ambient
sound loops)

MIDI, WAV

Short interactive sound effects
(such as button rollover and
transition sounds)

Flash

Music samples for a limited
audience

MP3, AAC, RealMedia, or QuickTime via HTTP server

Music samples for a large-scale
site with heavy traffic

Complete streaming solution, such as Real Helix or Windows
Streaming Media

Radio-style music broadcasting Real Helix, streaming MP3s (via a streaming server such as
SHOUTcast), Windows Media System

Distribution and sale of CD-
quality audio

MP3, AAC

Live broadcasting Real Helix, QuickTime, Windows Media System

Musical e-greeting card Flash, MIDI or WAV background sound

Specialized audio applications
(such as virtual CD players,
mixers, etc.)

Flash, QuickTime

http://lib.ommolketab.ir
http://lib.ommolketab.ir

33.7. Adding Audio to a Web Page

There are a number of ways to add audio to a web page. This section covers the most common
techniques.

33.7.1. A Simple Link

You can link to an audio file from a web page using a simple anchor (a) element, as follows:

 Play the song (3.5 MB)

When the reader clicks on the linked text or image, the browser retrieves the audio file from the
server and launches a helper application (or plug-in, if the browser is so configured) to play the file.
Files accessed in this manner are typically downloaded to the user's hard drive (stored in cache).

If the browser uses an external player, a new small window from the helper application opens with
the controls for playing the audio. If the browser is configured to use a plug-in player (such as the
popular QuickTime plug-in), a control panel may load right in the browser window, replacing the
original web page.

It is good web etiquette to warn readers of the size of an audio file so they can make an informed
decision as to whether they want to spend the time downloading the file.

33.7.2. Background Sound

Although it is possible to embed an audio file on a web page so that it starts playing automatically
when the page loads, this technique is not recommended. The problem with background sounds is
that users have no way of turning the sound off if they do not like it. Also, if the audio file is large,
you are forcing a potentially lengthy download on the user. Furthermore, background music on a web
page is almost always unnecessary.

If you do need to add a background sound to a page, you can do it with this nonstandard markup. Be
aware that this element will cause your document not to validate.

 <embed src="audio/song.mid" autostart="true" hidden="true"></embed>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

33.7.3. Adding RealMedia

RealMedia (including RealAudio) files can be added to a web page via two methods. The first and
most straightforward triggers the browser to launch RealPlayer as an external application (what Real
calls the "three-pane environment"). The second plays the media file in a player embedded directly
in the browser window using the RealPlayer plug-in.

RealNetworks provides extensive tutorials for producing, managing, and serving
RealMedia. Start with these online guides:

service.real.com/help/library/guides/realone/IntroGuide/HTML/prodintro.htm

service.real.com/help/library/guides/realone/ProductionGuide/HTML/realpgd.htm

Real recommends displaying RealMedia content in the RealPlayer three-panel environment, because it
enables you to take advantage of the full range of features and doesn't require potentially
complicated markup and scripting that cross-browser embedding can entail.

In either case, you do not create a link directly to the RealMedia file itself, but rather to a special
reference file, called a metafile. The metafile is a simple text document that contains the URL of the
RealMedia file. These reference files are generally kept in the same directories as the HTML
documents, although that is not a requirement.

There is a three-step process from click to playback. First, clicking the HTML link downloads the
metafile from the server to the browser. Once it arrives at the browser, the metafile tells the browser
to launch the RealPlayer and provides the player with URL information. Finally, the player uses the
URL to request the actual media file from the server and begins playing the stream.

Metafiles are useful for maintenance and control purposes. To change the audio, all you have to do is
change the tiny metafile, rather than having to dig through HTML source code. You can also do things
like call multiple streaming media files from one metafile. One link to the metafile plays all the files.

This indirect linking process is demonstrated in the following two examples.

33.7.3.1. Linking to RealMedia (external player)

When the user accesses RealMedia via a link (using the a element), the browser launches the
external RealPlayer application.

In the HTML document, make a link to the metafile that points to the RealMedia file as follows:

 Link to the song

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When linking to RealMedia, the metafile uses the .ram suffix. The metafile is a small text-only file that
contains only the URL that points to the RealAudio file (suffix .rm or .ra):

 rtsp://domainname.com/song.rm

33.7.3.2. Embedding RealPlayer on the page

The most common method for embedding RealPlayer on a web page is to use a combination of the
standards-compliant object element that works for Internet Explorer 5+ on Windows and the embed
element for browsers that use the Netscape plug-in architecture.

It should be noted that the audio stops playing when the user leaves the page. Also, it is more
difficult to get consistent cross-browser performance when the player is embedded. For these
reasons, it is generally preferable to link to the audio and use the external player.

The example in this section uses the nonstandard embed element that will
prevent (X)HTML documents from validating. In an ideal world, only the
standards-compliant object element would be necessary to embed media
objects on a web page, but as of this writing, the embed element is still required
for full cross-platform functionality. You are encouraged to explore whether the
object element alone may be sufficient for your needs.

The following sample code uses both the object (with parameters) and embed elements to embed the
player on the page. When RealMedia is embedded, the suffix of the metafile should be .rpm. This tells
the browser to start playing the media in the browser window.

 <object
 classid="clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA"
 height="150" width="250" border="0">
 <param name="SRC" value="realmedia/oakshoes.rpm">
 <param name="CONTROLS" value="all">
 <param name="AUTOSTART" value="true">

 <embed src="realmedia/oakshoes.rpm" height="150" width="250"
 autostart="false" controls="all" border="0">
 <noembed>You need the RealPlayer plugin to play this song.</noembed>
 </embed>
 </object>

The embed element contains attributes for pointing to the metafile (src), specifying the size of the
embedded player (width, height), whether the file starts playing automatically (autostart), whether
it displays control buttons (control), and a border (border).

These same settings are made in the object tag using attributes and additional parameters (indicated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by param elements). It is important that the classid attribute be specified exactly as it is shown in
the example, as it is the unique identifier of the RealAudio plug-in. This may not be changed.

The easiest way to create the HTML code for handling RealAudio is to use the RealProducer or
RealPublisher tool and allow it to do the work for you. The process for naming and accessing
RealAudio has changed several times over the last few years, so be sure to refer to current
documentation for up-to-date instructions.

33.7.4. Adding Windows Media

Before linking to Windows Media files (.asf or .wma), be sure they are saved in the ASFROOT
directory on the NT Server running the Windows Media Administrator.

To link to a downloadable (nonstreaming) Windows Media Audio file (.wma), use a simple link directly
to the audio file:

 Link to the song

Linking to streaming Windows Media works much like the process described for RealAudio above.
Streaming Windows Media uses a go-between reference file called an "active stream redirector" file
(.asx), similar to RealAudio's metafile. The ASX file contains the URL information that points the
player to the actual media file. This method of providing a single stream to a single user on demand
is called unicasting. In the HTML document, create a link to the redirector file as shown in this
example:

 Stream the song

The content of the .asx file looks like this:

 <ASX version="3">
 <Entry>
 <ref href="path/streamingsong.asf" />
 </Entry>
 </ASX>

Change the path in the ref so that it points to your Windows Media file. The .asx file should be saved
in the same directory as the Windows Media file.

Another method for delivering Windows Media is multicasting , in which a single media stream is
delivered (at a time determined by the publisher) and multiple users share the stream. You can
multicast prerecorded or live content. To add a multicast to your site, it is recommended that you use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the tools and wizards provided by the Windows Media Services program. For more information, see
the MSDN Library located at msdn.microsoft.com/library/default.asp.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 34. Video on the Web
Like audio, video clips were linked to web pages in the Web's earliest days. Delivering video via the
Web is especially problematic because video files require huge amounts of data to describe the video
and audio components, making for extremely large files.

Many of the same technologies that have improved the experience of receiving audio over the Web
have been applied to video as well. As with audio, you have the option of simply linking a video to
your web page for download and playback, or you can choose from a number of streaming solutions.
Streaming means the file begins playing almost immediately after the request is made and continues
playing as the data is transferred; however, the file is never downloaded to the user's machine. For a
more complete description of streaming versus nonstreaming media, see Chapter 33.

Many of the principles for developing and delivering video content for the Web are the same as those
for audio. In fact, some of the file formats are the same as well. This chapter introduces you to basic
video technology and concepts, including the video file formats QuickTime, Windows Media,
RealMedia, AVI, and MPEG. If you are interested in learning how to produce video files for the Web,
the books listed at the end of this chapter are a good start.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

34.1. Basic Digital Video Concepts

The following is a list of aspects of digital video that can be manipulated with standard video-editing
software. It is important to be familiar with these terms so you can create video optimized for web
delivery.

Movie length

It's a simple principle: limiting the length of your video clip limits its file size. Videos longer than
a minute or two may cause prohibitively long download times. If you must serve longer videos,
consider one of the streaming video solutions.

Frame size

Obviously, the size of the frame has an impact on the size of the file. "Full-screen" video is 640
x 480 pixels. The amount of data required to deliver an image of that size would be prohibitive
for most web applications. The most common frame size for web video is 320 x 240 pixels.
Some producers go as small as 160 x 120 pixels.

Frame rate

The frame rate is measured in number of frames per second (fps) . Standard TV-quality video
uses a frame rate of approximately 30 frames per second to create the effect of smooth
movement. For the Web, a frame rate of 15 or even 10 fps is more appropriate and still
capable of producing fairly smooth video playback. For "talking head" and other low-motion
subjects, even lower frame rates may be satisfactory. Commercial Internet broadcasts are
routinely done as low as 0.5, 0.25, or even 0.05 frames per second (resulting in a slideshow
effect rather than moving video).

Quality

Many video-editing applications allow you to set the overall quality of the video image. The
degree to which the compression algorithms crunch and discard data is determined by the
target quality setting. A setting of Low or Medium results in fairly high compression and is
appropriate for web delivery. Frame rate, frame size, and quality are often traded off in
different degrees in relation to each other, depending on the application, to reduce bandwidth
requirements.

Color bit depth

The size of the video is affected by the number of pixel colors in each frame. Reducing the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

number of colors from 24- to 8-bit color will drastically reduce the file size of your video, just as
it does for still images. Of course, you also sacrifice image quality.

Data rate (bit rate)

This is the rate at which data must be transferred for the video to play smoothly without
interruption. The data rate (also called "bit rate") for a movie is measured in kilobytes per
second (K/sec or Kbps). It can be calculated by dividing the size of the file (in K) by the length
of the movie (in seconds). So, for example, a highly compressed movie that is 1900K (1.9 MB)
and 40 seconds long has a data rate of 47.5K/sec.

For streaming media in particular, a file's data rate is more important than its total size. This is
because the total bandwidth available for delivery may be severely limited, particularly over a
dial-up connection. For example, even an ISDN line at 128 Kbps offers a capacity to deliver
only about 16K of data per second.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

34.2. Compression

Digital video wouldn't be possible without methods for compressing the vast amounts of data
necessary to describe sound and frame images. Video files can be compressed in a number of ways.
This section looks at a variety of compression schemes and introduces the methods they use for
achieving compression rates. Understanding your options can help you make better decisions for
optimizing your video files.

34.2.1. Lossless Versus Lossy Compression

Compression can be lossless, which means no information is lost and the final file is identical to the
original.

Most compression schemes use forms of lossy compression. Lossy compression sacrifices some data
from the file to achieve much higher compression rates. Lossy compression schemes, such as MPEG,
use complicated algorithms that toss out data for sound and image detail that is not discernible to the
human ear or eye. The decompressed file is extremely similar in character to the original, yet is not
identical. This is similar to the way JPEG handles still images.

34.2.2. Spatial Versus Temporal Compression

Spatial (or intraframe) compression takes place on each individual frame of the video, compressing
the pixel information as though it were a still image.

Temporal (or interframe) compression happens over a series of frames and takes advantage of areas
of the image that remain unchanged from frame to frame, throwing out data for repeated pixels.

Temporal compression relies on the placement of key frames interspersed throughout the frames
sequence. The key frames are used as masters against which the following frames (called delta
frames) are compared. It is recommended that a key frame be placed once every 3 to 10 seconds.
Videos without a lot of motion, such as talking head clips, take the best advantage of temporal
compression . Videos with pans and other motion are compressed less efficiently.

34.2.3. Video Codecs

There are a number of codecs (compression/decompression algorithms) that can be used to
compress video files for the Web. Many of these codecs can be applied to several different file
formats (discussed in the next section of this chapter).

Video-editing software packages often offer a long list of codecs in their compressor list options. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

list focuses on just those that are relevant to video intended for web delivery.

Sorenson

The Sorenson Video codec was designed for low-bandwidth applications and is capable of
producing files with lower data rates (if you select the Limit Data Rate option) than Cinepak
while maintaining excellent quality. Because it uses complicated compression algorithms, it
requires a lot of processing power and may not run smoothly on older machines.

H.264/AVC

This codec (also known as MPEG-4, Part 10) was designed to provide good video quality at
drastically reduced bit rates, making it an exciting new codec for web video. It was created by
ITU-T in collaboration with the group that developed MPEG (together known as the Joint Video
Team). The H.264 standard and MPEG-4, Part 10 standard are technically identical, and the
technology is also known as AVC, for Advanced Video Coding. In addition to being useful for
Internet transmission, it may accommodate higher bit rates for broadcast, DVD, and telephony.

Apple Computer integrated support for H.264 compression into its OS X 10.4 (Tiger) operating
system as well as QuickTime 7, both released in 2005.

Windows Media Video Codec

Microsoft uses its own proprietary video and audio codecs for use with the Windows Media
System (in Version 9 as of this writing). It serves as the basis for the video codec VC-1, which
is in the process of being standardized. For more information on Windows Media video codecs ,
see www.microsoft.com/windows/windowsmedia/howto/articles/codecs.aspx.

MPEG

The MPEG codec can be used only when the final video file will be in MPEG format (it is not
compatible with other file types). It uses a lossy compression scheme (although it may be
lossless at high-quality settings) and spatial and temporal compression. Some other codecs
(H.264 and Windows Media Video) are based on MPEG compression.

Intel Indeo

The Indeo codec provides compression rates similar to Cinepak by the use of spatial and
temporal compression, with lossy compression at low quality levels. Its drawbacks are that it
does not maintain quality at data rates as low as Cinepak, and it requires high-end machines to
perform at its best.

Radius Cinepak

Cinepak provides decent compression/decompression rates. It employs both spatial and
temporal compression and a lossy compression scheme at lower quality levels. Cinepak is well
supported, but due to grainy video quality and the availability of alternative compression

http://lib.ommolketab.ir
http://lib.ommolketab.ir

schemes, it is outdated and seldom used.

Animation

If your video clip is all computer-generated graphical imagery (i.e., not sourced from
videotape), you may want to try the Animation compressor .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

34.3. Video File Formats

As with audio, in the early days of the Web, adding video to a web page meant using one of the
currently available video formats (such as QuickTime or AVI) and linking it to a page for download.
The evolution of streaming media has changed that, and now adding video content like movie
trailers, news broadcasts, even live programming to a web site is much more practical and
widespread.

This section looks at the video formats that are most common for web delivery.

34.3.1. Windows Media (.wmv or .asf)

Windows Media is a new standard for audio and video, created by Microsoft and therefore very
closely integrated with the Windows OS. The Windows Media Player is capable of playing Microsoft's
proprietary Windows Media Video (.wmv) and Advanced Streaming Format (.asf), as well as a
number of other formats such as AVI, MPEG, MP3, and QuickTime.

Windows Media movies are encoded using the proprietary Windows Media Video codec designed
especially for the Windows Media system. They may also feature DRM (digital rights management)
capabilities.

In addition to the player, the Windows Media 9 Series platform includes Windows Media Encoder,
Windows Media Rights Manager 9 Series SDK, Windows Media Services, and a collection of audio and
video codecs.

For more general information about Window Media, visit Microsoft's site at
www.microsoft.com/windows/windowsmedia/. Resources related specifically to codecs (video and
audio) are available at www.microsoft.com/windows/windowsmedia/mp10/codecs.aspx. If you want
to create and stream Windows media, the book Microsoft Windows Media Resource Kit, by Tricia Gill,
Bill Birney, and the Microsoft Windows Media Team (Microsoft Press) offers a comprehensive
overview.

The following summarizes the Windows Media format:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Good
for...

Delivering video to a wide audience (very good support).

Delivery Streaming or download.

Creation
tools

Windows Media Encoder for converting to Windows Media format, Windows Movie Maker
for making simple movies on a PC. A growing number of third-party video editors
support Windows Media, including Avid, Adobe Premiere, Autodesk Cleaner XL, and
Sorenson Squeeze.

Player Windows Media Player (shipped with Windows OS), also available as a download for the
Mac as well as a variety of handheld devices.

34.3.2. QuickTime Movie (.mov)

QuickTime is a highly versatile and well-supported media format. While originally developed as a
video format, it has evolved into a container format capable of storing all sorts of media (still images,
audio, video, Flash, and SMIL presentations).

QuickTime, a system extension that makes it possible to view audio/video information on a
computer, was introduced by Apple Computer in 1991. Although developed for the Macintosh, it is
also supported on PCs via QuickTime for Windows. QuickTime has grown to be an industry standard
for multimedia development, and most hardware and software offer QuickTime support.

34.3.2.1. Streaming

QuickTime movies may be downloaded (via HTTP) or streamed using a number of streaming server
packages, including Apple's QuickTime Streaming Server for Mac OS X or its open source Darwin
Streaming Server for Unix, Linux, and Windows. To give the illusion of streaming from an HTTP
server (pseudostreaming), create FastStart QuickTime movies that begin playing right away and
continue playing as the file downloads.

34.3.2.2. Creating QuickTime movies

You can take care of rudimentary video editing, such as deleting and rearranging, right in Apple's free
QuickTime Player. The QuickTime Pro version ($29.95) offers more features and is sufficient for most
basic tasks.

For advanced video editing, use a professional video editing tool such as Apple Final Cut Pro, Adobe
Premiere or Adobe After Effects (most video editors support QuickTime). You may also use a file
converter, such as Cleaner from Autodesk (www.autodesk.com) or Sorenson Squeeze from Sorenson
Communications (www.sorenson.com), to convert existing files to QuickTime format.

An important step to remember when saving a movie is to make it self-contained. This process
resolves all data references and prepares the file to go out on the Internet on its own. You will also
be asked to pick a codec. QuickTime supports several codecs including the advanced H.264 codec

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(see earlier description) introduced in QuickTime 7.

34.3.2.3. Reference movies

Another interesting feature of QuickTime is its support for reference movies . Reference movies are
used as pointers to alternate versions (or "tracks") of a movie, each optimized for a different
connection speed. When a user downloads the reference movie, the plug-in ensures that the best
track for the current connection speed is played.

34.3.2.4. For more information

The process for adding QuickTime to a web page is discussed later in this chapter. For general
information on QuickTime, see Apple's site at www.apple.com/quicktime/. For complete information
on all aspects of QuickTime creation and delivery, I recommend the book QuickTime for the Web for
Windows and Macintosh by Steven Gulie (Morgan Kaufmann).

The following summarizes the QuickTime format:

Good
for...

Delivering video to a wide audience (very good support).

Delivery True streaming via RTP or RTSP (using QuickTime Server on Mac OS X Server or the
open source Darwin Streaming Server on Unix and Windows), pseudostreaming on
HTTP servers, download.

Creation
tools

Most video editing and conversion tools support QuickTime, or use Apple's basic editing
tool, QuickTime Pro, for $29.95.

Player QuickTime plug-in (part of Netscape Navigator and Internet Explorer) for viewing within
a web browser or QuickTime Player (standalone utility).

34.3.3. RealMedia (.rm)

RealNetworks (which used to be Progressive Networks) first launched its streaming video capabilities
in Version 3.0 of its RealMedia line of products (of which RealAudio is the star component). RealMedia
files (.rm) are viewed using RealPlayer. The wide distribution of RealPlayer makes RealMedia a
popular choice for adding streaming media to a web site.

The components of the RealMedia system (RealPlayer for playback, Helix Server for serving
simultaneous streams, and RealProducer and RealProducerPlus for creating .rm files) are the same as
for RealAudio. RealMedia movies are encoded using a proprietary codec built into RealProducer and
RealPlayer.

For more information, visit the RealNetworks site at www.realnetworks.com. For consumer-oriented
information and downloads, see http://www.real.com.

The following summarizes the RealAudio format:

http://www.real.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Good
for...

Long-playing video clips and live broadcasts to large numbers of people.

Delivery Streaming (via RTSP), pseudostreaming (via HTTP).

Creation
tools

One of the RealNetworks encoders (such as RealProducer Plus or Basic) or a third-party
tool such as Autodesk Cleaner. A plug-in is available for Final Cut Pro, Adobe After
Effects, and Avid Xpress for exporting to RealMedia format.

Player Freely available RealPlayer and commercial RealPlayer Enterprise.

34.3.4. AVI (.avi)

AVI (which stands for Audio/Video Interleaved) was introduced by Microsoft in 1992 as the standard
movie format to work with its Video for Windows (VFW) multimedia architecture for Windows 95. In
AVI files, the audio and video information is interleaved in every frame, which in theory produces
smoother playback. The AVI format has been replaced by the more robust Windows Media as the
standard media format for Windows. Macintosh users can view AVI files using the QuickTime player.

With the growing (and well-deserved) popularity of streaming media systems, AVI movies are
becoming scarce for web distribution. More often, they serve as the high-quality video source file that
is converted into a more web-friendly format.

The following summarizes the AVI format:

Good for... Short web video clips, high-quality video source files.

Delivery Download.

Creation tools Most video editing tools support AVI.

Player Windows Media Player, QuickTime Player.

34.3.5. MPEG (.mpg or .mpeg)

MPEG is a set of multimedia standards created by the Moving Picture Experts Group. It supports
three types of information: video, audio, and streaming (which, in the context of MPEG compression,
is synchronized video and audio).

MPEG was initially popular as a web format because it was the only format that could be produced on
the Unix system.

MPEG files offer extremely high compression rates with little loss of quality. They accomplish this
using a lossy compression technique that strips out data that is not discernible to the human ear or
eye.

There are a number of MPEG standards. MPEG-1 was originally developed for video transfer at VHS
quality. MPEG-2 is a higher-quality standard that was developed for television broadcast and DVD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

authoring. The most recent released standard is MPEG-4, made popular by its support by QuickTime
(though MPEG-4 support is not limited to QuickTime).

MPEGs can be compressed using one of three schemes, Layer-I, -II, or -III. The complexity of the
coding (and therefore the processor power needed to encode and decode) increases at each level.
Due to this complexity, you need special encoding tools to produce MPEG videos.

MPEG-1 (which uses the .mpg or .mpeg suffix) is the most appropriate format for web purposes.
MPEG-2 files are rare except in broadcast studios and on DVDs and are not well suited for web
delivery. MPEG-4 is proving to be an attractive option for web video.

To learn more about MPEG, visit the MPEG web site (http://www.mpeg.org).

The following summarizes the MPEG movie format:

Good for... High-quality video.

Delivery Streaming, download.

Creation
tools

QuickTime 7 Pro, professional video editing software such as Adobe Premiere and
After Effects, Apple Final Cut Pro.

Player Windows Media Player, QuickTime Player.

34.3.6. Which Format to Choose

To deliver long-playing video (like a full movie trailer) or live video broadcasts, you should definitely
use one of the streaming media solutions (Windows Media, streaming QuickTime, or RealMedia).
Which you choose will come down to the individual requirements of your site. If you expect heavy
traffic and many simultaneous streams, definitely invest in a dedicated true streaming system.

If you have just a few short clips to share with a limited number of visitors, you may be able to get
away with pseudostreaming RealMedia or FastStart QuickTime movies on your regular web server.

Because all streaming video formats are capable of supporting multiple file formats, are fairly stable,
and feature well but not universally distributed players and plug-ins, the decision will likely come
down to which server matches your budget or expertise.

For articles and news related to all matters of streaming media, see
StreamingMedia.com.

http://www.mpeg.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

34.4. Adding Video to an HTML Document

This section looks at the ways video files can be linked to or embedded within an HTML document.

34.4.1. A Simple Link

Like audio, downloadable video files (AVI, MPEG, Windows Media, and QuickTime) can be linked to HTML documents
using the standard anchor (a) element:

 Check out the video (1.3MB)

When the user clicks on the link, the browser looks at the file type (as defined in the filename suffix) and launches an
external player application or uses a plug-in to play the movie right in the browser window. Which player it uses
depends on the file format and how that user has the browser configured, so it is out of the control of the web page
designer.

When linking to media, it is good form to provide an indication of the file size so users with slower connections can
make the decision whether to click.

34.4.2. Streaming Video

As in audio, streaming media in the RealMedia (.rm) and streaming Windows Media (.asf) formats are added to web
pages via linked or embedded reference files (also called metafiles). The process, covered in detail at the end of
Chapter 33 , is exactly the same for video as for audio.

34.4.2.1. Windows Media

To link to a Windows Media Video file for download and playback, create a link directly to the video file:

 See the movie

To link to a streaming Windows Media file for unicasting (a single stream triggered by a user request), make a link to
an active stream redirector file (.asx).

 See a streaming movie

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The content of the .asx file is the location (URL) of the actual movie and looks like this:

 <ASX version="3">
 <Entry>
 <ref href="path/streamingmovie.asf" />
 </Entry>
 </ASX>

For multicasting (a publisher-controlled broadcast of a single stream that is viewed by many users simultaneously), it
is recommended that you generate code using the tools and wizards provided by the Windows Media Services
program.

34.4.2.2. RealMedia

In brief, to link to a RealMedia movie, create a link to a RealMedia metafile (.ram) as shown in this example:

 Link to the streaming movie

The metafile is a small text-only file that contains only the URL for the RealMedia file (suffix .rm). When the user
clicks the link, the browser accesses the metafile, which launches the player and passes it the URL of the actual media
file:

 pnm://domainname.com/movie.rm

34.4.3. Embedded QuickTime Movies

In addition to simply linking to a QuickTime movie, you can place the player right in the web page like an image. The
QuickTime plug-in is required to play .mov files inline, but it is bundled with Internet Explorer, Netscape, and Safari
and is supported Firefox, Opera, and most other browsers, making it a relatively safe and cross-platform method for
putting a video right on a page.

To place a QuickTime movie on a web page so that it will be supported by all browsers (including IE), it is necessary
to use both the object and embed elements. Be aware that embed is a nonstandard element, and will cause your
document not to validate. Unfortunately, at this time, to take advantage of the full functionality of the QuickTime
plug-in player, the embed element is the only option, because there is no method for passing parameters to the player
using object alone.

If you only require default play settings, there is a standards-compliant method for embedding
QuickTime movies using nested object elements and a bit of CSS. The process is beyond the
scope of this chapter, but you can read a tutorial at
realdev1.realise.com/rossa/rendertest/quicktime.html .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the markup used in common practice for placing a .mov file that is 240 x 180 pixels on a web page for cross-
browser compatibility. One day, there will be a standards-compliant embedding method that works with the
QuickTime plug-in player, but for the time being, the embed element is required for all but the default player settings.
By default, the movie is displayed with a small controller on its bottom edge for controlling playback. The movie will
start playing automatically unless autoplay is set to false , as is shown in this example. The required markup is in
bold.

 <object classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B" width="240 " height="196 "
codebase="http://www.apple.com/qtactivex/qtplugin.cab">
 <param name="SRC" value="movies/vacation.mov " />
 <param name="AUTOPLAY" value="false" />

 <embed src=" movies/vacation.mov " width=" 240 " height=" 196 " autoplay="false" pluginspage=
"http://www.apple.com/quicktime/download/">
 </embed>

 </object>

The classid attribute in the object element calls in an ActiveX control in Internet Explorer that plays QuickTime
movies. The codebase and pluginspage attributes function similarly in pointing to the location where the QuickTime
plug-in is available.

It is important to add 16 pixels to the actual height of the movie in the height attribute to
accommodate the controller.

34.4.3.1. Attributes and parameters

The embed element has a number of attributes for controlling various aspects of playback and display. These attributes
are recognized by every browser that supports the embed element and are supported by the QuickTime plug-in as
well.

These attributes and their values are provided to the object element using name/value pairs in the param elements.
Notice in the example that the false value of the autoplay attribute in embed is repeated as a param element where
name="autoplay" and value="false" .

The attributes that are part of the definition of the embed element are listed here. The attributes are described as they
apply to QuickTime movies. They may have other functions for other media.

src=" url "

Required . This attribute points to the video file you want to play.

width=" number of pixels " height=" number of pixels "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Required . These attributes set the width and height in number of pixels for the video frame. It is important
that the values of width and height be at least 2, even when the player is set to be hidden. A value of less than
2 results in crashes in some browsers. Add 16 pixels to the height of your movie if you have also set the
controller tag to TRue , so that the QuickTime controller strip has room to display.

hidden="true|false"

When set to true , the plug-in player is not displayed. Be sure that the height and width are set to at least 2
even if the player is hidden to prevent crashes. This attribute is listed here for thoroughness' sake, but it is
more appropriate for QuickTime audio (used as a background sound) than for video.

pluginspage= "http://www.apple.com/quicktime/download/ "

This provides a link to a source from which to acquire the QuickTime plug-in if the browser can't find it on the
system.

loop="true|false|palindrome"

true causes the video to loop continuously. false (the default) causes the video to play through once.
palindrome makes the video play through, then play in reverse, then play through, continuously.

href=" url "

This attribute makes your movie a link to another page.

type=" MIME type "

Specifies the MIME type of the file (such as video/quicktime or image/x-quicktime) if you aren't sure the web
server will provide it (it usually does).

34.4.3.2. Special QuickTime attributes

There are dozens of specialized attributes that are recognized by the QuickTime plug-in. The list below includes only a
few of the most common. A complete list is available online at www.apple.com/quicktime/tutorials/embed.html .

autoplay="true|false"

The video will start playing automatically if this attribute is set to TRue . The default depends on the user's
settings, but it is generally false (meaning the user will have to start the video with the Play button).

controller="true|false"

A control bar for the video will be visible when this is set to true (or by default). Although it is possible to turn
off the controls, it is usually advisable to leave them visible and available for use.

http://www.apple.com/quicktime/download/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

volume=" percent " (%0 to %300)

By default, audio is played at full volume (100%). You can set it lower to compensate for an especially loud
audio track. Setting it higher than 100% is discouraged because it causes distortion and lessens audio quality.

playeveryframe="true|false"

When set to false (the default), you allow the video to skip frames in order to ensure smooth playback. Do not
set this attribute to TRue if you have audio with your movie as it will be muted during playback.

34.4.4. Embedding Windows Media

Windows Media movies may also be embedded on a web page. The minimal markup for embedding Windows Media is
quite simple, but it can get complicated quickly when taking advantage of scripting features, custom buttons, and so
on. This section covers just the basics.

Embedded movies are played in Internet Explorer (Windows) using an ActiveX control and in other browsers using the
Windows Media Player plug-in. Recently released Gecko-based browsers (Netscape Navigator 7.1 and Firefox 1.0)
also now support the ActiveX control. The basic markup for embedding Windows Media is shown here.

 <object id="Player" height="280" width="320"
 classid="clsid:6BF52A52-394A-11d3-B153-00C04F79FAA6">
 <param name="URL" value="movies/europe.wmv" />
 <param name="autoStart" value="false" />
 <param name="UIMode" value="full" />
 </object>

The classid attribute in the object element specifies the ActiveX control by its identifying number. The value
beginning with clsid:6BF ... is used with Windows Media Player Version 9 and 7. It is incompatible with earlier
versions that use a different clsid .

This example uses these three common parameters:

URL (value=" url ")

Specifies the location of the movie file. This parameter replaces "Filename" used in earlier versions.

autoStart (value="true|false")

Specifies whether the movie begins playing automatically. The default is true .

UIMode (value="invisible|none|mini|full|custom")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies whether (or which version) of the controls are displayed. The default is full .

For a complete list of Windows Media Player parameters, go to the MSDN Library
(msdn.microsoft.com/library) and do a search for "PARAM Tags."

34.4.4.1. Browser support

The downside to embedding Windows Media is that you have to jump through a lot of hoops to get it to work on all
browsers and platforms. Some solutions involve browser-sniffing and scriptingeven Java appletsthat are beyond the
scope of this chapter.

As of this writing, the existing Windows Media Player plug-in for Macintosh does not support
the very latest Windows Media codecs.

Most sites that provide embedded WM movies as of this writing use that old fallback, the embed element, to provide
play parameters to the Windows Media Player plug-in. It's not standards-compliant, and it will prevent your page from
validating. You are encouraged to experiment with using the standard object element (or nested object elements)
alone to see if it meets your needs.

The embed element is nested inside the object element as shown in this example:

 <object id="Player" height="280" width="320"
 classid="clsid:6BF52A52-394A-11d3-B153-00C04F79FAA6"
 type="application/x-oleobject" codebase="HTTP://ACTIVEX.MICROSOFT
.COM/ACTIVEX/CONTROLS/MPLAYER/EN/NSMP2INF.CAB#VERSION=6,4,7,1112">
 <param name="URL" value="movies/europe.wmv" />

 <embed type="application/x-mplayer2" name="MediaPlayer" width="320"
 height="280" src="movies/europe.wmv">
 <noembed>See a streaming movie</noembed>
 </embed>

 </object>

Browsers that can use the ActiveX control will get their instructions from the object and param elements. Browsers
that don't understand the outer object element will look inside that object for alternative content (the embed
element). Browsers that don't support the embed element will display the content of the noembed element, which is a
link to play the movie in the external Windows Media Player.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 35. The Flash Platform
by Todd Marks

Flash has come a long way since its infancy as FutureSplash in the late 1990s. "Flash" started as
means of adding animation and interaction to a web page, but has since evolved into a robust
platform. Flash has seen significant improvements in not only its content delivery capabilities,
including the addition of video and an object-oriented programming language, but also in its ability to
allow for live communications and Rich Internet Applications (RIA) development. At the core of these
features is the real hero of it all, the Flash Player .

The Flash Player allowed Flash to take off on the Web due to its small plug-in size and use of vector
graphics and reusable shapes . Vector graphics were a big improvement over traditional raster
graphics, because they were typically much smaller in file size and allowed users to animate graphics
easier. The Flash Player's and Flash files' biggest contribution, however, was that they brought
reusable graphical shapes to the Web. Flash allows graphics, buttons, and code objects to be
duplicated over and over in a Flash file, but without adding additional file size to the page. This shift
allowed designers and developers to start creating worlds to explore over the Web, during the pre-
broadband era.

The name "Flash" traditionally has referred to the Macromedia Flash authoring environment , which
produces .swf files, and the Macromedia Flash Player, which plays those files on the Web. Now, the
name "Flash" refers to a platform, with the Flash Player at the center and several applications
leveraging the power of that player.

The Flash authoring environment is still the primary application that uses the Flash Player. Flash
includes tools for illustration, animation, interaction sequencing, sound editing, video, and working
with its procedural language, ActionScript. Macromedia Flash 8, the latest version as of this writing,
offers an improved interface, new templates for handheld and mobile devices, a new video codec and
encoder, as well as several new "components," which are packaged as customizable code objects that
can be used to add robust functionality to a web page or application. These features make Flash one
of the most versatile and powerful formats for web multimedia.

This chapter focuses mostly on using and implementing Flash via the authoring environment and the
web-based Flash Player, but also touches on several other applications that leverage the Flash Player
to give you a better picture of all pieces that now contribute to the Flash Platform.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

35.1. Using Flash on Web Pages

Flash movies can be placed on a web page, or they can be used as a web page. Moreover, with the
advanced scripting present since Flash 5, and the inclusion of server-side applications such as Flash
Media Server 2, Breeze, and Flex, the uses for Flash movies are limited only by imagination. Some
possibilities include:

Art and motion graphics

Animation and cartooning

Splash pages, intros, and ad banners

Interaction and navigation

Multimedia web sites

Video and audio players

E-commerce

Rich media applications

Data and statistical applications

Web-based training

Distance learning

Live communication

While Flash introduces a number of significant improvements over what can be accomplished using
just HTML and scripting in the browser, there are a few drawbacks to using Flash as well. Let's look
at the pros and cons of using Flash on a site.

35.1.1. Advantages

Many aspects of the Flash file format make it ideal for adding interactive content to web pages:

File sizes are small.

Flash allows for reusable graphics, buttons, and code objects without adding additional bytes
for every instance used. Flash movies also use vector graphics, which rely on math to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

designate lines and color as opposed to storing the colors of individual pixels, such as with
raster graphics. This saves a lot of file size.

It is scalable.

Flash images and animations can be resized with no loss of detail, making it easy to fill the
whole browser window with a Flash interface without adding to the file size. Flash can be used
to create static images, such as maps, where zooming in to view the image in finer detail is
desirable.

Image quality is high.

Real-time anti-aliasing smoothes the edges of graphics and text, regardless of the display size.
Users can zoom in on vector graphics with no loss of image quality.

It uses streaming technology.

Flash files start playing quickly and continue to play as they download, so they can be
pseudostreamed from an HTTP server. The Flash Player itself can stream video and audio,
including MPEG and Flash video files.

Integrated audio and video.

Flash is a good way to bring background sound and user-triggered sound effects to a web site.
With the advent of Flash MX you can also import files of type .mov (QuickTime), AVI, and .mpg
(MPEG), and with the professional version of Flash MX 2004, you can edit and crop the video
before adding it to the timeline. With Flash 8, you can employ VP6 codec for very high-
resolution video.

The Flash format is well supported.

The Flash Player, which is required to play Flash (.swf) files, is available for Windows, Mac OS,
Linux, and Sun Solaris platforms. As of this writing, the current version is the Flash 8 Player.
Over 98% of all browsers currently support Flash, with the newest player being shipped with
new computers.

It is scriptable.

Flash uses the ActionScript scripting language for controlling Flash behaviors. (ActionScript is
discussed in detail later in this chapter.) In addition, you can use JavaScript commands from
the HTML file to control a Flash element on a page. The reverse is true as well; by using
FSCommands in the Flash movie, you can activate JavaScript commands from within the Flash
file to control web page elements.

It has an open format.

Macromedia has made the Flash file format publicly available, which means that other software

http://lib.ommolketab.ir
http://lib.ommolketab.ir

developers can build Flash support into their applications.

Font sets are transferable.

Any font used in a Flash .swf file can be read on any system, whether or not it has that font in
its system.

Consistency.

Although different types of browsers have different implementations of JavaScript and even
HTML and CSS, Flash Players provide a cross-browser consistency.

35.1.2. Disadvantages

Of course, you must also consider the downside to Flash.

A plug-in player is required.

Standard Flash files require the Flash Player to be installed on the user's machine, though all
major browsers come standard with some version of the Flash Player. The words "plug-in
required," however, are enough to make many clients say "no way" without a second thought.
Although Flash reaches over 98% of all browsers, your client might have an older player that
doesn't support newer features you are attempting to use, so double-check with them before
beginning development.

Resisting Plug-In Resistance

How do you respond when clients say no upon hearing a plug-in is required? To its credit,
Macromedia has anticipated such resistance and has responded with some strategies. For
example, the Publish feature in Flash 4 and higher (previously the Aftershock utility)
makes it easy to generate code that detects the specific player version. Flash 8 has made
it even easier for both detection and update, which can now occur seamlessly behind the
scenes.

Additionally, there are alternatives. Flash Player Java Edition enables Flash files to play
on any Java-enabled browser. The Flash authoring tool also allows you to export your
animation as an animated GIF, although you may need to optimize it in a dedicated GIF
animation utility.

Older Flash Players and .swf files are not 508 compliant.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Flash movies for document headlines and navigation introduces the same problems as
using static graphics in place of text for nongraphical browsers and screen readers. The
contents of the Flash movie are a black box to these users. alt text helps, but is limited.
Fortunately with the advent of the Flash 6 Player (the current version is now the Flash 8
Player), screen readers such as JAWS and Windows-eyes can access the content in the Flash
movie.

It always starts on the initial page of the movie.

Other web sites cannot link to a certain page or scene within a Flash movie on another site.

Unix support is limited.

Although there is a Netscape plug-in available for Linux Red Hat 6 and higher as well as Solaris,
other Unix users are out of luck when it comes to viewing Flash files. The Flash Player Java
Edition is one solution to this problem. There is no Unix version of the Flash authoring tool.

Authoring software is required.

Flash MX costs $499 ($199 to upgrade from a previous version), and the professional version
costs $699 ($299 to upgrade from a previous version). Several third-party tools, such as Swish
(SWISHzone.com) and Wildform , let you produce Flash (.swf) files at a fraction of the cost of
Macromedia Flash, but, of course, they have only a fraction of the functionality of Flash.

Educators and students can purchase Flash at a much reduced charge of $99,
though even this cost is subsidized by many schools and universities when
purchased on campus.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

35.2. Creating Flash Movies

Although it is beyond the scope of this book to teach the myriad information about Flash authoring,
this section will give you a high-level overview of creating Flash movies, by reviewing file formats,
interface basics, optimization, server configuration, action scripting, and adding Flash movies to a
web page. Full-featured Flash movies are best created using Macromedia's Flash software, but I will
also show you several third-party software products that allow you to create specific types of .swf
files and still use the Flash player. For a more hands-on look at creating movies, I recommend using
the tutorials that come with the software as well as support documents provided by Macromedia
(www.macromedia.com/support/flash/). For an incredibly thorough book of tutorials and reference
material, check out Flash 8 Bible by Robert Reinhardt and Snow Dowd (Visual).

35.2.1. File Formats

The Flash authoring tool saves information about a movie in a .fla source file (also called a "Flash
document" or "Flash editor document"). The .fla file contains all the separate elements that make up
the movie and its timeline information in a fully editable format.

When the movie is ready to go on the Web, it must be exported to .swf format. The suffix originally
stood for Shockwave Flash, but in the face of confusion with Macromedia's Shockwave for Director
format, the meaning is more accurately understood as simply a compiled Flash application.

35.2.2. Flash Interface Basics

To better understand the way Flash handles multimedia content, it is useful to be generally
acquainted with the Flash authoring environment. Figure 35-1 shows the core features of the Flash
interface as seen on Windows XP.

Figure 35-1. The Flash interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tools

The Toolbox contains all the tools for drawing, painting, selecting, viewing, and modifying
artwork.

Stage

The Stage is the area where you compose and preview the movie.

