
http://lib.ommolketab.ir
http//lib.ommolketab.ir

TCP/IP Sockets in Java
Second Edition

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Morgan Kaufmann Practical Guides Series
Series Editor: Michael J. Donahoo

TCP/IP Sockets in Java: Practical Guide for Programmers, Second Edition
Kenneth L. Calvert and Michael J. Donahoo

SQL: Practical Guide for Developers
Michael J. Donahoo and Gregory Speegle

C# 2.0: Practical Guide for Programmers
Michel de Champlain and Brian Patrick

Multi-Tier Application Programming with PHP: Practical Guide for Architects and Programmers
David Wall

TCP/IP Sockets in C#: Practical Guide for Programmers
David Makofske, Michael J. Donahoo, and Kenneth L. Calvert

Java Cryptography Extensions: Practical Guide for Programmers
Jason Weiss

JSP: Practical Guide for Programmers
Robert Brunner

JSTL: Practical Guide for JSP Programmers
Sue Spielman

Java: Practical Guide for Programmers
Michael Sikora

Multicast Sockets: Practical Guide for Programmers
David Makofske and Kevin Almeroth

The Struts Framework: Practical Guide for Java Programmers
Sue Spielman

TCP/IP Sockets in C: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

JDBC: Practical Guide for Java Programmers
Gregory Speegle

For further information on these books and for a list of forthcoming titles,
please visit our Web site at http://www.mkp.com.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

TCP/IP Sockets in Java
Practical Guide for Programmers
Second Edition

Kenneth L. Calvert

University of Kentucky

Michael J. Donahoo

Baylor University

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Publishing Director Joanne Tracy
Publisher Denise E. M. Penrose
Acquisitions Editor Rick Adams
Publishing Services Manager George Morrison
Senior Production Editor Dawnmarie Simpson
Assistant Editor Michele Cronin
Production Assistant Lianne Hong
Cover Design Alisa Andreola
Cover Images istock
Composition diacriTech
Technical Illustration diacriTech
Copyeditor JC Publishing
Proofreader Janet Cocker
Indexer Joan Green
Interior printer Sheridan Books, Inc
Cover printer Phoenix Color, Inc

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

© 2008 by Elsevier Inc. All rights reserved. Reproduced with permission from TCP/IP.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of
the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also
complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Calvert, Kenneth L.

TCP/IP sockets in Java : practical guide for programmers / Kenneth L. Calvert, Michael J.
Donahoo. – 2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-12-374255-1 (pbk. : alk. paper) 1. Internet programming. 2. TCP/IP (Computer network

protocol) 3. Java (Computer program language) I. Donahoo, Michael J. II. Title.
QA76.625.C35 2008
005.13′3–dc22

2007039444

ISBN: 978-0-12-374255-1

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States

08 09 10 11 12 5 4 3 2 1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To Tricia and Lisa

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents

Preface xi

1 Introduction 1
1.1 Networks, Packets, and Protocols 1
1.2 About Addresses 4
1.3 About Names 6
1.4 Clients and Servers 6
1.5 What Is a Socket? 7
1.6 Exercises 8

2 Basic Sockets 9
2.1 Socket Addresses 9
2.2 TCP Sockets 15

2.2.1 TCP Client 16
2.2.2 TCP Server 21
2.2.3 Input and Output Streams 25

2.3 UDP Sockets 26
2.3.1 DatagramPacket 27
2.3.2 UDP Client 29
2.3.3 UDP Server 34
2.3.4 Sending and Receiving with UDP Sockets 36

2.4 Exercises 38

3 Sending and Receiving Data 39
3.1 Encoding Information 40

3.1.1 Primitive Integers 40

vii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

viii Contents

3.1.2 Strings and Text 45
3.1.3 Bit-Diddling: Encoding Booleans 47

3.2 Composing I/O Streams 48
3.3 Framing and Parsing 49
3.4 Java-Specific Encodings 55
3.5 Constructing and Parsing Protocol Messages 55

3.5.1 Text-Based Representation 58
3.5.2 Binary Representation 61
3.5.3 Sending and Receiving 63

3.6 Wrapping Up 71
3.7 Exercises 71

4 Beyond the Basics 73
4.1 Multitasking 73

4.1.1 Java Threads 74
4.1.2 Server Protocol 76
4.1.3 Thread-per-Client 80
4.1.4 Thread Pool 82
4.1.5 System-Managed Dispatching: The Executor Interface 84

4.2 Blocking and Timeouts 86
4.2.1 accept(), read(), and receive() 87
4.2.2 Connecting and Writing 87
4.2.3 Limiting Per-Client Time 87

4.3 Multiple Recipients 89
4.3.1 Broadcast 90
4.3.2 Multicast 90

4.4 Controlling Default Behaviors 95
4.4.1 Keep-Alive 96
4.4.2 Send and Receive Buffer Size 96
4.4.3 Timeout 97
4.4.4 Address Reuse 97
4.4.5 Eliminating Buffering Delay 98
4.4.6 Urgent Data 98
4.4.7 Lingering after Close 99
4.4.8 Broadcast Permission 99
4.4.9 Traffic Class 100
4.4.10 Performance-Based Protocol Selection 100

4.5 Closing Connections 101
4.6 Applets 107
4.7 Wrapping Up 107
4.8 Exercises 108

5 NIO 109
5.1 Why Do We Need This? 109
5.2 Using Channels with Buffers 112

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents ix

5.3 Selectors 115
5.4 Buffers in Detail 121

5.4.1 Buffer Indices 121
5.4.2 Buffer Creation 122
5.4.3 Storing and Retrieving Data 124
5.4.4 Preparing Buffers: clear(), flip(), and rewind() 126
5.4.5 Compacting Data in a Buffer 128
5.4.6 Buffer Perspectives: duplicate(), slice(), etc. 129
5.4.7 Character Coding 131

5.5 Stream (TCP) Channels in Detail 132
5.6 Selectors in Detail 135

5.6.1 Registering Interest in Channels 135
5.6.2 Selecting and Identifying Ready Channels 138
5.6.3 Channel Attachments 140
5.6.4 Selectors in a Nutshell 140

5.7 Datagram (UDP) Channels 141
5.8 Exercises 145

6 Under the Hood 147
6.1 Buffering and TCP 150
6.2 Deadlock Danger 152
6.3 Performance Implications 155
6.4 TCP Socket Life Cycle 155

6.4.1 Connecting 156
6.4.2 Closing a TCP Connection 160

6.5 Demultiplexing Demystified 163
6.6 Exercises 165

Bibliography 167

Index 169

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

For years, college courses in computer networking were taught with little or no hands-on
experience. For various reasons, including some good ones, instructors approached the princi-
ples of computer networking primarily through equations, analyses, and abstract descriptions
of protocol stacks. Textbooks might have included code, but it would have been unconnected
to anything students could get their hands on. We believe, however, that students learn better
when they can see (and then build) concrete examples of the principles at work. And, for-
tunately, things have changed. The Internet has become a part of everyday life, and access
to its services is readily available to most students (and their programs). Moreover, copious
examples—good and bad—of nontrivial software are freely available.

We wrote this book for the same reason we wrote TCP/IP Sockets in C : We needed a
resource to support learning networking through programming exercises in our courses. Our
goal is to provide a sufficient introduction so that students can get their hands on real network
services without too much hand-holding. After grasping the basics, students can then move on
to more advanced assignments, which support learning about routing algorithms, multimedia
protocols, medium access control, and so on. We have tried to make this book equivalent to
our earlier book to enable instructors to allow students to choose the language they use and
still ensure that all students will come away with the same skills and understanding. Of course,
it is not clear that this goal is achievable, but in any case the scope, price, and presentation
level of the book are intended to be similar.

Intended Audience

This book is intended for two audiences. The first, which motivated us to write it in the first
place, consists of students in undergraduate or graduate courses in computer networks. The
second consists of practitioners who know something about Java and want to learn about

xi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xii Preface

writing Java applications that use the Internet. We have tried to keep the book concise and
focused, so it can be used by students as a supplementary text and by practitioners as a low-
cost introduction to the subject. As a result, you should not expect to be an expert after reading
this book! The goal is to take users far enough that they can start experimenting and learning
on their own.

Readers are assumed to have access to a computer equipped with Java. This book is
based on Version 1.6 of Java and the Java Virtual Machine (JVM); however, the code should
work with earlier versions of Java, with the exception of a few new Java methods. Java is about
portability, so the particular hardware and operating system (OS) on which you run should not
matter.

Approach

Chapter 1 provides a general overview of networking concepts. It is not, by any means, a com-
plete introduction, but rather is intended to allow readers to synchronize with the concepts
and terminology used throughout the book. Chapter 2 introduces the mechanics of simple
clients and servers; the code in this chapter can serve as a starting point for a variety of
exercises. Chapter 3 covers the basics of message construction and parsing. The reader who
digests the first three chapters should in principle be able to implement a client and server for
a given (simple) application protocol. Chapters 4 and 5 then deal with increasingly sophisti-
cated techniques for building scalable and robust clients and servers, with Chapter 5 focusing
on the facilities introduced by the “New I/O” packages. Finally, in keeping with our goal of
illustrating principles through programming, Chapter 6 discusses the relationship between
the programming constructs and the underlying protocol implementations in somewhat more
detail.

Our general approach introduces programming concepts through simple program exam-
ples accompanied by line-by-line commentary that describes the purpose of every part of the
program. This lets you see the important objects and methods as they are used in context. As
you look at the code, you should be able to understand the purpose of each and every line.

Our examples do not take advantage of all library facilities in Java. Some of these facilities,
in particular serialization, effectively require that all communicating peers be implemented in
Java. Also, to introduce examples as soon as possible, we wanted to avoid bringing in a thicket
of methods and classes that have to be sorted out later. We have tried to keep it simple,
especially in the early chapters.

What This Book Is Not

To keep the price of this book within a reasonable range for a supplementary text, we
have had to limit its scope and maintain a tight focus on the goals outlined above. We omitted

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface xiii

many topics and directions, so it is probably worth mentioning some of the things this book
is not:

� It is not an introduction to the Java language. We focus specifically on TCP/IP socket
programming. We expect that the reader is already acquainted with the language features
and basic Java libraries—including those (like generics) introduced in later releases—and
knows how to develop programs in Java.

