
 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

CSS Cookbook

By Christopher Schmitt

Publisher: O'Reilly

Pub Date: August 2004

ISBN: 0-596-00576-8

Pages: 272

The CSS Cookbook cuts straight through the theory to provide hundreds of useful examples and CSS
code recipes you can use immediately to format your web pages. Reflecting CSS2 and including topics
that range from basic web typography and page layout to techniques for formatting lists, forms, and
tables, the CSS Cookbook is a must-have resource for any web author who has even considered
using CSS.

 < Day Day Up >

 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

CSS Cookbook

By Christopher Schmitt

Publisher: O'Reilly

Pub Date: August 2004

ISBN: 0-596-00576-8

Pages: 272

 Copyright

 Foreword

 Preface

 Audience

 Assumptions This Book Makes

 Contents of This Book

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 Acknowledgments

 Chapter 1. Web Typography

 Introduction

 Recipe 1.1. Specifying Fonts and Inheritance

 Recipe 1.2. Specifying Font Measurements and Sizes

 Recipe 1.3. Enforcing Font Sizes

 Recipe 1.4. Setting a Simple Initial Cap

 Recipe 1.5. Setting a Larger, Centered Initial Cap

 Recipe 1.6. Setting an Initial Cap with Decoration (Imagery)

 Recipe 1.7. Creating a Heading with Stylized Text

 Recipe 1.8. Creating a Heading with Stylized Text and Borders

 Recipe 1.9. Stylizing a Heading with Text and an Image

 Recipe 1.10. Creating a Pull Quote with HTML Text

 Recipe 1.11. Creating a Pull Quote with Borders

 Recipe 1.12. Creating a Pull Quote with Images

 Recipe 1.13. Setting the Indent in the First Line of a Paragraph

 Recipe 1.14. Setting the Indent of Entire Paragraphs

 Recipe 1.15. Setting Text to Be Justified

 Recipe 1.16. Styling the First Line of a Paragraph

 Recipe 1.17. Styling the First Line of a Paragraph with an Image

 Recipe 1.18. Creating a Highlighted Text Effect

 Recipe 1.19. Changing Line Spacing

 Chapter 2. Page Elements

 Introduction

 Recipe 2.1. Eliminating Page Margins

 Recipe 2.2. Coloring the Scrollbar

 Recipe 2.3. Centering Elements on a Web Page

 Recipe 2.4. Setting a Background Image

 Recipe 2.5. Creating a Line of Background Images

 Recipe 2.6. Placing a Background Image

 Recipe 2.7. Fixing the Background Image

 Recipe 2.8. Placing a Page Border

 Recipe 2.9. Customizing a Horizontal Rule

 Recipe 2.10. Example Design: Setting Up a Dynamic Splash Page

 Chapter 3. Links and Navigation

 Introduction

 Recipe 3.1. Removing Underlines from Links

 Recipe 3.2. Setting Text to Blink

 Recipe 3.3. Setting Style Decorations Other Than Underlines

 Recipe 3.4. Changing Cursors

 Recipe 3.5. Creating Rollovers Without JavaScript

 Recipe 3.6. Creating Nongraphical Menus with Rollovers

 Recipe 3.7. Creating Collapsible Menus

 Recipe 3.8. Building Horizontal Menus

 Recipe 3.9. Creating Breadcrumb Navigation

 Recipe 3.10. Creating Image-Based Rollovers

 Recipe 3.11. Designing a Dynamic Visual Menu

 Recipe 3.12. Creating Contextual Menus

 Chapter 4. Lists

 Introduction

 Recipe 4.1. Changing the Format of a List

 Recipe 4.2. Writing Cross-Browser Indentation in Lists

 Recipe 4.3. Creating Custom Text Markers for Lists

 Recipe 4.4. Creating Custom Image Markers for Lists

 Recipe 4.5. Creating Inline Lists

 Recipe 4.6. Making Hanging Indents in a List

 Recipe 4.7. Moving the Marker Inside the List

 Chapter 5. Forms

 Introduction

 Recipe 5.1. Setting Styles for Input Elements

 Recipe 5.2. Setting Styles for textarea Elements

 Recipe 5.3. Setting Styles for Select and Option Elements

 Recipe 5.4. Creating Form Buttons

 Recipe 5.5. Setting Up a Submit-Once-Only Button

 Recipe 5.6. Designing a Web Form Without Tables

 Recipe 5.7. Sample Design: A Login Form

 Recipe 5.8. Sample Design: A Registration Form

 Chapter 6. Tables

 Introduction

 Recipe 6.1. Setting the Cell Spacing

 Recipe 6.2. Setting the Borders and Cell Padding

 Recipe 6.3. Setting the Styles Within Table Cells

 Recipe 6.4. Removing Gaps from Table Cells with Images

 Recipe 6.5. Setting Styles for Table Header Elements

 Recipe 6.6. Sample Design: An Elegant Calendar

 Chapter 7. Page Layouts

 Introduction

 Recipe 7.1. Developing Hybrid Layouts Using HTML Tables and CSS

 Recipe 7.2. Building a One-Column Layout

 Recipe 7.3. Building a Two-Column Layout

 Recipe 7.4. Building a Two-Column Layout with Fixed-Width Columns

 Recipe 7.5. Creating a Flexible Multicolumn Layout with Floats

 Recipe 7.6. Creating a Fixed-Width Multicolumn Layout with Floats

 Recipe 7.7. Creating a Flexible Multicolumn Layout with Positioning

 Recipe 7.8. Creating a Fixed-Width Multicolumn Layout with Positioning

 Recipe 7.9. Designing an Asymmetric Layout

 Chapter 8. Print

 Introduction

 Recipe 8.1. Creating a Printer-Friendly Page

 Recipe 8.2. Making a Web Form Print-Ready

 Recipe 8.3. Inserting URLs After Links

 Recipe 8.4. Sample Design: A Printer-Friendly Page with CSS

 Chapter 9. Hacks and Workarounds

 Introduction

 Recipe 9.1. Hiding Certain Styles from Netscape Navigator 4.x

 Recipe 9.2. Delivering Alternative Values to Internet Explorer 5.x for Windows

 Recipe 9.3. Removing Web Page Flicker in Internet Explorer 5.x for Windows

 Recipe 9.4. Keeping Background Images Stationary in Internet Explorer 6 for Windows

 Recipe 9.5. Keeping CSS Rules from Internet Explorer 5 for Macintosh

 Chapter 10. Designing with CSS

 Introduction

 Recipe 10.1. Enlarging Text Excessively

 Recipe 10.2. Creating Unexpected Incongruity

 Recipe 10.3. Combining Unlike Elements to Create Contrast

 Recipe 10.4. Leading the Eye with Contrast

 Recipe 10.5. Building a Panoramic Image Presentation

 Recipe 10.6. Combining Different Image Formats

 Recipe 10.7. Making Word Balloons

 Recipe 10.8. Emphasizing a Quotation

 Recipe 10.9. Placing a Drop Shadow Behind an Image

 Appendix A. Resources

 Recipe A.1. Discussion Groups

 Recipe A.2. References

 Recipe A.3. Tools

 Recipe A.4. Design Resources

 Colophon

 Index

 < Day Day Up >

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Cookbook series designations, CSS Cookbook, the image of a grizzly bear,
and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

 < Day Day Up >

http://safari.oreilly.com

 < Day Day Up >

Foreword
Any great chef will tell you that the key to creating good food is using quality ingredients. Author
Christopher Schmitt has just gone shopping for you. By compiling hundreds of CSS recipes into this
single book, he's giving you a one-stop shop to create stylish, flexible web pages.

When I was first learning the wonders of CSS, trial and error prevailed as my primary means for
discovering its creative powers. "Hmm, I'd like to turn this list into a horizontal navigation bar," or "I
need to stylize the components of a form using CSS for a client." Several hours (or days) would go by
after plugging in various CSS rules, removing some, and experimenting with endless combinations.
This hit-or-miss approach worked (at times), and while a curious person like myself may even
consider it "fun," it sure ate up a lot of time in the process.

I wish I'd had this book. Instead of stumbling upon the solution for styling every element of the page,
I could have just thumbed through the CSS Cookbook, grabbed the recipe and started baking. The
guesswork would've been eliminated, and I could have, instead, spend my time doing what I love to
do best: creating.

The modular nature of this book makes it an indispensable reference for designers and developers of
any caliber. Posed with problems from how best to handle typography, links and navigation to even
entire page layouts, Christopher clearly explains not only the styles necessary to complete the task,
but the caveats that may be attached for certain browsers. By additionally explaining the helpful
workarounds to everyday CSS problems, he's arming you with the critical knowledge needed to be a
successful CSS designer.

For example, a recent article told of a common usability problem: when posed with a Submit button
at the end of a form, some users just can't shake their double-clicking habits. The button may get
clicked twice, with the results of the form getting duplicated. What to do? A solution wasn't offered in
the aforementioned article. However, unsurprisingly, there's a recipe in this very book that'll solve
this little problem using CSS and a dash of JavaScript.

And that's the heart of this book's purpose: real problems and the goods that will deliver real results.
You've heard about how CSS will simplify your life, making pages lighter and easier to maintain. Now
it's time to start using it, and with this book, you'll have one less excuse not to.

So, my advice is to clear off a space on your desk because the CSS Cookbook will take up permanent
residency in the corner. Hopefully for you, a spot that is easily within arm's reach.

-Dan Cederholm
Founder, SimpleBits http://www.simplebits.com
Salem, Massachusetts

 < Day Day Up >

http://www.simplebits.com

 < Day Day Up >

Preface
Cascading Style Sheets (CSS) is a simple standardized system that gives designers extensive control
over the presentation of their web pages. CSS is an essential component of web design today.
Compared to 90's-era workarounds, web builders have greater control over a web site's design and
spend less time editing and maintaining that design. CSS also extends beyond the traditional web
design to design and control the look of a web page when it's printed.

This book is a collection of CSS-based solutions to common web design problems. The solutions range
from the simple to the complex, but hopefully everyone will learn something from this book.

CSS is easy to use: it doesn't demand any special hardware or software. The basic requirements are
a computer, a modern browser like Mozilla or Internet Explorer for Windows (to name a few), and
your favorite web page editor. A web page editor could be anything from a simple text editor like
Window's Notepad or Macintosh's SimpleText to a full-fledged WYSIWYG tool like Macromedia
Dreamweaver in code view.

 < Day Day Up >

 < Day Day Up >

Audience

This book is for web designers and developers struggling with the problems of designing with CSS.
With this book, web builders can solve common problems associated with CSS-enabled web page
designs.

This book is good for people who have wanted to use CSS for web projects, but have shied away
from learning a new technology. If you are this type of reader, use the solutions in the book one or a
few at a time. Use it as a guidebook and come back to it when you are ready or need to learn
another technique or trick.

If you consider yourself an expert with CSS but not an expert in basic design knowledge, this book is
useful to have by the side of your computer. It covers elements of design from web typography to
page layouts, and a motivational chapter (Chapter 10) is included.

 < Day Day Up >

 < Day Day Up >

Assumptions This Book Makes

This book assumes that the reader is at least a part-time web designer or developer wanting a book
that provides fast answers to common CSS problems. You should also have a working knowledge of
JavaScript for a few of the recipes in order to properly place the code into a page. Most recipes,
however, do not use JavaScript.

Web designers familiar with traditional, HTML table-based methods are going to find CSS challenging.
This frustration is a natural part of the learning process. Learning how to design with CSS should be
approached with patience and a good sense of humor. The "browser hell" often associated with cross-
browser development still exists in CSS, as it does with HTML tables, font tags, and single-pixel

GIFs. CSS is a different, better way of constructing those web page designs, not a cure-all.

What this book is neither an introduction to CSS, nor is it a book that goes into great detail on how
CSS should work in browsers. If you need a book that delves into such topics about the CSS
specification, you should look into Cascading Style Sheets: The Definitive Guide (O'Reilly Media, Inc.).

While some of the solutions in the CSS Cookbook touch on JavaScript along with CSS, the book is
geared toward finding solutions rooted in CSS. If you are looking for a solution-focused book that
deals with CSS in tandem with the Document Object Model (DOM) and JavaScript, that book would
be JavaScript and DHTML Cookbook (O'Reilly).

If you use programs like Macromedia Dreamweaver only in its WYSIWG or "design" mode and rarely
touch the markup in "code" view, you might have trouble getting the most out of this book right
away. To get an introduction to coding HTML directly, look into Learning Web Design (O'Reilly).

While WYSWIYG tools allow for CSS-enabled designs, some of the tools have not caught up with
some of the unorthodox approaches recommended in this book and might cause some trouble if you
attempt to implement them by editing solely in WYSIWG mode. To benefit from this book, you must
be able to edit HTML and CSS by hand. Some of the code in this book can be recreated using dialog-
box-driven web page building applications, but you may run into some problems along the way.

The solutions in this book are geared for modern browsers with version numbers of 5 or greater.
Whenever possible, there is mention of when a technique might cause problems in Version 5 or higher
browsers. While there is a chapter on hacks and workarounds to hide style sheets from browsers
with poor implementations of the complete CSS specification, this book makes no assurances that the
reader is going create pixel-perfect designs in every browser. Even with traditional web design
methods from the 90s, this has never been the case. Unfortunately, that's the nature of cross-
platform, cross-browser web design.

 < Day Day Up >

 < Day Day Up >

Contents of This Book

The most common way I use a book like this is to crack it open from time to time when trying to
solve a particular problem. To that end, this book will serve well on a web builder's desk-always
within reach to resolve a problem with CSS. However, you are still free to read the book from the
first page to the last.

The following paragraphs review the contents of each chapter:

Chapter 1, discusses how to use CSS to specify fonts in web pages, headings, pull quotes, and
indents within paragraphs, as well as other solutions.

Chapter 2, covers a loose collection of items that don't necessarily fit in every chapter, but that all
carry a theme of affecting the design of the overall page. Solutions in this chapter include centering
elements, setting a background image, placing a border on a page, and other techniques.

Chapter 3, shows how to use CSS to control the presentation of a link and sets of links. Solutions
range from the basic, like removing the underlining from links, to the more complex, such as creating
a dynamic visual menu.

Chapter 4, describes how to style the basic list items in various ways. Solutions include cross-browser
indentation, making hanging indents, inserting custom images for list markers, and more.

Chapter 5, discusses ways to work around the basic ways browsers render forms. Solutions reviewed
in this chapter include setting styles to specific form elements, setting a submit once-only button, and
styling a login form.

Chapter 6, shows how to style HTML tables. While CSS can help eliminate HTML table-based designs,
sometimes need to style tabular data such as calendars and statistical data. This chapter includes
solutions for things such as setting cell padding, removing gaps in table cells with images, and styling
a calendar.

Chapter 7, talks about how CSS can be used to engineer layouts. The solutions in this chapter include
methods for hybrid (HTML tables and CSS) layouts, and one-column to multicolumn layouts.

Chapter 8, provides information on how to set styles that are used when printing web pages.
Solutions discussed in this chapter include adding a separate print style sheet to a web page, setting
styles for web forms, and inserting URLs after links.

Chapter 9, covers solutions on how to hide style sheets that cannot be handled by certain browsers.
Recipes include hiding style sheets for browsers like Netscape Navigator 4 and Internet Explorer for
Windows 5. Also included are tips on how to stop the CSS-related flicker effect in Internet Explorer for
Windows 5 and how to keep background images fixed in Internet Explorer for Windows 6.

Chapter 10, is an inspirational chapter. Focusing on the notion that CSS is merely a tool that
implements design, this chapter covers things like playing with enlarging type sizes, working with
contrast, and building a panoramic presentation.

The Appendix A, is a collection of links and web sites covering items related to learning more about
CSS.

 < Day Day Up >

 < Day Day Up >

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, example URLs, example email addresses, filenames, and file extensions.

Constant width

Indicates commands, options, attributes, functions, types, classes, methods, properties,
values, events, event handlers, XML tags, and HTML tags.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

 < Day Day Up >

 < Day Day Up >

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You don't need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "CSS Cookbook, by Christopher Schmitt. Copyright 2004 O'Reilly
Media, Inc., 0-596-00576-8."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

 < Day Day Up >

 < Day Day Up >

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/cssckbk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

 < Day Day Up >

http://www.oreilly.com/catalog/cssckbk
http://www.oreilly.com

 < Day Day Up >

Acknowledgments

First, thanks to David Siegel and Lynda Weinman for their inspiration and support from the beginning
of web design.

I wouldn't be writing any books for an industry I love so very much without the support and
friendship of Molly Holzschlag.

A lot of appreciation and respect to fellow web builders for pushing CSS-enabled web designs
forward: Douglas Bowman, Tantek Çelik, Dan Cenderhlem, Mike Davidson, Ethan Marcotte, Eric A.
Meyer, Mark Newhouse, Dave Shea, and Jeffrey Zeldman.

Special thanks go to the technical editors, Erik J. Barzeski, Liza Daly, and Porter Glendinning, as well
as copy editor Audrey Doyle for their time, expertise, and patience.

To my friend, Porter Glendinning, who seems to have a knack for not only being able to read W3C
specifications and see their implications two or three steps ahead of most web developers, but also to
articulate those thoughts in such a way to make me believe my grandmother could even understand
what he's talking about. Your translation services and thoughts are a truly appreciated.

I want to say thanks to Paula Ferguson. While she left O'Reilly before the project got underway, she
did accept my proposal for the book you have in your hands. While not the most time-intensive
contribution to the project, it's probably the most important.

To fill Paula's shoes, Tatiana Diaz and Nathan Torkington did a great job of making sure my questions
were answered and guiding me throughout the life of the project. This writing process has been my
most challenging but most rewarding experience to date. And, frankly, I wouldn't have wanted it any
other way with any other publisher.

Thanks to my friends who know me as the web geek I truly am: Judy Crawford, Dee Lalley, Richard
Grillotti, Katrina Ferguson, Gail Rubini, Linda Sierra, Miles Tilmann, and Andrew Watson.

Thanks to my family for the love and appreciation. Your support through good times and bad has
been a rock. As always, I'm looking forward to our next reunion.

And, Dad, this book is dedicated to you.

 < Day Day Up >

 < Day Day Up >

Chapter 1. Web Typography
Introduction

Recipe 1.1. Specifying Fonts and Inheritance

Recipe 1.2. Specifying Font Measurements and Sizes

Recipe 1.3. Enforcing Font Sizes

Recipe 1.4. Setting a Simple Initial Cap

Recipe 1.5. Setting a Larger, Centered Initial Cap

Recipe 1.6. Setting an Initial Cap with Decoration (Imagery)

Recipe 1.7. Creating a Heading with Stylized Text

Recipe 1.8. Creating a Heading with Stylized Text and Borders

Recipe 1.9. Stylizing a Heading with Text and an Image

Recipe 1.10. Creating a Pull Quote with HTML Text

Recipe 1.11. Creating a Pull Quote with Borders

Recipe 1.12. Creating a Pull Quote with Images

Recipe 1.13. Setting the Indent in the First Line of a Paragraph

Recipe 1.14. Setting the Indent of Entire Paragraphs

Recipe 1.15. Setting Text to Be Justified

Recipe 1.16. Styling the First Line of a Paragraph

Recipe 1.17. Styling the First Line of a Paragraph with an Image

Recipe 1.18. Creating a Highlighted Text Effect

Recipe 1.19. Changing Line Spacing

 < Day Day Up >

 < Day Day Up >

Introduction

Before Cascading Style Sheets (CSS) came along, web developers used font tags to set the color,

size, and style of text on different parts of a web page:

Hello,

World!

Although this method is effective for changing the appearance of type, using it to manipulate an
entire web site containing multiple font tags results in time-consuming updates, adds to the overall

file size of the web document, and increases the likelihood that errors will occur in the markup.

CSS helps to eliminate these design and maintenance problems. We can solve this problem in many
ways, such as placing the content in a p element:

<p>Hello, World!</p>

Then use CSS to dictate the style of the document by placing this CSS block in the head of the
document:

<style type="text/css" media="all">

 p {

 color: blue;

 font-size: small;

 font-family: Verdana, Arial, sans-serif;

 }

</style>

Now the document's structure and its visual presentation are separated. Because they are in
separate areas, the process of editing and maintaining a web site's design including typography is
simplified immensely.

It is important to be able to read the contents of a web page online, and CSS enables you to
accomplish myriad tasks for controlling web page typography. In addition to setting the color, style,
and size of fonts, this chapter also covers techniques for setting initial caps, creating visually
compelling pullquotes, modifying leading, and more.

 < Day Day Up >

 < Day Day Up >

Recipe 1.1 Specifying Fonts and Inheritance

Problem

You want to set the typeface of text on a web page.

Solution

Use the font-family property:

p {

 font-family: Georgia, Times, "Times New Roman", serif;

}

Discussion

You can specify the fonts you want the browser to render on a web page by writing a comma-
delimited list for the value of the font-family property. If the browser can't find the first font on the

list, it tries to find the next font, and so on, until it finds a font.

If the font name contains spaces, enclose the name with single or double quotation marks. You can
enclose all font names in quotes, regardless of whether they contain spaces, but if you do, browsers
with poor CSS implementations might not render the fonts accurately.

At the end of the list of font choices, you should insert a generic font family. CSS offers five font
family values to choose from, as shown in Table 1-1.

Table 1-1. Generic font family values and examples

Generic font family
values

Font examples

serif Georgia, Times, Times New Roman, Garamond, and Century
Schoolbook

Generic font family
values

Font examples

sans-serif
Verdana, Arial, Helvetica, Trebuchet, and Tahoma

monospace
Courier, MS Courier New, and Prestige

cursive
Lucida Handwriting and Zapf-Chancery

fantasy
Comic Sans, Whimsey, Critter, and Cottonwood

All web browsers contain a list of fonts that fall into the five families shown in Table 1-1. If a font is
neither chosen via a CSS rule nor available on the user's computer, the browser uses a font from one
of these font families.

The most problematic generic font value is fantasy because this value is a catchall for any font that

doesn't fall into the other four categories. Designers rarely use this font because they can't know
what symbols will be displayed! Another problematic generic value is cursive because some systems

can't display a cursive font. If a browser can't use a cursive font, it uses another default font in its
place. Because text marked as cursive may not actually be displayed in a cursive font, designers

often avoid this generic font value as well.

If you want to use an unusual font that might not be installed on most peoples' machines, the rule of
thumb is to set the last value for the font-family property to either serif, sans-serif, or
monospace. This will maintain at least some legibility for the user viewing the web document.

You don't have to set the same properties for every tag you use. A child element inherits, or has the
same property values of, its parent element if the CSS specification that defines a given property can
be inherited. For example, if you set the font-family property to show a serif font in a paragraph
that contains an em element as a child, that text in the em element is also set in a serif font:

<p style="font-family: serif; ">The water fountain

with the broken sign on it is indeed broken.</p>

Inheritance doesn't occur under two circumstances. One is built into the CSS specification and
concerns elements that can generate a box. Elements such as h2 and p are referred to as block-level
elements and can have other properties such as margins, borders, padding, and backgrounds, as
shown in Figure 1-1.

Figure 1-1. The box model for a block-level element

sans-serif
Verdana, Arial, Helvetica, Trebuchet, and Tahoma

monospace
Courier, MS Courier New, and Prestige

cursive
Lucida Handwriting and Zapf-Chancery

fantasy
Comic Sans, Whimsey, Critter, and Cottonwood

All web browsers contain a list of fonts that fall into the five families shown in Table 1-1. If a font is
neither chosen via a CSS rule nor available on the user's computer, the browser uses a font from one
of these font families.

The most problematic generic font value is fantasy because this value is a catchall for any font that

doesn't fall into the other four categories. Designers rarely use this font because they can't know
what symbols will be displayed! Another problematic generic value is cursive because some systems

can't display a cursive font. If a browser can't use a cursive font, it uses another default font in its
place. Because text marked as cursive may not actually be displayed in a cursive font, designers

often avoid this generic font value as well.

If you want to use an unusual font that might not be installed on most peoples' machines, the rule of
thumb is to set the last value for the font-family property to either serif, sans-serif, or
monospace. This will maintain at least some legibility for the user viewing the web document.

You don't have to set the same properties for every tag you use. A child element inherits, or has the
same property values of, its parent element if the CSS specification that defines a given property can
be inherited. For example, if you set the font-family property to show a serif font in a paragraph
that contains an em element as a child, that text in the em element is also set in a serif font:

<p style="font-family: serif; ">The water fountain

with the broken sign on it is indeed broken.</p>

Inheritance doesn't occur under two circumstances. One is built into the CSS specification and
concerns elements that can generate a box. Elements such as h2 and p are referred to as block-level
elements and can have other properties such as margins, borders, padding, and backgrounds, as
shown in Figure 1-1.

Figure 1-1. The box model for a block-level element

Because these properties aren't passed to child block-level elements, you don't have to write
additional rules to counter the visual effects that would occur if they were passed. For example, if you
applied a margin of 15% to a body element, that rule would be applied to every h2 and p element
that is a child of that body element. If these properties were inherited, the page would look like that

shown in Figure 1-2.

Figure 1-2. Hypothetical mock-up of margins and border properties being
inherited

Because certain properties are defined to be inheritable and others aren't, the page actually looks like
that shown in Figure 1-3 in a modern CSS-compliant browser.

Figure 1-3. How the page looks when block-level elements don't inherit
certain properties

The other circumstance under which inheritance doesn't work is, of course, if your browser doesn't
follow the CSS specification. For example, in Netscape Navigator 4, child elements may not inherit the
font-family and color values set in a body type selector. To work around this problem, implicitly
set the font-family and color values for block-level elements:

body {

 font-family: Georgia, Times, "Times New Roman", serif;

 color: #030;

}

h1, h2, h3, h4, h5, h6, p, td, ul, ol, li, dl, dt, dd, {

 font-family: Georgia, Times, "Times New Roman", serif;

 color: #030;

}

See Also

The CSS 2.1 specification for inheritance at
http://www.w3.org/TR/CSS21/cascade.html#inheritance; the CSS 2.1 specification for font-family

values at http://www.w3.org/TR/CSS21/fonts.html#propdef-font-family; more about CSS and
Netscape 4 issues at http://www.mako4css.com/cssfont.htm.

 < Day Day Up >

http://www.w3.org/TR/CSS21/cascade.html#inheritance
http://www.w3.org/TR/CSS21/fonts.html#propdef-font-family;
http://www.mako4css.com/cssfont.htm

 < Day Day Up >

Recipe 1.2 Specifying Font Measurements and Sizes

Problem

You want to set the size of type used on a web page.

Solution

Set the values of fonts using the font-size property:

P {

 font-size: 0.9em;

}

Discussion

Setting the size of the font with percentages causes the browser to calculate the size of the font based
on the size of the parent element. For example, if the font size for the body is set to 12 pixels and the
font size for p element is set to 125%, the font size for the text in paragraphs is 15 pixels.

You can use percentages, length units, and font-size keywords to set type size. Length units fall into
two categories: absolute and relative. Absolute length units include the following:

Inches (in)

Centimeters (cm)

Millimeters (mm)

Points (pt)

Picas (pc)

A point, in terms of the CSS specification, is equal to 1/72nd of an inch and a pica is equal to 12 points.

Because browser displays vary due to different operating systems and video settings, setting type in
a fixed (or absolute) value doesn't make much sense. In fact, it's best to avoid absolute
measurements for web documents, unless you're styling documents for fixed output. For example,
when you create a style sheet to print a web document, absolute length units are preferred. For more

on creating style sheets for printing, see Chapter 9.

The CSS specification doesn't dictate how browser vendors should treat text when the font-size

property is set to a value of zero. Therefore different browsers interpret the value unpredictably. For
example, such text isn't visible in the Mozilla browser. In Internet Explorer for Macintosh and Safari,
the text isn't hidden, but, rather, is displayed at the default value of the font size. The Opera browser
displays the text at a smaller, but still legible, size. And Internet Explorer for Windows sets the type
size to a small, illegible, but still visible line of text that appears to be equal to the size of 0.1em, as
shown in Figure 1-4. If you want to make text invisible, use the CSS properties visibility or
display instead of setting the size of fonts to zero.

p {visibility: none}

Figure 1-4. Internet Explorer for Windows showing illegible type when the
font size is set to zero

A negative length value, such as -25cm, for the font-size property isn't allowed.

Relative units set the length of a property based on the value of another length property. Relative
length units include the following:

Em

X-height (ex)

Pixels (px)

Em units refer to the default font size set in the preference of the user's browser, while x-height
refers to the height of the lowercase letter x in the font.

Pixels consistently control the size of typography in a web document across most platforms and
browsers. However, it's not a good idea to use pixels when designing for the following browsers:

Netscape Navigator 4.7x, which doesn't display pixel size values correctly

Opera 5 for the Macintosh, which displays pixel lengths smaller than the size set in the style
sheet

If most visitors to your site use browsers other than Netscape Navigator 4.7x and Opera 5 for the
Mac, you can safely use pixels to set the size of your type.

The main issue in regard to setting type size in pixels isn't one of accurate sizing, but of accessibility.
People with poor vision might want to resize the type to better read the document. However, if you
use pixels to set the type on your web page, people using Internet Explorer for Windows will be
unable to resize the type. Because Internet Explorer for Windows is the most popular browser on the
planet, the use of pixels to set type size becomes a problem for most users who need to resize the
type in their browsers.

If you do require an absolute size measurement, pixels should be used rather than points, even
though print designers are more accustomed to point measurements. The reason is that Macintosh
and Windows operating systems render point sizes differently, but pixel size stays the same.

If accessibility is a concern, switch to em units. In the Solution, we set the text in a paragraph to
0.9em units. This value is equivalent to setting the font size to 90% of the default font size set in the
browser's preference.

However, the use of em units raises another concern. This time the problem pertains to usability.
Although you might be able to resize the type in a web page, if you set a font to a size that is smaller
than the default text size of the browser (for example, to 0.7em), Internet Explorer for Windows will
display small, almost illegible lines of text, as shown in Figure 1-5. So, the lesson here is: be careful
with relative sizes, as it is easy to make text illegible.

Figure 1-5. Almost illegible type set with em units

This brings up the possibility of another solution: the use of font-size keywords. The CSS 2.1
specification has seven font keywords for absolute sizes that you can use to set type size (see Figure
1-6): xx-small, x-small, small, medium, large, x-large, xx-large.

Figure 1-6. The font-size keywords on display

There are two other font-size keywords for relative measurements: larger and smaller. If a child
element is set to larger, the browser can interpret the value of the parent's font-size value of
small and increase the text inside the child element to medium.

Font-size keywords provide two benefits: they make it easy to enlarge or reduce the size of the text
in most browsers, and the font sizes in browsers never go smaller than nine pixels, ensuring that the
text is legible. If you do set text to a small size, use a sans-serif font such as Verdana to increase the
chances for legibility.

The main drawback with font-size keywords is that Internet Explorer 4-5.5 sets the small value as
the default setting instead of the recommended medium setting. Because of this decision, Internet

Explorer actually maps all the font-size keywords to one level lower than other browsers. In other
words, the value for xx-large in IE 4-5.5 is every other browser's x-large, x-large in IE is large in

another browser, and so on. Another drawback is that in Netscape 4, the smaller sizes are
sometimes illegible because they aren't rendered well by the browser.

The workaround for these drawbacks is to first create a separate style sheet that contains the font-
size keywords for the web document. Then use the @import method for associating a style sheet, as

explained in Recipe 9.1 and as shown here (this step keeps Navigator 4 from rendering illegible type):

<link href="/_assets/basic.css" media="all"

rel="style sheet" />

<style type="text/css" media="screen">

 @import url(/_assets/fontsize.css);

</style>

To keep Internet Explorer 5 and 5.5 for Windows from displaying the wrong sizes for the font-size
keywords, use the voice-family workaround for delivering alternative values in Internet Explorer,

as explained in Recipe 9.2 and as shown here:

#content {

 /*

 font-size workaround for WinIE 5:

 1) WinIE 5/5.5 value first:

 */

 font-size: x-small;

 voice-family: "\"}\"";

 voice-family: inherit;

 /*

 2) Then the correct value next 2 times:

 */

font-size: small;

}

html>#content

 font-size: small;

}

See Also

The article "CSS Design: Size Matters," written by Todd Fahrner (an invited member to the W3C CSS
Working Group) available at http://www.alistapart.com/articles/sizematters/; Recipe 10.1 for
enlarging text to gain attention; the CSS 2.1 specification at
http://www.w3.org/TR/CSS21/cascade.html#q1 for more on how a browser determines values; the
CSS 2 specification for length units at http://www.w3.org/TR/REC-CSS2/syndata.html#length-units;
the section "Font Size" in Chapter 5 of Cascading Style Sheets: The Definitive Guide (O'Reilly).

 < Day Day Up >

http://www.alistapart.com/articles/sizematters/
http://www.w3.org/TR/CSS21/cascade.html#q1
http://www.w3.org/TR/REC-CSS2/syndata.html#length-units

 < Day Day Up >

Recipe 1.3 Enforcing Font Sizes

Problem

You want to override control over font sizes.

Solution

Use the !important rule to override a user's style sheet rules:

P {

 font-size: 12px !important;

}

Discussion

The !important rule consists of an exclamation mark (!) followed immediately by the word

important.

In some browsers, a user can have a style sheet set up for browsing the Web that enables him to set
font sizes (and other CSS properties) to his liking. However, as a designer of a web document, you
might want to make sure your designs render in the manner you planned. The !important rule gives

you a little insurance that your designs remain intact. (However, the nature of the medium means
that designs are never precise or "pixel-perfect" from one display to another.)

Although you as the designer write the !important CSS rules, the user also can write these rules in
his own style sheet. And in the CSS 2 specification, !important rules the user writes override any
!important rules the designer writes.

See Also

The CSS 2.1 specification on !important rules at

http://www.w3.org/TR/CSS21/cascade.html#important-rules.

 < Day Day Up >

http://www.w3.org/TR/CSS21/cascade.html#important-rules

 < Day Day Up >

Recipe 1.4 Setting a Simple Initial Cap

Problem

You want a paragraph to begin with an initial cap.

Solution

Mark up the paragraph of content with a p element:

<p>Online, activity of exchanging ideas is sped up. The

distribution of messages from the sellin of propaganda to the

giving away of disinformation takes place at a blindingly fast

pace thanks to the state of technology...</p>

Use the pseudo-element :first-letter to stylize the first letter of the paragraph, as shown in

Figure 1-7:

p:first-letter {

 font-size: 1.2em;

 background-color: black;

 color: white;

}

Figure 1-7. A simple initial cap

Discussion

The CSS specification offers an easy way to stylize the first letter in a paragraph as a traditional initial
or drop cap: use the :first-letter pseudo-element (:first-letter isn't supported in most

browsers, including Internet Explorer 4 and 5 for Windows, Netscape Navigator 4, and Internet
Explorer 4.5 for Macintosh).

Wrap a span element with a class attribute around the first letter of the first sentence of the first

paragraph:

<p>Online, activity of exchanging ideas is sped

up. The distribution of messages from the selling of propaganda

to the giving away of disinformation takes place at a blindingly

fast pace thanks to the state of technology...</p>

Then set the style for the initial cap:

p .initcap {

 font-size: 1.2em;

 background-color: black;

 color: white;

}

Initial caps, also known as versals, traditionally are enlarged in print to anything from a few points to
three lines of text.

See Also

The CSS 2.1 specification for the :first-letter pseudo-element at

http://www.w3.org/TR/CSS21/selector.html#x52; for more information on initial caps in general,
see http://fonts.lordkyl.net/fonts.php?category=vers.

http://www.w3.org/TR/CSS21/selector.html#x52
http://fonts.lordkyl.net/fonts.php?category=vers

 < Day Day Up >

 < Day Day Up >

Recipe 1.5 Setting a Larger, Centered Initial Cap

Problem

You want to place a large initial cap in the center of a paragraph.