Layers

The elements on a Timeline may be stored on separate layers (similar to layers in image
editing tools). Layers in Flash control the arrangement of objects from background to
foreground, support masking, enable motion and shape tweening, and contain guide elements,
frame labels, and actions.

Timeline

The Timeline is where you control the timing of the animation and assemble the elements from
separate layers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Frames

Like film, Flash movies divide lengths of time into individual frames. A keyframe is a frame in
which you define a change in the animation. Static frames reflect no change and merely repeat
the content of the prior frame. Animation effects are added by changing content over a series
of frames.

Library

The Library is where you store all imported items (such as images and audio), native symbols
(Flash objects that you want to use repeatedly in the same movie, such as a button), and
components (Flash objects that you can use repeatedly across movies). When you place an
object on the Stage, you create an instance of that object.

Properties

The Properties inspector is where you access and modify all of the attributes of the given object
selected on the Stage.

Actions

The Actions panel allows you to create new objects via code and to manipulate the objects on
the stage or within the Library during runtime by means of the native scripting language,
ActionScript.

Panels

There are several other panels in addition to the Library that appear in the same area of the
application interface. These panels include the Accessibility panel, which allows you to make a
Flash movie section 508 compliant, and the Components panel, which allows you to reuse Flash
objects between movies, among others.

35.2.3. Optimizing Flash Movies

There are several measures you can take up front to make your .swf compress as small as it can.
The following are just a few tips:

Keep your artwork as simple as possible.

Remove unnecessary points in vector drawings (choose Optimize from the Modify menu).

Limit the number of gradients (choose flat color fills instead).

Limit the number of fonts and amount of text.

Use "tweens" and motion guide layers for animation rather than extra keyframes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Minimize bitmap usage and avoid setting bitmap images in motion.

Use symbols and nested symbols whenever possible. However, do not allow symbols to be too
large as they can slow down streaming playback.

Optimize imported media (images, audio) prior to placement in Flash.

Use MP3 compression for audio whenever possible. You can select MP3 compression in the
library for each asset, or select it in the Publish settings for all audio assets.

It is a good idea to use Flash's Test Movie functionality to check your movie's performance. The
Bandwidth Profiler simulates various connection speeds. You can also generate size reports to check
the size of media components within the movie (it may reveal elements that could be optimized
better).

35.2.4. Configuring the Server

Although no special server software is necessary to serve standard Flash files, you will need to
configure your server to recognize a new MIME type. The following information will suit the needs of
most servers:

Type/subtype: application/x-shockwave-flash

File extension for Flash: .swf

The specific syntax for configuration varies for different servers, so coordinate with your system
administrator and see Macromedia's site for further support information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

35.3. ActionScript

Flash uses the robust ActionScript scripting language for adding behaviors and advanced interactivity
to Flash movies . ActionScript is an object-oriented language based on a version of ECMAScript (the
ECMA-262 Edition 4 spec, for those who need to know), so although it shares characteristics with the
JavaScript we know and love, the two are not 100% compatible.

ActionScript, which was introduced in Flash 4, evolved into a much more powerful and useful tool in
Flash 5, and later again with ActionScript 2.0 in Flash MX 2004 and Flash 8 to adhere more closely to
ECMAScript standards. Not only is it responsible for controlling basic playback and user-triggered
behaviors, it also enables Flash to integrate with JavaScript, XML, web services, and other server
technology. If you are set on becoming a Flash power-user, you will definitely want to learn
ActionScript 2.0. For a robust overview of ActionScript, check out Macromedia's learning guides,
www.macromedia.com/devnet/flash/actionscript/actionscript.html. The following gives a quick
overview of their different features.

35.3.1. ActionScript 1.0

ActionScript started out with simple commands to control the Timeline, such as play and stop.
Additionally you could control the Timelines of objects within the Flash environment, called Movie
Clips, as well as control their x and y placement, and width and height. You could also set and return
variables, use loops, and communicate with databases using PHP, ASP, ColdFusion, and so on, and
that was about all that was required to make Flash explode. Developers were soon adding code to
create spinning DNA helixes, complex animations, games, and web applications such as shopping
carts and multimedia galleries.

ActionScript 1.0, with the release of Flash MX, evolved to include several more objects and available
methods, and would allow for object oriented programming, but it was limited with regards to its
implementation of classes. It wasn't long after, however, that ActionScript 2.0 was released with the
next version of Flash, Flash MX 2004, although ActionScript 1.0 remained to provide easy scripting
for nonprogrammers. Flash 8 once again includes a Script Assistant to help nonprogrammers with
object scripting, which was in previous versions of Flash, but omitted with the last version, Flash MX
2004.

35.3.2. ActionScript 2.0

ActionScript 2.0 was released with Flash MX 2004, to account mostly for some shortcomings with
class structures. A majority of the language still mirrors the syntax of ActionScript 1.0, but for the
power users, there are a few notable differences.

The ActionScript 2.0 class structure now supports public, private, and static class members, as well
as inheritance and interfaces. ActionScript 2.0 also allows for Strong Typing and Function Return

http://lib.ommolketab.ir
http://lib.ommolketab.ir

typing.

For more detailed information and further description of all the new features of ActionScript 2.0,
check out this ActionScript 2.0 primer at www.flash-mx.com/flash/actionscript_lott.cfm. Also, for
more information on ActionScript, read ActionScript for Flash MX: The Definitive Guide and Essential
ActionScript 2.0, both by Colin Moock and published by O'Reilly. Macromedia also posts the
ActionScript Dictionary, which lists all available objects and their methods, including code examples,
at www.macromedia.com/support/flash/action_scripts/actionscript_dictionary/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

35.4. Adding Flash to a Web Page

Flash movies are exported by the Flash authoring environment using a combination of the object and
embed elements with parameters and attributes for controlling display and playback. Both elements
are used in order to accommodate the incompatibilities of the various web browsers while still
providing as many player attribute settings as possible.

Internet Explorer on Windows uses the object element, which also enables it to automatically
download the ActiveX controls for playing Flash media. Netscape on PC and Mac, and Internet
Explorer and Safari on Mac, do not support ActiveX, so they use embedding information provided by
the embed element. Note, the embed element is not standards-compliant and doubles much, if not all,
of the information found in the object element.

You can generate the HTML using Flash's Publish feature, write it out by hand, or add a Flash element
to a page using a What You See Is What You Get (WYSIWYG) editor such as Macromedia
Dreamweaver MX 2004. The following sections take a look at the first two methods.

35.4.1. Using Flash Publish Settings

The easiest way to get your SWF files on the Web is to let the Flash authoring tool do the work for
you. Flash 4 introduced the Publish feature for exporting movies along with automatically generated
HTML for placing the Flash (.swf) file in an HTML document.

The Publish Settings dialog box also allows you to select the export format of the movie (whether it's
to be a Flash movie, Standalone Projector, static graphic format, and so on) and control the variables
of the export. For now, I'll focus on the HTML settings that are relevant to placing an SWF movie on a
page.

The most welcomed feature of the HTML Publish Settings is the collection of preformatted templates
that generate object and embed elements tailored to specific uses. The Flash Only (Default) template
generates bare minimum code. Other templates generate HTML code with extra functionality,
including:

Flash for Pocket PC 2003

Flash HTTPS

Flash Only

Flash with AICC Tracking

Flash with FSCommand

Flash with Named Anchors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash with SCORM 1.2 Tracking

Flash with SCORM 2004 Tracking

Image Map

QuickTime

The HTML Publish Settings also allow you to fine-tune various parameters and attributes in the code
with simple checkbox and menu options. Upon export, the resulting HTML file can be brought into an
HTML editor or authoring tool for integration with the rest of the page or for additional manual
tweaking.

35.4.2. Using object and embed

To mark up your page so it is accessible to the maximum number of users, use a combination of the
object and embed elements. The attributes for both elements are described below. Note that the
embed element duplicates much of the parameters of the parent object element. Both tags are
included for browsers that are unable to read the object element successfully (for more detail about
which browsers, read the "Adding Flash to a Web Page" section). The embed element itself is not
standards compliant, but is still the norm for Flash objects so I included it next.

Flash's Templates now use XHTML-compliant code. Note that technologies change quickly and
Macromedia revises their markup instructions from time to time. Consult the Macromedia support
pages (www.macromedia.com/support/flash/) for updates.

35.4.2.1. The object element

The object element tells Internet Explorer (3.0 and later) to download and install the particular
ActiveX player for Flash files and allows you to set many of the attributes for the Flash movie. The
following is an example of the basic object element:

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.
cab#version=8,0,0,0" width="550" height="400" id="file" align="middle">
 <param name="allowScriptAccess" value="sameDomain" />
 <param name="movie" value="path/file.swf" />
 <param name="quality" value="high" />
 <param name="bgcolor" value="#ffffff" />
</object>

The classid parameter identifies the Flash ActiveX control, and codebase provides the browser with
its location for downloading. The value of the classid attribute should appear in your HTML file
exactly as it is shown above and applies to all Flash versions. Notice that the codebase attribute
points to the Version 8 player. Other player versions and subreleases can be targeted with this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method by adjusting the version number.

The width and height attributes are required. Note that you can also specify the dimensions in
percentages (corresponding to the percentage of the browser window the movie fills).

By default, standard id and align attributes are exported as well from the authoring tool (for more
information about publishing with Flash, see the earlier section "Using Flash Publish Settings").

There are a number of parameters (param), which can be added as child nodes to the object element.

param name="allowScriptAccess" value="always|never|sameDomain"

This attribute controls the Flash movie's ability to access JavaScript or VBScript on the HTML
page containing the Flash movie. Flash can call JavaScript or VBScript using functions using
fscommand() or getURL() calls within the Flash movie. A value of sameDomain allows the Flash
movie to access any script on the page as long as the HTML and .swf files reside on the same
domain. A value of always allows the Flash movie to access any script on the page regardless of
the domain, and a value of never prevents the Flash movie from accessing any scripts.

param name="movie" value="path/file.swf"

The movie parameter is probably the most significant attribute in that you need this to tell the
Flash Player what file to play. Otherwise, you'll get nothing but a colored rectangle on the
screen.

param name="quality" value="low|autolow|autohigh|high|medium|best"

This attribute controls the anti-aliasing quality. autolow starts the animation at low quality
(aliased) and switches to high quality (anti-aliased) if the user's computer is fast enough.
Conversely, autohigh starts the animation in high-quality mode and reverts to normal quality if
the computer is too slow. high anti-aliases the animation regardless of computer speed. medium
(new starting with Flash 5) displays more smoothly than low, but not as well as high. best
goes further than high by also anti-aliasing all bitmaps. It is the most processor-intensive
option.

param name="bgcolor" value="#rrggbb"

Use this setting to override the background color of the Flash movie frame, for instance, to
make it match the background color of a web page. The value is a hexadecimal RGB value.
(See Appendix D for an explanation of specifying RGB colors in HTML.)

param name="play" value="true|false"

If play is set to true, the movie will begin playing automatically. A setting of false requires the
user to initiate the movie. The default is TRue.

param name="loop" value="true|false"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies whether the movie plays in a continuous loop. The default is true.

param name="menu" value="true|false"

Right-clicking in Windows or Control-clicking on a Mac on a Flash movie brings up a pop-up
menu of playback controls. Setting menu to false reduces the choices in the pop-up right-click
menu to "About Flash Player," eliminating the playback settings of zoom, quality, play, loop,
rewind, forward, back, and print.

param name="scale" value="showall|noborder|exactfit"

This is used in conjunction with percentage width and height values for defining how the
animation fits in the player frame. showall (the default) fits the movie into the frame while
maintaining the image proportion (the frame background may be visible along one or two
edges of the movie). noborder scales the movie to fill the frame while maintaining the aspect
ratio of the movie (one or two edges might get cut off). exactfit fits the image into the frame
exactly but may result in image distortion if the scale described and the scale of the movie are
inconsistent.

param name="salign" value="l|t|r|b"

This attribute positions the movie within the frame and is used in conjunction with the scale
attribute. The letters l, r, t, and b correspond to left, right, top, and bottom, respectively. You
can use any combination of l or r with t or b; for example, lt aligns the movie to the top-left
corner of the browser window. If the showall attribute is selected, the leftover space appears
below and to the right of the movie.

param name="wmode" value="window|opaque|transparent"

This attribute allows you to set the transparency of the background color layer of the Flash
movie. The default value of window will have a solid color background the color of the Stage in
the Flash movie or the value of the bgcolor parameter. The value of opaque allows you to have
DHTML layers ride over the Flash movie without it covering that layer, and TRansparent allows
you to hide the background so that you can see other HTML content beneath your animations.
Note, this feature works only in IE 3 or higher for all Flash Players, but works in most other
browsers with the 6.045 or higher Flash Player.

param name="devicefont" value="true|false"

This attribute specifies whether or not to use device fonts for all embedded text in the Flash
movie. Note, embedded fonts cannot have some effects applied to them in the Flash authoring
environment, and this feature works only with Windows machines. The default is false.

param name="flashvars" value="name=value"

This attribute allows you to pass variables into the Flash movie. Similar to passing variables on
a URL string, you can pass name/value pairs here, which will be available on the root Timeline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the Flash movie.

The same additional controls as outlined for the object tag (quality, loop, play, etc.) can be used
with the embed tag as well. Again, the embed tag is not standards compliant but still recommended to
provide the most functionality to the widest offering of browsers. If you want to try to deliver a Flash
movie that is entirely standards compliant by excluding the embed tag, it is recommended that you
read this article: http://alistapart.com/articles/flashsatay/, which describes the success and
difficulties of eliminating the embed tag for Flash movie playback.

35.4.2.2. The embed element

The basic embed tag is as follows:

<embed src="path/file.swf" quality="high" bgcolor="#ffffff" width="550" height="400"
name="file" align="middle" allowScriptAccess="sameDomain"
type="application/x-shockwave-flash" pluginspage=
"http://www.macromedia.com/go/getflashplayer" />

The src attribute tells the Flash Player where the file to load is located, similar to the movie
parameter of the object tag. The width and height tags again specify the dimensions of the image or
movie in pixels. The pluginspage attribute provides a URL to the page where the user can download
the Flash Player if it is not found on the user's computer (use the exact URL shown in the example
code). It is a recommended attribute, but not mandatory.

There are a number of attributes (some Flash-specific) in total that can be added within the embed
tag. The following list details all the attributes available. Note, many of these attributes are duplicates
of the parameters found in the object tag. If no explanation for the attribute is given here, please
refer to its counterpart for the object tag written previous to this text:

src="path/file.swf" quality="low|autolow|autohigh|high|medium|best" id="text" or
name=" text"

The name attribute assigns a name to the movie, which is necessary if it is going to be called
from a JavaScript or within a form. It is general practice to use the same name as the .swf file
with the suffix omitted.

bgcolor="# rrggbb"

width="(number of pixels)"

height="(number of pixels)"

http://alistapart.com/articles/flashsatay/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

align ="left|right|top|bottom|middle"

The align attribute lets you determine where to position the Flash Player within its boundaries.
The default is middle and it's generally considered better to allow a TD tag to determine this
setting.

allowScriptAccess="always|never|sameDomain"

type="application/x-shockwave-flash"

pluginspage="http://www.macromedia.com/go/getflashplayer"

loop="true|false"

play="true|false"

menu="true|false"

align="left|right|top|bottom"

scale="showall|noborder|exactfit"

salign="l|r|t|b"

base = " url"

base sets the base URL and directory that is used for relative pathnames within the Flash
movie.

swLiveConnect="true|false"

This tag enables Netscape's LiveConnect feature, which allows plug-ins and Java applets to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

communicate with JavaScript. Set this attribute to true when you have FSCommands in your
movie; otherwise, it is best set to false (the default), because it can cause a delay in display.

scale="showall|noborder|exactfit"

wmode="window|opaque|transparent"

devicefont="true|false"

35.4.2.3. Putting it together for all browsers

To make your Flash content available to the maximum number of users, it is recommended that you
use both the object and embed elements. It is important to keep the embed element within the object
elements so Internet Explorer users don't get two copies of your movie.

To place an anti-aliased Flash 8 animation on the page with a width of 550 and a height of 400, that
plays and loops automatically, you could use code like this:

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.
cab#version=8,0,0,0" width="550" height="400" id="animation" align="middle">
<param name="allowScriptAccess" value="sameDomain" />
<param name="movie" value="animation.swf" />
<param name="quality" value="autohigh" />
<param name="play" value="true" />
<param name="loop" value="true" />
<param name="bgcolor" value="#ffffff" />
<embed src="test.swf" quality="autohigh" bgcolor="#ffffff" width="550"
height="400" name="test" align="middle" play="true" loop="true"
allowScriptAccess="sameDomain" type="application/x-shockwave-flash"
pluginspage="http://www.macromedia.com/go/getflashplayer" />
</object>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

35.5. Integrating Flash with Other Technologies

Flash has proven to be such a popular multimedia format for the Web that it can now be integrated
with the other web media staples such as QuickTime and RealMedia. Additionally, Flash files can be
used within both Macromedia Director and Macromedia Dreamweaver.

35.5.1. Flash and QuickTime

QuickTime is a multitrack container format. Traditionally, this meant tracks for audio and video. In
the evolution of QuickTime, support has been added for other tracks such as text, timecode, and
(starting with QuickTime 4) Flash content.

To add a Flash track to a QuickTime movie, use the Flash authoring tool and export the file to the
QuickTime format (.mov). The resulting file is a QuickTime movie that can simultaneously play video,
audio, and Flash media elements.

The QuickTime 4 Player or higher is required to view QuickTime Flash. QuickTime 5 supports most of
the functions of Flash 4. QuickTime 6 supports ActionScript and most Flash 5 player features.

As an alternative to using the Flash authoring tool, you can also import an existing .swf file into
QuickTime Player (or Player Pro) and save it as a QuickTime movie. Plus, as mentioned in the
"Advantages" section previously, you can import and trim QuickTime movies in the Flash 8
Professional authoring environment and output them as FLV files using the new On2 VP6 codec.

35.5.2. Flash and Director

Macromedia Director is capable of importing Flash files into its Cast and having those Flash elements
play in its Timeline. When including Flash elements in Director, the Flash Assets Xtra plug-in is
automatically included in the list of dependent plug-ins added to the movie.

Although there is a Shockwave Player for Director movies published for the Web, Director has
increasingly become a product for developing interactive and robust CD-ROM presentations. For more
information about Flash and Director, see Macromedia's web site:

www.macromedia.com/software/director/resources/integration/

35.5.3. Flash and Dreamweaver

Macromedia Dreamweaver allows you to add Flash elements to a web page using a graphical
interface. Dreamweaver has a Properties Inspector that allows you to edit the properties of the Flash
movie.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Starting with Dreamweaver MX, you can also link to the source file that was used to produce a Flash
movie so you can launch the Flash authoring environment to edit that object directly from
Dreamweaver. Dreamweaver additionally has some built-in Flash objects, which you can edit without
requiring the Flash authoring environment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

35.6. The Flash Player

Several applications now leverage the Flash Player, such as Macromedia Flash Media Server 2 for
real-time audio and video communications, Macromedia Breeze for web conferencing and distance
learning , Macromedia Captivate for software simulation creation, the Macromedia Flex Builder and
Macromedia Zorn for web application development, as well as several third-party applications, such
as Swift 3D (Electric Rain) and 3ds Max (Autodesk) for three-dimensional art, and Swish and
Wildform for producing text effects and animations at a lower price point than Flash 8.

The Flash Player, in addition, has now completely broken away from its roots as a web browser plug-
in with several flavors to choose from. The Stand-Alone Flash Player has recently taken a big step
with Macromedia Central harnessing it to combine the power of the Web with desktop applications.

The Flash Player has also crossed over well into the world of handheld and mobile devices. There now
exists not only the Flash Player for Pocket PCs, but the new Flash Lite and Macromedia FlashCast
client-server solution for delivering rich data services to mobile phones. Flash is also available in a
wide array of other consumer electronics, including set-top boxes, home control systems, toys,
refrigerators, electronic keyboards, and many others. The best part is that all of these platforms can
still be developed for, using the Flash authoring environment.

To keep abreast of all these innovations, check Macromedia's web site at www.macromedia.com. You
can search for any of the applications or players mentioned, and the site will direct you to several
resources including forums, developer centers, download locations, and training.

35.6.1. Flash Player Versions

Just as web browsing has moved from PCs to handhelds and now mobile phones, the Flash Player has
morphed into new versions to support each of the different platforms. The Flash Players available
currently are:

The Flash Player

The standard player used with a web browser. At the time of this writing, the Flash 8 Player
was the most current, supported by Internet Explorer, Safari, Netscape, Firefox, Mozilla, and
Opera for PC, Mac, and Linux operating systems. For a closer look at the specific browser and
player versions that are supported, check Macromedia's web site,
www.macromedia.com/shockwave/download/alternates/.

The Stand-Alone Flash Player

The player used for standalone Flash content. This player can interact with the computer's
filesystem, though interaction is limited. This player does not require a web browser to view

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flash content.

The Flash Player for Pocket PC

The player used with Pocket PC 2002 and 2003. This player is supported by most current
personal data assistants (PDAs) running Pocket Windows Explorer; it currently supports Flash
6.

Flash Lite

The player used for mobile devices. The Flash Lite 1.0 player currently supports Flash 5 objects
and Flash 4 ActionScript. Flash Lite 2.0 supports Flash Player 7 and ActionScript 2.0. For more
information about Flash for mobile devices, see Macromedia's web site:
www.macromedia.com/devnet/devices/.

35.6.2. Flash Power Tools

The following is a brief overview of the different Power Tools that leverage the Flash Player as part of
their solution. Each of these tools can be developed for using Flash MX 2004 or Flash MX Professional
2004.

Macromedia Flash Media Server 2
(www.macromedia.com/software/flashmediaserver/productinfo/features/)

The Flash Media Server 2 allows Flash movies to have real-time streaming audio and video for
collaboration, video on demand, and distance learning.

Macromedia Breeze (www.macromedia.com/software/flashcom/)

Breeze harnesses the Flash Media Server 2 and Microsoft Power Point taking online training,
marketing, sales, and web conferencing to a whole new level. After installing an add-on to the
Flash 6 or 7 Players, users can share desktop applications and control the shared applications
of other users over the Web.

Macromedia Flex (www.macromedia.com/software/flex/)

Flex is a presentation server and a graphical user interface (known as the Flex Builder) for
creating Rich Internet Applications following a standards-based programming methodology.
The Flex Builder creates MXML, which can be read and displayed by a Flash movie. For
example, an airport's arrival and departure system could benefit from Flex. The system itself
could have a Flash frontend to allow for video advertisements and rich animations, but would
require a robust backend with a lot of data communication with the frontend to handle the
display of the flight information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Macromedia Flash Central (www.macromedia.com/software/central/)

Flash Central takes the power of web applications to the desktop by harnessing the Flash
Player in its desktop client. Flash Central leverages AOL AIM and ICQ services for messaging
and presence to create robust, cross-platform desktop applications.

Macromedia FlashCast (www.macromedia.com/software/flashcast/)

FlashCast is a client-server solution that allows mobile devices to display rich data. FlashCast
leverages the Flash Lite player and can be developed against using Flash MX Professional 2004.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

35.7. Flash Resources

If you need a book about Flash, again try Flash 8 Bible by Robert Reinhardt and Snow Dowd (Visual).
For information on ActionScript, see ActionScript for Flash MX: The Definitive Guide, and Essential
ActionScript 2.0, both by Colin Moock and published by O'Reilly. In addition to the many shelves full
of other Flash books in your local bookstore, there are a number of resources for Flash online.

Macromedia's Flash Page: www.macromedia.com/software/flash

Macromedia's Developer Center: www.macromedia.com/desdev/mx/flash/

Flash Kit: www.flashkit.com

ChattyFig listserver Search: chattyfig.figleaf.com

Ultrashock: www.ultrashock.com/

Flash Magazine: www.flashmagazine.com/

ActionScripts.Org: www.actionscripts.org/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 36. Printing from the Web
The Web is undeniably an amazing resource for information, but it's not the most comfortable or
portable of reading environments. For this reason, many people print web pages to read away from
their desks or to file for later use.

The ability to print the contents of the window has been built into browsers from the beginning. The
real breakthrough in controlling printed versions of web pages is the use of Cascading Style Sheets to
customize the presentation of the document for the printed page. This alleviates the need for
separate HTML documents or templates that provide "printer-friendly" versions of every page on a
site.

The Web has proven to be an effective delivery device for printed documents in the form of PDF
(Portable Document Format) files. Flash movies also offer some interesting possibilities for printing .
This chapter explores all of these methods for bringing content from the Web to the printed page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

36.1. Browser Print Mechanisms

All graphical browsers have basic print and page setup controls that interface with the printer the
same as any other application. In the Page Setup dialog box, users can generally select whether the
page should print in portrait (vertical) or landscape (horizontal) format and specify how many copies
to print.

In addition, most browsers have a Print Preview that shows how the page will look when it is printed.
The Preview may also provide the ability to add headers and footers with URL and other page
information, whether images print, and whether background and text colors should be preserved.

In most cases, browsers do a reasonably good job of printing web pages by default. They generally
try to shrink the contents to fit the print area, and they may also be sophisticated enough to preserve
background and text colors (for printing light text on a dark background). But if you want to be
absolutely sure your pages print in a predictable way, you may choose to take measures into your
own hands.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

36.2. Cascading Style Sheets for Print

In the past, to provide a version of a web page that was appropriate for printing, it was common to
create an alternate, "printer-friendly" version of each page on a site. In general, printer-friendly
pages were stripped-down versions of the document, containing just the necessary content and
presented in a single column with minimal markup (see the sidebar, "Still Need a Printer-Friendly
Version?").

Your client may have specific ideas of what a printout of their site should look
like. Some clients may want the printout to match the way it looks on the
screen. Be sure to have a conversation about print version expectations before
launching into the print style sheet production.

Now that Cascading Style Sheets (CSS) are widely supported, it is possible to create a version of the
document that is customized for print without having to create a separate document. One well-
structured and semantically marked up (X)HTML document provides the content (yet another reason
to start with good markup), and CSS does all the rest. The method involves creating two style sheets
--one appropriate for screen display and one appropriate for printand using the media attribute or
@media rule to match the style sheet to its intended medium. A more detailed explanation follows.

Still Need a Printer-Friendly Version?

There may be some cases in which you may choose to create an alternate (X)HTML
source document just for print. For example, if your story has been broken up into pieces
that appear in separate HTML documents, you will need to put the pieces back together
in HTML to make the whole story available for print.

If you do find yourself creating a "printer-friendly" version, many of the considerations
listed for CSS print style sheets also apply to alternate HTML pages, such as customizing
content, using black text on white backgrounds, and removing background images. If the
page is set to a fixed size, make sure that it is under 750 pixels to be sure the right edge
is not clipped off when printing.

36.2.1. Creating the Style Sheets

The simplified example in this section demonstrates the basics of creating an all-purpose source
document and targeted style sheets. In the real world, the documents and style sheets would no
doubt be longer and more complex, but the core concepts are the same.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This simple, yet properly marked up, XHTML document (sample.html) is the source for both the
screen version and the printed page, shown in Figure 36-1. The html and head elements have been
omitted to save space, but they are implied.

<body>
<div id="printonly">
 <p>LITTLECHAIR, Inc. | For more information, visit us at
 www.littlechair.com</p>
</div>

<div id="masthead">

</div>

<h1>Style Guides and Documentation</h1>
<p>I have found ... </p>
<!-- content continues -->
</body>

Figure 36-1. Media-specific style sheets at work

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The style sheet used for the screen adds a background color to the page and formats the text in a
way that is appropriate for web browsers, using relative measurements (ems and percentages). It
also uses the display property to hide the div labeled printonly that contains identifying header
information that is not needed on the web page. This style information is saved in an external style
sheet called screen.css.

#printonly {display: none;}
body {background: #CCC; color: #333; font: 95%;}
h1 {font: 1.5em Futura, Verdana, sans-serif; color: #C03;}
p {font: 1em/1.5em Verdana }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A second style sheet (print.css) includes style information just for printouts. There are a couple of
points of interest here. First, the display property is used to hide the masthead, and the printonly
header gets a bottom border to set it apart from the content. The content is set to appear in black,
serif text on a white background, which is appropriate for laser printing (print versions don't
necessarily need to be black and white, however). Finally, the text has been resized in points. Points,
you say? Yes, although point measurements should be avoided for screen presentation, they are the
most appropriate choice for printouts. Fonts specified in pixels may print way too small.

#masthead {display: none; }
#printonly {
 padding-bottom: 10px;
 border-bottom: 1px solid;
 font-size: 10pt;}
body {background: white; color: black;
 width: auto; }
h1 {font: 18pt Times bold;}
p {font: 12pt/18pt Times; }

We're not done yetwe still need to link the style sheets to the XHTML document.

36.2.2. Targeting Media with Style Sheets

The various methods for attaching style sheets to (X)HTML documents are discussed in detail in
Chapter 16. This section looks at the mechanisms for applying style sheets to specific media.

The target medium can be one of nine different media types defined in the CSS 2.1 specification: all,
screen, print, projection, braille, embossed, aural, tv, and tty. These media values are defined in
Chapter 16. Here, we'll focus on the values relevant to printouts: all (the default), screen, and
print, which incidentally, are values current browsers support most reliably.

The target medium is specified using the media attribute in the link or style elements or by using the
@media or @import at-rules in a style sheet. Each of these methods is demonstrated here.

36.2.2.1. Linking to media-dependent style sheets

When an external style sheet is linked to a document using the link element, the media attribute
provides the name of the medium. In this example, the two linked style sheets are differentiated by
the values of their media attributes.

<head>
<link rel="stylesheet" type="text/css"
 href="screen.css" media="screen" />
<link rel="stylesheet" type="text/css"
 href="print.css" media="print" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</head>

By specifying that print.css has a media of print, it is called into use only when the document is
printed.

36.2.2.2. Using two embedded style sheets

A document may contain two embedded style sheets targeted at different media. The styles are
differentiated using the media attribute in the style element.

<head>
<style type="text/css" media="screen">
 #printonly {display: none;}
 body {background: #CCC; color: #333; font: 95%;}
 h1 {font: 1.5em Futura, Verdana, sans-serif; color: #C03;}
 p {font: 1em/1.5em Verdana }
</style>
<style type="text/css" media="print">
 #masthead {display: none; }
 #printonly {padding-bottom: 10px; border-bottom: 1px solid;
 font-size: 10pt; }
 body {background: white; color: black; width: auto; }
 h1 {font: 18pt Times bold;}
 p {font: 12pt/18pt Times; }
</style>
</head>

36.2.2.3. @import rule

An external style sheet can be imported based on the display medium using the @import rule in a
style sheet. Simply add the target medium value at the end of the rule as shown in this example:

<style>
<!--
@import url(screen.css) screen;
@import url(print.css) print;
-->
</style>

36.2.2.4. @media rule

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The @media rule enables style instructions for a number of media to be placed within one style sheet.
Each @media rule can be interpreted as, "If the medium is going to be this, use these style
instructions." Using the same style sheet information from the original example, the style sheet
would look like this:

<style>
@media screen {
 #printonly {display: none;}
 body {background: #CCC; color: #333; font: 95%;}
 h1 {font: 1.5em Futura, Verdana, sans-serif; color: #C03;}
 p {font: 1em/1.5em Verdana }
}
@media print {
 #masthead {display: none; }
 #printonly {padding-bottom: 10px; border-bottom: 1px solid;
 font-size: 10pt; }
 body {background: white; color: black; width: auto; }
 h1 {font: 18pt Times bold;}
 p {font: 12pt/18pt Times; }
}
</style>

Screen Versus All

The first style sheet in this example targets screen display specifically. If the media had
been left unspecified for that style sheet, it would apply to all media (because all is the
default).

A style sheet that targets all media may be used strategically if there is a lot of
redundant information between the screen and print versions. The print style sheet
would then contain only styles that override the general settings.

When using this approach, be careful that unwanted styles that apply to "all" don't leak
through into the print version. It may be necessary to increase the specificity of the
selectors in the print style sheet or use the !important qualifier to ensure that critical
styles are properly overridden.

It may be easier to keep screen and print style sheets completely separate so these
problems are not an issue.

36.2.3. Considerations for Print Style Sheets

The previous section provides only the most rudimentary example of what can be done to customize

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a page for print using media-specific style sheets. There are many aspects of the printed document to
keep in mind when crafting the print style sheet.

Many of the concepts here are inspired by these highly recommended articles
on print style sheets by Eric Meyer, published by A List Apart. The articles
document the details of building a print style sheet for A List Apart, and then
building it again.

"CSS Design: Going to Print" (www.alistapart.com/articles/goingtoprint/)

"ALA's New Print Styles" (www.alistapart.com/articles/alaprintstyles/)

36.2.3.1. Think about content

As shown in the earlier example, CSS allows you to hide and reveal page elements, which means you
have an opportunity not only to change the style of your web page for print, but also to tailor the
content to be appropriate to the medium. Chances are, people just want the content of the page for
later reading or filing. To save on ink, consider hiding such elements as navigation, search boxes,
decorative mastheads, and so on. Whether you show ads may be more of a marketing mandate than
a design decision, but in general, they should be left out, too.

You may also want to include information on the print version that does not show up in the browser.
In the instance that the printout is passed along to a friend, or rediscovered in a file months later, it
may be useful to include the URL of the page. It may include a marketing message or other call to
action.

Upgrade Your Images

Page content isn't the only thing that can be hidden and revealed with CSS print styles. A
similar technique may be used to serve an appropriately low-resolution image for the
screen and a high-resolution image that will look sharper when it is printed. This
technique is introduced by Ross Howard in his article "High-Resolution Image Printing" in
A List Apart (www.alistapart.com/articles/hiresprinting).

36.2.3.2. Text and backgrounds

When styling text for print, it is best to specify dark type on a light background. Not only is it more
legible, but it saves on toner. Most browsers don't print background images by default, but it doesn't
hurt to turn them off with a style rule explicitly to make sure nothing hinders the readability of the
text.

Also, as mentioned in the example, font size is best specified in points for print, as they will be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handled more predictably than pixels.

Background images don't print out by default (although users may change that
in the browser preferences). This means that any text replaced by background
images according to CSS image replacement techniques (see Chapter 24) may
cause content to be lost. If you do use image replacement, make sure those
styles are targeted to screen only and not all by default (see the earlier "Screen
Versus All" sidebar). The other option is to rewrite styles in order to override
the techniques in the print style sheet.

36.2.3.3. Width and margins

Although not strictly necessary, you may want to get rid of multicolumn formatting (if there is any)
and display the content in one column that fills the available width of the page. Changing the position
of positioned elements to static and changing the float for floated elements to none should take care
of undoing the columns. Setting the width of all elements to auto is the best approach for making
sure they'll occupy the full width of the page after margins are applied (either by the browser or in
the style sheet).

If your web page uses floats for long elements, make sure that the print style
sheet resets the float to none. There is a bug in Gecko-based browsers that
causes long floats to get clipped after the second or third page. Setting float:
none for long elements fixes this problem. For more information, see the A List
Apart article, "Going to Print," referenced earlier.

36.2.3.4. Handle your hypertext

An obvious difference between the web and print versions of your document is that hypertext links
lose their usefulness in print. Whether you make linked text stand out more in the print version (for
example, by making it bold and/or a different color than the surrounding text) or remove all styles so
links blend in completely depends on your preferences and the requirements of the content.
Whatever you do, make sure that it is a thoughtful and conscious decision.

You may also want to take advantage of the generated text capabilities of CSS 2 to write out the URL
for each link. That way, if visitors want to follow up on links from a printout later, they'll know where
to go.

URLs can be included by using the :after or :before selectors and the content property that grabs
the value of the HRef attribute in each a element. In this example, the URLs for links and visited links
in a section labeled maincontent will be written out in parentheses after the linked text.

#maincontent a:link:after, #maincontent a:visited:after {
 content: " (" attr(href) ") ";
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Generated content is discussed in more detail in Chapter 23, including examples and screenshots of
URLs written out after links in this manner.

Unfortunately, generated text is not supported by Internet Explorer, so this won't work for everyone.
The good news is, it will be ignored by browsers that don't support it, so it won't do any harm to
better serve a portion of your audience.

If you have a document with lots of links, displaying all those URLs could make
your document cumbersome to read. Aaron Gustafson describes a method for
turning those URLs into endnotes using JavaScript in his article, "Improving
Link Display for Print," on A List Apart
(www.alistapart.com/articles/improvingprint/). Aaron also contributed Chapters
24, 25, and 26 to this edition.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

36.3. Portable Document Format (PDF)

PDF (Portable Document Format) is a technology developed by Adobe for sharing electronic
documents. The remarkable thing about PDF files is that they preserve the fonts, colors, formatting,
and graphics of the original source document. Ideally, a PDF document looks exactly the way it was
designed, regardless of the platform, hardware, and software environment of the end user. It can be
viewed on the screen or printed out to a high-quality hardcopy.

PDF existed before the Web, but the two make great partnersPDF is the ideal file format for sharing
documents, and the Web provides a highly accessible network for distributing them. You can make
any document into a PDF file and make it available from a web page. The advantage, of course, is
that you have precise control over fonts and layout.

Forms, documentation, and any other materials that rely on specific formatting are good candidates
for PDF files. For example, the IRS makes tax forms available for download in PDF format so
taxpayers can print them out at home.

PDF files are not necessarily static. They can contain links to online material and other PDF files. With
Adobe Acrobat, authors can even create interactive PDF forms that can be filled out, automatically
updated, and submitted online. PDFs can also be dynamically generated based on user input.

With the control PDF offers over presentation, it's tempting to want to use it for all online material.
It's important to understand that PDF is not a substitute for HTML and CSS, nor is it likely ever to be.
But it is a powerful tool for sharing any sort of document electronically. It's like sending a piece of
paper through the lines.

36.3.1. Viewing PDF Files

PDFs are viewed and printed via the freely available and widely distributed Acrobat Reader . Acrobat
Reader is also available as a plug-in (called PDFViewer) or ActiveX control and is supported by all the
popular browsers (Internet Explorer, Netscape, Firefox/Mozilla, Safari, Opera) on a variety of
platforms including Windows, Mac, and Unix.

When a user clicks on a link to a PDF file from a web page, what happens depends on how the
browser is configured. If the browser has the PDFViewer plug-in , the document displays right in the
browser window; the plug-in adds a toolbar to the browser window for navigating through the PDF
document. If the browser is configured to use Acrobat Reader as a helper application, the browser
automatically launches the reader, and the PDF displays in the separate application window.

Without the Reader or plug-in, when a browser encounters a PDF file, it issues a prompt to install the
plug-in, choose a helper application, or save the file to disk.

36.3.2. Creating PDF Files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Creating PDFs is easy. Because it is open source, support for PDF has been built into many document
creation tools. For example, Microsoft Word allows authors to save as PDF from the Print dialog box.
Macintosh OS X includes native support for PDF, so any document may be saved as a PDF from the
Print dialog box. When you save the PDF, be sure that you give it the proper .pdf suffix.

36.3.2.1. Adobe Acrobat

The commercial application for creating PDF files is Adobe Acrobat, which is in Version 7 as of this
writing. Acrobat gives publishers the greatest control over PDF creation, including the ability to make
interactive PDFs, a single PDF from multiple documents, electronic signatures, and other advanced
features that you don't get when simply printing to PDF.

When Acrobat is installed on a computer, PDFs can be created from within Adobe, Microsoft Office,
and selected other applications at the click of a button. In non-Adobe applications, such as
QuarkXPress, the document is printed to a PostScript file (choose File instead of Printer in the Print
dialog box) and then converted to PDF using Acrobat Distiller, part of the Acrobat package.

Once the PDF file has been created, it can be opened in Acrobat for further fine-tuning and advanced
settings. See the Adobe web site (www.adobe.com/products/acrobat/main.html) or the Acrobat
documentation for more information on creating and fine-tuning PDF files.

36.3.2.2. Fast Web view

You may also choose to optimize the PDF for Fast Web view. This enables page-at-a-time delivery of
long PDF documents. When PDFs are not optimized, the entire document needs to be downloaded
before it can be viewed. Check with your server administrator to be sure that your server supports
page-at-a-time downloading.

36.3.2.3. Alternatives to Acrobat

Acrobat is not your only option for creating PDFs. Because PDF is an open source technology, Adobe
has opened the door to third-party developers who want to support the ability to save documents as
PDFs.

The best place to look for PDF-related tools is PlanetPDF (www.planetpdf.com), the "home of the PDF
community." They maintain the most comprehensive and up-to-date listing of PDF tools and services.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Online PDF Converters

There are online PDF conversion services that convert uploaded documents to PDF for a
small fee or subscription. Adobe has its own conversion service called Create Adobe PDF
Online that charges a monthly fee, but your first five conversions are free. It is available
at createpdf.adobe.com. Even better, check out PDF Online (www.gohtm.com), where
they convert many file formats to PDF for free.

These services may be a good alternative if you only need to create PDFs occasionally. If
you plan to make PDFs part of your publishing process, Acrobat is a good investment
because of the advanced features it offers.

36.3.3. Adding PDF Files to Web Pages

There are two basic ways of accessing a PDF file from a web page: linking to the file (or a specific
page within it) and embedding it in the page like an image.

36.3.3.1. Linking to a PDF file

Creating a link to a PDF file is the same as linking to any other document. Just include the filename in
the URL, as shown in this example:

Link to documentation (PDF)

The PDF file resides on the server like any other media file. Most modern server software is
preconfigured to recognize the PDF MIME type (type application/pdf, extension .pdf).

36.3.3.2. Tips for linking to PDF files

As for any large media file, it is good web design etiquette to provide some indication of what users
will get when they click on a link to a PDF file. The file format itself can be shown with a small PDF
icon, by writing out the name of the file with its .pdf suffix, or by identifying the file type next to the
link in parentheses, e.g., "link (PDF)."

As a courtesy to your users, consider also including a link to the Acrobat Reader download site. As of
this writing, the URL is www.adobe.com/products/acrobat/readermain.html.

36.3.3.3. Embedding a PDF file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PDF files may also be embedded in a web page like an image. The standards-compliant markup for
embedding a PDF is:

<object type="application/pdf" data="directions.pdf" width="450"

height="600">
</object>

Browsers that use the Netscape plug-in architecture may require the nonstandard embed element to
display the PDF inline. The href attribute is added so multipage PDF files will open in the reader if the
image is clicked. (In Internet Explorer, multipage PDFs are accessible inline using the embedded
Acrobat Reader controls for paging through the file.)