� It is not a book on protocols. Reading this book will not make you an expert on IP, TCP,
FTP, HTTP, or any other existing protocol (except maybe the echo protocol). Our focus is
on the interface to the TCP/IP services provided by the socket abstraction. It will help if
you start with some idea about the general workings of TCP and IP, but Chapter 1 may
be an adequate substitute.

� It is not a guide to all of Java’s rich collection of libraries that are designed to hide commu-
nication details (e.g., HTTPConnection) and make the programmer’s life easier. Since we are
teaching the fundamentals of how to do, not how to avoid doing, protocol development,
we do not cover these parts of the API. We want readers to understand protocols in terms
of what goes on the wire, so we mostly use simple byte streams and deal with character
encodings explicitly. As a consequence, this text does not deal with URL,URLConnection,
and so on. We believe that once you understand the principles, using these convenience
classes will be straightforward.

� It is not a book on object-oriented design. Our focus is on the important principles
of TCP/IP socket programming, and our examples are intended to illustrate them con-
cisely. As far as possible, we try to adhere to object-oriented design principles; however,
when doing so adds complexity that obfuscates the socket principles or bloats the code,
we sacrifice design for clarity. This text does not cover design patterns for networking.
(Though we would like to think that it provides some of the background necessary for
understanding such patterns!)

� It is not a book on writing production-quality code. Again, although we strive for a min-
imum level of robustness, the primary goal of our code examples is education. In order
to avoid obscuring the principles with large amounts of error-handling code, we have
sacrificed some robustness for brevity and clarity.

� It is not a book on doing your own native sockets implementation in Java. We focus
exclusively on TCP/IP sockets as provided by the standard Java distribution and do not
cover the various socket implementation wrapper classes (e.g., SocketImpl).

� To avoid cluttering the examples with extraneous (nonsocket-related program-
ming) code, we have made them command-line based. While the book’s Web
site, books.elsevier.com/companions/9780123742551 contains a few examples of GUI-
enhanced network applications, we do not include or explain them in this text.

� It is not a book on Java applets. Applets use the same Java networking API so the commu-
nication code should be very similar; however, there are severe security restrictions on

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xiv Preface

the kinds of communication an applet can perform. We provide a very limited discussion
of these restrictions and a single applet/application example on the Web site; however, a
complete description of applet networking is beyond the scope of this text.

Acknowledgments

We would like to thank all the people who helped make this book a reality. Despite the book’s
brevity, many hours went into reviewing the original proposal and the draft, and the reviewers’
input significantly shaped the final result.

Thanks to: Michel Barbeau, Chris Edmondson-Yurkanan, Ted Herman, Dave Hollinger,
Jim Leone, Dan Schmidt, Erick Wagner, EDS; CSI4321 classes at Baylor University, and CS 471
classes at the University of Kentucky. Any errors that remain are, of course, our responsibility.

This book will not make you an expert—that takes years of experience. However, we hope
it will be useful as a resource, even to those who already know quite a bit about using sockets
in Java. Both of us enjoyed writing it and learned quite a bit along the way.

Feedback

We invite your suggestions for the improvement of any aspect of this book. If you find an
error, please let us know. We will maintain an errata list at the book’s Web site. You can send
feedback via the book’s Web page, books.elsevier.com/companions/9780123742551, or you can
email us at the addresses below:

Kenneth L. Calvert—calvert@uky.edu

Michael J. Donahoo—Jeff_Donahoo@baylor.edu

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c h a p t e r 1

Introduction

Today people use computers to make phone calls, to watch TV, to send instant messages
to their friends, to play games with other people, and to buy almost anything you can think
of—from songs to SUVs. The ability for programs to communicate over the Internet makes
all this possible. It’s hard to say how many individual computers are now reachable over the
Internet, but we can safely say that it is growing rapidly; it won’t be long before the number is
in the billions. Moreover, new applications are being developed every day. With the push for
ever increasing bandwidth and access, the impact of the Internet will continue to grow for the
foreseeable future.

How does a program communicate with another program over a network? The goal of
this book is to start you on the road to understanding the answer to that question, in the
context of the Java programming language. The Java language was designed from the start for
use over the Internet. It provides many useful abstractions for implementing programs that
communicate via the application programming interface (API) known as sockets.

Before we delve into the details of sockets, however, it is worth taking a brief look at
the big picture of networks and protocols to see where our code will fit in. Our goal here
is not to teach you how networks and TCP/IP work—many fine texts are available for that
purpose [4,6,12,16,17]—but rather to introduce some basic concepts and terminology.

1.1 Networks, Packets, and Protocols

A computer network consists of machines interconnected by communication channels. We call
these machines hosts and routers. Hosts are computers that run applications such as your Web

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 Chapter 1: Introduction

browser, your IM agent, or a file-sharing program. The application programs running on hosts
are the real “users” of the network. Routers are machines whose job is to relay, or forward,
information from one communication channel to another. They may run programs but typically
do not run application programs. For our purposes, a communication channel is a means of
conveying sequences of bytes from one host to another; it may be a wired (e.g., Ethernet), a
wireless (e.g., WiFi), or other connection.

Routers are important simply because it is not practical to connect every host directly
to every other host. Instead, a few hosts connect to a router, which connects to other routers,
and so on to form the network. This arrangement lets each machine get by with a relatively
small number of communication channels; most hosts need only one. Programs that exchange
information over the network, however, do not interact directly with routers and generally
remain blissfully unaware of their existence.

By information we mean sequences of bytes that are constructed and interpreted by pro-
grams. In the context of computer networks, these byte sequences are generally called packets.
A packet contains control information that the network uses to do its job and sometimes also
includes user data. An example is information identifying the packet’s destination. Routers
use such control information to figure out how to forward each packet.

A protocol is an agreement about the packets exchanged by communicating programs
and what they mean. A protocol tells how packets are structured—for example, where the
destination information is located in the packet and how big it is—as well as how the infor-
mation is to be interpreted. A protocol is usually designed to solve a specific problem using
given capabilities. For example, the HyperText Transfer Protocol (HTTP) solves the problem of
transferring hypertext objects between servers, where they are stored or generated, and Web
browsers that make them visible and useful to users. Instant messaging protocols solve the
problem of enabling two or more users to exchange brief text messages.

Implementing a useful network requires solving a large number of different problems.
To keep things manageable and modular, different protocols are designed to solve different
sets of problems. TCP/IP is one such collection of solutions, sometimes called a protocol suite.
It happens to be the suite of protocols used in the Internet, but it can be used in stand-alone
private networks as well. Henceforth when we talk about the network, we mean any network
that uses the TCP/IP protocol suite. The main protocols in the TCP/IP suite are the Inter-
net Protocol (IP) [14], the Transmission Control Protocol (TCP) [15], and the User Datagram
Protocol (UDP) [13].

It turns out to be useful to organize protocols into layers; TCP/IP and virtually all other
protocol suites are organized this way. Figure 1.1 shows the relationships among the protocols,
applications, and the sockets API (Application Programming Interface) in the hosts and routers,
as well as the flow of data from one application (using TCP) to another. The boxes labeled TCP,
UDP, and IP represent implementations of those protocols. Such implementations typically
reside in the operating system of a host. Applications access the services provided by UDP and
TCP through the sockets API. The arrow depicts the flow of data from the application, through
the TCP and IP implementations, through the network, and back up through the IP and TCP
implementations at the other end.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.1 Networks, Packets, and Protocols 3

Channel

(e.g., Ethernet)
RouterHost Host

Channel
IP

TCPTCP

Application

Socket

IP

UDP

Application

Socket

IP

UDP
Transport
Layer

Network
Layer

Figure 1.1: A TCP/IP network.

In TCP/IP, the bottom layer consists of the underlying communication channels—for
example, Ethernet or dial-up modem connections. Those channels are used by the network
layer, which deals with the problem of forwarding packets toward their destination (i.e., what
routers do). The single network layer protocol in the TCP/IP suite is the Internet Protocol; it
solves the problem of making the sequence of channels and routers between any two hosts
look like a single host-to-host channel.

The Internet Protocol provides a datagram service: every packet is handled and delivered
by the network independently, like letters or parcels sent via the postal system. To make this
work, each IP packet has to contain the address of its destination, just as every package that
you mail is addressed to somebody. (We’ll say more about addresses shortly.) Although most
delivery companies guarantee delivery of a package, IP is only a best-effort protocol: it attempts
to deliver each packet, but it can (and occasionally does) lose, reorder, or duplicate packets in
transit through the network.

The layer above IP is called the transport layer. It offers a choice between two protocols:
TCP and UDP. Each builds on the service provided by IP, but they do so in different ways to
provide different kinds of transport, which are used by application protocols with different
needs. TCP and UDP have one function in common: addressing. Recall that IP delivers packets
to hosts; clearly, a finer granularity of addressing is needed to get a packet to a particular
application program, perhaps one of many using the network on the same host. Both TCP and
UDP use addresses, called port numbers, to identify applications within hosts. TCP and UDP
are called end-to-end transport protocols because they carry data all the way from one program
to another (whereas IP only carries data from one host to another).

TCP is designed to detect and recover from the losses, duplications, and other errors
that may occur in the host-to-host channel provided by IP. TCP provides a reliable byte-stream
channel so that applications do not have to deal with these problems. It is a connection-
oriented protocol: before using it to communicate, two programs must first establish a TCP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 Chapter 1: Introduction

connection, which involves completing an exchange of handshake messages between the TCP
implementations on the two communicating computers. Using TCP is also similar in many ways
to file input/output (I/O). In fact, a file that is written by one program and read by another is
a reasonable model of communication over a TCP connection. UDP, on the other hand, does
not attempt to recover from errors experienced by IP; it simply extends the IP best-effort data-
gram service so that it works between application programs instead of between hosts. Thus,
applications that use UDP must be prepared to deal with losses, reordering, and so on.