Solution

Wrap a span element with a class attribute around the first letter of the first sentence of the first

paragraph:

<p>Online, activity of exchanging ideas is sped

up. The distribution of messages from the selling of propaganda

to the giving away of disinformation takes place at a blindingly

fast pace thanks to the state of technology...</p>

In conjunction with styling the initial letter through the span tag with a class selector, create the

decoration that sets the text indent for the paragraph (see Figure 1-8):

p {

 text-indent: 37%;

 line-height: 1em;

}

p .initcap {

 font-size: 6em;

 line-height: 0.6em;

 font-weight: bold;

}

Figure 1-8. A larger, centered initial cap

Discussion

This Solution works due to the interaction of three CSS properties. The first is the text-indent

property, which moves the first line toward the middle of the paragraph. The value is set to 37%,
which is a little bit more than one-third the distance from the left side of the paragraph, as shown in
Figure 1-9, but not enough to "center" the initial cap.

Figure 1-9. The indented text

The next property that helps is the font-size property. Setting the size to 6em makes the font six

times (or 600%) larger than the default size set for fonts in the browser, as shown in Figure 1-10.

Figure 1-10. The initial cap enlarged six times its normal height

Because the font size is six times as large as the rest of the type, the leading on the first line is now
deeper than it is on the remaining lines. To help adjust that, set the line height for the span element

to 0.6em.

Note that this recipe centering the initial cap works, technically, when the character's width is equal to
26% of the paragraph's width. In other words, if the letter for the initial cap or the width of the
paragraph is different for your own work, adjustments to the values in the CSS rules are necessary to
move the initial cap to the center.

See Also

Recipe 1.19 for adjusting leading with line height; the CSS 2.1 specification for text-indent at

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent.

 < Day Day Up >

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

 < Day Day Up >

Recipe 1.6 Setting an Initial Cap with Decoration
(Imagery)

Problem

You want to use an image for an initial cap.

Solution

Wrap a span element around the first letter of the first sentence of the first paragraph:

<p>Online, activity of exchanging

ideas is sped up. The distribution of messages from the selling of

propaganda to the giving away of disinformation takes place at a

blindingly fast pace thanks to the state of technology...</p>

Set the contents inside the span to be hidden:

p.initcap {

 display: none;

}

Then set an image to be used as the initial cap in the background of the paragraph (see Figure 1-11):

p {

 line-height: 1em;

 background-image: url(initcap-o.gif);

 background-repeat: no-repeat;

 text-indent: 35px;

 padding-top: 45px;

}

Figure 1-11. An image used as an initial cap

Discussion

The first step of this Solution is to create an image for use as the initial cap. Once you have created
the image, make a note of its width and height. In this example, the image of the letter measures 55
by 58 pixels (see Figure 1-12).

Figure 1-12. The image of the initial cap

Next, hide the first letter of the HTML text by setting the display property to none. Then put the

image in the background of the paragraph, making sure that the image doesn't repeat by setting the
value of background-repeat to no-repeat:

background-image: url(initcap-o.gif);

background-repeat: no-repeat;

With the measurements already known, set the width of the image as the value for text-indent and

the height of the image as the padding for the top of the paragraph (see Figure 1-13):

text-indent: 55px;

padding-top: 58px;

Figure 1-13. Adjusting the space for the initial cap

Then change the text-indent and padding-top values so that the initial cap appears to rest on the

baseline, as was shown in Figure 1-11.

Note that users with images turned off aren't able to see the initial cap, especially since the solution
doesn't allow for an alt attribute for the image. If you want to use an image but still have an alt

attribute show when a user turns off images, use an image to replace the HTML character:

<p>nline, activity of exchanging

ideas is sped up. The distribution of messages from the selling

of propaganda to the giving away of disinformation takes place at

a blindingly fast pace thanks to the state of technology...</p>

Note that while the alt attribute is displayed in this solution, the ability to kern the space between

the initial cap and the HTML text is lost. The HTML text begins exactly at the right side of the image
and can't be moved closer to the letter being displayed in the graphic itself.

See Also

Recipe 1.4 for setting a simple initial cap.

 < Day Day Up >

 < Day Day Up >

Recipe 1.7 Creating a Heading with Stylized Text

Problem

You want to use CSS properties to design a heading that is different from the default. For example,
you want to put the heading in Figure 1-14 into italics, as shown in Figure 1-15.

Figure 1-14. The default rendering of a heading

Figure 1-15. The stylized text of a heading

Solution

First, properly mark up the heading:

<h2>Designing Instant Gratification</h2>

<p>Online, activity of exchanging ideas is sped up. The

distribution of messages from the selling of propaganda to the

 giving away of disinformation takes place at a blindingly fast

pace thanks to the state of technology...</p>

Then, use the font shorthand property to easily change the style of the heading:

h2 {

 font: bold italic 2em Georgia, Times, "Times New Roman", serif;

 margin: 0;

 padding: 0;

}

p {

 margin: 0;

 padding: 0;

}

Discussion

A shorthand property combines several properties into one. The font property is just one of these
timesavers. One font property can represent the following values:

font-style

font-variant

font-weight

font-size/line-height

font-family

The first three values can be placed in any order, while the others need to be in the order shown.

When you want to include the line-height value, put a forward slash between the font-size value
and the line-height value:

p {

 font: 1em/1.5em Verdana, Arial, sans-serif;

}

When setting the style headings, remember that browsers have their own default values for padding
and margins of paragraphs and heading tags. These default values are generally based on
mathematics, not aesthetics, so don't hesitate to adjust them to further enhance the look of your
web document.

See Also

50+ CSS heading styles at http://www.cssbook.com/resources/css/headings/; the CSS 2.1
specification for the font shorthand property at http://www.w3.org/TR/CSS21/fonts.html#propdef-

font.

 < Day Day Up >

http://www.cssbook.com/resources/css/headings/
http://www.w3.org/TR/CSS21/fonts.html#propdef-

 < Day Day Up >

Recipe 1.8 Creating a Heading with Stylized Text and
Borders

Problem

You want to stylize the borders on the top and bottom of a heading, as shown in Figure 1-16.

Figure 1-16. A heading stylized with borders

Solution

Use the border-top and border-bottom properties when setting the style for the heading:

h2 {

 font: bold italic 2em Georgia, Times, "Times New Roman", serif;

 border-bottom: 2px dashed black;

 border-top: 10px solid black;

 margin: 0;

 padding: 0.5em 0 0.5em 0;

 font-size: 1em;

}

p {

 margin: 0;

 padding: 10px 0 0 0;

}

Discussion

In addition to top and bottom borders, a block-level element also can have a border on the left and
right sides via the border-left and border-right properties, respectively. The border-top,
border-bottom, border-left, and border-right properties are shorthand properties that enable

developers to set the width, style, and color of each side of a border.

Without the two shorthand border declarations in the Solution, the CSS rule for the heading would be
expanded by four extra declarations:

h2 {

 font: bold italic 2em Georgia, Times, "Times New Roman", serif;

 border-bottom-width: 2px ;

 border-bottom-style: dashed;

 border-bottom-color: black;

 border-top-width: 10px;

 border-top-style: solid;

 border-top-color: black;

 margin: 0;

 padding: 0.5em 0 0.5em 0;

 font-size: 1em;

}

Also available is a shorthand property for the top, bottom, left, and right shorthand properties:
border. The border property sets the same style for the width, style, and color of the border on each

side of an element:

h2 {

 border: 3px dotted #33333;

}

When setting the borders, make sure to adjust the padding to put enough whitespace between the
borders and the text of the heading. This aids in readability. Without enough whitespace on a heading
element, the text of the heading can appear cramped.

See Also

Recipe 2.8 for more information on styles of borders and the shorthand border property.

 < Day Day Up >

 < Day Day Up >

Recipe 1.9 Stylizing a Heading with Text and an Image

Problem

You want to place a repeating image at the bottom of a heading, like the grass in Figure 1-17.

Figure 1-17. A background image used with a heading

Solution

Use the background-image, background-repeat, and background-position properties:

h2 {

 font: bold italic 2em Georgia, Times, "Times New Roman", serif;

 background-image: url(tall_grass.jpg);

 background-repeat: repeat-x;

 background-position: bottom;

 border-bottom: 10px solid #666;

 margin: 10px 0 0 0;

 padding: 0.5em 0 60px 0;

}

Discussion

Make a note of the height of the image used for the background. In this example, the height of the
image is 100 pixels (see Figure 1-18).

Figure 1-18. An image of tall grass

Set the background-repeat property to a value of repeat-x, which will cause the image to repeat

horizontally:

background-image: url(tall_grass.jpg);

background-repeat: repeat-x;

Next, set the background-position property to bottom:

background-position: bottom;

The background-position can take up to two values corresponding to the horizontal and vertical
axes. Values for background-position can be a length unit (such as pixels), a percentage, or a
keyword. To position an element on the x axis, use the keyword values left, center, or right. For
the y axis, use the keyword values top, center, or bottom.

When the location of the other axis isn't present, the image is placed in the center of that axis, as
shown in Figure 1-19.

background-position: bottom;

Figure 1-19. The image aligned on the bottom of the y axis and in the
middle of the x axis

So, in this Solution, the image is placed at the bottom of the y axis but is centered along the x axis.

See Also

Recipe 2.4 for setting a background image in an entire web page.

 < Day Day Up >

 < Day Day Up >

Recipe 1.10 Creating a Pull Quote with HTML Text

Problem

You want to stylize the text for a pull quote so that it is different from the default. Undifferentiated
quotes aren't obviously from another writer (see Figure 1-20), whereas stylized quotes are (see
Figure 1-21).

Figure 1-20. The default rendering of the text for a pull quote

Figure 1-21. The stylized pull quote

Solution

Use the blockquote element to indicate the pull quote semantically in the markup:

<blockquote>

 <p>Ma quande lingues coalesce, li grammatica del resultant

 lingue es plu simplic e regulari quam ti del coalescent

lingues.</p>

 <div class="source">John Smith at the movies</div>

</blockquote>

With CSS, apply the margin, padding, and color values to the blockquote element:

blockquote {

 margin: 0;

 padding: 0;

 color: #555;

}

Next, set the style for the p and div elements nested in the blockquote element:

blockquote p {

 font: italic 1em Georgia, Times, "Times New Roman", serif;

 font-size: 1em;

 margin: 1.5em 2em 0 1.5em;

 padding: 0;

}

blockquote .source {

 text-align: right;

 font-style: normal;

 margin-right: 2em;

}

Discussion

A pull quote is used in design to grab a reader's attention so that he will stick around and read more.
One easy way to create a pull quote is to change the color of a portion of the main text. Improve on
this by adding contrast: change the generic font family of the pull quote so that it is different from
that of the main text. For example, if the main text of a web document is set in sans-serif, set the
pull quote text to a serif font.

See Also

Recipe 1.11 and Recipe 1.12 for more information on designing pullquotes with CSS.

 < Day Day Up >

 < Day Day Up >

Recipe 1.11 Creating a Pull Quote with Borders

Problem

You want to stylize a pull quote with borders on the top and bottom, as in Figure 1-22.

Figure 1-22. A stylized pull quote using borders

To put borders on the left and right, instead of the top and bottom, use the border-left and
border-right properties:

border-left: 1em solid #999;

border-right: 1em solid #999;

Solution

Use the blockquote element to mark up the pull quote content:

<blockquote>

 <p>«Ma quande lingues coalesce, li

grammatica del.»</p>

</blockquote>

Next, set the CSS rules for the border and text within the pull quote:

blockquote {

 float: left;

 width: 200px;

 margin: 0 0.7em 0 0;

 padding: 0.7em;

 color: #666;

 background-color: black;

 font-family: Georgia, Times, "Times New Roman", serif;

 font-size: 1.5em;

 font-style: italic;

 border-top: 1em solid #999;

 border-bottom: 1em solid #999;

}

blockquote p {

 margin: 0;

 padding: 0;

 text-align: left;

 line-height: 1.3em;

}

Discussion

Set the float property as well as the width property for the blockquote element. These two CSS

properties allow the main content to wrap around the pull quote:

float: left;

width: 200px;

Contrast the pull quote with the surrounding text by changing the quote's foreground and
background colors:

color: #666;

background-color: black;

Use the border-top and border-bottom properties to match the color of the text in the pull quote:

border-top: 1em solid #999;

border-bottom: 1em solid #999;

See Also

Chapter 7 for several page-layout techniques that take advantage of the float property; Recipe

Recipe 1.8 for styling headings with borders; Recipe 10.3 and Recipe 10.4 for more on designing with
contrast.

 < Day Day Up >

 < Day Day Up >

Recipe 1.12 Creating a Pull Quote with Images

Problem

You want to stylize a pull quote with images on either side, such as the curly braces in Figure 1-23.

Figure 1-23. A Pull quote with images

Solution

Use the blockquote element to mark up the pull quote content:

<blockquote>

 <p>Ma quande lingues coalesce, li grammatica del resultant

lingue es plu simplic e regulari quam ti.</p>

</blockquote>

Then set the style for the pull quote, placing one image in the background of the blockquote element
and another in the background of the p:

blockquote {

 background-image: url(bracket_left.gif);

 background-repeat: no-repeat;

 float: left;

 width: 175px;

 margin: 0 0.7em 0 0;

 padding: 10px 0 0 27px;

 font-family: Georgia, Times, "Times New Roman", serif;

 font-size: 1.2em;

 font-style: italic;

 color: black;

}

blockquote p {

 margin: 0;

 padding: 0 22px 10px 0;

 width:150px;

 text-align: justify;

 line-height: 1.3em;

 background-image: url(bracket_right.gif);

 background-repeat: no-repeat;

 background-position: bottom right;

}

Discussion

For this Solution, the bracket images for the pull quote come in a pair, with one at the upper left
corner and the other at the bottom right corner. Through CSS, you can assign only one background
image per block-level element.

The workaround is to give these images the proper placement; put one image in the background of
the blockquote element and the other in the p element that is a child of the blockquote element:

blockquote {

 background-image: url(bracket_left.gif);

 background-repeat: no-repeat;

 float: left;

 width: 175px;

}

blockquote p {

 background-image: url(bracket_right.gif);

 background-repeat: no-repeat;

 background-position: bottom right;

}

Then adjust the padding, margin, and width of the blockquote and p elements so that you have an

unobstructed view of the images:

blockquote {

 background-image: url(bracket_left.gif);

 background-repeat: no-repeat;

 float: left;

 width: 175px;

 margin: 0 0.7em 0 0;

 padding: 10px 0 0 27px;

}

blockquote p {

 margin: 0;

 padding: 0 22px 10px 0;

 width:150px;

 background-image: url(bracket_right.gif);

 background-repeat: no-repeat;

 background-position: bottom right;

}

A benefit of this Solution is that if the text is resized, as shown in Figure 1-24, the images (brackets)
stretch like rubber bands.

Figure 1-24. The background images staying in the corners as the text is
resized

See Also

Recipe 3.11 for another example of the rubber-band technique.

 < Day Day Up >

 < Day Day Up >

Recipe 1.13 Setting the Indent in the First Line of a
Paragraph

Problem

You want to place an indent in the first line of each paragraph, turning the paragraphs shown in
Figure 1-25 to the paragraphs shown in Figure 1-26.

Figure 1-25. The default rendering of the paragraphs

Figure 1-26. The paragraphs with first lines indented

Solution

Use the text-indent property to create the indent:

p {

 text-indent: 2.5em;

 margin: 0 0 0.5em 0;

 padding: 0;

}

Discussion

The text-indent property can take absolute and relative length units as well as percentages. If you

use percentages, the percentage refers to the element's width and not the total width of the page. In
other words, if the indent is set to 35% of a paragraph that is set to a width of 200 pixels, the width of
the indent is 70 pixels.

See Also

The CSS 2.1 specification for more on the text-indent property at

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent.

 < Day Day Up >

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

 < Day Day Up >

Recipe 1.14 Setting the Indent of Entire Paragraphs

Problem

You want to indent entire paragraphs, turning Figure 1-27 into Figure 1-28.

Figure 1-27. The paragraphs as the browser usually renders them

Figure 1-28. Indented paragraphs

Solution

To achieve the desired effect, use class selectors:

p.normal {

 padding: 0;

 margin-left: 0;

 margin-right: 0;

}

p.large {

 margin-left: 33%;

 margin-right: 5%;

}

p.medium {

 margin-left: 15%;

 margin-right: 33%;

}

Then place the appropriate attribute in the markup:

<p class="normal">Lorem ipsum dolor sit amet, consectetuer

adipiscing elit, sed diam nonummy nibh euismod tincidunt ut

laoreet dolore magna al iquam erat volutpat.</p>

<p class="large">Epsum factorial non deposit quid pro quo hic

escorol. Olypian quarrels et gorilla congolium sic ad nauseum.

Souvlaki ignitus carborundum e pluribus unum.</p>

<p class="medium ">Li Europan lingues es membres del sam

familie. Lor separat existentie es un myth. Por scientie, musica,

sport etc., li tot Europa usa li sam vocabularium</p>

Discussion

Class selectors pick any HTML element that uses the class attribute. The difference between class

and type selectors is that selectors pick out every instance of the HTML element. In the following two
CSS rules, the first selector is a type selector that signifies all content marked as h2 be displayed as
red while the following CSS rule, a class selector, sets the padding of an element to 33%:

h2 {

 color: red;

}

.largeIndent {

 padding-left: 33%;

}

Combining both type and class selectors on one element gains greater specificity over the styling of
elements. In the following markup, the third element is set to red and also has a padding on the left
set to 33%:

<h2>This is red.</h2>

<h3 class="largeIndent">This has a rather large indent.</h3>

<h2 class="largeIndent">This is both red and indented.</h2>

Another solution that could be used instead of class selectors is to apply the indent using margins and
then use adjacent sibling selectors to apply the style to the paragraphs:

p, p+p+p+p {

 padding: 0;

 margin-left: 0;

 margin-right: 0;

}

p+p, p+p+p+p+p {

 margin-left: 33%;

 margin-right: 5%;

}

p+p+p, p+p+p+p+p+p {

 margin-left: 15%;

 margin-right: 33%;

}

This method takes advantage of the adjacent sibling selectors, which are represented by two or more
regular selectors separated by plus sign(s). For example, the h2+p selector stylizes the paragraph
immediately following an h2 element.

For this Recipe we want to stylize certain paragraphs in the order in which they appear on-screen.
For example, p+p selects the paragraph element that follows another paragraph. However, when

there are more than two paragraphs, the third paragraph (as well as others after the third
paragraph) is rendered in the same style as the second paragraph. This occurs because the third
paragraph is immediately followed by a paragraph.

To separate the styles from the second and third paragraphs, set up another CSS rule for the third
paragraph that selects three paragraphs that follow each other:

p+p+p {

 margin-left: 15%;

 margin-right: 33%;

}

Then, build off of these CSS rules by grouping the selectors. Instead of writing two CSS rules to
stylize the third and sixth paragraphs, separate the selectors by a comma and a space:

p+p+p, p+p+p+p+p+p {

 margin-left: 15%;

 margin-right: 33%;

}

The main problem with adjacent sibling selectors is that they aren't supported by all versions of
Internet Explorer for Windows. Therefore, these users will not see the paragraphs indented. Adjacent
sibling selectors are supported in Internet Explorer for Macintosh 5, Netscape Navigator 6+, and
Operat 5+.

See Also

The CSS 2.1 specification about class selectors at
http://www.w3.org/TR/CSS21/selector.html#class-html; the CSS 2.1 specification about adjacent
sibling selectors at http://www.w3.org/TR/CSS21/selector.html#adjacent-selectors.

 < Day Day Up >

http://www.w3.org/TR/CSS21/selector.html#class-html
http://www.w3.org/TR/CSS21/selector.html#adjacent-selectors

 < Day Day Up >

Recipe 1.15 Setting Text to Be Justified

Problem

You want to align text to be justified on both the left and right sides, as in Figure 1-29.

Figure 1-29. The paragraph justified on both sides

Solution

Use the text-align property:

P {

 width: 600px;

 text-align: justify;

}

Discussion

How well does text justification work? According to the CSS 2.1 specification, it depends on the
algorithms developed by the engineers who made the browser being used to view the web page.
Because there isn't an agreed-upon algorithm for justifying text, the look of the text varies from
browser to browser, even though the browser vendor technically supports justification.

Browser support for the property is good in Internet Explorer 4+ for Windows, Internet Explorer 5 for
Macintosh, Safari, and Opera 3+. In those browsers, justified text looks pleasing to the eye. In other
browsers, justified text may look bad; for example, it might have large whitespace between words.

See Also

The CSS 2.1 specification about the text-align property at http://www.w3.org/TR/REC-

CSS2/text.html#alignment-prop.

 < Day Day Up >

http://www.w3.org/TR/REC-

 < Day Day Up >

Recipe 1.16 Styling the First Line of a Paragraph

Problem

You want to set the first line of a paragraph in boldface, as in Figure 1-30.

Figure 1-30. The first line set to bold

Solution

Use the :first-line pseudo-element to set the style of the first line:

p:first-line {

 font-weight: bold;

}

Discussion

Just like a class selector, a pseudo-element enables you to manipulate the style of parts of a web
document. Unlike a class selector, however, resizing a browser window or changing the size of the
font can change the area marked by a pseudo-element. In this Solution, the amount of text in the
first line can change if the browser is resized, as shown in Figure 1-31.

Figure 1-31. The amount of text changing when the browser is resized

See Also

The CSS 2.1 specification for the :first-line pseudo-element at

http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo.

 < Day Day Up >

http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo

 < Day Day Up >

Recipe 1.17 Styling the First Line of a Paragraph with an
Image

Problem

You want to stylize the first line of a paragraph and include an image; for example, see Figure 1-32.

Figure 1-32. The first line with a background image

Solution

Use the background-image property within the :first-line pseudo-element:

p:first-line {

 font-size: 2em;

 background-image: url(background.gif);

}

Discussion

Through the :first-line selectors styles can only be applied to the first line of text of an element

and not the width of the element itself.

In addition to the background-image property, the :first-line pseudo-element also supports the

following properties allowing for greater design control:

font
color
background
word-spacing
letter-spacing
text-decoration
vertical-align
text-transform
text-shadow
line-height
clear

See Also

The CSS 2.1 specification for the :first-line pseudo-element at

http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo.

 < Day Day Up >

http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo

 < Day Day Up >

Recipe 1.18 Creating a Highlighted Text Effect

Problem

You want to highlight a portion of the text in a paragraph, as in Figure 1-33.

Figure 1-33. Highlighted text

Solution

Use the strong element to mark up the portions of text you want to highlight:

<p>The distribution of messages from the selling of propaganda

to the giving away of disinformation takes place at a blindingly

fast pace thanks to the state of technology... This

change in how fast information flows revolutionizes the

culture.</p>

Then set the CSS rule to set the highlighted:

strong {

 font-weight: normal;

 background-color: yellow;

}

Discussion

Although the strong element is used in this Solution, you also can use the em element instead of the
strong element to mark highlighted text. The HTML 4.01 specification states that em should be used
for marking emphasized text, while strong "indicates stronger emphasis."

Once the text has been marked, set the highlighter color with the background-color property.
Because some browsers apply a bold weight to text marked as strong, set the font-weight to
normal. When using the em element, be sure to set the font-style to normal as this keeps browsers

from setting the type in italic, as shown in the next code listing.

em {

 font-style: normal;

 background-color: #ff00ff;

}

See Also

The HTML specification for strong and em at http://www.w3.org/TR/html401/struct/text.html#edef-

STRONG.

 < Day Day Up >

http://www.w3.org/TR/html401/struct/text.html#edef-

 < Day Day Up >

Recipe 1.19 Changing Line Spacing

Problem

You want to leave more or less space between lines. Figure 1-34 shows the browser default, and
Figure 1-35 shows paragraphs with half as much space again.

Figure 1-34. The default leading of a paragraph

Figure 1-35. Increased leading between the lines of text

Solution

Use the line-height:

P {

 line-height: 1.5em;

}

Discussion

As the line-height value increases, the distance between the lines of text grows. As the value

decreases, the distance between the lines of text shrinks and eventually the lines overlap each other.
Designers refer to the line height as the leading.

A line-height value can be a number and a unit such as points, just a number, or a number and a
percentage symbol. If the line-height value is just a number, that value is used as percentage or a
scale unit for the element itself as well as for child elements. Negative values aren't allowed for line-
height.

The following example effectively sets the font-size to 12px and the line-height to 14.4px ((10px

* 1.2) * 1.2px = 14.4px):

body {

 font-size: 10px;

}

p {

 font-size: 1.2em;

 line-height: 1.2;

}

You also can set the line-height property with the shorthand font property when paired with a
font-size value. The following line transforms any text in a p element to have a font size of 1em, to
have a line-height of 1.5em, and to display in a sans-serif typeface:

p {

 font: 1em/1.5em sans-serif;

}

See Also

The CSS 2.1 specification on the line-height property at

http://www.w3.org/TR/CSS21/visudet.html#propdef-line-height; Recipe 1.6 for more information on
the font property.

 < Day Day Up >

http://www.w3.org/TR/CSS21/visudet.html#propdef-line-height;

 < Day Day Up >

Chapter 2. Page Elements
Introduction

Recipe 2.1. Eliminating Page Margins

Recipe 2.2. Coloring the Scrollbar

Recipe 2.3. Centering Elements on a Web Page

Recipe 2.4. Setting a Background Image

Recipe 2.5. Creating a Line of Background Images

Recipe 2.6. Placing a Background Image

Recipe 2.7. Fixing the Background Image

Recipe 2.8. Placing a Page Border

Recipe 2.9. Customizing a Horizontal Rule

Recipe 2.10. Example Design: Setting Up a Dynamic Splash Page

 < Day Day Up >

 < Day Day Up >

Introduction

From the most obvious design elements, such as the font and leading used in paragraphs and
headings, to those that are often overlooked, such as the size of the margins, every element you
place in the layout of a web page adds to the intended message of the content being displayed.

This chapter covers the page elements that comprise a web page. Page elements are items that
affect the appearance of a web page, but aren't necessarily a part of the page. For example, a border
around the viewport, the area of a web page that is seen by the user in the web browser, is a page
element.

By manipulating elements such as the margins and borders surrounding a web page, you effectively
frame the content of the page without actually styling the content. Such simple changes can affect
the page's overall design in a profound way, or they can add that final, subtle detail that completes
the design.

 < Day Day Up >

 < Day Day Up >

Recipe 2.1 Eliminating Page Margins

Problem

You want to get rid of the whitespace around the edges of a web page and between the browser
chrome and the contents of the page, as shown in Figure 2-1.

Figure 2-1. Page margins visible as the whitespace around the edges of a
web page

Solution

Set the value of the margin and padding properties for the html and body elements to 0:

html, body {

 margin: 0;

 padding: 0;

 position: absolute;

 top: 0;

 left: 0;

}

Discussion

Setting the margin and padding properties of the body element to 0 helps create a full-bleed

effect-in other words, it eliminates the whitespace around a web page (the units in this case don't
matter). And setting the position to absolute and the values for top and left to 0 helps remove

the body margins in Netscape Navigator 4.

However, depending on the content of the web page, the margin and padding properties might not

be all you need to change to get a full-bleed effect. Default properties on other elements can have
unexpected side effects when attempting to change the page margin For example, if h1 is the body
element's first child element, some unintended whitespace will appear above the headline and below

the top of the browser's viewport. Figure 2-2 shows this undesired effect; the background color of the
headings and paragraphs is gray so that you can more clearly see the effect.

Figure 2-2. Whitespace above the heading and below the top of the
browser's viewport

To ensure the full-bleed effect in this situation you should set the margin and padding of the
offending element (in this case, h1, h2, h3) to 0 as well as the body. This sets all the sides of the
element's padding to 0. If that setup isn't possible (for example, you need to have a value at the
bottom padding or margin), set the margin-top and padding-top values to 0 to maintain the full-

bleed effect:

body {

 margin: 0;

 padding: 0;

}

h1, h2, h3 {

 margin-top: 0;

 padding-top: 0;

 background-color: #666;

}

p {

 background-color: #999;

}

As you can see in Figure 2-3, this accomplishes the full-bleed effect. Notice how the gray background
color of the first heading now touches the top of the browser's viewport.

Figure 2-3. Whitespace removed above the heading

See Also

Recipe 7.2 for writing one-column layouts by setting the margin and padding properties to a value
other than 0.

 < Day Day Up >

 < Day Day Up >

Recipe 2.2 Coloring the Scrollbar

Problem

You want to adjust the color of the scrollbar on a browser's viewport, or the window on the browser.

Solution

Use the properties that manipulate scrollbar colors in browsers that support it:

body,html {

 scrollbar-face-color: #99ccff;

 scrollbar-shadow-color: #ccccff;

 scrollbar-highlight-color: #ccccff;

 scrollbar-3dlight-color: #99ccff;

 scrollbar-darkshadow-color: #ccccff;

 scrollbar-track-color: #ccccff;

 scrollbar-arrow-color: #000033;

}

Because these properties aren't part of the W3C recommendations for CSS,
browser vendors don't have to put in support for these properties. This Solution
works only on the KDE Konqueror browser and on Internet Explorer 5.5+ for
Windows. Other browsers will skip over the rules as though they weren't there.
These rules won't be validated by services such as http://jigsaw.w3.org/css-
validator/validator-uri.html.

Discussion

Although you might think of a scrollbar as a simple tool, it's actually composed of several widgets that
create a controllable 3D object. Figure 2-4 spotlights the different properties of a scrollbar. As you

http://jigsaw.w3.org/css-

can see, to create a truly different color scheme for the scrollbar, you must alter the value of seven
properties.

Figure 2-4. The parts of a scrollbar that can be affected by proprietary CSS
for Internet Explorer for Windows

In addition to adjusting the scrollbar of the browser viewport, you also can adjust the colors of the
scrollbar in the textarea for a web form, framesets, iframes, and generally anything with a

scrollbar:

.highlight {

 scrollbar-face-color: #99ccff;

 scrollbar-shadow-color: #ccccff;

 scrollbar-highlight-color: #ccccff;

 scrollbar-3dlight-color: #99ccff;

 scrollbar-darkshadow-color: #ccccff;

 scrollbar-track-color: #ccccff;

 scrollbar-arrow-color: #000033;

}

<form>

 <textarea class="highlight"></textarea>

</form>

When rendering a page that doesn't contain a valid DOCTYPE, Internet Explorer for Windows
experiences what is known as quirks (nonstandard behavior) mode and looks for the scrollbar
properties in the body selector. When the page contains a valid DOCTYPE, Internet Explorer for
Windows is in Standards mode and it obeys the html selector. So, just in case the web document's
DOCTYPE might change, it's best to ensure that the body and html selectors are grouped and applied

in one CSS rule:

html .highlight, body .highlight {

 scrollbar-face-color: #99ccff;

 scrollbar-shadow-color: #ccccff;

 scrollbar-highlight-color: #ccccff;

 scrollbar-3dlight-color: #99ccff;

 scrollbar-darkshadow-color: #ccccff;

 scrollbar-track-color: #ccccff;

 scrollbar-arrow-color: #000033;

}

See Also

The MSDN Scrollbar Color Workshop at
http://msdn.microsoft.com/workshop/samples/author/dhtml/refs/scrollbarColor.htm to pick colors
for a custom scrollbar; Recipe 3.3 for changing the cursor, another user interface widget of the
browser.

 < Day Day Up >

http://msdn.microsoft.com/workshop/samples/author/dhtml/refs/scrollbarColor.htm

 < Day Day Up >

Recipe 2.3 Centering Elements on a Web Page

Problem

You want to center parts of a web page, as in Figure 2-5.

Figure 2-5. The headline text centered

Solution

To center text in a block-level element, use the text-align property:

h1, h2, h3 {

 text-align:center;

}

Discussion

By using text-align, you can center text inside block-level elements. However, in this example, the
heading takes up the entire width of the body element, and if you don't apply a background color to

the element, you probably won't even notice this is happening. The gray background color in Figure
2-6 shows the actual width of the centered elements.

Figure 2-6. The actual width of the elements shown by the gray
background color

An alternative approach is to use margins to center text within its container:

h1, h2, h3 {

 margin-left: auto;

 margin-right: auto;

}

When you set the margin-left and margin-right properties to auto, you center the element inside

its parent element. However, older but still popular browsers won't render the presentation correctly.
So, workarounds are needed for individual situations.

Recipe 2.3.3.1 Tables

To center a table, place the table as the child of a div element:

<div class="center">

 <table width="50%" border="1" cellpadding="30">

 <tr>

 <td>This is the first cell</td>

 <td>This is the second cell</td>

 </tr>

 <tr>

 <td>This is the third cell, it's under the first cell</td>

 <td>This is the fourth cell, it's under the second cell.</td>

 </tr>

 </table>

</div>

Then write the following CSS rule:

.center {

 text-align: center;

}

.center table {

 width: 50%;

 margin-left: auto;

 margin-right: auto;

 text-align: left;

}

Although setting both sides of the margin to auto works in newer generations of browsers, it doesn't

work in Internet Explorer 5 for Windows or Netscape Navigator 4. To catch those two browsers and
tell them to "do the right thing," the center class selector uses the text-align technique. However,

if that were all you did, the contents of the table cells would be centered as well. To counteract that
effect, use a descendent selector, .center table, to align the contents in the table cell elements.

Note that if you use th elements in an HTML table, the content inside those cells is centered by
default. Setting the text-align property to a value of left in the descendent selector .center
table doesn't counter that effect. To left-align the content inside th, use this CSS rule:

th {

 hext-align: left;

}

To save a line or two of CSS code, you might want to incorporate the shorthand version of the
margin property, as shown here (although this works in most browsers, it fails in Internet Explorer 5

for Macintosh):

.center table {

 margin: 0 auto;

 text-align: left;

}

Recipe 2.3.3.2 Images

If you want to center an image, wrap a div element around the img element first. This technique is
required because an img element, like em and strong, is inline. It rests in the flow of the web page
instead of marking off space like the p or blockquote block-level elements do. The markup looks like

this:

<div class="flagicon"><img src="flag.gif" alt="Flag " width="160 "

height="60" /></div>

And the CSS rule looks like this:

.flagicon {

 text-align: center;

}

To center elements with fixed widths, such as images, first set the value of the parent's padding-
left property to 50%. Then determine half of the width of the element you are centering and set it as
a negative value in the margin-left property. That prevents the element's left side from resting on

the 50% line caused by its padding and makes it slide into the middle of the page. The markup for an
image in a web page using this technique looks something like this:

The CSS rule to produce the result shown in Figure 2-7 looks like this:

body {

 padding-left: 50%;

}

img {

 /* equal to the negative of half its width */

 margin-left: -138px;

}

Figure 2-7. The image centered without the deprecated center element

Recipe 2.3.3.3 Vertical centering

With the element centered horizontally, you can take this technique one step further and center the
image (or any other element) vertically as well. The difference with this method is that it uses the
position property to make this work. The markup is the same as that used for the image element in

the previous example, but this time the CSS rule is for just one selector (see Figure 2-8):

img {

 position: absolute;

 top: 50%;

 left: 50%;

 margin-top: -96px;

 margin-left: -138px;

 height: 192px;

 width: 256px;

}

Figure 2-8. The image centered horizontally and vertically on the web
page

With absolute positioning, you take the element out of the normal flow of the document and place it
wherever you want.

If you want to center both text and an image (or other images) instead of just one image, enclose all
the content with a div element:

<div id="centerFrame">

 <p>Epsum factorial non deposit quid pro quo hic escorol. Olypian

quarrels et gorilla congolium sic ad nauseum. Souvlaki ignitus

carborundum e pluribus unum. Defacto lingo est igpay atinlay.</p>

 <img src="wolf.jpg" width="256" height="192" alt="Photo of

wolf." />

</div>

Then in the CSS rule, remove the height property and adjust the negative value of the top margin to

compensate for the additional elements on the page:

#centerFrame {

 position: absolute;

 top: 50%;

 left: 50%;

 /* adjust negative value until content is centered */

 margin-top: -150px;

 margin-left: -138px;

 width: 256px;

}

Keep the amount of content that you want centered short. If you have numerous images and long
amounts of HTML text, users with small resolutions will have to scroll the page to see your centered
content.