It is common for web authors to combine object and embed elements to cover all the bases like this:

<object type="application/pdf" data="directions.pdf" width="450"

height="600">
 <embed src="directions.pdf" width="450" height="400" href="directions.
pdf">
 <noembed>Link to documentation (PDF)</
noembed>
 </embed>
</object>

Be aware that embed is a nonstandard element that will prevent an (X)HTML
document from validating. We are moving toward a standards-compliant Web
in which the object element alone will be sufficient, but for the time being, the
embed element is still being used to ensure cross-browser support of embedded
media.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

36.4. Flash Printing

Another interface between the browser and printer comes from the folks at Macromedia. Flash 4.0
introduced a new feature to give developers control over printing Flash content. Prior to Version 4,
when a Flash movie was printed from a browser, the printout contained only the first frame (probably
not the most useful frame) or nothing at all. To fix this, Flash Player can print any content specified
by the designer.

This feature can be used to print out a more meaningful frame from the movie, but why stop there?
Because any content can be cued to print, the Flash movie can serve as an interactive interface to all
sorts of documents. A banner ad can spit out a coupon that shoppers can take to the store. A
children's drawing program could print out the finished artwork or other coloring book-like pages. A
small diagram could print pages of detailed specifications. Flash printing offers powerful possibilities
for enhancing online interactivity with print components.

Users print Flash content via a context-sensitive menu accessed when clicking (Option-click for
Windows; Control-click for Mac) on the Flash content, or by using a button designed into the Flash
movie itself. The print function in the browser does not print the alternative Flash content.

The Flash print command triggers an ActionScript (the scripting language used in Flash) that detects
the plug-in version; if it finds the compatible plug-in, it prints the specified Flash content. The content
it prints is stored in a separate file in the Flash (SWF) format. This could be an image chosen from
the current Flash movie, or any document created in Macromedia Flash, Freehand, Adobe Illustrator,
or any program that supports Flash (SWF) files.

Because there is no print preview available for Flash content, it is recommended that you label your
Flash print button very clearly with what happens if it is clicked. This is especially true if there is a
large discrepancy between what you see on the screen and what will come out of the printer (such as
a banner ad that prints a 12-page brochure).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part VII: Appendixes
A. HTML Elements and Attributes

B. CSS 2.1 Properties

C. Character Entities

D. Specifying Color

E. Microformats: Extending (X)HTML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. HTML Elements and Attributes
This appendix contains an alphabetical listing of all elements and attributes in the HTML 4.01 and
XHTML Recommendations, as well as a few nonstandard elements that are well-supported by current
browsers. Elements and attributes marked as "Deprecated" have been removed from the (X)HTML
Strict DTDs and are discouraged from use, usually in favor of Cascading Style Sheets. Attributes
marked as "Required" must be included in the element for the markup to be valid.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1. Common Attributes and Events

A number of attributes in the HTML 4.01 and XHTML Recommendations are shared by nearly all
elements. To save space, they have been abbreviated in this appendix as they are in the
Recommendations. This section explains each attribute's shorthand and serves as a reference for the
remainder of the appendix.

When Core is listed under Attributes, it refers to the set of core attributes that may be applied to the
majority of elements (as noted in each element listing).

id

Assigns a unique identifying name to the element

class

Assigns one or more classification names to the element

style

Associated style information

title

Advisory title/amplification

When Internationalization appears in the attribute list, it means the element accepts the set of
attributes used to specify language and reading direction.

lang

Specifies the language for the element by its language code.

xml:lang

XHTML only. This is the attribute for specifying language for elements in XHTML documents.

dir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the direction of the element (left to right, or right to left).

When Events is listed for the element, it indicates that the core events used by scripting languages
are applicable to the element. Additional events that apply to the element that are not part of the
core events are listed separately for that element.

onclick

Occurs when the pointing device button is clicked over an element.

ondblclick

Occurs when the pointing device button is double-clicked over an element.

onmousedown

Occurs when the pointing device button is pressed over an element.

onmouseup

Occurs when the pointing device button is released over an element.

onmouseover

Occurs when the pointing device is moved onto an element.

onmousemove

Occurs when the pointing device is moved while it is over an element.

onmouseout

Occurs when the pointing device is moved away from an element.

onkeypress

Occurs when a key is pressed and released over an element.

onkeydown

Occurs when a key is pressed down over an element.

onkeyup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Occurs when a key is released over an element.

a

<a>...

Defines an anchor within the document. An anchor is used to create a hyperlink to another document
or Internet resource. It can also serve to label a fragment within a document (also called a named
anchor), which serves as a destination anchor for linking to a specific point in a document.

Attributes

Core (id, class, style, title), Internationalization, Events (plus onfocus, onblur)

accesskey=" character"

Assigns an access key (shortcut key command) to the link. Access keys are also used for form
fields. The value is a single character. Users may access the element by hitting Alt-key (PC) or
Ctrl-key (Mac).

charset=" charset"

Specifies the character encoding of the target document. See Chapter 6 for information on
character sets.

coords=" x,y coordinates"

Specifies the x,y coordinates for a clickable area in an image map. The HTML 4.01
Recommendation proposes that client-side image maps be replaced by an object element
containing the image and a set of anchor elements defining the "hot" areas (with shapes and
coordinate attributes). This system has not yet been implemented by browsers.

href=" URL"

Specifies the URL of the destination document or web resource (such as an image, audio, PDF,
or other media file).

id=" text"

Gives the link a unique name (similar to the name attribute) so it can be referenced from a link,
script, or style sheet. It is more versatile than name, but it is not as universally supported. In

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XHTML, the id attribute is required for document fragments.

hreflang=" language code"

Specifies the base language of the target document. See Chapter 6 for a list of two-letter
language codes.

name=" text"

HTML only; XHTML documents use id for document fragments. Places a fragment identifier
within an HTML document.

rel=" relationships"

Establishes one or more relationships between the current document and the target document.
Common relationships include stylesheet, next, prev, copyright, index, and glossary.

rev=" relationships"

Specifies one or more relationships from the target back to the source (the opposite of the rel
attribute).

shape="rect|circle|poly|default"

Defines the shape of a clickable area in an image map. This is only used in the a element as
part of HTML 4.01's proposal to replace client-side image maps with a combination of object
and a elements. This system has not yet been implemented by browsers.

tabindex=" number"

Specifies the position of the current element in the tabbing order for the current document. The
value must be between 0 and 32767. It is used for tabbing through the links on a page (or
fields in a form).

target=" text"

Specifies the name of the window or frame in which the target document should be displayed.

type=" media type"

Specifies the media or content type (MIME type) of the defined content, for example,
text/html.

Link examples

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To a local file:

...

To an external file:

...

To a named anchor:

...

To a named anchor in the current file:

...

To send an email message:

...

To a file on an FTP server:

...

abbr

<abbr>...</abbr>

Identifies the enclosed text as an abbreviation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Core (id, class, style, title), Internationalization, Events

title=" text"

Provides the full expression for the abbreviation. This may be useful for nonvisual browsers,
speech synthesizers, translation systems, and search engines.

Example

<abbr title="Massachusetts">Mass.</abbr>

acronym

<acronym>...</acronym>

Indicates an acronym.

Attributes

Core (id, class, style, title), Internationalization, Events

title=" text"

Provides the full expression for the acronym. This may be useful for nonvisual browsers, speech
synthesizers, translation systems, and search engines.

Example

<acroynym title="World Wide Web">WWW</acronym>

address

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<address>...</address>

Supplies the author's contact information, typically at the beginning or end of a document.

Attributes

Core(id, class, style, title), Internationalization, Events

applet

<applet>...</applet>

Deprecated. This element (first introduced in Netscape Navigator 2.0) is used to place a Java applet
on the web page. The applet element has been deprecated in favor of the object element, but it is
still supported and commonly used. Some applets require the use of applet. Furthermore, Navigator
4 and earlier and Internet Explorer 4 do not support Java applets via the object element.

Attributes

Core(id, class, style, title)

align="left|right|top|middle|bottom"

Aligns the applet and allows text to wrap around it (same as image alignment).

alt=" text"

Provides alternate text if the applet cannot be displayed.

archive=" URLs"

Provides a space-separated list of URLs with classes to be preloaded.

code=" class"

Required. Specifies the class name of the code to be executed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

codebase=" URL"

URL from which the applet code is retrieved.

height=" number"

Height of the initial applet display area in pixels.

hspace=" number"

Holds number pixels of space clear to the left and right of the applet window.

name=" text"

Deprecated in XHTML 1.0. Names the applet for reference from elsewhere on the page.

object=" text"

This attribute names a resource containing a serialized representation of an applet's state. Use
either code or object in an applet element, but not both.

vspace=" number"

Holds number pixels of space clear above and below the applet window.

width=" number"

Width of the initial applet display area in pixels.

area

<area />

The area element is used within the map element of a client-side image map to define a specific "hot"
(clickable) area.

Attributes

Core(id, class, style, title), Internationalization, Events, Focus

http://lib.ommolketab.ir
http://lib.ommolketab.ir

alt=" text"

Required. Specifies a short description of the image that is displayed when the image file is not
available.

coords=" values"

Specifies a list of comma-separated pixel coordinates that define a "hot" area of an image map.

href=" url"

Specifies the URL of the document or file that is accessed by clicking on the defined area.

nohref

Defines a "mouse-sensitive" area in an image map for which there is no action when the user
clicks in the area.

shape="rect|circle|poly|default"

Defines the shape of the clickable area.

target=" text"

Specifies the name of the window or frame in which the target document should be displayed.

b

...

Enclosed text is rendered in bold. This is one of the few presentational elements preserved in the
XHTML 1.0 Strict and XHTML 1.1 DTDs.

Attributes

Core(id, class, style, title), Internationalization, Events

base

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<base />

Specifies the base pathname for all relative URLs in the document. Place this element within the head
of the document.

Attributes

href =" url"

Required. Specifies the URL to be used.

target =" name"

Defines the default target window for all links in the document. Often used to target frames.

basefont

<basefont />

Deprecated. Specifies certain font attributes for the content that follows it. It can be used within the
head element to apply to the entire document or within the body of the document to apply to the
subsequent text.

Attributes

id=" text"

This attribute assigns a name to an element. This name must be unique in a document.

color=" #rrggbb" or " color name"

Deprecated. Sets the color of the following text using hexadecimal RGB values.

face=" typeface" (or list of typefaces)

Deprecated. Sets the font for the following text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

size=" number"

Deprecated. Sets the base font size using the HTML size values from 1 to 7 (or relative values
based on the default value of 3). Subsequent relative size settings are based on this value.

bdo

<bdo>...</bdo>

Stands for "bi-directional override" and is used to indicate a selection of text that reads in the
opposite direction than the surrounding text. For instance, in a left-to-right reading document, the
bdo element may be used to indicate a selection of Hebrew text that reads right-to-left (rtl).

Attributes

Core(id, class, style, title)

Events (XHTML only)

dir="ltr|rtl"

Required. Indicates whether the selection should read left to right (ltr) or right to left (rtl).

lang=" language code"

This attribute specifies the language of the element using a language code abbreviation. (See
Chapter 6 for a list of language codes.)

xml:lang=" text"

XHTML only. This is the method for specifying languages in XML documents using a language
code abbreviation. (See Chapter 6 for a list of language codes.)

big

<big>...</big>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, big sets the type one font size increment larger than the surrounding text. This is an
example of presentational HTML that should be avoided in favor of semantic markup and style sheets
for presentation.

Attributes

Core(id, class, style, title), Internationalization, Events

blockquote

<blockquote>...</blockquote>

Enclosed text is a quote block consisting of one or more paragraphs.

Attributes

Core(id, class, style, title), Internationalization, Events

cite=" URL"

Provides information about the source from which the quotation was borrowed.

body

<body>...</body>

The body of a document contains the document's content. Content may be presented visually (as in a
graphical browser window) or aurally (as by a screen reader).

Attributes

Core(id, class, style, title), Internationalization, Events(plus onload, onunload)

alink="# rrggbb" or " color name"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deprecated. Sets the color of active links (the color while the mouse button is held down during
a click). Color is specified in hexadecimal RGB values or by standard web color name.

background=" URL"

Deprecated. Provides the location of a graphic file to be used as a tiling graphic in the
background of the document.

bgcolor=" #rrggbb" or " color name"

Deprecated. Sets the color of the background for the document. Color is specified in
hexadecimal RGB values or by standard web color name.

link=" #rrggbb" or " color name"

Deprecated. Sets the default color for all the links in the document. Color is specified in
hexadecimal RGB values or by standard web color name.

text=" #rrggbb" or " color name"

Deprecated. Sets the default color for all the non-hyperlink and unstyled text in the document.
Color is specified in hexadecimal RGB values or by standard web color name.

vlink=" #rrggbb" or " color name"

Deprecated. Sets the color of the visited links (links that have already been followed) for the
document. Color is specified in hexadecimal RGB values or by standard web color name.

br

Inserts a line break in the content. This is one of the few presentational elements preserved in the
XHTML 1.0 Strict and XHTML 1.1 DTDs.

Attributes

Core(id, class, style, title)

clear="none|left|right|all"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deprecated. Specifies where the next line should appear after the line break in relation to
floated elements (such as an image that has been floated to the left or right margin). The
default, none, causes the next line to start where it would normally. The value left starts the
next line below any floated objects on the left margin. Similarly, right starts the next line
below floated objects on the right margin. The value all starts the next line below floats on
both margins.

button

<button>...</button>

Defines a "button" that functions similarly to buttons created with the input element but allows for
richer rendering possibilities. Buttons can contain content such as text and images (but not image
maps).

Attributes

Core(id, class, style, title), Internationalization, Events, Focus(accesskey, tabindex, onfocus,
onblur)

disabled="disabled"

Indicates that the form button is initially nonfunctional.

name=" text"

Required. Assigns the control name for the element.

value=" text"

Assigns the value to the button control. The behavior of the button is determined by the type
attribute.

type="submit|reset|button"

Identifies the type of button: submit button (the default type), reset button, or custom button
(used with JavaScript), respectively.

caption

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<caption>...</caption>

Provides a brief summary of the table's contents or purpose. The caption must immediately follow the
table start tag and precede all other table elements. The width of the caption is determined by the
width of the table. The caption's position as displayed in the browser can be controlled with the align
attribute.

Attributes

Core(id, class, style, title), Internationalization, Events

align="top|bottom|left|right"

Deprecated. Positions the caption relative to the table. The default is top.

center

<center>...</center>

Deprecated. Centers its contents horizontally in the available width of the page or the containing
element. It has been deprecated in favor of style sheets for alignment.

Attributes

Core(id, class, style, title), Internationalization, Events

cite

<cite>...</cite>

Denotes a citationa reference to another document, especially books, magazines, articles, and so on.

Attributes

Core(id, class, style, title), Internationalization, Events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

code

<code>...</code>

Denotes a program code sample. By default, code is rendered in the browser's specified monospace
font (usually Courier).

Attributes

Core(id, class, style, title), Internationalization, Events

col

<col />

Specifies properties for a column (or group of columns) within a column group (colgroup). Columns
can share attributes (such as text alignment) without being part of a formal structural grouping.

Attributes

Core(id, class, style, title), Internationalization, Events

span=" number"

Specifies the number of columns "spanned" by the col element. The default value is 1. All
columns indicated in the span are formatted according to the attribute settings in col.

width=" pixels, percentage, n*"

Specifies the width of each column spanned by the col element. Width can be measured in
pixels or percentages, or defined as a relative size (*). For example, 2* sets the column two
times wider than the other columns; 0* sets the column width at the minimum necessary to
hold the column's contents. The width attribute in the col element overrides the width settings
of the containing colgroup element.

colgroup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<colgroup>...</colgroup>

Creates a column group: a structural division within a table. A table may include more than one
column group. The number of columns in a group is specified either by the value of the span attribute
or by a tally of columns (col) within the group.

Column groups may be useful in speeding table display (for example, the columns can be displayed
incrementally without waiting for the entire contents of the table) and provide a system for display on
nonvisual display agents such as speech- and Braille-based browsers.

Attributes

Core(id, class, style, title), Internationalization, Events

span=" number"

Specifies the number of columns in a column group. If span is not specified, the default is 1.

width=" pixels, percentage, n*"

Specifies a default width for each column in the current column group. Width can be measured
in pixels, percentages, or defined as a relative size (*). 0* sets the column width at the
minimum necessary to hold the column's contents.

dd

<dd>...</dd>

Denotes the definition portion of an item within a definition list.

Attributes

Core(id, class, style, title), Internationalization, Events

del

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...

Indicates deleted text. It may be useful for legal documents and any instance where edits need to be
tracked. Its counterpart is inserted text (<ins>). Both can be used to indicate either inline or block-
level elements.

Attributes

Core(id, class, style, title), Internationalization, Events

cite=" URL"

Can be set to point to a source document that explains why the document was changed.

datetime=" YYYY-MM-DDThh:mm:ssTZD"

Specifies the date and time the change was made. Dates and times follow the format listed
above where YYYY is the four-digit year, MM is the two-digit month, DD is the day, hh is the hour
(00 through 23), mm is the minute (00 through 59), and ss is the seconds (00 through 59). The
TZD stands for Time Zone Designator and its value can be Z (to indicate UTC, Coordinated
Universal Time), an indication of the number of hours and minutes ahead of UTC (such as
+03:00), or an indication of the number of hours and minutes behind UTC (such as -02:20).

This is the standard format for date and time values in HTML. For more information, see
www.w3.org/TR/1998/NOTE-datetime-19980827.

dfn

<dfn>...</dfn>

Indicates the defining instance of the enclosed term. It can be used to call attention to the
introduction of special terms and phrases.

Attributes

Core(id, class, style, title), Internationalization, Events

dir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<dir>...</dir>

Deprecated. Creates a directory list consisting of list items (li). Directory lists were originally
designed to display lists of files with short names, but they have been deprecated with the
recommendation that unordered lists (ul) be used instead. Most browsers render directory lists as
they do unordered lists (with bullets), although some use a multicolumn format.

Attributes

Core(id, class, style, title), Internationalization, Events

compact

Deprecated. Makes the list as small as possible. Few browsers support the compact attribute.

div

<div>...</div>

Denotes a generic "division" within the document. This element is used to add a customizable block
element to the document. The content within the div element is typically given a name via a class or
id attribute and then formatted with style sheets.

Attributes

Core(id, class, style, title), Internationalization, Events

align="center|left|right"

Deprecated. Aligns the text within the element to the left, right, or center of the page.

Example

<div id="sidebar">Content of sidebar...</div>

dl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<dl>...</dl>

Indicates a definition list, consisting of terms (dt) and definitions (dd).

Attributes

Core(id, class, style, title), Internationalization, Events

compact

Deprecated. Makes the list as small as possible. Few browsers support the compact attribute.

dt

<dt>...</dt>

Denotes the term portion of an item within a definition list.

Attributes

Core(id, class, style, title), Internationalization, Events

em

...

Indicates emphasized text. User agents generally render emphasized text in italic by default.

Attributes

Core(id, class, style, title), Internationalization, Events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

embed

<embed>...</embed> or <embed />

Nonstandard. Embeds an object into the web page. Embedded objects are most often multimedia
files that require special plug-ins to display (for example, Flash movies, QuickTime movies, and the
like). In addition to the attributes listed below, certain media types and their respective plug-ins may
have proprietary attributes for controlling the playback of the file. The closing tag is not always
required, but is recommended.

The W3C recommends the object element for embedding media objects, but embed is still in common
use for backward compatibility. If you want the browser to prompt for a missing plug-in, you might
need to break conformance and use embed. Many developers use both object and embed for a single
media object.

Attributes

align="left|right|top|bottom"

NN 4.0+ and MSIE 4.0+ only. Controls the alignment of the media object relative to the
surrounding text. The default is bottom. While top and bottom are vertical alignments, left and
right position the object on the left or right margin and allow text to wrap around it.

height=" number"

Specifies the height of the object in number of pixels. Some media types require this attribute.

hidden="yes|no"

Hides the media file or player from view when set to yes. The default is no.

name=" text"

Specifies a name for the embedded object. This is particularly useful for referencing the object
from a script.

palette="foreground|background"

NN 4.0+ and MSIE 4.0+ only. This attribute applies to the Windows platform only. A value of
foreground makes the plug-in's palette the foreground palette. Conversely, a value of
background makes the plug-in use the background palette; this is the default.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pluginspage=" URL"

NN 4.0+ and MSIE 4.0+ only. Specifies the URL for information on installing the appropriate
plug-in.

src=" URL"

Required. Provides the URL to the file or object to be placed on the page.

width=" number"

Specifies the width of the object in number of pixels. Some media types require this attribute.

Internet Explorer only

alt=" text"

Provides alternative text when the media object cannot be displayed (same as for the img
element).

code=" filename"

Specifies the class name of the Java code to be executed.

codebase=" URL"

Specifies the base URL for the application.

units="pixels|en"

Defines the measurement units used by height and width. The default is pixels. En units are
half the point size of the body text.

Netscape Navigator only

border=" number"

Specifies the width of the border (in pixels) around the media object.

frameborder="yes|no"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Turns the border on or off.

hspace=" number"

Used in conjunction with the align attribute, the horizontal space attribute specifies (in pixels)
the amount of space to leave clear to the left and right of the media object.

pluginurl=" URL"

Specifies a source for installing the appropriate plug-in for the media file. Netscape
recommends that you use pluginurl instead of pluginspage.

type=" media (MIME) type"

Specifies the MIME type of the media in order to load the appropriate plug-in. Navigator uses
either the value of the type attribute or the suffix of the filename given as the source to
determine which plug-in to use.

vspace=" number"

Used in conjunction with the align attribute, the vertical space attribute specifies (in pixels) the
amount of space to leave clear above and below the media object.

fieldset

<fieldset>...</fieldset>

Groups related form controls and labels. Fieldset elements are placed within the form element. It is
similar to div but is specifically for grouping fields. It was introduced to improve form accessibility to
users with alternative browsing devices.

Attributes

Core(id, class, style, title), Internationalization, Events

font

...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deprecated. Used to affect the style (color, typeface, and size) of the enclosed text.

Attributes

Core(id, class, style, title), Internationalization

color=" #RRGGBB" or " color name"

Deprecated. Specifies the color of the enclosed text. For information on how to specify color,
see Appendix D.

face=" typeface" (or list of typefaces)

Deprecated. Specifies a typeface for the text. The specified typeface is used only if it is found
on the user's machine. You may provide a list of fonts (separated by commas), and the
browser uses the first available in the string.

size=" value"

Deprecated. Sets the size of the type to an absolute value on a scale from 1 to 7 (3 is the
default), or by using a relative value +n or -n (based on the default or basefont setting).

form

<form>...</form>

Indicates an interactive form that contains controls for collecting user input and other page content.
There can be more than one form in an HTML document, but forms cannot be nested inside one
another, and it is important that they do not overlap.

Attributes

Core(id, class, style, title), Internationalization, Events, (plus onsubmit, onblur)

accept=" content-type-list"

Specifies a comma-separated list of file types (MIME types) that the server will accept and is
able to process. Browsers may one day be able to filter out unacceptable files when prompting
a user to upload files to the server, but this attribute is not yet widely supported.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accept-charset=" charset list"

Specifies the list of character encodings for input data that must be accepted by the server to
process the current form. The value is a space- and/or comma-delimited list of ISO character
set names. The default value is unknown. This attribute is not widely supported.

action=" URL"

Required. Specifies the URL of the application that will process the form. The default is the
current URL.

enctype=" content type"

Specifies how the values for the form controls are encoded when they are submitted to the
server when the method is post. The default is the Internet Media Type (application/x-www-
form-urlencoded). The value multipart/form-data should be used in combination with the file
input element.

method="get|post"

Specifies which HTTP method will be used to submit the form data. With get (the default), the
information is appended to and sent along with the URL itself.

name=" text"

Deprecated in XHTML 1.0; useid instead. Assigns a name to the form.

target=" name"

Specifies a target for the results of the form submission to be loaded so results of a form can
be displayed in another window or frame. The special target values _bottom, _top, _parent, and
_self may be used.

frame

<frame />

Defines a single frame within a frameset.

Attributes

Core(id, class, style, title)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bordercolor="#rrggbb" or " color name"

Nonstandard. Sets the color for a frame's borders (if the border is turned on). Support for this
attribute is limited to Netscape 3.0+ and Internet Explorer 4.0+.

frameborder="1|0" (IE 3+ and W3C Rec.); "yes|no" (NN 3+)

Determines whether there is a 3D separator drawn between the current frame and surrounding
frames. A value of 1 turns the border on. A value of 0 turns the border off. The default value is
1 (border on). Netscape also accepts the values 1 and 0.

longdesc =" URL"

Specifies a link to a document containing a long description of the frame and its contents.
Although longdesc is included in the HTML 4.01 and XHTML 4.0 Recommendations, no browsers
currently support it.

marginwidth=" number"

Specifies the amount of space (in pixels) between the left and right edges of the frame and its
contents. The minimum value according to the HTML specification is 1 pixel. Setting the value
to 0 to place objects flush against the edge of the frame works in some browsers but may yield
inconsistent results.

marginheight=" number"

Specifies the amount of space (in pixels) between the top and bottom edges of the frame and
its contents. The minimum value according to the HTML specification is 1 pixel. Setting the
value to 0 to place objects flush against the edge of the frame works in some browsers but
may yield inconsistent results.

name=" text"

Deprecated in XHTML 1.0; useid instead. Assigns a name to the frame. This name may be
referenced by targets within links to make the target document load within the named frame.

noresize="noresize"

Prevents users from resizing the frame. By default, despite specific frame size settings, users
can resize a frame by clicking and dragging its borders.

scrolling="yes|no|auto"

Specifies whether scrollbars appear in the frame. A value of yes means scrollbars always

http://lib.ommolketab.ir
http://lib.ommolketab.ir

appear; a value of no means scrollbars never appear; a value of auto (the default) means
scrollbars appear automatically when the contents do not fit within the frame.

src=" URL"

Specifies the location of the initial HTML file to be displayed by the frame.

frameset

<frameset>...</frameset>

Defines a collection of frames or other framesets.

Attributes

Core(id, class, style, title), onload, onunload

border=" number"

Nonstandard. Sets frame border thickness (in pixels) between all the frames in a frameset
(when the frame border is turned on). Mozilla browsers do not support border.

bordercolor=" #rrggbb" or " color name"

Nonstandard. Sets a border color for all the borders in a frameset. Mozilla and Opera browsers
do not support bordercolor.

cols=" list of lengths" (number, percentage, or *)

Establishes the number and sizes of columns (vertical frames) in a frameset. The number of
columns is determined by the number of values in the list. Size specifications can be in absolute
pixel values, percentage values, or relative values (*) based on available space.

frameborder="1|0"; "yes|no"

Nonstandard. Determines whether 3D separators are drawn between frames in the frameset. A
value of 1 (or yes) turns the borders on; 0 (or no) turns the borders off. Netscape also supports
values of 1 and 0. The Frameset DTD does not include the frameborder attribute for the
frameset element.

rows=" list of lengths" (number, percentage, or *)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Establishes the number and size of rows (horizontal frames) in the frameset. The value is a
comma-separated list of measurements. The number of rows is determined by the number of
values in the list. Size specifications can be in absolute pixel values, percentage values, or
relative values (*) based on available space.

h1, h2, h3, h4, h5, h6

<hn>...</hn>

Specifies a heading that briefly describes the section it introduces. There are six levels of headings,
from h1 (most important) to h6 (least important).

Attributes

Core(id, class, style, title), Internationalization, Events

align="center|left|right"

Deprecated. Used to align the header left, right, or centered on the page. Microsoft Internet
Explorer 3.0 and earlier does not support right alignment.

head

<head>...</head>

Defines the head (also called the "header") portion of the document that contains information about
the document that is not considered document content. The head element serves as a container for
the other header elements, such as title, base, link, and meta.

Attributes

Internationalization(lang, xml:lang, dir)

profile=" URLs"

Provides the location of one or more predefined metadata profiles separated by whitespace that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are used to define properties and values that can be referenced by meta elements in the head
of the document, rel and rev attributes, and class names. This attribute is not yet
implemented by browsers.

hr

<hr />

Adds a horizontal rule to the page that can be used as a divider between sections of content. This is
an example of a presentational HTML element. A rule between sections of a document may be better
handled using a border on the top or bottom edge of a block element.

Attributes

Core(id, class, style, title), Internationalization, Events

align="center|left|right"

Deprecated. If the rule is shorter than the width of the window, this attribute controls
horizontal alignment of the rule. The default is center.

noshade="noshade"

Deprecated. This displays the rule as a solid bar with no shading.

size=" number"

Deprecated. Specifies the thickness of the rule in pixels.

width=" number" or " number%"

Deprecated. Specifies the length of the rule in pixels or as a percentage of the page width. By
default, rules are the full width of the browser window.

html

<html>...</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the root element of an HTML document, meaning all other elements are contained within it.
The html element has no ancestors. Placed at the beginning and end of the document, this element
indicates that the entire document is HTML or XHTML.

Attributes

Internationalization(lang, xml:lang, dir)

xmlns="http://www.w3.org/1999/xhtml"

Required; XHTML only. In an XHTML document, this declares the XML namespace for the
document.

version="-//W3C//DTD HTML 4.01//EN"

Deprecated in HTML 4.01. In HTML, the value of version is a Formal Public Identifier (FPI) that
specifies the version of HTML the document uses (the value above specifies 4.01). In HTML
4.01, the version attribute is deprecated because it is redundant with information provided in
the DOCTYPE declaration. In XHTML 1.0, the value of version has not been defined.

i

<i>...</i>

Enclosed text is displayed in italic. It is discouraged from use in favor of the more semantic em
(emphasized) element. This is one of the few presentational elements preserved in the XHTML 1.0
Strict and XHTML 1.1 DTDs.

Attributes

Core(id, class, style, title), Internationalization, Events

iframe

<iframe>...</iframe>

Defines an inline (floating) frame within a document. An iframe displays the content of an external

http://lib.ommolketab.ir
http://lib.ommolketab.ir

document and may display scrolling devices if the content doesn't fit in the specified window area.
Inline frames are positioned similarly to images.

Attributes

Core(id, class, style, title)

align="top|middle|bottom|left|right"

Deprecated. Aligns the inline frame on the page within the flow of the text. Left and right
alignment allows text to flow around the inline frame.

frameborder="1|0"

Turns on or off the display of a 3D border for the inline frame. The default is 1, which displays
the border.

height=" number"

Specifies the height of the inline frame in pixels or as a percentage of the window size. Internet
Explorer and Navigator use a default height of 150 pixels.

hspace=" number"

Nonstandard. Used in conjunction with left and right alignment, this attribute specifies the
amount of space (in pixels) to hold clear to the left and right of the inline frame.

longdesc=" URL"

Specifies a link to a document containing a long description of the inline frame and its contents.
This addition to the HTML 4.01 specification may be useful for nonvisual web browsers.

marginheight=" number"

Specifies the amount of space (in pixels) between the top and bottom edges of the inline frame
and its contents.

marginwidth=" number"

Specifies the amount of space (in pixels) between the left and right edges of the inline frame
and its contents.

name=" text"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deprecated in XHTML 1.0. Assigns a name to the inline frame to be referenced by targeted
links.

scrolling="yes|no|auto"

Specifies whether scrollbars appear in the frame. A value of yes means scrollbars always
appear; a value of no means scrollbars never appear; a value of auto (the default) means
scrollbars appear automatically when the contents do not fit within the frame.

src=" URL"

Specifies the URL of the HTML document to display initially in the inline frame.

vspace=" number"

Nonstandard. Used in conjunction with left and right alignment, this attribute specifies the
amount of space (in pixels) to hold clear above and below the inline frame.

width=" number"

Specifies the width of the inline frame in pixels or as a percentage of the window size. Internet
Explorer and Navigator use a default width of 300 pixels.

img

Places an image on the page.

Attributes

Core(id, class, style, title), Internationalization, Events

align=" type"

Deprecated. Specifies the alignment of an image using one of the following values:

Type Resulting alignment

bottom Aligns the bottom of the image with the text baseline. This is the default vertical alignment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Resulting alignment

left Aligns the image on the left margin and allows subsequent text to wrap around it.

middle Aligns the text baseline with the middle of the image.

right Aligns the image on the right margin and allows subsequent text to wrap around it.

top Aligns the top of the image with the top of the tallest object on that line.

alt=" text"

Required. Provides a string of alternative text that appears when the image is not displayed.
Internet Explorer 4.0+ and Netscape 6 on Windows display this text as a "tool tip" when the
mouse rests on the image.

border=" number"

Deprecated.Specifies the width (in pixels) of the border that surrounds a linked image.

height=" number"

Specifies the height of the image in pixels. It is not required, but is recommended to speed up
the rendering of the web page.

hspace=" number"

Deprecated. Specifies (in number of pixels) the amount of space to leave clear to the left and
right of the image.

ismap

Indicates that the graphic is used as the basis for a server-side image map (an image
containing multiple hypertext links).

longdesc=" URL"

Specifies a link to a long description of the image or an image map's contents. This may be
used to make information about the image accessible to nonvisual browsers. It is supported
only by Netscape 6 as of this writing.

lowsrc=" URL"

Nonstandard. Specifies an image (usually of a smaller file size) that will download first, followed
by the final image specified by the src attribute.

left Aligns the image on the left margin and allows subsequent text to wrap around it.

middle Aligns the text baseline with the middle of the image.

right Aligns the image on the right margin and allows subsequent text to wrap around it.

top Aligns the top of the image with the top of the tallest object on that line.

alt=" text"

Required. Provides a string of alternative text that appears when the image is not displayed.
Internet Explorer 4.0+ and Netscape 6 on Windows display this text as a "tool tip" when the
mouse rests on the image.

border=" number"

Deprecated.Specifies the width (in pixels) of the border that surrounds a linked image.

height=" number"

Specifies the height of the image in pixels. It is not required, but is recommended to speed up
the rendering of the web page.

hspace=" number"

Deprecated. Specifies (in number of pixels) the amount of space to leave clear to the left and
right of the image.

ismap

Indicates that the graphic is used as the basis for a server-side image map (an image
containing multiple hypertext links).

longdesc=" URL"

Specifies a link to a long description of the image or an image map's contents. This may be
used to make information about the image accessible to nonvisual browsers. It is supported
only by Netscape 6 as of this writing.

lowsrc=" URL"

Nonstandard. Specifies an image (usually of a smaller file size) that will download first, followed
by the final image specified by the src attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name=" text"

Deprecated in XHTML 1.0; useid instead. Assigns the image element a name so it can be
referred to by a script or style sheet.

src=" URL"

Required. Provides the location of the graphic file to be displayed.

usemap=" URL"

Specifies the map containing coordinates and links for a client-side image map (an image
containing multiple hypertext links).

vspace=" number"

Deprecated.Specifies (in number of pixels) the amount of space to leave clear above and below
the image.

width=" number"

Specifies the width of the image in pixels. It is not required, but is recommended to speed up
the rendering of the web page.

input

<input />

The input element is used to create a variety of form input controls. The type of control is defined by
the type attribute. Following is a complete list of attributes (with descriptions) that can be used with
the input element. Not all attributes can be used with all control types. The attributes associated with
each control type are also provided.

Attributes

Core(id, class, style, title), Internationalization, Events (onfocus, onblur, onselect, onchange

alt=" text"

Specifies alternative text for an image used as a button.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accept=" MIME type"

Specifies a comma-separated list of content types that a server processing the form will handle
correctly. It can be used to filter out nonconforming files when prompting a user to select files
to send to the server.

accesskey=" character"

Assigns an access key (keyboard shortcut) to an element for quicker access.

checked="checked"

When this attribute is added, a checkbox will be checked by default.

disabled="disabled"

Disables the control for user input. It can only be altered via a script. Browsers may display
disabled controls differently (grayed out, for example), which could be useful for dimming
certain controls until required info is supplied.

maxlength=" number"

Specifies the maximum number of characters the user can input for this element.

name=" text"

Required by all input types exceptsubmit and reset. Assigns a name to the control. A script
program uses this name to reference the control.

readonly="readonly"

Indicates that the form input may not be modified.

size=" number"

Specifies the size of a text-entry box (measured in number of characters). Users can type
entries that are longer than the space provided, causing the field to scroll to the right.

src=" URL"

Provides the URL of an image used as a push button.

tabindex=" number"

Specifies position in the tabbing order. Tabbing navigation allows the user to cycle through the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

active fields using the Tab key.

type="text|password|checkbox|radio|submit|reset|file|hidden|image|button"

Specifies type of form control.

value=" text"

Specifies the value for this control.

<input type="button" />

Creates a customizable "push" button. Customizable buttons have no specific behavior but can be
used to trigger functions created with JavaScript controls. Data from type="button" controls is never
sent with a form when a form is submitted to the server; these button controls are only for use with
script programs on the browser.

Attributes

Core(id, class, style, title), Internationalization, Events, Focus(accesskey, tabindex, onfocus,
onblur)

align="left|middle|right|top|bottom" (Deprecated)

disabled="disabled"

name="text" (Required)

value="text"

<input type="checkbox" />

Creates a checkbox input element within a form. Checkboxes are like on/off switches that can be
toggled by the user. Several checkboxes in a group may be selected at one time. When a form is
submitted, only the "on" checkboxes submit values to the server.

Attributes

Core(id, class, style, title), Internationalization, Events, Focus(accesskey, tabindex, onfocus,
onblur)

align="left|middle|right|top|bottom" (Deprecated)

checked="checked"

disabled="disabled"

name="text" (Required)

readonly="readonly"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

value="text" (Required)

<input type="file" />

Allows users to submit external files with their form submissions by providing a browsing mechanism
in the form.

Attributes

Core(id, class, style, title), Internationalization, Events, Focus(accesskey, tabindex, onfocus,
onblur)

accept="MIME type"

disabled="disabled"

maxlength="number"

name="text" (Required)

readonly="readonly"

size="number"

value="text"

<input type="hidden" />

Creates a control that does not display in the browser. Hidden controls can be used to pass special
form-processing information to the server that the user cannot see or alter.

Attributes

accesskey="character"

tabindex="number"

name="text" (Required)

value="text" (Required)

<input type="image" />

Allows an image to be used as a substitute for a submit button. If a type="image" button is pressed,
the form is submitted.

Attributes

Core(id, class, style, title), Internationalization, Events, Focus(accesskey, tabindex, onfocus,
onblur)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

align="left|middle|right|top|bottom" (Deprecated)

alt="text"

disabled="disabled"

name="text" (Required)

src="URL"

<input type="password" />

Creates a text-input element (like <input type="text">), but the input text is rendered in a way that
hides the characters, such as by displaying a string of asterisks (*) or bullets (•). Note that this does
not encrypt the information entered and should not be considered to be a real security measure.

Attributes

Core(id, class, style, title), Internationalization, Events, Focus(accesskey, tabindex, onfocus,
onblur)

disabled="disabled"

maxlength="number"

name="text" (Required)

readonly="readonly"

size="number"

value="text" (Required)

<input type="radio" />

Creates a radio button that can be turned on and off. When a group of radio buttons share the same
control name, only one button within the group can be "on" at one time, and all the others are "off."
This makes them different from checkboxes, which allow multiple choices to be selected within a
group. Only data from the "on" radio button is sent when the form is submitted.

Attributes

Core(id, class, style, title), Internationalization, Events, Focus(accesskey, tabindex, onfocus,
onblur)

checked="checked"

disabled="disabled"

name="text" (Required)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

readonly="readonly"

value="text" (Required)

<input type="reset" />

Creates a reset button that clears the contents of the elements in a form (or sets them to their
default values).

Attributes

Core(id, class, style, title), Internationalization, Events, Focus(accesskey, tabindex, onfocus,
onblur)

disabled="disabled"

name="text"

value="text"

<input type="submit" />

Creates a submit button control; pressing the button immediately sends the information in the form
to the server for processing.

Attributes

Core(id, class, style, title), Internationalization, Events, Focus(accesskey, tabindex, onfocus,
onblur)

disabled="disabled"

name="text"

value="text"

<input type="text" />

Creates a text input element. This is the default input type, as well as the most useful and common.

Attributes

Core(id, class, style, title), Internationalization, Events, Focus(accesskey, tabindex, onfocus,
onblur)

disabled="disabled"

maxlength="number"

name="text" (Required)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

readonly="readonly"

size="number"

value="text"

ins

<ins>...</ins>

Indicates text that has been inserted into the document. It may be useful for legal documents and
any instance in which edits need to be tracked. Its counterpart is deleted text (del). Both can be
used to indicate either inline or block-level elements.

Attributes

Core(id, class, style, title), Internationalization, Events

cite=" URL"

Can be set to point to a source document that explains why the document was changed.

datetime=" YYYY-MM-DDThh:mm:ssTZD"

Specifies the date and time the change was made. See del for an explanation of the date/time
format.

isindex

<isindex />

Deprecated.Marks the document as searchable. The server on which the document is located must
have a search engine that supports this searching. The browser displays a text entry field and a
generic line that says, "This is a searchable index. Enter search keywords." This method is outdated;
more sophisticated searches can be handled with form elements and CGI scripting.

The isindex element is not part of the form system and does not need to be contained within a form
element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Core(id, class, style, title), Internationalization

prompt=" text"

Provides alternate text (not the default) to be used as a query by the user.

kbd

<kbd>...</kbd>

Stands for "keyboard" and indicates text entered by the user.

Attributes

Core(id, class, style, title), Internationalization, Events

label

<label>...</label>

Used to attach information to controls. Each label element is associated with exactly one form
control.

Attributes

Core(id, class, style, title), Internationalization, Events, onfocus, onblur

accesskey=" character"

Assigns an access key (keyboard shortcut) to an element for quicker access.

for=" text"

Explicitly associates the label with the control by matching the value of the for attribute with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the value of the id attribute within the control element.

Example

<label for="lastname">Last Name: </label>
<input type="text" id="lastname" size="32" />

legend

<legend>...</legend>

Assigns a caption to a fieldset (it must be contained within a fieldset element). This improves
accessibility when the fieldset is rendered nonvisually.