1.2 About Addresses

When you mail a letter, you provide the address of the recipient in a form that the postal
service can understand. Before you can talk to someone on the phone, you must supply a
phone number to the telephone system. In a similar way, before a program can communicate
with another program, it must tell the network something to identify the other program. In
TCP/IP, it takes two pieces of information to identify a particular program: an Internet address,
used by IP, and a port number, the additional address interpreted by the transport protocol
(TCP or UDP).

Internet addresses are binary numbers. They come in two flavors, corresponding to the
two versions of the Internet Protocol that have been standardized. The most common type is
version 4 (“IPv4,” [14]); the other is version 6 (“IPv6,” [7]), which is just beginning to be deployed.
IPv4 addresses are 32 bits long; because this is only enough to identify about 4 billion distinct
destinations, they are not really big enough for today’s Internet. (That may seem like a lot, but
because of the way they are allocated, many are wasted. More than half of the total address
space has already been allocated.) For that reason, IPv6 was introduced. IPv6 addresses are
128 bits long.

In writing down Internet addresses for human consumption (as opposed to using them
inside programs), different conventions are used for the two versions of IP. IPv4 addresses are
conventionally written as a group of four decimal numbers separated by periods (e.g., 10.1.2.3);
this is called the dotted-quad notation. The four numbers in a dotted-quad string represent
the contents of the four bytes of the Internet address—thus, each is a number between 0
and 255.

The sixteen bytes of an IPv6 address, on the other hand, are represented as groups
of hexadecimal digits, separated by colons (e.g., 2000:fdb8:0000:0000:0001:00ab:853c:39a1).
Each group of digits represents two bytes of the address; leading zeros may be omitted, so
the fifth and sixth groups in the foregoing example might be rendered as just :1:ab:. Also, con-
secutive groups that contain only zeros may be omitted altogether (but this can only be done
once in any address). So the example above could be written as 2000:fdb8::1:00ab:853c:39a1.

Technically, each Internet address refers to the connection between a host and an under-
lying communication channel—in other words, a network interface. A host may have several
interfaces; it is not uncommon, for example, for a host to have connections to both wired

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.2 About Addresses 5

(Ethernet) and wireless (WiFi) networks. Because each such network connection belongs to a
single host, an Internet address identifies a host as well as its connection to the network.
However, the converse is not true, because a single host can have multiple interfaces, and each
interface can have multiple addresses. (In fact, the same interface can have both IPv4 and IPv6
addresses.)

The port number in TCP or UDP is always interpreted relative to an Internet address.
Returning to our earlier analogies, a port number corresponds to a room number at a given
street address, say, that of a large building. The postal service uses the street address to get the
letter to a mailbox; whoever empties the mailbox is then responsible for getting the letter to the
proper room within the building. Or consider a company with an internal telephone system:
to speak to an individual in the company, you first dial the company’s main phone number to
connect to the internal telephone system and then dial the extension of the particular telephone
of the individual you wish to speak with. In these analogies, the Internet address is the street
address or the company’s main number, whereas the port corresponds to the room number
or telephone extension. Port numbers are 16-bit unsigned binary numbers, so each one is in
the range 1 to 65,535. (0 is reserved.)

In each version of IP, certain special-purpose addresses are defined. One of these that
is worth knowing is the loopback address, which is always assigned to a special loopback
interface, a virtual device that simply echoes transmitted packets right back to the sender.
The loopback interface is very useful for testing because packets sent to that address are
immediately returned back to the destination. Moreover, it is present on every host, and can
be used even when a computer has no other interfaces (i.e., is not connected to the network).
The loopback address for IPv4 is 127.0.0.1;1 for IPv6 it is 0:0:0:0:0:0:0:1.

Another group of IPv4 addresses reserved for a special purpose includes those reserved
for “private use.” This group includes all IPv4 addresses that start with 10 or 192.168, as well
as those whose first number is 172 and whose second number is between 16 and 31. (There is
no corresponding class for IPv6.) These addresses were originally designated for use in private
networks that are not part of the global Internet. Today they are often used in homes and small
offices that are connected to the Internet through a network address translation (NAT) device.
Such a device acts like a router that translates (rewrites) the addresses and ports in packets as
it forwards them. More precisely, it maps (private address, port) pairs in packets on one of its
interfaces to (public address, port) pairs on the other interface. This enables a small group of
hosts (e.g., those on a home network) to effectively “share” a single IP address. The importance
of these addresses is that they cannot be reached from the global Internet. If you are trying out
the code in this book on a machine that has an address in the private-use class, and you are
trying to communicate with another host that does not have one of these addresses, typically
you will only succeed if the host with the private address initiates communication.

A related class contains the link-local, or “autoconfiguration” addresses. For IPv4, such
addresses begin with 169.254. For IPv6, any address whose first 16-bit chunk starts with FE8

1Technically any IPv4 address beginning with 127 should loop back.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 Chapter 1: Introduction

is a link-local address. Such addresses can only be used for communication between hosts
connected to the same network; routers will not forward them.

Finally, another class consists of multicast addresses. Whereas regular IP (sometimes
called “unicast”) addresses refer to a single destination, multicast addresses potentially refer
to an arbitrary number of destinations. Multicasting is an advanced subject that we cover
briefly in Chapter 4. In IPv4, multicast addresses in dotted-quad format have a first number in
the range 224 to 239. In IPv6, multicast addresses start with FF.

1.3 About Names

Most likely you are accustomed to referring to hosts by name (e.g., host.example.com). How-
ever, the Internet protocols deal with addresses (binary numbers), not names. You should
understand that the use of names instead of addresses is a convenience feature that is inde-
pendent of the basic service provided by TCP/IP—you can write and use TCP/IP applications
without ever using a name. When you use a name to identify a communication endpoint, the
system does some extra work to resolve the name into an address. This extra step is often
worth it for a couple of reasons. First, names are obviously easier for humans to remember
than dotted-quads (or, in the case of IPv6, strings of hexadecimal digits). Second, names pro-
vide a level of indirection, which insulates users from IP address changes. During the writing
of the first edition of this book, the address of the Web server www.mkp.com changed. Because
we always refer to that Web server by name, and because the change was quickly reflected in
the service that maps names to addresses (about which we’ll say more shortly)—www.mkp.com
resolves to the current Internet address instead of 208.164.121.48—the change is transparent
to programs that use the name to access the Web server.

The name-resolution service can access information from a wide variety of sources. Two
of the primary sources are the Domain Name System (DNS) and local configuration databases.
The DNS [10] is a distributed database that maps domain names such as www.mkp.com to
Internet addresses and other information; the DNS protocol [11] allows hosts connected to
the Internet to retrieve information from that database using TCP or UDP. Local configuration
databases are generally OS-specific mechanisms for local name-to-Internet address mappings.

1.4 Clients and Servers

In our postal and telephone analogies, each communication is initiated by one party, who sends
a letter or makes the telephone call, while the other party responds to the initiator’s contact by
sending a return letter or picking up the phone and talking. Internet communication is similar.
The terms client and server refer to these roles: the client program initiates communication,
while the server program waits passively for and then responds to clients that contact it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1.5 What Is a Socket? 7

Together, the client and server compose the application. The terms client and server are
descriptive of the typical situation in which the server makes a particular capability—for
example, a database service—available to any client that is able to communicate with it.

Whether a program is acting as a client or server determines the general form of its
use of the sockets API to establish communication with its peer. (The client is the peer of
the server and vice versa.) Beyond that, the client-server distinction is important because
the client needs to know the server’s address and port initially, but not vice versa. With the
sockets API, the server can, if necessary, learn the client’s address information when it receives
the initial communication from the client. This is analogous to a telephone call—in order to
be called, a person does not need to know the telephone number of the caller. As with a
telephone call, once the connection is established, the distinction between server and client
disappears.

How does a client find out a server’s IP address and port number? Usually, the client
knows the name of the server it wants—for example, from a Universal Resource Locator (URL)
such as http://www.mkp.com—and uses the name-resolution service to learn the correspond-
ing Internet address.

Finding a server’s port number is a different story. In principle, servers can use any port,
but the client must be able to learn what it is. In the Internet, there is a convention of assigning
well-known port numbers to certain applications. The Internet Assigned Number Authority
(IANA) oversees this assignment. For example, port number 21 has been assigned to the File
Transfer Protocol (FTP). When you run an FTP client application, it tries to contact the FTP
server on that port by default. A list of all the assigned port numbers is maintained by the
numbering authority of the Internet (see http://www.iana.org/assignments/port-numbers).

1.5 What Is a Socket?

A socket is an abstraction through which an application may send and receive data, in much
the same way as an open file handle allows an application to read and write data to stable
storage. A socket allows an application to plug in to the network and communicate with other
applications that are plugged in to the same network. Information written to the socket by
an application on one machine can be read by an application on a different machine and vice
versa.

Different types of sockets correspond to different underlying protocol suites and
different stacks of protocols within a suite. This book deals only with the TCP/IP protocol
suite. The main types of sockets in TCP/IP today are stream sockets and datagram sockets.
Stream sockets use TCP as the end-to-end protocol (with IP underneath) and thus provide
a reliable byte-stream service. A TCP/IP stream socket represents one end of a TCP connec-
tion. Datagram sockets use UDP (again, with IP underneath) and thus provide a best-effort
datagram service that applications can use to send individual messages up to about 65,500
bytes in length. Stream and datagram sockets are also supported by other protocol suites, but

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 Chapter 1: Introduction

Applications Applications

Socket References

Sockets bound to ports

TCP sockets UDP sockets

TCP UDP

IP

…

TCP ports 1 2 1 2
… … … …

65535 UDP ports65535

…

Figure 1.2: Sockets, protocols, and ports.

this book deals only with TCP stream sockets and UDP datagram sockets. A TCP/IP socket is
uniquely identified by an Internet address, an end-to-end protocol (TCP or UDP), and a port
number. As you proceed, you will encounter several ways for a socket to become bound to
an address.

Figure 1.2 depicts the logical relationships among applications, socket abstractions,
protocols, and port numbers within a single host. Note that a single socket abstraction can
be referenced by multiple application programs. Each program that has a reference to a par-
ticular socket can communicate through that socket. Earlier we said that a port identifies an
application on a host. Actually, a port identifies a socket on a host. From Figure 1.2, we see
that multiple programs on a host can access the same socket. In practice, separate programs
that access the same socket would usually belong to the same application (e.g., multiple copies
of a Web server program), although in principle they could belong to different applications.