See Also

Chapter 7 for information on multicolumn layouts, which deal with the position of elements in a web
page; the CSS 2.1 specification for text-align at http://www.w3.org/TR/CSS21/text.html#propdef-

text-align.

 < Day Day Up >

http://www.w3.org/TR/CSS21/text.html#propdef-

 < Day Day Up >

Recipe 2.4 Setting a Background Image

Problem

You want a background image that doesn't repeat.

Solution

Use the background-image and background-repeat properties to control the display of an image

(see Figure 2-9):

body {

 background-image: url(bkgd.jpg);

 background-repeat: no-repeat;

}

Figure 2-9. The background image displayed once in the upper right corner

Discussion

You can place text and other inline images over a background image to create a sense of depth on a
web page. Also, you can provide a framing device for the web page by tiling a background image
along the sides of a web browser.

See Also

Recipe 2.5 for repeating background images in a line either horizontally or vertically.

 < Day Day Up >

 < Day Day Up >

Recipe 2.5 Creating a Line of Background Images

Problem

You want a series of background images to repeat vertically or horizontally.

Solution

To tile the background image horizontally, or along the x axis, use the following CSS rule (see Figure
2-10):

body {

 background-image: url(bkgd.jpg);

 background-repeat: repeat-x;

}

Figure 2-10. The background image tiled horizontally

To have the background image repeat along the vertical axis, use the repeat-y value for
background-repeat.

See Also

Recipe 2.6 for placing a background image at a specific location in a web page.

 < Day Day Up >

 < Day Day Up >

Recipe 2.6 Placing a Background Image

Problem

You want to position a background image in a web page.

Solution

Use the background-position property to set the location of the background image. To place an

image that starts 75 pixels to the right and 150 pixels below the upper-left corner of the viewport (see
Figure 2-11), use the following CSS rule:

body {

 background-image: url(bkgd.jpg);

 background-repeat: no-repeat;

 background-position: 75px 150px;

}

Figure 2-11. The background placed precisely 75 pixels from the right and
150 pixels from the upper left corner of browser's viewport

Discussion

The background-position element contains two values separated by a space. The first value of the

pair sets the origin point along the y axis, while the second value sets the point on the x axis. If only
one value is given, that value is used for the horizontal position and the vertical position is set to 50%.

The Solution used pixel units to determine the placement of the background image; however, you
also can use percentages. A value of 50% for background-position means that the browser places
the image in the dead center of the viewport, as shown in Figure 2-12, while the values 0% and 100%

place the image in the upper left and lower right corner, respectively.

Figure 2-12. The background image centered in the browser window

Along with percentages, you can use the values top, center, and bottom for the y axis and left,
center, and right for the x axis. Using combinations of these values, you can place the background

image at the eight points around the edges of the viewport (in the corners and in between), as well
as in the middle of the viewport. For example, to re-create the value of 50% in Figure 2-12, you can

use this CSS rule instead:

body {

 background-image: url(bkgd.jpg);

 background-repeat: no-repeat;

 background-position: center center;

}

To place a background image in the lower right corner, as shown in Figure 2-13, you can use the
following CSS rule:

body {

 background-image: url(bkgd.jpg);

 background-repeat: no-repeat;

 background-position: bottom right;

}

Figure 2-13. The background image placed in the lower right corner

You also can use the background-position and background-repeat properties for background

images that tile but aren't chained to the sides of the viewport. For example, the following CSS
snippet creates a web page design such as that shown in Figure 2-14:

body {

 background-image: url(montage.jpg);

 background-repeat: repeat-x;

 background-position: 55px 100px;

}

h1 {

 font-size: 75px;

 font-family: Verdana, Helvetica, Arial, sans-serif;

 text-align: center;

 margin: 0;

 padding: 0 0 125px 0;

}

p {

 line-height: 1.5em;

 font-family: Verdana, Helvetica, Arial, sans-serif;

 margin: 0 15%;

}

Figure 2-14. A repeating montage created using the CSS properties
background-repeat and background-position

Note that Netscape Navigator 4 doesn't support background-position, and it's impossible to work

around this limitation through CSS.

See Also

Recipe 2.7 for setting an image so that it doesn't scroll; the CSS 2.1 specification for background-
position at http://www.w3.org/TR/CSS21/colors.html#propdef-background-position.

 < Day Day Up >

http://www.w3.org/TR/CSS21/colors.html#propdef-background-position

 < Day Day Up >

Recipe 2.7 Fixing the Background Image

Problem

You want a background image to remain in the browser window, even as the user scrolls down a web
page.

Solution

Use the background-attachment property set with a fixed value, like so:

body {

 background-image: url(bkgd.jpg);

 background-repeat: no-repeat;

 background-attachment: fixed;

}

Discussion

By using this technique, you are locking down the background image. So, even if a visitor scrolls, the
image remains where you placed it originally. Another acceptable value for background-attachment
is scroll, which is the default value. So, even if you don't specify scroll, the background image

moves up with the rest of the document as the visitor scrolls down.

For example, imagine you want to post on your web page a photo of a recent trip, and you want the
photo positioned on the left side of the page and your text on the right. As the reader scrolls down to
read more about the trip, the photo from the trip stays in place, as shown in Figure 2-15. Here's the
code:

body {

 background-image: url(bkgd2.jpg);

 background-repeat: no-repeat;

 background-attachment: fixed;

 background-position: -125px 75px;

 margin: 75px 75px 0 375px;

}

h1, h2, h3 {

 padding-top: 0;

 margin-top: 0;

 text-transform: uppercase;

}

p {

 text-align: justify;

}

Figure 2-15. The photo staying in place as the visitor scrolls

To take this further, you can lock down the image on block-level elements other than body. For

example, try the heading elements when designing a review for a movie or concert. The following
CSS rule can create the interesting surfing experience:

h1, h2, h3 {

 font-size: 200%;

 background-image: url(bkgd2.jpg);

 background-repeat: no-repeat;

 background-attachment: fixed;

 background-position: center;

 padding: 1.5em;

 text-align: center;

 color: white;

}

Because of the padding and light color on the headings, there is enough room to see the background
image "through" the elements as well as to read the headlines. As the visitor scrolls the web page
reading the review, she will see the rest of the image, as shown in Figure 2-16.

Figure 2-16. The photo coming through the headings instead of the body
element

At press time, only Mozilla and Netscape 6+ supported the application of background images as fixed
attachments to block-level elements like header elements used in this Solution. Internet Explorer 5.x
and 6 for Windows repeat the background image in each header element.

See Also

Recipe 2.6 to position a background image; Recipe 10.5 for a hack to fix Internet Explorer for
Windows' lack of support for background-fixed; the CSS 2.1 specification for background-
attachment at http://www.w3.org/TR/CSS21/colors.html#propdef-background-attachment.

 < Day Day Up >

http://www.w3.org/TR/CSS21/colors.html#propdef-background-attachment

 < Day Day Up >

Recipe 2.8 Placing a Page Border

Problem

You want to place a visual frame or border around a web page, as in Figure 2-17.

Figure 2-17. A framed web page

Solution

Use the border property on the body element:

body {

 margin: 0;

 padding: 1.5em;

 border: 50px #666 ridge;

}

Discussion

The border property is a shorthand property, in that it enables you to set the width, color, and style

of the border around an element in one step instead of three. If you didn't use this shorthand
property in the preceding Solution, you would have to replace the line that reads border: 50px #666
ridge; with the following three lines:

border-width: 50px;

border-color: #666;

border-style: ridge;

You can create a framing effect with other styles as well, such as dotted, dashed, solid, double,
groove, inset, and outset (see Figure 2-18).

Figure 2-18. The available border styles in CSS

Note that groove style is the inverse of the shades of shadow as seen in the Solution, which uses the
ridge value.

The only browser incompatibilities to worry about are that in Internet Explorer 5 for Macintosh and
Internet Explorer for Windows, the dotted style appears as aliased circles, whereas in Netscape 6+,
Mozilla, and Safari, the dotted style appears as blocks.

You also can place a stylized border on images as well. Instead of having a default solid line, try
experimenting in your designs with groove or double borders as shown in Figure 2-19:

img.left {

 float: left;

 margin-right: 7px;

 margin-bottom: 3px;

 border: 4px double #666;

}

Figure 2-19. A double border around an image

See Also

Recipe 1.11 for creating pull quotes with different border styles.

 < Day Day Up >

 < Day Day Up >

Recipe 2.9 Customizing a Horizontal Rule

Problems

You want to change the look of a horizontal rule from the solid line in Figure 2-20 to something more
interesting, for example the small centered rectangle in Figure 2-21.

Figure 2-20. The default rendering of a horizontal rule

Figure 2-21. A stylized horizontal rule

Solution

Use a mixture of CSS properties on the hr element to obtain a desired effect:

hr {

 margin-left: auto;

 margin-right: auto;

 margin-top: 1.25em;

 margin-bottom: 1.25em;

 width: 10px;

 height: 10px;

 background-color: #777;

}

Discussion

Before HTML 4.0, the presentation of horizontal rules could be manipulated through a set of four
attributes: align, width, size, and noshade. Since HTML is intended to mark up content and not the

look of the content, those values are no longer a part of the HTML specification. (Browser vendors
may support the values, but your mileage will vary.) With CSS rules controlling the presentation, you
have far greater control over the appearance of horizontal rules.

For example, you can set the height as well as the width properties for horizontal rules through

CSS:

hr {

 width: 80%;

 height: 3px;

 margin-left: auto;

 margin-right: auto;

}

Setting the margin-left and margin-right to auto centers the horizontal rule in the web page for

Safari, while it's not required for Mozilla, Navigator and Internet Explorer for Windows.

If you want to style an hr element with color (as shown in Figure 2-22), use the following code:

hr {

 color: green;

 background-color: green;

 width: 80%;

 height: 3px;

 margin-left: auto;

 margin-right: auto;

}

Figure 2-22. A centered, green horizontal rule

The first property, color, is understood by Internet Explorer for Windows while Safari, Mozilla, and
Netscape Navigator 6+ pick up the second property, background-color.

To place an image instead of a horizontal bar, use the background-image property:

hr {

 background-image: url(hr-decoration.gif);

 background-repeat: no-repeat;

 border: none;

 width: 76px;

 height: 25px;

 margin-left: auto;

 margin-right: auto;

}

However, Internet Explorer for Windows renders a border around the hr element as shown in Figure

2-23 that can't be removed through CSS properties.

Figure 2-23. A border around a horizontal rule in Internet Explorer for

Windows

See Also

The HTML 4.01 specification for hr elements at
http://www.w3.org/TR/html401/present/graphics.html#edef-HR; an overview of styling an hr

element at http://www.sovavsiti.cz/css/hr.html; another example of refining the presentation of
horizontal rules at
http://www.sidesh0w.com/weblog/2004/03/17/sexily_styling_horizontal_rules.html.

 < Day Day Up >

http://www.w3.org/TR/html401/present/graphics.html#edef-HR
http://www.sovavsiti.cz/css/hr.html
http://www.sidesh0w.com/weblog/2004/03/17/sexily_styling_horizontal_rules.html

 < Day Day Up >

Recipe 2.10 Example Design: Setting Up a Dynamic
Splash Page

Best suited for entertainment-related and personal web sites, a splash page is a web page typically
comprising only an eye-catching image that is designed to entice visitors to enter a web site.
Sometimes, however, that additional HTML page actually acts as a barrier to the content of the site.
This example design remedies that problem.

The splash page in this example uses HTML elements from the existing main page of the web site. No
separate HTML file is involved, so it appears as though there are two pages when there is only one.
And with cookie detection built into the script, after a visitor sees the splash page once he won't see it
again for at least another month (unless he deletes the cookie or tells his browser not to accept
cookies).

Another benefit of the code in this section is that if the visitor's user agent doesn't handle JavaScript
or JavaScript has been turned off manually, the visitor sees the default page design instead. He won't
get trapped viewing only the splash page design, thereby locking him out from seeing your premium
content on the main page.

Main Page

The first step is to create the design for the main page of your web site. Figure 2-24 shows an
example. The code for mainPage.css is shown in Example 2-1 .

Example 2-1. mainPage.css

body {

 margin: 0;

 background-color: white;

 padding-left: 0;

 padding-top: 0;

}

#logo {

 padding: 5% 20% 0.5em 5%;

 position: static;

 margin: 0;

}

#header h1 {

 margin: 0;

 padding: 0 0 0 5%;

 border-bottom: 1px solid black;

 font-family: Arial, Verdana, Helvetica, sans-serif;

}

#header h2 {

 margin: 0;

 padding: 0.5em 5% 0.5em 5%;

 font-size: 1em;

 text-align: right;

 border-bottom: 1px solid black;

 background-color: #ccc;

 font-family: Arial, Verdana, Helvetica, sans-serif;

}

#header {

 display: block;

}

#content {

 margin: 0 5% 10% 5%;

 font-size: 1.1em;

 line-height: 1.6em;

 display: block;

}

#footer {

 border-top: 1px black solid;

 padding: 1em;

 text-align: center;

 display: block;

}

Figure 2-24. The main page design

Having the default style sheet in place tells you which elements need to be addressed in the splash
screen style sheet. Because you will be switching between the splash page and the main page style
sheets, any selectors and their respective properties that appear in both must have their own
respective values. Otherwise, a padding-left value of 50% for the body element dictated by the

splash screen style sheet will carry over to the main page style sheet, moving all the content of the
main page into the right half of the viewport.

The Splash Screen

The next step is to create a splash screen based on the marked-up content of the main page. To
simplify things, you can copy the main page and link a new, blank splashPage.css style sheet. Then
design a splash page based on the existing contents of the real page. In the example shown in Figure
2-25 , the logo was carried over from the main page to the splash page and the rest of the page's
content was hidden. The splashPage.css code, as shown in Example 2-2 , creates this effect.

Example 2-2. splashPage.css

body {

 padding-left: 50%;

 padding-top: 15%;

}

#logo {

 margin-left: -73px;

}

#header, #content, #footer {

 display: none;

}

Figure 2-25. The splash page

Next, link these two separate style sheets to the main page HTML file. Use the link element to

associate the default style sheet, mainPage.css , and then the style sheet that defines the design of
the splash page, splashPage.css :

<link rel="stylesheet" type="text/css" media="all"

href="mainPage.css" />

<link rel="alternate stylesheet" type="text/css" media="all"

href="splashPage.css" title="splash" />

Switcher JavaScript

Now, add the alternative style sheet switcher JavaScript to your web page through the src attribute:

<script type="text/javascript" language="JavaScript"

src="switcher.js"></script>

Example 2-3 shows the actual style sheet switcher code used in the switcher.js , which comes from
Paul Swoden's Alternative Style Sheet Switcher at http://www.alistapart.com/stories/alternate/ . How
it works is beyond the scope of this book, but for more information on JavaScript, see JavaScript: The
Definitive Guide (O'Reilly).

Example 2-3. switcher.js

function setActiveStyleSheet(title) {

 var i, a, main;

 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {

 if(a.getAttribute("rel").indexOf("style") != -1 && a.getAttribute("title")) {

 a.disabled = true;

 if(a.getAttribute("title") == title) a.disabled = false;

 }

 }

}

function getActiveStyleSheet() {

 var i, a;

 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {

 if(a.getAttribute("rel").indexOf("style") != -1 && a.getAttribute("title") && !a.

disabled) return a.getAttribute("title");

 }

 return null;

}

function getPreferredStyleSheet() {

 var i, a;

 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {

 if(a.getAttribute("rel").indexOf("style") != -1

 && a.getAttribute("rel").indexOf("alt") == -1

 && a.getAttribute("title")

) return a.getAttribute("title");

 }

 return null;

}

function createCookie(name,value,days) {

 if (days) {

 var date = new Date();

 date.setTime(date.getTime()+(days*24*60*60*1000));

 var expires = "; expires="+date.toGMTString();

 }

 else expires = "";

 document.cookie = name+"="+value+expires+"; path=/";

}

function readCookie(name) {

 var nameEQ = name + "=";

 var ca = document.cookie.split(';');

 for(var i=0;i < ca.length;i++) {

 var c = ca[i];

 while (c.charAt(0)==' ') c = c.substring(1,c.length);

 if (c.indexOf(nameEQ) == 0) return c.substring(nameEQ.length,c.length);

 }

 return null;

}

window.onload = function(e) {

 var cookie = readCookie("style");

 var title = cookie ? cookie : getPreferredStyleSheet();

 setActiveStyleSheet(title);

}

window.onunload = function(e) {

 var title = getActiveStyleSheet();

 createCookie("style", title, 365);

}

var cookie = readCookie("style");

var title = cookie ? cookie : getPreferredStyleSheet();

setActiveStyleSheet(title);

Add an additional piece of JavaScript, as shown in Example 2-4 , that loads the splash design over the
default style.

Example 2-4. toggleSplash()

<script type="text/javascript" language="JavaScript">

 function toggleSplash() {

 if (readCookie("splashCookie") == null) {

 setActiveStyleSheet('splash');

 createCookie("splashCookie", "noSplash", 31);

 timer=setTimeout("setActiveStyleSheet('default')",7000);

 }

}

</script>

To initiate the splash page when the visitor loads the web page, place an event trigger in the body

element:

<body onload="toggleSplash();">

Compatibility

This splash screen works in Internet Explorer 5.5+ for Windows, Mozilla, Netscape 6+, and Internet
Explorer 5 for Macintosh. The cookie detection method doesn't work in Safari, causing visitors to view
the splash page each time the page is loaded.

Another way to approach splash page design is to include more elements from the main page. If you
want to change the splash page design for your company web site-so that it shows a holiday
message, for example-you can easily use heading elements that contain the name of the company
and the tagline and then color them in orange and black text. Because the splash page design is in a
separate style sheet, it's easy to modify and upload at any time.

 < Day Day Up >

 < Day Day Up >

Chapter 3. Links and Navigation
Introduction

Recipe 3.1. Removing Underlines from Links

Recipe 3.2. Setting Text to Blink

Recipe 3.3. Setting Style Decorations Other Than Underlines

Recipe 3.4. Changing Cursors

Recipe 3.5. Creating Rollovers Without JavaScript

Recipe 3.6. Creating Nongraphical Menus with Rollovers

Recipe 3.7. Creating Collapsible Menus

Recipe 3.8. Building Horizontal Menus

Recipe 3.9. Creating Breadcrumb Navigation

Recipe 3.10. Creating Image-Based Rollovers

Recipe 3.11. Designing a Dynamic Visual Menu

Recipe 3.12. Creating Contextual Menus

 < Day Day Up >

 < Day Day Up >

Introduction

Links enable you to follow a trail of information from one web page to another, and from one web site
to another, regardless of where in the world the site's server is located. Without links, the allure of
the Web would be lost.

Back in 1996, web usability expert Jakob Nielsen listed the use of nonstandard link colors as one of
the top ten mistakes in web design (see http://www.useit.com/alertbox/9605.html). However, his
advice to color blue pages that haven't been visited by the user and to color purple or red links to
previously seen pages, was based on consistency concerns, not on aesthetics. As the field of web
design matured over the years, developers began playing with not only the color of web links, but
also their design. In fact, links now typically comprise more than just underlined text or images with
border attributes set to zero.

With this in mind, this chapter discusses how to stylize web links for improved aesthetics. You'll learn
everything from how to remove the underline from links to how to change cursors, create rollovers
without the need for JavaScript, create a horizontal tab menu, and much more.

 < Day Day Up >

http://www.useit.com/alertbox/9605.html

 < Day Day Up >

Recipe 3.1 Removing Underlines from Links

Problem

Links in a web document are underlined. You want to remove the underlining, as shown in Figure 3-
1.

Figure 3-1. Links without underlines

Solution

Use the text-decoration property with the pseudo-class selector for unvisited and visited links:

a:link, a:visited {

 text-decoration: none;

}

Discussion

Use the :link and :visited pseudo-classes to apply styles to links within a web document. The
:link pseudo-class applies to links that the user has not visited. The :visited pseudo-class

corresponds to links that the user has visited.

The text-decoration property can take up to five settings, shown in Table 3-1.

Table 3-1. Text-decoration values

Text-decoration values Result

underline
A line is placed beneath the text.

overline
A line is placed above the text.

blink
The text flashes.

line-through
A line is placed through the middle of the text.

none
No effect is associated with the text.

These text-decoration properties are often used to enhance the presentation of a web page.
Instead of having all the links in a document underlined, designers opt to set text-decoration to
none in conjunction with changing the link's background color, text color, or both:

a:link, a:visited {

 text-decoration: none;

 background-color: red;

 color: white;

}

In order to complement the design for those site visitors who might have color blindness and
therefore might not be able to determine a link color from the default color of regular HTML text,
designers also set the weight of the font to bold:

a:link, a:visited {

 font-weight: bold;

 text-decoration: none;

 color: red;

}

The value of line-through might be an interesting element added to a page design used to indicate

that a link has already been visited by a user, like an item scratched off a to-do list:

 a:link {

 font-weight: bold;

 text-decoration: none;

 color: red;

}

a:visited {

 font-weight: bold;

 text-decoration: line-through;

 color: black;

}

See Also

The CSS 2.1 specification for the text-decoration property at
http://www.w3.org/TR/CSS21/text.html#propdef-text-decoration, Jakob Neilson's updated "Design
Guidelines for Visualizing Links" at http://www.useit.com/alertbox/20040510.html.

 < Day Day Up >

http://www.w3.org/TR/CSS21/text.html#propdef-text-decoration
http://www.useit.com/alertbox/20040510.html

 < Day Day Up >

Recipe 3.2 Setting Text to Blink

Problem

You want to set text to blink in a web page.

Solution

The first part includes the blink JavaScript function:

function blinky(delay){

 var el = document.body.getElementsByTagName('SPAN');

 for (var i = 0; i < el.length; i++){

 if (el[i].className == 'blink'){

 el[i].style.visibility = el[i].style.visibility ==

'hidden' ? 'visible' : 'hidden';

 }

 }

 setTimeout('blinky(' + delay + ')', delay);

}

In the body element, place the onload event to execute the function when the document has fully

loaded:

<body onload="blinky(1000);">

Then wrap a span element with the class attribute set to blink around the text you want to

animate:

Hello, world!

Discussion

The blink value for the text-decoration property shares an unusual distinction with other text-
decoration values: browsers don't need to support blink to be standards-compliant in terms of

support for this CSS property. If the browser engineers want to support it, that's OK, and if they
don't, that's OK as well.

Web developer Dan Thomas from the Babble List (http://www.babblelist.com/) created this
standards-based solution to give blink functionality without requiring that the browser support the
blink property. Note that this workaround requires JavaScript, so the function will not work if the

user has JavaScript turned off in her browser preferences.

See Also

The CSS 2.1 specification for the text-decoration property at

http://www.w3.org/TR/CSS21/text.html#propdef-text-decoration; the CSS 2.1 specification for the
:link pseudo-class at http://www.w3.org/TR/CSS21/selector.html#x27.

 < Day Day Up >

http://www.babblelist.com/
http://www.w3.org/TR/CSS21/text.html#propdef-text-decoration
http://www.w3.org/TR/CSS21/selector.html#x27

 < Day Day Up >

Recipe 3.3 Setting Style Decorations Other Than
Underlines

Problem

You want to differentiate the links from the main text in a document, but you don't want to use
underlines. Figure 3-2 shows the links emboldened with a different background color.

Figure 3-2. Multiple styles applied to links

Solution

Use the text-decoration property to eliminate underlining, while setting other style decorations:

a:link, a:visited {

 text-decoration: none;

 font-weight: bold;

 color: #999;

 background-color: #666;

}

Discussion

It's common for developers to set a color for the links that works in harmony with the design of the
web page. In the preceding code, the font-weight property applies a bold font to the link text, the
color property changes the color of the text to a light gray, and the background-color property

applies a gray background color to the links.

See Also

Color scheme applications like Pixy's Color Scheme at http://pixy.cz/apps/barvy/index-en.html, or
ColorMatch 5K, an easy-to-use web application for choosing colors, at http://www.colormatch.dk/.

 < Day Day Up >

http://pixy.cz/apps/barvy/index-en.html
http://www.colormatch.dk/

 < Day Day Up >

Recipe 3.4 Changing Cursors

Problem

You want to change the cursor when the mouse pointer rolls over a link, as in Figure 3-3.

Figure 3-3. The wait cursor represented by a watch icon

Solution

Use the cursor property to change the cursor:

a:link, a:visited {

 cursor: move;

}

Discussion

The cursor property can take multiple values, as listed in Table 3-2. However, support for these

values varies from browser to browser. Opera 7 and Internet Explorer for Windows 5.5+ support the
cursor property. While Netscape Navigator 6+ supports most values, the browser doesn't support
the uri. Also, in Navigator the cursor property isn't inherited to child elements from the parent.

Table 3-2. Cursor property values and their descriptions

Value Description Sample

auto The cursor changes to an image that is determined by the
browser.

crosshair Two perpendicular lines intersecting in the middle; this is
similar to an enlarged plus sign.

default Platform-dependent cursor that in most browsers is
rendered as an arrow. Browser vendors or computer
operating systems may dictate a different cursor style.

pointer
Used to illustrate that the mouse pointer is over a link;
sometimes rendered as a hand with an extended index
finger. Browser vendors or computer operating systems
may dictate a different cursor style.

move Illustrates that an element can be moved; sometimes
rendered as a crosshair with arrowheads on the tips or a
five-fingered hand.

e-resize, ne-resize, nw-
resize, n-resize, se-
resize, sw-resize,s-
resize, w-resize

An arrow illustrating the direction in which a side can be
moved; for example, se-resize indicates a southeast

direction.

text Illustrates that text can be edited; sometimes rendered
like an I-beam commonly used in word processing
programs.

wait Illustrates that the computer is busy; sometimes rendered
as an hourglass.

progress Illustrates that the computer is busy, but the user still can
interact with the browser.

help Illustrates that information or help is available, often at
the destination of the link; sometimes rendered as a
question mark or an arrow with a question mark.

<uri> The cursor can be swapped with an externally defined
cursor like an image, Windows cursor file, SVG cursor, etc.

N/A

The code to include a custom cursor is similar to that used to set a background image on an element:

a.help:link , a.help:visited{

 cursor: url(bewildered.gif);

}

While employing different cursors most users will find changes to their routine surfing habits between

a whimsical annoyance and an extreme aggravation, depending on how excessive your
implementation is. (This reaction can be noted as being similar to the use of the blink property in

Recipe 3.7.) Therefore, change the cursor a user is accustomed to seeing at your own risk.

See Also

The CSS 2.1 specification for the cursor property at http://www.w3.org/TR/CSS21/ui.html#propdef-

cursor.

 < Day Day Up >

http://www.w3.org/TR/CSS21/ui.html#propdef-

 < Day Day Up >

Recipe 3.5 Creating Rollovers Without JavaScript

Problem

You want to create a simple rollover effect without using JavaScript to swap images.

Solution

Use the :hover and :active pseudo-classes to create the rollover:

a:link {

 color: #777;

 text-decoration: none;

}

a:visited {

 color: #333;

 text-decoration: none;

}

a:link:hover, a:visited:hover {

 color: #777;

 background-color: #ccc;

}

a:link:active, a:visited:active {

 color: #ccc;

 background-color: #ccc;

}

Discussion

The :hover pseudo-class mimics the common JavaScript event onmouseover. Instead of executing a
function in JavaScript, when a user rolls over a link with :hover, a different set of styles is applied to

the link.

With the selectors having the same specificity, selectors written out of order may stop one of the
other styles from appearing. Avoid this common problem by listing the selectors in the order: link,
visited, hover, and active. The mnemonic device commonly used to remember the order is

"LoVe/HAte."

Although :hover and :active can be applied to any element, they are commonly used on links. Note
that browser support for :hover and :active is nonexistent in Netscape Navigator 4. Also, Opera 4
doesn't support :hover.

In the Solution, the two pseudo-classes make sure that the rollover effects occur only on anchor
links. Without :hover and :active, modern browsers could legally apply the rollover effects on any

anchor elements, as shown in this code and in Figure 3-4:

<h2>Li Europan lingues</h2>

Figure 3-4. An unwanted rollover effect on a heading

See Also

The CSS 2.1 specification for :active and :hover at

http://www.w3.org/TR/CSS21/selector.html#x36; an explanation about links and specificity at
http://www.meyerweb.com/eric/css/link-specificity.html.

 < Day Day Up >

http://www.w3.org/TR/CSS21/selector.html#x36;
http://www.meyerweb.com/eric/css/link-specificity.html

 < Day Day Up >

Recipe 3.6 Creating Nongraphical Menus with Rollovers

Problem

You have a list of links, but want to build an elegant menu as in Figure 3-5.

Figure 3-5. Set of stylized links

Solution

First, mark up the list of links in an unordered list so that they wrap around a div element with an id

attribute:

<div id="navsite">

 <p>Site navigation:</p>

 Home

 About

 Archives

 Writing

 Speaking

 Contact

</div>

Next, use the border property on the anchor elements to create the bulk of the design:

#navsite p {

 display: none;

}

#navsite {

 font-family: Verdana, Helvetica, Arial, sans-serif;

 font-size: 0.7em;

 font-weight: bold;

 width: 12em;

 border-right: 1px solid #666;

 padding: 0;

 margin-bottom: 1em;

 background-color: #9cc;

 color: #333;

}

#navsite ul {

 list-style: none;

 margin: 0;

 padding: 0;

}

#navsite ul li {

 margin: 0;

 border-top: 1px solid #003;

}

#navsite ul li a {

 display: block;

 padding: 2px 2px 2px 0.5em;

 border-left: 10px solid #369;

 border-right: 1px solid #69c;

 border-bottom: 1px solid #369;

 background-color: #036;

 color: #fff;

 text-decoration: none;

 width: 100%;

}

html>body #navsite ul li a {

 width: auto;

}

#navsite ul li a:hover {

 border-left: 10px solid #036;

 border-right: 1px solid #69c;

 border-bottom: 1px solid #369;

 background-color: #69f;

 color: #fff;

}

Discussion

A menu makes it easier for visitors to navigate your site. To help the user find the navigation menu,
stylize the links so they stand out from the regular text. Do this by using the id selector when writing

the CSS rules. As the solution shows, successfully creating the menu requires some browser bug
workarounds as well as straightforward CSS design implementation.

In the division marked with the div, a line of text labels the set of links as navigational links:

<p>Site navigation:</p>

If the user's browser doesn't have CSS support, the line of text is visible. To hide the text from CSS-
enabled browsers, set the display to none:

#navsite p {

 display: none;

}

The next step is to stylize the div element that encapsulates the set of menu links. In this CSS rule,
styles are set for the links to inherit properties set on the div element. Also, set the values of the
width, border-right, padding, and margin-bottom properties to keep the menu from bunching up:

#navsite {

 font-family: Verdana, Helvetica, Arial, sans-serif;

 font-size: 0.7em;

 font-weight: bold;

 width: 12em;

 border-right: 1px solid #666;

 padding: 0;

 margin-bottom: 1em;

}

The next CSS rule eliminates any potential problems with the indentation of lists (see Recipe 4.2) by
setting the margin and padding to 0 as well as by eliminating any list markers:

#navsite ul {

 list-style: none;

 margin: 0;

 padding: 0;

}

In the following rule you're making sure margins aren't applied to each list item. This CSS rule also
places a one-pixel border at the bottom of the list item. This design element helps reinforce the
separation of the list items:

#navsite ul li {

 margin: 0;

 border-top: 1px solid #003;

}

The next rule sets the styles for the links. By default, links are inline elements. The links need to be
rendered as block-level elements so that the entire part of the "link design" becomes clickable, and
not just the text. Setting the display property to block accomplishes this transformation.

Use the following declarations to stylize the appearance of the borders, text color, text decoration,
and width:

#navsite ul li a {

 display: block;

 padding: 2px 2px 2px 0.5em;

 border-left: 10px solid #369;

 border-right: 1px solid #69c;

 border-bottom: 1px solid #369;

 background-color: #036;

 color: #fff;

 text-decoration: none;

 width: 100%;

}

The final declaration for the links sets the width at 100%. This rule was set to make sure Internet
Explorer for Windows makes the entire area clickable. The drawback with this rule is that it causes
problems in Internet Explorer 5 for Macintosh and in Netscape Navigator 6+. To work around this
problem, use the child selector, which Internet Explorer for Windows can't process (see Recipe 10.2),
to reset the width of the link:

html>body #navsite ul li a {

 width: auto;

}

The last CSS rule states the styles for the rollover effect of the links:

#navsite ul li a:hover {

 border-left: 10px solid #036;

 border-right: 1px solid #69c;

 border-bottom: 1px solid #369;

 background-color: #69f;

 color: #fff;

}

An unordered list is a perfect way to structure a menu of links in both theory and practical
application. On the one hand, a set of links is a set of unordered items. And using unordered lists for
navigation creates a solid structure for your web document based on both logic and semantically
correct markup.

On the other hand, with the links set in an unordered list, it's easier to style the links into a menu
presentation than it is to style a series of div elements:

<div id="navsite">

 <p>Site navigation:</p>

 <div>Home</div>

 <div>About</div>

 <div>Archives</div>

 <div>Writing</div>

 <div>Speaking</div>

 <div>Contact</div>

</div>

See Also

The article "CSS Design: Taming Lists" by Mark Newhouse at
http://www.alistapart.com/articles/taminglists/; the article/tutorial "Semantics, HTML, XHTML, and

http://www.alistapart.com/articles/taminglists/

Structure" by Shirley E. Kaiser at http://brainstormsandraves.com/articles/semantics/structure/.

 < Day Day Up >

http://brainstormsandraves.com/articles/semantics/structure/

 < Day Day Up >

Recipe 3.7 Creating Collapsible Menus

Problem

You want to hide a set of links and give the user a way to reveal those links when needed. For
example, rather than two bullet lists of links, hide one (as shown in Figure 3-6) and let the user
reveal it by clicking on a + sign as in Figure 3-7.

Figure 3-6. Preventing the second set of links from displaying

Figure 3-7. The links displayed when the link on the heading is clicked

Solution

First, set up the HTML links to be collapsible with an id attribute in the ul element:

<h5>Interesting Links (+/-)</h5>

<ul id="menulink">

 O'Reilly

 Slashdot

 Apple

 Microsoft

 Mozilla

Then create a CSS rule to prevent the second set of links from displaying when the page is first
loaded:

#menulink {

 display: none;

}

Now add the following JavaScript function that toggles the list of links by swapping the value of
display from block to none, or vice versa:

function kadabra(zap) {

 if (document.getElementById) {

 var abra = document.getElementById(zap).style;

 if (abra.display == "block") {

 abra.display = "none";

 } else {

 abra.display = "block";

 }

 return false;

 } else {

 return true;

 }

}

Insert an anchor element with a JavaScript onclick event around the heading. When a user clicks

the link, the click triggers the JavaScript function:

<h5>

Interesting Links (+/-)</h5>

Discussion

The JavaScript in this function uses getElementbyId to toggle the display of the list of menu links.

This technique can be scaled to show multiple menus or portions of a web document without adding
additional lines of JavaScript:

<p>Are you sure you want to know the truth? If so,

follow this

link.</p>

<p id="spoiler">Darth Vadar was Luke's father!</p>

Note that this technique works in Netscape Navigator 6+, Opera 7.5+, Internet Explorer for Windows
5+, and Safari.

See Also

Recipe 2.10, which uses a similar concept to create a dynamic splash page;
http://www.mozilla.org/docs/dom/domref/dom_doc_ref48.html, for more information on
getElementbyId.

 < Day Day Up >

http://www.mozilla.org/docs/dom/domref/dom_doc_ref48.html

 < Day Day Up >

Recipe 3.8 Building Horizontal Menus

Problem

You want to create a horizontal navigation menu out of an ordered set of links; Figure 3-8 shows the
default, and Figure 3-9 shows what you want.