Attributes

Core(id, class, style, title), Internationalization, Events

accesskey=" character"

Assigns an access key (keyboard shortcut) to an element for quicker access.

align="top|bottom|left|right"

Deprecated. Aligns the text relative to the fieldset.

li

...

Defines an item in a list. It is used within the ol, ul, menu (deprecated), and dir (deprecated) list
elements.

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Core(id, class, style, title), Internationalization, Events

type=" format"

Deprecated. Changes the format of the automatically generated numbers or bullets for list
items.

Within unordered lists (ul), the type attribute can be used to specify the bullet style (disc,
circle, or square) for a particular list item.

Within ordered lists (ol), the type attribute specifies the numbering style (see options under
the ol listing) for a particular list item.

start=" number"

Nonstandard. Within ordered lists, you can specify the first number in the number sequence.

value=" number"

Deprecated. Within ordered lists, you can specify the number of an item. Following list items
increase from the specified number.

link

<link />

Defines the relationship between the current document and another document. Although it can
signify such relationships as index, next, and previous, it is most often used to link a document to an
external style sheet.

Attributes

Core(id, class, style, title), Internationalization, Events

charset=" charset"

Specifies the character encoding of the target document. See Chapter 6 for information on
character sets.

href=" URL"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Identifies the target document.

hreflang=" language code"

HTML 4.01.Specifies the base language of the target document. See Chapter 6 for a list of two-
letter language codes.

media="all|screen|print|handheld|projection|tty|tv|projection|braille|aural"

Identifies the target medium for the linked document so an alternate style sheet can be
accessed. The media attribute is explained in more detail in Chapters 16 and 36.

rel=" relationships"

Describes one or more relationships from the current source document to the target. Common
relationship types include stylesheet, next, prev, copyright, index, and glossary.

rev=" relationships"

Specifies one or more relationships of the target document back to the source (the opposite of
the rel attribute).

target =" name"

Defines the default target window for all links in the document. Often used to target frames.

type=" resource"

Shows the media or content type of an outside link. The value text/css indicates that the
linked document is an external Cascading Style Sheet.

map

<map>...</map>

Specifies a client-side image map. It contains some number of area elements that establish clickable
regions within the image map. The map must be named using the name attribute in HTML documents,
the id attribute in XHTML documents, or both for backwards-compatibility.

Attributes

Core(id, class, style, title), Internationalization, Events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

id=" text"

Required. Gives the map a unique name so it can be referenced from a link, script, or style
sheet. This attribute is required in the XHTML 1.0 & 1.1 Recommendations.

name=" text"

Deprecated in XHTML 1.0 only; useid instead. Gives the image map a name that is then
referenced within the img element. This attribute is required in HTML.

menu

<menu>...</menu>

Deprecated. This indicates a menu list, which consists of list items li. Menus are intended to be used
for a list of short choices, such as a menu of links to other documents. It is little used and has been
deprecated in favor of ul.

Attributes

Core(id, class, style, title), Internationalization, Events

compact

Deprecated. Displays the list as small as possible (not many browsers do anything with this
attribute).

meta

<meta />

Provides additional information about the document. It should be placed within the head of the
document. It is commonly used to identify the media type and character set for a document. It can
also provide keywords, author information, descriptions, and other metadata.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Internationalization(lang, xml:lang, dir)

content=" text"

Required. Specifies the value of the meta element property and is always used in conjunction
with name or http-equiv.

http-equiv=" text"

The specified information is treated as though it were included in the HTTP header that the
server sends ahead of the document. It is used in conjunction with the content attribute (in
place of the name attribute).

name=" text"

Specifies a name for the meta information property.

scheme=" text"

Provides additional information for the interpretation of metadata.

noembed

<noembed>...</noembed>

Nonstandard. The text or object specified by noembed appears when an embedded object cannot be
displayed (such as when the appropriate plug-in is not available). This element is used within or
beside the embed element.

noframes

<noframes>...</noframes>

Defines content to be displayed by browsers that cannot display frames. Browsers that do support
frames ignore the content in the noframes element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Core(id, class, style, title), Internationalization, Events

noscript

<noscript>...</noscript>

Provides alternate content when a script cannot be executed. The content of this element may be
rendered if the user agent doesn't support scripting, if scripting support is turned off, or if the
browser doesn't recognize the scripting language.

Attributes

Core(id, class, style, title), Internationalization, Events

object

<object>...</object>

A generic element used for placing an object (such as an image, applet, or media file) on a web
page. The attributes required for the object element vary with the type of content it is placing. The
object element may also contain a number of param elements that pass important information to the
object when it displays or plays. Not all objects require additional parameters. The declare, standby,
and tabindex attributes are not universally supported. Browsers vary in support of some media types
placed with the object element.

Attributes

Core(id, class, style, title), Internationalization, Events

align="baseline|center|left|middle|right|textbottom|textmiddle|texttop"

Deprecated. Aligns object with respect to surrounding text. See the img element for
explanations of the align values.

archive=" URLs"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies a space-separated list of URLs for resources that are related to the object.

border=" number"

Deprecated. Sets the width of the border in pixels if the object is a link.

classid=" URL"

Identifies the location of an object's implementation. It is used with or in place of the data
attribute. The syntax depends on the object type. Not supported by Gecko browsers.

codebase=" URL"

Identifies the base URL used to resolve relative URLs in the object (similar to base). By default,
codebase is the base URL of the current document.

codetype=" codetype"

Specifies the media type of the code. It is required only if the browser cannot determine an
applet's MIME type from the classid attribute or if the server does not deliver the correct MIME
type when downloading the object.

data=" URL"

Specifies the URL of the data used for the object. The syntax depends on the object.

declare="declare"

Declares an object but restrains the browser from downloading and processing it. Used in
conjunction with the name attribute, this facility is similar to a forward declaration in a more
conventional programming language, letting you defer the download until the object actually
gets used.

height=" number"

Specifies the height of the object in pixels.

hspace=" number"

Deprecated. Holds number pixels of space clear to the left and right of the object.

name=" text"

Specifies the name of the object to be referenced by scripts on the page. Removed from the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XHTML 1.1 Recommendation in favor of the id attribute.

standby=" message"

Specifies the message to display during object loading.

tabindex=" number"

Specifies the position of the current element in the tabbing order for the current document. The
value must be between 0 and 32767. It is used for tabbing through the links on a page (or
fields in a form).

type=" type"

Specifies the media type for the data.

usemap=" URL"

Specifies the image map to use with the object.

vspace=" number"

Deprecated. Holds number pixels of space clear above and below the object.

width=" number"

Specifies the object width in pixels.

ol

...

Defines an ordered (numbered) list, which consists of list items (li). The browser inserts item
numbers automatically.

Attributes

Core(id, class, style, title), Internationalization, Events

compact

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deprecated. Displays the list as small as possible (not many browsers do anything with this
attribute).

start=" number"

Deprecated. Starts the numbering of the list at number instead of at 1.

type="1|A|a|I|i"

Deprecated. Defines the numbering system for the list shown next.

Type value Generated style Sample sequence

1 Arabic numerals (default) 1, 2, 3, 4

A Uppercase letters A, B, C, D

a Lowercase letters a, b, c, d

I Uppercase Roman numerals I, II, III, IV

i Lowercase Roman numerals i, ii, iii, iv

optgroup

<optgroup>...</optgroup>

Defines a logical group of options elements. This could be used by browsers to display hierarchical
cascading menus. An optgroup element cannot contain other optgroup elements (they cannot be
nested).

Attributes

Core(id, class, style, title), Internationalization, Events

disabled=" disabled"

Indicates that the group of options is nonfunctional. It can be reactivated with a script.

label=" text"

Required. Specifies the label for the option group.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

option

<option>...</option>

Defines an option within a select element (a multiple-choice menu or scrolling list). The content of
the option element is the value that is sent to the form processing application (unless an alternative
value is specified using the value attribute).

Attributes

Core(id, class, style, title), Internationalization, Events

disabled=" disabled"

Indicates that the selection is initially nonfunctional. It can be reactivated with a script.

label=" text"

Allows the author to provide a shorter label than the content of the option. This attribute is not
supported.

selected=" selected"

Makes this item selected when the form is initially displayed.

value=" text"

Defines a value to assign to the option item within the select control, to use in place of option
contents.

p

<p>...</p>

Denotes a paragraph. Browsers are instructed to ignore multiple empty p elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Core(id, class, style, title), Internationalization, Events

align="center|left|right"

Deprecated. Aligns the text within the element to the left, right, or center of the page.

param

<param />

Supplies a parameter within an applet or object element.

Attributes

id=" text"

Provides a name (similar to the name attribute) so it can be referenced from a link, script, or
style sheet. It is more versatile than name, but it is not as universally supported.

name=" text"

Required. Defines the name of the parameter.

value=" text"

Defines the value of the parameter.

valuetype="data|ref|object"

Indicates the type of value: data indicates that the parameter's value is data (default); ref
indicates that the parameter's value is a URL; object indicates that the value is the URL of
another object in the document.

type=" content type"

HTML 4.01. Specifies the media type of the resource only when the valuetype attribute is set to
ref. It describes the types of values found at the referred location.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pre

<pre>...</pre>

Delimits preformatted text, meaning that lines are displayed exactly as they are typed in, honoring
whitespace such as multiple character spaces and line breaks. By default, text within a pre element is
displayed in a monospace font such as Courier.

Attributes

Core(id, class, style, title), Internationalization, Events

width =" number"

Deprecated. This optional attribute determines how many characters to fit on a single line
within the pre block.

q

<q>...</q>

Delimits a short quotation that can be included inline, such as "to be or not to be." It differs from
blockquote, which is a block-level element used for longer quotations. Some browsers automatically
insert quotation marks. When used with the lang (language) attribute, the browser may insert
language-specific quotation marks.

Attributes

Core(id, class, style, title), Internationalization, Events

cite=" url"

Designates the source document from which the quotation was taken.

s

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<s>...</s>

Deprecated. Enclosed text is displayed as strike-through text (same as strike but introduced by later
browser versions).

Attributes

Core(id, class, style, title), Internationalization, Events

samp

<samp>...</samp>

Delimits sample output from programs, scripts, and so on. Sample text is generally displayed in a
monospace font.

Attributes

Core(id, class, style, title), Internationalization, Events

script

<script>...</script>

Places a script in the document (usually JavaScript for web documents). It may appear any number
of times in the head or body of the document. The script may be provided in the script element or in
an external file (by providing the src attribute).

Attributes

charset=" character set"

Indicates the character encoding of an external script document (it is not relevant to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

content of the script element)

defer="defer"

Indicates to the user agent that the script will not generate document content, so the user
agent may continue rendering.

language=" text"

Deprecated. Provides the name of the scripting language, but since it is not standardized, it has
been deprecated in favor of the type attribute.

src=" url"

Provides the location of an external script.

type=" content-type"

Required. Specifies the scripting language used for the current script. This setting overrides
any default script setting for the document. The value is a content type, most often
text/javascript.

select

<select>...</select>

Defines a multiple-choice menu or a scrolling list. It is a container for one or more option elements.
This element may also contain one or more optgroup elements.

Attributes

Core(id, class, style, title), Internationalization, Events, onfocus, onblur, onchange

disabled="disabled"

Indicates that the select element is initially nonfunctional. It can be reactivated with a script.

multiple="multiple"

This allows the user to select more than one option from the list. When this attribute is absent,
only single selections are allowed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name=" text"

Required. Defines the name for select control; when the form is submitted to the form-
processing application, this name is sent along with each selected option value.

size=" number"

Specifies the number of rows that display in the list of options. For values higher than 1, the
options are displayed as a scrolling list with the specified number of options visible. When
size=1 is specified, the list is displayed as a pop-up menu.

The default value is 1 when multiple is not used. When multiple is specified, the value varies
by browser (but a value of 4 is common).

tabindex=" number"

Specifies position in the tabbing order. Tabbing navigation allows the user to cycle through the
active fields by using the Tab key.

small

<small>...</small>

Renders the type smaller than the surrounding text.

Attributes

Core(id, class, style, title), Internationalization, Events

span

...

Identifies a generic inline element. It can be used in conjunction with the class and/or id attributes
and formatted with Cascading Style Sheets.

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Core(id, class, style, title), Internationalization, Events

strike

<strike>...</strike>

Deprecated. Enclosed text is displayed as strikethrough text (crossed through with a horizontal line).
It has been deprecated in favor of style sheet controls.

Attributes

Core(id, class, style, title), Internationalization, Events

strong

...

Enclosed text is strongly emphasized. User agents generally render strong elements in bold.

Attributes

Core(id, class, style, title), Internationalization, Events

style

<style>...</style>

Inserts style sheet rules into the head of a document. The minimum markup for embedding a
Cascading Style Sheet is:

<style type="text/css">...</style>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes

Internationalization(lang, dir, xml:lang)

media="all|aural|braille|handheld|print|projection|screen|tty|tv"

Specifies the intended destination medium for the style information. It may be a single
keyword or a comma-separated list. The default is screen.

title=" text"

Gives the embedded style sheet a title.

type=" content type" (text/css)

Required.Specifies the style sheet language. For Cascading Style Sheets (currently the only
style type option), the value is text/css.

sub

_{...}

Formats enclosed text as subscript.

Attributes

Core(id, class, style, title), Internationalization, Events

sup

^{...}

Formats enclosed text as superscript.

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Core(id, class, style, title), Internationalization, Events

table

<table>...</table>

Indicates a table. The end tag is required, and its omission may cause the table not to render in some
browsers.

Attributes

Core(id, class, style, title), Internationalization, Events

align="left|right|center"

Deprecated. Aligns the table within the text flow (same as align in the img element). The
default alignment is left. The center value is not universally supported.

bgcolor=" #rrggbb" or " color name"

Deprecated. Specifies a background color for the entire table. Value is specified in hexadecimal
RGB values or by color name. (See Appendix D for more information on specifying colors in
HTML.)

border=" number"

Specifies the width (in pixels) of the border around the table and its cells. Setting its value to 0
(zero) turns the borders off completely. The default value is 1. Adding the word border without
a value results in a 1-pixel border, although this is not valid in XHTML.

cellpadding=" number"

Sets the amount of space, in number of pixels, between the cell border and its contents. The
default value is 1.

cellspacing=" number"

Sets the amount of space (in number of pixels) between table cells. The default value is 2.

frame="void|above|below|hsides|lhs|rhs|vsides|box|border"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tells the browser where to draw borders around the table. The values are as follows:

Value Description

void The frame does not appear (default).

above Top side only.

below Bottom side only.

hsides Top and bottom sides only.

vsides Right and left sides only.

lhs Left side only.

rhs Right side only.

box All four sides.

border All four sides.

When the border attribute is set to a value greater than zero, the frame defaults to border
unless otherwise specified.

height=" number, percentage"

Nonstandard. Specifies the minimum height of the entire table. It can be specified in a specific
number of pixels or by a percentage of the parent element.

rules="all|cols|groups|none|rows"

Tells the browser where to draw rules within the table. Its values are as follows:

Value Description

none No rules (default).

groups Rules appear between row groups (thead, tfoot, and tbody) and column groups.

rows Rules appear between rows only.

cols Rules appear between columns only.

all Rules appear between all rows and columns.

When the border attribute is set to a value greater than zero, rules defaults to all unless
otherwise specified.

This attribute was introduced by Internet Explorer 3.0 and now appears in the HTML 4.01
specification. Netscape supports it in Version 6t only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

summary=" text"

Provides a summary of the table contents for use with nonvisual browsers.

width=" number, percentage"

Specifies the width of the entire table. It can be specified by number of pixels or by percentage
of the parent element.

tbody

<tbody>...</tbody>

Defines a row or group of rows as the "body" of the table. It must contain at least one row element
(tr). "Row group" elements (tbody, thead, and tfoot) could speed table display and provide a
mechanism for scrolling the body of a table independently of its head and foot. Row groups could also
be useful for printing long tables for which the head information could be printed on each page. The
char and charoff attributes are not supported by current commercial browsers.

Attributes

Core(id, class, style, title), Internationalization, Events

align="left|right|center|justify|char"

Specifies the horizontal alignment of text in a cell or cells. The default value is left. The align
attribute as it applies to table cell content has not been deprecated and appears in the Tables
Module of the XHTML 1.1 Recommendation.

char=" character"

Specifies a character along which the cell contents will be aligned when align is set to char.
The default character is a decimal point (language-appropriate). This attribute is generally not
supported by current browsers.

charoff=" length"

Specifies the offset distance to the first alignment character on each line. If a line doesn't use
an alignment character, it should be horizontally shifted to end at the alignment position. This
attribute is generally not supported by current browsers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

valign="top|middle|bottom|baseline"

Specifies the vertical alignment of text in the cells of a column. The valign attribute as it
applies to table cell content has not been deprecated and appears in the Tables Module of the
XHTML 1.1 Recommendation.

td

<td>...</td>

Defines a table data cell. The end tag is not required in HTML markup but may prevent unpredictable
table display, particularly if the cell contains images. The end tag is required in XHTML for the
document to be valid. A table cell can contain any content, including another table.

Attributes

Core(id, class, style, title), Internationalization, Events

abbr=" text"

Provides an abbreviated form of the cell's content.

align="left|right|center|justify|char"

Specifies the horizontal alignment of text in a cell or cells. The default value is left. The align
attribute as it applies to table cell content has not been deprecated and appears in the Tables
Module of the XHTML 1.1 Recommendation.

axis=" text"

Places a cell into a conceptual category, which could then be used to organize or search the
table in different ways.

background=" url"

Nonstandard. Specifies a graphic image to be used as a tile within the cell.

bgcolor=" #rrggbb" or " color name"

Deprecated. Specifies a color to be used in the table cell. A cell's background color overrides
colors specified at the row or table levels.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

char=" character"

Specifies a character along which the cell contents will be aligned when align is set to char.
The default character is a decimal point (language-appropriate). This attribute is generally not
supported by current browsers.

charoff=" length"

Specifies the offset distance to the first alignment character on each line. If a line doesn't use
an alignment character, it should be horizontally shifted to end at the alignment position. This
attribute is generally not supported by current browsers.

colspan=" number"

Specifies the number of columns the current cell should span. The default value is 1. According
to the HTML 4.01 specification, the value zero (0) means the current cell spans all columns
from the current column to the last column in the table; in reality, however, this feature is not
supported in current browsers.

headers=" id reference"

Lists header cells (by id) that provide header information for the current data cell. This is

intended to make tables more accessible to nonvisual browsers.

height=" pixels, percentage"

Deprecated. Specifies the height of the cell in number of pixels or by a percentage value
relative to the table height. The height specified in the first column will apply to the rest of the
cells in the row. The height values need to be consistent for cells in a particular row. Pixel
measurements are more reliable than percentages, which work only when the height of the
table is specified in pixels.

nowrap="nowrap"

Deprecated. Disables automatic text wrapping for the current cell. Line breaks must be added
with a
 or by starting a new paragraph.

rowspan=" number"

Specifies the number of rows spanned by the current cell. The default value is 1. According to
the HTML 4.01 Recommendation, the value zero (0) means the current cell spans all rows from
the current row to the last row; in reality, however, this feature is not supported by browsers.

scope="row|col|rowgroup|colgroup"

Specifies the table cells for which the current cell provides header information. A value of col

http://lib.ommolketab.ir
http://lib.ommolketab.ir

indicates that the current cell is the header for all the cells that fall below. colgroup indicates
the current cell is the header for the column group that contains it. A value of row means that
the current cell is the header for the cells in the rest of the row. A value of rowgroup means the
current cell is the header for the containing row group. This is intended to make tables more
accessible to nonvisual browsers.

valign="top|middle|bottom|baseline"

Specifies the vertical alignment of text in the cells of a column. The valign attribute as it
applies to table cell content has not been deprecated and appears in the Tables Module of the
XHTML 1.1 Recommendation.

width=" pixels, percentage"

Deprecated. Specifies the width of the cell in number of pixels or by a percentage value relative
to the table width. The width specified in the first row will apply to the rest of the cells in the
column, and the values need to be consistent for cells in the column.

textarea

<textarea>...</textarea>

Defines a multiline text-entry control. The content of the textarea element is displayed in the text-
entry field when the form initially displays.

Core(id, class, style, title), Internationalization, Events, onselect, onchange, Focus(accesskey,
tabindex, onfocus, onblur)

cols=" number"

Required. Specifies the visible width of the text-entry field, measured in number of characters.
Users may enter text lines that are longer than the provided width, in which case the entry
scrolls to the right (or wraps if the browser provides some mechanism for doing so).

disabled="disabled"

Disables the control for user input. It can only be altered via a script. Browsers may display
disabled controls differently (grayed out, for example), which could be useful for dimming
certain controls until required info is supplied.

name=" text"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Required. Specifies a name for the text input control. This name will be sent along with the
control content to the form-processing application.

readonly="readonly"

Indicates that the form control may not be modified.

rows=" number"

Required. Specifies the height of the text-entry field in number of lines of text. If the user
enters more lines than are visible, the text field scrolls down to accommodate the extra lines.

tfoot

<tfoot>...</tfoot>

Defines the foot of a table. It is one of the "row group" elements. A tfoot element must contain at
least one row (tr).

Attributes

See tbody for more information and a list of supported attributes.

th

<th>...</th>

Defines a table header cell. Table header cells provide important information and context to the table
cells in the row or column that they precede. They are a key tool for making the information in tables
accessible. In terms of markup, they function the same as table data cells (TD).

Attributes

The th element accepts the same attributes as the TD element. See listing under td.

thead

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<thead>...</thead>

Defines the head of the table and should contain information about a table. It is used to duplicate
headers when the full table is broken over pages, or for a static header that appears with a scrolling
table body. It must contain at least one row (tr). The thead element is one of the "row group"
elements.

Attributes

See tbody for more information and a list of supported attributes.

title

<title>...</title>

Required. Specifies the title of the document. The title generally appears in the top bar of the browser
window. According to the HTML 4.01 and XHTML specifications, all documents must contain a
meaningful title within the head of the document.

Attributes

Internationalization(lang, xml:lang, dir)

tr

<tr>...</tr>

Defines a row of cells within a table. A table row element contains no content other than a collection
of table cells (td). Settings made in the tr element apply to all the cells in that row, but individual cell
settings override those made at the row level.

Attributes

Core(id, class, style, title), Internationalization, Events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

align="left|right|center|justify|char"

Specifies the horizontal alignment of text in a cell or cells. The default value is left. The align
attribute as it applies to table cell content has not been deprecated and appears in the Tables
Module of the XHTML 1.1 Recommendation.

bgcolor="# rrggbb" or " color name"

Deprecated. Specifies a color to be used in the row. A row's background color overrides the
color specified at the table level.

char=" character"

Specifies a character along which the cell contents will be aligned when align is set to char.
The default character is a decimal point (language-appropriate). This attribute is generally not
supported by current browsers.

charoff=" length"

Specifies the offset distance to the first alignment character on each line. If a line doesn't use
an alignment character, it should be horizontally shifted to end at the alignment position. This
attribute is generally not supported by current browsers.

valign="top|middle|bottom|baseline"

Specifies the vertical alignment of text in the cells of a column. The valign attribute as it
applies to table cell content has not been deprecated and appears in the Tables Module of the
XHTML 1.1 Recommendation.

tt

<tt>...</tt>

Formats enclosed text as teletype text. The text enclosed in the tt element is generally displayed in a
monospace font such as Courier.

Attributes

Core(id, class, style, title), Internationalization, Events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

u

<u>...</u>

Deprecated. Enclosed text is underlined when displayed. The HTML 4.01 specification prefers style
sheet controls for this effect.

Attributes

Core(id, class, style, title), Internationalization, Events

ul

...

Defines an unordered list, in which list items (li) have no sequence. By default, browsers insert
bullets before each item in a bulleted list, lists may be formatted in any fashion (including as
horizontal navigation elements) using Cascading Style Sheet properties.

Attributes

Core(id, class, style, title), Internationalization, Events

compact="compact"

Deprecated. Displays the list block as small as possible. Not many browsers support this
attribute.

type="disc|circle|square"

Deprecated. Defines the shape of the bullets used for each list item.

var

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<var>...</var>

Indicates an instance of a variable or program argument, usually rendered in italics.

Attributes

Core(id, class, style, title), Internationalization, Events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix B. CSS 2.1 Properties
This Appendix provides an alphabetical listing of all the properties and values included in the
Cascading Style Sheets 2.1 specification. It is organized into properties pertaining to visual, paged,
and aural media. For updated information, see the World Wide Web Consortium (W3C) site at
www.w3.org/Style/CSS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1. Visual Media

background

Shorthand property for specifying all aspects of an element background.

Values:

[<'background-color'>||<'background-image'>||
<'background-repeat'>||<'background-attachment'>||
<'background-position'>]|inherit

Initial value:

See individual properties.

Applies to:

All elements.

Inherited:

No.

Percentages:

Allowed on background-position .

Computed value:

See individual properties.

background-attachment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies whether the background image scrolls with the document or is fixed in the viewport (typically the browser window).

Values:

scroll | fixed | inherit

Initial value:

scroll

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

background-color

Specifies a solid background color for the element that appears behind its content area, padding, and border.

Values:

<color> | transparent |i nherit

Initial value:

transparent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

background-image

Specifies an image to be used as the background for an element.

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute URI.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

background-position

Sets the position of the background origin image, relative to the element.

Values:

[[<percentage> | <length> | left | center | right] [<percentage>
|<length> | top | center | bottom]? | [[left | center | right] || [top | center |
 bottom]] | inherit

Initial value:

0% 0% /* same as left top */

Applies to:

All elements.

Inherited:

No.

Percentages:

Refer to the size of the box itself.

Computed value:

Absolute length offsets or percentage values.

background-repeat

Controls the tiling pattern for the background image. Backgrounds can be set to tile in both directions, vertically, horizontally, or not at all.
Images repeat in both directions starting with the origin image.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values:

repeat | repeat-x | repeat-y | no-repeat | inherit

Initial value:

repeat

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

border

Shorthand property for specifying the border style, width, and color to be applied to all sides of an element.

Values:

[<border-style> || <border-width> || <border-color>] | inherit

Initial value:

See individual properties.

Applies to:

All elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inherited:

No.

Computed value:

As specified.

border-bottom

Shorthand property for specifying style, width, and color for the bottom edge of the element.

Values:

[<border-style> || <border-width> || <border-color>] | inherit

Initial value:

See individual properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties.

border-bottom-color

Specifies a color for the border on the bottom edge of an element.

Values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<color> | transparent | inherit

Initial value:

The value of the color property for the element

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified (the foreground color is used if no border color is specified).

border-bottom-style

Specifies the style of the border on the bottom edge of the element. The value must be something other than none for the border to appear.

Values:

none | dotted | dashed | solid | double | groove | ridge | inset | outset

Initial value:

none

Applies to:

All elements.

Inherited:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No.

Computed value:

As specified.

border-bottom-width

Specifies the width of the border on the bottom edge of an element.

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

border-collapse

Specifies the border rendering model for a table element.

Values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

collapse | separate | inherit

Initial value:

separate

Applies to:

Table and inline-table elements.

Inherited:

Yes.

Computed value:

As specified.

border-color

Shorthand property for specifying the border color for each side of an element.

Values:

[<color> | transparent]{1,4} | inherit

Initial value:

See individual properties.

Applies to:

All elements.

Inherited:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No.

Computed value:

See individual properties.

border-left

Shorthand property for specifying style, width, and color for the left edge of the element.

Values:

[<border-style> || <border-width> || <border-color>] | inherit

Initial value:

See individual properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties.

border-left-color

Specifies a color for the border on the left edge of an element.

Values:

<color> | transparent | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

The value of the color property for the element.

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified (foreground color is used if no border color is specified).

border-left-style

Specifies the style of the border on the left edge of the element. The value must be something other than none for the border to appear.

Values:

none | dotted | dashed | solid | double | groove | ridge | inset | outset

Initial value:

none

Applies to:

All elements.

Inherited:

No.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Computed value:

As specified.

border-left-width

Specifies the width of the border on the left edge of an element.

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute length; 0 if the style is set to none or hidden .

border-right

Shorthand property for specifying style, width, and color for the right edge of the element.

Values:

[<border-style> || <border-width> || <border-color>] | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

See individual properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties.

border-right-color

Specifies a color for the border on the right edge of an element.

Values:

<color> | transparent | inherit

Initial value:

The value of the color property for the element.

Applies to:

All elements.

Inherited:

No.

Computed value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As specified (the foreground color is used if no border color is specified).

border-right-style

Specifies the style of the border on the right edge of the element. The value must be something other than none for the border to appear.

Values:

none | dotted | dashed | solid | double | groove | ridge | inset | outset

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

border-right-width

Specifies the width of the border on the right edge of an element.

Values:

thin | medium | thick | <length> | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

medium

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute length; 0 if the style of the border is none or hidden .

border-spacing

Specifies the amount of space to be held between table cell borders when the separate border model is selected.

Values:

<length> <length>? | inherit

Initial value:

0

Applies to:

Table and inline-table elements.

Inherited:

Yes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Computed value:

As specified.

border-style

Shorthand property for specifying the border style for each side of an element. The value must be something other than none for the border to
appear.

Values:

[none|dotted|dashed|solid|double|groove|ridge|inset|outset]{1,4}|inherit

Initial value:

See individual properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties.

border-top

Shorthand property for specifying style, width, and color for the top edge of the element.

Values:

[<border-style> || <border-width> || <border-color>] | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

See individual properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties.

border-top-color

Specifies a color for the border on the top edge of an element.

Values:

<color> | transparent | inherit

Initial value:

The value of the color property for the element.

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified (the foreground color is used if no border color is specified).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

border-top-style

Specifies the style of the border on the top edge of the element. The value must be something other than none for the border to appear.

Values:

none | dotted | dashed | solid | double | groove | ridge | inset | outset

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

border-top-width

Specifies the width of the border on the top edge of an element.

Values:

thin | medium | thick | <length> | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

medium

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute length; 0 if the border style is none or hidden .

border-width

Shorthand property for specifying the width of the border for each side of the element.

Values:

[thin | medium | thick | <length>]{1,4} | inherit

Initial value:

See individual properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See individual properties.

bottom

Specifies the offset between the bottom outer edge of a positioned element and the bottom edge of its containing block.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

Positioned elements (where position value is relative , absolute , or fixed).

Inherited:

No.

Percentages:

Refer to height of containing block.

Computed value:

For static elements, auto . For length values, the absolute length. For percentage values, the specified value. For relatively positioned
elements, if both bottom and top are auto , their computed values are both 0 ; if one of them is auto , it becomes the negative of the other; if
neither is auto , bottom will become the negative of the top . Otherwise, auto .

caption-side

Specifies whether the table caption should appear above or below the table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values:

top | bottom | inherit

Initial value:

top

Applies to:

Table-caption elements (caption in HTML).

Inherited:

Yes.

Computed value:

As specified.

clear

Specifies whether to allow floating elements on an element's sides (more accurately, the sides along which floating items are not accepted).
none means floated elements are allowed (but not required) on both sides.

Values:

left | right | both | none | inherit

Initial value:

none

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

Block-level elements.

Inherited:

No.

Computed value:

As specified.

clip

Specifies the dimensions of a clipping rectangle through which the contents of an absolutely positioned element are visible.

Values:

rect(top, right, bottom, left) | auto | inherit

Initial value:

auto

Applies to:

Absolutely positioned elements.

Inherited:

No.

Computed value:

Four lengths representing the edges of the clipping area.

color

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Used to describe the foreground (text color for HTML elements) color of an element.

Values:

<color> | inherit

Initial value:

Depends on user agent.

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

content

Defines the generated content to be placed before or after an element.

Values:

normal | [<string> | <uri> | <counter> | attr(<identifier>)
| open-quote | close-quote | no-open-quote | no-close-quote]+ | inherit

Initial value:

normal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

:before and :after pseudoelements.

Inherited:

No.

Computed value:

As specified.

counter-increment

Specifies the increment amount for a counter (positive and negative values are accepted).

Values:

[<identifier> <integer>?]+ | none | inherit

Initial value:

None.

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

counter-reset

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Resets a counter to any value (positive or negative).

Values:

[<identifier> <integer>?]+ | none | inherit

Initial value:

Depends on user agent.

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

cursor

Defines a cursor shape to be used when the mouse pointer is over the element.

Values:

[[<uri>,]* [auto | default | pointer | crosshair | move |
e-resize | ne-resize | nw-resize | n-resize | se-resize |
sw-resize | s-resize | w-resize | text | wait | help | progress]] | inherit

Initial value:

auto

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

All elements.

Inherited:

Yes.

Computed value:

For <uri> values, an absolute URI; otherwise, as specified.

direction

Specifies the writing direction for text in the document (right to left or left to right).

Values:

ltr | rtl | inherit

Initial value:

ltr

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

display

Defines the type of box the element generates during layout.

Values:

inline | block | list-item | run-in | inline-block | table | inline-table | table-row-group
 | table-header-group |
table-footer-group | table-row | table-column-group |
table-column | table-cell | table-caption | none | inherit

Initial value:

inline

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified (varies for floated, positioned, and root elements).

empty-cells

Specifies whether the background and borders of an empty table cell should be rendered when the separated border model is selected.

Values:

show | hide | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

show

Applies to:

Table cell elements.

Inherited:

Yes.

Computed value:

As specified.

float

Defines the direction in which an element is floated (allowing the following document flow to wrap around it).

Values:

left | right | none | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No.

Computed value:

As specified.

font

Shorthand property for specifying (at minimum) the font size and family, as well as style, variant, weight, and line height. Additional keywords
pull in fonts from various operating system elements.

Values:

[[<'font-style'> || <'font-variant'> || <'font-weight'>]? <'font-size'>
[/<'line-height'>]? <'font-family'>] | caption | icon | menu | message-box |
small-caption | status-bar | inherit

Initial value:

Uses individual property default values.

Applies to:

All elements.

Inherited:

Yes.

Computed value:

See individual properties.

font-family

Specifies any font (or list of fonts, separated by commas) for a text element. Bear in mind, however, that the font needs to be present on the
user's machine to display.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values:

[[<family-name> | <generic-family>] [,<family-name> |
<generic-family>]*] | inherit

Initial value:

Depends on user agent (the default font in the browsing device).

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

font-size

Specifies the size of the font for a text element.

Values:

xx-small | x-small | small | medium | large | x-large | xx-large | smaller | larger | <length> | <percentage> | inherit

Initial value:

medium

Applies to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All elements.

Inherited:

Yes.

Percentages:

Refer to parent element's font size.

Computed value:

Absolute length.

font-style

Specifies the "posture" of the font for a text element (normal, italic, or oblique).

Values:

normal | italic | oblique | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

font-variant

Specifies the use of a small-caps font for the text element. If no true small-caps font is available, it is approximated using reduced uppercase
letters from the current font.

Values:

normal | small-caps | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

font-weight

Specifies the weight or "boldness" of the font for a text element.

Values:

normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
 inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

Numeric value or numeric value plus one of the relative values (bolder or lighter) if specified.

height

Specifies the height of an element's content area. Padding, borders, and margins are added to this value. Negative values are not permitted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

Block-level elements and replaced elements (such as images); it is ignored for inline text (nonreplaced) elements.

Inherited:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No.

Percentages:

Refer to the height of the generated box's containing block. If the height of the containing block is not specified explicitly, and this element is
not absolutely positioned, the value computes to auto . A percentage height on the root element is relative to the initial containing block.

Computed value:

As specified (unless the property doesn't apply to the element, then auto).

left

Specifies the offset between the left outer edge of a positioned element and the left edge of its containing block.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

Positioned elements (where position value is relative , absolute , or fixed).

Inherited:

No.

Percentages:

Refer to width of containing block.

Computed value:

For static elements, auto . For length values, the absolute length. For percentage values, the specified value. For relatively positioned

http://lib.ommolketab.ir
http://lib.ommolketab.ir

elements, the computed value of left always equals right . Otherwise, auto .

letter-spacing

Specifies an amount of space to be added between the letters of a text element.

Values:

normal | <length> | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

Absolute length as specified; otherwise, normal .

line-height

Specifies the minimum amount of space between baselines of adjacent text lines. Negative values are not permitted.

Values:

normal | <number> | <length> | <percentage> | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

normal

Applies to:

All elements.

Inherited:

Yes.

Percentages:

Relative to the font size of the element itself.

Computed value:

For length and percentage values, the absolute values; otherwise, as specified.

list-style

Shorthand property for specifying the type, image, and position of markers for a list.

Values:

[<list-style-type> || <list-style-image> || <list-style-position>] | inherit

Initial value:

See individual properties.

Applies to:

Elements whose display value is list-item (in HTML, the ul , ol , and li elements).

Inherited:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Yes.

Computed value:

See individual properties.

list-style-image

Specifies an image to be used as a marker for a list.

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

Elements whose display value is list-item (in HTML, the ul , ol , and li elements).

Inherited:

Yes.

Computed value:

The absolute URI (when provided) or none .

list-style-position

Specifies the position of the marker relative to the content area of the list. By default, the marker is placed some distance outside the border
edge. Setting it to inside makes the marker behave as an inline element at the beginning of the list item.

Values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inside | outside | inherit

Initial value:

outside

Applies to:

Elements whose display value is list-item (in HTML, the li element by default).

Inherited:

Yes.

Computed value:

As specified.

list-style-type

Defines the type of marker or numbering system to be used for a list. A value of none suppresses the display of the marker, but does not
prevent the item from being counted.

Values:

disc | circle | square | decimal | decimal-leading-zero |
lower-roman | upper-roman | lower-greek | lower-latin |
upper-latin | lower-alpha | upper-alpha | none | inherit

Initial value:

disc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

Elements whose display value is list-item (in HTML, the li element by default).

Inherited:

Yes.

Computed value:

As specified.

margin

Shorthand property for specifying the amount of margin to appear on each side of an element. Negative values are permitted.

Values:

[<length> | <percentage> | auto]{1,4} | inherit

Initial value:

See individual properties.

Applies to:

All elements (except elements with table display types other than table and inline-table).

Inherited:

No.

Percentages:

Refer to width of containing block.

Computed value:

See individual properties.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

margin-bottom

Specifies the width of the bottom margin for an element. Negative values are permitted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

All elements (except elements with table display types other than table and inline-table).

Inherited:

No.

Percentages:

Refer to width of the containing block.

Computed value:

Percentage values or absolute length as specified.

margin-left

Specifies the width of the left margin for an element. Negative values are permitted.

Values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

All elements (except elements with table display types other than table and inline-table).

Inherited:

No.

Percentages:

Refer to width of the containing block.

Computed value:

Percentage values or absolute length as specified.

margin-right

Specifies the width of the right margin for an element. Negative values are permitted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

All elements (except elements with table display types other than table and inline-table).

Inherited:

No.

Percentages:

Refer to width of the containing block.

Computed value:

Percentage values or absolute length as specified.

margin-top

Specifies the width of the top margin for an element. Negative values are permitted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

All elements (except elements with table display types other than table and inline-table).

Inherited:

No.

Percentages:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Refer to width of the containing block.

Computed value:

Percentage values or absolute length as specified.

max-height

Specifies the maximum height of an element. Negative values are not permitted.

Values:

<length> | <percentage> | none | inherit

Initial value:

none

Applies to:

All elements except nonreplaced inline elements (i.e., inline text elements), table columns, and column groups.

Inherited:

No.

Percentages:

Refer to the height of the containing block; if the height of the containing block is not specified and the element is not absolutely positioned,
the percentage value is treated as 0 (zero).

Computed value:

Percentage values or absolute length as specified; otherwise, none .

max-width

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the maximum width of an element. Negative values are not permitted.

Values:

<length> | <percentage> | none | inherit

Initial value:

none

Applies to:

All elements except nonreplaced elements (i.e., inline text elements), table rows, and row groups.

Inherited:

No.

Percentages:

Refer to width of the containing block.

Computed value:

Percentage values or absolute length as specified.

min-height

Specifies the minimum height of an element. Negative values are not permitted.

Values:

<length> | <percentage> | none | inherit

Initial value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

none

Applies to:

All elements except nonreplaced elements (i.e., inline text elements), table columns, and column groups.

Inherited:

No.

Percentages:

Refer to the height of the containing block; if the height of the containing block is not specified and the element is not absolutely positioned,
the percentage value is treated as 0 (zero).

Computed value:

Percentage values or absolute length as specified.

min-width

Specifies the minimum width of an element. Negative values are not permitted.

Values:

<length> | <percentage> | none | inherit

Initial value:

none

Applies to:

All elements except nonreplaced elements (i.e., inline text elements) and table elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inherited:

No.

Percentages:

Refer to width of the containing block.

Computed value:

Percentage values or absolute length as specified; otherwise, none .

outline

Shorthand property for specifying the outline for an element.

Values:

[<outline-color> || <outline-style> || <outline-width>] | inherit

Initial value:

See individual properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties.

outline-color

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sets the color for the visible portions of the outline of an element.

Values:

<color> | invert | inherit

Initial value:

invert , or browser-specific for those that do not support invert .

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

outline-style

Sets the style for the overall outline of an element. The style must be set to something other than none for the outline to appear.

Values:

none | dotted | dashed | solid | double | groove | groove | ridge | inset | outset |
 inherit

Initial value:

none

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

outline-width

Sets the width for the overall outline of an element. If the style is none , the width is effectively set to 0 (zero).

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute length; 0 if the style is none or hidden .

overflow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies what happens to content that doesn't fit in the content area of an element.

Values:

visible | hidden | scroll | auto | inherit

Initial value:

visible

Applies to:

Block-level and replaced elements.

Inherited:

No.

Computed value:

As specified.

padding

Shorthand property for specifying the amount of padding to be applied to each side of an element. Negative values are not permitted.

Values:

[<length> | <percentage>]{1,4} | inherit

Initial value:

See individual properties.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

All elements.

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

See individual properties.

padding-bottom

Specifies the amount of padding to be applied to the bottom of an element. Negative values are not permitted.

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

All elements, except elements with table display types other than table , inline-table , and table-cell .

Inherited:

No.

Percentages:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Refer to the width of the containing block.

Computed value:

Percentage values or absolute length, as specified.

padding-left

Specifies the amount of padding to be applied to the left edge of an element. Negative values are not permitted.

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

All elements, except elements with table display types other than table , inline-table , and table-cell .