1.6 Exercises

1. Can you think of a real-life example of communication that does not fit the client-server
model?

2. To how many different kinds of networks is your home connected? How many support
two-way transport?

3. IP is a best-effort protocol, requiring that information be broken down into datagrams,
which may be lost, duplicated, or reordered. TCP hides all of this, providing a reliable
service that takes and delivers an unbroken stream of bytes. How might you go about
providing TCP service on top of IP? Why would anybody use UDP when TCP is available?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c h a p t e r 2

Basic Sockets

You are now ready to learn about writing your own socket applications. We begin by
demonstrating how Java applications identify network hosts using the InetAddress and Socket-
Address abstractions. Then we present examples of the use of Socket and ServerSocket, through
an example client and server that use TCP. Then we do the same thing for the Datagram-
Socket abstraction for clients and servers that use UDP. For each abstraction, we list the most
significant methods, grouped according to usage, and briefly describe their behavior.1

2.1 Socket Addresses

Recall that a client must specify the IP address of the host running the server program when
it initiates communication. The network infrastructure then uses this destination address to
route the client’s information to the proper machine. Addresses can be specified in Java using
a string that contains either a numeric address—in the appropriate form for the version, e.g.,
192.0.2.27 for IPv4 or fe20:12a0::0abc:1234 for IPv6—or a name (e.g., server.example.com). In
the latter case the name must be resolved to a numerical address before it can be used for
communication.

1Note: For each Java networking class described in this text, we include only the most important and
commonly used methods, omitting those that are deprecated or beyond the use of our target audience.
However, this is something of a moving target. For example, the number of methods provided by the Socket
class grew from 23 to 42 between version 1.3 and version 1.6 of the language. The reader is encouraged
and expected to refer to the API specification documentation from http://java.sun.com as the current and
definitive source.

9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10 Chapter 2: Basic Sockets

The InetAddress abstraction represents a network destination, encapsulating both
names and numerical address information. The class has two subclasses, Inet4Address and
Inet6Address, representing the two versions in use. Instances of InetAddress are immutable:
once created, each one always refers to the same address. We’ll demonstrate the use of
InetAddress with an example program that first prints out all the addresses—IPv4 and IPv6, if
any—associated with the local host, and then prints the names and addresses associated with
each host specified on the command line.

To get the addresses of the local host, the program takes advantage of the Network
Interface abstraction. Recall that IP addresses are actually assigned to the connection between
a host and a network (and not to the host itself). The NetworkInterface class provides access
to information about all of a host’s interfaces. This is extremely useful, for example when a
program needs to inform another program of its address.

InetAddressExample.java

0 import java.util.Enumeration;
1 import java.net.*;
2
3 public class InetAddressExample {
4
5 public static void main(String[] args) {
6
7 // Get the network interfaces and associated addresses for this host
8 try {
9 Enumeration<NetworkInterface> interfaceList = NetworkInterface.getNetworkInterfaces();

10 if (interfaceList == null) {
11 System.out.println("--No interfaces found--");
12 } else {
13 while (interfaceList.hasMoreElements()) {
14 NetworkInterface iface = interfaceList.nextElement();
15 System.out.println("Interface " + iface.getName() + ":");
16 Enumeration<InetAddress> addrList = iface.getInetAddresses();
17 if (!addrList.hasMoreElements()) {
18 System.out.println("\t(No addresses for this interface)");
19 }
20 while (addrList.hasMoreElements()) {
21 InetAddress address = addrList.nextElement();
22 System.out.print("\tAddress "
23 + ((address instanceof Inet4Address ? "(v4)"
24 : (address instanceof Inet6Address ? "(v6)" : "(?)"))));
25 System.out.println(": " + address.getHostAddress());
26 }
27 }
28 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.1 Socket Addresses 11

29 } catch (SocketException se) {
30 System.out.println("Error getting network interfaces:" + se.getMessage());
31 }
32
33 // Get name(s)/address(es) of hosts given on command line
34 for (String host : args) {
35 try {
36 System.out.println(host + ":");
37 InetAddress[] addressList = InetAddress.getAllByName(host);
38 for (InetAddress address : addressList) {
39 System.out.println("\t" + address.getHostName() + "/" + address.getHostAddress());
40 }
41 } catch (UnknownHostException e) {
42 System.out.println("\tUnable to find address for " + host);
43 }
44 }
45 }
46 }

InetAddressExample.java

1. Get a list of this host’s network interfaces: line 9
The static method getNetworkInterfaces() returns a list containing an instance of
NetworkInterface for each of the host’s interfaces.

2. Check for empty list: lines 10–12
The loopback interface is generally always included, even if the host has no other network
connection, so this check will succeed only if the host has no networking subsystem
at all.

3. Get and print address(es) of each interface in the list: lines 13–27

� Print the interface’s name: line 15
The getName() method returns a local name for the interface. This is usually a com-
bination of letters and numbers indicating the type and particular instance of the
interface—for example, “lo0” or “eth0”.

� Get the addresses associated with the interface: line 16
The getInetAddresses() method returns another Enumeration, this time containing
instances of InetAddress—one per address associated with the interface. Depending
on how the host is configured, the list may contain only IPv4, only IPv6, or a mixture
of both types of address.

� Check for empty list: lines 17–19

� Iterate through the list, printing each address: lines 20–26
We check each instance to determine which subtype it is. (At this time the only subtypes
of InetAddress are those listed, but conceivably there might be others someday.) The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12 Chapter 2: Basic Sockets

getHostAddress() method of InetAddress returns a String representing the numerical
address in the format appropriate for its specific type: dotted-quad for v4, colon-
separated hex for v6. See the synopsis “String representations” below for a description
of the different address formats.

4. Catch exception: lines 29–31
The call to getNetworkInterfaces() can throw a SocketException.

5. Get names and addresses for each command-line argument: lines 34–44

� Get list of addresses for the given name/address: line 37

� Iterate through the list, printing each: lines 38–40
For each host in the list, we print the name returned by getHostName() followed by the
numerical address returned by getHostAddress().

To use this application to find information about the local host, the publisher’s Web
server (www.mkp.com), a fake name (blah.blah), and an IP address, do the following:

% java InetAddressExample www.mkp.com blah.blah 129.35.69.7

Interface lo:
Address (v4): 127.0.0.1
Address (v6): 0:0:0:0:0:0:0:1
Address (v6): fe80:0:0:0:0:0:0:1%1
Interface eth0:
Address (v4): 192.168.159.1
Address (v6): fe80:0:0:0:250:56ff:fec0:8%4
www.mkp.com:
www.mkp.com/129.35.69.7
blah.blah:
Unable to find address for blah.blah
129.35.69.7:
129.35.69.7/129.35.69.7

You may notice that some v6 addresses have a suffix of the form %d , where d is a number.
Such addresses have limited scope (typically they are link-local), and the suffix identifies the
particular scope with which they are associated; this ensures that each listed address string is
unique. Link-local IPv6 addresses begin with fe8.

You may also have noticed a delay when resolving blah.blah. Your resolver looks in sev-
eral places before giving up on resolving a name. When the name service is not available for
some reason—say, the program is running on a machine that is not connected to any network—
attempting to identify a host by name may fail. Moreover, it may take a significant amount of
time to do so, as the system tries various ways to resolve the name to an IP address. It is,
therefore, good to know that you can always refer to a host using the IP address in dotted-
quad notation. In any of the examples in this book, if a remote host is specified by name, the
host running the example must be configured to convert names to addresses, or the exam-
ple won’t work. If you can ping a host using one of its names (e.g., run the command “ping
server.example.com”), then the examples should work with names. If your ping test fails or

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.1 Socket Addresses 13

the example hangs, try specifying the host by IP address, which avoids the name-to-address
conversion altogether. (See also the isReachable() method of InetAddress, discussed below.)

InetAddress: Creating and accessing

static InetAddress[] getAllByName(String host)
static InetAddress getByName(String host)
static InetAddress getLocalHost()
byte[] getAddress()

The static factory methods return instances that can be passed to other Socket methods
to specify a host. The input String to the factory methods can be either a domain name, such as
“skeezix” or “farm.example.com”, or a string representation of a numeric address. For numeric
IPv6 addresses, the shorthand forms described in Chapter 1 may be used. A name may be
associated with more than one numeric address; the getAllByName() method returns an instance
for each address associated with a name.

The getAddress() method returns the binary form of the address as a byte array of
appropriate length. If the instance is of Inet4Address, the array is four bytes in length; if of
Inet6Address, it is 16 bytes. The first element of the returned array is the most significant byte
of the address.

As we have seen, an InetAddress instance may be converted to a String representation in
several ways.

InetAddress: String representations

String toString()
String getHostAddress()
String getHostName()
String getCanonicalHostName()

These methods return the name or numeric address of the host, or a combi-
nation thereof, as a properly formatted String. The toString() method overrides the
Object method to return a string of the form “hostname.example.com/192.0.2.127 ” or
“never.example.net/2000::620:1a30:95b2 ”. The numeric representation of the address (only)
is returned by getHostAddress(). For an IPv6 address, the string representation always includes
the full eight groups (i.e., exactly seven colons “:”) to prevent ambiguity when a port num-
ber is appended separated by another colon—a common idiom that we’ll see later. Also,
an IPv6 address that has limited scope, such as a link-local address will have a scope
identifier appended. This is a local identifier added to prevent ambiguity (since the same

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 Chapter 2: Basic Sockets

link-local address can be used on different links), but is not part of the address transmitted in
the packet.

The last two methods return the name of the host only, their behavior differing as
follows: If this instance was originally created by giving a name, getHostName() will return
that name with no resolution step; otherwise, getHostName() resolves the address to the name
using the system-configured resolution mechanism. The getCanonicalName() method, on the
other hand, always tries to resolve the address to obtain a fully qualified domain name (like
“ns1.internat.net” or “bam.example.com”). Note that that address might differ from the one
with which the instance was created, if different names map to the same address. Both meth-
ods return the numerical form of the address if resolution cannot be completed. Also, both
check permission with the security manager before sending any messages.