Figure 3-8. The default appearance of the links

Figure 3-9. The tab-based navigation

Solution

First create a properly constructed set of unordered links:

 <div id="navsite">

 <h5>Site navigation:</h5>

 Home

 About

 Archives

 Writing

 Speaking

 Contact

</div>

Then set the CSS rules for the navigation structure, making sure to set the display property of the
list item to inline:

#navsite h5 {

 display: none;

}

#navsite ul {

 padding: 3px 0;

 margin-left: 0;

 border-bottom: 1px solid #778;

 font: bold 12px Verdana, sans-serif;

}

#navsite ul li {

 list-style: none;

 margin: 0;

 display: inline;

}

#navsite ul li a {

 padding: 3px 0.5em;

 margin-left: 3px;

 border: 1px solid #778;

 border-bottom: none;

 background: #DDE;

 text-decoration: none;

}

#navsite ul li a:link {

 color: #448;

}

#navsite ul li a:visited {

 color: #667;

}

#navsite ul li a:link:hover, #navsite ul li a:visited:hover {

 color: #000;

 background: #AAE;

 border-color: #227;

}

#navsite ul li a#current {

 background: white;

 border-bottom: 1px solid white;

}

Discussion

The first part of the Solution hides the heading. This is done because the visual representation of the
tab navigation design is enough to inform users that these are navigation links:

#navsite h5 {

 display: none;

}

The next rule defines the padding and margin for the box that is created by the unordered list
element, ul. The line that stretches across the bottom of the folder tabs is drawn by the border-
bottom property (see Figure 3-10):

#navsite ul {

 padding: 3px 0;

 margin-left: 0;

 border-bottom: 1px solid #669;

 font: bold 12px Verdana, Helvetica, Arial, sans-serif;

}

Figure 3-10. The line the navigation tabs rest upon

The declaration that makes this horizontal navigation work with the unordered list is display:
inline for the list item:

#navsite ul li {

 list-style: none;

 margin: 0;

 display: inline;

}

Instead of stacking the list items on top of each other by default, the browser now lays out the list
items as it would text, images, and other inline elements (see Figure 3-11).

Figure 3-11. The list spread out horizontally

To create the look of the folder tab, use the border property in the following CSS rule:

#navsite ul li a {

 padding: 3px 0.5em;

 margin-left: 3px;

 border: 1px solid #669;

 border-bottom: none;

 background: #ccf;

 text-decoration: none;

}

The first border property is a shorthand property that dictates a solid, one-pixel border around the
link. However, immediately following the border property is the border-bottom property, which tells

the browser not to display a border beneath the link.

The value of the border-bottom property is displayed over the border shorthand property (as shown
in Figure 3-12). This overwriting occurs because the border-bottom declaration overrides the values

in the border declaration because of the order in which they are declared.

Figure 3-12. The tabs appear

After you've created the look of the border tab, set the color of the text links and rollover states:

#navsite ul li a:link {

 color: #339;

}

#navsite ul li a:visited {

 color: #666;

}

#navsite ul li a:link:hover, #navsite ul li a:visited:hover {

 color: #000;

 background: #aae;

 border-color: #336;

}

The final CSS rule defines how the "current" link appears. This style is applied to the link that
represents the page being viewed by the user (see Figure 3-13):

#navsite ul li a#current {

 background: white;

 border-bottom: 1px solid white;

}

Figure 3-13. The look of the current link

See Also

The original tab menu bar (as well as other navigation styles) at
http://css.maxdesign.com.au/listamatic/horizontal05.htm.

 < Day Day Up >

http://css.maxdesign.com.au/listamatic/horizontal05.htm

 < Day Day Up >

Recipe 3.9 Creating Breadcrumb Navigation

Problem

You want to use a nesting listing as shown in Figure 3-14 to create a line of breadcrumb navigation,
which is a set of links that lead back to the home page (see Figure 3-15).

Figure 3-14. The default rendering of the nested listing

Figure 3-15. The breadcrumb trail

Solution

The first step is to create a properly constructed set of nested, unordered links that represent the
page's location in the site:

<div id="crumbs">

 <h3>Location:</h3>

 Home

 Writing

 Books

 CSS Cookbook

</div>

Now set the display property of both the ul and the li of the lists:

#crumbs {

 background-color: #eee;

 padding: 4px;

}

#crumbs h3 {

 display: none;

}

#crumbs ul {

 display: inline;

 padding-left: 0;

 margin-left: 0;

}

#crumbs ul li {

 display: inline;

}

#crumbs ul li a:link {

 padding: .2em;

}

Within each nested list, place a small background image of an arrow to the left of the link:

crumbs ul ul li{

 background-image: url(arrow.gif);

 background-repeat: no-repeat;

 background-position: left;

 padding-left: 12px;

}

Discussion

Based on the fairy tale Hansel and Gretel, a breadcrumb trail is used to help people find their way
home. On the Web, the breadcrumb trail illustrates a path to the page the user is viewing (as shown
in Figure 3-16).

Figure 3-16. An example of a breadcrumb trail

The Solution could drop the background-image property if more browsers supported the :before

pseudo-element. The solution would then incorporate another CSS rule (see Recipe 8.9), like so:

#crumbs ul ul li:before {

 content: url(arrow.gif);

}

As of this writing, only Netscape Navigator 6+ and Opera 5+ support the :before pseudo-element.

See Also

Recipe 1.9 and Recipe 2.4 for more information on setting a background image on an element;
http://www.surlalunefairytales.com/hanselgretel/index.html to read an annotated version of Hansel
and Gretel; a research paper into the effectiveness of breadcrumb navigation at
http://psychology.wichita.edu/surl/usabilitynews/52/breadcrumb.htm.

 < Day Day Up >

http://www.surlalunefairytales.com/hanselgretel/index.html
http://psychology.wichita.edu/surl/usabilitynews/52/breadcrumb.htm

 < Day Day Up >

Recipe 3.10 Creating Image-Based Rollovers

Problem

You want image-based rollovers to replace text links.

Solution

First, wrap the text inside the anchor element in a span:

Homepage

Next, instead of JavaScript, use the background-image property within the pseudo-class selectors
:hover and :active to swap the images (see Figure 3-17):

a span {

 display: none;

}

a:link {

 display: block;

 width: 125px;

 height: 30px;

 background-image: url(btn.gif);

 background-repeat: no-repeat;

 background-position: top left;

}

a:link:hover {

 display: block;

 width: 125px;

 height: 30px;

 background-image: url(btn_roll.gif);

 background-repeat: no-repeat;

 background-position: top left;

}

a:link:active {

 display: block;

 width: 125px;

 height: 30px;

 background-image: url(btn_on.gif);

 background-repeat: no-repeat;

 background-position: top left;

}

Figure 3-17. The link with default, rollover, and active states

Discussion

Replacing text with an image has five benefits. First, it separates the text from the presentation. The
image that contains more elaborately formatted type is part of the presentation and therefore
controlled by a style, while the content in the markup remains pure text. The second benefit is that
an image heading can be modified across a whole site by one change of the style sheet. The third
benefit is that this method works for alternative styles and style sheet switching.

With a span element inside an element, it is possible to hide HTML text and let a design element,

such as a rollover image, show as a background image. The fourth benefit of this Solution is that if a
user doesn't have CSS enabled in his browser, the default HTML text will display instead, sparing the
user from having to download unneeded images. The fifth benefit is that the solution is cleaner and
simpler than one that involves JavaScript.

You also can use this technique for page elements that don't require a rollover-for example,
inserting an image to replace heading text to ensure a specific font that isn't commonly found on
people's computers is displayed as an image. To do so, first set up the markup (see Figure 3-18):

<h2 id="headworld">Hello, World!</h2>

Figure 3-18. Default rendering of heading

Then set the following CSS rules to insert the image (see Figure 3-19):

h2#headworld span {

 display: none;

}

h2#headworld {

 width: 395px;

 height: 95px;

 background-image: url(heading.gif);

 background-repeat: no-repeat;

 background-position: top left;

}

Figure 3-19. The HTML text heading replaced by an image

Many people refer to this method as the Fahrner Image Replacement (FIR) method, named after
Todd Fahrner.

A drawback to this solution concerns screen readers, which are programs that make computers
accessible to blind or severely visually impaired people. Certain screen readers won't read elements

set to display: none. For more information, read "Facts and Opinion About Fahrner Image

Replacement" at http://www.alistapart.com/articles/fir/.

An alternative to this solution is the Leahy-Langridge Image Replacement (LIR) method. Developed
independently by Seamus Leahy and Stuart Langridge, the LIR method pushes the text out of view. A
benefit for using this technique is that an extra span element isn't required in order to hide the text.

For example, the HTML for a heading is basic:

 <h2 id="headworld">Hello, World!</h2>

The image for the heading comes through the background because the CSS rule sets the padding to
the exact height of the image header. So, the height property is set to 0:

h2#headworld {

 /* The width of the image */

 width: 395px;

 /* The height of the image is the first padding value */

 padding: 95px 0 0 0;

 overflow: hidden;

 background-image: url("heading.gif");

 background-repeat: no-repeat;

 voice-family: "\"}\"";

 voice-family:inherit;

 height /**/: 95px;

 height: 0px !important;

}

The last four lines of the CSS rule are needed to work around Internet Explorer for Windows' poor
box-model support, as explained in Recipe 10.2. Therefore, Internet Explorer for Windows gets a
height value of 95 pixels, while the other browsers receive zero pixels.

Another method for creating an image-based rollover is performed by the background-position

property. Known as the Pixy method, the technique involves attaching all three rollover states into
one image and then moving the position of the image with the background-position property, as

shown in Figure 3-20:

a span {

http://www.alistapart.com/articles/fir

 display: none;

}

a:link, a:visited {

 display: block;

 width: 125px;

 height: 30px;

 background-image: url(btn_omni.gif);

 background-repeat: no-repeat;

 background-position: 0 0;

}

a:link:hover, a:visited:hover {

 display: block;

 width: 125px;

 height: 30px;

 background-image: url(btn_omni.gif);

 background-repeat: no-repeat;

 /* move the image 30 pixels up */

 background-position: 0 -30px;

}

a:link:active, a:visited:active {

 display: block;

 width: 125px;

 height: 30px;

 background-image: url(btn_omni.gif);

 background-repeat: no-repeat;

 /* move the image 60 pixels up */

 background-position: 0 -60px;

}

Figure 3-20. Showing a portion of the rollover image

The drawback of almost all current image replacement techniques is that users
see nothing if images are turned off, disabled, or simply don't load while the
CSS is still supported. It is important to research and use the method that's
best for your situation. Avoid replacing images in important titles.

See Also

Another demonstration of the LIR technique by Seamus P. H. Leahy at
http://www.moronicbajebus.com/playground/cssplay/image-replacement/; an explanation on how to
create faster CSS-enabled rollovers without having to preload images at http://wellstyled.com/css-
nopreload-rollovers.html; a rundown of the FIR technique at
http://www.stopdesign.com/also/articles/replace_text/.

 < Day Day Up >

http://www.moronicbajebus.com/playground/cssplay/image-replacement/
http://wellstyled.com/css-
http://www.stopdesign.com/also/articles/replace_text/

 < Day Day Up >

Recipe 3.11 Designing a Dynamic Visual Menu

Problem

You want to build a curved tab navigation menu that works even when text is resized; Figure 3-21
shows the default.

Figure 3-21. The dynamic folder tab navigation

Solution

First write the markup for the navigation menu:

<div id="header">

 <h2>Personal Site dot-com</h2>

 <h5>Site navigation:</h5>

 Home

 About

 Archives

 Writing

 <li id="current">Speaking

 Contact

</div>

Then create two folder tab images: one tab for anchor links and another tab to represent the current
page viewed by the user. Split the folder tab image into two images as shown in Figure 3-22.

Figure 3-22. The folder tab image split in two; note the curves in the upper
corners of the images

Then place the right side of the folder tab in the background of the list item:

#header li {

 float:left;

 background-image: url(tab_right.gif);

 background-repeat: no-repeat;

 background-position: right top;

 margin:0;

 padding: 0;

}

Place the left side of the folder tab in the background of the anchor element:

#header a {

 display: block;

 background-image: url("tab_left.gif");

 background-repeat: no-repeat;

 background-position: left top;

 padding: 5px 15px;

 color: #ccc;

 text-decoration: none;

 font-family: Georgia, Times, "Times New Roman", serif;

}

Assign a custom folder tab to represent the current web document being viewed:

#header #current {

 background-image:url("tab_right_current.gif");

}

#header #current a {

 background-image:url("tab_left_current.gif");

 color: black;

}

Place the image with a line measuring one-pixel high at the bottom of the grouping.

Discussion

Keeping the text in the navigation links aids in three areas of web development: accessibility, design,
and maintenance. For example, users with poor eyesight can adjust the size of the text and that tabs
without breaking the design, as shown in Figure 3-23.

Figure 3-23. The text resized

Because users can resize the text to very large settings, the background images that comprise the
folder tabs need to be large as well; otherwise, the folder tabs will break, as shown in Figure 3-24. In
this Solution, the folder tab images have a height of 450 pixels.

Figure 3-24. Note the breaking of the tab in the Archives link

Web developers prefer this method because it lets them easily maintain the list of links. To change a
navigation label or correct a typo, developers can simply edit the HTML text without having to return
to a digital imaging program to create folder tab images.

Another benefit of this method is that the folder tabs can be designed in a more aesthetically pleasing
way. Recipe 3.8 demonstrates how to create a navigation setup with folder tabs using the border

property. This look creates a boxy or squared edge to the folder tabs. With this current Recipe,
however, web developers can curve the tabs and introduce color blending for improved aesthetics.

See Also

Recipe 1.12, which uses a similar rubber-band technique to create pull quotes with images; "Sliding
Doors of CSS, Part II" at http://www.alistapart.com/articles/slidingdoors2/, which expands on this
folder tab navigation concept.

 < Day Day Up >

http://www.alistapart.com/articles/slidingdoors2/

 < Day Day Up >

Recipe 3.12 Creating Contextual Menus

Problem

You have a navigation menu, created with Recipe 3.6. You want to highlight the current page's
location on the menu, as in Figure 3-25.

Figure 3-25. The navigation set of links

Solution

Place an id attribute in the body element of the web document:

<body id="pagespk">

Also, place id attributes in the anchor elements for each link in the menu:

<div id="navsite">

 <h5>Site navigation:</h5>

 Home

 About

 Archives

 Writing

 Speaking

 Contact

</div>

With CSS, place two id selectors into one descendent selector to finish the menu (see Figure 3-26):

#pagespk a#linkspk {

 border-left: 10px solid #f33;

 border-right: 1px solid #f66;

 border-bottom: 1px solid #f33;

 background-color: #fcc;

 color: #333;

}

Figure 3-26. The current link is different from the rest of the links

Discussion

If you have a small site, you can show a link in a set of navigation links representing the current page

by stripping out the anchor link for that page:

<div id="navsite">

 <h5>Site navigation:</h5>

 <a href="/"Home

 About

 Archives

 Writing

 Speaking

 Contact

</div>

For larger sites that might contain secondary menus, stripping out the link tags on each page
increases production and maintenance time. By marking up the links appropriately, the links can be
called from a server-side include, and then you can edit the CSS rules that control the style of the
navigation links as needed.

To expand the one CSS to include all the links in the navigation menu, group the descendent
selectors by a comma and at least one space:

#pagehom a#linkhom:link,

#pageabt a#linkabt:link,

#pagearh a#linkarh:link,

#pagewri a#linkwri:link,

#pagespk a#linkspk:link,

#pagecnt a#linkcnt:link {

 border-left: 10px solid #f33;

 border-right: 1px solid #f66;

 border-bottom: 1px solid #f33;

 background-color: #fcc;

 color: #333;

}

In each web document, make sure to put the appropriate id attribute in the body element. For
example, for the home or main page of the site, the body element is <body id="pagehom">.

See Also

The CSS 2.1 specification on descendent selectors at
http://www.w3.org/TR/CSS21/selector.html#descendant-selectors.

 < Day Day Up >

http://www.w3.org/TR/CSS21/selector.html#descendant-selectors

 < Day Day Up >

Chapter 4. Lists
Introduction

Recipe 4.1. Changing the Format of a List

Recipe 4.2. Writing Cross-Browser Indentation in Lists

Recipe 4.3. Creating Custom Text Markers for Lists

Recipe 4.4. Creating Custom Image Markers for Lists

Recipe 4.5. Creating Inline Lists

Recipe 4.6. Making Hanging Indents in a List

Recipe 4.7. Moving the Marker Inside the List

 < Day Day Up >

 < Day Day Up >

Introduction

From a wife handing a husband a grocery list as he steps out the door to a music channel presenting
their top 100 worst songs of all time, lists help people stay focused and organized. In web design, it's
the same case. HTML lists facilitate the presentation to our site visitors with organized content.

HTML lists, which group key elements together, can be ordered or unordered. Both types of lists are
appealing in part because of the way they appear on the page. List items typically are indented and
are keyed off by a marker, usually a filled circle for an unordered list or numbers for an ordered list
(see Figure 4-1). With a few lines of HTML, a web coder can create a bulleted list on a web page
without opening an image editor. Through CSS, you can create even more visually compelling lists.

Figure 4-1. The default rendering of a list

With a little CSS magic, we can tailor the presentation of the list to complement the design of a web
page instead of relying on the browsers' default styling. While Chapter 3 covered navigation lists, this
chapter illustrates how to change the numbering of list items, use your own image for a list marker,
create a hanging indent that doesn't use a list marker, and more.

 < Day Day Up >

 < Day Day Up >

Recipe 4.1 Changing the Format of a List

Problem

You want to change the default list style, for example to change the bullet or numbering as in Figure
4-2.

Figure 4-2. The list markers changed to lowercase Roman numerals

Solution

Use the list-style-type property to change the bullet or type of counter:

li {

 list-style-type: lower-roman;

}

Discussion

The CSS 2.1 specification offers several styles for numbering a list, as shown in Table 4-1. Browsers
typically vary the bullet style from one level of nesting to the next. To stop lists from presenting this
traditional system of setting the list marker, change the value of list-style-type for each child list.

Table 4-1. Styles available for list markers

Style/value Description Browser support

square Usually a filled-in square, although the exact
representation isn't defined.

All major browsers

disc Usually a filled-in circle, although the exact
representation isn't defined.

All major browsers

circle Usually an unfilled circle, although the exact
representation isn't defined.

All major browsers

decimal
Starts with 1 and continues with 2, 3, 4, etc. All major browsers

decimal-leading-zero
Starts with 01 and continues with 02, 03, 04, etc.
The number of leading zeros may equal the number
of digits used in a list. For example, 0001 might be
used for a 5876-item list.

All major browsers,
although leading
zeros is optional

lower-roman
Starts with lowercase roman numbers. All major browsers

upper-roman
Starts with uppercase roman numbers. All major browsers

lower-alpha
Starts with lowercase ASCII letters. All major browsers

upper-alpha
Starts with uppercase ASCII letters. All major browsers

lower-latin
Starts with lowercase ASCII letters. All major browsers

upper-latin
Starts with uppercase ASCII letters. All major browsers

lower-greek Starts with classical Greek letters, starting with
alpha and then beta, gamma, etc.

Safari, Mozilla,
Netscape 6+

hebrew
Starts counting with traditional Hebrew.

Safari, Mozilla,
Netscape 6+

hiragana
Starts counting with the Japanese hiragana system.

Mozilla, Netscape
6+

katakana Starts counting with the Japanese traditional katana
system.

Mozilla, Netscape
6+

hiragana-iroha Starts counting with the Japanese hiragana-iroha
system.

Mozilla, Netscape
6+

Style/value Description Browser support

katakana-iroha Starts counting with the Japanese katakana-iroha
system.

Mozilla, Netscape
6+

none
No marker is displayed. All major browsers

See Also

Recipe 4.5 for using custom images for list markers; Chapter 12, "Lists and Generated Content" in
Cascading Style Sheets: The Definitive Guide (O'Reilly).

 < Day Day Up >

katakana-iroha Starts counting with the Japanese katakana-iroha
system.

Mozilla, Netscape
6+

none
No marker is displayed. All major browsers

See Also

Recipe 4.5 for using custom images for list markers; Chapter 12, "Lists and Generated Content" in
Cascading Style Sheets: The Definitive Guide (O'Reilly).

 < Day Day Up >

 < Day Day Up >

Recipe 4.2 Writing Cross-Browser Indentation in Lists

Problem

Different browsers use different methods to indent lists. You want to specify left margins for your list
that will render on all browsers.

Solution

Set both the margin-left and padding-left properties for the ul element:

ul {

 margin-left: 40px;

 padding-left: 0px;

}

Discussion

Different browsers use different methods to pad or indent a list. Mozilla and Netscape 6+ browsers
indent a list on the padding, while Internet Explorer and Opera pad a list through the margin of a list.

To gain cross-browser effectiveness, you need to set the values for both the left margins and the
padding for the list. Keep the amount of the indentation in one of the properties. Splitting the amount
into two different properties results in inconsistent presentation across the browsers.

If you set the margin and padding to zero while the list is contained by only the body element, the

browser renders the markers outside the viewport, making them invisible to the user. To make sure
the markers are visible, set the left margin or left padding of the ul to at least 1em.

See Also

Recipe 4.7 on creating hanging indents; CSS 2.1 specification for padding at
http://www.w3.org/TR/CSS21/box.html#propdef-padding; CSS 2.1 specification for margin at

http://www.w3.org/TR/CSS21/box.html#propdef-margin.

 < Day Day Up >

http://www.w3.org/TR/CSS21/box.html#propdef-padding
http://www.w3.org/TR/CSS21/box.html#propdef-margin

 < Day Day Up >

Recipe 4.3 Creating Custom Text Markers for Lists

Problem

You want to use a custom text marker in a list.

Solution

Indent the first line of text and insert the custom text, along with the right-angle quotes acting as
pointers, through auto-generated content (see Figure 4-3):

ul {

 list-style: none;

 margin: 0;

 padding: 0 0 0 1em;

 text-indent: -1em;

}

li {

 width: 33%;

 padding: 0;

 margin: 0 0 0.25em 0;

}

li:before {

 content: "\00BB \0020";

}

Figure 4-3. Text marker for a list

Discussion

Setting the list-style property to a value of none turns off the list marker usually associated with a

list. Typically, a marker is appended to the left of each list item.

Instead of appending the marker to the list item, the custom text marker will be placed inline with
the content of the item. Because the text marker is inside the list item, you need to push the marker
out of the list item box. Indenting the first line of the marker with a negative value creates this push.
The negative value for the text-indent property moves the first line to the left, whereas a positive

value moves the indent to the right:

ul {

 list-style: none;

 margin: 0;

 padding: 0 0 0 1em;

 text-indent: -1em;

}

The :before pseudo-element generates the text marker. Because the marker used in this example

falls outside of the American Standard Code for Information Interchange (ASCII) 256-character set,
its numerical equivalent needs to be determined.

However, because the ASCII character will be used in the CSS property and not on an HTML page,
you need to write out the character in its escaped hexadecimal equivalent. You escape values in CSS
by inserting a backslash before each hexadecimal value:

li:before {

 content: "\00BB \0020";

}

At press time, this solution worked in Mozilla, Netscape 6+, Safari, and Opera browsers because they
can handle the creation of auto-generated content. Unfortunately, this list omits Netscape 4 and
Internet Explorer for Windows and Macintosh.

To create a cross-browser effect, don't use auto-generated content. Instead, insert the text marker
manually before the list item:

 » I'm not the Same Person I was in the Database

 » Past Breaches of Our Privacy

 » The Best of Intentions

 » Whatever Happened to Automation?

 » The Smart Choice is Not Needing to Make One

The main drawback with this approach is that you have two markers for every list item. Although this
isn't a mission-critical problem, it adds an unneeded design element to the web page.

See Also

Recipe 8.9 on creating auto-generated content; the CSS 2.1 specification about escaping characters
at http://www.w3.org/TR/REC-CSS2/syndata.html#escaped-characters; hexadecimal values for
ASCII characters at http://www.asciitable.com/.

 < Day Day Up >

http://www.w3.org/TR/REC-CSS2/syndata.html#escaped-characters
http://www.asciitable.com/

 < Day Day Up >

Recipe 4.4 Creating Custom Image Markers for Lists

Problem

You want to use your own graphic for a list marker. For example, Figure 4-4 uses a diamond image.

Figure 4-4. Custom-made image markers for a list

Solution

Use the list-style-image property to use a graphic for a bullet marker:

ul {

 list-style-type: disc;

 list-style-image: url(bullet.gif);

}

Discussion

Set the location of the image you want to use as a marker as the value of the list-style-image

property. You can't control the size of the image used as a list marker through CSS, so the image you
specify should already be at the correct size. Images that are too large might interfere with the

legibility of the list item or the marker might not be displayed entirely in the viewport, as shown in
Figure 4-5. When creating custom bullets, make sure they are of the appropriate size to compliment
the design of your web page.

Figure 4-5. A large image used for a marker isn't fully displayed

The value for the image marker is inherited, meaning that nested lists pick up the image as the
marker as does the parent. To stop this inheritance, the value of none needs to be set for the child

lists.

ul {

 list-style-type: disc;

 list-style-image: url(bullet.gif);

}

ul ul {list-style-type: none:}

Always include the list-style-type property to provide a fallback should the image not be usable.
In the Solution the list marker disc is used if the image, bullet.gif, can't be displayed.

See Also

Recipe 4.4 on creating custom text markers; the CSS 2.1 specification for list-image-type at

http://www.w3.org/TR/CSS21/generate.html#propdef-list-style-image.

http://www.w3.org/TR/CSS21/generate.html#propdef-list-style-image

 < Day Day Up >

 < Day Day Up >

Recipe 4.5 Creating Inline Lists

Problem

You want to list items to be displayed within a paragraph, as in Figure 4-6 in which the bold, comma-
separated list was generated from an HTML ul list.

Figure 4-6. The list formatted to appear inside a paragraph

Solution

Set the paragraphs before (and, if needed, after) the list:

<h3>

 Table of Contents

</h3>

<p>

 As proposed, the contents of the paper will contain the

following sections:

</p>

 I'm not the Same Person I was in the Database

 Past Breaches of Our Privacy

 The Best of Intentions

 Whatever Happened to Automation?

 <li class="last">The Smart Choice is Not Needing to Make One

<p>

 If there are any objections to how these sections are divided,

please let Nicholas know about

it.

</p>

Through CSS, set the paragraph to display as inline elements and then use auto-generated content
to show the commas between items and the period at the end of the list:

ul, li {

 display: inline;

 margin: 0;

 padding: 0;

 font-weight: bold;

 font-style: italic;

}

li:after {

 content: ", ";

}

li.last:after {

 content: ".";

}

p {

 display: inline;

}

Discussion

Through this method you retain the structure of lists and paragraphs, but you stretch CSS's capability
to present the list inside a paragraph. However, you hide the obvious visual appearance of a list in
favor of having the contents placed inside a paragraph.

See Also

The CSS 2.1 specification about the display property at

http://www.w3.org/TR/CSS21/visuren.html#propdef-display.

 < Day Day Up >

http://www.w3.org/TR/CSS21/visuren.html#propdef-display

 < Day Day Up >

Recipe 4.6 Making Hanging Indents in a List

Problem

You want the first line of a list item to begin further to the left than the rest of the list, thereby
creating a hanging indent as in Figure 4-7.

Figure 4-7. Hanging indents on a list

Solution

Use a negative value for the text-indent property:

ul {

 width: 30%;

 padding: 0 0 0.75em 0;

 margin: 0;

 list-style: none;

}

li {

 text-indent: -0.75em;

 margin: 0.33em 0.5em 0.5em 1.5em;

}

Discussion

Although list markers (numeric, image, or text) help to call attention to the actual list, sometimes
you might not want to add those kinds of design elements to a list. Instead of relying on markers to
carry off the list design, use a hanging indent.

In this Solution, you indent the list by three-quarters of an em unit, creating a visible but almost
subtle hanging indent effect. You can push this design technique from subtle to the foreground by
reducing the negative value further, or by increasing the font size of the text in the list item.

See Also

Recipe 1.14 on setting indents in paragraphs; the CSS 2.1 specification for text-indent at

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent.

 < Day Day Up >

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

 < Day Day Up >

Recipe 4.7 Moving the Marker Inside the List

Problem

You want the list marker to be pulled inside the border of the list items, as in Figure 4-8. This creates
an effect in which the text wraps around the marker.

Figure 4-8. Moving the marker inside the list item

Solution

Use the list-style-position property and set the value to inside:

li {

 list-style-position: inside;

 width: 33%;

 padding: 0;

 margin: 0;

}

ul {

 margin: 0;

 padding: 0 0 0 1em;

}

Discussion

Normally the list marker stands outside the text and the result is a very distinctive list. Some
designs, however, might require the marker to appear as part of the text. A designer might choose to
keep the marker inside, for example, to eliminate the need to have enough whitespace on the left
side. Also, replacing the list marker with your own custom marker can visually enhance this recipe.
For example, Figure 4-9 shows arrows rather than the default bullet.

Figure 4-9. Custom marker inside the list item

See Also

The CSS 2.1 specification for list-style-position at

http://www.w3.org/TR/CSS21/generate.html#propdef-list-style-position.

 < Day Day Up >

http://www.w3.org/TR/CSS21/generate.html#propdef-list-style-position

 < Day Day Up >

Chapter 5. Forms
Introduction

Recipe 5.1. Setting Styles for Input Elements

Recipe 5.2. Setting Styles for textarea Elements

Recipe 5.3. Setting Styles for Select and Option Elements

Recipe 5.4. Creating Form Buttons

Recipe 5.5. Setting Up a Submit-Once-Only Button

Recipe 5.6. Designing a Web Form Without Tables

Recipe 5.7. Sample Design: A Login Form

Recipe 5.8. Sample Design: A Registration Form

 < Day Day Up >

 < Day Day Up >

Introduction

Forms make the Web go 'round. Without forms we wouldn't be able to log in to web-based email
accounts, order books with one click, or trade stocks online. The downside to forms, however, is the
generic way in which browsers display them. In short, HTML forms usually look ugly and boring.

The default rendering of online forms usually includes beveled input and textarea fields, as well as

boring-looking buttons. Such a look and feel might be acceptable if you are making a form for use on
a small intranet or on a personal web page, but it is unacceptable if you want to project a
professional image.

Fortunately, with a few CSS rules, you can create forms that stand out from the pack. If you are
designing a company web site, for instance, you can create forms in the same color as the company's
logo. What's more, you can implement rollover effects on Submit buttons without having to replace
the buttons with an image.

CSS provides much control over the presentation of your forms and this chapter helps you get
straight into the techniques. You will learn the settings for HTML user input elements such as buttons,
text areas, and fields. Another technique covered is how to set up a submit-once-only button to keep
site visitors from mistakenly sending several processes to the server. At the end of the chapter are
two sample designs: a simple log-in form without tables and a long registration form with tables.

 < Day Day Up >

 < Day Day Up >

Recipe 5.1 Setting Styles for Input Elements

Problem

You want to change the appearance of input elements' background color. Such effects can take you
from Figure 5-1 to Figure 5-2.

Figure 5-1. The form without styles

Figure 5-2. Styles applied to the input fields

Solution

Use a class selector to design the input elements of the form:

<h2>Simple Quiz</h2>

 <form action="simplequiz.php" method="post">

 <p>

 Are you

 <input type="radio" value="male" name="sex"

class="radioinput">

 Male or

 <input type="radio" value="female" name="sex"

class="radioinput">

 Female?

 </p>

<p>

 What pizza toppings do you like? <input type="checkbox" name=""

value="l" class="checkbxinput"> Pepperoni <input type="checkbox"

name="" value="mushrooms" class="checkbxinput"> Mushrooms <input

type="checkbox" name="" value="pineapple" class="checkbxinput">

 Pineapple

 </p>

 <label for="question1">Who is buried in Grant's tomb?</label>

 <input type="text" name="question1" id="question1"

class="textinput"

value="Type answer here" />

 <label for="question2">In what country is the Great Wall of

China Located?</label>

 <input type="text" name="question2" id="question2"

class="textinput"

value="Type answer here" />

 <label for="password">What is your password?</label>

 <input type="password" name="password" id="password"

class="pwordinput"

value="" />

 <input name="reset" type="reset" id="reset" value="Reset" />

 <input type="submit" name="Submit" value="Submit"

class="buttonSubmit" />

</form>

Then apply CSS rules to change the presentation of the input elements:

.textinput {

 margin-bottom: 1.5em;

 width: 50%;

 color: #666;

 background-color: #ccc;

}

.pwordinput {

 color: white;

 background-color: white;

}

.radioinput {

 color: green;

 background-color: #ccc;

}

.checkbxinput {

 color: green;

 background-color: green;

}

Discussion

You can change the style of the active input field by adding the :focus pseudo-class. So, as a user
fills out a form, the input field he is currently filling out will change color (see Figure 5-2):

input:focus {

 color: black;

 background-color: #cf0;

}

Opera is currently the only browser that allows radio buttons and checkboxes to be colored. Mozilla
doesn't color them at all, while Internet Explorer for Windows ignores foreground color and colors the
area around the widgets with the background color (as shown in Figure 5-3).

Figure 5-3. Using :focus to light up an input field

Rather than using class selectors as illustrated in the Solution, another way to stylize different kinds
of input forms is through attribute selectors. For example, to style text inputs and password inputs
differently you might use attribute selectors like the following:

input[type="text"] {

 margin-bottom: 1.5em;

 width: 50%;

 color: #666;

 background-color: #ccc;

}

input[type="password"] {

 color: white;

 background-color: white;

}

Although this works in most browsers, it doesn't work in Internet Explorer for Windows because this

browser doesn't support attribute selectors at all. Attribute selectors currently work in Netscape
Navigator 6+ and Opera 5+. If you want to ensure cross-browser support, you need to use class
selectors to determine styles for different form controls.

See Also

The CSS 2.1 specification for dynamic pseudo-classes at
http://www.w3.org/TR/CSS21/selector.html#x33; the CSS 2.1 specification for attribute selectors at
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors.

 < Day Day Up >

http://www.w3.org/TR/CSS21/selector.html#x33
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors

 < Day Day Up >

Recipe 5.2 Setting Styles for textarea Elements

Problem

You want to set styles for textarea elements in a web form to change the text's color, size, weight,

and other properties of the element, as in Figure 5-4.

Figure 5-4. A textarea element with styles applied

Solution

Use a type selector to associate styles with textarea elements:

textarea {

 width: 300px;

 height: 100px;

 background-color: yellow;

 font-size: 1em;

 font-weight: bold;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 border: 1px solid black;

}

Discussion

Associating styles to textarea elements is fairly straightforward through the use of a type selector:

textarea {

 background-color: blue;

}

By adding the :focus pseudo-class, you can change the style of the active textarea field:

textarea:focus {

 background-color: green;

}

So, as a user fills out a form, the textarea field he is currently filling out will change color.

The browsers that currently support :focus are Netscape Navigator 6+ and Opera 7.

See Also

The CSS 2.1 specification for dynamic pseudo-classes at
http://www.w3.org/TR/CSS21/selector.html#x33; the CSS 2.1 specification for attribute selectors at
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors.

 < Day Day Up >

http://www.w3.org/TR/CSS21/selector.html#x33
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors.

 < Day Day Up >

Recipe 5.3 Setting Styles for Select and Option Elements

Problem

You want to alter the look of list menus in a form by changing the color and font, as in Figure 5-5.

Figure 5-5. The select and option elements with styles applied

Solution

Use a type selector to associate styles with select elements:

select {

 color: white;

 background-color: blue;

 font-size: 0.9em;

}

option {

 padding: 4px;

}

Discussion

Unlike input form elements, there is only one type of select element, so associating styles to that
element is straightforward and can be done through a type selector. Styling the option element is

just as easy.

To stylize alternating options in a select list, first include the class attribute in the option element:

<select name="Topping_ID" size="6" multiple>

 <option value="1">Pepperoni</option>

 <option value="2" class="even">Sausage</option>

 <option value="3">Green Peppers</option>

 <option value="4" class="even">Pineapple</option>

 <option value="5">Chicken</option>

 <option value="6" class="even">Ham</option>

 <option value="7">Olives</option>

 <option value="8" class="even">Onions</option>

 <option value="9">Red Peppers</option>

</select>

Then set up the CSS rules for the two sets of option elements, making sure that the option
elements with an even value (as noted by the class selector even) look different from the others.
For example, option elements with an even selector have a background color of red, while the

"regular" option elements have a background color of blue (see Figure 5-6):

select {

 font-size: 0.9em;

}

option {

 color: white;

 background-color: blue;

}

option.even {

color: blue;

 background-color: red;

}

Figure 5-6. Alternating styles applied to select and option elements

See Also

Recipe 5.1 for information on how to change the color and size of input element text.