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

Percentage values or absolute length, as specified.

padding-right

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the amount of padding to be applied to the right edge of an element. Negative values are not permitted.

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

All elements, except elements with table display types other than table , inline-table , and table-cell .

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

Percentage values or absolute length, as specified.

padding-top

Specifies the amount of padding to be applied to the top of an element. Negative values are not permitted.

Values:

<length> | <percentage> | inherit

Initial value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0

Applies to:

All elements, except elements with table display types other than table , inline-table , and table-cell .

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

Percentage values or absolute length, as specified.

position

Specifies the method for positioning an element.

Values:

static | relative | absolute | fixed | inherit

Initial value:

static

Applies to:

All elements.

Inherited:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

No.

Computed value:

As specified.

quotes

Specifies the quotation marks for lists and nested lists. Quotation marks are inserted with the content property.

Values:

[<string> <string>]+ | none | inherit

Initial value:

Depends on user agent.

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

right

Specifies the offset between the right outer edge of a positioned element and the right edge of its containing block.

Values:

<length> | <percentage> | auto | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

auto

Applies to:

Positioned elements (where position value is relative , absolute , or fixed).

Inherited:

No.

Percentages:

Refer to width of containing block.

Computed value:

For static elements, auto . For length values, the absolute length. For percentage values, the specified value. For relatively positioned
elements, the computed value of left always equals right .

table-layout

Selects the table layout algorithm used for laying out the table cells, rows, and columns.

Values:

auto | fixed | inherit

Initial value:

auto

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

table and inline-table elements.

Inherited:

No.

Computed value:

As specified.

text-align

Specifies the horizontal alignment of text in block-level elements and table cells.

Values:

left | right | center | justify | inherit

Initial values:

left for languages that read left to right

right for languages that read right to left

Applies to:

Block-level elements and table cells.

Inherited:

Yes.

Computed value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As specified.

text-decoration

Specifies text effects that draw lines under, over, or through text.

Values:

none | [underline || overline || line-through || blink] | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

No, but a text decoration is "drawn through" any child elements.

Computed value:

As specified.

text-indent

Specifies an amount of indent for the first line of text in a block-level element.

Values:

<length> | <percentage> | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

0

Applies to:

Block-level elements and table cells.

Inherited:

Yes.

Percentages:

Refer to the width of the containing block.

Computed value:

Percentage values or absolute length, as specified.

text-transform

Specifies the capitalization scheme for a text element.

Values:

none | capitalize | lowercase | uppercase | inherit

Initial value:

none

Applies to:

All elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inherited:

Yes.

Computed value:

As specified.

top

Specifies the offset between the top outer edge of a positioned element and the top edge of its containing block.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

Positioned elements (where position value is relative , absolute , or fixed).

Inherited:

No.

Percentages:

Refer to height of containing block.

Computed value:

For static elements, auto . For length values, the absolute length. For percentage values, the specified value. For relatively positioned
elements, if both top and bottom are auto , their computed values are both 0; if one is auto , it becomes the negative of the other; if neither is
auto , bottom will become the negative value of top .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unicode-bidi

Allows the author to generate levels of embedding within the Unicode embedding algorithm.

Values:

normal | embed | bidi-override | inherit

Initial value:

normal

Applies to:

All elements.

Inherited:

No.

Computed value:

As specified.

vertical-align

Specifies the vertical alignment of an inline element's baseline relative to the baseline or line box of the line in which it resides. When used with
table cells, only the values baseline , top , middle , and bottom apply.

Values:

baseline | sub | super | top | text-top | middle |
text-bottom | bottom | <percentage> | <length> | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

baseline

Applies to:

Inline elements and table cell elements.

Inherited:

No.

Percentages:

Refer to the line-height of the element itself.

Computed value:

For percentage and length values, the absolute length; otherwise, as specified.

visibility

Specifies whether an element is rendered. Invisible boxes still affect layout.

Values:

visible | hidden | collapse | inherit

Initial value:

visible

Applies to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All elements.

Inherited:

Yes.

Computed value:

As specified.

white-space

Specifies how whitespace in the element source is handled in layout.

Values:

normal | pre | nowrap | pre-wrap | pre-line | inherit

Initial value:

normal

Applies to:

All elements (as of CSS 2.1); block-level elements (CSS 1 and CSS 2).

Inherited:

Yes.

Computed value:

As specified.

width

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Defines the width of an element's content area. Padding, borders, and margins are added to this value. Negative values are not permitted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

Block-level elements and replaced elements (such as images).

Inherited:

No.

Percentages:

Refer to the width of the containing block.

Computed value:

The percentage value or auto as specified or the absolute length; auto if the property does not apply.

word-spacing

Specifies an amount of space to be inserted between words in a text element. Negative values are permitted.

Values:

normal | <length> | inherit

Initial value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

For normal, the absolute length 0; otherwise, the absolute length.

z-index

Specifies the stacking level for a positioned element.

Values:

<integer> | auto | inherit

Initial value:

auto

Applies to:

Positioned elements.

Inherited:

No.

Computed value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.2. Paged Media

orphans

Specifies the minimum number of lines of a paragraph that must be left at the bottom of a page.

Values:

<integer> | inherit

Initial value:

2

Applies to:

Block-level elements.

Inherited:

Yes.

Computed value:

As specified.

page-break-after

Specifies whether page breaks should be placed after an element.

Values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

auto | always | avoid | left | right | inherit

Initial value:

auto

Applies to:

Block-level elements.

Inherited:

No.

Computed value:

As specified.

page-break-before

Specifies whether page breaks should be placed before an element.

Values:

auto | always | avoid | left | right | inherit

Initial value:

auto

Applies to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Block-level elements.

Inherited:

No.

Computed value:

As specified.

page-break-inside

Specifies whether page breaks should be placed inside an element.

Values:

auto | always | avoid | left | right | inherit

Initial value:

auto

Applies to:

Block-level elements.

Inherited:

No.

Computed value:

As specified.

widows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the minimum number of lines of a paragraph that must be left at the top of a page.

Values:

<integer> | inherit

Initial value:

2

Applies to:

Block-level elements.

Inherited:

Yes.

Computed value:

As specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.3. Aural Styles

Note that aural styles are only "informative" in CSS 2.1.

azimuth

Specifies the horizontal angle from which a sound should seem to emanate.

Values:

<angle> | [[left-side | far-left | left | center-left | center | center-right | right |
far-right | right-side] || behind] | leftwards | rightwards | inherit

Initial value:

center

Applies to:

All elements.

Inherited:

Yes.

Computed value:

Normalized angle.

cue

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shorthand property for specifying cue-before and cue-after .

Values:

[<'cue-before'> || <'cue-after'>] | inherit

Initial value:

See individual properties.

Applies to:

All elements.

Inherited:

No.

Computed value:

See individual properties.

cue-after

Specifies an auditory icon to play after the element content.

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All elements.

Inherited:

No.

Computed value:

Absolute URI or none .

cue-before

Specifies an auditory icon to play before the element content.

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute URI or none .

elevation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the vertical angle from which a sound should seem to emanate.

Values:

<angle> | below | level | above | higher | lower | inherit

Initial value:

level

Applies to:

All elements.

Inherited:

Yes.

Computed value:

Normalized angle.

pause

Specifies a pause to be observed before or after an element (or both).

Values:

[[<time> | <percentage>]{1,2}] | inherit

Initial value:

See individual properties.

Applies to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All elements.

Inherited:

Yes.

Percentages:

Refers to the inverse of the value of the speech-rate property.

Computed value:

Time.

pause-after

Specifies a pause to be observed after an element.

Values:

<time> | <percentage> | inherit

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Percentages:

Refers to the inverse of the value of the speech-rate property.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Computed value:

Time.

pause-before

Specifies a pause to be observed before an element.

Values:

<time> | <percentage> | inherit

Initial value:

0

Applies to:

All elements.

Inherited:

No.

Percentages:

Refers to the inverse of the value of the speech-rate property.

Computed value:

Time.

pitch

Specifies the average pitch (a frequency) of the speaking voice.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values:

<frequency> | x-low | low | medium | high | x-high | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

Yes.

Computed value:

Frequency.

pitch-range

Specifies variation in average pitch, i.e., how much the fundamental frequency may deviate from the
average pitch.

Values:

<number> | inherit

Initial value:

50

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

play-during

Specifies a sound to be played as a background while an element's content is spoken.

Values:

<uri> [mix || repeat]? | auto | none | inherit

Initial value:

auto

Applies to:

All elements.

Inherited:

No.

Computed value:

Absolute URI; rest as specified.

richness

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifies the richness, or brightness, of the speaking voice. A rich voice will "carry" in a large room, a
smooth voice will not.

Values:

<number> | inherit

Initial value:

50

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

speak

Specifies how and whether an element's contents will be audibly rendered.

Values:

normal | none | spell-out | inherit

Initial value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

normal

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

speak-header

Specifies whether the content of table headers is spoken before every cell or only when the header
changes.

Values:

once | always | inherit

Initial value:

once

Applies to:

Elements containing table header information.

Inherited:

Yes.

Computed value:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As specified.

speak-numeral

Specifies how numbers are spoken.

Values:

digits | continuous | inherit

Initial value:

continuous

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

speak-punctuation

Specifies how punctuation is spoken.

Values:

code | none | inherit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Initial value:

none

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

speech-rate

Specifies the average rate at which words are spoken.

Values:

<number> | x-slow | slow | medium | fast | x-fast | faster | slower | inherit

Initial value:

medium

Applies to:

All elements.

Inherited:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Yes.

Computed value:

An absolute number.

stress

Specifies the height of "local peaks" in the intonation contour of a voice.

Values:

<number> | inherit

Initial value:

50

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

voice-family

Specifies a list of voice families that can be used in the audio rendering of an element's content
(comparable to font-family). The generic voices are male , female , and child .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values:

[[<specific-voice> | <generic-voice>],]* [<specific-voice> | <generic-voice>] | inherit

Initial value:

Depends on user agent.

Applies to:

All elements.

Inherited:

Yes.

Computed value:

As specified.

volume

Specifies the median volume level.

Values:

<number> | <percentage> | silent | x-soft | soft | medium | loud | x-loud | inherit

Initial value:

medium

Applies to:

All elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inherited:

Yes.

Computed value:

As specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix C. Character Entities
This appendix lists the Numeric Character References (both decimal and hexadecimal) and predefined
character entities as defined in the HTML 4.01 and XHTML Recommendations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.1. ASCII Character Set

HTML and XHTML documents use the standard 7-bit ASCII character set in their source. The first 31
characters in ASCII (not listed) are such device controls as backspace () and carriage return
() and are not appropriate for use in HTML documents.

HTML 4.01 defines only four entities in this character range: less than (<, <), greater than (<,
>), ampersand (&, &), and quotation mark (", "), that are necessary for escaping
characters that may be interpreted as markup. XHTML also includes the ' entity that is included
in every XML language. In XHTML documents, the ampersand symbol (&) must always be escaped in
attribute values. For better compatibility with XML parsers, authors should use numerical character
references instead of named character references for all other character entities.

Decimal Hex Entity Symbol Description

 Space

! ! ! Exclamation point

" " " " Quotation mark

Octothorpe

$ $ $ Dollar symbol

% % % Percent symbol

& & & & Ampersand

' ' XML/XHTML only: ' ' Apostrophe (single quote)

(((Left parenthesis

))) Right parenthesis

* * * Asterisk

+ + + Plus sign

, , , Comma

- - - Hyphen

. . . Period

/ / / Slash

0- 9 0- 9 0-9 Digits 0-9

: : : Colon

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Decimal Hex Entity Symbol Description

; ; ; Semicolon

< < < < Less than

= = = Equals sign

> > > > Greater than

? ? ? Question mark

@ @ @ Commercial at sign

A- Z A- Z A-Z Letters A-Z

[[[Left square bracket

\ \ \ Backslash

]]] Right square bracket

^ ^ ^ Caret

_ _ _ Underscore

` ` ` Grave accent (no letter)

a- z a- z a-z Letters a-z

{ { { Left curly brace

| | | Vertical bar

} } } Right curly brace

~ ~ ~ Tilde

; ; ; Semicolon

< < < < Less than

= = = Equals sign

> > > > Greater than

? ? ? Question mark

@ @ @ Commercial at sign

A- Z A- Z A-Z Letters A-Z

[[[Left square bracket

\ \ \ Backslash

]]] Right square bracket

^ ^ ^ Caret

_ _ _ Underscore

` ` ` Grave accent (no letter)

a- z a- z a-z Letters a-z

{ { { Left curly brace

| | | Vertical bar

} } } Right curly brace

~ ~ ~ Tilde

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.2. Nonstandard Entities (‚-Ÿ)

The character references numbered 130 through 159 are not defined in HTML and therefore are
invalid characters that should be avoided.

Some nonstandard numerical entities in this range are supported by browsers (such as &151; for an
em dash), however, they all have standard equivalents listed in the "General Punctuation." section of
this appendix. If you need an em dash, use &8212; or — instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.3. Latin-1 (ISO-8859-1)

Decimal Hex Entity Symbol Description

 Nonbreaking space

¡ ¡ ¡ ¡ Inverted exclamation mark

¢ ¢ ¢ ¢ Cent sign

£ £ £ £ Pound symbol

¤ ¤ ¤ ¤ General currency symbol

¥ ¥ ¥ ¥ Yen symbol

¦ ¦ ¦ Broken vertical bar

§ § § § Section sign

¨ ¨ ¨ ¨ Umlaut

© © © © Copyright

ª ª ª ª Feminine ordinal

« « « « Left angle quote

¬ ¬ ¬ ¬ Not sign

­ ­ ­ - Soft hyphen

® ® ® ® Registered trademark

¯ ¯ ¯ ¯ Macron accent

° ° ° ° Degree sign

± ± ± ± Plus or minus

² ² ² 2 Superscript 2

³ ³ ³ 3 Superscript 3

´ ´ ´ ´ Acute accent (no letter)

µ µ µ Micron (Greek mu)

¶ ¶ ¶ ¶ Paragraph sign

· · · · Middle dot

¸ ¸ ¸ ¸ Cedilla

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Decimal Hex Entity Symbol Description

¹ ¹ ¹ 1 Superscript 1

º º º º Masculine ordinal

» » » » Right angle quote

¼ ¼ ¼ ¼ Fraction one-fourth

½ ½ ½ ½ Fraction one-half

¾ ¾ ¾ ¾ Fraction three-fourths

¿ ¿ ¿ ¿ Inverted question mark

À À À À Capital A, grave accent

Á Á Á Á Capital A, acute accent

Â Â Â Â Capital A, circumflex accent

Ã Ã Ã Ã Capital A, tilde accent

Ä Ä Ä Ä Capital A, umlaut

Å Å Å Å Capital A, ring

Æ Æ Æ Æ Capital AE ligature

Ç Ç Ç Ç Capital C, cedilla

È È È È Capital E, grave accent

É É É É Capital E, acute accent

Ê Ê Ê Ê Capital E, circumflex accent

Ë Ë Ë Ë Capital E, umlaut

Ì Ì Ì Ì Capital I, grave accent

Í Í Í í Capital I, acute accent

Î Î Î Î Capital I, circumflex accent

Ï Ï Ï Ï Capital I, umlaut

Ð Ð Ð Capital eth, Icelandic

Ñ Ñ Ñ Ñ Capital N, tilde

Ò Ò Ò Ò Capital O, grave accent

Ó Ó Ó Ó Capital O, acute accent

Ô Ô Ô Ô Capital O, circumflex accent

Õ Õ Õ Õ Capital O, tilde accent

Ö Ö Ö Ö Capital O, umlaut

× × × x Multiplication sign

¹ ¹ ¹ 1 Superscript 1

º º º º Masculine ordinal

» » » » Right angle quote

¼ ¼ ¼ ¼ Fraction one-fourth

½ ½ ½ ½ Fraction one-half

¾ ¾ ¾ ¾ Fraction three-fourths

¿ ¿ ¿ ¿ Inverted question mark

À À À À Capital A, grave accent

Á Á Á Á Capital A, acute accent

Â Â Â Â Capital A, circumflex accent

Ã Ã Ã Ã Capital A, tilde accent

Ä Ä Ä Ä Capital A, umlaut

Å Å Å Å Capital A, ring

Æ Æ Æ Æ Capital AE ligature

Ç Ç Ç Ç Capital C, cedilla

È È È È Capital E, grave accent

É É É É Capital E, acute accent

Ê Ê Ê Ê Capital E, circumflex accent

Ë Ë Ë Ë Capital E, umlaut

Ì Ì Ì Ì Capital I, grave accent

Í Í Í í Capital I, acute accent

Î Î Î Î Capital I, circumflex accent

Ï Ï Ï Ï Capital I, umlaut

Ð Ð Ð Capital eth, Icelandic

Ñ Ñ Ñ Ñ Capital N, tilde

Ò Ò Ò Ò Capital O, grave accent

Ó Ó Ó Ó Capital O, acute accent

Ô Ô Ô Ô Capital O, circumflex accent

Õ Õ Õ Õ Capital O, tilde accent

Ö Ö Ö Ö Capital O, umlaut

× × × x Multiplication sign

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Decimal Hex Entity Symbol Description

Ø Ø Ø Ø Capital O, slash

Ù Ù Ù Ù Capital U, grave accent

Ú Ú Ú Ú Capital U, acute accent

Û Û Û û Capital U, circumflex accent

Ü Ü Ü Ü Capital U, umlaut

Ý Ý Ý Ý Capital Y, acute accent

Þ Þ Þ Capital Thorn, Icelandic

ß ß ß ß Small sz ligature, German

à à à à Small a, grave accent

á á á á Small a, acute accent

â â â â Small a, circumflex accent

ã ã ã ã Small a, tilde

ä ä ä ä Small a, umlaut

å å å å Small a, ring

æ æ æ æ Small ae ligature

ç ç ç ç Small c, cedilla

è è è è Small e, grave accent

é é é é Small e, acute accent

ê ê ê ê Small e, circumflex accent

ë ë ë ë Small e, umlaut

ì ì ì ì Small i, grave accent

í í í í Small i, acute accent

î î î î Small i, circumflex accent

ï ï ï ï Small i, umlaut

ð ð ð Small eth, Icelandic

ñ ñ ñ ñ Small n, tilde

ò ò ò ò Small o, grave accent

ó ó ó ó Small o, acute accent

ô ô ô ô Small o, circumflex accent

õ õ õ õ Small o, tilde

ö ö ö ö Small o, umlaut

Ø Ø Ø Ø Capital O, slash

Ù Ù Ù Ù Capital U, grave accent

Ú Ú Ú Ú Capital U, acute accent

Û Û Û û Capital U, circumflex accent

Ü Ü Ü Ü Capital U, umlaut

Ý Ý Ý Ý Capital Y, acute accent

Þ Þ Þ Capital Thorn, Icelandic

ß ß ß ß Small sz ligature, German

à à à à Small a, grave accent

á á á á Small a, acute accent

â â â â Small a, circumflex accent

ã ã ã ã Small a, tilde

ä ä ä ä Small a, umlaut

å å å å Small a, ring

æ æ æ æ Small ae ligature

ç ç ç ç Small c, cedilla

è è è è Small e, grave accent

é é é é Small e, acute accent

ê ê ê ê Small e, circumflex accent

ë ë ë ë Small e, umlaut

ì ì ì ì Small i, grave accent

í í í í Small i, acute accent

î î î î Small i, circumflex accent

ï ï ï ï Small i, umlaut

ð ð ð Small eth, Icelandic

ñ ñ ñ ñ Small n, tilde

ò ò ò ò Small o, grave accent

ó ó ó ó Small o, acute accent

ô ô ô ô Small o, circumflex accent

õ õ õ õ Small o, tilde

ö ö ö ö Small o, umlaut

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Decimal Hex Entity Symbol Description

÷ ÷ ÷ ÷ Division sign

ø ø ø Small o, slash

ù ù ù ù Small u, grave accent

ú ú ú ú Small u, acute accent

û û û Û Small u, circumflex accent

ü ü ü ü Small u, umlaut

ý ý ý Small y, acute accent

þ þ þ Small thorn, Icelandic

ÿ ÿ ÿ ÿ Small y, umlaut

÷ ÷ ÷ ÷ Division sign

ø ø ø Small o, slash

ù ù ù ù Small u, grave accent

ú ú ú ú Small u, acute accent

û û û Û Small u, circumflex accent

ü ü ü ü Small u, umlaut

ý ý ý Small y, acute accent

þ þ þ Small thorn, Icelandic

ÿ ÿ ÿ ÿ Small y, umlaut

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.4. Latin Extended-A

Decimal Hex Entity Symbol Description

Œ Œ Œ ? Capital ligature OE

œ œ œ ? Small ligature oe

Š Š Š Capital S, caron

š š š Small s, caron

Ÿ Ÿ Ÿ ÿ Capital Y, umlaut

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.5. Latin Extended-B

Decimal Hex Entity Symbol Description

ƒ ƒ ƒ f Small f with hook

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.6. Spacing Modifier Letters

Decimal Hex Entity Symbol Description

ˆ ˆ ˆ ^ Circumflex accent

˜ ˜ ˜ ~ Tilde

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.7. Greek

Decimal Hex Entity Symbol Description

Α Α Α A Greek capital alpha

Β Β Β B Greek capital beta

Γ Γ Γ Greek capital gamma

Δ Δ Δ Greek capital delta

Ε Ε Ε E Greek capital epsilon

Ζ Ζ Ζ Z Greek capital zeta

Η Η Η H Greek capital eta

Θ Θ Θ Greek capital theta

Ι Ι Ι I Greek capital iota

Κ Κ Κ K Greek capital kappa

Λ Λ Λ Greek capital lambda

Μ Μ Μ M Greek capital mu

Ν Ν Ν N Greek capital nu

Ξ Ξ Ξ Xi Greek capital xi

Ο Ο Ο O Greek capital omicron

Π Π Π pi Greek capital pi

Ρ Ρ Ρ Greek capital rho

Σ Σ Σ Greek captial sigma

Τ Τ Τ T Greek capital tau

Υ Υ Υ Greek capital upsilon

Φ Φ Φ Greek capital phi

Χ Χ Χ Greek capital chi

Ψ Ψ Ψ Greek capital psi

Ω Ω Ω Greek capital omega

α α α Greek small alpha

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Decimal Hex Entity Symbol Description

β β β Greek small beta

γ γ γ Greek small gamma

δ δ δ Greek small delta

ε ε ε Greek small epsilon

ζ ζ ζ Greek small zeta

η η η Greek small eta

θ θ θ Greek small theta

ι ι ι Greek small iota

κ κ κ Greek small kappa

λ λ λ Greek small lambda

μ μ μ Greek small mu

ν ν ν Greek small nu

ξ ξ ξ Greek small xi

ο ο ο Greek small omicron

π π π pi Greek small pi

ρ ρ ρ Greek small rho

ς ς ς Greek small letter final sigma

σ σ σ Greek small sigma

τ τ τ Greek small tau

υ υ υ Greek small upsilon

φ φ φ Greek small phi

χ χ χ Greek small chi

ψ ψ ψ Greek small psi

ω ω ω Greek small omega

ϑ ϑ ϑ Greek small theta symbol

ϒ ϒ ϒ Greek upsilon with hook

ϖ ϖ ϖ Greek pi symbol

β β β Greek small beta

γ γ γ Greek small gamma

δ δ δ Greek small delta

ε ε ε Greek small epsilon

ζ ζ ζ Greek small zeta

η η η Greek small eta

θ θ θ Greek small theta

ι ι ι Greek small iota

κ κ κ Greek small kappa

λ λ λ Greek small lambda

μ μ μ Greek small mu

ν ν ν Greek small nu

ξ ξ ξ Greek small xi

ο ο ο Greek small omicron

π π π pi Greek small pi

ρ ρ ρ Greek small rho

ς ς ς Greek small letter final sigma

σ σ σ Greek small sigma

τ τ τ Greek small tau

υ υ υ Greek small upsilon

φ φ φ Greek small phi

χ χ χ Greek small chi

ψ ψ ψ Greek small psi

ω ω ω Greek small omega

ϑ ϑ ϑ Greek small theta symbol

ϒ ϒ ϒ Greek upsilon with hook

ϖ ϖ ϖ Greek pi symbol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.8. General Punctuation

Decimal Hex Entity Symbol Description

      En space

      Em space

      Thin space

‌ ‌ ‌ Non-printing Zero-width non-joiner

‍ ‍ ‍ Non-printing Zero-width joiner

‎ ‎ ‎ Non-printing Left-to-right mark

‏ ‏ ‏ Non-printing Right-to-left mark

– – – - En-dash

— — — -- Em-dash

‘ ‘ ‘ ` Left single quotation mark

’ ’ ’ ` Right single quotation mark

‚ ‚ ‚ , Single low-9 quotation mark

“ “ “ " Left double quotation mark

” ” ” " Right double quotation mark

„ „ „ , Double low-9 quotation mark

† † † | Dagger

‡ ‡ ‡ ? Double dagger

• • • · Bullet

… … &hellep; ... Ellipses

‰ ‰ ‰ ? Per mille symbol (per thousand)

′ ′ ′ ' Prime, minutes, feet

″ ″ ″ " Double prime, seconds, inches

‹ ‹ ‹ ' Single left angle quotation (nonstandard)

› › › > Single right angle quotation (nonstandard)

‾ ‾ ‾ ¯ Overline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Decimal Hex Entity Symbol Description

⁄ ⁄ ⁄ / Fraction slash

€ € € Euro symbol

⁄ ⁄ ⁄ / Fraction slash

€ € € Euro symbol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.9. Letter-like Symbols

Decimal Hex Entity Symbol Description

ℑ ℑ ℑ Blackletter capital I, imaginary part

℘ ℘ ℘ Script capital P, power set

ℜ ℜ ℜ Blackletter capital R, real part

™ ™ ™ ? Trademark sign

ℵ ℵ ℵ Alef symbol, or first transfinite cardinal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.10. Arrows

Decimal Hex Entity Symbol Description

← ← ← Left arrow

↑ ↑ ↑ Up arrow

→ → → Right arrow

↓ ↓ ↓ Down arrow

↔ ↔ ↔ Left-right arrow

↵ ↵ ↵ Down arrow with corner leftward

⇐ ⇐ ⇐ Leftward double arrow

⇑ ⇑ ⇑ Upward double arrow

⇒ ⇒ ⇒ Rightward double arrow

⇓ ⇓ ⇓ Downward double arrow

⇔ ⇔ ⇔ Left-right double arrow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.11. Mathematical Operators

Decimal Hex Entity Symbol Description

∀ ∀ ∀ For all

∂ ∂ ∂ Partial differential

∃ ∃ ∃ There exists

∅ ∅ ∅ Empty set, null set, diameter

∇ ∇ ∇ Nabla, backward difference

∈ ∈ ∈ Element of

∉ ∉ ∉ Not an element of

∋ ∋ ∋ Contains as a member

∏ ∏ ∏ N-ary product, product sign

∑ ∑ ∑ N-ary summation

− − − - Minus sign

∗ ∗ ∗ * Asterisk operator

√ √ √ Square root, radical sign

∝ ∝ ∝ Proportional

∞ ∞ ∞ Infinity symbol

∠ ∠ ∠ Angle

∧ ∧ ∧ Logical and, wedge

∨ ∨ ∨ Logical or, vee

∩ ∩ ∩ Intersection, cap

∪ ∪ ∪ Union, cup

∫ ∫ ∫ Integral

∴ ∴ ∴ Therefore

∼ ∼ ∼ ~ Tilde operator, varies with, similar to

≅ ≅ ≅ Approximately equal to

≈ ≈ ≈ Almost equal to, asymptotic to

≠ ≠ ≠ Not equal to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Decimal Hex Entity Symbol Description

≡ ≡ ≡ Identical to

≤ ≤ ≤ Less than or equal to

≥ ≥ ≥ Greater than or equal to

⊂ ⊂ ⊂ Subset of

⊃ ⊃ ⊃ Superset of

⊄ ⊄ ⊄ Not a subset of

⊆ ⊆ &sube Subset of or equal to

⊇ ⊇ &supe Superset of or equal to

⊕ ⊕ ⊕ Circled plus, direct sum

⊗ ⊗ ⊗ Circled times, vector product

⊥ ⊥ ⊥ Up tack, orthogonal to, perpendicular

⋅ ⋅ ⋅ · Dot operator

≡ ≡ ≡ Identical to

≤ ≤ ≤ Less than or equal to

≥ ≥ ≥ Greater than or equal to

⊂ ⊂ ⊂ Subset of

⊃ ⊃ ⊃ Superset of

⊄ ⊄ ⊄ Not a subset of

⊆ ⊆ &sube Subset of or equal to

⊇ ⊇ &supe Superset of or equal to

⊕ ⊕ ⊕ Circled plus, direct sum

⊗ ⊗ ⊗ Circled times, vector product

⊥ ⊥ ⊥ Up tack, orthogonal to, perpendicular

⋅ ⋅ ⋅ · Dot operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.12. Miscellaneous Technical Symbols

Decimal Hex Entity Symbol Description

⌈ ⌈ ⌈ Left ceiling

⌉ ⌉ ⌉ Right ceiling

⌊ ⌊ ⌊ Left floor

⌋ ⌋ ⌋ Right floor

〈 〈 ⟨ Left-pointing angle bracket

〉 〉 ⟩ Right-pointing angle bracket

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.13. Geometric Shapes

Decimal Hex Entity Symbol Description

◊ ◊ ◊ Lozenge

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.14. Miscellaneous Symbols

Decimal Hex Entity Symbol Description

♠ ♠ ♠ Black spade suit

♣ ♣ &clubs Black club suit

♥ ♥ ♥ Black heart suit

♦ ♦ &diams Black diamond suit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix D. Specifying Color
This appendix contains background information regarding specifying color that applies to both CSS
properties and HTML attributes.

There are two methods for specifying colors in web documents: numeric RGB values and color
names.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.1. Specifying Color by RGB Values

The most common and precise way to specify a color is by its numeric RGB (red, green, blue) values.
Using RGB values, you can specify any color from the "true color" space (millions of colors). For an
explanation of RGB color, see Chapter 28.

Using an image editing tool such as Adobe Photoshop, you can determine the RGB values (on a scale
from 0 to 255) for a selected color. These are the RGB values for a particularly lovely spring green:

Red: 212
Green: 232
Blue: 119

Color values are most often provided in a two-digit hexadecimal (base-16) form, not decimal,
although these values may be used as-is in one CSS color format. Hexadecimal numbering is
discussed in more detail in the next section. The same RGB values for that spring green look like this
when converted to hexadecimal:

Red: D4
Green: E8
Blue: 77

In the CSS and HTML document, the most common way of representing these values is in a six-
character string, preceded by the # symbol:

#D4E877

The underlying syntax is this:

#RRGGBB

where RR stands for the hexadecimal red value, GG stands for the hexadecimal green value, and BB

stands for the hexadecimal blue value. CSS has additional formats for RGB values, as listed in the
upcoming See RGB Colors in CSS." section.

Fortunately, Adobe Photoshop makes the hexadecimal values for colors readily available at the
bottom of the color picker next to the "#" symbol. The hex values can be copied from the color picker
and pasted into a style sheet or HTML document.

If you are using an image tool that does not list hexadecimal values, you'll need to convert decimal to
hexadecimal yourself. The next section tells you how.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.1.1. The Hexadecimal System

The hexadecimal numbering system is base-16 (as compared to base-10 for decimal numbers). It
uses the following 16 characters:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

A through F represent the decimal values 10 through 15.

D.1.1.1. Converting decimal to hexadecimal

You can calculate hex values in the 0 to 255 range by dividing a number by 16 to get the first digit,
then using the remainder for the second digit. For example, dividing the decimal number 203 by 16
yields 12 with a remainder of 11. The hexadecimal value of 12 is C; the hex value of 11 is B.
Therefore, the hexadecimal equivalent of 203 is CB.

Fortunately, there are simpler methods for converting numbers to hexadecimal:

Use a hexadecimal calculator. Windows users can find a hexadecimal calculator in the
"Scientific" view of the Windows standard calculator. Mac users with OS X 10.4 (Tiger) can
download the free Hex Calculator Widget at
www.apple.com/downloads/dashboard/calculate_convert/hexcalculatorwidget.html.

Use Table D-1, which translates decimal values from 0 to 255.

Table D-1. Decimal to hexadecimal equivalents

dec = hex dec = hex dec = hex dec = hex dec = hex dec = hex

0 = 00 43 = 2B 86 = 56 129 = 81 172 = AC 215 = D7

1 = 01 44 = 2C 87 = 57 130 = 82 173 = AD 216 = D8

2 = 02 45 = 2D 88 = 58 131 = 83 174 = AE 217 = D9

3 = 03 46 = 2E 89 = 59 132 = 84 175 = AF 218 = DA

4 = 04 47 = 2F 90 = 5A 133 = 85 176 = B0 219 = DB

5 = 05 48 = 30 91 = 5B 134 = 86 177 = B1 220 = DC

6 = 06 49 = 31 92 = 5C 135 = 87 178 = B2 221 = DD

7 = 07 50 = 32 93 = 5D 136 = 88 179 = B3 222 = DE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dec = hex dec = hex dec = hex dec = hex dec = hex dec = hex

8 = 08 51 = 33 94 = 5E 137 = 89 180 = B4 223 = DF

9 = 09 52 = 34 95 = 5F 138 = 8A 181 = B5 224 = E0

10 = 0A 53 = 35 96 = 60 139 = 8B 182 = B6 225 = E1

11 = 0B 54 = 36 97 = 61 140 = 8C 183 = B7 226 = E2

12 = 0C 55 = 37 98 = 62 141 = 8D 184 = B8 227 = E3

13 = 0D 56 = 38 99 = 63 142 = 8E 185 = B9 228 = E4

14 = 0E 57 = 39 100 = 64 143 = 8F 186 = BA 229 = E5

15 = 0F 58 = 3A 101 = 65 144 = 90 187 = BB 230 = E6

16 = 10 59 = 3B 102 = 66 145 = 91 188 = BC 231 = E7

17 = 11 60 = 3C 103 = 67 146 = 92 189 = BD 232 = E8

18 = 12 61 = 3D 104 = 68 147 = 93 190 = BE 233 = E9

19 = 13 62 = 3E 105 = 69 148 = 94 191 = BF 234 = EA

20 = 14 63 = 3F 106 = 6A 149 = 95 192 = C0 235 = EB

21 = 15 64 = 40 107 = 6B 150 = 96 193 = C1 236 = EC

22 = 16 65 = 41 108 = 6C 151 = 97 194 = C2 237 = ED

23 = 17 66 = 42 109 = 6D 152 = 98 195 = C3 238 = EE

24 = 18 67 = 43 110 = 6E 153 = 99 196 = C4 239 = EF

25 = 19 68 = 44 111 = 6F 154 = 9A 197 = C5 240 = F0

26 = 1A 69 = 45 112 = 70 155 = 9B 198 = C6 241 = F1

27 = 1B 70 = 46 113 = 71 156 = 9C 199 = C7 242 = F2

28 = 1C 71 = 47 114 = 72 157 = 9D 200 = C8 243 = F3

29 = 1D 72 = 48 115 = 73 158 = 9E 201 = C9 244 = F4

30 = 1E 73 = 49 116 = 74 159 = 9F 202 = CA 245 = F5

31 = 1F 74 = 4A 117 = 75 160 = A0 203 = CB 246 = F6

32 = 20 75 = 4B 118 = 76 161 = A1 204 = CC 247 = F7

33 = 21 76 = 4C 119 = 77 162 = A2 205 = CD 248 = F8

34 = 22 77 = 4D 120 = 78 163 = A3 206 = CE 249 = F9

35 = 23 78 = 4E 121 = 79 164 = A4 207 = CF 250 = FA

36 = 24 79 = 4F 122 = 7A 165 = A5 208 = D0 251 = FB

37 = 25 80 = 50 123 = 7B 166 = A6 209 = D1 252 = FC

38 = 26 81 = 51 124 = 7C 167 = A7 210 = D2 253 = FD

39 = 27 82 = 52 125 = 7D 168 = A8 211 = D3 254 = FE

40 = 28 83 = 53 126 = 7E 169 = A9 212 = D4 255 = FF

8 = 08 51 = 33 94 = 5E 137 = 89 180 = B4 223 = DF

9 = 09 52 = 34 95 = 5F 138 = 8A 181 = B5 224 = E0

10 = 0A 53 = 35 96 = 60 139 = 8B 182 = B6 225 = E1

11 = 0B 54 = 36 97 = 61 140 = 8C 183 = B7 226 = E2

12 = 0C 55 = 37 98 = 62 141 = 8D 184 = B8 227 = E3

13 = 0D 56 = 38 99 = 63 142 = 8E 185 = B9 228 = E4

14 = 0E 57 = 39 100 = 64 143 = 8F 186 = BA 229 = E5

15 = 0F 58 = 3A 101 = 65 144 = 90 187 = BB 230 = E6

16 = 10 59 = 3B 102 = 66 145 = 91 188 = BC 231 = E7

17 = 11 60 = 3C 103 = 67 146 = 92 189 = BD 232 = E8

18 = 12 61 = 3D 104 = 68 147 = 93 190 = BE 233 = E9

19 = 13 62 = 3E 105 = 69 148 = 94 191 = BF 234 = EA

20 = 14 63 = 3F 106 = 6A 149 = 95 192 = C0 235 = EB

21 = 15 64 = 40 107 = 6B 150 = 96 193 = C1 236 = EC

22 = 16 65 = 41 108 = 6C 151 = 97 194 = C2 237 = ED

23 = 17 66 = 42 109 = 6D 152 = 98 195 = C3 238 = EE

24 = 18 67 = 43 110 = 6E 153 = 99 196 = C4 239 = EF

25 = 19 68 = 44 111 = 6F 154 = 9A 197 = C5 240 = F0

26 = 1A 69 = 45 112 = 70 155 = 9B 198 = C6 241 = F1

27 = 1B 70 = 46 113 = 71 156 = 9C 199 = C7 242 = F2

28 = 1C 71 = 47 114 = 72 157 = 9D 200 = C8 243 = F3

29 = 1D 72 = 48 115 = 73 158 = 9E 201 = C9 244 = F4

30 = 1E 73 = 49 116 = 74 159 = 9F 202 = CA 245 = F5

31 = 1F 74 = 4A 117 = 75 160 = A0 203 = CB 246 = F6

32 = 20 75 = 4B 118 = 76 161 = A1 204 = CC 247 = F7

33 = 21 76 = 4C 119 = 77 162 = A2 205 = CD 248 = F8

34 = 22 77 = 4D 120 = 78 163 = A3 206 = CE 249 = F9

35 = 23 78 = 4E 121 = 79 164 = A4 207 = CF 250 = FA

36 = 24 79 = 4F 122 = 7A 165 = A5 208 = D0 251 = FB

37 = 25 80 = 50 123 = 7B 166 = A6 209 = D1 252 = FC

38 = 26 81 = 51 124 = 7C 167 = A7 210 = D2 253 = FD

39 = 27 82 = 52 125 = 7D 168 = A8 211 = D3 254 = FE

40 = 28 83 = 53 126 = 7E 169 = A9 212 = D4 255 = FF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dec = hex dec = hex dec = hex dec = hex dec = hex dec = hex

41 = 29 84 = 54 127 = 7F 170 = AA 213 = D5

42 = 2A 85 = 55 128 = 80 171 = AB 214 = D6

D.1.1.2. Hexadecimal values for web palette colors

The web palette is a set of 216 colors that will not shift or dither when rendered in browsers on 8-bit
monitors. (For a thorough explanation of the web palette, see Chapter 29.) All colors in the web
palette are made up of combinations of the following six hexadecimal values: 00, 33, 66, 99, CC, and
FF.

D.1.2. RGB Colors in CSS

RGB colors can be specified in style rules by any of the methods listed in Table D-2.

Table D-2. Methods for specifying RGB colors

Method Syntax Example

Six-digit hexadecimal. #RRGGBB color: #0033FF

Three-digit RGB shorthand. This method may be used
when each RGB value is double digits.

#RGB

(interpreted as
#RRGGBB)

color: #03F

(interpreted as color:
#0033FF)

Three decimal values. rgb(n, n, n) color: rgb(0,51,255)

Three percentage values (calculated as a percentage of
255).

rgb(%, %, %)
color: rgb(0%, 20%,

100%)

D.1.3. RGB Colors in HTML

Because color is presentational, it should always be specified using style sheets, but should you need
to specify color in the HTML document, it is always done using the six-digit hexadecimal syntax:

#RRGGBB

For example:

41 = 29 84 = 54 127 = 7F 170 = AA 213 = D5

42 = 2A 85 = 55 128 = 80 171 = AB 214 = D6

D.1.1.2. Hexadecimal values for web palette colors

The web palette is a set of 216 colors that will not shift or dither when rendered in browsers on 8-bit
monitors. (For a thorough explanation of the web palette, see Chapter 29.) All colors in the web
palette are made up of combinations of the following six hexadecimal values: 00, 33, 66, 99, CC, and
FF.

D.1.2. RGB Colors in CSS

RGB colors can be specified in style rules by any of the methods listed in Table D-2.

Table D-2. Methods for specifying RGB colors

Method Syntax Example

Six-digit hexadecimal. #RRGGBB color: #0033FF

Three-digit RGB shorthand. This method may be used
when each RGB value is double digits.

#RGB

(interpreted as
#RRGGBB)

color: #03F

(interpreted as color:
#0033FF)

Three decimal values. rgb(n, n, n) color: rgb(0,51,255)

Three percentage values (calculated as a percentage of
255).

rgb(%, %, %)
color: rgb(0%, 20%,

100%)

D.1.3. RGB Colors in HTML

Because color is presentational, it should always be specified using style sheets, but should you need
to specify color in the HTML document, it is always done using the six-digit hexadecimal syntax:

#RRGGBB

For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<td bgcolor="#2D1F60">...</td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.2. Specifying Colors by Name

Colors may also be identified by predefined color names. This technique is less common in everyday
practice. The syntax for using color names is extremely straightforward.

color: green

<body link="navy">

D.2.1. Standard Color Names

In HTML 4.01, XHTML, CSS 1, and CSS 2, there are only 16 valid color names. They are listed in
Table D-3 with their equivalent RGB values.