The InetAddress class also supports checking for properties, such as membership in a
class of “special purpose” addresses as discussed in Section 1.2, and reachability, i.e., the
ability to exchange packets with the host.

InetAddress: Testing properties

boolean isAnyLocalAddress()
boolean isLinkLocalAddress()
boolean isLoopbackAddress()
boolean isMulticastAddress()
boolean isMCGlobal()
boolean isMCLinkLocal()
boolean isMCNodeLocal()
boolean isMCOrgLocal()
boolean isMCSiteLocal()
boolean isReachable(int timeout)
boolean isReachable(NetworkInterface netif, int ttl, int timeout)

These methods check whether an address is of a particular type. They all work for both
IPv4 and IPv6 addresses. The first three methods above check whether the instance is one
of, respectively, the “don’t care” address, an address in the link-local class, or the loopback
address (matches 127.*.*.* or ::1). The fourth method checks whether it is a multicast address
(see Section 4.3.2), and the isMC...() methods check for various scopes of multicast address.
(The scope determines, roughly, how far packets addressed to that destination can travel from
their origin.)

The last two methods check whether it is actually possible to exchange packets with
the host identified by this InetAddress. Note that, unlike the other methods, which involve
simple syntactic checks, these methods cause the networking system to take action, namely

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.2 TCP Sockets 15

sending packets. The system attempts to send a packet until the specified number of
milliseconds passes. The latter form is more specific: it determines whetherthe destination
can be contacted by sending packets out over the specified NetworkInterface, with the specified
time-to-live (TTL) value. The TTL limits the distance a packet can travel through the network.
Effectiveness of these last two methods may be limited by the security manager configuration.

The NetworkInterface class provides a large number of methods, many of which are
beyond the scope of this book. We describe here the most useful ones for our purposes.

NetworkInterface: Creating, getting information

static Enumeration〈NetworkInterface〉 getNetworkInterfaces()
static NetworkInterface getByInetAddress(InetAddress addr)
static NetworkInterface getByName(String name)
Enumeration〈InetAddress〉 getInetAddresses()
String getName()
String getDisplayName()

The first method above is quite useful, making it easy to learn an IP address of the host a
program is running on: you get the list of interfaces with getNetworkInterfaces(), and use the
getInetAddresses() instance method to get all the addresses of each. Caveat: the list contains
all the interfaces of the host, including the loopback virtual interface, which cannot send or
receive messages to the rest of the network. Similarly, the list of addresses may contain link-
local addresses that also are not globally reachable. Since the order is unspecified, you cannot
simply take the first address of the first interface and assume it can be reached from the
Internet; instead, use the property-checking methods of InetAddress (see above) to find one
that is not loopback, not link-local, etc.

The getName() methods return the name of the interface (not the host). This generally
consists of an alphabetic string followed by a numeric part, for example eth0. The loopback
interface is named lo0 on many systems.

2.2 TCP Sockets

Java provides two classes for TCP: Socket and ServerSocket. An instance of Socket represents
one end of a TCP connection. A TCP connection is an abstract two-way channel whose ends
are each identified by an IP address and port number. Before being used for communication,
a TCP connection must go through a setup phase, which starts with the client’s TCP sending a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 Chapter 2: Basic Sockets

connection request to the server’s TCP. An instance of ServerSocket listens for TCP connection
requests and creates a new Socket instance to handle each incoming connection. Thus, servers
handle both ServerSocket and Socket instances, while clients use only Socket.

We begin by examining an example of a simple client.

2.2.1 TCP Client

The client initiates communication with a server that is passively waiting to be contacted. The
typical TCP client goes through three steps:

1. Construct an instance of Socket: The constructor establishes a TCP connection to the
specified remote host and port.

2. Communicate using the socket’s I/O streams: A connected instance of Socket contains
an InputStream and OutputStream that can be used just like any other Java I/O stream (see
Section 2.2.3).

3. Close the connection using the close() method of Socket.

Our first TCP application, called TCPEchoClient.java, is a client that communicates with
an echo server using TCP. An echo server simply repeats whatever it receives back to the client.
The string to be echoed is provided as a command-line argument to our client. Some systems
include an echo server for debugging and testing purposes. You may be able to use a program
such as telnet to test if the standard echo server is running on your system (e.g., at command
line “telnet server.example.com 7”); or you can go ahead and run the example server introduced
in the next section.)

TCPEchoClient.java

0 import java.net.Socket;
1 import java.net.SocketException;
2 import java.io.IOException;
3 import java.io.InputStream;
4 import java.io.OutputStream;
5
6 public class TCPEchoClient {
7
8 public static void main(String[] args) throws IOException {
9

10 if ((args.length < 2) || (args.length > 3)) // Test for correct # of args
11 throw new IllegalArgumentException("Parameter(s): <Server> <Word> [<Port>]");
12
13 String server = args[0]; // Server name or IP address
14 // Convert argument String to bytes using the default character encoding

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.2 TCP Sockets 17

15 byte[] data = args[1] getBytes();
16
17 int servPort = (args.length == 3) ? Integer.parseInt(args[2]) : 7;
18
19 // Create socket that is connected to server on specified port
20 Socket socket = new Socket(server, servPort);
21 System.out.println("Connected to server...sending echo string");
22
23 InputStream in = socket.getInputStream();
24 OutputStream out = socket.getOutputStream();
25
26 out.write(data); // Send the encoded string to the server
27
28 // Receive the same string back from the server
29 int totalBytesRcvd = 0; // Total bytes received so far
30 int bytesRcvd; // Bytes received in last read
31 while (totalBytesRcvd < data.length) {
32 if ((bytesRcvd = in.read(data, totalBytesRcvd,
33 data.length - totalBytesRcvd)) == -1)
34 throw new SocketException("Connection closed prematurely");
35 totalBytesRcvd += bytesRcvd;
36 } // data array is full
37
38 System.out.println("Received: " + new String(data));
39
40 socket.close(); // Close the socket and its streams
41 }
42 }

TCPEchoClient.java

1. Application setup and parameter parsing: lines 0–17

� Convert the echo string: line 15
TCP sockets send and receive sequences of bytes. The getBytes() method of String
returns a byte array representation of the string. (See Section 3.1 for a discussion of
character encodings.)

� Determine the port of the echo server: line 17
The default echo port is 7. If we specify a third parameter, Integer.parseInt() takes the
string and returns the equivalent integer value.

2. TCP socket creation: line 20
The Socket constructor creates a socket and connects it to the specified server, iden-
tified either by name or IP address, before returning. Note that the underlying TCP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18 Chapter 2: Basic Sockets

deals only with IP addresses; if a name is given, the implementation resolves it to the
corresponding address. If the connection attempt fails for any reason, the constructor
throws an IOException.

3. Get socket input and output streams: lines 23–24
Associated with each connected Socket instance is an InputStream and an OutputStream.
We send data over the socket by writing bytes to the OutputStream just as we would any
other stream, and we receive by reading from the InputStream.

4. Send the string to echo server: line 26
The write() method of OutputStream transmits the given byte array over the connection
to the server.

5. Receive the reply from the echo server: lines 29–36
Since we know the number of bytes to expect from the echo server, we can repeatedly
receive bytes until we have received the same number of bytes we sent. This particular
form of read() takes three parameters: 1) byte array to receive into, 2) byte offset into
the array where the first byte received should be placed, and 3) the maximum number of
bytes to be placed in the array. read() blocks until some data is available, reads up to the
specified maximum number of bytes, and returns the number of bytes actually placed in
the array (which may be less than the given maximum). The loop simply fills up data until
we receive as many bytes as we sent. If the TCP connection is closed by the other end,
read() returns −1. For the client, this indicates that the server prematurely closed the
socket.

Why not just a single read? TCP does not preserve read() and write() message bound-
aries. That is, even though we sent the echo string with a single write(), the echo server
may receive it in multiple chunks. Even if the echo string is handled in one chunk by the
echo server, the reply may still be broken into pieces by TCP. One of the most common
errors for beginners is the assumption that data sent by a single write() will always be
received in a single read().

6. Print echoed string: line 38
To print the server’s response, we must convert the byte array to a string using the default
character encoding.

7. Close socket: line 40
When the client has finished receiving all of the echoed data, it closes the socket.

We can communicate with an echo server named server.example.com with IP address
192.0.2.1 in either of the following ways:

% java TCPEchoClient server.example.com "Echo this!"

Received: Echo this!

% java TCPEchoClient 192.0.2.1 "Echo this!"

Received: Echo this!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.2 TCP Sockets 19

See TCPEchoClientGUI.java on the book’s Web site for an implementation of the TCP echo client
with a graphical interface.

Socket: Creation

Socket(InetAddress remoteAddr, int remotePort)
Socket(String remoteHost, int remotePort)
Socket(InetAddress remoteAddr, int remotePort, InetAddress localAddr, int localPort)
Socket(String remoteHost, int remotePort, InetAddress localAddr, int localPort)
Socket()

The first four constructors create a TCP socket and connect it to the specified remote
address and port before returning. The first two do not specify the local address and port, so a
default local address and some available port are chosen. Specifying the local address may be
useful on a host with multiple interfaces. String arguments that specify destinations can be in
the same formats that are accepted by the InetAddress creation methods. The last constructor
creates an unconnected socket, which must be explicitly connected (via the connect() method,
see below) before it can be used for communication.

Socket: Operations

void connect(SocketAddress destination)
void connect(SocketAddress destination, int timeout)
InputStream getInputStream()
OutputStream getOutputStream()
void close()
void shutdownInput()
void shutdownOutput()

The connect() methods cause a TCP connection to the specified endpoints to be opened.
The abstract class SocketAddress represents a generic form of address for a socket; its subclass
InetSocketAddress is specific to TCP/IP sockets (see description below). Communication with
the remote system takes place via the associated I/O streams, which are obtained through the
get . . . Stream() methods.