 < Day Day Up >

 < Day Day Up >

Recipe 5.4 Creating Form Buttons

Problem

You want to stylize the color, padding, borders, and rollover effects for Submit and Reset buttons on
a form. Figure 5-7 shows a form without styles applied to the buttons, and Figure 5-8 shows the form
with stylized buttons.

Figure 5-7. The form buttons without styles applied

Figure 5-8. The form buttons with styles applied

Solution

First use a class selector to design the buttons:

<form action="simplequiz.php" method="post">

 <label for="question">Who is president of the U.S.?

</label>

 <input type="text" name="question" id="textfield"

 value="Type answer here" />

 <input name="reset" type="reset" value="Reset"

 class="buttonReset" />

 <input type="submit" name="Submit" value="Submit"

class="buttonSubmit" />

</form>

Then use CSS to stylize the buttons:

.buttonReset {

 color: #fcc;

 background-color: #900;

 font-size: 1.5em;

 border: 1px solid #660;

 padding: 4px;

}

.buttonSubmit {

 color: white;

 background-color: #660;

 font-size: 1.5em;

 border: 1px solid #660;

 padding: 4px;

}

Discussion

You also can stylize buttons using the ubiquitous rollover state. To create rollovers for buttons, use a
JavaScript function:

<script language="JavaScript" type="text/javascript">

function classChange(styleChange,item) {

 item.className = styleChange;

}

</script>

Next, add two additional CSS rules, one for the rollover state for the Reset button and another for the
Submit button:

.buttonResetRoll {

 color: white;

 background-color: #c00;

 font-size: 1.5em;

 border: 1px solid #660;

 padding: 4px;

}

.buttonSubmitRoll {

 color: white;

 background-color: #cc0;

 font-size: 1.5em;

 border: 1px solid #660;

 padding: 4px;

}

After the function is in place and the extra CSS rules are set up, place the events in the button
markup so that you can toggle between the off and on states of the form buttons (see Figure 5-9):

<form action="simplequiz.php" method="post">

 <label for="question">Who is president of the U.S.?</label>

 <input type="text" name="question" id="textfield"

value="Type answer here" />

 <input name="reset" type="reset" id="reset" value="Reset"

class="buttonReset"

onMouseOver="classChange('buttonResetRoll',this)"

onMouseOut="classChange('buttonReset',this)" />

 <input type="submit" name="Submit" value="Submit"

class="buttonSubmit"

onMouseOver="classChange('buttonSubmitRoll',this)"

onMouseOut="classChange('buttonSubmit',this)" />

</form>

Figure 5-9. A rollover state created through CSS and JavaScript

As noted earlier, until Internet Explorer for Windows supports attribute selectors, you'll need to use
class selectors to set button styles that can be seen in all browsers. Using attribute selectors to write
CSS rules for the form buttons doesn't require the extra markup in the HTML element that comes
from using class selectors. For example, the attribute selector syntax for the buttons using only CSS
would look something like this:

input[type="reset"] {

 color: #fcc;

 background-color: #900;

 font-size: 1.5em;

 border: 1px solid #660;

 padding: 4px;

}

input[type="submit"] {

 color: white;

 background-color: #660;

 font-size: 1.5em;

 border: 1px solid #660;

 padding: 4px;

}

You also can use the width property to determine the horizontal size of the button; however,

Internet Explorer 4.x for Windows doesn't recognize the CSS width property on the form property.

See Also

The CSS 2.1 specification for attribute selectors at
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors.

 < Day Day Up >

http://www.w3.org/TR/CSS21/selector.html#attribute-selectors

 < Day Day Up >

Recipe 5.5 Setting Up a Submit-Once-Only Button

Problem

You want to keep people from clicking the Submit button more than once.

Solution

First create a class for keeping the button from being displayed:

.buttonSubmitHide {

 display: none;

}

Then use the following JavaScript programmed to switch styles by class selectors:

<script language="JavaScript" type="text/javascript">

function classChange(styleChange,item) {

 item.className = styleChange;

}

</script>

Now trigger the function by using an onsubmit event to remove the Submit button from the web

document:

<h2>Order Confirmation</h2>

<form action="login.php" method="post"

 onsubmit="classChange('buttonSubmitHide',submit);

return true">

 <div align="center">

 <p>Are you sure you want to purchase 12 cans of soda over the

Web?</p>

 <label for="uname">Final Price:</label>

 <input type="text" name="uname" id="uname" value="$7.95" />

 (includes tax, s+h extra)

 <input type="submit" name="submit" value="submit"

class="buttonSubmit" />

 </div>

</form>

Discussion

The JavaScript function in the Solution triggers a change in which a style is applied to the element.
You must use the form's onsubmit event to execute the function so that the form's action will still be
executed. If the function were triggered with an onclick event on the Submit button, some browsers

would execute only the class-changing function. Then, because the button is no longer visible, the
user would not be able to trigger the form.

See Also

JavaScript and DHTML Cookbook (O'Reilly) for more recipes that combine JavaScript and CSS.

 < Day Day Up >

 < Day Day Up >

Recipe 5.6 Designing a Web Form Without Tables

Problem

You want to include form fields and labels on rows without using an HTML table, thereby ensuring a
pure CSS-enabled layout without using any markup for presentation.

Solution

First use labels in conjunction with the form fields in the markup (see Figure 5-10):

<form action="login.php" method="post">

 <label for="uname">Username</label>

 <input type="text" name="uname" id="uname" value="" />

 <label for="pname">Password</label>

 <input type="text" name="uname" id="uname" value="" />

 <label for="pname">Remember you?</label>

 <input type="checkbox" name="recall" id="recall"

class="checkbox" />

 <input type="submit" name="Submit" value="Submit"

class="buttonSubmit" />

</form>

Figure 5-10. The form without styles applied

Then set the display and label properties for the label elements to block, float the label

elements to the left, and justify the text on the right (see Figure 5-11):

input {

 display: block;

 width: 175px;

 float: left;

 margin-bottom: 10px;

}

label {

 display: block;

 text-align: right;

 float: left;

 width: 75px;

 padding-right: 20px;

}

.checkbox {

 width: 1em;

}

br {

 clear: left;

}

.buttonSubmit {

 width: 75px;

 margin-left: 95px;

}

Figure 5-11. The design of the form laid out with styles

Discussion

The input and label elements are set to display: block, which displays them as block-level

elements. This makes it possible to set the widths for the text in the label. Instead of resting on top
of the input element, the labels are floated to the left. And because all labels have the same width,

the look is uniform throughout the form.

The br tag creates a break between the label and form element sets, and clears the float from

previous elements. This prevents the other elements (those that appear after the input field matched
to the label) from floating as well.

See Also

The HTML 4.1 specification for the label element at

http://www.w3.org/TR/html401/interact/forms.html#edef-LABEL; the CSS 2.1 specification for the
float property at http://www.w3.org/TR/CSS21/visuren.html#propdef-float; the CSS 2.1
specification for the clear property at http://www.w3.org/TR/CSS21/visuren.html#propdef-clear.

 < Day Day Up >

http://www.w3.org/TR/html401/interact/forms.html#edef-LABEL
http://www.w3.org/TR/CSS21/visuren.html#propdef-float
http://www.w3.org/TR/CSS21/visuren.html#propdef-clear

 < Day Day Up >

Recipe 5.7 Sample Design: A Login Form

Login forms are all over the Web. For instance, you need a login and a password to check your email
on the Web, order books from Amazon.com, and even pay that parking ticket online.

Only a few components of a login form are visible to the user: the input field's Submit button and
labels as well as the username and password fields themselves. Here is the markup of the form to be
stylized (Figure 5-12 shows the input field without styles applied):

<form action="login.php" method="post">

 <label for="uname">Username</label>

 <input type="text" name="uname" id="uname" value="" />

 <label for="pword">Password</label>

 <input type="text" name="pword" id="pword" value="" />

 <input type="submit" name="Submit" value="Submit" />

</form>

Figure 5-12. The login form without styles

First, add a character after the text in the label element. Use the :after pseudo-class property to

autogenerate the character:

label:after {

 content: ": ";

}

Next, to make the labels stick out from the form fields, change the background color of the labels and
the weight of the font. Through CSS, change the labels so that they have a gray background and
black text set in bold type (see Figure 5-13):

label {

 background-color: gray;

 color: black;

 font-weight: bold;

}

Figure 5-13. Styles for color applied to the label elements

Now, place some padding around the text and change the text to uppercase (see Figure 5-14):

label {

 background-color: gray;

 color: black;

 font-weight: bold;

 padding: 4px;

 text-transform: uppercase;

}

Figure 5-14. Text transformed to uppercase letters

As you can see, the labels need to be toned down because they compete for attention with the input
fields. To reduce their visual impact, shrink the size of the text while keeping the weight of the font
set to bold. Also, set the typeface of the labels to Verdana, which renders legibly even in small sizes
(see Figure 5-15):

label {

 background-color: gray;

 color: black;

 font-weight: bold;

 padding: 4px;

 text-transform: uppercase;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size: xx-small;

}

Figure 5-15. The text refined in the label element

Now it's time to style the input fields. Because the form has two types of input fields, differentiate
them by placing a class attribute in the Submit button. This technique enables you to style the input

fields and the Submit button differently. If you didn't do this, styles that are intended just for the
form fields would also be applied to the Submit button. Using the class selector, you can override or

change the properties intended for one element so that they aren't applied to all elements:

<input type="submit" name="Submit" value="Submit"

class="buttonSubmit" />

To bring in some whitespace around the form elements, set the input fields to display as block-level

elements and apply a margin to the bottom (see Figure 5-16):

input {

 display: block;

 margin-bottom: 1.25em;

}

Figure 5-16. The input elements sliding under the labels

Next, extend the width of the input box to 150 pixels and place a one-pixel border around the box so
that the default bevel rendering that occurs in most browsers goes away. Indicate a slight depth to
the page by adding a two-pixel border on the right and bottom of the input box (see Figure 5-17):

input {

 display: block;

 margin-bottom: 1.25em;

 width: 150px;

 border: solid black;

 border-width: 1px 2px 2px 1px;

}

Figure 5-17. The modified input fields

With the main input fields in place, now it's time to apply styles to the Submit button. Because you

don't want the Submit button to look like the regular input text fields, use a class selector.

Start by changing the size and position of the Submit button. First, shrink the width of the button by
75 pixels (which is one-half the size of the input fields). Then slide the button to the right by setting the
left side margin to 75 pixels (see Figure 5-18):

.buttonSubmit {

 width: 75px;

 margin-left: 75px;

}

Figure 5-18. The refined Submit button

Next, change the Submit button's background to green with a green border, and convert the text to
uppercase by using the text-transform property (see Figure 5-19):

.buttonSubmit {

 width: 75px;

 margin-left: 75px;

 color: green;

 text-transform: uppercase;

 border: 1px solid green;

}

Figure 5-19. The green Submit button in uppercase letters

To add the final touch, hide the br element from the display because the br introduces extra

whitespace to the form. Figure 5-20 shows the result.

br {

 display: none;

}

Figure 5-20. The login form styles finalized

 < Day Day Up >

 < Day Day Up >

Recipe 5.8 Sample Design: A Registration Form

For some forms you might want to place the form elements into a two-column table, with the labels

in one column and the fields in the other. Example 5-1 provides the code. Figure 5-21 shows the form
and tables without styles applied.

Example 5-1. Stylized long form

<form action="registration.cfm" method="post">

 <table cellspacing="0">

 <tr class="header">

 <th colspan="2">Account Information</th>

 </tr>

 <tr class="required">

 <th scope="row">Login Name*</th>

 <td><input name="uname" type="text" size="12"

maxlength="12" /></td>

 </tr>

 <tr class="required">

 <th scope="row">Password*</th>

 <td><input name="pword" type="text" size="12"

maxlength="12" /></td>

 </tr>

 <tr class="required">

 <th scope="row">Confirm Password* </th>

 <td><input name="pword2" type="text" size="12"

maxlength="12" /></td>

 </tr>

 <tr class="required">

 <th scope="row">Email Address*</th>

 <td><input name="email" type="text" /></td>

 </tr>

 <tr class="required">

 <th scope="row">Confirm Email*</th>

 <td><input type="text" name="email2" /></td>

 </tr>

 <tr class="header">

 <th colspan="2">Contact Information</th>

 </tr>

 <tr class="required">

 <th scope="row">First Name* </th>

 <td><input name="fname" type="text" size="11" /></td>

 </tr>

 <tr class="required">

 <th scope="row">Last Name* </th>

 <td><input name="lname" type="text" size="11" /></td>

 </tr>

 <tr class="required">

 <th scope="row">Address 1*</th>

 <td><input name="address1" type="text" size="11" /></td>

 </tr>

 <tr>

 <th scope="row">Address 2 </th>

 <td><input type="text" name="address2" /></td>

 </tr>

 <tr class="required">

 <th scope="row">City* </th>

 <td><input type="text" name="city" /></td>

 </tr>

 <tr class="required">

 <th scope="row">State or Province*</th>

 <td><select name="state">

 <option selected="selected"

disabled="disabled">Select...</option>

 <option value="alabama">Alabama</option>

 </select></td>

 </tr>

 <tr class="required">

 <th scope="row">Zip*</th>

 <td><input name="zipcode" type="text" id="zipcode"

size="5" maxlength="5" /></td>

 </tr>

 <tr class="required">

 <th scope="row">Country*</th>

 <td><input type="text" name="country" /></td>

 </tr>

 <tr class="required">

 <th scope="row">Gender*</th>

 <td> <input type="radio" name="sex" value="female" />

 Female

 <input type="radio" name="sex" value="male" />

 Male </td>

 </tr>

 <tr class="header">

 <th colspan="2">Misc. Information</th>

 </tr>

 <tr>

 <th scope="row"> Annual Household Income </th>

 <td>

 <select name="income" size="1" >

 <option selected="selected" disabled="disabled">

Select...</option>

 <option value="notsay">I'd rather not say</option>

 </select> </td>

 </tr>

 <tr>

 <th scope="row">Interests</th>

 <td><input name="interests" type="checkbox"

value="shopping-fashion" />

 Shopping/fashion

 <input name="interests" type="checkbox"

value="sports" />

 Sports

 <input name="interests" type="checkbox"

value="travel" />

 Travel</td>

 </tr>

 <tr>

 <th scope="row">Eye Color</th>

 <td><input name="eye" type="checkbox" value="red" />

 Red

 <input name="eye" type="checkbox" value="green" />

 Green

 <input name="eye" type="checkbox" value="brown" />

 Brown

 <input name="eye" type="checkbox" value="blue" />

 Blue Gold</td>

 </tr>

 </table>

 <input type="submit" name="Submit" value="Submit"

id="buttonSubmit" />

 <input type="reset" name="Submit2" value="Reset"

id="buttonReset" />

</form>

Figure 5-21. The form and table without styles applied

The first element to style is the table element. Set the border model as well as the text color and

border around the table itself (see Figure 5-22):

table {

 border-collapse: collapse;

 color: black;

 border: 1px solid black;

}

Figure 5-22. A border placed around the table

Next, tackle the table header cells, which are located in the left column (see Figure 5-23). The table
header cells is set to a width of 200 pixels, while the content inside the cell is aligned to the left, set to
Verdana and sized to 0.7 em units:

th {

 width: 200px;

 text-align: right;

 vertical-align: top;

 border-top: 1px solid black;

 font-family: Verdana;

 font-size: 0.7em;

}

Figure 5-23. Refined table header cells

Adjust the padding of the header cells (see Figure 5-24):

th {

 width: 200px;

 text-align: right;

 vertical-align: top;

 border-top: 1px solid black;

 font-family: Verdana;

 font-size: 0.7em;

 padding-right: 12px;

 padding-top: 0.75em;

 padding-bottom: 0.75em;

}

Figure 5-24. Padding applied to the table header cells

Next, apply styles to the right table cells. To underscore the difference between the left and right
columns, convert the right table cell background to black. Also, set a gray border to the left to soften
the transition when reading the rows left to right (see Figure 5-25):

td {

 vertical-align: middle;

 background-color: black;

 border-bottom: 1px solid white;

 color: white;

 border-left: 4px solid gray;

 padding: 4px;

 font-family: Verdana;

 font-size: .7em;

}

Figure 5-25. The stylized right column table cells

Certain fields are required to execute the registration, so change the color of the text labels for those
fields. This change in color will indicate at a glance which fields are required (see Figure 5-26):

.required {

 color: red;

}

Figure 5-26. The required fields marked with red text

Note that the CSS rule states that the color is red, but for printing purposes the color will come out a
shade of gray.

Adjust the form headers that indicate the different sections of the form by making the text uppercase
and slightly larger than the other text in the form (see Figure 5-27):

.header th {

 text-align: left;

 text-transform: uppercase;

 font-size: .9em;

}

Figure 5-27. The refined form section headers

Slide the form headers so that they rest on top of the second column. To determine where to place
the headers, add the size of the left column (200 pixels), the padding of the right column (4 pixels),
the width of the border on the left of the right column (4 pixels), and the padding of the right column
(12 pixels):

.header th {

 text-align: left;

 text-transform: uppercase;

 font-size: .9em;

 padding-left: 220px;

}

Then add a touch of visual appeal by applying thicker borders to the top and bottom of the header
(see Figure 5-28):

.header th {

 text-align: left;

 text-transform: uppercase;

 font-size: .9em;

 padding-left: 220px;

 border-bottom: 2px solid gray;

 border-top: 2px solid black;

}

Figure 5-28. Padding added to the section headers

For the finishing touch, move the Submit and Reset buttons so that they fall under the form fields, just
like the section headings, by assigning the left side of the margin to be 220 pixels (see Figure 5-29):

#buttonSubmit {

 margin-left: 220px;

 margin-top: 4px;

}

Figure 5-29. The Submit and Reset buttons moved into place

 < Day Day Up >

 < Day Day Up >

Chapter 6. Tables
Introduction

Recipe 6.1. Setting the Cell Spacing

Recipe 6.2. Setting the Borders and Cell Padding

Recipe 6.3. Setting the Styles Within Table Cells

Recipe 6.4. Removing Gaps from Table Cells with Images

Recipe 6.5. Setting Styles for Table Header Elements

Recipe 6.6. Sample Design: An Elegant Calendar

 < Day Day Up >

 < Day Day Up >

Introduction

Print designers use grids to create compelling layouts. Using such a structure makes it easy to place
elements into all sorts of layouts, from the front page of a newspaper to a movie poster to the cover
of this book. It also makes the designs visually more appealing.

When print designers began gravitating toward the Web, they found the lack of structure frustrating.
At most, designers initially could only float images to the left or right until Netscape invented the
center tag. In fact, it wasn't until HTML tables were used as grids that the web-design industry took

off. Even still, available tools had their limitations and as such designers overused tables to structure
entire web pages.

With CSS-enabled designs, web developers learned they could forego the practice of manipulating
tables to hold designs. However, they also learned that styling tabular data, such as a calendar, could
still be challenging.

This chapter teaches you how to make your tables look better by stylizing table headers, setting
borders for a table and for its cells, and reducing gaps with images in table cells. The sample design
at the end of the chapter takes you through the steps required to stylize a calendar.

 < Day Day Up >

 < Day Day Up >

Recipe 6.1 Setting the Cell Spacing

Problem

You want to change the space between the table border and cell borders.

Solution

Use the cellspacing table attribute:

<table cellspacing="15">

 <tr>

 <th colspan="2">

 General Demographic Characteristics of Tallahassee, FL

 </th>

 </tr>

 <tr>

 <th>

 </th>

 <th>

 Estimate

 </th>

 </tr>

 <tr>

 <td>

 Total population

 </td>

 <td>

 272,091

 </td>

 </tr>

</table>

Discussion

The CSS 2.1 specification describes a standard mechanism to manipulate the cellspacing table
attribute through the use of the border-spacing property when the border-collapse value is set to
separate:

border-collapse: separate;

border-spacing: 15px;

However, implementation of this part of the specification isn't visible in Internet Explorer for Windows.
(It does work in Netscape Navigator 7+.) Using the cellspacing attribute is currently the best

solution that works in Internet Explorer for Windows, Netscape Navigator, Safari, and Opera
browsers.

See Also

Recipe 6.2 on setting table borders and cell padding; the CSS 2.1 specification for border-collapse

at http://www.w3.org/TR/CSS21/tables.html#propdef-border-collapse; the CSS 2.1 specification for
border-spacing at http://www.w3.org/TR/CSS21/tables.html#propdef-border-spacing.

 < Day Day Up >

http://www.w3.org/TR/CSS21/tables.html#propdef-border-collapse
http://www.w3.org/TR/CSS21/tables.html#propdef-border-spacing

 < Day Day Up >

Recipe 6.2 Setting the Borders and Cell Padding

Problem

You want to set the borders and the amount of space within table cells to create a stronger visual
display than the default rendering of a table, as in Figure 6-1, for example.

Figure 6-1. Borders and padding applied to the table and table cells

Solution

Use the padding property to address the amount of space between the content in the cell and the
edges of the cell. Use the border property to set the borders on both the table and its cells:

table {

 border-collapse: collapse;

 border: 5px solid #444;

}

td {

 padding: 4px;

}

th {

 color: white;

 background-color: black;

}

td, th+th {

 border: 5px solid #666;

}

td+td {

 border: 5px solid #ccc;

 text-align: center;

}

td#winner {

 border: 7px dotted #999;

}

Discussion

There are two border models for HTML tables: collapse and separate. At the time of writing, the
collapse model is more widely implemented by browsers and thus more used by designers.

All browsers today default to the collapse model. As the CSS standard doesn't specify that behavior,
you should explicitly set the collapse model in your style sheets lest a future browser not have the
same defaults.

The collapse model for a table is set by default. Just in case a browser might start using another
border model, you can specifically set the border model using the border-collapse property set to
collapse:

table {

 border-collapse: collapse;

}

The table element's border attribute specifies borders for the table and its enclosing cells. You can
specify CSS's border property through a separate border thickness for the table and individual cells.

If you do apply a border to a cell that runs counter to a previous CSS rule, you must follow these four
CSS specification rules for conflict resolution:

If border-style is set to hidden, all other border styles are concealed.

If border-style is set to none, any other border style wins.

Unless a cell has border-style set to hidden or has border-style set to none, a thicker

border overrides the narrower borders. If adjoining cells have the same width, the style of the
border will be determined in the following order: double, solid, dashed, dotted, ridge,
outset, groove, inset.

If adjoining cells have a different color while possessing the same style and width, the border
color will be determined in the following order: cell, row, row group, column, column group, and
then table.

The other border model is separate, in which every cell contains its own borders and can be styled
independently of other cell borders. Within the separate model, the border-spacing property is used

to set the horizontal and vertical space respectively between cells:

table#runoffdata {

 border-collapse: separate;

 border-spacing: 4px 4px;

}

If the border-collapse property is set to separate, then any styles set for rows, columns, or

groups of table cells aren't applied. Also, styles for table cells that don't contain content can be
displayed or hidden using the empty-cells property with the value of show or hide, respectively.

While the separate border model gives more control to web developers, as of this writing separate is
supported only in Mozilla and Netscape 6+, not in Internet Explorer. Therefore most web designers
stick to the collapse model.

See Also

The CSS 2.1 specification about border models at
http://www.w3.org/TR/CSS21/tables.html#propdef-border-collapse; for more discussion on tables,
see Chapter 11 in Cascading Style Sheets: The Definitive Guide (O'Reilly).

 < Day Day Up >

http://www.w3.org/TR/CSS21/tables.html#propdef-border-collapse

 < Day Day Up >

Recipe 6.3 Setting the Styles Within Table Cells

Problem

You want to stylize links within a table cell to make them appear visually different from the rest of the
page.

Solution

Use a descendant selector (sometimes referred to as a contextual selector) to manipulate the styles
for content in a table cell:

td a {

 display: block;

 background-color: #333;

 color: white;

 text-decoration: none;

 padding: 4px;

}

Discussion

By using the type and descendent selectors-the td a in the CSS rule-to apply the styles, you

reduce the amount of markup needed to perfect your designs and you reduce the document's file
sizes. The style affects only the a elements within the table cells, td.

If you need more control over the design of the content within a table cell, use a class selector:

<td class="navText">

 Home

</td>

You then can apply the CSS rules to the cell's content through a combination of class and descendant
selectors:

td.navText {

 font-size: x-small;

}

See Also

The CSS 2.1 specification regarding type selectors at
http://www.w3.org/TR/CSS21/selector.html#type-selectors;
http://www.w3.org/TR/CSS21/selector.html#descendant-selectors for information about
descendant selectors.

 < Day Day Up >

http://www.w3.org/TR/CSS21/selector.html#type-selectors
http://www.w3.org/TR/CSS21/selector.html#descendant-selectors

 < Day Day Up >

Recipe 6.4 Removing Gaps from Table Cells with Images

Problem

You want to get rid of space in a table cell that contains only an image. You want to go from Figure 6-
2 to Figure 6-3.

Figure 6-2. A gap appearing below an image in a table cell

Figure 6-3. Displaying an image in a table cell as a block-level element

Solution

Set the image to be displayed as a block-level element:

td img {

 display: block;

}

Discussion

We set the element to block content because the whitespace at the bottom of the image occurs
because the image element is supposed to contain inline content, possibly text. The browser puts the
image on the baseline used for text content even if there is no text in the content. This baseline isn't
at the bottom of the cell because some letters (e.g., g, p, q, and y) have descenders that hang below
that baseline (see Figure 6-4).

Figure 6-4. The lowercase letters g, p, q, and y

You can't get rid of the descender space, because the baseline is a percentage of the total font size.
Therefore the only way to place images without a baseline is to set the display property for the
image to block as shown in the Solution.

A Document Type Definition (DTD) is a formal statement that defines the relationship of elements
used in a web page. For example, there are differences in the HTML2 DTD compared to the HTML 4.1
DTD. Those differences are spelled out in their own DTD. A browser can determine which DTD to use
when rendering a page by a small statement that precedes any markup in a web page.

There are certain DOCTYPEs that will put the browser into standards mode instead of quirks mode.

Having the browser in standards mode ensures the gap between images and table cell borders. Use
alternative DOCTYPES that trigger quirks mode but that still validate to avoid this gap or if you simply
want to avoid standards mode. For more information, see a chart comparing DOCTYPEs and browsers
at http://www.webstandards.org/learn/reference/doctype_switch.html.

http://www.webstandards.org/learn/reference/doctype_switch.html

There might be times when setting the image's display to block isn't the best solution to removing

whitespace around an image in a table cell. If that turns out to be the case, another method to
remove the space is to set the image's vertical-align property to bottom as long as the image is

taller than the line box.

See Also

The CSS 2.1 specification for the display property at

http://www.w3.org/TR/CSS21/visuren.html#propdef-display; "quirks" mode at
http://www.mozilla.org/docs/web-developer/quirks/; "almost standards" mode at
http://devedge.netscape.com/viewsource/2002/almost-standards/.

 < Day Day Up >

http://www.w3.org/TR/CSS21/visuren.html#propdef-display
http://www.mozilla.org/docs/web-developer/quirks/
http://devedge.netscape.com/viewsource/2002/almost-standards/

 < Day Day Up >

Recipe 6.5 Setting Styles for Table Header Elements

Problem

You want to modify the default bold look of table header cells to grab the viewer's attention; Figure
6-5 shows a table with traditional table headers, and Figure 6-6 shows a stylized version of the same
table.

Figure 6-5. The table as it appears before styles are applied to the table
headers

Figure 6-6. Styles applied to the table headers

Solution

Use the th element selector to stylize the table header:

th {

 text-align: left;

 padding: 1em 1.5em 0.1em 0.5em;

 font-family: Arial, Helvetica, Verdana, sans-serif;

 font-size: .9em;

 color: white;

 background-color: blue;

 border-right: 2px solid blue;

}

For tables with multiple rows of th elements that require different styles, use a class selector to

differentiate the rows:

.secondrow th {

/* Use a lighter shade of blue in the background */

 background-color: #009;

}

Put the appropriate rows into that class:

<tr>

 <th colspan="4">

 Table 1. General Demographic Characteristics

 </th>

</tr>

<tr class="secondrow">

 <th>

 </th>

 <th>

 Estimate

 </th>

 <th>

 Lower Bound

 </th>

 <th>

 Upper Bound

 </th>

</tr>

Discussion

The th element characterizes the contents of the cell as header information. When setting the styles
for the element, use styles that make the cell stand out from content in the table cell, td. You can
generate contrasting styles by simply adjusting any of the following properties: font-family,
background-color, font-size, font-weight, and text alignment. (See Recipe 1.1 for specifying

fonts and Recipe 1.2 for setting font measurements and sizes.) Regardless of what you adjust,
chances are you will be improving the look of the table headers.

In terms of stylizing stacks of rows, no matter-of-fact solution that did not require a class or id
selector was available at the time of this writing. CSS 3 introduces the :nth-child pseudoclass,

which makes styling for alternating table rows practical. However, at the time of this writing, it's only
a Candidate Recommendation and support is nonexistent.

See Also

The :nth-child pseudoclass specification at http://www.w3.org/TR/2001/CR-css3-selectors-

20011113/#nth-child-pseudo.

 < Day Day Up >

http://www.w3.org/TR/2001/CR-css3-selectors-

 < Day Day Up >

Recipe 6.6 Sample Design: An Elegant Calendar

Great for organization, calendars enable us to schedule lunches, remember birthdays, and plan
honeymoons. As designers, we can think of all those months, dates, and appointments as tabular
data.

If you display your calendar as an HTML table, chances are the table looks rather plain, and if it
contains numerous events then it probably looks somewhat convoluted as well. In this design, we use
CSS to create a calendar that is more legible than what you could create using vanilla HTML.

First, take a look at Figure 6-7, which shows the markup for the calendar without styles.

Figure 6-7. The calendar without styles

Next, look at the markup itself to see how it's set up. As you learned in Recipe 6.1, the cellspacing
attribute needs to be set in the table element:

<table cellspacing="0">

Now, set the first three rows of table headers, th, containing the year, month, and days, in their own

rows within their own table headers:

 <tr>

 <th colspan="7" id="year">

 < 2000 >

 </th>

 </tr>

 <tr>

 <th colspan="7" id="month">

 < October >

 </th>

 </tr>

 <tr id="days">

 <th>Sunday</th>

 <th>Monday</th>

 <th>Tuesday</th>

 <th>Wednesday</th>

 <th>Thursday</th>

 <th>Friday </th>

 <th>Saturday</th>

 </tr>

The first date is October 1, which in this calendar falls on a Sunday. To signify that Sundays and
Saturdays are days of the weekend, use a class selector in the td element.

In each date of the month there is a link on the date itself (which would, in theory, take the user to a
detailed listing of the day) as well as a link to add more events to the day. Wrap these two links in a
div element so that when new events are added there is a clear division between the two sections in

the table cell:

<tr>

 <td class="weekend">

 <div>

 1

 +

 </div>

 </td>

The next date, October 2, has an event listed. The event is marked up as a link and placed below the
div containing the date and the addevent links (because October 2 is a weekday, the weekend class
isn't applied to the td element):

 <td>

 <div>

 2

 +

 </div>

 Regular City

 Commission meeting agenda

 </td>

The rest of the markup follows a similar structure:

 <td>

 <div>

 3

 +

 </div>

 </td>

 <td>

 <div>

 4

 +

 </div>

 </td>

 <td>

 <div>

 5

 +

 </div>

 Dad's birthday

 </td>

 <td>

 <div>

 6

 +

 </div>

 </td>

 <td class="weekend">

 <div>

 7

 +

 </div>

 FSU at UM

 </td>

 </tr>

 [...]

 <tr>

 <td class="weekend">

 <div>

 29

 +

 </div>

 <div class="event">Buy candy</div>

 </td>

 <td>

 <div>

 30

 +

 </div>

 Regular City

Commission meeting agenda

 </td>

 <td>

 <div>

 31

 +

 </div>

 Halloween

 Flu shot

 </td>

 <td>

 <div class="emptydate"> </div>

 </td>

 <td>

 <div class="emptydate"> </div>

 </td>

 <td>

 <div class="emptydate"> </div>

 </td>

 <td class="weekend">

 <div class="emptydate"> </div>

 </td>

 </tr>

</table>

Figure 6-8. Underline decoration of the links removed

With the calendar marked up, you can begin setting up the styles. First, apply the styles to the table
and links. The width of the table is set to 100% and the border model (see Recipe 6.2) is set to
collapse, the common model web designers are used to and most browsers get right in their CSS

implementations; the underline decoration is turned off (see Figure 6-8):

table {

 width: 100%;

 border-collapse: collapse;

}

td a:link, td a:visited {

 text-decoration: none;

}

Next, set up the styles for the first three rows of the table. The rows are marked with ID selectors
because you want the styles to show up only once in the document. Stylize these rows in a
straightforward manner using the monospace font for the heading font and then decreasing the font
sizes, with the month sized the largest (see Figure 6-9):

#year {

 font-family: monospace;

 font-size: 1.5em;

 padding: 0;

 margin: 0;

}

#month {

 font-family: monospace;

 font-size: 2em;

 padding: 0;

 margin: 0;

}

#days {

 background-color: black;

 color: white;

 font-family: monospace;

 width: 75px;

}

Figure 6-9. Styling the first three rows

Now it's time to stylize the dates and add event links in each cell. To reproduce the box date effect
seen in most calendars, place a border to the right and bottom of the text and float the content to
the left.

You want the add event links to be close to the dates. Floating the link to the right means the link will
be positioned next to the date of the following day. By floating the add event link to the left, you are
telling the user that the plus sign means add an event for that particular day (see Figure 6-10):

.date {

 border-right: 1px solid black;

 border-bottom: 1px solid black;

 font-family: monospace;

 text-decoration: none;

 float: left;

 width: 1.5em;

 height: 1.5em;

 background-color: white;

 text-align: center;

}

.addevent {

 display: block;

 float: left;

 width: 1em;

 height: 1em;

 text-align: center;

 background-color: #666;

 color: white;

 font-weight: bold;

 text-decoration: none

}

Figure 6-10. Styles introduced to the date and add event links

Now it's time to look at how the event listings can be stylized. Because the previous links are floated,
you need to create a visible break and move the events below the date.

Setting the clear property to both achieves this visual break. The clear property is used to indicate

which sides of an element should not be positioned next to a floated element. In this case, you don't
want the left side to run next to the date and add event links. However, just in case the design
changes in the future and the dates are positioned on the opposite side, use a value of both instead
of left.

Next, change the display of the link to block and place padding on the bottom (see Figure 6-11).

You're making these changes to prevent multiple events in a table cell from running into each other.
Also, the padding acts as a nice visual buffer, allowing the eye to easily discern between two events:

.event {

 clear: both;

 padding-left: 1em;

 padding-bottom: .75em;

 display: block;

}

Figure 6-11. Event links treated like block-level elements

To each table cell, apply a width of 14%. You're using 14% because 7 (representing the seven

sections of the calendar, or days of the week) goes into 100 (representing 100% of the viewport)
approximately 14 times. Also, place a white border on all sides of the cell and position all the content
to the top with the vertical-align property (see Figure 6-12):

td {

 width: 14%;

 background-color: #ccc;

 border: 1px solid white;

 vertical-align: top;

}

Figure 6-12. The content in each of the cells moved to the top

Make the background color of the weekend dates darker than that used for the weekday dates (see
Figure 6-13):

.weekend {

 background-color: #999;

}

Figure 6-13. The weekend days marked with a darker gray background
color

Slightly gray-out the look of the remaining days in the calendar (see Figure 6-14):

.emptydate {

 border-right: 1px solid #666;

 border-bottom: 1px solid #666;

 font-family: monospace;

 text-decoration: none;

 float: left;

 width: 1.5em;

 height: 1.5em;

 background-color: #ccc;

 text-align: center;

}

Figure 6-14. Empty dates for the next month stylized

For the current day (in this example the current day is the 27th), place a two-pixel black border
around the box:

#today {

 border: 2px solid black;

}

And with that, the calendar is complete, as shown in Figure 6-15.