Table D-3. Valid color names and equivalent RGB values

Color name RGB value Color name RGB value

black #000000 green #008000

silver #C0C0C0 lime #00FF00

gray #808080 olive #808000

white #FFFFFF yellow #FFFF00

maroon #800000 navy #000080

red #FF0000 blue #0000FF

purple #800080 teal #008080

fuchsia #FF00FF aqua #00FFFF

CSS 2.1 adds orange (#FFA500) for a total of 17 supported colors.

D.2.2. CSS Extended Color Names

Many browsers have historically supported a set of 140 nonstandard color names originally developed
for the X Window System. These color names have finally been standardized in the CSS 3 Color

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Module (www.w3.org/TR/css3-color). Be aware that not all browsers support all of these colors (or all
spellings of gray versus grey), and thus you should use the equivalent numerical color values instead.
They are included here in the interest of thoroughness and historical value.

The complete list appears in Table D-4, sorted alphabetically with their numerical values.

Table D-4. Nonstandard color names with their numeric values

Color name RGB values Hexadecimal

aliceblue 240 - 248 - 255 F0F8FF

antiquewhite 250 - 235 - 215 FAEBD7

aqua 0 - 255 - 255 00FFFF

aquamarine 127 - 255 - 212 7FFFD4

azure 240 - 255 - 255 F0FFFF

beige 245 - 245 - 220 F5F5DC

bisque 255 - 228 - 196 FFE4C4

black 0 - 0 - 0 000000

blanchedalmond 255 - 235 - 205 FFEBCD

blue 0 - 0 - 255 0000FF

blueviolet 138 - 43 - 226 8A2BE2

brown 165 - 42 - 42 A52A2A

burlywood 222 - 184 - 135 DEB887

cadetblue 95 - 158 - 160 5F9EA0

chartreuse 127 - 255 - 0 7FFF00

chocolate 210 - 105 - 30 D2691E

coral 255 - 127 - 80 FF7F50

cornflowerblue 100 - 149 - 237 6495ED

cornsilk 255 - 248 - 220 FFF8DC

crimson 220 - 20 - 60 DC143C

cyan 0 - 255 - 255 00FFFF

darkblue 0 - 0 - 139 00008B

darkcyan 0 - 139 - 139 008B8B

darkgoldenrod 184 - 134 - 11 B8860B

darkgray (darkgrey) 169 - 169 - 169 A9A9A9

darkgreen 0 - 100 - 0 006400

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Color name RGB values Hexadecimal

darkkhaki 189 - 183 - 107 BDB76B

darkmagenta 139 - 0 - 139 8B008B

darkolivegreen 85 - 107 - 47 556B2F

darkorange 255 - 140 - 0 FF8C00

darkorchid 153 - 50 - 204 9932CC

darkred 139 - 0 - 0 8B0000

darksalmon 233 - 150 - 122 E9967A

darkseagreen 143 - 188 - 143 8FBC8F

darkslateblue 72 - 61 - 139 483D8B

darkslategray (darkslategrey) 47 - 79 - 79 2F4F4F

darkturquoise 0 - 206 - 209 00CED1

darkviolet 148 - 0 - 211 9400D3

deeppink 255 - 20 - 147 FF1493

deepskyblue 0 - 191 - 255 00BFFF

dimgray (dimgrey) 105 - 105 - 105 696969

dodgerblue 30 - 144 - 255 1E90FF

firebrick 178 - 34 - 34 B22222

floralwhite 255 - 250 - 240 FFFAF0

forestgreen 34 - 139 - 34 228B22

fuchsia 255 - 0 - 255 FF00FF

gainsboro 220 - 220 - 220 DCDCDC

ghostwhite 248 - 248 - 255 F8F8FF

gold 255 - 215 - 0 FFD700

goldenrod 218 - 165 - 32 DAA520

gray (grey) 128 - 128 - 128 808080

green 0 - 128 - 0 008000

greenyellow 173 - 255 - 47 ADFF2F

honeydew 240 - 255 - 240 F0FFF0

hotpink 255 - 105 - 180 FF69B4

indianred 205 - 92 - 92 CD5C5C

indigo 75 - 0 - 130 4B0082

ivory 255 - 255 - 240 FFFFF0

khaki 240 - 230 - 140 F0E68C

darkkhaki 189 - 183 - 107 BDB76B

darkmagenta 139 - 0 - 139 8B008B

darkolivegreen 85 - 107 - 47 556B2F

darkorange 255 - 140 - 0 FF8C00

darkorchid 153 - 50 - 204 9932CC

darkred 139 - 0 - 0 8B0000

darksalmon 233 - 150 - 122 E9967A

darkseagreen 143 - 188 - 143 8FBC8F

darkslateblue 72 - 61 - 139 483D8B

darkslategray (darkslategrey) 47 - 79 - 79 2F4F4F

darkturquoise 0 - 206 - 209 00CED1

darkviolet 148 - 0 - 211 9400D3

deeppink 255 - 20 - 147 FF1493

deepskyblue 0 - 191 - 255 00BFFF

dimgray (dimgrey) 105 - 105 - 105 696969

dodgerblue 30 - 144 - 255 1E90FF

firebrick 178 - 34 - 34 B22222

floralwhite 255 - 250 - 240 FFFAF0

forestgreen 34 - 139 - 34 228B22

fuchsia 255 - 0 - 255 FF00FF

gainsboro 220 - 220 - 220 DCDCDC

ghostwhite 248 - 248 - 255 F8F8FF

gold 255 - 215 - 0 FFD700

goldenrod 218 - 165 - 32 DAA520

gray (grey) 128 - 128 - 128 808080

green 0 - 128 - 0 008000

greenyellow 173 - 255 - 47 ADFF2F

honeydew 240 - 255 - 240 F0FFF0

hotpink 255 - 105 - 180 FF69B4

indianred 205 - 92 - 92 CD5C5C

indigo 75 - 0 - 130 4B0082

ivory 255 - 255 - 240 FFFFF0

khaki 240 - 230 - 140 F0E68C

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Color name RGB values Hexadecimal

lavender 230 - 230 - 250 E6E6FA

lavenderblush 255 - 240 - 245 FFF0F5

lawngreen 124 - 252 - 0 7CFC00

lemonchiffon 255 - 250 - 205 FFFACD

lightblue 173 - 216 - 230 ADD8E6

lightcoral 240 - 128 - 128 F08080

lightcyan 224 - 255 - 255 E0FFFF

lightgoldenrodyellow 250 - 250 - 210 FAFAD2

lightgreen 144 - 238 - 144 90EE90

lightgray (lightgrey) 211 - 211 - 211 D3D3D3

lightpink 255 - 182 - 193 FFB6C1

lightsalmon 255 - 160 - 122 FFA07A

lightseagreen 32 - 178 - 170 20B2AA

lightskyblue 135 - 206 - 250 87CEFA

lightslategray (lightslategrey) 119 - 136 - 153 778899

lightsteelblue 176 - 196 - 222 B0C4DE

lightyellow 255 - 255 - 224 FFFFE0

lime 0 - 255 - 0 00FF00

limegreen 50 - 205 - 50 32CD32

linen 250 - 240 - 230 FAF0E6

magenta 255 - 0 - 255 FF00FF

maroon 128 - 0 - 0 800000

mediumaquamarine 102 - 205 - 170 66CDAA

mediumblue 0 - 0 - 205 0000CD

mediumorchid 186 - 85 - 211 BA55D3

mediumpurple 147 - 112 - 219 9370DB

mediumseagreen 60 - 179 - 113 3CB371

mediumslateblue 123 - 104 - 238 7B68EE

mediumspringgreen 0 - 250 - 154 00FA9A

mediumturquoise 72 - 209 - 204 48D1CC

mediumvioletred 199 - 21 - 133 C71585

midnightblue 25 - 25 - 112 191970

mintcream 245 - 255 - 250 F5FFFA

lavender 230 - 230 - 250 E6E6FA

lavenderblush 255 - 240 - 245 FFF0F5

lawngreen 124 - 252 - 0 7CFC00

lemonchiffon 255 - 250 - 205 FFFACD

lightblue 173 - 216 - 230 ADD8E6

lightcoral 240 - 128 - 128 F08080

lightcyan 224 - 255 - 255 E0FFFF

lightgoldenrodyellow 250 - 250 - 210 FAFAD2

lightgreen 144 - 238 - 144 90EE90

lightgray (lightgrey) 211 - 211 - 211 D3D3D3

lightpink 255 - 182 - 193 FFB6C1

lightsalmon 255 - 160 - 122 FFA07A

lightseagreen 32 - 178 - 170 20B2AA

lightskyblue 135 - 206 - 250 87CEFA

lightslategray (lightslategrey) 119 - 136 - 153 778899

lightsteelblue 176 - 196 - 222 B0C4DE

lightyellow 255 - 255 - 224 FFFFE0

lime 0 - 255 - 0 00FF00

limegreen 50 - 205 - 50 32CD32

linen 250 - 240 - 230 FAF0E6

magenta 255 - 0 - 255 FF00FF

maroon 128 - 0 - 0 800000

mediumaquamarine 102 - 205 - 170 66CDAA

mediumblue 0 - 0 - 205 0000CD

mediumorchid 186 - 85 - 211 BA55D3

mediumpurple 147 - 112 - 219 9370DB

mediumseagreen 60 - 179 - 113 3CB371

mediumslateblue 123 - 104 - 238 7B68EE

mediumspringgreen 0 - 250 - 154 00FA9A

mediumturquoise 72 - 209 - 204 48D1CC

mediumvioletred 199 - 21 - 133 C71585

midnightblue 25 - 25 - 112 191970

mintcream 245 - 255 - 250 F5FFFA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Color name RGB values Hexadecimal

mistyrose 255 - 228 - 225 FFE4E1

moccasin 255 - 228 - 181 FFE4B5

navajowhite 255 - 222 - 173 FFDEAD

navy 0 - 0 - 128 000080

oldlace 253 - 245 - 230 FDF5E6

olive 128 - 128 - 0 808000

olivedrab 107 - 142 - 35 6B8E23

orange 255 - 165 - 0 FFA500

orangered 255 - 69 - 0 FF4500

orchid 218 - 112 - 214 DA70D6

palegoldenrod 238 - 232 - 170 EEE8AA

palegreen 152 - 251 - 152 98FB98

paleturquoise 175 - 238 - 238 AFEEEE

palevioletred 219 - 112 - 147 DB7093

papayawhip 255 - 239 - 213 FFEFD5

peachpuff 255 - 218 - 185 FFDAB9

peru 205 - 133 - 63 CD853F

pink 255 - 192 - 203 FFC0CB

plum 221 - 160 - 221 DDA0DD

powderblue 176 - 224 - 230 B0E0E6

purple 128 - 0 - 128 800080

red 255 - 0 - 0 FF0000

rosybrown 188 - 143 - 143 BC8F8F

royalblue 65 - 105 - 225 4169E1

saddlebrown 139 - 69 - 19 8B4513

salmon 250 - 128 - 114 FA8072

sandybrown 244 - 164 - 96 F4A460

seagreen 46 - 139 - 87 2E8B57

seashell 255 - 245 - 238 FFF5EE

sienna 160 - 82 - 45 A0522D

silver 192 - 192 - 192 C0C0C0

skyblue 135 - 206 - 235 87CEEB

slateblue 106 - 90 - 205 6A5ACD

mistyrose 255 - 228 - 225 FFE4E1

moccasin 255 - 228 - 181 FFE4B5

navajowhite 255 - 222 - 173 FFDEAD

navy 0 - 0 - 128 000080

oldlace 253 - 245 - 230 FDF5E6

olive 128 - 128 - 0 808000

olivedrab 107 - 142 - 35 6B8E23

orange 255 - 165 - 0 FFA500

orangered 255 - 69 - 0 FF4500

orchid 218 - 112 - 214 DA70D6

palegoldenrod 238 - 232 - 170 EEE8AA

palegreen 152 - 251 - 152 98FB98

paleturquoise 175 - 238 - 238 AFEEEE

palevioletred 219 - 112 - 147 DB7093

papayawhip 255 - 239 - 213 FFEFD5

peachpuff 255 - 218 - 185 FFDAB9

peru 205 - 133 - 63 CD853F

pink 255 - 192 - 203 FFC0CB

plum 221 - 160 - 221 DDA0DD

powderblue 176 - 224 - 230 B0E0E6

purple 128 - 0 - 128 800080

red 255 - 0 - 0 FF0000

rosybrown 188 - 143 - 143 BC8F8F

royalblue 65 - 105 - 225 4169E1

saddlebrown 139 - 69 - 19 8B4513

salmon 250 - 128 - 114 FA8072

sandybrown 244 - 164 - 96 F4A460

seagreen 46 - 139 - 87 2E8B57

seashell 255 - 245 - 238 FFF5EE

sienna 160 - 82 - 45 A0522D

silver 192 - 192 - 192 C0C0C0

skyblue 135 - 206 - 235 87CEEB

slateblue 106 - 90 - 205 6A5ACD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Color name RGB values Hexadecimal

slategray (slategrey) 112 - 128 - 144 708090

snow 255 - 250 - 250 FFFAFA

springgreen 0 - 255 - 127 00FF7F

steelblue 70 - 130 - 180 4682B4

tan 210 - 180 - 140 D2B48C

teal 0 - 128 - 128 008080

thistle 216 - 191 - 216 D8BFD8

tomato 253 - 99 - 71 FF6347

turquoise 64 - 224 - 208 40E0D0

violet 238 - 130 - 238 EE82EE

wheat 245 - 222 - 179 F5DEB3

white 255 - 255 - 255 FFFFFF

whitesmoke 245 - 245 - 245 F5F5F5

yellow 255 - 255 - 0 FFFF00

yellowgreen 154 - 205 - 50 9ACD32

slategray (slategrey) 112 - 128 - 144 708090

snow 255 - 250 - 250 FFFAFA

springgreen 0 - 255 - 127 00FF7F

steelblue 70 - 130 - 180 4682B4

tan 210 - 180 - 140 D2B48C

teal 0 - 128 - 128 008080

thistle 216 - 191 - 216 D8BFD8

tomato 253 - 99 - 71 FF6347

turquoise 64 - 224 - 208 40E0D0

violet 238 - 130 - 238 EE82EE

wheat 245 - 222 - 179 F5DEB3

white 255 - 255 - 255 FFFFFF

whitesmoke 245 - 245 - 245 F5F5F5

yellow 255 - 255 - 0 FFFF00

yellowgreen 154 - 205 - 50 9ACD32

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix E. Microformats: Extending
(X)HTML

by Tantek Çelik

XHTML stands for the Extensible HyperText Markup Language. HTML 4 was also designed to be
extended, albeit much more subtly. In the past few years, there has been a resurging interest in
extending HTML and XHTML. XHTML was originally designed to be extended with other XML elements,
in other namespaces. In practice, such extensions have yet to meaningfully materialize on the Web.

Instead, using extension mechanisms introduced in HTML 4, such as the class, id, and rel
attributes, web designers, developers, and technologists have been extending the semantics of their
HTML and XHTML documents. In the past couple of years, common patterns and conventions have
emerged for using these mechanisms. Microformats are an effort to standardize these conventions
and are specifically designed for ease of use by web authors and to leverage existing interoperable
standards. By doing so, microformats have enabled the simple sharing of even more semantic
content on the Web without having to learn a new language or duplicate content (either in comments
or separate files).

This appendix introduces a few of the open microformats standards being developed by the
microformats community. To learn more, visit the microformats.org community site.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.1. Extending HTML 4 and XHTML

By following many of the techniques recommended in this book, you may already be extending HTML
for your own purposes without even knowing it. Chapter 10 discusses how to provide more semantic
descriptions of your content using the class and id attributes. Every meaningful class name and ID
extends the semantics expressed by your HTML documents.

HTML 4 has three built-in extension mechanisms. In addition to using semantic class and id
attributes, web authors can create their own link relationships with the rel and rev attributes, and
property names and values for use with the meta tag. Two of these mechanisms, class/id and
rel/rev, are being leveraged into microformats. The third, meta, shows less promise, as is discussed
in the sidebar "meta Names and Values.."

meta Names and Values

The HTML 4 specification discusses how to extend the meta-information provided in a
document by defining and using new meta property names and values. There have been
various efforts to standardize such efforts (e.g., Dublin Core). Because the invisible
meta-information in the head of a document is often disconnected from and out of sync
with the visible content of a document, however, these methods have proved to be
problematic in practice, especially as documents age or are maintained by multiple
authors. Even meta keywords, once used by all search engines, are ignored by Google
and others. In fact, most authors no longer waste time or bandwidth with meta keywords
in web documents. Similarly, other techniques for embedding invisible metadata , such
as using HTML comments or script tags to hide content or markup, should also be
avoided, since they too are invisible to and thus ignored by both human users and search
engines.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.2. Semantic Class Names

HTML 4 has a limited set of built-in semantics. In 2004, a few web developers realized that by using
carefully chosen sets of class names based on existing publishing behaviors and widely adopted
Internet standards, they could extend HTML to meaningfully publish information about contacts,
events, reviews, and other web data types. This section introduces microformats created for handling
contact information and calendar events.

E.2.1. Publishing Contact Information with hCard

Most web sites publish contact information for the site's author or company, for example:

<div>
 <div>O'Reilly</div>
 <div>1005 Gravenstein Highway North</div>
 <div>Sebastopol, CA 95472</div>
 <div>USA</div>
 <div>T: (707) 827-7000</div>
 <div>F: (707) 829-0104</div>
 <div>www.oreilly.com</div>
</div>

By marking it up with the hCard microformat (which is based on the widely support vCard Internet
contact information standard, hence the vcard class name), visitors to the site can easily add the
site's contact info to their address book application using an hCard-to-vCard proxy service.

<div class="vcard">
 <div class="fn org">O'Reilly</div>
 <div class="adr">
 <div class="street-address">1005 Gravenstein Highway North</div>
 Sebastopol, CA
 95472
 <div class="country-name">USA</div>
 </div>
 <div class="tel"><abbr class="type" title="work">T:</abbr> (707) 827-7000</div>
 <div class="tel"><abbr class="type" title="fax">F:</abbr> (707) 829-0104</div>
 <div>www.oreilly.com</div>
</div>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is an hCard because it uses specific class names established as part of the hCard microformat .
The specific elements are not relevant with the exception of the use of the abbr element to
abbreviate the type of each phone number, and the addition of a few spans and divs to mark up the
distinct hCard properties. For a complete list of hCard class names, more about hCard, and hCard-
to-vCard proxy services, see the hCard specification at microformats.org/wiki/hcard.

E.2.2. Publishing Events with hCalendar

Similar to hCard, the hCalendar (hCal for short) microformat is based on the iCalendar Internet
calendaring standard, and can be used to publish event information in a manner that users can easily
copy or subscribe to using an hCalendar-to-iCalendar proxy service:

<div class="vevent">
 <div class="summary">O'Reilly Emerging Technology Conference</div>
 <abbr class="dtstart" title="20050306">Mar 6</abbr>-
 <abbr class="dtend" title="20050310">9, 2006</abbr>
 <div class="location">Manchester Grand Hyatt, San Diego, CA</div>
 Permalink
</div>

Note the use of the abbr element to present an abbreviated human-readable date and represent a
precise machine-readable ISO 8601 date in the title attribute. For a complete list of hCalendar class
names, more hCalendar details, and hCalendar proxy services, see the hCalendar specification at
microformats.org/wiki/hcalendar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.3. Link Relationships

The most common use of link relationships in HTML is to link to a style sheet (as explained in Chapter
16). In doing so, the author uses the rel attribute to communicate that the resource "over there"
(referenced by the HRef attribute) is a "style sheet" for the current document. HTML 4 specifically
allows for web authors to create and use their own link relationship values, and suggests using a
profile to define them. Several popular new link relationship values have emerged to describe, for
example, social network relationships between people, licenses for documents, and "tags" for blog
posts. Many of these are quickly becoming de facto standards and have been documented as
microformats.

E.3.1. XHTML Friends Network

Since the previous edition of this book, blogs and the larger blogging phenomenon have taken the
Web by storm. As of this writing, there were approximately 22.6 million blogs according to real-time
search engine Technorati (technorati.com). Many of these bloggers publish lists of links to blogs they
themselves read, called blogrolls . Some indicate the relationship to the people in their blogrolls using
symbols, such as asterisks (*) next to people they have met. Typical blogrolls are published as a list
of hyperlinks:

 Molly*
 Jeff*

In 2003, a few web developers proposed a standard called the XHTML Friends Network (XFN) for
explicitly indicating social relationships using new rel attribute values on blogroll links. In the above
example, to indicate that Molly is a colleague you have met and Jeff is a friend you have also met,
simply add XFN values to rel attributes:

 Molly
 Jeff

For a full list of XFN relationship values and more information on using XFN, see the XFN home page
at gmpg.org/xfn/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.3.2. Other Link Relationships

XFN was the first such popular extension of the rel attribute, and others followed soon after. The
Creative Commons is a non-profit organization that encourages authors and artists to share their
digital works using a standard set of online licenses. Authors can indicate that a document is
published under a Creative Commons license by linking from the document to the license and adding
a rel attribute with value of license:

...

Search engines, including both Yahoo! and Google, recognize such license links and offer the ability to
search for content available under such licenses.

The practice of visibly "tagging " content on the Webin particular, links and photosinspired the
creation of the tag relationship value to indicate that the destination of a link represents a "tag" for
the current document or portion thereof. A blog post can be tagged as being about "CSS" by
including the following visible tag link inside the contents of the post:

CSS

Newer search engines, such as Technorati and Ice Rocket , recognize such tag links and have
incorporated tagged content into their search results and other services.

To help combat web spam, publishers and search engine companies developed the nofollow
extension. Many automatic and third-party generated hyperlinks are published with rel="nofollow",
which search engines use to afford less weight to those links.

XFN and new link relationships were the beginning of a larger movement by web authors to convey
more semantic meaning, in a way that is easy to learn, write, and style with CSS. For example, links
with relationships can be styled with CSS attribute selectors described in Chapter 17.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.4. More Microformats

The microformats.org site has a comprehensive listing of well-established microformats that are
broadly adopted, as well as nascent microformat efforts that are being designed. Table E-1 provides a
summary of several types of content and the microformats that have been developed to represent
them.

Table E-1. Examples of microformats

Microformat Content

hCard People, organizations, contacts

adr, geo Address and latitude/longitude location

hCalendar Calendars and events

hReview Reviews, ratings

XOXO Lists and outlines

XFN Social network relationships

rel-license Licenses

rel-tag Tags, topics, categories

xFolk Tagged links

rel-directory Directory inclusion

rel-enclosure Enclosures to be downloaded

VoteLinks Votes

rel-nofollow, Robots Exclusion Robot exclusion/filtering

hAtom Syndicated content

hResume Resumes

XMDP (X)HTML metadata profiles

More than the microformats themselves, the microformats.org site is the center of an open
community of web designers and developers with very active irc channels, email lists, and wiki pages,
and it is a great place to learn more about how to use microformats.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Glossary
Above the fold

Pertaining to content that is visible without scrolling when the visitor first lands on a web page.

accessibility

Refers to building web sites, applications, and pages so that there are as few barriers to use as
possible for anyone, regardless of ability and the device used to access the information.

AIFF

Audio Interchange File Format. Standard audio format originally developed for the Macintosh,
which is now supported on PCs as well. It is one of the formats commonly used for distributing
audio on the Web.

Ajax

A web development technique for creating interactive web applications using a combination of
(X)HTML, CSS, the DOM, and the nonstandard XMLHttpRequest object to exchange data
asynchronously with the server. Because the page doesn't need to refresh with each user
interaction, Ajax makes web applications feel more like desktop applications.

alpha channel

In graphics formats, an extra channel for storing information about an image. The alpha
channel works like a mask that applies properties (such as transparency) to the pixels in the
image. Other channels typically include color value informationas in the red, green, and blue
channels of an RGB image.

alpha-channel transparency

The method of transparency used by 24-bit PNGs, which use an additional (alpha) channel to
store variable levels of transparency (up to 256) for each pixel in the image.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

animated GIF

A GIF89a that contains multiple frames and a "control block" for controlling the animation
timing and display.

Apache

A popular open source (free) web server.

applet

A self-contained mini-executable program, such as one written in the Java programming
language.

ASCII (American Standard Code for Information Interchange)

A coded character set that includes 128 characters mostly from the Roman alphabet used in
modern English.

ASP

Active Server Pages. The part of Microsoft's Internet Information Server software that allows
server-side scripting for the creation of dynamically generated web pages and database
functions. Web pages created with ASP commonly have the suffix .asp.

attribute minimization

The SGML practice in which certain attributes can be reduced to just the attribute value. XML
does not support minimization, so all the attributes have to be explicitly declared (for example,
checked="checked").

audio bit depth

The number of bits used to define the resolution of the amplitude (or volume) of a digital audio
waveformthe more bits, the more accurate the rendering of the original audio source and the
larger the resulting audio file. Some common bit depths are 8-bit (which sounds thin or tinny,
like a telephone signal) and 16-bit, which is required to describe music of CD quality.

AVI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Audio/Video Interleaved. A digital video format developed by Microsoft in which audio and video
information are interleaved in every frame for smoother playback.

Basic Multilingual Plane (BMP)

The first 16 bits, or 65,536 positions in Unicode, which includes most of the common characters
used in the languages of the world, such as character sets for Latin, Greek, Cyrillic, hirgana,
katakana, and others, as well as mathematical and other miscellaneous characters.

behavioral layer

A term used to refer to the interactivity added to a web page via scripting (usually in
JavaScript). See also structural layer and presentational layer.

binary files

Files made up of compiled data (ones and zeros), such as executable programs, graphic
images, movies, etc. Some programs refer to the binary mode as "raw data" or "image data."

block-level elements

Elements that start a new line and tend to stack up like blocks in the normal flow of the
document. Block elements make up the main components of document structure.

cascade

In CSS, this refers to a hierarchical system for handling conflicting style sheets that assigns
different weights to various sources of style information.

CGI

Common Gateway Interface. The mechanism for communication between the web server and
other programs (CGI scripts) running on the server.

character encoding

The method used to transform the character stream in a document to a byte stream that is
interpreted by user agents.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

character entity

An abbreviated name for a character that is predefined in a DTD for use in a markup language.
Character entities are provided as a convenience for authors because they may be easier to
remember than the Numeric Character Reference for the character.

character set

Any collection of characters that are used together for a particular function. Many character
sets are standardized, such as Latin-1 (ISO-8859-1) and Unicode.

client

A software application that extracts services from a server somewhere on the network. A web
browser is a client that renders and displays documents on remote servers.

CMYK

A four-channel color model describing Cyan, Magenta, Yellow, and Black ink colors. Images in
CMYK mode are not appropriate for web graphics, which must be RGB.

code point

The numeric position of a character in a coded character set such as Unicode.

codec

Compression/decompression algorithms applied to media files.

combinator

In CSS, a specific character used to signify the type of relationship between the elements in a
rule selector.

CSS (Cascading Style Sheets)

A style sheet language used to describe the presentation of documents written in HTML,
XHTML, and other XML languages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data rate

In video, the rate at which data must be transferred for the video to play smoothly without
interruption. The data rate (also called "bit rate") for a movie is measured in kilobytes per
second (K/s or KB/s). It can be calculated by dividing the size of the file (in K) by the length of
the movie (in seconds).

declaration

In CSS, the portion of a style rule that contains the property and value to be applied to an
element or set of elements.

deprecated

In the HTML 4.0 and 4.01 Recommendations, a label identifying an HTML element or attribute
as "outdated" and discouraged from use in favor of newer constructs (most often CSS
properties).

DHTML

Short for "Dynamic HTML," a bit of marketing jargon used to describe the integration of
JavaScript, Cascading Style Sheets, and the Document Object Model. The term "DHTML" is
falling out of favor because of its associations with an era of browser-sniffing and obtrusive
scripting. The preferred (and more standards-oriented) term is now "DOM Scripting."

dithering

The approximation of a color by mixing pixels of similar colors that are available in the image
palette. The result of dithering is a random dot pattern or noise in the image.

DOCTYPE declaration

Specifies the DTD used in an HTML or XHTML document. The DOCTYPE declaration is required
for validation.

document character set

In SGML documents, this is the base character set for interpreting character references.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Document Object Model (DOM)

A platform- and language-neutral interface that allows programs and scripts to dynamically
access and update the content, structure, and style of HTML and XML documents.

document tree

The hierarchical structure of a document established by the markup of elements and their
relationship to one another.

dpi

Dots per inch. In graphics, this is the measurement of the resolution of a printed image. It is
commonly (although incorrectly) used to refer to the screen resolution of web graphics, which
is technically measured in ppi (pixels per inch). See also ppi.

Document Type Definition (DTD)

A document that defines the elements, attributes, and entities as well as the rules of their use
in a markup language. A document that conforms to its DTD is said to be valid. The syntax for
DTD definitions follows the rules of SGML.

DTD

See Document Type Definition.

Ecma (European Association for Standardizing Information and Communication Systems)

The Ecma manages information-technology standards, including ECMAScript, the standardized
version of JavaScript.

encoding (audio)

The process of converting an analog source (such as an analog audio signal) into digital format.
An encoder is the software that does the converting.

escaped character (or escaping)

A character that is represented by its character reference. The character reference may be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

numerical or a predefined character entity. In XML, XHTML, and HTML documents, escaped
characters are preceded by & and end with ; (for example, &). In CSS, escaped characters
are indicated by a backslash (\) and are terminated with a space (for example, \C7).

frame rate

In video, frames per second; used as a measure of video quality.

FTP

File Transfer Protocol. A protocol for moving files over the Internet from one computer to
another. FTP is a client/server system: one machine must be running an FTP server; the other,
an FTP client.

gamma

Refers to the overall brightness of a computer monitor's display. In technical terms, it is a
numerical adjustment for the nonlinear relationship of voltage to light intensity.

GIF

Graphic Interchange Format. Common file format of web graphic images. GIF is a palette-
based, 8-bit format that compresses images with the lossless LZW compression scheme. GIF is
most appropriate for images with areas of flat color and sharp contrast. See also LZW
compression.

hexadecimal

A base-16 numbering system consisting of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E, and F, where A through F represent the decimal values 10 through 15. It is used in (X)HTML
and XML to provide RGB color values and Numerical Character References that use
hexadecimal Unicode code points.

HTML

Hypertext Markup Language. The markup language used for web documents.

HTTP

Hypertext Transfer Protocol. The protocol that defines how web pages and media are requested

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and transferred between servers and browsers.

HTTP header

Information about a document that the web server sends to the user agent along with the
document when it is requested by a user agent.

i18n

The W3C abbreviation for "internationalization" ("i," 18 letters, then "n"), relating to efforts to
ensure that the formats and protocols defined by the W3C are usable worldwide in all
languages and writing systems.

IETF (The Internet Engineering Task Force)

An international community of network designers, operators, vendors, and researchers
concerned with the evolution of the Internet as a whole. It publishes Request for Comments
(RFCs) that define how things are done over the Internet, including FTP, TCP/IP, HTTP, and
email.

image map

A single image that contains multiple hypertext links.

indexed color

In graphics, a system for rendering colors in 8-bit images. Indexed color files, such as GIFs,
contain an index (also called a palette or color lookup table) of colors and associated index
numbers, which is used to render color in the image.

inheritance

In CSS, the concept by which styles are passed down from an element to its descendants. A
child element is said to inherit property values from its parent.

inline elements

Elements that occur in the flow of text and do not cause line breaks by default.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ISO (International Organization for Standardization)

The standards organization that manages more than 10,000 international standards for
everything from information systems to manufacturing specifications. Their seal of approval
helps keep commerce and information technologies compatible worldwide.

Java

A cross-platform, object-oriented programming language developed by Sun Microsystems. It
can be used to create whole applications; however, its primary contribution to the Web has
been in the form of Java applets: self-contained, mini-executable programs.

JavaScript

A client-side scripting language originally developed by Netscape and later standardized as
ECMAScript that adds interactivity and conditional behavior to web pages. It has little in
common with Java.

JPEG

A lossy compression algorithm developed by the Joint Photographic Experts Group. It is used
by files in the JFIF format, which are commonly referred to as "JPEG files." JPEG is most
efficient at compressing images with gradations in tone and no sharp edge contrasts.
Photographic images are typically best saved in JPEG format.

key frames

In video, master frames placed throughout a video against which the following frames are
compared (for use with temporal, or interframe, compression).

Linux

A version of Unix designed to run on PCs.

lossy compression

A method for reducing file size in which some data (usually indiscernible to human perception)
is deleted to achieve a higher compression rate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lossless compression

A method for reducing the size of a file without loss of data; in lossless compression, redundant
information is removed.

LZW compression

Short for Lempel-Zev-Welch, the names of the inventors. A lossless compression scheme that
takes advantage of repetition in data streams (such as a row of pixels of identical color). It is
the compression scheme used by graphic files in the GIF format.

MathML

Math Markup Language. An XML application for describing mathematical notation and capturing
its structure and content.

MIDI

Musical Instrument Digital Interface. This audio format uses numerical commands to describe
the pitch and endurance of notes that are "played" by available digital instrument sounds.

MIME types

Multimedia Internet Mail Extensions. A protocol that defines a number of content types and
subtypes and allows programs like web browsers, news readers, and email clients to recognize
different kinds of files and deal with them appropriately. The MIME type specifies what media a
file is, such as an image, audio, or video, and the subtype identifies the precise file format.

MP3

Audio file format (MPEG I, Level-III) capable of high levels of compression with little discernible
loss of quality. It has become the standard for sharing audio files over the Internet.

MPEG

A family of multimedia standards created by the Motion Picture Experts Group, commonly used
to refer to audio and video files saved using one of the MPEG compression schemes.

namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A uniquely named group of element and attribute names. XML documents refer to namespaces
in order to prevent confusion between competing element names.

nonreplaced element

In CSS, an element whose text content is included in the source document, such as a heading
or paragraph.

normal flow

The default left-to-right, top-to-bottom rendering of content in (X)HTML documents in left-to-
right reading languages. The only way to remove an element from the normal flow is to float or
position it using style rules. The normal flow for right-to-left reading languages is from right-to-
left, top-to-bottom.

palette

A table in an 8-bit indexed color file (such as GIF) that provides color information for the pixels
in the image.

PDF

Portable Document Format. A file format developed by Adobe Systems used for capturing
formatted page layouts for distribution. PDF documents are viewed with the required Adobe
Acrobat Reader.

PHP

Hypertext Preprocessor. An open source, server-side tool for creating dynamically generated
web pages (similar to Microsoft's ASP).

PNG

Portable Network Graphic. A versatile graphics file format that features support for both 8-bit
(PNG8) indexed images and 24-bit images (PNG24). PNGs also feature variable transparency
levels, automatic color correction controls, and a lossless yet highly efficient compression
scheme.

ppi

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pixels per inch. The measurement of the resolution of a screen image.

presentation

The way a document is displayed or delivered to the user, whether it's on a computer monitor,
a cell phone display, or read aloud by a screen reader

presentational layer

A term used to refer to style information applied to elements in a document. In web
documents, presentation is controlled by Cascading Style Sheets. See also structural layer and
behavioral layer.

QuickTime

A system extension that makes it possible to view audio and video information on a computer.
It was originally developed for the Macintosh but is now available for Windows machines as
well, and has been adopted as the video standard by the ISO in their development of MPEG-4.
The term also refers to the file format.

RDF

Resource Description Framework. An XML application used to define the structure of metadata
for documents, i.e., data that is useful for indexing, navigating, and searching a site.

replaced element

In the CSS, an element whose content is not provided in the source document, but rather acts
as a placeholder for content brought in from an external source (such as an img) or rendered
by the user agent (such as most form controls).

RGB color

A color system that describes colors based on combinations of red, green, and blue light.

rollover

The act of passing the mouse pointer over an element's space, or the events triggered by that
action (such as a changing style, image, or pop-up message, sometimes called rollover
events).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

root element

The element that contains all other elements, called the root element because it has no
ancestors. In HTML and XHTML documents, the root element is html.

sampling rate

In a digital audio file, the number of samples taken per second.

selector

In CSS, the portion of a style rule that targets an element or set of elements for the application
of style properties

semantic

Of or related to meaning. In terms of web authoring, documents should be marked up
semantically, that is, choosing (X)HTML elements that accurately describe the meaning of their
contents.

server

Any networked computer running software that enables it to answer requests for documents
and other data.

Server Side Includes (SSI)

Special placeholders in an HTML document that the server is to replace with actual data just
before sending the final document to the browser. Extended SSI (XSSI) (part of Apache 1.2
and higher) provides more advanced command functions, including conditional behaviors.

SGML

Standard Generalized Markup Language. A meta-language that provides a comprehensive set
of syntax rules for marking up the structure of documents and data. HTML is a subset of SGML.

sIFR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Scalable Inman Flash Replacement. A technique for replacing short text elements in a web
document with small Flash movies in order to achieve rich typography on web pages without
sacrificing accessibility, search engine friendliness, or markup semantics.

SMIL

Synchronized Multimedia Integration Language, an XML-based language for creating
multimedia, time-based presentation. SMIL combines audio, video, text, animation, and
graphics in a precise, synchronized fashion.

spatial compression

In video, spatial compression is applied to each individual frame of the video, using
compression schemes commonly used on still images (also called "intraframe" compression).

spatial frequency

Refers to the concentration of detail in an image. For example, an image of a blue sky would be
considered to have low frequency. A detailed image, such as a close-up of blades of grass, has
high frequency.

structural layer

A term used to describe the marked up content of the source document that provides structure
of and serves as a foundation for presentation instructions (added with Cascading Style Sheets)
and behaviors (added by a scripting language such as JavaScript). See also presentational
layer and behavioral layer.

SVG

Standardized Vector Graphics. An XML language for defining two-dimensional vector graphics.

Telnet

An internet protocol for logging into and using a remote system on the Internet. Telnet is a
client/server system that requires a Telnet server running on one computer and a Telnet client
on the other.

temporal compression

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In video, temporal compression takes place over a series of frames, deleting information that is
repeated between frames (also called "interframe" compression).

Universal Character Set (UCS)

This is the document character set used by HTML, XHTML, and XML documents. It is defined by
both the Unicode and ISO/IEC 10646 standards.

Unix

A multiuser, multitasking operating system developed by Bell Laboratories. It also provides
programs for editing text, sending email, preparing tables, performing calculations, and many
other specialized functions that normally require separate applications programs.

valid markup

In an XML application, markup that properly uses the elements and attributes as specified in a
Document Type Definition (DTD).

validating parser

A parser that checks a document for conformance with its declared DTD.

W3C

The World Wide Web Consortium. A consortium of many companies and organizations that
"exists to develop common standards for the evolution of the World Wide Web."

WAI

Web Accessibility Initiative. The committee at the World Wide Web Consortium (W3C) that
ensures that web technologies are accessible to users with disabilities.

WAV

Waveform Audio File Format. This format was developed for the PC but is now supported on
Macintosh as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

web palette

The set of 216 colors that will not dither or shift when viewed with browsers on 8-bit monitors.

well-formed

Describes a marked up document that abides by the strict syntax rules of XML.

WML

Wireless Markup Language. An XML-based language for creating applications for wireless
devices. It is part of the Wireless Application Protocol (WAP). WML is growing obsolete

XHTML

A reworking of the HTML 4.01 specification to abide by the rules and syntax of XML.

XML

Extensible Markup Language. A new standard for marking up documents and data. XML is
based on SGML, but with a reduced feature set that is more appropriate for distribution via the
Web. XML allows authors to create customized markup languages.

XML declaration

The first line in XML documents that specifies the version of XML used. The character encoding
may also be specified. XML declarations are optional but recommended. For example, <?xml
version="1.0" encoding="UTF-8"?>.

XML Schema

A method for defining the elements, attributes, and entities in an XML markup language. It is
equivalent to a Document Type Definition (DTD), but it is written according to the syntax of
XML (DTDs are based on SGML).

XSL

Extensible Style Language. A system for controlling the presentation of complex XML
documents and structured data. It is more robust than Cascading Style Sheets.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XSLT (Extensible Stylesheet Language for Transformations)

A subset of XSL (Extensible Stylesheet Language), an XSLT style sheet is necessary when an
XML document is "transformed" before final display, such as translating it from one XML
language to another, or replacing certain content with other content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Author

Jennifer Niederst Robbins was one of the first web designers. As the designer of O'Reilly's Global
Network Navigator (GNN), the first commercial web site, she has been designing for the Web since
mid-1993. Soon thereafter, she became Creative Director of Songline Studios (a subsidiary of
O'Reilly) and went on to form her own design and consulting company, Littlechair, Inc., in 1996. In
addition to this Nutshell book, Jennifer writes and maintains Learning Web Design and (X)HTML
Pocket Reference, both published by O'Reilly Media. She has taught courses on web design at the
Massachusetts College of Art in Boston, MA, and at Johnson & Wales University in Providence, RI. She
has been a regular on the speaker circuit, presenting at South by Southwest Interactive, AIGA
events, Seybold Seminars, and the GRAFILL conference in Norway. Jennifer combines her passions
for cooking, indie rock music, and making stuff in her project, The Jenville Show (a.k.a. "Cooking with
Rockstars") available at www.thejenvilleshow.com. Her latest production is a son named Arlo, who
doesn't leave her much time for all of the above. You can visit Jennifer online at littlechair.com and
jenville.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

The animal on the cover of Web Design in a Nutshell is a least weasel (Mustela nivalis). There are 67
species of weasel, including the mink, ermine, ferret, otter, and skunk. Weasels, which are
characterized by long, slender bodies and short legs, are found on all continents except Antarctica
and Australia, and in a vast variety of habitats.

The least weasel is the smallest of the 67 species of weasel. Weighing in at approximately two ounces
and measuring less than 10 inches long, the least weasel is the smallest carnivore on Earth. It is
found throughout the world in northern climates. In warm weather this weasel's coat is brown, with a
white underside. In winter it turns completely white. Thanks to its camouflage abilities and its speed
and agility, the least weasel is rarely caught.

The diet of the least weasel is made up primarily of voles and mice, which, because of the weasels'
high metabolism, they hunt constantly. One family of these little weasels can consume thousands of
rodents each year, making them important in controlling pest populations. Because it is so small, the
least weasel can follow mice into their burrows and eat them there. Like other weasels, they will
occasionally then make their victim's home their own, lining it with the fur of the former resident
when preparing to nest. Least weasels can produce two litters a year, with three to five young per
litter.