The close() method closes the socket and its associated I/O streams, preventing further
operations on them. The shutDownInput() method closes the input side of a TCP stream. Any
unread data is silently discarded, including data buffered by the socket, data in transit, and data
arriving in the future. Any subsequent attempt to read from the socket will cause an exception
to be thrown. The shutDownOutput() method has a similar effect on the output stream, but the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20 Chapter 2: Basic Sockets

implementation will attempt to ensure that any data already written to the socket’s output
stream is delivered to the other end. See Section 4.5 for further details.

Caveat: By default, Socket is implemented on top of a TCP connection; however, in Java,
you can actually change the underlying implementation of Socket. This book is about TCP/IP,
so for simplicity we assume that the underlying implementation for all of these networking
classes is the default.

Socket: Getting/testing attributes

InetAddress getInetAddress()
int getPort()
InetAddress getLocalAddress()
int getLocalPort()
SocketAddress getRemoteSocketAddress()
SocketAddress getLocalSocketAddress()

These methods return the indicated attributes of the socket, and any method in this
book that returns a SocketAddress actually returns an instance of InetSocketAddress. The
InetSocketAddress encapsulates an InetAddress and a port number.

The Socket class actually has a large number of other associated attributes referred to
as socket options. Because they are not necessary for writing basic applications, we postpone
introduction of them until Section 4.4.

InetSocketAddress: Creating and accessing

InetSocketAddress(InetAddress addr, int port)
InetSocketAddress(int port)
InetSocketAddress(String hostname, int port)
static InetSocketAddress createUnresolved(String host, int port)
boolean isUnresolved()
InetAddress getAddress()
int getPort()
String getHostName()
String toString()

The InetSocketAddress class provides an immutable combination of host address and
port. The port-only constructor uses the special “any” address, and is useful for servers. The
constructor that takes a string hostname attempts to resolve the name to an IP address; the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.2 TCP Sockets 21

static createUnresolved() method allows an instance to be created without attempting this
resolution step. The isUnresolved() method returns true if the instance was created this
way, or if the resolution attempt in the constructor failed. The get...() methods provide
access to the indicated components, with getHostName() providing the name associated with the
contained InetAddress. The toString() method overrides that of Object and returns a string con-
sisting of the name associated with the contained address (if known), a ‘/’ (slash), the address
in numeric form, a ‘:’ (colon), and the port number. If the InetSocketAddress is unresolved, only
the String with which it was created precedes the colon.

2.2.2 TCP Server

We now turn our attention to constructing a server. The server’s job is to set up a communi-
cation endpoint and passively wait for connections from clients. The typical TCP server goes
through two steps:

1. Construct a ServerSocket instance, specifying the local port. This socket listens for
incoming connections to the specified port.

2. Repeatedly:

a. Call the accept() method of ServerSocket to get the next incoming client connection.
Upon establishment of a new client connection, an instance of Socket for the new
connection is created and returned by accept().

b. Communicate with the client using the returned Socket’s InputStream and
OutputStream.

c. When finished, close the new client socket connection using the close() method of
Socket.

Our next example, TCPEchoServer.java, implements the echo service used by our client
program. The server is very simple. It runs forever, repeatedly accepting a connection, receiving
and echoing bytes until the connection is closed by the client, and then closing the client socket.

TCPEchoServer.java

0 import java.net.*; // for Socket, ServerSocket, and InetAddress
1 import java.io.*; // for IOException and Input/OutputStream
2
3 public class TCPEchoServer {
4
5 private static final int BUFSIZE = 32; // Size of receive buffer
6
7 public static void main(String[] args) throws IOException {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

22 Chapter 2: Basic Sockets

8
9 if (args.length != 1) // Test for correct # of args

10 throw new IllegalArgumentException("Parameter(s): <Port>");
11
12 int servPort = Integer.parseInt(args[0]);
13
14 // Create a server socket to accept client connection requests
15 ServerSocket servSock = new ServerSocket(servPort);
16
17 int recvMsgSize; // Size of received message
18 byte[] receiveBuf = new byte[BUFSIZE]; // Receive buffer
19
20 while (true) { // Run forever, accepting and servicing connections
21 Socket clntSock = servSock.accept(); // Get client connection
22
23 SocketAddress clientAddress = clntSock.getRemoteSocketAddress();
24 System.out.println("Handling client at " + clientAddress);
25
26 InputStream in = clntSock.getInputStream();
27 OutputStream out = clntSock.getOutputStream();
28
29 // Receive until client closes connection, indicated by -1 return
30 while ((recvMsgSize = in.read(receiveBuf)) != -1) {
31 out.write(receiveBuf, 0, recvMsgSize);
32 }
33 clntSock.close(); // Close the socket. We are done with this client!
34 }
35 /* NOT REACHED */
36 }
37 }

TCPEchoServer.java

1. Application setup and parameter parsing: lines 0–12

2. Server socket creation: line 15
servSock listens for client connection requests on the port specified in the constructor.

3. Loop forever, iteratively handling incoming connections: lines 20–34

� Accept an incoming connection: line 21
The sole purpose of a ServerSocket instance is to supply a new, connected Socket
instance for each new incoming TCP connection. When the server is ready to han-
dle a client, it calls accept(), which blocks until an incoming connection is made
to the ServerSocket’s port. (If a connection arrives between the time the server
socket is constructed and the call to accept(), the new connection is queued, and
in that case accept() returns immediately. See Section 6.4.1 for details of connection
establishment.) The accept() method of ServerSocket returns an instance of Socket

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.2 TCP Sockets 23

that is already connected to the client’s remote socket and ready for reading and
writing.

� Report connected client: lines 23–24
We can query the newly created Socket instance for the address and port of the con-
necting client. The getRemoteSocketAddress() method of Socket returns an instance of
InetSocketAddress that contains the address and port of the client. The toString()
method of InetSocketAddress prints the information in the form “/〈address〉:〈port〉”.
(The name part is empty because the instance was created from the address informa-
tion only.)

� Get socket input and output streams: lines 26–27
Bytes written to this socket’s OutputStream will be read from the client’s socket’s
InputStream, and bytes written to the client’s OutputStream will be read from this socket’s
InputStream.

� Receive and repeat data until the client closes: lines 30–32
The while loop repeatedly reads bytes (when available) from the input stream and
immediately writes the same bytes back to the output stream until the client closes the
connection. The read() method of InputStream fetches up to the maximum number of
bytes the array can hold (in this case, BUFSIZE bytes) into the byte array (receiveBuf) and
returns the number of bytes read. read() blocks until data is available and returns −1 if
there is no more data available, indicating that the client closed its socket. In the echo
protocol, the client closes the connection when it has received the number of bytes
that it sent, so in the server we expect to eventually receive a −1 from read(). (Recall
that in the client, receiving a −1 from read() indicates a protocol error, because it can
only happen if the server prematurely closed the connection.)

As previously mentioned, read() does not have to fill the entire byte array to
return. In fact, it can return after having read only a single byte. This write() method
of OutputStream writes recvMsgSize bytes from receiveBuf to the socket. The second
parameter indicates the offset into the byte array of the first byte to send. In this case,
0 indicates to take bytes starting from the front of data. If we had used the form of
write() that takes only the buffer argument, all the bytes in the buffer array would have
been transmitted, possibly including bytes that were not received from the client.

� Close client socket: line 33
Closing the socket releases system resources associated with the connection, and is
required for servers, because there is a system-specific limit on the number of open
Socket instances a program can have.

ServerSocket: Creation

ServerSocket(int localPort)
ServerSocket(int localPort, int queueLimit)
ServerSocket(int localPort, int queueLimit, InetAddress localAddr)
ServerSocket()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24 Chapter 2: Basic Sockets

A TCP endpoint must be associated with a specific port in order for clients to direct their
connections to it. The first three constructors create a TCP endpoint that is associated with
the specified local port and ready to accept incoming connections. Valid port numbers are
in the range 0–65,535. (If the port specified is zero, an arbitrary unused port will be picked.)
Optionally, the size of the connection queue and the local address can also be set. Note that
the maximum queue size may not be a hard limit, and cannot be used to control client pop-
ulation. The local address, if specified, must be an address of one of this host’s network
interfaces. If the address is not specified, the socket will accept connections to any of the
host’s IP addresses. This may be useful for hosts with multiple interfaces where the server
wants to accept connections on only one of its interfaces.

The fourth constructor creates a ServerSocket that is not associated with any local port;
it must be bound to a port (see bind() below) before it can be used.

ServerSocket: Operation

void bind(int port)
void bind(int port, int queuelimit)
Socket accept()
void close()

The bind() methods associate this socket with a local port. A ServerSocket can only be
associated with one port. If this instance is already associated with another port, or if the
specified port is already in use, an IOException is thrown.

accept() returns a connected Socket instance for the next new incoming connection to the
server socket. If no established connection is waiting, accept() blocks until one is established
or a timeout occurs.

The close() method closes the socket. After invoking this method, incoming client
connection requests for this socket are rejected.

ServerSocket: Getting attributes

InetAddress getInetAddress()
SocketAddress getLocalSocketAddress()
int getLocalPort()

These return the local address/port of the server socket. Note that, unlike a Socket, a
ServerSocket has no associated I/O Streams. It does, however, have other attributes called
options, which can be controlled via various methods, as described in Section 4.4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.2 TCP Sockets 25

2.2.3 Input and Output Streams

As illustrated by the examples above, the basic I/O paradigm for TCP sockets in Java is the
stream abstraction. (The NIO facilities, added in Java 1.4, provide an alternative abstraction,
which we will see in Chapter 5.) A stream is simply an ordered sequence of bytes. Java input
streams support reading bytes, and output streams support writing bytes. In our TCP client
and server, each Socket instance holds an InputStream and an OutputStream instance. When we
write to the output stream of a Socket, the bytes can (eventually) be read from the input stream
of the Socket at the other end of the connection.

OutputStream is the abstract superclass of all output streams in Java. Using an
OutputStream, we can write bytes to, flush, and close the output stream.

OutputStream:Operation

abstract void write(int data)
void write(byte[] data)
void write(byte[] data, int offset, int length)
void flush()
void close()

The write() methods transfer to the output stream a single byte, an entire array of bytes,
and the bytes in an array beginning at offset and continuing for length bytes, respectively. The
single-byte method writes the low-order eight bits of the integer argument. These operations,
if called on a stream associated with a TCP socket, may block if a lot of data has been sent, but
the other end of the connection has not called read() on the associated input stream recently.
This can have undesirable consequences if some care is not used (see Section 6.2).