Figure 6-15. The current date in the calendar with a darker border

 < Day Day Up >

 < Day Day Up >

Chapter 7. Page Layouts
Introduction

Recipe 7.1. Developing Hybrid Layouts Using HTML Tables and CSS

Recipe 7.2. Building a One-Column Layout

Recipe 7.3. Building a Two-Column Layout

Recipe 7.4. Building a Two-Column Layout with Fixed-Width Columns

Recipe 7.5. Creating a Flexible Multicolumn Layout with Floats

Recipe 7.6. Creating a Fixed-Width Multicolumn Layout with Floats

Recipe 7.7. Creating a Flexible Multicolumn Layout with Positioning

Recipe 7.8. Creating a Fixed-Width Multicolumn Layout with Positioning

Recipe 7.9. Designing an Asymmetric Layout

 < Day Day Up >

 < Day Day Up >

Introduction

One of the last frontiers in creating a truly CSS-enabled presentation is the layout. For a long time,
web developers have been using HTML tables to create their layouts, often nesting tables to create
multicolumn, multilevel layouts. Nested HTML tables render well in older browsers like Netscape
Navigator 4 where CSS support, if present, is barely noticeable and is mostly wrong. If your audience
uses an older browser and visual presentation is a key component of the site's success, you should
consider using HTML tables.

However, if your audience uses a browser that supports CSS, you should use CSS to design your
layouts. As a design language, CSS is focused on presentation, which includes helping web
developers control the layout of their pages. HTML tables and other HTML elements, on the other
hand, are tools you use to mark up content. The ideal is to have HTML represent the structure of the
content at an intellectual abstract level and CSS say how to present it for a particular device.

Furthermore, with CSS you diminish file sizes and maintenance headaches. For example, by stripping
away presentational markup and moving a design to CSS, you can reduce the file size of a web page
tremendously. And once the design is in CSS syntax, creating site-wide changes becomes a snap.

This chapter discusses the many ways in which you can create column layouts-including simple one-
column layouts, four-column layouts, and everything in between. It also explains how to start
working with CSS if you still need to build a site using HTML tables and you want to use CSS just to
help with the layout chores.

 < Day Day Up >

 < Day Day Up >

Recipe 7.1 Developing Hybrid Layouts Using HTML
Tables and CSS

Problem

You want to build a page layout that possesses the rigid structure of an HTML table while leveraging
the ability to control its appearance through CSS.

Solution

Use one HTML table to control the layout of the entire page. Then, in each table row element, tr,
insert an id attribute (see Figure 7-1):

<table width="600" cellspacing="0" align="center">

 <tr>

 <th colspan="5" id="header">

 <h1>Business Web Site</h1>

 </th>

 </tr>

 <tr id="navSite">

 <td width="120">Home</td>

 <td width="120">Products</td>

 <td width="120">Services</td>

 <td width="120">About Us</td>

 <td width="122">Contact</td>

 </tr>

 <tr id="content">

 <td colspan="3">

 <h2>Epsum factorial non</h2>

 <p>Lorem ipsum dolor sit amet,

consectetuer adipiscing elit. Li Europan lingues es membres del

sam familie. Lor separat existentie es un myth. Por scientie,

musica, sport etc., li tot Europa usa li sam

vocabularium.</p>

 <p>Li lingues differe solmen in li grammatica, li

pronunciation e li plu commun vocabules. Omnicos directe al

desirabilitá de un nov lingua franca.</p>

 </td>

 <td colspan="2" >

 <h3>deposit quid pro</h3>

 <p>Lorem ipsum dolor sit amet,

consectetuer adipiscing elit.</p>

 <h3>sommun paroles</h3>

 <p>Lorem ipsum dolor sit amet,

consectetuer adipiscing elit.</p>

 </td>

 </tr>

 <tr id="footer">

 <td colspan="5">

 Copyright 2003 Lorem ipsum dolor sit amet.

 </td>

 </tr>

</table>

Figure 7-1. The default rendering of the table

Next, for table cells that act as page columns, insert id attributes for each column. For example, this
Solution comprises two columns, a left and a right, which are marked with the values contentLeft
and contentRight, respectively:

<table width="600" cellspacing="0" align="center">

 <tr>

 <th colspan="5" id="header">

 <h1>Business Web Site</h1></th>

 </tr>

 <tr id="navSite">

 <td width="120">Home</td>

 <td width="120">Products</td>

 <td width="120">Services</td>

 <td width="120">About Us</td>

 <td width="122">Contact</td>

 </tr>

 <tr>

 <td colspan="3" id="contentLeft">

 <h2>Epsum factorial non</h2>

 <p>Lorem ipsum dolor sit amet,

consectetuer adipiscing elit. Li Europan lingues es membres del

sam familie. Lor separat existentie es un myth. Por scientie,

musica, sport etc., li tot Europa usa li sam

vocabularium.</p>

 <p>Li lingues differe solmen in li grammatica, li

pronunciation e li plu commun vocabules. Omnicos directe al

desirabilitá de un nov lingua franca.</p>

 </td>

 <td colspan="2" id="contentRight">

 <h3>deposit quid pro</h3>

 <p>Lorem ipsum dolor sit amet,

consectetuer adipiscing elit.</p>

 <h3>sommun paroles</h3>

 <p>Lorem ipsum dolor sit amet,

consectetuer adipiscing elit.</p>

 </td>

 </tr>

 <tr id="footer">

 <td colspan="5">

 Copyright 2003 Lorem ipsum dolor sit amet.

 </td>

 </tr>

</table>

Finally, use id selectors to apply styles to the HTML table (see Figure 7-2):

Figure 7-2. The stylized HTML table layout

body {

 color: #333;

}

table {

 border: 0;

 padding: 0;

}

td {

 vertical-align: top;

}

th#header {

 text-align: left;

 font-family: Georgia, Times, "Times New Roman", serif;

 font-style: italic;

 background-color: #036;

 border-bottom: 1px solid #369;

}

th#header h1 {

 margin: 0;

 padding: 10px 0 0 0;

 font-size: 3em;

 color: #ccc;

}

tr#navSite td {

 font-weight: bold;

}

tr#navSite td {

 background-color: #036;

 border-left: 10px solid #369;

}

tr#navSite td a:link, tr#navSite td a:visited {

 padding-left: .5em;

 background-color: #036;

 color: #fff;

 text-decoration: none;

 width: 100%;

}

td#contentLeft h2 {

 padding: 0;

 margin: 0.25em 0 0 0;

}

td#contentRight h3 {

 padding: 0;

 margin: 0.25em 0 0 0;

}

td#contentLeft, td#contentRight {

 padding-top: 1em;

 padding-bottom: 2.5em;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size: small;

}

td#contentLeft p, td#contentRight p {

 padding-right: 1.5em;

 padding-bottom: 0;

 margin: 0 0 0.75em 0;

}

tr#footer td {

 text-align: center;

 border-top: 1px solid #999;

 padding-bottom: 1.5em;

}

Discussion

This Solution applies styles through the id attributes on HTML elements. If you determine that you
need more control over the content in a table cell, put a div element around the sections of the
content or apply another id attribute in the markup inside the cell. For example, if you need to stylize

a registration form at the top of a table cell differently from the content below it, use the following
code:

<td colspan="3" id="contentRight">

 <form action="login.php" method="post" id="form">

 <label for="uname">Username</label>

 <input type="text" name="uname" id="uname" value="" />

 <label for="pname">Password</label>

 <input type="text" name="pname" id="pname" value="" />

 <input type="submit" name="Submit" value="Submit"

class="buttonSubmit" />

 </form>

[...]

</td>

Working with a scaled-back version of an HTML table is a potential path to take if you want to
become familiar with CSS as a presentation technology. By using a basic HTML table as the
framework for a web document, you reap the benefits of using CSS to stylize content in the table
cells. As you gain experience in CSS, you will find it easier to transition to the process of rendering
the whole page, including the layout.

See Also

Chapter 6 for more information on how to stylize HTML tables, mostly geared toward presentation of
tabular data; "Designing with Web Standards" by Jeffrey Zeldman (New Riders); "Web Page
Reconstruction with CSS" at http://www.digital-web.com/tutorials/tutorial_2002-06.shtml, which
discusses the reconstruction of a page layout from HTML tables to a CSS-enabled layout.

 < Day Day Up >

http://www.digital-web.com/tutorials/tutorial_2002-06.shtml

 < Day Day Up >

Recipe 7.2 Building a One-Column Layout

Problem

You want to build a layout that consists of one main column, as in Figure 7-3.

Figure 7-3. One-column page reinforced by increased margin

Solution

Apply a percentage value to the left and right margins of the web document's body element:

body {

 margin-left:15%;

 margin-right: 15%;

}

Discussion

When you apply a percentage value to the left and right margins of the body, the column width
becomes flexible. This allows the content to stretch to the width of the user's browser.

To create a fixed-width column, use the width property for the body element:

body {

 width: 600px;

}

This technique aligns the column to the left side of the user's browser. If you want to center a column
with a fixed width, wrap a div element around the entire contents of the web document with a
specific, unique id attribute such as a frame:

<div id="frame">

 [...]

</div>

Then, in the CSS rules, apply a 50% value to the left padding of the body:

body {

 width: 600px;

 padding-left: 50%;

}

Through an id selector, set the width of the column, then set a negative left margin equal to half the

column width:

#frame {

 /* set the width of the column */

 width: 600px;

 margin-left: -300px;

}

You might think to just set the left and right margins to auto:

#frame {

 width: 600px;

 margin-left: auto;

 margin-right: auto;

}

This straightforward approach doesn't work in Internet Explorer for Windows, however. The Solution
uses a workaround that works on all major browsers.

See Also

Recipe 2.3 on centering elements in a web document; Recipe 3.8 on horizontal tab navigation.

 < Day Day Up >

 < Day Day Up >

Recipe 7.3 Building a Two-Column Layout

Problem

You want to create a two-column layout with columns that resize to the width of the browser, as in
Figure 7-4.

Figure 7-4. Two-column layout achieved through CSS

Solution

First, mark up the content with div elements using the id attributes that contain appropriate values

(see Figure 7-5).

Figure 7-5. The default rendering of the page

For demonstration purposes the values of the id attributes are used to show where the content is
displayed when CSS is used. Semantic values would be preferred, like mainContent or sidebar,

instead of using values that represent their placement on the page:

<div id="columnLeft">

 [...]

</div>

<div id="columnRight">

 [...]

</div>

<div id="footer">

 [...]

</div>

Then, in CSS, use the float property to move the contents of the left column to the left, and set a

width that is two-thirds the web document's width:

#columnLeft {

 float: left;

 width: 67%;

 background:#fff;

 margin-top: 0;

 margin-right: 1.67em;

 border-right: 1px solid black;

 padding-top: 0;

 padding-right: 1em;

 padding-bottom: 20px;

}

The right column wraps around the contents of the left column. On the right column, set the top of
the margin and padding to 0, allowing the column and the first element in it to become level with the

left column:

#columnRight {

 padding-left: 2em;

 margin-top: 0;

 padding-top: 0;

}

h1 {

 margin-top: 0;

 padding-top: 0;

}

To display the footer at the bottom of the web document, set the clear property to both:

#footer {

 clear: both;

 padding-bottom: 1em;

 border-top: 1px solid #333;

 text-align: center;

}

Discussion

The float property is similar to the align attribute that is used in HTML to allow text and other

elements to flow around an image:

<img src="this.jpg" width="250" height="150" hspace="7" vspace="7"

alt="example" align="right">

Once the image has been set to align to either the right or left, the content around the image flows to
the opposite side of the image's alignment. For example, an image aligned to the right forces content
to flow around the image on the left side, as shown in Figure 7-6. With CSS, floats provide a similar
function, except they offer more exacting control over the presentation by using borders, margins,
padding, and other properties.

Figure 7-6. Text wrapping around an image set to right alignment

To make sure the content that comprises the footer is placed at the bottom of the columns, set the
clear property to a value of both. When you set the value to both, the browser understands that the

content of the footer isn't flowing around the floated left column and positions it below (or past) any
floated elements.

The only caveat to this technique for creating a two-column layout is that the content in the left
column needs to be longer than the content in the right column. Because the content in the left
column appears first in the document, the content in the right column wraps around the left column.
Too much content in the column that doesn't float results in the anomaly shown in Figure 7-7.

Figure 7-7. Unwanted wrapping of text under the left column

A method for fixing this problem is to set of the left margin or padding on the right column element
so that the column width is at least maintained after the content flows below the float:

#mainColumn {

 width: 400px;

 /* Enough padding to compensate for the left column */

 padding-left: 200px;

}

#navigation {

 float: left;

 width: 175px;

}

See Also

Recipe 7.4 for a two-column layout with fixed widths; Jeffrey Zeldman's "From Table Hacks to CSS
Layout: A Web Designer's Journal" for a background on this Solution at
http://www.alistapart.com/articles/journey/.

 < Day Day Up >

http://www.alistapart.com/articles/journey/

 < Day Day Up >

Recipe 7.4 Building a Two-Column Layout with Fixed-
Width Columns

Problem

You want to create a two-column layout with fixed-width columns.

Solution

First, mark up the content with div elements using the id attributes that contain appropriate values

representing their placement on the page (see Figure 7-8):

<div id="header">

 [...]

</div>

<div id="columnLeft">

 [...]

</div>

<div id="columnRight">

 [...]

</div>

<div id="footer">

 [...]

</div>

Figure 7-8. The default rendering of the page

Using the float property, set the width of the left column to a length unit rather than to

percentages. Also, set the width of the entire document to a length unit (see Figure 7-9):

body {

 margin: 0;

 padding: 0;

 font-family: Georgia, Times, "Times New Roman", serif;

 color: black;

 width: 600px;

 border-right: 1px solid black;

}

#header {

 background-color: #666;

 border-bottom: 1px solid #333;

}

#columnLeft {

 float: left;

 width: 160px;

 margin-left: 10px;

 padding-top: 1em;

}

#columnRight {

 padding-top: 1em;

 margin: 0 2em 0 200px;

}

#footer {

 clear: both;

 background-color: #ccc;

 padding-bottom: 1em;

 border-top: 1px solid #333;

 padding-left: 200px;

}

Figure 7-9. The two-column layout enabled by CSS

Discussion

By default, block-level elements stretch to the width of their containers. If the browser window is
small, the block-level elements shrink-in other words, text inside the content wraps into narrow
columns.

However, when you use length units rather than percentages, the width of the columns becomes
fixed. Even as a browser window shrinks or expands, the column widths remain fixed.

To keep the width of the left column fixed while enabling the main column to stretch, simply remove
the width property assigned to the body element.

See Also

Recipe 7.3 on creating a two-column layout with flexible-width columns.

 < Day Day Up >

 < Day Day Up >

Recipe 7.5 Creating a Flexible Multicolumn Layout with
Floats

Problem

You want to create a three-column layout with columns that resize to the width of the browser, as
shown in Figure 7-10.

Figure 7-10. Three-column layout achieved through CSS

Solution

First, mark up the content with div elements using the id attributes that contain appropriate values

representing their placement on the page (see Figure 7-11):

<div id="header">

 [...]

</div>

<div id="columnLeft">

 [...]

</div>

<div id="columnMain">

 [...]

</div>

<div id="columnRight">

 [...]

</div>

<div id="footer">

 [...]

</div>

Figure 7-11. The default rendering of the page

Next, set each column to float to the left, making sure that the width is a percentage. All three values
of the columns should equal 100% (see Figure 7-12):

#columnRight {

 width: 33%;

 float: left;

 background: white;

 padding-bottom: 1em;

}

#columnLeft {

 width: 20%;

 float:left;

 background: white;

 padding-bottom: 1em;

 text-align: justify;

}

#columnMain {

 width:47%;

 float:left;

 background: white;

 padding-bottom: 1em;

}

#footer {

 clear: both;

 padding-bottom: 1em;

 border-top: 1px solid #333;

 text-align: center;

}

Figure 7-12. An increased width for the main column forcing the right
column to wrap underneath

Discussion

This technique works because all columns are set to float to the left and their widths aren't larger than
100%. Setting the floats to the right can flip the columns, but the result is the same.

Be sure to apply margins and padding to the elements within the columns (unless you account for
their widths when sizing the columns). If you don't, the columns will expand beyond 100%, forcing
one or more columns to wrap underneath each other, as shown in Figure 7-12.

See Also

Recipe 7.6 on creating a three-column layout with fixed-width columns;
http://www.realworldstyle.com/nn4_3col_header.html for information on creating a three-column
layout with one flexible- column and two fixed-width columns.

 < Day Day Up >

http://www.realworldstyle.com/nn4_3col_header.html

 < Day Day Up >

Recipe 7.6 Creating a Fixed-Width Multicolumn Layout
with Floats

Problem

You want to create a three-column layout with fixed-width columns.

Solution

First, mark up the content with div elements using the id attributes that contain appropriate values

representing their placement on the page (see Figure 7-13):

<div id="header">

 [...]

</div>

<div id="columnMain">

 [...]

</div>

<div id="columnLeft">

 [...]

</div>

<div id="columnRight">

 [...]

</div>

<div id="footer">

 [...]

</div>

Figure 7-13. The default rendering of the page

Next, wrap the div elements that compose the main and left columns in another div element and set
the value of the id attribute to enclose. Also, wrap another div element around the entire set of
div elements, setting the value to frame:

<div id="frame">

 <div id="header">

 [...]

 </div>

 <div id="enclose">

 <div id="columnMain">

 [...]

 </div>

 <div id="columnLeft">

 [...]

 </div>

 </div>

 <div id="columnRight">

 [...]

 </div>

 <div id="footer">

 [...]

 </div>

<div>

Set the width of the page using an id selector for the "frame" div element:

#frame {

 margin-left: 20px;

 width: 710px;

}

Next, set the column div elements as well as the div element with the id value of enclose to float

(see Figure 7-14):

#columnMain {

 float: right;

 width: 380px;

}

#columnLeft {

 float: left;

 width: 150px;

}

#columnRight {

 float: right;

 width: 120px;

}

#enclose {

 float:left;

 width:560px;

}

#footer {

 clear: both;

 padding-top: 1em;

 text-align: center;

}

Figure 7-14. Three-column layout with fixed column widths

Discussion

Because the width of the columns is set in pixels, the columns are fixed. To display the columns, you
need an extra div element wrapped around the main and left columns. With this extra div element,
which contains an id attribute value of enclose, the main and left columns as a whole are set to
float to the left. And inside the "enclose" div, the main column is aligned to the right while the left

column is aligned to the left.

See Also

Recipe 7.5 on creating a three-column layout with flexible columns.

 < Day Day Up >

 < Day Day Up >

Recipe 7.7 Creating a Flexible Multicolumn Layout with
Positioning

Problem

You want to create a four-column layout with columns that resize to the width of the browser as
shown in Figure 7-15.

Figure 7-15. Four-column layout with percentage-based widths

Solution

First, mark up the content with div elements using the id attributes that contain appropriate values

representing their placement on the page (see Figure 7-16):

<div id="header">

 [...]

</div>

<div id="columnLeft">

 [...]

</div>

<div id="columnInnerLeft">

 [...]

</div>

 [...]

<div id="columnInnerRight">

 [...]

</div>

 [...]

<div id="columnRight">

 [...]

</div>

Figure 7-16. The default rendering of the content

Next, use the position property in each column, setting the value to absolute while setting the
placement of the columns with the left and top properties:

#columnLeft {

 position: absolute;

 left:1%;

 width:20%;

 top: 4em;

 background:#fff;

}

#columnInnerLeft {

 position: absolute;

 left: 22%;

 width: 28%;

 top: 4em;

 background: #fff;

 text-align: justify;

 border-width: 0;

}

#columnInnerRight {

 position: absolute;

 left: 51%;

 width: 28%;

 top: 4em;

 background: #fff;

}

#columnRight {

 position: absolute;

 left: 80%;

 width: 19%;

 top: 4em;

 background: #fff;

}

Discussion

By setting the position property to absolute you take the element completely out of the flow of the
document. When an element is set to float, other elements in a page can flow around the "floated"
element. When an element is set to absolute, that element is treated like a ghost.

The default rendering of an element when positioned absolutely is to the upper left corner of its
closest positioned ancestor or the initial containing block. (In other words, to position a child element
set to absolute within the parent element, first apply a position property and value to its parent

element.) If other elements are on the page, this creates an overlap of the content, as shown in
Figure 7-17.

Figure 7-17. Text overlapping an image and other text in a web document

To avoid this problem, use four additional CSS properties that allow the element to be moved into
any location: top, left, bottom, and right. Be sure to set the values of the columns to percentages

to maintain flexible widths as a user's browser resizes.

Also use percentages as the values for the left property to mark the distance away from the left
side of a browser's viewport. However, use em units as the values for the top property to

compensate for the height of the heading. If you want to use an image for the heading, change the
values for top to pixels, making sure there is enough room for the graphic header.

While this technique grants freedom in the placement of elements, there are drawbacks to using
absolute to position elements. In some circumstances, Netscape Navigator 4 loses the location of
positioned elements when you resize the window.

While the placement of columns next to each other can be carried out easily with this technique, the
placement of a footer at the bottom of the columns is hard to do unless you know where the columns
exactly end at the bottom of the page.

See Also

The CSS 2.1 specification on the position property at

http://www.w3.org/TR/CSS21/visuren.html#propdef-position; the CSS 2.1 specification on
positioning elements set to absolute at http://www.w3.org/TR/CSS21/visuren.html#position-props;

read more about containing blocks at http://www.w3.org/TR/2003/WD-CSS21-
20030915/visudet.html#containing-block-details.

 < Day Day Up >

http://www.w3.org/TR/CSS21/visuren.html#propdef-position
http://www.w3.org/TR/CSS21/visuren.html#position-props
http://www.w3.org/TR/2003/WD-CSS21-

 < Day Day Up >

Recipe 7.8 Creating a Fixed-Width Multicolumn Layout
with Positioning

Problem

You want to create a four-column layout with fixed-width columns.

Solution

First, mark up the content with div elements using the id attributes that contain appropriate values

representing their placement on the page:

<div id="header">

 [...]

</div>

<div id="columnLeft">

 [...]

</div>

<div id="columnInnerLeft">

 [...]

</div>

 [...]

<div id="columnInnerRight">

 [...]

</div>

 [...]

<div id="columnRight">

 [...]

</div>

Next, use the position property in each column, setting the value to absolute while setting the
placement of the columns with the left and top properties, making sure to use pixels for the units:

#columnLeft {

 position: absolute;

 left:5px;

 width:190px;

 top: 44px;

 background:#fff;

}

#columnInnerLeft {

 position: absolute;

 left: 205px;

 width: 190px;

 top: 44px;

 background: #fff;

 text-align: justify;

 border-width: 0;

}

#columnInnerRight {

 position: absolute;

 left: 405px;

 width: 190px;

 top: 44px;

 background: #fff;

}

#columnRight {

 position: absolute;

 left: 605px;

 width: 190px;

 top: 44px;

 background: #fff;

}

Discussion

Setting the width of the columns as well as the left and top properties to length units creates the

fixed-width columns. This Solution is just as easy with two to three or more columns. Remember that
anything more than four or five columns might be impractical.

See Also

Recipe 7.4 on creating a fixed-width two-column layout; Recipe 7.6 on creating a fixed-width
multicolumn layout with floats.

 < Day Day Up >

 < Day Day Up >

Recipe 7.9 Designing an Asymmetric Layout

Problem

You want to create a flexible, asymmetric or organic layout as seen in Figure 7-18.

Figure 7-18. The asymmetric placement of the content

Solution

First, mark up the content with div elements using the id attributes that contain appropriate values

representing their placement on the page:

<div id="header">

 [...]

</div>

<div id="columnSmall">

 [...]

</div>

<div id="columnMain">

 [...]

</div>

<div id="columnMedium">

 [...]

</div>

Next, use the position property in each column, setting the value to absolute while setting the
placement of the columns with the left and top properties using percentages. Also, use percentage

values for positioning a background image (see Figure 7-19):

body {

 margin:5px 0 0 5px;

 background-image: url(flower5.jpg);

 background-position: 50% 35%;

 background-repeat: no-repeat;

 }

#header {

 position: absolute;

 left: 65%;

 top: 50%;

 width: 125px;

 font-size: small;

}

#columnSmall {

 position: absolute;

 left: 35%;

 width: 15%;

 top: 1%;

 background: #fff;

font-size: small;

}

#columnMain {

 position: absolute;

 left: 5%;

 width: 45%;

 top: 40%;

 background: #fff;

 text-align: justify;

 border-width: 0;

 font-size: large;

}

#columnMedium {

 position: absolute;

 left: 80%;

 width: 20%;

 top: 10%;

 background: #fff;

}

Figure 7-19. The default rendering of the page

Discussion

Although web sites seem to use traditional column layouts, CSS enables web developers to come up
with new ways to present their documents. Through the position, top, and left properties, you

can break up the content into chunks, stylize them separately, and place them in unique
arrangements.

The background image moves with the content if the browser window is resized because you used a
percentage value to set the position of the background image.

Instead of changing the values for the position, top, and left properties by hand, you can more
easily place div elements with a WYSIWYG application such as Macromedia Dreamweaver.

If you want to create an asymmetric or organic layout with fixed-width columns instead of making
this layout resizable, use length units to dictate the exact position of both the content and the
background image:

body {

 margin:5px 0 0 5px;

 background-image: url(flower5.jpg);

 background-position: -400px -200px;

 background-repeat: no-repeat;

}

#header {

 position: absolute;

 left: 500px;

 top: 200px;

 width: 125px;

 font-size: small;

}

#columnLeft {

 position: absolute;

 left: 200px;

 width: 125px;

 top: 10px;

 background:#fff;

 font-size: small;

}

#columnInnerLeft {

 position: absolute;

 left: 50px;

 width: 375px;

 top: 175px;

 background: #fff;

 text-align: justify;

 border-width: 0;

 font-size: large;

}

#columnInnerRight {

 position: absolute;

 left: 600px;

 width: 150px;

 top: 50px;

 background: #fff;

}

See Also

Recipe 2.4 and Recipe 2.5 for setting background images on a web page; for more information about
Macromedia Dreamweaver see http://www.dreamweaver.com.

 < Day Day Up >

http://www.dreamweaver.com

 < Day Day Up >

Chapter 8. Print
Introduction

Recipe 8.1. Creating a Printer-Friendly Page

Recipe 8.2. Making a Web Form Print-Ready

Recipe 8.3. Inserting URLs After Links

Recipe 8.4. Sample Design: A Printer-Friendly Page with CSS

 < Day Day Up >

 < Day Day Up >

Introduction

If you were to try to print out a web page exactly as it appears on your screen, chances are you
would end up wasting a lot of ink and paper printing unnecessary page elements, or worse yet, the
content you printed would be illegible.

That's why links to "printer-friendly" versions of web pages are all over the Internet, especially on
news and business sites. When you click this kind of link, you are given a web page design or shell
that contains the same text as what you see on your screen, but in a minimal version that is, well,
friendlier (or easier) to print.

To create this printer-friendly version of the text, you traditionally would either have to manually
convert the web page content to a new, stripped-down page, or use a script dynamically to generate
a separate page design. With CSS, however, you can "automagically" redesign documents when they
are printed, thereby eliminating the need to code a separate, printer-friendly version as well as
saving on server resources typically required to generate the page.

Support for print-media CSS is fairly commonplace these days. Currently, the browsers that support
this aspect of the technology include Internet Explorer 4+ for Windows, Internet Explorer 4.5+ for
Macintosh, Navigator 6+, Safari, and Opera.

There are print-only properties associated with CSS. However, these properties have limited support
among the browsers on the market; Opera 5 and 7 are the only browsers that support more than
two of these kinds of properties (15 printing properties out of the 16 in the specification). Because of
this reality and the nature of this book to focus on practical, cross-browser nature of CSS, the recipes
in this chapter are geared to styling the contents of the page rather than dealing with the theory of
CSS printing properties. For more information on CSS printing properties, see Chapter 14 of
Cascading Style Sheets: The Definitive Guide (O'Reilly).

This chapter teaches the basics of how to tell the browser which style sheet to use when sending a
document to print. It also discusses how to switch graphics from web to print CSS, as well as how to
develop a document for printing.

 < Day Day Up >

 < Day Day Up >

Recipe 8.1 Creating a Printer-Friendly Page

Problem

You want to create a printer-friendly page without having to manually or dynamically generate
another web page.

Solution

Create a separate style sheet that dictates how a page looks when printed. Then associate the style
sheet and set the media property to print:

<link rel="stylesheet" type="text/css" href="adv.css"

media="screen">

<link rel="stylesheet" type="text/css" href="print.css"

 media="print">

If you're writing a web page in valid XHTML, you need to include a space and a forward slash before
the closing bracket at the end of an empty element such as link:

<link rel="stylesheet" type="text/css" href="adv.css"

media="screen" />

<link rel="stylesheet" type="text/css" href="print.css"

media="print" />

Discussion

You can use style sheets to dictate the presentation of documents in a wide range of media. By
default, the value for the media attribute is all. Without the attribute, the user agent will apply the

CSS rules in the style sheet to all media.

Although the most common attribute you probably have encountered is screen, which is used mainly

for displaying documents on color monitors, the CSS 2.1 specification actually defines a total of ten
media types, as shown in Table 8-1.

Table 8-1. Media types for CSS

Media
type

Description

all
Suitable for all devices

braille
Intended for Braille tactile feedback devices

embossed
Intended for paged Braille printers

handheld
Intended for handheld devices (typically small-screen, limited-bandwidth devices)

print Intended for paged material and for documents viewed on-screen in print preview
mode

projection
Intended for projected presentations-for example, projectors

screen
Intended primarily for color computer screens

speech
Intended for speech synthesizers

tty Intended for media using a fixed-pitch character grid (such as teletypes, terminals, or
portable devices with limited display capabilities)

tv Intended for television-type devices (with low-resolution, limited-scrollable color
screens and available sound)

You can use one style sheet for all media:

<link rel="stylesheet" type="text/css" href="uber.css"

media="all" />

Or you can use one style sheet for several (but not all) media. For instance, to use one style sheet
for both projection and print media, simply separate the media values with a comma:

<link rel="stylesheet" type="text/css" href="print.css"

 media=" print,projection " />

In the preceding code, the print.css style sheet is used for projection and print media when

rendering the web document.

You can use other methods besides link to assign media types. One method is @import, as shown in

the following line, which specifies the style sheet for both print and projection media:

@import url(print.css) print,projection;

The @import rule needs to be placed within a style element or within an external style sheet.

Another method you can use to associate and dictate style sheets and media types is @media, which

enables you to write blocks of CSS rules that can be set for different media, all in one style sheet:

<style type="text/css">

@media print {

 body {

 font-size: 10pt;

 background-color: white;

 color: black;

 }

}

@media screen {

 body {

 font-size: medium;

 background-color: black;

 color: white;

 }

}

</style>

See Also

Media Types in Section 7 of the CSS 2.1 Working Draft, http://www.w3.org/TR/CSS21/media.html.

http://www.w3.org/TR/CSS21/media.html

 < Day Day Up >

 < Day Day Up >

Recipe 8.2 Making a Web Form Print-Ready

Problem

You need to have a form that users can fill out online, or that they can print and then fill out offline,
as shown in Figure 8-1.

Figure 8-1. An online form

Solution

First, create a print media style sheet and a class selector that transforms the form elements so that

they display black text and feature a one-pixel border on the bottom. For example, the following
HTML code for an input text element:

<label for="fname">First Name</label>

<input class="fillout" name="fname" type="text" id="fname" />

requires the following CSS rule:

<style type="text/css" media="print ">

.fillout {

 color: black;

 border-width: 0;

 border: 1px solid #000;

 width: 300pt;

}

</style>

For drop-down menus, hide the select element altogether and add some additional markup to help

produce the bottom border:

<label for="bitem">Breakfast Item</label>

<select name="bitem" size="1">

 <option selected="selected">Select</option>

 <option>Milk</option>

 <option>Eggs</option>

 <option>Orange Juice</option>

 <option>Newspaper</option>

 </select>

Then, in the CSS rules, convert the inline span element to a block element. This enables you to set
the width of the span element and places the border at the bottom to equal that of the input

elements in the preceding CSS rule:

<style type="text/css" media="print">

select {

 display: none;

}

.postselect {

 display: block;

 width: 300pt;

 height: 1em;

 border: none;

 border-bottom: 1px solid #000;

}

</style>

For elements such as a Submit button, which can't be used on the printed page, set the display
property to none. You can see the finished product in Figure 8-2.

Figure 8-2. The same form primed for printing

Discussion

Lines on an order form tell users they can fill out the form. By using the border property, you can

easily create these lines in a browser, making web forms useful both online and offline.

For select elements, the workaround is somewhat of a hack that involves interfering with the ideal
semantic markup; it still works and is valid HTML. Place a span element after the select element:

<select name="bitem" size="1">

 <option selected="selected">Select</option>

 <option>Milk</option>

 <option>Eggs</option>

 <option>Orange Juice</option>

 <option>Newspaper</option>

</select>

Then set the select element to disappear:

select {

 display: none;

}

Next, set the span element to display as a block to enable the width and height properties. With

those width and height properties set, the bottom border can be placed to match the rest of the form
elements:

.postselect {

 display: block;

 width: 300pt;

 height: 1em;

 border: none;

 border-bottom: 1px solid #000;

}

As browsers implement attribute selectors from the CSS specification, styling forms for print becomes

easier. Currently, the only browsers that support attribute selectors are Netscape Navigator 6+ and
Opera 5+. When you use attribute selectors, it's easier to distinguish which form elements should be

stylized than it is when you insert class attributes and their respective values in the markup.

In the following code, the first CSS rule applies only to input elements for text, while the second rule

hides the Submit button and the Select drop box:

input[type="text"] {

 color: black;

 border-width: 0;

 border: 1px solid #000;

}

input[type="submit"], select {

 display: none;

}

Once your form is ready to be printed, be sure to include instructions on how users should handle the
printed form. For example, if you want users to mail the form, add a mailing address to the page on
which the form is printed.

See Also

Attribute selector documentation in the W3C specification at
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors; HTML 4.01 specification about the
label tag at http://www.w3.org/TR/html401/interact/forms.html#edef-LABEL.

 < Day Day Up >

http://www.w3.org/TR/CSS21/selector.html#attribute-selectors;
http://www.w3.org/TR/html401/interact/forms.html#edef-LABEL

 < Day Day Up >

Recipe 8.3 Inserting URLs After Links

Problem

You need to display URLs of links in an article when a web page is printed.

Solution

Instruct the browser to print the URLs of links in a paragraph by using the :after pseudo-element:

p a:after {

 content: " <" attr(href) "> " ;

}

Discussion

Selector constructs such as :after are known as pseudo-elements. The browser interprets the

selector as though additional elements were used to mark up the web document.

For example, by using the following CSS, you can make the first letter of a paragraph two-em units in
size:

p:first-letter {

 font-size: 2em;

}

You use the :after selector (or the :before selector) to insert generated content after (or before)
an element. In this Recipe, the value of the href attribute, which contains the URL information, is
placed after every anchor element in a p element.

To have brackets appear around the URL, place the quotes around the brackets. To add a buffer of
space between the anchor element and the next inline content, put one space in front of the left
bracket and one after the right bracket, then insert the URL using the attr(x) function. Whatever
attribute is replaced for x, CSS finds the attribute in the element, returning its value as a string.

Another example of the power of this pseudo-element involves returning the value of abbreviations

and acronyms in a buzzword-laden document. To accomplish this, first put the expanded form of the
word or phrase in the title attribute for abbr or acronym:

<p>The <acronym title="World Wide Web Consortium">W3C

makes wonderful things like <abbr title="Cascading Style

Sheets">CSS</abbr>!</p>

Then, in the CSS rules, tell the browser to return the value for the title attribute:

abbr:after, acronym:after {

 content: " (" attr(title) ") ";

}

Currently, generating content through pseudo-elements works only in Netscape 6+, Mozilla, and
Safari browsers.