The cover image is an original illustration by Lorrie LeJeune. The cover font is Adobe ITC Garamond.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

#PCDATA

' (apostrophe)

\ (backslash)

<> (brackets)

> (greater-than sign)

 character entity

 child selectors and

 escaping the character

< (less-than sign)

 character entity

 escaping the character

(octothorpe)

 character entity

 ID selectors

% (percent sign)

 parameter entities

 percentage values

. (period)

 in CSS selectors

 XML names

+ (plus sign)

£ (pound symbol)

; (semicolon)

 as separator

 escaping the character

| (vertical bar)

 as separator

 attribute selector

15-bit color

16-bit color

24-bit color 2nd

32-bit color

565 model 2nd

8-bit color

Çelik, Tantek

 Band Pass Filter

 extending XHTML

 informative personal sites

 surgical correction

 Tasman layout engine

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

a element

 frames and

 generated content

 list-based navigation

 mailto protocol

 name attribute

 overview 2nd 3rd

 selectors and 2nd

 target attribute 2nd

 text rollovers

A List Apart

 "ALA's New Print Styles"

 column background trick

 "Creating Liquid Layouts with Negative Margins"

 "Cross-Browser Variable Opacity with PNG: A Real Solution,"

 "CSS Design: Creating Custom Corners & Borders"

 "CSS Design: Going to Print"

 "CSS Design: Taming Lists"

 "From Table Hacks to CSS Layout: A Web Designer's Journey"

 "High-Resolution Image Printing"

 "How to Read W3C Specs"

 "Improving Link Display for Print"

 "Mountaintop Corners"

 "Sliding Doors of CSS (Parts I and II)"

 web site 2nd 3rd

AAC (Advanced Audio Coding) format

abbr element

 hCalendar microformat

 hCard microformat and

 overview 2nd

abbreviations

"above the fold" design

abs() method

absolute pathnames 2nd

absolute positioning

 browser bugs 2nd 3rd

 elements in preferred order

 overview 2nd

 three-column layouts

 two-column layouts

 vertical margins

http://lib.ommolketab.ir
http://lib.ommolketab.ir

absolute sizes, fonts

absolute URLs 2nd

accessibility

 assistive technology

 following guidelines

 forms and 2nd

 frames and 2nd

 image replacement 2nd 3rd

 new windows and

 responsibility for 2nd

 Section 508 standard 2nd

 table layout and

 techniques for

 testing for

 types of disabilities 2nd

 Web Content Accessibility Guidelines

 web standards and

Accessibility panel (Flash)

Accessibility Toolbar (Internet Explorer)

accesskey attribute

Acid2 test

Acrobat Reader 2nd

acronym element 2nd

acronyms

action attribute (form)

Actions panel (Flash)

ActionScript

 Flash authoring environment 2nd

 Flash printing

 JavaScript and

 overview 2nd

:active selector

 functionality 2nd

 LVHA acronym 2nd

 text rollovers

Active Server Pages (ASP) 2nd

active stream redirector files

ActiveX controls

 adding parameters

 embedding video

 Flash and

 object element and 2nd

 streaming audio

Adam7 method

Adaptive color palette 2nd

address element 2nd

adjacent sibling selectors

Adobe Acrobat

Adobe GoLive

 authoring tools 2nd

 description

 FTP functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 image map tools

 SVG support

 URL pathnames

Adobe ImageReady

 animated GIFs 2nd

 color palettes

 GIF format 2nd 3rd 4th

 JPEG format 2nd

 overview

 web graphics 2nd

Adobe Photoshop

 color palettes

 GIF format 2nd 3rd 4th

 JPEG format 2nd

 PNG format

 web graphics 2nd 3rd

Advanced Audio Coding (AAC) format

:after selector 2nd 3rd 4th

aggregators

.aif file extension 2nd

AIFF (Audio Interchange File Format) 2nd

.aiff file extension 2nd

Ajax (Asynchronous JavaScript and XML)

alert() method 2nd 3rd

Alexander, Levin 2nd

aliases, comparison operators and

aliasing 2nd 3rd

align attribute

 applet element

 caption element

 cell content alignment

 col/colgroup elements 2nd

 embed element

 float property and

 img element 2nd

 purpose

alignment

 design considerations

 floating and

 form elements

 styling tables

 text

alink attribute (body)

all media type 2nd

allowScriptAccess attribute

 embed element

 object element

Almost Standards mode 2nd

alpha channels

 transparency and 2nd

 weighted dithering

 weighted lossiness

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 weighted optimization

alpha transparency

alt attribute

 applet element

 img element 2nd

America Online browser

 background

 description 2nd

 JPEG format and

American National Standards Institute (ANSI)

American Standard Code for Information Interchange (ASCII) 2nd 3rd

ampersand (&)

 as separator

 character entities

 escaping characters 2nd 3rd

amplitude

ancestors

 containing blocks 2nd

 defined

 root element and

and logical operator

Andreessen, Marc

Andrew, Rachel

animated GIFs

 creating

 Flash and

 functionality 2nd 3rd

 optimizing 2nd

 tools for

Animated Portable Network Graphic (APNG)

animation 2nd 3rd

Animation compressor

anonymous functions

ANSI (American National Standards Institute)

anti-aliasing

 Flash and 2nd

 preventing halos

 text

 turning off

 web palette and

Apache servers 2nd 3rd

Apache Software Foundation

API (Application Programming Interface)

APNG (Animated Portable Network Graphic)

apostrophe (')

appendChild() method

applet element 2nd 3rd

applets

 alternative content and

 defined

 object element and

 overview

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application Programming Interface (API)

application/pdf type

application/xhtml+xml media type

application/xml media type

archive attribute (object)

area element 2nd

arithmetic operators 2nd

Array object (JavaScript) 2nd

arrays 2nd

arrows

ASCII (American Standard Code for Information Interchange) 2nd 3rd

ASCII character set

 character entities

 character references and

 FTP link and

 markup and

 quotation marks

 Unicode encoding

.asf file extension 2nd 3rd

Asleson, Ryan

ASP (Active Server Pages) 2nd

assistive technology

associative arrays

asterisk (*)

 as universal selector 2nd

 blogroll usage

 frames and

.asx file extension

asynchronous communication

Asynchronous JavaScript and XML (Ajax)

ATAG (Authoring Tool Accessibility Guidelines)

Atom publishing protocol

attaching images

attlist (attribute) declarations 2nd 3rd 4th

attribute minimization

attribute nodes 2nd 3rd

attribute selectors 2nd

attributes

 authoring practices

 case sensitivity

 common 2nd

 DTDs and

 elements and

 HTML DOM and

 namespaces and 2nd

 overview

 quotation marks

 well-formed documents

Audacity audio tool

audience, knowing your

audio

 adding to web pages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 basic concepts

 choosing formats

 copyright restrictions

 editing and format conversion

 file formats

 Flash integration 2nd

 overview

 recording

 royalty-free resources

 streaming 2nd

Audio Interchange File Format (AIFF) 2nd

Audio/Video Interleaved (AVI)

Audition audio tool

auditory impairment

aural browsers

aural impairment

aural media type 2nd

author meta name

Authoring Tool Accessibility Guidelines (ATAG)

authoring tools

 browser variety and

 fixed-width designs

 Flash and 2nd

 HTML/XHTML

 standards recommendations

 URL pathnames

 web graphics 2nd

 WYSIWYG

authors, style sheets and

auto keyword

autoplay attribute (embed) 2nd

AVI (Audio/Video Interleaved)

.avi file extension

azimuth property (CSS)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

b element 2nd

background attribute (body) 2nd

background color

 animated GIFs

 borders and

 columns

 element boxes

 halos and

 margins and

 overview

 padding and

 printing text

 stacking order

 tables and

 transparency

background images

 accessibility and

 borders and

 columns and 2nd 3rd

 element boxes

 expanding box style 2nd

 future of

 margins and

 matching colors

 overview

 padding and

 rollovers

 tables and

background property (CSS)

 col/colgroup elements

 overview 2nd

 recommendations

 tables and

background sounds

background-attachment property (CSS) 2nd

background-color property (CSS) 2nd

background-image property (CSS)

 browser bugs 2nd

 overview 2nd

background-position property (CSS) 2nd 3rd 4th

background-repeat property (CSS) 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

backslash (\)

backward compatibility

Band Pass Filter

bandwidth negotiation

base attribute (embed)

base element

 content and

 defined

 frames and

 overview 2nd

basefont element 2nd 3rd

baseline 2nd

Basic Multilingual Plane (BMP) 2nd

bdo element 2nd 3rd

:before selector 2nd 3rd 4th

behavioral layer 2nd 3rd

Benkmann, Matthias

Berners-Lee, Tim

 HTML language

 World Wide Web and 2nd

bgcolor attribute

 body element 2nd

 deprecation of

 embed element

 object element

big element 2nd

binary files 2nd

bit depth 2nd 3rd 4th

bit rates 2nd 3rd

bitmapped images

bits per pixel (bpp)

Bitstream

_blank target name

blink element

blinking effect

block-level elements

 browser bugs

 clear property

 content edge

 inline tables

 listed

 normal flow

 overview 2nd

blockquote element 2nd 3rd 4th

blogrolls

blogs

BMP (Basic Multilingual Plane) 2nd

body element

 background-image property

 centering pages

 color property and

 description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 initial containing block 2nd

 noframes element and

 overview 2nd 3rd

body, document

Boolean values 2nd

border attribute

 frameset element

 img element 2nd

 table element

border property (CSS)

 browser bugs

 col/colgroup elements

 overview 2nd

 tables and

border-bottom property (CSS) 2nd

border-bottom-color property (CSS) 2nd

border-bottom-style property (CSS) 2nd 3rd

border-bottom-width property (CSS) 2nd

border-collapse property (CSS) 2nd

border-color property (CSS) 2nd 3rd 4th

border-left property (CSS) 2nd

border-left-color property (CSS) 2nd

border-left-style property (CSS) 2nd 3rd

border-left-width property (CSS) 2nd

border-right property (CSS) 2nd

border-right-color property (CSS) 2nd

border-right-style property (CSS) 2nd 3rd

border-right-width property (CSS) 2nd

border-spacing property (CSS)

 cellspacing attribute and

 overview 2nd 3rd

border-style property (CSS)

 border conflicts and

 combining properties

 overview 2nd

border-top property (CSS) 2nd

border-top-color property (CSS) 2nd

border-top-style property (CSS) 2nd 3rd

border-top-width property (CSS) 2nd

border-width property (CSS) 2nd 3rd 4th

borders

 box model and 2nd

 element boxes and 2nd

 floated elements

 frame

 images and

 internal elements and

 margins and

 padding and

 tables and 2nd 3rd

 three-column layouts

Bos, Bert

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bosak, Jon

bottom keyword

bottom property (CSS)

 absolute positioning

 fixed positioning

 overview 2nd

 relative positioning

 table captions

Boutell, Thomas 2nd

Bowman, Doug 2nd 3rd 4th 5th

box model

 borders 2nd

 margins 2nd

 overview

 padding and 2nd

 tables

 three-column layouts

 width and height 2nd

boxes, rounded corners for

bpp (bits per pixel)

br element

 empty element

 line breaks and 2nd 3rd

 nobr element and

 overview 2nd

brackets <>

Braille display 2nd

braille media type 2nd

Bray, Tim

Briggs, Owen

Brill, Ryan

Browser Cam screen capture service

Browser Object Model

Browser Wars

 background 2nd

 DHTML and

 embedded fonts and

 Mozilla and

 tags and

browsers

 alternate style sheets

 alternative text

 attribute support 2nd

 aural

 block-level elements and

 border-spacing property

 box model and 2nd

 Browser Object Model

 canvas

 CDATA section

 chrome

 color property support

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CSS and 2nd

 DHTML and

 differences among

 DOCTYPE switching 2nd

 embedded fonts

 embedding Windows Media

 empty elements and

 favicons

 Flash format support 2nd

 Flash printing

 floating support

 form controls

 frame borders

 frames and 2nd 3rd

 hacks/workarounds

 history of

 ignoring markup 2nd

 image loading

 image resolution and

 Java applets

 JavaScript and

 JPEG format and

 listed

 mobile

 namespaces and

 object element support 2nd 3rd

 PDF files and 2nd

 PNG format and 2nd

 pop-up windows

 positioning and 2nd

 printing and

 QuickTime plug-in support

 row spans and

 selector support 2nd 3rd

 table layout calculations

 testing sites

 text formatting and

 three-column layouts

 transparency and

 universal selector and

 usage statistics

 word wrapping

 XML support

buffering

bullets 2nd

Bulterman, Dick C.A.

button element 2nd 3rd

buttons

 color property and

 custom 2nd

 overview 2nd

 radio

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 reset 2nd

 submit 2nd 3rd

 submit and reset 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C programming language

caches

camel case

Campesato, Oswald

capitalization

 camel case

 common methods

 filenames and

 nodeName property

 overview 2nd

caption element

 caption-side property

 overview 2nd 3rd

 summary attribute

caption keyword

caption-side property (CSS) 2nd 3rd

Carver, Ryan

cascade

Cascading Style Sheets (CSS)

 adding to documents

 aligning form elements

 benefits 2nd

 block and inline elements

 browsers and 2nd

 DHTML and

 div element

 document tree

 DOM and

 escaping characters

 extended color names

 form controls

 further reading

 guiding concepts

 lists

 mobile devices

 normal flow of documents

 overview

 PDF and

 presentation and 2nd

 presentation layer and

 printing and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RGB colors in

 rollovers

 rule syntax

 standards support 2nd

 tables and 2nd 3rd 4th

 technique resources

 text formatting

 XML and 2nd

case sensitivity

 authoring practices

 elements and 2nd

 HTML

 JavaScript

 XHTML

 XML

CBR (constant bit rate)

CDATA attribute type

CDATA section 2nd 3rd

Cederholm, Dan

 column background trick

 expanding rounded boxes

 informative personal sites 2nd

 web standards 2nd 3rd

ceil() method

cellpadding attribute (table)

cells (table)

 basic structure

 collapsing border model 2nd

 content alignment 2nd

 padding 2nd

 rows and

 separated borders model

 spacing 2nd

 td element and

 th element and

cellspacing attribute (table)

center element

center keyword 2nd

center tag

centering

 three-column layouts

 web pages

CGI (Common Gateway Interface)

CGI scripts 2nd 3rd

cgi-bin directory

channels, audio files

char attribute (table)

character encoding

 character sets and

 defined

 directionality and

 meta element 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 XML declaration and

character entities

 arrows

 ASCII character set

 cursive joining behavior

 entity references and

 general punctuation 2nd

 generated content and

 geometric shapes

 Greek

 Latin Extended-A

 Latin Extended-B

 Latin-1 (ISO-8859-1)

 letter-like symbols

 mathematical operators

 miscellaneous symbols

 nonstandard

 overview

 predefined in XML

 spacing modifier letters

 technical symbols

 text elements and 2nd

 XHTML and

" character entity

< character entity

> character entity

' character entity

& character entity

" character entity

< character entity

> character entity

' character entity

& character entity

' character entity

& character entity

character references

 internationalization and

 Numeric Character Reference 2nd 3rd

 text elements and 2nd

character sets

charoff attribute (table)

checkboxes

checked attribute(input)

Chemical Markup Language (CML)

child elements

 defined

 descendants and

 DTDs and 2nd

 inheritance and

 text line height and

 text-decoration property and

child nodes 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

child selectors 2nd

child subdirectory

childNodes property (DOM)

Cinepak codec

cite attribute

 blockquote element

 del/ins elements

 quotations and

cite element 2nd

Clark, Chris

Clark, James

Clark, Joe 2nd

Clarke, Andy

class attribute

 browser bugs

 class selectors and 2nd

 col/colgroup elements

 div/span elements

 extending

 hCard microformat

 HTML DOM and

 overview 2nd

class names, extending HTML

class selectors

.class suffix

"class-itis" syndrome

classid attribute (object)

 adding applets

 embedded audio

 embedding video 2nd

 Flash and

 specifying implementation 2nd

className property (DOM)

Cleaner tool (Autodesk)

cleanWhitespace() method

clear attribute

 br element

 img element

clear property (CSS)

 browser bugs

 form elements

 overview 2nd 3rd

 text wrapping

 three-column layouts

client-pull

client-side image maps 2nd

client-side processing 2nd

clients

clip property (CSS) 2nd

clipping areas

cloneNode() method 2nd

close() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

closing tags

clsid naming scheme

cm unit of measurement

CML (Chemical Markup Language)

CMYK color model 2nd

code attribute (applet) 2nd

code element

"code forking"

code points 2nd 3rd 4th

code position

codebase attribute

 adding video

 applet element

 object element 2nd 3rd

codecs

 audio

 video 2nd 3rd

coded character sets

codetype attribute (object)

cognitive impairment

col element

 boxes and

 cell content alignment

 internal elements and

 overview 2nd

colgroup element

 boxes and

 cell content alignment

 internal elements and

 overview 2nd

collapsing border model 2nd

colon (:)

 automatic counters

 namespaces

 pseudoselectors and

 style rules

color

 accessibility and

 assistive technology and

 borders and 2nd

 GIF format and

 graphics and

 JPEG format and 2nd

 matching 2nd

 optimization tools

 PNG format

 specifying by name

 specifying by RGB values

 specifying in style sheets 2nd

 web-safe

color attribute (font)

color depth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 animated GIFs

 overview

 video files

color maps 2nd

color property (CSS) 2nd

cols attribute

 frameset element

 textarea element

colspan attribute (td) 2nd

column groups

columns

 data tables

 framesets and

 hiding

 overview

 spanning 2nd

 stacking order

 tables and

 three-column layouts

 two-column layouts

combinator character

Commented Backslash Hack

comments

 authoring practices

 browsers ignoring

 hack management

 HTML

 JavaScript and 2nd

 metadata and

 protecting scripts

 well-formed documents

 XML documents

Common Gateway Interface (CGI)

comparison operators 2nd

Components panel (Flash)

compression

 animated GIFs

 audio file formats and 2nd

 file sizes and

 Flash movies 2nd

 GIF format and

 J&G

 JPEG format and

 LZW

 matching colors and

 MPEG

 PNG format 2nd

 video

 video and

concat() method 2nd

conditional statements

confirm() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constant bit rate (CBR)

contact information 2nd

containing blocks

 browser bugs 2nd

 defined

 floated elements and 2nd

 overview

 positioning and 2nd

content

 accessibility of

 building blocks of

 document body

 DOM and 2nd

 DTDs and

 element boxes and 2nd

 elements and

 frameset element and

 generated 2nd 3rd

 internal elements and

 normal flow and

 object element and

 styling tables

 table cell alignment

 tagging

 WCAG

 XML documents and

content area

 borders and

 box model 2nd 3rd

 calculating positioning

 floated elements

 padding and

content attribute (meta)

content edge

content property (CSS) 2nd 3rd 4th

contextual selectors 2nd

control structures, JavaScript

controller attribute (embed)

controls

 buttons 2nd

 form 2nd 3rd 4th

 input

 menus and select element

 multiline text areas

copyright meta name

copyrights

 audio files and

 MP3 format and

 pseudostreaming and

 streaming audio and 2nd

 symbol for

Core Web Fonts collection (Microsoft)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Corel Paint Shop Pro

counter() function

counter-increment property (CSS) 2nd

counter-reset property (CSS) 2nd

counters

 automatic

 content property and

 generated content and

counters() function

country name codes

createElement() method 2nd 3rd

createNamedElement() method 2nd

createTextNode() method

CSS Zen Garden site

Cubase audio tool

cue property (CSS)

cue-after property (CSS)

cue-before property (CSS)

curly braces { }

cursor property (CSS)

Custom color palette

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

data

 accessible tables and

 as text

 associating headers with

data attribute

 object element 2nd

 object/param elements

 param element

data rate

data tables

data types, JavaScript

Date object (JavaScript) 2nd

Date() method

datetime attribute (del/ins)

Davidson, Mike

dd element 2nd

decimal system, converting from

declaration block

declarations

 components

 defined 2nd

 element 2nd 3rd 4th

 XML 2nd 3rd 4th

decompression, JPEG format

definition lists

del element

 generated content

 overview 2nd 3rd

deprecated attributes

deprecated elements

 authoring practices

 HTML 2nd 3rd 4th

descendant selectors

descendants

description meta name

Device Independence Working Group

devicefont attribute

 embed element

 object element

dfn element

DHTML (Dynamic HTML) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Digital Performer audio tool

digital rights management (DRM)

dir attribute 2nd 3rd

dir element 2nd

direction property (CSS) 2nd 3rd

directionality

 language 2nd 3rd 4th

 style sheet language features

directories

disabilities, types of 2nd

disabled attribute

display property (CSS)

 browser bugs 2nd

 common values

 FIR and

 floated elements and

 inline list items

 inline tables

 list-item value

 overview 2nd

 printing

 visibility property and

display roles

disposal method 2nd

distance learning

dithering

 animated GIFs

 defined 2nd

 GIF format and 2nd 3rd 4th

 JPEG format and

 preventing

div element

 browser bugs 2nd

 expanding box style 2nd

 hCard microformat and

 overview 2nd 3rd

 three-column layouts 2nd 3rd

 two-column layouts

dl element 2nd 3rd

do...while statement

DocBook

DOCTYPE declaration

 description

 DOCTYPE switching 2nd

 document prolog and

 document structure and

 frameset documents

 overview

 page rendering

 purpose

 Quirks mode and

 specifying DTDs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 XHTML and

 XML declaration before

DOCTYPE switching 2nd

document character sets

document flow

 overview 2nd

 positioning and 2nd 3rd

document object 2nd

document prolog

document structure

 body element 2nd

 creating

 DOCTYPE declaration and

 elements and

 inheritance and 2nd

 metadata and

 minimal

 presentation and

 reading and manipulating

 root element and 2nd

document tree 2nd 3rd 4th

documents

 adding styles to

 DOM and 2nd

 link element

 links within

 malformed 2nd

 sharing

 valid 2nd 3rd

 well-formed 2nd 3rd 4th

DOM (Document Object Model)

 Ajax and

 behavioral layer

 browser differences

 CSS and

 overview

 standards support

DOM Scripting

 DHTML and

 examples

 manipulating documents

Dowd, Snow

downloading

 audio files 2nd 3rd

 reference movies

 streaming video

DRM (digital rights management)

dt element 2nd

.dtd suffix

DTDs (Document Type Definitions)

 character entities and

 document structure and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 flavors of 2nd

 overview

 WML and

 XHTML and

Dynamic HTML (DHTML) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ECMA (European Computer Manufacturers Association) 2nd 3rd

ECMAScript

 ActionScript and

 JavaScript and 2nd 3rd

 standards support

Edwards, Dean

Edwards, James

Eich, Brendan

Eisenberg, David 2nd

element boxes

 borders

 defined 2nd

 floats and

 independence of values

 margins 2nd

 padding and

 positioning and

 width and height

 zero values in

element declarations 2nd 3rd 4th

element nodes

 depicted

 DOM and

 nodeName property

 nodeType property

 selectors and

Element object (JavaScript)

elements

 as markers

 attributes and

 authoring practices

 borders

 browsers ignoring

 case sensitivity

 counters and

 defined

 DOM and

 DTDs and

 element declarations

 floating

 generic 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 internal

 margins 2nd

 namespaces and 2nd

 nested 2nd 3rd 4th

 non-replaced 2nd 3rd

 normal flow

 overview

 padding

 positioning 2nd 3rd

 pseudoelement selectors 2nd

 selectors and

 stacking order 2nd

 table

 terminating 2nd

 well-formed documents

 width and height

elevation property (CSS) 2nd

em box

em element 2nd

em unit of measurement

 overview

 problems with

 relative length and

email 2nd

embed element

 browser compatibility

 embedded media 2nd

 Flash movies and 2nd 3rd

 object element and

 overview

 PDF files and

 QuickTime and 2nd

 RealPlayer and 2nd

Embedded Open Type (Microsoft)

embedding

 fonts

 JavaScript

 media

 metadata

 object element and

 PDF files

 QuickTime movies

 RealPlayer

 style sheets 2nd

 text

embossed media type 2nd

emphasis, indicating

empty elements

 browsers ignoring

 col element

 defined 2nd

 DTDs and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 terminating

 well-formed documents

empty-cells property (CSS) 2nd

encoding 2nd

encoding attribute

encryption, post method and

enctype attribute (form)

end tags

entity declarations

 defined

 DTD syntax

 overview

entity references

equality, comparison operators for

escaping the character

 ampersand

 CDATA section and

 character references

 defined

 style sheets

European Computer Manufacturers Association (ECMA) 2nd 3rd

event handling

 anonymous functions

 common events

 core events

 JavaScript

 this keyword and

event property (Browser Object)

ex unit of measurement

Exact color palette

expanding box style 2nd

expert review

exporting PNG files

Extensible Stylesheet Language (XSL)

Extensible Stylesheet Language for Transformations (XSLT)

external style sheets 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

face attribute (font)

Fahrner Image Replacement (FIR)

Fahrner, Todd

false keyword

Fast Web view (PDF)

favicons

Featherstone, Derek

feed readers

Ferg, Steve

Fetch program 2nd 3rd

fieldset element

 accessibility

 browser bugs

 overview 2nd

file formats

 audio

 Flash support

 graphics

 video

file sizes

 Flash and

 GIF format and

 JPEG format and

 K-limit

File Transfer Protocol (FTP) 2nd

file:// protocol

filters 2nd

FIR (Fahrner Image Replacement)

Firefox browser (Mozilla)

 canvas dimensions

 description 2nd

 history

 managing bugs

 PNG format and

 usage trends

 Web Developer Extension 2nd 3rd

 XML support

:first-child selector 2nd

:first-letter selector 2nd

:first-line selector 2nd

firstChild property (DOM) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fixed positioning 2nd 3rd

fixed width web pages

.fla file extension

Flash (Macromedia)

 ActionScript 2nd

 alternate content for

 background 2nd

 creating movies

 Dreamweaver and

 Flash Player 2nd 3rd

 Macromedia Director and

 printing and

 QuickTime and

 resources

 sIFR text and

 streaming audio 2nd

 web pages and 2nd

 Windows Media and

flash of unstyled content (FOUC)

Flash Player 2nd 3rd

flashvars attribute (object)

flickering effect

float property (CSS)

 form elements

 list-based navigation 2nd

 overview 2nd

 tables and

floated elements

 browser bugs 2nd

 overview

 three-column layouts

 two-column layout

 vertical margins

floating frames

floating the image

floor() method

focus 2nd 3rd

:focus selector 2nd 3rd

focus state

focus() method

font element 2nd

font property (CSS) 2nd 3rd

font-family property (CSS) 2nd

font-size property (CSS) 2nd 3rd

font-size-adjust property (CSS)

font-stretch property (CSS)

font-style property (CSS) 2nd 3rd

font-variant property (CSS) 2nd 3rd 4th

font-weight property (CSS) 2nd 3rd

fonts

 browsers and 2nd

 commonly available

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Flash and

 font size

 font style

 font variant 2nd

 issues with

 printing and

 system

 type size issues

footers

 three-column layouts 2nd 3rd 4th

 two-column layouts 2nd 3rd

for attribute (label)

for keyword

for...in loop

foreground color

form controls 2nd 3rd 4th

form element

 action attribute

 aligning

 encoding and

 enctype attribute

 method attribute

 name attribute

 overview 2nd

forms

 accessibility and 2nd

 appearance of

 form controls

 form element

forward compatibility

FOUC (flash of unstyled content)

fps (frames per second)

fragments 2nd

frame attribute (table)

frame delay

frame element

 frameborder attribute

 margins

 noresize attribute

 overview 2nd 3rd

 scrolling attribute

 title attribute

frame rate

frame size

frameborder attribute (frameset)

frames

 animated GIFs

 design tips and tricks

 Flash and

 frameset structure

 function and appearance

 inline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 overview

 targeting

 video compression and

Frames DTD 2nd 3rd

frames per second (fps)

Frameset DTD

 description

 frame borders

 frames and 2nd

 options

frameset element

 border attribute

 frameborder attribute

 noframes element and

 overview 2nd

 rows/columns

frontend web development

FTP (File Transfer Protocol) 2nd

ftp:// protocol

function keyword 2nd

Function object (JavaScript)

functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

gamma settings 2nd

Garage Band audio tool

Garrett, Jesse James

Gecko layout engine 2nd 3rd

general entities

General MIDI (GM)

generated content 2nd 3rd

generic elements 2nd

get command

get method

getAttribute() method 2nd 3rd

getDate() method

getDay() method 2nd

getElementById() method 2nd 3rd

getElementsByTagName() method 2nd 3rd

getFullYear() method

GIF (Graphic Interchange Format)

 choosing as format

 color and 2nd

 images and 2nd 3rd

 interlacing 2nd

 LZW compression

 matching colors

 minimizing file sizes

 optimization

 overview 2nd 3rd

 PNG format and

 production tips 2nd

 spacing and

 suffix

 transparency

 web palette and

GIFmation utility 2nd

Gilder, Tom 2nd

Gilder/Levin Method 2nd

Gillespie, Joe

global variables

globalization

glyphs 2nd 3rd

GM (General MIDI)

Golding, Mike

http://lib.ommolketab.ir
http://lib.ommolketab.ir

gopher:// protocol

graphics

 choosing right format 2nd

 color

 file formats

 image resolution

 production tips

 text and

 transparency and

grayscale images 2nd 3rd

greater-than sign (>)

 character entity

 child selectors and

 escaping the character

Greek character entities

grid cells

Gustafson, Aaron

 browser bugs

 DOM Scripting

 JavaScript

 URLs into endnotes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

H.264/AVC codec 2nd

h1 through h6 elements 2nd

hack management

 Commented Backslash Hack

 Holly Hack

 overview

 Tan Hack

halos, preventing

handheld devices 2nd

handheld media type

hanging indents

Harold, Elliotte Rusty

hasChildNodes() method

hashes

hCalendar microformat

hCard microformat

head element

 base element and 2nd

 description

 overview 2nd

headers

 associating with data

 defined

 document structure and

 frameset documents and

 MIME types and 2nd

 nesting

 text elements

headers attribute (td)

height

 adding video and

 aligning text relative to

 element boxes 2nd

 line-height property

 table 2nd

height attribute

 adding video and

 applet element

 embed element 2nd 3rd 4th

 iframe element

 img element 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 object element

 table element

height property (CSS)

 box model

 browser bugs 2nd

 overview

 positioning and

hexadecimal notation

 conversions

 RGB values 2nd

 space character 2nd

 web palette and

Hicks, Jon

Hickson, Ian

hidden attribute (embed)

Highcolor color depth 2nd

history property (Browser Object)

Holly Hack 2nd

Holzschlag, Molly E.

 CSS design 2nd 3rd

 informative personal sites

homepage, importance of

horizontal alignment

 cell content

 centering pages

 img element and

 text

horizontal rule 2nd

horizontal scrolling

"hotspots"

hover property (CSS)

:hover selector

 browser bugs

 LVHA

 overview 2nd

 rollovers 2nd

Howard, Ross

hr element 2nd 3rd

href attribute

 a element

 embed element 2nd

 generated content

 link element

 link relationships

 linking fragments

hspace attribute

 applet element

 img element

HTML (Hypertext Markup Language)

 .asp files

 adding video

 authoring tools

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 character encoding

 character references

 character sets

 comments

 CSS and

 deprecated elements 2nd 3rd 4th

 development of 2nd

 document structure

 DOM and 2nd

 DTDs and 2nd

 extending

 Flash and

 frameset documents and

 FTP process and

 language specification

 markup basics

 mobile devices

 PDF and

 PHP and

 relative pathnames

 RGB colors in

 semantic markup and

 standards 2nd 3rd

 tables and

 text editors and

 WAP browsers

html element

 description 2nd

 overview

 root elements and 2nd

.html extension

HTTP (Hypertext Transfer Protocol)

 absolute URLs

 character encoding

 MP3s and

 servers and

HTTP headers

 character encoding 2nd

 file suffixes and

 head element and

 index files and

 media types in

 overview

http-equiv attribute (meta) 2nd 3rd 4th

HTTP-streaming

Huffman table

Hyatt, David

hypertext links 2nd 3rd 4th

hyphen (-)

 attributes

 naming conventions

 soft

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 subtraction operator and

 XML names

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

i element 2nd 3rd

IANA (Internet Assigned Numbers Authority) 2nd

iCalendar Internet standard

Ice Rocket search engine

.ico format

icon keyword

id attribute

 browser bugs

 div/span elements

 DOM and

 embed element

 extending

 ID selectors and 2nd

 naming fragments

 overview 2nd 3rd 4th

ID selectors

identity, comparison operators for

ideographs 2nd

IETF (Internet Engineering Task Force) 2nd

if...else statement

iframe element 2nd 3rd

IIS (Internet Information Server) 2nd

image editing tools

 embedded text

 GIF file optimization

 PNG format and

image maps 2nd

image resolution

images

 attaching

 background

 binary mode

 bitmapped

 box model

 bullets from

 embedded text

 floating 2nd

 generated content and

 GIF format and

 grayscale 2nd 3rd

 inline

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 linking

 loading

 margins and

 positioning

 QuickTime player and

 raster

 repeating 2nd

 resizing

 rollovers

 softening for compression

 submit buttons and

 SVG standard and

 text replacement 2nd

 tiling

 upgrading

 vector

img element

 alt attribute

 border attribute

 deprecated attributes

 empty elements

 float property

 overview 2nd

 usemap attribute

 width/height attributes

@import directive

 arguments

 CSS printing

 external style sheets 2nd

 hack management

 media attribute and 2nd

 modular style sheets

!important indicator 2nd

in unit of measurement

indenting text 2nd

Indeo codec

index 2nd 3rd

index.html file

Indexed color depth

 converting to

 GIF and 2nd

 overview 2nd

 PNG format and 2nd

 transparency and

indexOf() method

inherit keyword

inheritance

 ActionScript and

 CSS and

 document structure and 2nd

 properties and

initial containing blocks 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inline boxes 2nd 3rd

inline elements

 borders and

 browser bugs

 containing blocks

 floating

 iframe element

 line breaks and 2nd

 listed

 margins and

 normal flow

 overview 2nd

 preformatted text and

 presentational

 text-decoration property and

inline frames

inline images

 overview

 PNG format

 replacing text with

inline list items

inline styles 2nd 3rd

inline tables

Inman, Shaun

inner edges 2nd

innerHTML property (DOM)

 Ajax and

 overview 2nd 3rd

input controls

input devices

input element

 aligning form elements

 checked attribute

 overview 2nd

 type attribute

 value attribute 2nd

ins element 2nd 3rd

insertBefore() method

interframe compression

interframe delay

interlacing

 animated GIFs

 GIF format and 2nd

 PNG format 2nd 3rd

 Progressive JPEGs and

interlinear space 2nd

internal elements

International Organization for Standardization (ISO)

internationalization

 character references

 character sets and encoding

 defined

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 embedded style sheets

 language features

 style sheet language features

Internet Assigned Numbers Authority (IANA) 2nd

Internet Engineering Task Force (IETF) 2nd

Internet Information Server (IIS) 2nd

Internet Media Type encoding format

Internet standards 2nd

intraframe compression

isindex element 2nd

ISO (International Organization for Standardization)

ISO 3166 standard

ISO 639 standard

ISO 8601 standard

ISO-8859-1 encoding 2nd 3rd

ISO/IEC 15948:2003 standard

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

J&G compression

Java programming language

Java servlets

JavaScript

 accessibility and

 Ajax and

 background 2nd 3rd

 Browser Object Model

 comments

 control structures

 data types

 DHTML and

 DOM and

 DOM Scripting

 dos and don'ts

 ECMAScript and 2nd 3rd

 event handling

 implementing

 objects

 operators

 reserved characters

 statements

 subtraction operator

 variables

JavaServer Pages (JSP)

Johansson, Roger 2nd

join() method

joining behavior

JPEG (Joint Photographic Experts Group) format

 characteristics

 choosing as format

 color and

 compression and

 creating

 file sizes

 images and 2nd

 matching color

 overview

 photos and

 production tips 2nd

 Progressive JPEGs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 suffix

JSP (JavaServer Pages)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

K-limit, files

K/sec (kilobytes per second)

kbd element

Kbps (kilobits per second) 2nd

Keith, Jeremy 2nd

keyboards 2nd 3rd

keywords

 absolute sizes

 font property

 numbering

 positioning images

 property values and 2nd

 relative sizes

keywords meta name

KHTML layout engine 2nd 3rd

kilobits per second (Kbps) 2nd

King, Andrew 2nd

Koch, Peter-Paul

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

label attribute

 optgroup element

 option element

label element

 accessibility 2nd

 aligning form elements

 for attribute

 form controls

 overview 2nd

LAMP acronym

lang attribute

 dir attribute and

 purpose 2nd 3rd

 q element and

 value of

:lang selector 2nd

Langridge, Stuart 2nd

language tags

languages

 CGI scripts

 cursive joining behavior

 directionality 2nd 3rd 4th

 DOM scripting and

 internationalization and

 open source

 structural layer

 WCAG

large keyword

larger keyword

lastChild property (DOM) 2nd

lastIndexOf() method

Latin Extended-A set

Latin Extended-B set

Latin-1 (ISO-8859-1) set

layers

 Flash and

 tables and

 transparent GIFs

 web design and

layout tables 2nd 3rd 4th

layouts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 three-column

 two-column

leading 2nd 3rd 4th

Leahy, Seamus

Leahy/Langridge Image Replacement (LIR)

left keyword

left property (CSS)

 absolute positioning

 calculating position

 fixed positioning

 overview 2nd

 relative positioning

 table captions

legend element 2nd 3rd

Lehn, David

Lemon, Gez

length measurement

 fonts

 images

 style sheets and

length property

 arrays 2nd

 strings

less-than sign (<)

 character entity

 escaping the character

letter-spacing property (CSS) 2nd

li element 2nd 3rd

Library (Flash)

Library of Congress web site

Lie, Håkon

line box

line breaks

 br element 2nd 3rd

 CSS and

 generated text

 HTML and

 inline elements and 2nd

line-height property (CSS) 2nd 3rd

linearization 2nd

link attribute (body)

link element

 browser bugs and

 CSS printing

 defined

 external style sheets

 media attribute

 overview 2nd

:link selector 2nd 3rd 4th

links

 alternative protocols

 audio files and 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CSS printing

 extending HTML

 focus state

 frames and 2nd 3rd

 hypertext 2nd 3rd 4th

 images and 2nd

 link element

 PDF files and 2nd

 search engines and

 streaming audio

 targeting windows

 text-decoration property and

 to RealMedia

 within documents

Linux environment 2nd 3rd

liquid web pages

LIR (Leahy/Langridge Image Replacement)

list-style property (CSS) 2nd 3rd 4th

list-style-image property (CSS) 2nd 3rd 4th

list-style-position property (CSS) 2nd 3rd

list-style-type property (CSS)

 choosing markers 2nd

 list-based navigation

 ordered lists

 overview 2nd

 unordered lists

lists

 counters and 2nd

 elements listed

 navigation based on

 overview 2nd

literals, object 2nd

Livingstone, Douglas

local variables

localization

location property (Browser Object)

Logic audio tool

logical elements

logical operators

loop attribute

 embed element 2nd

 object element

loops

 animated GIFs

 JavaScript and

lossless compression scheme

 GIF format

 LZW compression

 PNG format 2nd

 video and

lossy compression scheme 2nd 3rd 4th

Luini, Jon

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Lynx browser 2nd

LZW (Lempel-Zev-Welch) compression

 animated GIFs

 dithering and

 filters and

 GIF format

 PNG format and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

.m4a file extension

.m4p file extension

Macintosh environment

 audio tools

 browser bugs

 color palettes

 favicons

 FTP and

 gamma settings 2nd

 JavaScript and

 PNG format and

 web palette

Macromedia Breeze

Macromedia Director

Macromedia Dreamweaver

 authoring tools 2nd

 description

 Flash and

 FTP functions

 image map tools

 URL pathnames

Macromedia Fireworks

 animated GIFs 2nd

 color palettes

 converting to web palette

 embedded text

 GIF format 2nd 3rd

 JPEG format

 PNG format

 web graphics 2nd

Macromedia Flash Central

Macromedia FlashCast

Macromedia Flex 2nd

Macromedia Zorn

Madsen, S ren

mailto: protocol

map element 2nd

.map file extension

margin property (CSS)

 border-style property and

 browser bugs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 centering pages

 img element and

 overview 2nd 3rd

 tables and 2nd

margin-bottom property (CSS) 2nd 3rd

margin-left property (CSS) 2nd 3rd

margin-right property (CSS) 2nd 3rd

margin-top property (CSS) 2nd 3rd

marginheight attribute (frame)

margins

 box model and 2nd

 browser bugs

 centering pages and

 direction property and

 element boxes and 2nd

 expanding box style

 floated elements

 frame

 internal elements and

 negative 2nd

 printing and

 tables and

 three-column layouts 2nd

 two-column layouts

marginwidth attribute (frame)

markers 2nd

Marks, Todd

markup

 DHTML and

 DTD and

 generated content and

 HTML basics

 math

 semantic 2nd 3rd

 SGML and

 XML documents and

masks 2nd

match() method

Math object (JavaScript) 2nd

mathematical equations

mathematical operators

MathML (Mathematical Markup Language)

 CSS and

 overview 2nd 3rd

 XHTML and 2nd

 XML documents and

Matte color tool

max() method

max-height property (CSS) 2nd

max-width property (CSS)

Means, W. Scott

measurement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 length 2nd 3rd 4th

 percentage

 point

 relative

media attribute

 CSS for printing 2nd

 functionality

 style element 2nd

@media directive 2nd 3rd 4th

media types 2nd 3rd

media, embedded

medium keyword

members, arrays and

menu attribute

 embed element

 object element

menu element 2nd

menu keyword

menus

 color property and

 select element and

message-box keyword

meta element

 as empty element

 character encoding 2nd 3rd 4th

 defined

 description

 extending

 framesets and

 overview 2nd

metadata

 embedding

 meta element

 RDF and

 tables and

metafiles 2nd 3rd

method attribute (form)

methods

 Browser Object Model

 commonly accessed 2nd

 object data types

Meyer, Eric

 calculating selector specificity

 CSS table model

 CSS techniques 2nd

 effects using fixed images

 informative personal sites 2nd

 positioning of floated objects

 print style sheets

 tutorial on using counters

microbrowsers

microformats

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft FrontPage 2nd 3rd

Microsoft Internet Explorer browser

 Accessibility Toolbar

 AOL and

 borders

 box model and

 Browser Wars 2nd 3rd

 canvas dimensions

 description 2nd

 dominance of

 history

 inline frames

 name/element creation

 object element 2nd

 PNG format and

 standards support

 three-column layouts

 transparency in

 usage trends

 XML support

.mid file extension 2nd

MIDI (Musical Instrument Digital Interface) 2nd

MIME (Multipurpose Internet Mail Extension)