The flush() method pushes any buffered data out to the output stream. The
close() method terminates the stream, after which further calls to write() will throw an
exception.

InputStream is the abstract superclass of all input streams. Using an InputStream, we can read
bytes from and close the input stream.

InputStream: Operation

abstract int read()
int read(byte[] data)
int read(byte[] data, int offset, int length)
int available()
void close()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

26 Chapter 2: Basic Sockets

The first three methods get transfer data from the stream. The first form places a single
byte in the low-order eight bits of the returned int. The second form transfers up to data.length
bytes from the input stream into data and returns the number of bytes transferred. The third
form does the same, but places data in the array beginning at offset, and transfers only up to
length bytes. If no data is available, but the end-of-stream has not been detected, all the read()
methods block until at least one byte can be read. All methods return −1 if called when no
data is available and end-of-stream has been detected.

The available() method returns the number of bytes available for reading at the time
it was called. close() shuts down the stream, causing further attempts to read to throw an
IOException.

2.3 UDP Sockets

UDP provides an end-to-end service different from that of TCP. In fact, UDP performs only
two functions: 1) it adds another layer of addressing (ports) to that of IP, and 2) it detects
some forms of data corruption that may occur in transit and discards any corrupted mes-
sages. Because of this simplicity, UDP sockets have some different characteristics from the
TCP sockets we saw earlier. For example, UDP sockets do not have to be connected before
being used. Where TCP is analogous to telephone communication, UDP is analogous to com-
municating by mail: you do not have to “connect” before you send a package or letter, but
you do have to specify the destination address for each one. Similarly, each message—called a
datagram—carries its own address information and is independent of all others. In receiving,
a UDP socket is like a mailbox into which letters or packages from many different sources can
be placed. As soon as it is created, a UDP socket can be used to send/receive messages to/from
any address and to/from many different addresses in succession.

Another difference between UDP sockets and TCP sockets is the way that they deal with
message boundaries: UDP sockets preserve them. This makes receiving an application message
simpler, in some ways, than it is with TCP sockets. (This is discussed further in Section 2.3.4.)
A final difference is that the end-to-end transport service UDP provides is best-effort: there is
no guarantee that a message sent via a UDP socket will arrive at its destination, and messages
can be delivered in a different order than they were sent (just like letters sent through the mail).
A program using UDP sockets must therefore be prepared to deal with loss and reordering.
(We’ll provide an example of this later.)

Given this additional burden, why would an application use UDP instead of TCP? One
reason is efficiency: if the application exchanges only a small amount of data—say, a sin-
gle request message from client to server and a single response message in the other
direction—TCP’s connection establishment phase at least doubles the number of messages

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.3 UDP Sockets 27

(and the number of round-trip delays) required for the communication. Another reason is
flexibility: when something other than a reliable byte-stream service is required, UDP provides
a minimal-overhead platform on which to implement whatever is needed.

Java programmers use UDP sockets via the classes DatagramPacket and DatagramSocket.
Both clients and servers use DatagramSockets to send and receive DatagramPackets.

2.3.1 DatagramPacket

Instead of sending and receiving streams of bytes as with TCP, UDP endpoints exchange
self-contained messages, called datagrams, which are represented in Java as instances of
DatagramPacket. To send, a Java program constructs a DatagramPacket instance containing the
data to be sent and passes it as an argument to the send() method of a DatagramSocket. To
receive, a Java program constructs a DatagramPacket instance with preallocated space (a byte[]),
into which the contents of a received message can be copied (if/when one arrives), and then
passes the instance to the receive() method of a DatagramSocket.

In addition to the data, each instance of DatagramPacket also contains address and port
information, the semantics of which depend on whether the datagram is being sent or received.
When a DatagramPacket is sent, the address and port identify the destination; for a received
DatagramPacket, they identify the source of the received message. Thus, a server can receive
into a DatagramPacket instance, modify its buffer contents, then send the same instance, and
the modified message will go back to its origin. Internally, a DatagramPacket also has length
and offset fields, which describe the location and number of bytes of message data inside the
associated buffer. See the following reference and Section 2.3.4 for some pitfalls to avoid when
using DatagramPackets.

DatagramPacket: Creation

DatagramPacket(byte[] data, int length)
DatagramPacket(byte[] data, int offset, int length)
DatagramPacket(byte[] data, int length, InetAddress remoteAddr, int remotePort)
DatagramPacket(byte[] data, int offset, int length, InetAddress remoteAddr, int remotePort)
DatagramPacket(byte[] data, int length, SocketAddress sockAddr)
DatagramPacket(byte[] data, int offset, int length, SocketAddress sockAddr)

These constructors create a datagram whose data portion is contained in the given byte
array. The first two forms are typically used to construct DatagramPackets for receiving because
the destination address is not specified (although it could be specified later with setAddress()
and setPort(), or setSocketAddress()). The last four forms are typically used to construct
DatagramPackets for sending.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

28 Chapter 2: Basic Sockets

Where offset is specified, the data portion of the datagram will be transferred to/from
the byte array beginning at the specified position in the array. The length parameter specifies
the number of bytes that will be transferred from the byte array when sending, or the maximum
number to be transferred when receiving; it may be smaller, but not larger than data.length.

The destination address and port may be specified separately, or together in a
SocketAddress.

DatagramPacket: Addressing

InetAddress getAddress()
void setAddress(InetAddress address)
int getPort()
void setPort(int port)
SocketAddress getSocketAddress()
void setSocketAddress(SocketAddress sockAddr)

In addition to constructors, these methods supply an alternative way to access
and modify the address of a DatagramPacket. Note that in addition, the receive() method of
DatagramSocket sets the address and port to the datagram sender’s address and port.

DatagramPacket: Handling data

int getLength()
void setLength(int length)
int getOffset()
byte[] getData()
void setData(byte[] data)
void setData(byte[] buffer, int offset, int length)

The first two methods return/set the internal length of the data portion of the
datagram. The internal datagram length can be set explicitly either by the construc-
tor or by the setLength() method. Attempting to make it larger than the length of the
associated buffer results in an IllegalArgumentException. The receive() method of
DatagramSocket uses the internal length in two ways: on input, it specifies the maximum num-
ber of bytes of a received message that will be copied into the buffer and on return, it indicates
the number of bytes actually placed in the buffer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.3 UDP Sockets 29

getOffset() returns the location in the buffer of the first byte of data to be sent/received.
There is no setOffset() method; however, it can be set with setData().

The getData() method returns the byte array associated with the datagram. The
returned object is a reference to the byte array that was most recently associated with this
DatagramPacket, either by the constructor or by setData(). The length of the returned buffer
may be greater than the internal datagram length, so the internal length and offset values
should be used to determine the actual received data.

The setData() methods make the given byte array the data portion of the datagram.
The first form makes the entire byte array the buffer; the second form makes bytes offset
through offset + length − 1 the buffer. The second form always updates the internal offset and
length.

2.3.2 UDP Client

A UDP client begins by sending a datagram to a server that is passively waiting to be contacted.
The typical UDP client goes through three steps:

1. Construct an instance of DatagramSocket, optionally specifying the local address and port.

2. Communicate by sending and receiving instances of DatagramPacket using the send() and
receive() methods of DatagramSocket.

3. When finished, deallocate the socket using the close() method of DatagramSocket.

Unlike a Socket, a DatagramSocket is not constructed with a specific destination address.
This illustrates one of the major differences between TCP and UDP. A TCP socket is required to
establish a connection with another TCP socket on a specific host and port before any data can
be exchanged, and, thereafter, it only communicates with that socket until it is closed. A UDP
socket, on the other hand, is not required to establish a connection before communication, and
each datagram can be sent to or received from a different destination. (The connect() method
of DatagramSocket does allow the specification of the remote address and port, but its use is
optional.)

Our UDP echo client, UDPEchoClientTimeout.java, sends a datagram containing the string
to be echoed and prints whatever it receives back from the server. A UDP echo server simply
sends each datagram that it receives back to the client. Of course, a UDP client only commu-
nicates with a UDP server. Many systems include a UDP echo server for debugging and testing
purposes.

One consequence of using UDP is that datagrams can be lost. In the case of our echo
protocol, either the echo request from the client or the echo reply from the server may be lost
in the network. Recall that our TCP echo client sends an echo string and then blocks on read()
waiting for a reply. If we try the same strategy with our UDP echo client and the echo request
datagram is lost, our client will block forever on receive(). To avoid this problem, our client

http://lib.ommolketab.ir
http//lib.ommolketab.ir

30 Chapter 2: Basic Sockets

uses the setSoTimeout() method of DatagramSocket to specify a maximum amount of time to
block on receive(), so it can try again by resending the echo request datagram. Our echo client
performs the following steps:

1. Send the echo string to the server.

2. Block on receive() for up to three seconds, starting over (up to five times) if the reply is
not received before the timeout.