See Also

Recipe 1.2 for more on setting type in a web document; the CSS 2.1 specification about generated
content at http://www.w3.org/TR/REC-CSS2/generate.html#content.

 < Day Day Up >

http://www.w3.org/TR/REC-CSS2/generate.html#content

 < Day Day Up >

Recipe 8.4 Sample Design: A Printer-Friendly Page with
CSS

In this sample design, you will transform an existing web document (as shown in Figure 8-3) to make
it more suitable for print. Although CSS has changed the way we design for the Web, it also has
allowed developers to change the way they provide printer-friendly versions of their documents.
Instead of having to create separate pages or write scripts, you can use CSS to create a printer-
friendly document as soon as the user hits the Print button. The HTML for the page isn't in the book
because the miracle of CSS lets us change the presentation without having to change the HTML.

Figure 8-3. Web page stylized for screen delivery

When creating a style sheet for print, you actually use a web browser. This enables you to see quickly
how the CSS rules affect the display of the document (just like for media delivery), but it's also easier
on the environment and you save money by not wasting ink in the printer. So, comment out the style
sheet used for the screen in order to create new CSS rules:

<!-- Hide screen media CSS while working on print CSS -->

<!-- link href="adv.css" type="text/css" rel="stylesheet"

media="screen" -->

<style type="text/css">

/* Print CSS rules go here */

</style>

Setting the Page for Black-and-White Printing

Apply the first CSS rule to the body element. In this rule, set the background color to white and set

the type to black:

body {

 background-color: white;

 color: black;

}

Next, set the typeface for the page to a serif font. Reading text online in sans-serif is easier on the
eyes, but in print media the serif font is still the choice for reading passages of text. For a later
fallback choice, you might want to go with the Times typeface for print documents since it's installed
on most (if not all) computers, and it's a workhorse of a font. In case your users don't have Times
installed, supply alternatives as well:

body {

 background-color: white;

 color: black;

 font-family: Garamond, Times, "Times New Roman", serif;

}

Now you want to get rid of navigation-related links and other page elements you don't want to see in
the final printout. This includes the main navigation bar below the main header, as well as internal
anchors in the page itself. If you have a page with ad banners, it might be a good idea to hide those
as well (see Figure 8-4):

#navigation, hr, body>div>a, #blipvert {

 display: none;

}

Figure 8-4. Hiding the navigation bar and other elements

Designing the Main Heading

Because you are dealing with black and gray type on a white page, you have few options when it
comes to designing how the main heading for the page should look. However, using what you have at
your disposal, it's nonetheless easy to create a masthead that calls attention to itself.

First, set the background to black and the text to white:

#header h1 {

 color: white;

 background-color: black;

}

Because you want people to actually read the header, you want the text to be white to create enough
contrast. In this instance, the main header also acts as a homing device-it is a link to the home
page. Therefore, the color of the heading is dictated by the style rules set for the links. To remedy
this situation, add a separate rule:

#header h1 {

 background-color: black;

}

#header h1 a {

 color: white;

}

Now that the text is visible, stylize it a bit so that it stands out. Your goal is to center the text,
increase the size of the text, and make all the letters uppercase:

#header h1 {

 background-color: black;

 font-size: 24pt;

 text-align: center;

 text-transform: uppercase;

}

Although this looks good, you can improve it by changing the typeface to sans-serif (so that it sticks
out from the rest of the text in the document) and by adding some padding around the top and
bottom of the heading (see Figure 8-5):

#header h1 {

 background-color: black;

 font-size: 24pt;

 text-align: center;

 font-family: Helvetica, Verdana, Arial, sans-serif;

 padding: 7pt;

 text-transform: uppercase;

}

Figure 8-5. Stylizing the main header

Styling the Article Header and Byline

For the article title and byline, create a more dramatic approach by zeroing out the margins and
padding of both the h2 and h3 elements:

#content h2 {

 padding: 0;

 margin: 0;

}

#content h3 {

 padding: 0;

 margin: 0 ;

}

Then increase the font size for the article title and create a thin hairline rule below it. Next, align the
byline to the right and set the type style to italic (see Figure 8-6):

#content h2 {

 padding: 0;

 margin: 0;

 font-size: 20pt;

 border-bottom: 1px solid black;

}

#content h3 {

 padding: 0;

 margin: 0;

 text-align: right;

 font-style: italic;

}

Figure 8-6. Designing the article header and byline

Gaining Attention Through the Teaser

Next up is the content in the h4 element. Because this content serves as a teaser for the article, it

should be visually distinctive from the article text. To accomplish that, set the background to 30%

black, change the typeface to sans-serif, and put in some padding (see Figure 8-7):

#content h4 {

 font-family: Helvetica, Verdana, Arial, sans-serif;

 border-top: 3pt solid black;

 background-color: #BCBEC0;

 padding: 12pt;

 margin: 0;

}

Figure 8-7. Setting up the article teaser

As for the content of the article, leave the text pretty much as it is except for two points of interest:
leading, covered here, and links, covered in the next section.

Remember that in the body element, the font for the entire page is set with the serif typeface, and

through inheritance that typeface style is picked up in the paragraph elements as well. However, you
may want to space out the lines, or increase the leading, of the text in the paragraph. To do this,
change the line-height property:

#content p {

 line-height: 18pt;

}

Displaying the URLs

Any links in the article become useless when printed. To make them beneficial to the reader when the
page is printed, make sure all URLs from the links are displayed. To do that, set up a CSS rule to
display the URLs after every link in the content division of the document. Also, for visual effect,
remove the default underline of the links, make sure the font-weight is bold, and set the color to

gray (see Figure 8-8):

#content a:after {

 content: " <" attr(href) "> ";

 font-family: courier, monospace;

 font-weight: normal;

}

a {

 text-decoration: none;

 font-weight: bold;

 color: #626466;

}

Figure 8-8. Adjusting the links and leading in the content

Finishing with the Footer

At this point you're ready to work your way down the page to the footer that contains the copyright
notice. Because the main header is in a sans-serif typeface, balance the page by centering the
copyright notice, create a line rule through the border-top property, and set the typeface to sans-

serif as well:

#footer {

 border-top: 1px solid #000;

 text-align: center;

 font-family: Helvetica, Verdana, Arial, sans-serif;

}

With the print CSS finished, copy the CSS rules and put them into an external style sheet called
print.css. Then, uncomment out the CSS for screen media and associate the print CSS through the
link element:

<link href="adv.css" type="text/css" rel="stylesheet"

media="screen" />

<link href="print.css" type="text/css" rel="stylesheet"

media="print" />

 < Day Day Up >

 < Day Day Up >

Chapter 9. Hacks and Workarounds
Introduction

Recipe 9.1. Hiding Certain Styles from Netscape Navigator 4.x

Recipe 9.2. Delivering Alternative Values to Internet Explorer 5.x for Windows

Recipe 9.3. Removing Web Page Flicker in Internet Explorer 5.x for Windows

Recipe 9.4. Keeping Background Images Stationary in Internet Explorer 6 for Windows

Recipe 9.5. Keeping CSS Rules from Internet Explorer 5 for Macintosh

 < Day Day Up >

 < Day Day Up >

Introduction

When designing for the Web, developers historically have used hacks and workarounds to achieve
certain effects. The mid-1990s saw a proliferation of such workarounds, among them single-pixel
GIFs, font tags, and nested tables, to name just a few.

In this new millennium, CSS has allowed web designers to free themselves from these old
workarounds. But although CSS 2 became a recommendation back in May 1998, only relatively
recently have browser vendors fully implemented the standard in their products. To overcome the
bugs in the browsers that have poor CSS support, web designers have once again resorted to using
hacks and workarounds to achieve their designs.

There are many reasons why old browsers are still in use. Unlike web developers, most people don't
automatically upgrade their browsers each time a new one is available. They tend to stick with the
browser that's on their computer because it works fine and will get a new browser only when they
purchase a new computer. Also, IT departments in many companies lock down the systems and
prevent individuals from upgrading software applications on their own.

So even though problems might be solved by using newer versions of browsers, web developers still
need to use hacks or workarounds to deliver the appropriate presentation to their audience that is
unwilling or unable to upgrade.

This chapter covers techniques on how to deal with browsers that have spotty CSS support. Included
in this chapter are methods to hide advanced style sheets from Netscape Navigator 4, deal with
Internet Explorer 5.x for Window's unique interpretation of the box model, and more.

 < Day Day Up >

 < Day Day Up >

Recipe 9.1 Hiding Certain Styles from Netscape Navigator
4.x

Problem

You want to keep Netscape Navigator 4.x from using certain CSS rules. For example, Navigator 4.x
doesn't correctly inherit styles like font-family and color set for the body to elements like table,
div, and p.

Solution

In a separate style sheet, place the CSS rules that you don't want the Netscape Navigator 4.x
browser to use. Then use the @import method to associate the "advanced" CSS rules (making sure

that the advanced style sheet comes after the basic to override styles from the basic style sheet):

<link rel="stylesheet" type="text/css" media="all" title="Basic CSS" href="/basic.

css" />

<style type="text/css" media="all">

 @import "/css/advanced.css";

</style>

Discussion

Netscape Navigator 4 was the first Netscape browser to contain support for CSS. Unfortunately,
Netscape was developing the browser while CSS was being finalized. Also, Netscape was supporting
its own proposal, JavaScript Style Sheets, known as JSSS, and was basing Navigator 4 on that
technology. So, when the W3C went with CSS instead, the Netscape engineers had to do some quick
jury-rigging to fix their implementation. This is why you can turn off CSS support in Navigator 4 just
by turning off JavaScript in the program's preferences.

Because Navigator's CSS implementation was essentially a remapping to its JSSS engine, actual CSS
support for the implementation of such things as the @import method of associated styles to a web

page was woefully incomplete. And whatever CSS styles Navigator did include were implemented
improperly. As newer browsers offered stronger and more robust support for CSS, a method for
hiding certain CSS rules from Navigator 4 became a necessity if web developers were to embrace
CSS-enabled designs.

Although the @import method works, you need to write the CSS rules in two separate files: one for
Navigator 4 and another one for other browsers capable of handling the @import method. Another

way of hiding styles from Navigator 4 and keeping the styles in a single style sheet is through a CSS
comment workaround known as the Caio hack, named after the person who developed it, Caio
Chassot.

In the following code example, styles are hidden from Navigator 4 through the hack:

.p1 {

 font-size: 200%;

 text-decoration: underline;

}

/*/*/

.p2 {

 font-size: 200%;

 text-decoration: underline;

}

/* */

.p3 {

 font-size: 200%;

 text-decoration: underline;

}

Here is the HTML code that is used in Figure 9-1:

<h2>Netscape Navigator 4 test</h2>

<p class="p1">This text is large and underlined.</p>

<p class="p2">This text is neither large nor underlined.</p>

<p class="p3">This text is large and underlined.</p>

Figure 9-1. Netscape Navigator's comment parser problem used to hide
certain styles

Navigator 4 interprets the comment snippet /*/*/ as an open comment, meaning that anything after

it is hidden from the browser. Other browsers see the snippet as open and close comment tags. To
close the hack to let Navigator 4 see the rest of the styles, add another pair of open and close
comment tags, this time with a space between the asterisks:

/* */

You also can include the hack with inline styles:

<p style="/*/*/ color: font-size: 200%; text-decoration:

underline;">This inline-styled p is neither large nor underlined

in Navigator 4.</p>

Along with the comment parsing problem, Navigator 4 won't pull in style sheets when the media
attribute equals all:

<link rel="stylesheet" type="text/css" href="/css/advanced.css"

media="all" >

<style type="text/css" media="all" >

.p2 {

 font-size: 200%;

 text-decoration: underline;

}

</style>

Navigator 4 won't interpret style sheets when there is more than one value for the media attribute.

So, if you use a combination of values for the media attributes, Navigator 4 ignores the style sheet:

<link rel="stylesheet" type="text/css" href="/css/advanced.css"

media="screen, print" >

You also can hide styles from Navigator 4 by using descendant selectors-for instance, by placing the
html element as a selector before the next selector (since Navigator 4 doesn't include the html

element in the parsed document). In the following example, the text size and decoration won't
appear in Navigator 4:

html .p2 {

 font-size: 200%;

 text-decoration: underline;

}

See Also

http://www.v2studio.com/k/css/n4hide/, Caio Chassot's web page about the workaround;
Netscape's original proposal for JSSS at http://www.w3.org/Submission/1996/1/WD-jsss-960822;
more issues about Navigator 4.x at http://www.mako4css.com/Issues.htm.

 < Day Day Up >

http://www.v2studio.com/k/css/n4hide/
http://www.w3.org/Submission/1996/1/WD-jsss-960822
http://www.mako4css.com/Issues.htm

 < Day Day Up >

Recipe 9.2 Delivering Alternative Values to Internet
Explorer 5.x for Windows

Problem

You want to apply different CSS property values to the Internet Explorer 5.x for Windows browser,
such as the value of the width property, to work around implementation of the Microsoft box model.

Solution

Put in the declaration you want Internet Explorer 5.x for Windows to handle, and then use what's
called the box model hack to put in the corrected values you want other browsers to interpret:

div#content {

 /* WinIE value first, then the desired value the next 2 times */

 background-color: red;

 voice-family: "\"}\"";

 voice-family: inherit;

 background-color: green;

}

html>div#content

 background-color: green;

}

Discussion

Tantek Çelik, Microsoft's diplomat to the World Wide Web Consortium (W3C) CSS and HTML working
groups, originally demonstrated how the box model hack could be used to fix Internet Explorer 5.x for
Windows' approach to the box mode. This fix also applies to Internet Explorer 6 for Windows in quirks
mode since it also uses the Microsoft box model.

CSS specifies that the width property defines the width of the content area of a box, and that any

margin, border, or padding space should draw outside of that space. For example, in the following bit
of code, the width of the element (as it is stated) is 500 pixels:

div#content {

 width: 500px;

 padding: 33px;

 margin: 50px;

 background-color: #666;

}

As seen in Figure 9-2, the box appears to be 566 pixels wide. The 66 "extra" pixels are from the
padding being added outside the 500 pixels.

Figure 9-2. The box model correctly implemented in Mozilla

In Internet Explorer 5.x for Windows, the width isn't the stated value in the CSS. Instead, Microsoft's
box model draws the box with the border and padding inside the specified width. To calculate the
width of the content area for Internet Explorer 5.x for Windows, subtract the padding and borders
from the stated width:

width property
- left border - left padding

- right padding - right border
= Microsoft's box model

In the previous CSS example, the width determined by Internet Explorer 5.x for Windows is 434
pixels (see Figure 9-3):

500px - 33px - 33px = 434px

Figure 9-3. Internet Explorer 5.x for Windows' implementation of the box
model

That's a difference of 66 pixels from the originally stated content area's width of 500 pixels for the
block element. Because the box model is a fundamental aspect of design, it becomes paramount to
fix any inconsistencies that can arise from this problem.

The box model hack uses a parsing bug to close the rule set prematurely, so anything after the two
voice-family properties is ignored by Internet Explorer 5.x for Windows. However, because other

browsers, such as Opera 5, can be vulnerable to this workaround, add this CSS rule:

html>div#content

 background-color: green;

}

This rule, affectionately referred to as the "Be Kind to Opera" rule, uses the child selector to reinforce
the property for browsers like Opera that might get confused with the box model hack, but correctly
implement child selectors.

See Also

http://www.w3.org/TR/CSS21/visudet.html#the-width-property for information on the width

property as a part of the box model; http://www.tantek.com/CSS/Examples/boxmodelhack.html for
Tantek Çelik's explanation of the box model hack; http://www.w3.org/TR/CSS21/aural.html#voice-
char-props for information about the voice-family property.

 < Day Day Up >

http://www.w3.org/TR/CSS21/visudet.html#the-width-property
http://www.tantek.com/CSS/Examples/boxmodelhack.html
http://www.w3.org/TR/CSS21/aural.html#voice-

 < Day Day Up >

Recipe 9.3 Removing Web Page Flicker in Internet
Explorer 5.x for Windows

Problem

You want to remove the initial flicker, or flash, of unstyled content before Internet Explorer 5.x for
Windows applies your CSS style sheet.

Solution

Add a link or script element as the child of the head element in your web document:

<head>

 <title>christopher.org</title>

 <link rel="stylesheet" type="text/css" media="print" href="print.css">

 <style type="text/css" media="screen">@import "advanced.css";</style>

</head>

Discussion

If a web page contains a style sheet associated by only the @import method, Internet Explorer 5.x

for Windows' browsers first show the contents of the web page without any of the styles applied to
the markup. After a split second, the browser redraws the web page with styles applied. Adding a
link or script element in the head before the @import rule forces the browser to load the styles

when it initially draws the page in the viewport.

This rendering phenomenon isn't a problem with the browser itself. The CSS specification doesn't
specify whether this behavior is acceptable or not, so the browser is compliant with the specification.
You or your audience might perceive this flicker as a bug or annoyance, though, so you should
prevent it from occurring.

See Also

http://www.bluerobot.com/web/css/fouc.asp for an overview of the effect.

http://www.bluerobot.com/web/css/fouc.asp

 < Day Day Up >

 < Day Day Up >

Recipe 9.4 Keeping Background Images Stationary in
Internet Explorer 6 for Windows

Problem

You want to have a fixed background image in Internet Explorer 6 for Windows.

Solution

Use the following JavaScript hack to force the effect. First copy the following code to call up the
JavaScript code in your web page:

<head>

<script type="text/javascript" src="fixed.js"></script>

</head>

Then in the fixed.js file place the JavaScript code for the workaround, which can be found at this
book's online sample archive http://www.oreilly.com/catalog/cssckbk/ or from Andrew Clover's site
at http://doxdesk.com/software/js/fixed.html.

Discussion

According to the CSS 2 specification, when a background image is fixed using the background-
attachment property, it shouldn't move when the user scrolls the web page. In all versions of

Internet Explorer for Windows, this property doesn't work at all.

However, this stunning JavaScript workaround developed by Andrew Clover fixes this problem by
simply adding the JavaScript link to the web page. The JavaScript works by dynamically recalculating
the position of the viewport as a user scrolls, and then it adjusts the background image accordingly.

See Also

Recipe 2.7 for more information about setting a fixed background image; the CSS specification for
background-attachment at http://www.w3.org/TR/CSS21/colors.html#propdef-background-

attachment.

http://www.oreilly.com/catalog/cssckbk/
http://doxdesk.com/software/js/fixed.html
http://www.w3.org/TR/CSS21/colors.html#propdef-background-

 < Day Day Up >

 < Day Day Up >

Recipe 9.5 Keeping CSS Rules from Internet Explorer 5
for Macintosh

Problem

You want to hide certain rules from Internet Explorer 5 for Macintosh.

Solution

To hide CSS rules from Internet Explorer 5 for Macintosh, insert a backslash in front of the closing
comment with the characters */:

/* */

h1 {

 font-size: 200%;

 text-transform: uppercase;

 background-color: #666;

 }

After the rules pertaining to Internet Explorer 5 for Macintosh, insert another comment line:

/* */

p {

 text-transform: uppercase;

}

Discussion

This method exploits a simple comment-parsing problem found in Internet Explorer 5 for Macintosh.
The backslash before the closing comment causes the browser to think the comment actually has not
closed; any valid CSS rules are hidden, allowing entire rule sets to be hidden from the browser until

the next closing comment marker is hidden.

See Also

The specification about adding comments in CSS at http://www.w3.org/TR/2004/CR-CSS21-
20040225/syndata.html#comments.

 < Day Day Up >

http://www.w3.org/TR/2004/CR-CSS21-

 < Day Day Up >

Chapter 10. Designing with CSS
Introduction

Recipe 10.1. Enlarging Text Excessively

Recipe 10.2. Creating Unexpected Incongruity

Recipe 10.3. Combining Unlike Elements to Create Contrast

Recipe 10.4. Leading the Eye with Contrast

Recipe 10.5. Building a Panoramic Image Presentation

Recipe 10.6. Combining Different Image Formats

Recipe 10.7. Making Word Balloons

Recipe 10.8. Emphasizing a Quotation

Recipe 10.9. Placing a Drop Shadow Behind an Image

 < Day Day Up >

 < Day Day Up >

Introduction

Although web builders often spend a lot of time working around browser bugs and reading about the
latest tricks from the gurus, it's worth remembering that foremost, we're designers and CSS is simply
a way to turn design ideas into reality.

CSS is the perfect technology for grabbing the attention of visitors to a web site. With CSS, instead of
hacking HTML tables and slicing images to create eye-catching designs, you can go further with valid
markup and still save on file sizes by ditching excess HTML and images. In short, you can do what
any professional web designer should: create maximum impact with minimal resources.

At a basic level, a developer can learn all there is to know about CSS syntax and the technical
limitations of the technology. But let's never forget that code merely implements the design. At its
heart CSS is a visual language, and with that comes the need to understand, at least in some small
way, how to use design principles with CSS.

With that in mind, this chapter explains how to design with CSS. Specifically, this chapter describes
several methods for capturing attention through CSS-enabled techniques, including how to lead the
eye with contrast, use excessively large text, create word balloons out of quotations, and use
different image formats to create cohesive presentations.

 < Day Day Up >

 < Day Day Up >

Recipe 10.1 Enlarging Text Excessively

Problem

You want to draw attention to a web page by enlarging some of the text as shown in Figure 10-1.

Figure 10-1. An example of excess type size

Solution

Increase the size of the heading so that it is out of proportion with the rest of the text. First use this
HTML:

<h1>Hi.</h1>

Then use this CSS code:

h1 {

 font-size: 17em;

 margin: 0;

 padding: 0;

 text-align: center;

 font-family: Arial, Verdana, Helvetica, sans-serif;

}

Discussion

Obviously, any element that's larger than the other elements in the same environment stands out.
So, when you want to call attention to an area of a web page, try using an excessive type size.

In this example, the size of the font in the word "Hi." has been set to 17em. In the font-size

property, an em unit is equal to whatever the font-size of the container is. So, 17em units is equal to
17 times the default font size. There is no theoretical limit to how large you can size text, but in
practice different browsers do max out at some point. Not everyone will have a monitor that's large
enough to see type that is 1 mile (or 63,360 inches) tall:

h3 {

 font-size: 63360in;

}

See Also

Recipe 1-2 for specifying font measurements and sizes; "The Elements of Text and Message Design
and Their Impact on Message Legibility: A Literature Review," from the Journal of Design
Communication at http://scholar.lib.vt.edu/ejournals/JDC/Spring-2002/bix.html; the CSS 2

http://scholar.lib.vt.edu/ejournals/JDC/Spring-2002/bix.html

specification for lengths (including em units) at http://www.w3.org/TR/REC-
CSS2/syndata.html#length-units.

 < Day Day Up >

http://www.w3.org/TR/REC-

 < Day Day Up >

Recipe 10.2 Creating Unexpected Incongruity

Problem

You need to grab the reader's attention by using two elements that don't seem to fit together.

Solution

Place one element visually inside the other. In the web page shown in Figure 10-2, which covers
Earth's close call with an asteroid, an image of Earth from space was placed over an image of a game
of pool.

Figure 10-2. An image of Earth placed over an image depicting a game of
pool

The HTML for this page is simple:

<h2>Earth News</h2>

<p>Earth escapes potential impact with killer asteroid;

will we escape the next one in 2014? Read

more</p>

For the CSS, place the photo depicting the game of pool into the body element and position it in the

upper left corner. Then use the image replacement technique discussed in Recipe 3-10 to place the
photo of Earth for h2:

<style type="text/css">

body {

 background-color: #009E69;

 margin: 0;

 background-image: url(billiard.jpg);

 background-repeat: no-repeat;

}

h2 {

 background-image: url(earth.gif);

 position:absolute;

 width:126px;

 height:126px;

 z-index:1;

 left: 166px;

 top: 69px;

}

.no {

 display: none;

}

p {

 width: 120px;

 margin: 260px 100px 0 170px;

 font-family: Verdana, sans-serif;

 font-size: small;

 font-weight: bold;

}

</style>

Discussion

A great way to grab attention is to show something that is unexpected. Cleverly combining two
different elements into one image can force viewers to pay attention to the image (as seen in Figure
10-3), or it can simply underscore the purpose of the content.

Figure 10-3. Photos of a child and man are combined

This example used two images-one of a pool cue and cue ball, and the other of Earth. The former
image was placed as the background image for the body element. The image of Earth was placed in
the background of h2 and was moved by setting the position to absolute. Then it was composited

over the pool image.

See Also

Recipe 10.3 on combining unlike elements; Recipe 10.6 on combining different image formats.

 < Day Day Up >

 < Day Day Up >

Recipe 10.3 Combining Unlike Elements to Create
Contrast

Problem

You want to create contrast on a web page by integrating two different elements, like serif and sans-
serif typefaces as shown in Figure 10-4.

Figure 10-4. Type elements juxtaposed in the same headline

Solution

Use different typefaces in the same headline. First adjust the markup to allow for changes in the font
properties:

<h2>Crossing Over</h2>

<h4>Sen. Jane Gordon (I-Utah) bolts GOP;
changes parti</

span>es to be Independent</h4>

Then manipulate the CSS for the span element to create a mixture of typefaces:

body {

 margin: 25% 10% 0 10%;

}

h2 {

 font-size: 2em;

 font-weight: bold;

 font-family: Arial, Verdana, Helvetica, sans-serif;

 text-transform: uppercase;

 text-align: center;

 padding: 0;

 margin: 0;

}

h2 span {

 font-family: Times, "Times New Roman", Georgia, serif;

 font-size: 1.1em;

 font-weight: normal;

 }

h4 {

 margin: 0;

 padding: 0;

 font-size: 1.25em;

 font-weight: bold;

 font-family: Arial, Verdana, Helvetica, sans-serif;

 text-transform: uppercase;

 text-align: center;

}

h4 span {

 font-family: Times, "Times New Roman", Georgia, serif;

 font-size: 1.1em;

 font-weight: normal;

}

Discussion

Combining unlike elements creates a visual contrast. In this example, different characteristics of the
serif and sans-serif typefaces in the headline created the contrast. However, you can create contrast
through imagery as well. For instance, in this example, you could have integrated Democratic and
Republican political party symbols and placed them side by side. Or you could have gone for a more
symbolic contrast by placing photos of two different types of parties side by side: one depicting a
large social gathering at a club, and the other showing a girl blowing a noisemaker over a cupcake
with a lit candle on top.

See Also

Recipe 10.6 on combining different image formats.

 < Day Day Up >

 < Day Day Up >

Recipe 10.4 Leading the Eye with Contrast

Problem

You want to create a sense of depth or motion through text. On a page containing four paragraphs
that are almost identical, it's hard to know which paragraph to look at first (see Figure 10-5). If you
change font size across columns in a particular direction (e.g., decrease the size left-to-right) you
lead the reader's eye (see Figure 10-6).

Figure 10-5. Four paragraphs that are almost identical

Figure 10-6. Changing the type size so that the reader's eye will scan from
left to right

Solution

To lead the reader's eye, change the type size by adding a CSS rule like this:

/* Text size */

#layer4 {

 font-size: .7em;

 line-height: 20px;

}

#layer3 {

 font-size: 1em;

 line-height: 20px;

}

#layer2 {

 font-size: 2em;

 line-height: 10px;

}

#layer1 {

 font-size: 3em;

 line-height: 10px;

}

Discussion

Contrast occurs when there is an obvious difference between two elements. If there isn't any contrast
on a page, the reader doesn't know what is important on the page. By manipulating an element's
visual value, you can create contrast between two like elements. Some of those visual values include
the following:

Size
Color
Shape
Position on a page
Direction

Density

Properly marked content has an inherent style because the browser uses its own style sheet to
render the content when another style sheet isn't present. Headings, such as the h1 element, are

stylized in a large, bold font and are separated from the paragraphs (see Figure 10-7). This different
font provides the contrast to help readers make sense of the document.

Figure 10-7. Drawing the eye toward the headings by setting them in a
larger, bold font

Without the cues that can be provided through a style sheet, the reader's eye wanders throughout a
document. The layout shown in Figure 10-8 creates a sense of confusion because it doesn't provide
the reader with a clear sense of direction as to what to read first. The headings and copy all share the
same values for font, type size, and type color.

Figure 10-8. The page shown in Figure 10-7, but without contrast

See Also

http://www.lighthouse.org/color_contrast.htm for creating more effective contrast;
http://graphicdesign.about.com/library/weekly/aa012700a.htm for more on the basics of designing
with contrast.

 < Day Day Up >

http://www.lighthouse.org/color_contrast.htm
http://graphicdesign.about.com/library/weekly/aa012700a.htm

 < Day Day Up >

Recipe 10.5 Building a Panoramic Image Presentation

Problem

You want the width of an image to increase or decrease as a user resizes his browser window, as
shown in Figure 10-9.

Figure 10-9. Browser window increased in size to show more of the
panoramic image

Solution

Place an image element that refers to a panoramic image into the background of a block-level
element (see Figure 10-10):

Figure 10-10. Panoramic photo placed on a web page

<h1>Visit France City!</h1>

<div></div>

<h2>The quaint and charming little destination in France</h2>

Position the image element in the upper right corner of the block-level element and then hide the
image by setting the display to none:

div {

 background-image: url(frenchtown.jpg);

 background-repeat: no-repeat;

 background-position: top right;

 height: 300px;

 border: 1px solid black;

 max-width: 714px;

}

div img {

 display: none;

}

When the image is placed as a background image, it will be resized based on the size of the browser
window.

Discussion

To create a panoramic presentation, you need a wide photograph. You then need to position the
image element in the upper right corner of the block-level element so that the image will grow or
shrink depending on the size of the browser window. The use of max-width property constrains the
width of the div element from expanding beyond the width of the image itself.

In this Solution, the same image is used in both the HTML and CSS. The rationale behind this
approach is to make sure the image (or content) displays, even if the user agent rendering the page
doesn't understand CSS.

See Also

http://www.creighton.edu/~jaypl/oldpage/panhow.html for more information on how to create
panoramic pictures; the CSS 2.1 specification for max-width property at

http://www.w3.org/TR/CSS21/visudet.html#propdef-max-width.

 < Day Day Up >

http://www.creighton.edu/~jaypl/oldpage/panhow.html
http://www.w3.org/TR/CSS21/visudet.html#propdef-max-width

 < Day Day Up >

Recipe 10.6 Combining Different Image Formats

Problem

You want to combine two different image formats into one presentation. For example, you want to
combine GIF and JPEG images into one graphical presentation as shown in Figure 10-11.

Figure 10-11. Two different image formats combined into one

Solution

Place an image inside a block-level element such as a div or h2:

<h2><img src="headline_text.gif" alt="Headline image set in

GIF format" /></h2>

Using an image-editing program, separate the elements of the image into separate file formats (see
Figure 10-12).

Figure 10-12. Two images that will be used to create one image

Name one of the images the same as the image referred to in the src attribute for the img element.

Place the other image in the background of the block-level element to merge both images into one
presentation.

h2 {

 background-image: url(headline_bkgd.jpg);

 background-repeat: none;

 width: 587px;

 height: 113px;

}

Discussion

The two prevailing image formats on the Web are GIF and JPEG. Both compress images in different
ways. Typically, images with flat areas of color compress better in the GIF format, while JPEG images
are better for photos or images that contain fine color gradations.

In the example shown in Figures Figure 10-1 and Figure 10-2, the file size of the two separate images
added together is actually less than the file size of the final, combined image. This occurs because
part of the image would work against the compression scheme of one file format. If you saved the
presentation as one GIF, the photographic portions of the image would create an inflated file size.
And if you saved the image as a JPEG, the areas of flat color would inflate the size. By splitting up the
images into different formats that leverage their respective compression schemes, you reduce file
sizes overall.

Although the method in this Solution uses background properties in CSS, you can accomplish the
same effect by positioning block elements that contain inline images. For example, in Figure 10-13
you can see that the line art of the boat was overlaid on the photograph of the two children.

Figure 10-13. Intricate combination of different image formats

To make this method work, wrap the image elements in block-level div elements, as shown in the

following HTML code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>CSS Cookbook</title>

 </head>

 <body>

 <img src="kids.jpg" width="360" height="304" alt="kids

playing" />

 <div id="boat"><img src="boat.gif" width="207" height="123"

 alt="boat" /></div>

 <div id="water"><img src="landscape.gif" width="315"

height="323"

 alt="landscape" /></div>

 </body>

</html>

Then, through CSS, set the position of the elements to absolute. By setting the position to
absolute, you take the elements out of the normal flow of the web page, and instead you assign
values to the left, top, and z-index properties to determine their new placements:

#boat {

 position:absolute;

 width:207px;

 height:123px;

 z-index:2;

 left: 264px;

 top: 0;

}

#water {

 position:absolute;

 width:315px;

 height:323px;

 z-index:1;

 left: 359px;

 top: -20px;

}

The left and top properties indicate the placement of the images within their nearest positioned
ancestor element or the initial containing block. In this case, it's the initial containing block to the div

elements.

Furthermore, the body element's margin has a value of 0, meaning that the origin point is in the

upper left corner of the browser's viewport.

body {

 margin: 0;

}

Even though this method works, if the web document is later modified, exact positioning becomes a
design liability. For example, adding a simple headline above the images in the HTML results in the
anomaly shown in Figure 10-14:

<h2>Kids Welcome New Boat!</h2>

 <img src="kids.jpg" width="360" height="304" alt="kids

playing" />

 <div id="boat"><img src="boat.gif" width="207" height="123"

 alt="boat" /></div>

 <div id="water"><img src="landscape.gif" width="315" height="323"

alt="landscape" /></div>

Figure 10-14. Presentation breaks with addition of heading

Because the image of the children has not been positioned with absolute, it moves down the flow of

the document. The other image stays in place because it has been positioned within the initial
containing block and is still in the same place it was before the headline was added.

By using the background-positioning method within block-level elements, you can create a self-

containing module. Then, when content is added to and removed from the web page, the
presentation remains whole, as seen in Figure 10-15 and shown in the following code:

Figure 10-15. A different approach to combining images

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>CSS Cookbook</title>

<style type="text/css">

body {

 margin: 5% 10% 0 10%;

}

#content {

 background-image: url(landscape.gif);

 background-repeat: no-repeat;

 background-position: bottom right;

 height: 400px;

 width: 674px;

}

h2 {

 margin: 0;

 padding: 0;

 background-image: url(kids.jpg);

 background-repeat: no-repeat;

 background-position: bottom left;

 height: 400px;

 width: 600px;

}

#boat {

 background-image: url(boat.gif);

 background-repeat: no-repeat;

 display: block;

 width: 207px;

 height: 123px;

 margin-left: 250px;

 margin-top: 75px;

}

</style>

 </head>

 <body>

 <div id="content">

 <h2>Kids Welcome New Boat!

 </h2>

 </div>

 </body>

</html>

See Also

Recipe 10.2 on creating unexpected incongruity between two elements; Recipe 10.3 on combining
unlike elements.

 < Day Day Up >

 < Day Day Up >

Recipe 10.7 Making Word Balloons

Problem

You want to create a word-balloon effect as shown in Figure 10-16.

Figure 10-16. The word balloon

Solution

Mark up the content for a word balloon, and include both the text to appear in the word balloon as
well as the name of the person cited as the source (see Figure 10-17):

<blockquote>

 <p>

 Be bold, baby!

 </p>

 <cite>

 Christopher Schmitt

 </cite>

</blockquote>

Figure 10-17. Structured content for a word balloon

Form the word balloon using the CSS border and background properties. Then align the cited text so

that it falls underneath the balloon tail image:

blockquote {

 width: 250px;

}

blockquote p {

 background: url(balloontip.gif);

 background-repeat: no-repeat;

 background-position: bottom;

 padding-bottom: 28px;

}

blockquote p span {

 display: block;

 padding: 0.25em 0.25em 0.5em 0.5em;

 border: 1pt solid black;

 border-bottom-width: 0;

 font-size: 3em;

 font-family: "Comic Sans MS", Verdana, Helvetica, sans-serif;

 line-height: 0.9em;

}

cite {

 text-align: right;

 display: block;

 width: 250px;

}

Discussion

To create a word balloon you need at least one image, which includes a balloon tail and one border of
the balloon (see Figure 10-18). The image is available for download at this book's site, mentioned in
the Preface. You create the other three sides of the word balloon by setting the border in the span

tag.