MIME types

 embedding JavaScript and

 headers and 2nd

 media types and

 overview

 PDF files

 XHTML and

min() method

min-height property (CSS)

min-width property (CSS)

mm unit of measurement

MNG (Multiple-image Network Graphic)

mobile devices

 designing for

 Flash Player

 MIDI format

Mobile Web Initiative

mobility impairment

modularization, XHTML

monitor brightness 2nd

monitor resolution 2nd 3rd

mono channel configuration 2nd

monospace fonts

Moock, Colin

Mosaic browser

mouse, assistive technology

.mov file extension 2nd 3rd 4th

movie attribute (object)

Mozilla browser 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MP3 format 2nd 3rd 4th

.mp4 file extension

MPEG (Moving Picture Experts Group)

 MP3 and

 overview

 QuickTime player and

 video codecs 2nd

.mpg file extension 2nd

MSN-TV Viewer

multicasting 2nd

multichannel surround sound

multiple attribute (select)

Multiple-image Network Graphic (MNG)

Multipurpose Internet Mail Extension (MIME)

Musical Instrument Digital Interface (MIDI) 2nd

MySQL database server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

name attribute

 a element

 DOM and

 embed element

 form controls

 form element

 overview 2nd

namespaces 2nd 3rd 4th

naming conventions

 authoring practices

 JavaScript

 servers

 XML

National Center for Supercomputing Applications (NCSA)

navigation

 design considerations 2nd

 floating and

 frames and 2nd

 linking and

 list based

 lists and

 modular style sheets

 tutorials

NCSA (National Center for Supercomputing Applications)

negative margins 2nd

nesting

 descendant selectors

 elements 2nd 3rd 4th

 frames 2nd

 lists

 quotation marks and

 table headers

 tables 2nd

Netscape Navigator browser

 canvas dimensions

 description 2nd

 frames and

 history 2nd

 HTML and

 managing bugs 2nd

 PNG format and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 usage trends

 XML support

Newhouse, Mark

news readers

news: protocol

nextSibling property (DOM) 2nd

nntp:// protocol

nobr element

node tree (DOM)

nodeName property (DOM) 2nd

nodes

 Ajax with

 attribute 2nd 3rd

 child 2nd 3rd

 DOM and

 parent

 sibling

nodeType property (DOM) 2nd

nodeValue property (DOM)

noembed element 2nd

nofollow extension

noframes element 2nd 3rd 4th

non-replaced elements 2nd

non-validating parsers

nonbreaking space

noresize attribute (frame)

normal flow, documents

 overview 2nd

 positioning 2nd 3rd

noscript element

not logical operator

numbering

 automatic

 keywords

numbers, JavaScript

Numeric Character Reference 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

object element

 adding applets

 adding video 2nd 3rd

 description

 embed element and

 embedded media

 embedding with 2nd

 Flash movies and

 iframe element and

 overview 2nd

object literals 2nd

objects

 anonymous table

 Browser Object model

 embedded media

 Java applets

 JavaScript

 singleton

octothorpe (#)

 character entity

 ID selectors

OFX (Open Financial Exchange)

ol element 2nd 3rd

onblur event handler

onchange event handler 2nd

onclick event handler 2nd 3rd

ondblclick event

onerror event handler

onfocus event handler

onkeydown event handler 2nd

onkeypress event handler 2nd

onkeyup event handler 2nd

online PDF converters

onload event handler

onmousedown event handler 2nd

onmousemove event handler 2nd

onmouseout event handler 2nd

onmouseover event handler 2nd

onmouseup event handler 2nd

onsubmit event handler

Open Financial Exchange (OFX)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Open Mobile Alliance

opener property (Browser Object)

opening tags

Opera browser

 accessibility and

 description 2nd

 managing bugs

 PNG format and

 Small-Screen Rendering technology

 XML support

operators

 arithmetic 2nd

 character entities

 comparison 2nd

 JavaScript

 logical

 ternary

optgroup element 2nd 3rd

optimization

 animated GIFs 2nd

 Flash movies 2nd

 GIF format 2nd

 JPEG format

 PNG format

 weighted 2nd 3rd

Optimize to File Size function (Photoshop) 2nd

Optimized Median Cut color palette

Optimized Octree color palette

option element

 optgroup element and

 overview 2nd 3rd 4th

 selected attribute

option groups

or logical operator

ordered lists 2nd 3rd 4th

origin images 2nd

orphans property (CSS)

outer edges, element boxes

outline property (CSS)

outline-color property (CSS)

outline-style property (CSS)

outline-width property (CSS)

output devices

overflow property (CSS) 2nd 3rd 4th

overlap 2nd 3rd

overlines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

p element

 cell content alignment

 empty

 overview 2nd 3rd

 text wrapping

packets, streaming audio and

padding

 box model and 2nd

 cell 2nd

 element boxes and 2nd

 internal elements and

 three-column layouts

padding edge

padding property (CSS)

 browser bugs

 overview 2nd

 td element

padding-bottom property (CSS) 2nd 3rd

padding-left property (CSS) 2nd 3rd

padding-right property (CSS) 2nd

padding-top property (CSS) 2nd 3rd

page-break-after property (CSS)

page-break-before property (CSS)

page-break-inside property (CSS)

Paint Shop Pro

 animated GIFs

 common palettes

 creating JPEGs

 embedded text

palette, color

 animated GIFs

 common

 Indexed color and

 web graphics and

Paoli, Jean

paragraphs

 carriage returns

 ignoring empty elements

 quotation marks

 text elements and 2nd

param element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ActiveX controls and

 applets and

 browser support

 class selectors and

 embedding video

 overview 2nd

parameter entities

parent directory 2nd

parent nodes

parent property (Browser Object)

_parent target name

parent/child relationships

 child subdirectory

 document structure 2nd

 nesting and

 parent directory 2nd

 viewing XML in browsers

parentNode property (DOM)

parsed character data (#PCDATA)

parsers

 defined

 entity references

 namespaces and

 non-validating

 validating 2nd

 XML declaration and

passwords

pathnames

pause property (CSS)

pause-after property (CSS)

pause-before property (CSS)

pc unit of measurement

PDF (Portable Document Format)

PDFViewer plug-in

Peak audio tool

Pederick, Chris

percent sign (%)

 parameter entities

 percentage values

percentage values

 aligning text with

 box model

 color

 fonts

 positioning images

 web palette and

Perceptual color palette (Adobe)

period (.)

 in CSS selectors

 XML names

permissions, setting

photographic images

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JPEG format and 2nd 3rd 4th

 web palette strategies

PHP language 2nd 3rd

phrase elements

Pilgrim, Mark

pitch property (CSS)

pitch-range property (CSS)

pixels per inch (ppi) 2nd

Pixy No-Preload Rollover technique

PlanetPDF web site

Platz, Brian

play attribute

 embed element

 object element

play-during property (CSS)

playeveryframe attribute (embed) 2nd

pluginspage attribute

 adding video

 embed element 2nd 3rd 4th

pluginurl attribute (embed)

plus sign (+)

PNG (Portable Network Graphic) format

 choosing as format

 color

 compression 2nd 3rd

 creating files

 favicons

 further reading

 gamma settings

 GIF history and

 images and 2nd

 interlacing 2nd 3rd

 matching colors

 optimization strategies

 overview 2nd

 platform/browser support 2nd

 production tips

 transparency and 2nd 3rd

 when to use

point measurements

pop() method

pop-up windows 2nd

Portable Document Format (PDF)

position property (CSS)

 browser bugs 2nd

 fixed elements

 frames

 overview 2nd

 relative positioning

 table captions

positioning

 elements 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fixed 2nd 3rd

 floating and 2nd 3rd

 images

 markers 2nd

 normal flow

 overview

 relative 2nd 3rd

 sidebars

 tables

post method

PostScript files

posture, font

pound symbol (£)

Power Tools (Flash)

ppi (pixels per inch) 2nd

pre element 2nd

presentation

 CSS and

 definition lists

 designing "above the fold"

 document structure and

 fixed vs. liquid web pages

 img element

 mobile devices

 PDF files and

 style sheets for

 tables and 2nd 3rd 4th

 unknown monitor resolution

 unordered lists

 web standards and

presentation layer

 defined

 separating from structure 2nd

 style sheet standards

 XHTML and

presentational elements 2nd 3rd

Presto layout engine

previewing printing

previousSibling property (DOM)

print media type 2nd

printing

 browsers and

 CSS and

 Flash and

 PDF and

 previewing

processing instructions 2nd

programming

 browser differences and

 server-side

Progressive JPEGs

projection media type 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

properties

 Browser Object Model

 commonly accessed 2nd

 defined

 element boxes and

 HTML DOM

 inherited 2nd

 keyword values 2nd

 object data types

 shorthand 2nd

 style property and

Properties Inspector (Flash) 2nd

protocols

 links and

 streaming audio

ProTools audio tool

Prototype library

prototyping

pseudoclasses 2nd

pseudoelement selectors 2nd

pseudoselectors

pseudostreaming 2nd 3rd

pt unit of measurement

public identifiers

Publish feature (Flash)

pull-down menus 2nd

punctuation, character entities 2nd

push() method

put command

px unit of measurement 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

q element 2nd 3rd

quality attribute (object)

query strings

QuickTime plug-in player (Apple)

 audio files

 audio files and

 AVI format and

 embed element and

 embedding video

 Flash and

 MIDI format

 MPEG format

 param element and

 streaming audio 2nd 3rd

 video files 2nd

Quirks mode

 DOCTYPE declaration and

 DOCTYPE switching

 frameset documents

 specifying DTDs

 XML declaration

quotation marks (")

 attribute values

 character entities

 content property and

 escaping characters

 inline styles

 inserting automatically

 languages and

 q elements

 strings

 variables and

 well-formed XML

 XHTML and

quotes property (CSS) 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

.ra file extension 2nd

radio buttons

Randers-Pehrson, Glenn

random() method

raster images

Ray, Erik T.

RDF (Resource Description Framework) 2nd 3rd

readonly attribute

Reagle, Joseph

RealAudio (RealNetwork)

 adding to web pages

 overview 2nd

 streaming audio 2nd

RealMedia (RealNetwork)

 adding to web pages

 compression and

 overview 2nd

 streaming audio 2nd

 streaming video 2nd

 video files

RealPlayer 2nd

RealProducer tool

RealPublisher tool

RealTime Streaming Protocol (RTSP)

RealTime Transfer Protocol (RTP)

Recommendations (W3C)

 as standards

 CSS

 deprecated HTML elements 2nd

 MathML

 namespace convention

 RGB color values

 style sheet standards

 Web Accessibility Initiative

 Web Standards Project

 web technology

 XHTML family

 XML as

recording audio files

Recording Industry Association of America (RIAA)

reference movies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

refresh attribute

Reinhardt, Robert

rel attribute

 extending

 link element 2nd 3rd

 link relationships

relative pathnames

relative positioning 2nd 3rd 4th

relative sizes, fonts 2nd

relative URLs

 defined

 favicons and

 HTML

 overview

 style sheets and

removeChild() method

rendering engines

 anonymous table objects

 defined

 Gecko 2nd 3rd

 KHTML 2nd 3rd

 Presto

 Tasman 2nd

 Trident 2nd 3rd

 WebCore

repeating images 2nd

replace() method

replaceChild() method

replaced elements 2nd

Request for Comments (RFCs)

reserved characters

reset buttons 2nd

resizing

 images

 windows

Resource Description Framework) 2nd 3rd

responseText property (DOM)

responseXML property (DOM) 2nd

Restrictive color palette (Adobe)

return keyword

reusable shapes

rev attribute

 link element

 meta element

reverse() method

RFC 3066

RFCs (Request for Comments)

RGB color model

 color depth and 2nd

 converting to Indexed color

 JPEG format and

 matching colors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 overview

 production tips

 specifying by name

 specifying values 2nd 3rd

 web palette and

RIA (Rich Internet Applications) 2nd

RIAA (Recording Industry Association of America)

Rich Internet Applications (RIA) 2nd

right keyword

right property (CSS)

 absolute positioning

 fixed positioning

 overview 2nd

 relative positioning

 table captions

.rm file extension 2nd 3rd

robots meta name

Roelofs, Greg

rollovers

 ;hover selector

 border-color property and

 overview

root directory 2nd

root element

 ancestors and

 defined

 html element as

 initial containing block

 overview 2nd

 well-formed documents

 XHTML and

round() method

rounded corners, boxes

row element

row groups 2nd

rowgroup element

rows

 basic structure

 data tables

 framesets and 2nd

 hiding

 spanning 2nd

 stacking order

 tables and

rows attribute

 form controls

 frameset element

rowspan attribute (td) 2nd

RSS (Really Simple Syndication) 2nd 3rd

RTP (RealTime Transfer Protocol)

RTSP (RealTime Streaming Protocol)

Ruby text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby, Sam

rules attribute (table)

Rundle, Mike 2nd

Rundle/Phark Technique

Rutledge, Lloyd

Rutter, Richard

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

s element 2nd

Safari browser

 canvas dimensions

 description 2nd

 managing bugs

 PNG format and

 XML support

salign attribute

 embed element

 object element

samp element

sampling rates 2nd

sans serif fonts

Scalable Inman Flash Replacement (sIFR)

scalar variables

scale attribute

 embed element

 object element

scaling factors

Schutta, Nathaniel T.

scope attribute

 col/colgroup elements

 td element

 th element

screen capture services

screen magnifier software

screen media type 2nd

screen readers

 accessible tables and

 assistive technology 2nd

 FIR and

 Flash and

 linearization and

screenLeft property (Browser Object)

screenTop property (Browser Object)

script element

 browser bugs and

 defined

 embedding JavaScript 2nd

 overview

scripts/scripting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 .asp files and

 behavioral layer

 comments in

 custom buttons 2nd

 externalizing

 Flash support

 id attribute and

 protecting

 server-side

 statements and

 variables and

scrolling attribute (frame)

scrolling/scrollbars

 background images and 2nd

 frames and

 menus and

 mobile devices

 overflow property and

 textarea element and

search engines

 frames and 2nd

 Ice Rocket

 meta element and 2nd 3rd

 Technorati 2nd

Section 508 standard 2nd

security

 FTP process and

 JavaScript and

 post method and

select element

 menus and

 overview

 size attribute

selected attribute (option)

Selective color palette (Adobe) 2nd 3rd

selectors

 attribute 2nd

 class

 contextual 2nd

 defined 2nd

 element nodes and

 ID

 listed

 pseudoselectors 2nd 3rd

 type 2nd

_self target name

semantic markup 2nd 3rd

semicolon (;)

 as separator

 escaping the character

separated borders model

sequences, multiple elements and 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

serif fonts

server-side image maps 2nd 3rd

server-side processing

 Ajax and

 defined

 programming

 streaming audio

servers

 basic functions

 character encoding

 configuring for Flash

 defined

 file naming conventions

 file types

 FTP and

 popular software

 Unix directory structures

servlets, Java

setAttribute() method 2nd 3rd

SGML (Standard Generalized Markup Language)

 attribute minimization

 DTDs and 2nd

 overview

Shea, Dave

 centering a page

 CSS design 2nd

 CSS Zen Garden site

 image replacement

 image-tab rollovers

 informative personal sites 2nd

shift() method

shifting, color

shorthand properties 2nd

SHOUTcast package (Nullsoft)

sibling nodes

siblings

sidebars, positioning

sIFR (Scalable Inman Flash Replacement)

(') single quote

 @import directive

 escaping the character

single quote (')

 @import directive

 escaping the character

singleton objects

size attribute

 font element

 select element

slash (/)

 JavaScript comments

 opening/closing tags

 Unix directory structures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 URLs and 2nd 3rd

slice() method 2nd

small caps font face

small element 2nd

small keyword

small-caption keyword

smaller keyword

SMIL (Synchronized Multimedia Integration Language)

 CSS and

 overview 2nd 3rd

 Windows Media and

snooping, vulnerability to

soft drop shadows

"soft hyphen"

Sorenson Video codec

sort() method

Sound Forge audio tool

Sowden, Paul

spacing

 cell

 modifier letters

 table layouts and

 text

span attribute (col)

span element

 FIR and

 hCard microformat and

 indicating emphasis

 overview 2nd

spatial compression

speak property (CSS)

speak-header property (CSS)

speak-numeral property (CSS)

speak-punctuation property (CSS)

special characters, inserting

specificity 2nd

speech media type

speech-rate property (CSS)

Sperberg-McQueen, Michael

splice() method

split() method

src attribute (embed) 2nd 3rd

stacking order

 elements

 tables

Stage (Flash)

standalone attribute 2nd

Standards mode

 box model and 2nd

 centering pages

 DOCTYPE switching 2nd

 positioning and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 specifying DTDs

standby attribute (object)

Stanícek, Petr

start tags

state, focus 2nd 3rd 4th

statements

 conditional

 JavaScript

statistics, usage 2nd

status property (Browser Object)

status-bar keyword

stereo channel configuration 2nd

Stern, Hadley

streaming audio 2nd 3rd

streaming video

 data rate and

 defined

 Flash and

 HTML documents and 2nd

 QuickTime movies and

stress property (CSS) 2nd

Strict DTD

 description

 DOCTYPE switching

 frames and

 options 2nd

 XHTML 2nd 3rd 4th 5th

strike element 2nd

strike-throughs

String object (JavaScript)

strings

strong element

 overview 2nd

 selector specificity

 z-index property and

structural layer

 defined

 separating from presentation 2nd

 standard languages

 XHTML and

style attribute

 escaping characters

 overview 2nd

 style rules

style element

 CSS printing

 defined

 embedded style sheets

 overview

style property

style rules

 cascade

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 initial containing blocks

 syntax

style sheets

 absolute positioning

 alternate

 disabling/enabling

 embedded

 escaping characters

 external 2nd

 language features

 length units

 modular

 ordered lists

 pixel measurements

 presentation and

 presentation layer

 row groups and

 shorthand properties and

 specifying color 2nd

 WCAG

 XML and 2nd

styles

 borders and 2nd

 inline 2nd 3rd

sub element 2nd

submit buttons 2nd 3rd

substring() method

subtraction operator

summary attribute (caption)

sup element 2nd

surgical correction

surround sound, multichannel

SVG (Scalable Vector Graphics)

 CSS and

 mobile browsers and

 overview 2nd

 XHTML and 2nd

 XML documents and

Swatches palette

.swf file extension 2nd 3rd

Swish 2nd

switch statement 2nd

switches, assistive technology

switching, DOCTYPE 2nd

swLiveConnect attribute (embed)

symbols, character entities 2nd

system fonts

SYSTEM identifier

system palette 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tabindex attribute

table element

 align attribute

 borders

 boxes and

 browser bugs 2nd

 caption element and

 cellpadding attribute

 col/colgroup elements

 defined

 height attribute

 overview 2nd 3rd 4th 5th

 width attribute

table-layout property (CSS) 2nd

tables

 absolute positioning

 accessible

 anonymous table objects

 borders

 cell padding

 cell spacing

 cells and

 column groups

 columns and 2nd 3rd

 CSS and 2nd

 data

 descriptive elements

 display values

 inline

 layout 2nd 3rd 4th

 nesting 2nd

 presentation

 row groups 2nd

 rows and

 style sheets and

 styling

 WCAG

 width and height

tabs

tags

 Browser Wars

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case sensitivity

 closing

 language

 link relationships and

 meaningful markup

 opening

 semantic descriptions

 well-formed documents

Tan Hack

target attribute (a) 2nd

Tasman layout engine 2nd

tbody element

 cell content alignment

 overview 2nd 3rd

td element

 cell content alignment

 headers and 2nd

 headers attribute

 internal elements and

 overview 2nd 3rd 4th 5th

 padding property

 rowspan attribute 2nd

 scope attribute

Technorati search engine 2nd

television

telnet:// protocol

temporal compression

ternary operator

testing

 accessibility

 Acid2 test

 automated tools

 browsers

 loops and

text

 aligning

 anti-aliased

 as data

 browsers and

 browsers ignoring in comments

 capitalization 2nd

 deleted and inserted 2nd

 direction 2nd

 embedded

 float property

 generated content 2nd

 image replacement 2nd

 img element and

 indented

 line-height property

 preformatted

 printing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rollovers

 scaling

 spacing

 styling tables

 SVG standard and

 type attribute (input)

 wrapping 2nd

text attribute (body)

text editors

 character encoding

 HTML 2nd

 XHTML

text elements

 character entity references 2nd

 deleted and inserted text 2nd

 generic elements

 inline elements

 listed 2nd

 lists and

 overview

 presentational elements

 selecting

text nodes

 depicted

 DOM and

 nodeType property and

 whitespace and

text-align property (CSS)

 browser bugs

 cell content and 2nd

 centering pages

 overview

 text horizontal alignment

 text wrap and

text-decoration property (CSS) 2nd

text-indent property (CSS) 2nd 3rd

text-transform property (CSS) 2nd 3rd

text/css style type

text/ecmascript type

text/html media type

text/xml media type

textarea element 2nd 3rd

tfoot element 2nd 3rd

th element

 cell content alignment

 data tables and

 internal elements and

 overview 2nd 3rd

 scope attribute

The Counter 2nd 3rd

The Creative Commons

thead element 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this keyword 2nd 3rd

three-column layouts

"three-pane environment"

TIFF format 2nd

tiling images 2nd 3rd

Timeline (Flash) 2nd 3rd

title attribute

 abbr/acronym elements

 del/ins elements

 form controls

 frame element

 hCalendar microformat

 overview

title element 2nd 3rd

toLowerCase() method

Toolbox (Flash)

top keyword

top property (CSS)

 absolute positioning

 calculating position

 fixed positioning

 overview 2nd

 relative positioning

 table captions

_top target name

toUpperCase() method

tr element

 cell content alignment

 headers and

 internal elements and

 number of rows and

 overview 2nd 3rd 4th

trademark symbol

transforming

Transitional DTD

 body attribute

 deprecated elements and

 description

 DOCTYPE switching

 frames and

 iframe element

 options

 XHTML 2nd

transparency

 animated GIFs

 GIF format and 2nd 3rd

 JPEG format and

 PNG format and 2nd 3rd

Trident layout engine 2nd 3rd

true keyword

Truecolor color depth

 JPEG format and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 overview

 PNG format and 2nd

TrueDoc Dynamic fonts

try...catch block

tt element 2nd

tty media type 2nd

tv media type 2nd

two-column layouts

type attribute

 embed element 2nd

 embedding JavaScript

 input element

 lists

type selectors 2nd

typography

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

u element 2nd

UAAG (User Agent Accessibility Guidelines)

UCS (Universal Character Set)

UDP (User Datagram Protocol)

ul element

 browser bugs

 nesting

 overview 2nd

 positioning and

Ulead GIF Animator utility 2nd

underlines 2nd

underscore (_)

 attributes

 browser bugs

 naming conventions

 reserved target names

 variable names

 XML names

unicasting

Unicode character set

 code points

 markup and

 Numeric Character Reference

 overview

 quotation marks

 standards body

 World Wide Web and

 XML and

Unicode Consortium 2nd

unicode-bidi property (CSS) 2nd 3rd

Uniform color palette

units of measurement 2nd

Universal Character Set (UCS)

universal element selector (*)

 assigning color globally

 centering pages

 descendants and

 getElementsByTagName() method

 wildcards and

Unix environment

 directory structure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Flash and

 gamma settings

 PNG format and

 web palette

unordered lists 2nd

unshift() method

URLs

 absolute 2nd

 encoding and

 forms and

 property values and

 query strings and

 slashes in 2nd 3rd

usage statistics 2nd

usemap attribute (img)

User Agent Accessibility Guidelines (UAAG)

user agent string

user agents

 character encoding

 row groups and

 style sheets and

 th element

User Datagram Protocol (UDP)

user interfaces, WCAG 2nd

user testing

UTF-16 encoding 2nd

UTF-32 encoding

UTF-8 encoding 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

valid documents 2nd 3rd

validating parsers 2nd

validation 2nd 3rd

valign attribute 2nd

value attribute (input) 2nd

values 2nd

var element

var keyword

variable bit rate (VBR)

variables

 arithmetic operators and 2nd

 arrays and

 global

 JavaScript

 local

 scalar

VBR (variable bit rate)

VBScript

vector graphics

 bitmapped images and

 Flash and 2nd

 XML documents and 2nd

version attribute

vertical alignment

 cell content

 img element and

 inline box and

 text

vertical bar (|)

 as separator

 attribute selector

vertical scrolling

vertical-align property (CSS)

 box model

 cell content

 cell content and

 img element and

 overview

 text

VFW (Video for Windows)

video

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 basic concepts 2nd

 compression

 file formats

 Flash integration 2nd

 HTML and

 overview

Video for Windows (VFW)

viewing area

viewport

visibility property (CSS)

 col/colgroup elements

 empty-cells property and

 overview 2nd

:visited selector 2nd 3rd 4th

Visual Basic programming language

visual impairment 2nd 3rd 4th

vlink attribute (body)

voice recognition software

voice-family property (CSS)

volume attribute (embed)

volume property (CSS)

vspace attribute

 applet element

 img element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

W3C (World Wide Web Consortium)

 automated testing tools

 character encoding

 CSS and 2nd

 DOM standard

 JavaScript standards

 mobile browsers

 Mobile Web Initiative

 PNG standard and

 selectors specification

 standards

 SVG standard

 WCAG

WAI (Web Accessibility Initiative)

wands, assistive technology

WAP (Wireless Application Protocol) 2nd

WAT-C (Web Accessibility Tool Consortium)

WAV audio format 2nd

wbr element

WCAG (Web Content Accessibility Guidelines)

Web Accessibility Initiative (WAI)

Web Accessibility Tool Consortium (WAT-C)

Web Adaptive palette (Fireworks) 2nd

Web Analytics Association

web conferencing

Web Content Accessibility Guidelines (WCAG)

Web Developer Extension 2nd 3rd

web pages

 accessibility

 adding audio

 adding PDF files

 centering

 CSS for printing

 fixed vs. liquid

 Flash movies and 2nd

 fragments 2nd

 frames and 2nd 3rd

 Java applets

 printing

 units of measurement

 WCAG

http://lib.ommolketab.ir
http://lib.ommolketab.ir

web palette

 defined

 GIF format

 hexadecimal values for

 overview

web root directory

web standards

 browser support for 2nd

 compliance with

 CSS history and

 current

 HTML and XHTML 2nd

 iCalendar

 mobile browsers

 mobile devices

 overview

 Section 508 2nd

 standards-driven design

Web Standards Project (WaSP)

 Acid2 test

 background

 character encoding

 DOM standard

web-safe colors

Web216 color palette (Fireworks)

WebCore layout engine

weblogs

WebTV

weighted dithering

weighted lossiness

weighted optimization 2nd 3rd

Weinman, Lynda

well-formed documents 2nd 3rd 4th

well-formed XHTML

well-formed XML 2nd 3rd

well-formedness checkers

white-space property (CSS) 2nd 3rd 4th

whitespace

 around aligned images

 browsers and

 CSS and

 readability and

 text and 2nd

 text nodes and

 well-formed documents

 XML naming convention

Whitman, Allen

widgets

widows property (CSS)

width

 borders and 2nd 3rd

 centering pages and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element boxes 2nd

 printing considerations

 table 2nd

width attribute

 applet element

 col/colgroup elements 2nd

 embed element 2nd 3rd 4th

 iframe element

 img element 2nd

 object element

 table element

width property (CSS)

 box model and

 browser bugs 2nd

 col/colgroup elements

 positioning and

 three-column layouts

wildcards

Wildform 2nd

Wilson, Brian

windows

 accessibility and

 frames and

 resizing

 targeting

Windows environment

 audio tools

 canvas dimensions

 color palettes

 dominance of

 favicons

 FTP and

 gamma settings 2nd

 PNG format and

 web palette

Windows Media (Microsoft)

 audio files 2nd 3rd 4th

 embedding video

 streaming audio 2nd 3rd

 streaming video

 video files

Windows Media Audio codec

Windows Media Video Codec

Winer, David

Wireless Application Protocol (WAP) 2nd

Wireless Markup Language (WML) 2nd

.wma file extension 2nd

WML (Wireless Markup Language) 2nd

wmode attribute

 embed element

 object element

.wmv file extension

http://lib.ommolketab.ir
http://lib.ommolketab.ir

word wrapping

word-spacing property (CSS) 2nd

workaround management

World Wide Web

 history

 typography and

 Unicode and

 XML and

 XML applications

wrapping

 clear property and

 strings

 text 2nd

 word

writing systems

WYSIWYG authoring tools 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

x-large keyword

x-small keyword

XFN (XHTML Friends Network)

XHTML (Extensible Hypertext Markup Language)

 authoring tools

 CDATA section

 character encoding 2nd 3rd

 character references

 character sets

 CSS and

 DOCTYPE declaration and

 document structure

 DOM and

 DOM Scripting

 DTD support

 extending

 Flash and

 HTML and

 language specification

 MIME types

 nodeName property and

 overview

 semantic markup and

 standards 2nd 3rd

 structural layer

 web documents 2nd 3rd

 well-formed

XHTML Friends Network (XFN)

XML (Extensible Markup Language)

 Ajax and

 character encoding 2nd 3rd

 character sets

 components

 development of

 document syntax

 DOM and

 DTDs and

 MIME types

 overview 2nd

 structural layer

 style sheets and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Web and

 Web-related applications

 well-formed 2nd 3rd

 WML and

XML declarations 2nd 3rd 4th

XML Schema Definition (XSD)

XML Schemas

xml:lang attribute 2nd 3rd

XMLHttpRequest() object 2nd

xmlns attribute 2nd 3rd

XSD (XML Schema Definition)

XSL (Extensible Stylesheet Language)

XSLT (Extensible Stylesheet Language for Transformations)

xx-large keyword

xx-small keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

z-index property (CSS)

Zeldman, Jeffrey

 A List Apart

 converting tables to CSS

 style sheet strategy

 web standards

Zoom layouts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Web Design in a Nutshell, 3rd Edition
	Table of Contents
	Intermediate Perl
	Foreword
	Contributors
	Technical Reviewers
	Lead Technical Editors
	Technical Reviewers

	Preface
	What's in the Book
	Using Code Examples
	Conventions Used in This Book
	CSS Property Conventions
	How to Contact Us
	SafariÂ® Enabled
	Acknowledgments

	Part I: The Web Environment
	Chapter 1. Web Standards
	Section 1.1. What Are Standards?
	Section 1.2. Current Web Standards
	Section 1.3. Standards-Driven Design
	Section 1.4. For Further Reading

	Chapter 2. Designing for a Variety of Browsers
	Section 2.1. Browser History
	Section 2.2. Browser Roll-Call
	Section 2.3. Gathering Usage Statistics
	Section 2.4. Learning from Browser Statistics
	Section 2.5. Dealing with Browser Differences
	Section 2.6. Know Your Audience
	Section 2.7. Test!

	Chapter 3. Designing for a Variety of Displays
	Section 3.1. Designing for Unknown Monitor Resolutions
	Section 3.2. Fixed Versus Liquid Web Pages
	Section 3.3. Designing
	Section 3.4. Mobile Devices

	Chapter 4. A Beginner's Guide to the Server
	Section 4.1. Servers 101
	Section 4.2. Unix Directory Structures
	Section 4.3. File Naming Conventions
	Section 4.4. Uploading Documents (FTP)
	Section 4.5. File (MIME) Types

	Chapter 5. Accessibility
	Section 5.1. Types of Disabilities
	Section 5.2. Overview of Assistive Technology
	Section 5.3. Who Is Responsible for Accessibility?
	Section 5.4. Web Content Accessibility Guidelines
	Section 5.5. Web Content Accessibility Guidelines 2.0 (WCAG 2.0)
	Section 5.6. Standards Variations and Section 508
	Section 5.7. Web Accessibility Techniques
	Section 5.8. Testing for Accessibility

	Chapter 6. Internationalization
	Section 6.1. Character Sets and Encoding
	Section 6.2. Character References
	Section 6.3. Language Features
	Section 6.4. Style Sheets Language Features
	Section 6.5. For Further Reading

	Part II: The Structural Layer: XML and (X)HTML
	Chapter 7. Introduction to XML
	Section 7.1. XML Basics
	Section 7.2. How It Works
	Section 7.3. XML Document Syntax
	Section 7.4. Well-Formed XML
	Section 7.5. Document Type Definition (DTD)
	Section 7.6. XML Namespaces
	Section 7.7. XML on the Web
	Section 7.8. Web-Related XML Applications
	Section 7.9. Where to Learn More

	Chapter 8. HTML and XHTML Overview
	Section 8.1. The Role of HTML
	Section 8.2. Markup Basics
	Section 8.3. Introduction to XHTML
	Section 8.4. Which Standard Is Right for You?
	Section 8.5. Well-Formed XHTML
	Section 8.6. Web Authoring Tools
	Section 8.7. Good Authoring Practices

	Chapter 9. Document Structure
	Section 9.1. Minimal Document Structure
	Section 9.2. Document Type Declaration
	Section 9.3. The Root Element
	Section 9.4. The Document Header
	Section 9.5. The Document Body

	Chapter 10. Text Elements
	Section 10.1. Choosing Text Elements
	Section 10.2. The Building Blocks of Content
	Section 10.3. Inline Elements
	Section 10.4. Deleted and Inserted Text
	Section 10.5. Generic Elements (div and span)
	Section 10.6. Lists
	Section 10.7. Presentational Elements
	Section 10.8. Character Entity References

	Chapter 11. Creating Links
	Section 11.1. Simple Hypertext Links
	Section 11.2. Linking Within a Document
	Section 11.3. Targeting Windows
	Section 11.4. Alternative Protocols
	Section 11.5. Linking Documents with link

	Chapter 12. Images and Objects
	Section 12.1. Inline Images
	Section 12.2. Image Maps
	Section 12.3. Embedded Media
	Section 12.4. Java Applets
	Section 12.5. Inline (Floating) Frames

	Chapter 13. Tables
	Section 13.1. Table Uses
	Section 13.2. Basic Table Structure
	Section 13.3. Row Groups
	Section 13.4. Columns and Column Groups
	Section 13.5. Table Presentation
	Section 13.6. Accessible Tables
	Section 13.7. Responsible Layout Tables

	Chapter 14. Frames
	Section 14.1. Introduction to Frames
	Section 14.2. Basic Frameset Structure
	Section 14.3. Frame Function and Appearance
	Section 14.4. Targeting Frames
	Section 14.5. Frame Design Tips and Tricks

	Chapter 15. Forms
	Section 15.1. The Basic Form Element
	Section 15.2. Form Controls
	Section 15.3. Accessibility Features
	Section 15.4. disabled and readonly
	Section 15.5. Affecting Form Appearance

	Part III: The Presentation Layer: Cascading Style Sheets
	Chapter 16. Cascading Style Sheets Fundamentals
	Section 16.1. CSS in a Nutshell
	Section 16.2. The Benefits of CSS
	Section 16.3. How CSS Works
	Section 16.4. Rule Syntax
	Section 16.5. Adding Styles to a Document
	Section 16.6. Key Concepts
	Section 16.7. Specifying Values
	Section 16.8. Browser Support
	Section 16.9. For Further Reading

	Chapter 17. Selectors
	Section 17.1. Type (Element) Selector
	Section 17.2. Contextual Selectors
	Section 17.3. Class and ID Selectors
	Section 17.4. Attribute Selectors
	Section 17.5. Pseudoselectors

	Chapter 18. Font and Text Properties
	Section 18.1. Typography on the Web
	Section 18.2. Font Family
	Section 18.3. Font Size
	Section 18.4. Other Font Settings
	Section 18.5. Text Transformation (Capitalization)
	Section 18.6. Text Decoration
	Section 18.7. Line Height
	Section 18.8. Text Alignment Properties
	Section 18.9. Text Spacing
	Section 18.10. Text Direction

	Chapter 19. Basic Box Properties
	Section 19.1. The Box Model, Revisited
	Section 19.2. Width and Height
	Section 19.3. Margins
	Section 19.4. Borders
	Section 19.5. Padding

	Chapter 20. Color and Backgrounds
	Section 20.1. Foreground Color
	Section 20.2. Background Color
	Section 20.3. Background Images

	Chapter 21. Floating and Positioning
	Section 21.1. Normal Flow
	Section 21.2. Floating
	Section 21.3. Positioning Basics
	Section 21.4. Absolute Positioning
	Section 21.5. Fixed Positioning
	Section 21.6. Relative Positioning

	Chapter 22. CSS for Tables
	Section 22.1. The Essence of Tables
	Section 22.2. Styling Tables
	Section 22.3. Borders
	Section 22.4. Table Layout (Width and Height)
	Section 22.5. Table Display Values

	Chapter 23. Lists and Generated Content
	Section 23.1. CSS for Lists
	Section 23.2. Generated Content

	Chapter 24. CSS Techniques
	Section 24.1. Centering a Page
	Section 24.2. Two-Column Layouts
	Section 24.3. Three-Column Layouts
	Section 24.4. Boxes with Rounded Corners
	Section 24.5. Image Replacement
	Section 24.6. CSS Rollovers
	Section 24.7. List-Based Navigation Bars
	Section 24.8. CSS Techniques Resources

	Chapter 25. Managing Browser Bugs: Workarounds, Hacks, and Filters
	Section 25.1. Working with
	Section 25.2. The Browsers
	Section 25.3. Hack and Workaround Management 101

	Part IV: The Behavioral Layer: JavaScript and the DOM
	Chapter 26. Introduction to JavaScript
	Section 26.1. A Little Background
	Section 26.2. Using JavaScript
	Section 26.3. JavaScript Syntax
	Section 26.4. Event Handling
	Section 26.5. The Browser Object
	Section 26.6. Where to Learn More

	Chapter 27. DOM Scripting
	Section 27.1. A Sordid Past
	Section 27.2. Out of the Dark Ages
	Section 27.3. The DOM
	Section 27.4. Manipulating Documents with the DOM
	Section 27.5. Working with Style
	Section 27.6. DOM Scripting in Action
	Section 27.7. Supplement: Getting Started with Ajax

	Part V: Web Graphics
	Chapter 28. Web Graphics Overview
	Section 28.1. Web Graphic File Formats
	Section 28.2. Image Resolution
	Section 28.3. Color on the Web
	Section 28.4. Web Graphics Production Tips

	Chapter 29. GIF Format
	Section 29.1. 8-Bit Indexed Color
	Section 29.2. LZW Compression
	Section 29.3. Interlacing
	Section 29.4. Transparency
	Section 29.5. Minimizing GIF File Sizes
	Section 29.6. Designing GIFs with the Web Palette

	Chapter 30. JPEG Format
	Section 30.1. 24-Bit Color
	Section 30.2. JPEG Compression
	Section 30.3. Progressive JPEGs
	Section 30.4. Creating JPEGs
	Section 30.5. Minimizing JPEG File Size

	Chapter 31. PNG Format
	Section 31.1. When to Use PNGs
	Section 31.2. PNG Features
	Section 31.3. Platform/Browser Support
	Section 31.4. Creating PNG Files
	Section 31.5. PNG Optimization Strategies
	Section 31.6. For Further Reading

	Chapter 32. Animated GIFs
	Section 32.1. How They Work
	Section 32.2. Using Animated GIFs
	Section 32.3. Tools
	Section 32.4. Creating Animated GIFs
	Section 32.5. Optimizing Animated GIFs

	Part VI: Media
	Chapter 33. Audio on the Web
	Section 33.1. Basic Digital Audio Concepts
	Section 33.2. Using Existing Audio
	Section 33.3. Preparing Your Own Audio
	Section 33.4. Streaming Audio
	Section 33.5. Audio Formats
	Section 33.6. Choosing an Audio Format
	Section 33.7. Adding Audio to a Web Page

	Chapter 34. Video on the Web
	Section 34.1. Basic Digital Video Concepts
	Section 34.2. Compression
	Section 34.3. Video File Formats
	Section 34.4. Adding Video to an HTML Document

	Chapter 35. The Flash Platform
	Section 35.1. Using Flash on Web Pages
	Section 35.2. Creating Flash Movies
	Section 35.3. ActionScript
	Section 35.4. Adding Flash to a Web Page
	Section 35.5. Integrating Flash with Other Technologies
	Section 35.6. The Flash Player
	Section 35.7. Flash Resources

	Chapter 36. Printing from the Web
	Section 36.1. Browser Print Mechanisms
	Section 36.2. Cascading Style Sheets for Print
	Section 36.3. Portable Document Format (PDF)
	Section 36.4. Flash Printing

	Part VII: Appendixes
	Appendix A. HTML Elements and Attributes
	Section A.1. Common Attributes and Events

	Appendix B. CSS 2.1 Properties
	Section B.1. Visual Media
	Section B.2. Paged Media
	Section B.3. Aural Styles

	Appendix C. Character Entities
	Section C.1. ASCII Character Set
	Section C.2. Nonstandard Entities (‚-Ÿ)
	Section C.3. Latin-1 (ISO-8859-1)
	Section C.4. Latin Extended-A
	Section C.5. Latin Extended-B
	Section C.6. Spacing Modifier Letters
	Section C.7. Greek
	Section C.8. General Punctuation
	Section C.9. Letter-like Symbols
	Section C.10. Arrows
	Section C.11. Mathematical Operators
	Section C.12. Miscellaneous Technical Symbols
	Section C.13. Geometric Shapes
	Section C.14. Miscellaneous Symbols

	Appendix D. Specifying Color
	Section D.1. Specifying Color by RGB Values
	Section D.2. Specifying Colors by Name

	Appendix E. Microformats: Extending (X)HTML
	Section E.1. Extending HTML 4 and XHTML
	Section E.2. Semantic Class Names
	Section E.3. Link Relationships
	Section E.4. More Microformats

	Glossary
	About the Author
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