Figure 10-18. The word balloon tail

For a comic book look and feel, be sure to set the font family to Comic Sans MS, a free font from

Microsoft:

font-family: "Comic Sans MS", Verdana, Helvetica, sans-serif;

If you have a computer running the Windows OS, the font might be installed on your computer
already. Although this is a common font, some users might not have it installed on their systems. If
that is the case, the browser will look for the next font, in the order listed in the value, until it finds a
font available to render the page.

You can create a more whimsical presentation using the word-balloon technique by adjusting the
markup and CSS slightly. First, place a span element with a class attribute set to no around the
name in the cite element:

<blockquote>

 <p>

 Be bold, baby!

 </p>

 <cite>

 Christopher Schmitt

 </cite>

</blockquote>

Next, in CSS, add the following rule, which keeps the text from being displayed in the browser:

.no {

 display: none;

}

Place a photograph in the cite element through the background-position property to finish the

effect (see Figure 10-19):

cite {

 margin: 0;

 padding: 0;

 background-image: url(baby.jpg);

 background-position: 0 0;

 height: 386px;

 text-align: right;

 display: block;

 width: 250px;

}

Figure 10-19. Word balloon coming from an image

See Also

Background information about Comic Sans MS at
http://www.microsoft.com/typography/web/fonts/comicsns/default.htm; propaganda on why not to
use Comic Sans MS at http://www.bancomicsans.com.

 < Day Day Up >

http://www.microsoft.com/typography/web/fonts/comicsns/default.htm;
http://www.bancomicsans.com

 < Day Day Up >

Recipe 10.8 Emphasizing a Quotation

Problem

You want to add emphasis to a quotation by large and bold quotation marks as shown in Figure 10-
20.

Figure 10-20. The stylized quotation

Solution

First code the markup for the quotation (see Figure 10-21):

<blockquote>

 <p>There is a tendency for things to right themselves.</p>

 <cite>Ralph Waldo Emerson</cite>

</blockquote>

Figure 10-21. Quotation as it would normally appear

Then apply CSS rules to stylize the quote:

blockquote {

 padding: 0;

 margin: 0;

 text-align: center;

}

p {

 font-size: 1em;

 padding-bottom: 3em;

 text-transform: lowercase;

 font-family: Georgia, Times, "Times New Roman", serif;

 margin: 0;

 padding: 0;

}

cite {

 display: block;

 text-align: center;

}

Finally, use pseudo-elements :before and :after to stylize the punctuation in the quotation as well

as to place an em dash-a horizontal dash equal to the default size of the font-before the name of
the cited source:

blockquote p:before {

 content: "\201C";

 font-size: 1.2em;

 font-weight: bold;

 font-family: Georgia, Times, "Times New Roman", serif;

}

blockquote p:after {

 content: "\201D";

 font-size: 1.2em;

 font-weight: bold;

 font-family: Georgia, Times, "Times New Roman", serif;

}

cite:before {

 content: "\2014 ";

}

cite {

 display: block;

 text-align: center;

}

Discussion

Pseudo-elements are selector constructs that browsers use first to select portions and then to stylize
a web page that can't be marked up through standard HTML. For instance, you can use pseudo-
elements to stylize the first line of a paragraph or, in the case of this Recipe, to place generated
content before and after an actual element.

In this Solution we insert smart quotes around the actual quotation. For the left double quotes, we
use this declaration:

content: "\201C ";

Any text that you want displayed after an element needs to be marked off with double quotes.
Because we are using double quotes to mark what should be displayed, we can't put another set of
double quotes inside the first set. To put quotes around the quotation, we need to use the
hexadecimal value for a quotation mark, which is 201C.

Because anything between the quotation marks automatically is generated as is, we need to escape
the hexadecimal number that tells the browser to render the quotation marks by placing a forward
slash in front of the double quotes.

The content property in the CSS 2.1 specification contains values for easily inserting quotation

marks. For example, to re-create the left double quotes, use the following declaration:

content: open-quote;

However, note that open quote keyword value specification is implemented only in Mozilla and Opera.
Also, note that the :before and :after pseudo-elements don't work in Internet Explorer 5+ for

Windows and Internet Explorer for Macintosh.

See Also

Recipe 8.3 on how to include links in printouts of web pages using pseudo-elements;
http://homepages.luc.edu/~vbonill/Entities923-8472.html for a list of HTML character entities; the
CSS 2 specification for quotations for generated content at http://www.w3.org/TR/REC-
CSS2/generate.html#quotes.

 < Day Day Up >

http://homepages.luc.edu/~vbonill/Entities923-8472.html
http://www.w3.org/TR/REC-

 < Day Day Up >

Recipe 10.9 Placing a Drop Shadow Behind an Image

Problem

You want to place a drop shadow behind an image as shown in Figure 10-22.

Figure 10-22. A drop shadow is placed behind the image

Solution

Place the image element (as shown in Figure 10-23) inside a div element with the class attribute set
to imgholder:

<div class="imgholder">

 </div>

Figure 10-23. The image placed above the content

To the div element, set the image alignment to the left so that text wraps around the image. Next

set the background image of the drop shadow in two background properties. In the first background
property use an image with an alpha transparency like PNG:

div.imgholder {

 float:left;

 background: url(dropshadow.png) no-repeat bottom

 right !important;

 background: url(dropshadow.gif) no-repeat bottom right;

 margin: 10px 7px 0 10px !important;

 margin: 10px 0 0 5px;

}

As for the image itself, set the margin-right and margin-bottom properties to define how much of the
shadow drop shadow image shows through. Also set a border property as well as padding to create a

more dramatic effect:

div.imgholder img {

 display: block;

 position: relative;

 background-color: #fff;

 border: 1px solid #666;

 margin: -3px 5px 5px -3px;

 padding: 2px;

}

Discussion

The first step is to create a drop shadow image in your image-editing program like Adobe Photoshop.
It's best to create a background image sized 600 pixels by 600 pixels or larger. With the image that
large, this technique can accommodate almost any image used in a web page.

The first image background property uses the !important rule to display the PNG file as the drop

shadow. By using the PNG, the background color or image of the web document can be changed
without affecting the drop shadow. For the other browsers that don't support this rule, like Internet
Explorer for Windows,) go to the next background property and use the GIF image as the drop
shadow instead.

The margin-left and margin-bottom property in the image element control the distance the drop

shadow image appears out from the image. If your drop shadow distance on the right or left side is
larger than five pixels (like the one used in this Solution), change the value accordingly.

See Also

The A List Apart article on creating CSS Drop Shadows at
http://www.alistapart.com/articles/cssdropshadows/.

 < Day Day Up >

http://www.alistapart.com/articles/cssdropshadows/

 < Day Day Up >

Appendix A. Resources
This appendix contains some of the top references, discussion groups, and tools on the Internet and
is provided to help you when working with CSS.

When working with CSS, keep these two tips in mind: simplify and verify. Simplify by using only the
selectors and properties you believe you need; any extras could cause some confusion down the
road. Then verify the (X)HTML and CSS with the help of validators (two good validators are listed
under Recipe A.3 in this appendix).

Those two steps solve most problems developers encounter when working with CSS. However, if you
still run into trouble, don't hesitate to ask for help from the web development communities listed in
Recipe A.1 of this appendix.

 < Day Day Up >

 < Day Day Up >

Recipe A.1 Discussion Groups

Recipe A.1.1 Babble List

Recipe A.1.1.1 http://www.babblelist.com/

Moderated by Christopher Schmitt and Andrew Porter Glendinning (http://www.cerebellion.com/),
this web design and development mailing list targets advanced web design issues. The site offers a
lively exchange of information, resources, theories, and practices of designers and developers.

Recipe A.1.2 css-discuss

Recipe A.1.2.1 http://www.css-discuss.org/

This mailing list, chaperoned by CSS expert Eric A. Meyer, who is the author of O'Reilly's Cascading
Style Sheets: The Definitive Guide, aims to provide practical discussion about the application of CSS.

Recipe A.1.3 Usenet Stylesheets Newsgroup

Recipe A.1.3.1 news:comp.infosystems.www.authoring.stylesheets

Founded in 1997, this unmoderated newsgroup covers the theory and application of CSS. Topics for
the group can include practical applications, questions about the specification, the benefits of CSS,
implementation bugs in browsers, and more. You can find the FAQ document for the group at
http://css.nu/faq/ciwas-mFAQ.html.

Recipe A.1.4 www-style (W3C Style Mailing List)

Recipe A.1.4.1 http://lists.w3.org/Archives/Public/www-style/

Maintained by the World Wide Web Consortium (W3C), this mailing list provides a venue for
discussing the theories and future of CSS. Questions about the specification or about CSS proposals
are welcomed; however, discussions revolving around practical applications of the technology are

http://www.babblelist.com/
http://www.cerebellion.com
http://www.css-discuss.org/
http://css.nu/faq/ciwas-mFAQ.html
http://lists.w3.org/Archives/Public/www-style/

discouraged.

 < Day Day Up >

 < Day Day Up >

Recipe A.2 References

Recipe A.2.1 Meyer's CSS Support Charts

Recipe A.2.1.1 http://devedge.netscape.com/library/xref/2003/css-support/

If you run into problems developing with CSS, check the CSS Support Charts to determine if there is
a problem with the browser(s) you are using. The CSS Support Charts comprise three charts:
Mastergrid, Historical CSS1 Support, and CSS2 Selectors. The Mastergrid chart looks at current
generation support for CSS1 properties, while the Historical CSS1 Support chart covers the browsers
that support CSS but were launched before 2000. The CSS2 Selectors chart covers the level of
support in browsers for CSS2 selectors.

Recipe A.2.2 W3C CSS Page

Recipe A.2.2.1 http://www.w3.org/Style/CSS/

This is the official site for CSS. At this site you can learn about the history of CSS, investigate
learning resources and authoring tools, and read current CSS news.

Recipe A.2.3 CSS 2.1 Specification

Recipe A.2.3.1 http://www.w3.org/TR/CSS21/

Browser implementations of the CSS specification are sometimes a confusing mess. When tracking
down how to achieve a certain look or an implementation bug, check the specification (as well as the
CSS Support Charts).

Recipe A.2.4 HTML 4.01 Specification

Recipe A.2.4.1 http://www.w3.org/TR/html4/

To make the most out of using CSS for web design, you need to create your web documents with

http://devedge.netscape.com/library/xref/2003/css-support/
http://www.w3.org/Style/CSS/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/html4/

structured markup instead of using workarounds and hacks. Furthermore, you need to mark up your
documents with elements to imply an inherent presentational meaning. For example, you need to
highlight important words using the em element and not the b element. If you need to change your

production methods, dig into the HTML specification and get to know the elements all over again.

Recipe A.2.5 XHTML 1.0 Specification

Recipe A.2.5.1 http://www.w3.org/TR/xhtml1/

Extensible HyperText Markup Language (XHTML) is a restructuring of HTML 4 in XML 1.0. Although
XHTML markup is stricter than that of HTML 4, the benefits are simple: more logical markup,
increased interoperability, and enhanced accessibility.

 < Day Day Up >

http://www.w3.org/TR/xhtml1/

 < Day Day Up >

Recipe A.3 Tools

Recipe A.3.1 SelectORacle

Recipe A.3.1.1 http://gallery.theopalgroup.com/selectoracle/

A free service designed to help people learn more about complex CSS selectors by translating their
meaning into plain English. CSS selectors can be submitted in one of two ways. The first method is to
copy and paste a CSS selector into the form. The other method is to enter either a URL of a web
page with an embedded style sheet or a URL to an external style sheet. The service then renders the
CSS selector into easy to understand language.

Recipe A.3.2 W3C CSS Validator

Recipe A.3.2.1 http://jigsaw.w3.org/css-validator/

This free service, provided on the W3C server, checks CSS for proper structure. You can test your
markup by uploading files, entering a web address in the form, and then copying and pasting the CSS
into a form field. And if you are so inclined, you can download and install the validator on your own
server.

Recipe A.3.3 W3C HTML Validator

Recipe A.3.3.1 http://validator.w3.org/

The W3C HTML validator is another free service from the W3C. Similar to the CSS validator, the HTML
validator checks to see if your markup conforms to web standards.

 < Day Day Up >

http://gallery.theopalgroup.com/selectoracle/
http://jigsaw.w3.org/css-validator/
http://validator.w3.org/

 < Day Day Up >

Recipe A.4 Design Resources

Recipe A.4.1 Glish.com CSS Layout Techniques

Recipe A.4.1.1 http://www.glish.com/css/

One of the first collections of multi-column layouts created in CSS without the use of HTML tables.

Recipe A.4.2 BlueRobot.com Layout Reservoir

Recipe A.4.2.1 http://www.bluerobot.com/web/layouts/

This small but valuable resource covers two- and three-column layouts.

Recipe A.4.3 Real World Style

Recipe A.4.3.1 http://www.realworldstyle.com/

A design resource managed by Mark Newhouse, the goal of this site is to promote CSS-enabled
designs, not only for modern, popular browsers that run on Macintosh and Windows OS, but also for
browsers that run on Unix machines.

Recipe A.4.4 A List Apart: CSS Topics

Recipe A.4.4.1 http://www.alistapart.com/topics/css/

At A List Apart most of the articles published on the topic of CSS come in from web designers sharing
their thoughts and breakthroughs with CSS-enabled design. A great resource to catch up on the
latest CSS techniques.

 < Day Day Up >

http://www.glish.com/css/
http://www.bluerobot.com/web/layouts/
http://www.realworldstyle.com/
http://www.alistapart.com/topics/css/

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of CSS Cookbook is a grizzly bear (Ursus arctos horribilis). The grizzly's
distinctive features include humped shoulders, a long snout, and long curved claws. The coat color
ranges from shades of blond, brown, black, or a combination of these; the long outer guard hairs are
often tipped with white or silver, giving the bear a "grizzled" appearance. The grizzly can weigh
anywhere from 350 to 800 pounds and reach a shoulder height of 4.5 feet when on all fours. Standing
on its hind legs, a grizzly can reach up to 8 feet. Despite its large size, the grizzly can reach speeds of
35 to 40 miles per hour.

Some of the grizzly's favorite foods include nuts, berries, insects, salmon, carrion, and small
mammals. The diet of a grizzly varies depending on the season and habitat. Grizzlies in parts of
Alaska eat primarily salmon, while grizzlies in high mountain areas eat mostly berries and insects.

Grizzlies are solitary, and prefer rugged mountains and forests. They can be found in the Canadian
provinces of British Columbia, Alberta, Yukon, and the Northwest Territories, and the U.S. states of
Alaska, Idaho, Wyoming, Washington, and Montana.

The grizzly is considered a threatened species: only about 850 bears exist in the lower 48 states.
Before the West was settled, the grizzly bear population was estimated to be between 50,000 and
100,000. Threats to the survival of the grizzly bear include habitat destruction caused by logging,
mining, and human development, as well as illegal poaching.

Mary Anne Weeks Mayo was the production editor and Audrey Doyle was the copyeditor for CSS
Cookbook. Jane Ellin proofread the book, and Mary Brady and Emily Quill provided quality control.
Mary Agner provided production assistance. Judy Hoer wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9
and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon
was compiled by Mary Anne Weeks Mayo.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

A List Apart design resource 2nd

absolute length units for setting type size

:active pseudo-class

ad banners, removing before printing

adjacent sibling selectors

:after pseudo-element 2nd 3rd

aligning

 images

 text

all media type

 Netscape Navigator 4 problem with

Alternative Style Sheet Switcher

asymmetric layouts for web pages

attribute selectors

 designing input elements of forms

 print-ready forms and

 writing CSS rules for form buttons

auto-generated content, creating

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Babble List discussion group 2nd

background images

 keeping stationary

 locking

 positioning

 rubber-band technique

 series of, creating

 setting

background-attachment property 2nd

background-color property

 customizing horizontal rules

 designing calendars

 for links

background-image property

 breadcrumb navigation

 horizontal rule, customizing

 placing images on bottom of heading

 styling first lines of paragraphs

background-position property

 combining different image formats

 image-based rollovers and

 placing images on bottom of heading

background-repeat property

 placing images on bottom of heading

balloons (word), creating

"Be Kind to Opera" rule

:before pseudo-element 2nd

 custom text markers for lists

black-and-white web pages, printing

blinking text, setting

block-level elements

blockquote element

bluerobot.com layout reservoir

border property

 creating nongraphical menus

 designing folder tabs 2nd

 placing around web pages

 in print-ready forms

 within table cells 2nd

border-bottom property

 horizontal menus, building

 pull quotes, creating

border-collapse property

border-left property

border-right property

 nongraphical menus with rollovers

border-spacing property

border-style property

border-top property

 pull quotes, creating

borders

 creating pull quotes with

 placing around

 input boxes

 tables

 web pages

 setting within table cells

 stylized text in headings and

box model hack

braille media type

breadcrumb navigation, creating

browsers

 creating printer-friendly web pages

 DOCTYPEs and

 indentation methods for

 panoramic images and

 standards mode/quirks mode

bullet lists, changing format of

buttons

 for forms, creating

 stylizing, using rollovers

 submit-once-only, setting up

bylines on web pages, styling

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

calendars, creating using CSS

Çelik, Tantek 2nd

cell padding, setting for tables

cells, table [See entries under tables]

cellspacing table attribute 2nd

centering

 horizontal rule

 page elements

Chassot, Caio 2nd

class selectors

 designing

 form buttons

 input elements of forms

 submit buttons

 table cell contents

 submit-once-only buttons and

 vs. type selectors

clear property

 placing footer content at bottom of columns

 stylizing events in calendars

Clover, Andrew

collapse model for borders 2nd

collapsible menus, creating

color blindness and font weights

color property 2nd 3rd

Color Scheme (Pixy)

coloring scrollbars

columns

 asymmetric layouts

 multicolumn layout, fixed-width

 with floats

 with positioning

 multicolumn layout, flexible

 with floats

 with positioning

 one-column layouts

 two-column layouts

 fixed-width columns

Comic Sans MS font family

comment parser problem

 Internet Explorer 5 for Macintosh

 Netscape Navigator

contextual menus, creating

contextual selectors

contrast

 creating by combining unlike elements

 leading reader's eye with

copyright notices on web pages, styling

crosshair (cursor property value)

CSS 2.1 specification

CSS Support Charts

css-discuss mailing list

css-validator tool (W3C)

CSS2 Selectors chart

cursive font family value

cursor property

cursors, changing

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

descendant selectors

 contextual menus, creating

 hiding styles from Netscape Navigator 4 with

design resources for CSS

discussion groups for CSS

display property 2nd

 building horizontal menus

 forms without tables and

 rendering links as block-level elements

DOCTYPEs 2nd

Document Type Definition (DTD)

Dreamweaver (Macromedia)

drop shadows, placing behind images

drop-down menus and print-ready forms

DTD (Document Type Definition)

dynamic visual menus, designing

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

em element, highlighting text with

em units, setting type size in

embossed media type

emphasizing quotations

escaping hexadecimal values in CSS

event links, adding to cells in calendars

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Fahrner, Todd 2nd

fantasy font family value

FIR (Fahrner Image Replacement) method

first line of paragraphs

 images in

 indenting

 setting style for

:first-letter pseudo-element

:first-line pseudo-element

flicker in web pages, removing

float property

 three-column layout

 with fixed-width columns

 with flexible columns

 two-column layouts, creating 2nd

:focus pseudo-class 2nd

folder tab navigation menus, creating

font shorthand property

font-family property

font-size property 2nd 3rd

font-weight property

fonts

 different elements in same headline

 leading the eye with contrast

 main headings on web pages, designing

 setting web pages for black-and-white printing

 sizes of

 keywords for

 overriding

 specifying

footers on web pages, designing

format of lists, changing

forms

 buttons for

 login form example

 onsubmit events and

 print-ready, creating

 registration form example

 without tables

full-bleed effect, creating

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

getElementbyId()

GIF and JPEG images, combining

Glendinning, Andrew Porter

glish.com layout techniques

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

hacks and workarounds

handheld media type

hanging indents in lists

Hansel and Gretel

header cells in tables

 applying styles to

 setting styles for

headings on web pages

 borders and stylized text in

 creating with stylized text

 designing

 images and stylized text in

height property 2nd 3rd

highlighting text

Historical CSS1 Support chart

horizontal menus, building

horizontal rules, customizing

:hover pseudo-class

HTML 4.01 specification

HTML tables [See also tables]

 border models for

 hybrid layouts with CSS and

 page layouts using

 vs. CSS

HTML text, creating pull quotes with

HTML validator tool (W3C)

hybrid page layouts, using HTML tables and CSS

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

id attribute and page layouts using HTML tables/CSS

image formats, combining

image-based rollovers 2nd

images

 background

 keeping stationary

 locking

 positioning

 rubber-band technique

 series of, creating

 setting

 centering on page

 creating pull quotes with

 custom-made, for list markers

 in first line of paragraph

 as initial caps, setting

 panoramic presentations of, building

 placing drop shadows behind

 and stylized text in headings

 superimposing over another

 in table cells, removing gaps from

 vertically centering

 word balloons, creating

@import method

 assigning media types

 font-size keywords and

 hiding styles from Netscape Navigator 4

!important rule 2nd

incongruity in web pages, creating

indentation

 cross-browser, in lists

 for entire paragraph

 for first line of paragraph

 hanging, in lists

inheritance

 creating image markers for lists

 specifying

 typeface styles on web pages

initial caps

 images as

 larger and centered

 simple

inline lists, creating

input elements

 setting styles for

 styling, in sample login form

Internet Explorer 5 for Macintosh

 hiding CSS rules from

 workaround for setting link widths

Internet Explorer 5. for Windows

 delivering alternative values to

 removing web page flicker

 voice-family workaround for font-size keywords

Internet Explorer 6 for Windows, keeping background images stationary

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JavaScript

 creating rollovers without

 keeping background images stationary in IE 6 for Windows

JavaScript Style Sheets (JSSS)

JavaScript: The Definitive Guide

JPEG and GIF images, combining

justifying text

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kaiser, Shirley E.

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

label elements

labels and forms without tables

Langridge, Stuart

large keyword

larger keyword

layouts

 asymmetric

 hybrid, using HTML tables and CSS

 multicolumn layout, fixed-width

 with floats

 with positioning

 multicolumn layout, flexible

 with floats

 with positioning

 one-column

 two-column

 fixed-width columns

leading (line height)

 increasing

leading the eye with contrast

Leahy, Seamus 2nd

Leahy-Langridge Image Replacement (LIR) method

left property 2nd

line spacing, changing

line-height property

line-through (text-decoration value)

link element

:link pseudo-class

links

 breadcrumb navigation, creating

 differentiating, without underlines

 displaying URLs on printed pages

 horizontal menus, building

 image-based rollovers

 inserting URLs on web pages

 removing underlines from 2nd

LIR (Leahy-Langridge Image Replacement) method

list markers, styles of

list-style property

list-style-image property

list-style-position property

list-style-type property

 bullet style, changing

 image markers and

lists

 cross-browser indentation in

 custom image markers, creating

 custom text markers, creating

 default styles, changing

 hanging indents in

 inline, creating

 moving markers inside

locking down background images

login form example

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Macromedia Dreamweaver

mailing lists about CSS

margin property

 centering tables

 nongraphical menus with rollovers

margin-bottom property

margin-left property

 centering text

 horizontal rule, centering

 making column widths flexible

margin-right property

 centering text

 horizontal rule, centering

 making column widths flexible

margin-top property 2nd

Mastergrid chart

mastheads, designing

max-width property

measurements of fonts, specifying

@media method

media property

 Netscape Navigator 4 problem with

medium keyword

menus

 collapsible

 contextual

 dynamic visual, designing

 horizontal

 nongraphical, creating with rollovers

Meyer, Eric A.

monospace font family value

MSDN Scrollbar Color Workshop

multicolumn layouts, building

 asymmetric layouts

 fixed-width

 with floats

 with positioning

 flexible

 with floats

 with positioning

 glish.com layout techniques

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

navigation menus

 creating from ordered set of links

 dynamic visual menus, designing

 helping users find

navigation, breadcrumb

navigation-related links, removing before printing

nested listings

Netscape Navigator 4., hiding CSS styles from

Newhouse, Mark 2nd

newsgroup about stylesheets

Nielsen, Jakob

nongraphical menus, creating with rollovers

:nth-child pseudo-class

numbered lists, changing format of

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

onclick event

one-column layouts, building

onmouseover event

onsubmit events

Opera browser and the box model hack

option elements, setting styles for

organic layouts for web pages

overline (text-decoration value)

overriding font sizes

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

padding property 2nd

 nongraphical menus with rollovers

padding-bottom property

padding-left property

 centering

 columns with fixed-widths

 images with fixed widths

 in table cells

padding-top property

page elements

 centering

 vertically centering

page layouts

 asymmetric

 hybrid, using HTML tables and CSS

 multicolumn layout, fixed-width

 with floats

 with positioning

 multicolumn layout, flexible

 with floats

 with positioning

 one-column

 two-column

 fixed-width columns

page margins, eliminating

panoramic image presentations, building

paragraphs

 first line of

 images in

 indenting

 setting style for

 indenting entire

 initial caps

 images as

 larger and centered

 simple

picas, setting type size in

pixels, setting type size in

Pixy method 2nd

pointer (cursor property value)

points, setting type size in

position property

 centering images vertically

 four-column layout

 with fixed-width columns

 with flexible columns

print media type

printing web pages

projection media type

pseudo-elements

pull quotes, creating with

 borders

 HTML text

 images

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

quirks mode for browsers 2nd

quotations, adding emphasis to

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

realworldstyle.com design resource

references about CSS

registration form example

relative length units for setting type size

resources for CSS

rollovers

 for buttons, creating

 creating without JavaScript

 image-based

 nongraphical menus, creating with

rubber-band technique (image stretching)

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

sans-serif font family value

screen media type

screen readers

script element

scrollbars, coloring

select elements

 in print-ready forms

 setting styles for

selectoracle tool

separate model for borders

serif font family value

shorthand properties

 border property 2nd 3rd

sizes of fonts

 enlarging excessively

 overriding

 specifying

small keyword

smaller keyword

smart quotes, inserting

spaces between lines, changing

span element 2nd

speech media type

splash pages, setting up

src attribute

standards mode for browsers

stretching images

strong element, highlighting text with

stylized text in headings

 borders and

 images and

submit-once-only buttons, setting up

superimposing images

switcher JavaScript, adding to web pages

Swoden, Paul

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tab navigation menus, creating

table elements

tables 2nd [See also HTML tables]

 borders, setting

 cell padding, setting

 cell spacing, setting

 centering on page

 header cells

 applying styles to

 setting styles for

 hybrid layouts with HTML tables and CSS

 removing gaps from cells with images

 setting styles within cells

 web forms without

teasers on web pages, designing

text

 blinking

 enlarging excessively

 highlighting

 justifying

 replacing with images

text markers, custom

text-align property 2nd

text-decoration property

text-indent property

 custom text markers for lists

 hanging indents in list

 indenting first line of paragraph

 setting large, centered initial cap

text-transform property

textarea elements, setting styles for

th elements

Thomas, Dan

titles of web articles, styling

tools for CSS

top property 2nd

translating selectors

tty media type

tv media type

two-column layouts, building

 bluerobot.com layout reservoir

 fixed-width columns

type selectors

 setting styles for select elements

 vs. class selectors

type size, setting

typefaces [See entries under fonts]

typography

 first line of paragraphs

 images in

 setting style for

 fonts

 specifying sizes of

 headings

 borders and stylized text in

 images and stylized text in

 stylized text in

 highlighting text

 indentation

 for entire paragraph

 for first line of paragraph

 inheritance, specifying

 initial caps

 centered

 images as

 simple

 justifying text

 line spacing, changing

 pull quotes, creating with

 borders

 HTML text

 images

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

underlines

 eliminating

 removing from links 2nd

unlike elements, combining to create contrast

URLs

 displaying on printed pages

 inserting after links on web pages

Usenet stylesheets newsgroup

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

vertically centering page elements

:visited pseudo-class

voice-family property 2nd

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

web pages

 article headers and bylines, styling

 black-and-white, printing

 borders, placing around

 centering elements

 copyright notices, styling

 footers, designing

 main headings, designing

 page layout design

 printer-friendly, creating

 printing

 removing flicker from

 teasers, designing

 URLs

 displaying on printed pages

 inserting after links

web typography

 first line of paragraphs

 images in

 setting style for

 fonts

 specifying sizes of

 headings

 borders and stylized text in

 images and stylized text in

 stylized text in

 highlighting text

 indentation

 for entire paragraph

 for first line of paragraph

 inheritance, specifying

 initial caps

 centered

 images as

 simple

 justifying text

 line spacing, changing

 pull quotes, creating with

 borders

 HTML text

 images

width property 2nd

 horizontal size of buttons, determining

 nongraphical menus with rollovers

 one-column layout with fixed-width columns

 three-column layout

 with fixed-width columns

 with flexible columns

 two-column layout with fixed-width columns

word balloons, creating

workarounds and hacks

www-style mailing list (W3C)

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

x-height, setting type size in

x-large keyword

x-small keyword

XHTML 1.0 specification

xx-large keyword

xx-small keyword

 < Day Day Up >

 < Day Day Up >

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

z-index property

Zeldman, Jeffrey 2nd

 < Day Day Up >

	CSS Cookbook
	Table of Contents
	Copyright
	Foreword
	Preface
	Audience
	Assumptions This Book Makes
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Acknowledgments

	Chapter 1. Web Typography
	Introduction
	Recipe 1.1 Specifying Fonts and Inheritance
	Recipe 1.2 Specifying Font Measurements and Sizes
	Recipe 1.3 Enforcing Font Sizes
	Recipe 1.4 Setting a Simple Initial Cap
	Recipe 1.5 Setting a Larger, Centered Initial Cap
	Recipe 1.6 Setting an Initial Cap with Decoration (Imagery)
	Recipe 1.7 Creating a Heading with Stylized Text
	Recipe 1.8 Creating a Heading with Stylized Text and Borders
	Recipe 1.9 Stylizing a Heading with Text and an Image
	Recipe 1.10 Creating a Pull Quote with HTML Text
	Recipe 1.11 Creating a Pull Quote with Borders
	Recipe 1.12 Creating a Pull Quote with Images
	Recipe 1.13 Setting the Indent in the First Line of a Paragraph
	Recipe 1.14 Setting the Indent of Entire Paragraphs
	Recipe 1.15 Setting Text to Be Justified
	Recipe 1.16 Styling the First Line of a Paragraph
	Recipe 1.17 Styling the First Line of a Paragraph with an Image
	Recipe 1.18 Creating a Highlighted Text Effect
	Recipe 1.19 Changing Line Spacing

	Chapter 2. Page Elements
	Introduction
	Recipe 2.1 Eliminating Page Margins
	Recipe 2.2 Coloring the Scrollbar
	Recipe 2.3 Centering Elements on a Web Page
	Recipe 2.4 Setting a Background Image
	Recipe 2.5 Creating a Line of Background Images
	Recipe 2.6 Placing a Background Image
	Recipe 2.7 Fixing the Background Image
	Recipe 2.8 Placing a Page Border
	Recipe 2.9 Customizing a Horizontal Rule
	Recipe 2.10 Example Design: Setting Up a Dynamic Splash Page

	Chapter 3. Links and Navigation
	Introduction
	Recipe 3.1 Removing Underlines from Links
	Recipe 3.2 Setting Text to Blink
	Recipe 3.3 Setting Style Decorations Other Than Underlines
	Recipe 3.4 Changing Cursors
	Recipe 3.5 Creating Rollovers Without JavaScript
	Recipe 3.6 Creating Nongraphical Menus with Rollovers
	Recipe 3.7 Creating Collapsible Menus
	Recipe 3.8 Building Horizontal Menus
	Recipe 3.9 Creating Breadcrumb Navigation
	Recipe 3.10 Creating Image-Based Rollovers
	Recipe 3.11 Designing a Dynamic Visual Menu
	Recipe 3.12 Creating Contextual Menus

	Chapter 4. Lists
	Introduction
	Recipe 4.1 Changing the Format of a List
	Recipe 4.2 Writing Cross-Browser Indentation in Lists
	Recipe 4.3 Creating Custom Text Markers for Lists
	Recipe 4.4 Creating Custom Image Markers for Lists
	Recipe 4.5 Creating Inline Lists
	Recipe 4.6 Making Hanging Indents in a List
	Recipe 4.7 Moving the Marker Inside the List

	Chapter 5. Forms
	Introduction
	Recipe 5.1 Setting Styles for Input Elements
	Recipe 5.2 Setting Styles for textarea Elements
	Recipe 5.3 Setting Styles for Select and Option Elements
	Recipe 5.4 Creating Form Buttons
	Recipe 5.5 Setting Up a Submit-Once-Only Button
	Recipe 5.6 Designing a Web Form Without Tables
	Recipe 5.7 Sample Design: A Login Form
	Recipe 5.8 Sample Design: A Registration Form

	Chapter 6. Tables
	Introduction
	Recipe 6.1 Setting the Cell Spacing
	Recipe 6.2 Setting the Borders and Cell Padding
	Recipe 6.3 Setting the Styles Within Table Cells
	Recipe 6.4 Removing Gaps from Table Cells with Images
	Recipe 6.5 Setting Styles for Table Header Elements
	Recipe 6.6 Sample Design: An Elegant Calendar

	Chapter 7. Page Layouts
	Introduction
	Recipe 7.1 Developing Hybrid Layouts Using HTML Tables and CSS
	Recipe 7.2 Building a One-Column Layout
	Recipe 7.3 Building a Two-Column Layout
	Recipe 7.4 Building a Two-Column Layout with Fixed-Width Columns
	Recipe 7.5 Creating a Flexible Multicolumn Layout with Floats
	Recipe 7.6 Creating a Fixed-Width Multicolumn Layout with Floats
	Recipe 7.7 Creating a Flexible Multicolumn Layout with Positioning
	Recipe 7.8 Creating a Fixed-Width Multicolumn Layout with Positioning
	Recipe 7.9 Designing an Asymmetric Layout

	Chapter 8. Print
	Introduction
	Recipe 8.1 Creating a Printer-Friendly Page
	Recipe 8.2 Making a Web Form Print-Ready
	Recipe 8.3 Inserting URLs After Links
	Recipe 8.4 Sample Design: A Printer-Friendly Page with CSS

	Chapter 9. Hacks and Workarounds
	Introduction
	Recipe 9.1 Hiding Certain Styles from Netscape Navigator 4.x
	Recipe 9.2 Delivering Alternative Values to Internet Explorer 5.x for Windows
	Recipe 9.3 Removing Web Page Flicker in Internet Explorer 5.x for Windows
	Recipe 9.4 Keeping Background Images Stationary in Internet Explorer 6 for Windows
	Recipe 9.5 Keeping CSS Rules from Internet Explorer 5 for Macintosh

	Chapter 10. Designing with CSS
	Introduction
	Recipe 10.1 Enlarging Text Excessively
	Recipe 10.2 Creating Unexpected Incongruity
	Recipe 10.3 Combining Unlike Elements to Create Contrast
	Recipe 10.4 Leading the Eye with Contrast
	Recipe 10.5 Building a Panoramic Image Presentation
	Recipe 10.6 Combining Different Image Formats
	Recipe 10.7 Making Word Balloons
	Recipe 10.8 Emphasizing a Quotation
	Recipe 10.9 Placing a Drop Shadow Behind an Image

	Appendix A. Resources
	Recipe A.1 Discussion Groups
	Recipe A.2 References
	Recipe A.3 Tools
	Recipe A.4 Design Resources

	Colophon
	Index
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Z