3. Terminate the client.

UDPEchoClientTimeout.java

0 import java.net.DatagramSocket;
1 import java.net.DatagramPacket;
2 import java.net.InetAddress;
3 import java.io.IOException;
4 import java.io.InterruptedIOException;
5
6 public class UDPEchoClientTimeout {
7
8 private static final int TIMEOUT = 3000; // Resend timeout (milliseconds)
9 private static final int MAXTRIES = 5; // Maximum retransmissions

10
11 public static void main(String[] args) throws IOException {
12
13 if ((args.length < 2) || (args.length > 3)) { // Test for correct # of args
14 throw new IllegalArgumentException("Parameter(s): <Server> <Word> [<Port>]");
15 }
16 InetAddress serverAddress = InetAddress.getByName(args[0]); // Server address
17 // Convert the argument String to bytes using the default encoding
18 byte[] bytesToSend = args[1].getBytes();
19
20 int servPort = (args.length == 3) ? Integer.parseInt(args[2]) : 7;
21
22 DatagramSocket socket = new DatagramSocket();
23
24 socket.setSoTimeout(TIMEOUT); // Maximum receive blocking time (milliseconds)
25
26 DatagramPacket sendPacket = new DatagramPacket(bytesToSend, // Sending packet
27 bytesToSend.length, serverAddress, servPort);
28
29 DatagramPacket receivePacket = // Receiving packet
30 new DatagramPacket(new byte[bytesToSend.length], bytesToSend.length);
31
32 int tries = 0; // Packets may be lost, so we have to keep trying

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.3 UDP Sockets 31

33 boolean receivedResponse = false;
34 do {
35 socket.send(sendPacket); // Send the echo string
36 try {
37 socket.receive(receivePacket); // Attempt echo reply reception
38
39 if (!receivePacket.getAddress().equals(serverAddress)) {// Check source
40 throw new IOException("Received packet from an unknown source");
41 }
42 receivedResponse = true;
43 } catch (InterruptedIOException e) { // We did not get anything
44 tries += 1;
45 System.out.println("Timed out, " + (MAXTRIES - tries) + " more tries...");
46 }
47 } while ((!receivedResponse) && (tries < MAXTRIES));
48
49 if (receivedResponse) {
50 System.out.println("Received: " + new String(receivePacket.getData()));
51 } else {
52 System.out.println("No response -- giving up.");
53 }
54 socket.close();
55 }
56 }

UDPEchoClientTimeout.java

1. Application setup and parameter processing: lines 0–20

2. UDP socket creation: line 22
This instance of DatagramSocket can send datagrams to any UDP socket. We do not specify
a local address or port so some local address and available port will be selected. We
could explicitly set them with the setLocalAddress() and setLocalPort() methods or in
the constructor, if desired.

3. Set the socket timeout: line 24
The timeout for a datagram socket controls the maximum amount of time (milliseconds)
a call to receive() will block. Here we set the timeout to three seconds. Note that timeouts
are not precise: the call may block for more than the specified time (but not less).

4. Create datagram to send: lines 26–27
To create a datagram for sending, we need to specify three things: data, destination
address, and destination port. For the destination address, we may identify the echo
server either by name or IP address. If we specify a name, it is converted to the actual IP
address in the constructor.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

32 Chapter 2: Basic Sockets

5. Create datagram to receive: lines 29–30
To create a datagram for receiving, we only need to specify a byte array to hold the
datagram data. The address and port of the datagram source will be filled in by receive().

6. Send the datagram: lines 32–47
Since datagrams may be lost, we must be prepared to retransmit the datagram. We loop
sending and attempting a receive of the echo reply up to five times.

� Send the datagram: line 35
send() transmits the datagram to the address and port specified in the datagram.

� Handle datagram reception: lines 36–46
receive() blocks until it either receives a datagram or the timer expires. Timer
expiration is indicated by an InterruptedIOException. If the timer expires, we incre-
ment the send attempt count (tries) and start over. After the maximum num-
ber of tries, the while loop exits without receiving a datagram. If receive() suc-
ceeds, we set the loop flag receivedResponse to true , causing the loop to
exit. Since packets may come from anywhere, we check the source address of
the recieved datagram to verify that it matches the address of the specified
echo server.

7. Print reception results: lines 49–53
If we received a datagram, receivedResponse is true, and we can print the datagram data.

8. Close the socket: line 54

Before looking at the code for the server, let’s take a look at the main methods of the
DatagramSocket class.

DatagramSocket: Creation

DatagramSocket()
DatagramSocket(int localPort)
DatagramSocket(int localPort, InetAddress localAddr)

These constructors create a UDP socket. Either or both of the local port and address
may be specified. If the local port is not specified, or is specified as 0, the socket is bound to
any available local port. If the local address is not specified, the packet can receive datagrams
addressed to any of the local addresses.

DatagramSocket: Connection and Closing

void connect(InetAddress remoteAddr, int remotePort)
void connect(SocketAddress remoteSockAddr)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.3 UDP Sockets 33

void disconnect()
void close()

The connect() methods set the remote address and port of the socket. Once connected,
the socket can only communicate with the specified address and port; attempting to send
a datagram with a different address and port will throw an exception. The socket will only
receive datagrams that originated from the specified port and address; datagrams arriving
from any other port or address are ignored. Caveat: A socket connected to a multicast or
broadcast address can only send datagrams because a datagram source address is always a
unicast address (see Section 4.3). Note that connecting is strictly a local operation because
(unlike TCP) there is no end-to-end packet exchange involved. disconnect() unsets the remote
address and port, if any. The close() method indicates that the socket is no longer in use;
further attempts to send or receive throw an exception.

DatagramSocket: Addressing

InetAddress getInetAddress()
int getPort()
SocketAddress getRemoteSocketAddress()
InetAddress getLocalAddress()
int getLocalPort()
SocketAddress getLocalSocketAddress()

The first method returns an InetAddress instance representing the address of the remote
socket to which this socket is connected, or null if it is not connected. Similarly, getPort()
returns the port number to which the socket is connected, or −1 if it is not connected. The
third method returns both address and port conveniently encapsulated in an instance of
SocketAddress, or null if unconnected.

The last three methods provide the same service for the local address and port. If the
socket has not been bound to a local address, getLocalAddress() returns the wildcard (“any
local address”) address. getLocalPort() always returns a local port number; if the socket was
not been bound before the call, the call causes the socket to be bound to any available local
port. The getLocalSocketAddress() returns null if the socket is not bound.

DatagramSocket: Sending and receiving

void send(DatagramPacket packet)
void receive(DatagramPacket packet)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

34 Chapter 2: Basic Sockets

The send() method sends the DatagramPacket. If connected, the packet is sent to the
address to which the socket is connected, unless the DatagramPacket specifies a different desti-
nation, in which case an exception is thrown. Otherwise, the packet is sent to the destination
indicated by the DatagramPacket. This method does not block.

The receive() method blocks until a datagram is received, and then copies its data into
the given DatagramPacket. If the socket is connected, the method blocks until a datagram is
received from the remote socket to which it is connected.

DatagramSocket: Options

int getSoTimeout()
void setSoTimeout(int timeoutMillis)

These methods return and set, respectively, the maximum amount of time that a
receive() call will block for this socket. If the timer expires before data is available, an
InterruptedIOException is thrown. The timeout value is given in milliseconds.

Like Socket and ServerSocket, the DatagramSocket class has many other options. They are
described more fully in Section 4.4.

2.3.3 UDP Server

Like a TCP server, a UDP server’s job is to set up a communication endpoint and passively wait
for clients to initiate communication; however, since UDP is connectionless, UDP communica-
tion is initiated by a datagram from the client, without going through a connection setup as in
TCP. The typical UDP server goes through three steps:

1. Construct an instance of DatagramSocket, specifying the local port and, optionally, the
local address. The server is now ready to receive datagrams from any client.

2. Receive an instance of DatagramPacket using the receive() method of Data-
gramSocket. When receive() returns, the datagram contains the client’s address so we
know where to send the reply.

3. Communicate by sending and receiving DatagramPackets using the send() and receive()
methods of DatagramSocket.

Our next program example, UDPEchoServer.java, implements the UDP version of the echo
server. The server is very simple: it loops forever, receiving datagrams and then sending the
same datagrams back to the client. Actually, our server only receives and sends back the first
255 (ECHOMAX) characters of the datagram; any excess is silently discarded by the socket
implementation (see Section 2.3.4).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.3 UDP Sockets 35

UDPEchoServer.java

0 import java.io.IOException;
1 import java.net.DatagramPacket;
2 import java.net.DatagramSocket;
3
4 public class UDPEchoServer {
5
6 private static final int ECHOMAX = 255; // Maximum size of echo datagram
7
8 public static void main(String[] args) throws IOException {
9

10 if (args.length != 1) { // Test for correct argument list
11 throw new IllegalArgumentException("Parameter(s): <Port>");
12 }
13
14 int servPort = Integer.parseInt(args[0]);
15
16 DatagramSocket socket = new DatagramSocket(servPort);
17 DatagramPacket packet = new DatagramPacket(new byte[ECHOMAX], ECHOMAX);
18
19 while (true) { // Run forever, receiving and echoing datagrams
20 socket.receive(packet); // Receive packet from client
21 System.out.println("Handling client at " + packet.getAddress().getHostAddress()
22 + " on port " + packet.getPort());
23 socket.send(packet); // Send the same packet back to client
24 packet.setLength(ECHOMAX); // Reset length to avoid shrinking buffer
25 }
26 /* NOT REACHED */
27 }
28 }

UDPEchoServer.java

1. Application setup and parameter parsing: lines 0–14
UDPEchoServer takes a single parameter, the local port of the echo server socket.

2. Create and set up datagram socket: line 16
Unlike our UDP client, a UDP server must explicitly set its local port to a number known
by the client; otherwise, the client will not know the destination port for its echo request
datagram. When the server receives the echo datagram from the client, it can find out the
client’s address and port from the datagram.

3. Create datagram: line 17
UDP messages are contained in datagrams. We construct an instance of DatagramPacket
with a buffer of ECHOMAX 255 bytes. This datagram will be used both to receive the echo
request and to send the echo reply.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

36 Chapter 2: Basic Sockets

4. Iteratively handle incoming echo requests: lines 19–25
The UDP server uses a single socket for all communication, unlike the TCP server, which
creates a new socket with every successful accept().
� Receive echo request datagram, print source: lines 20–22

The receive() method of DatagramSocket blocks until a datagram is received from a
client (unless a timeout is set). There is no connection, so each datagram may come
from a different sender. The datagram itself contains the sender’s (client’s) source
address and port.

� Send echo reply: line 23
packet already contains the echo string and echo reply destination address and port,
so the send() method of DatagramSocket can simply transmit the datagram previously
received. Note that when we receive the datagram, we interpret the datagram address
and port as the source address and port, and when we send a datagram, we interpret
the datagram’s address and port as the destination address and port.

� Reset buffer size: line 24
The internal length of packet was set to the length of the message just processed, which
may have been smaller than the original buffer size. If we do not reset the internal
length before receiving again, the next message will be truncated if it is longer than the
one just received.

2.3.4 Sending and Receiving with UDP Sockets

In this section we consider some of the differences between communicating with UDP sockets
compared to TCP. A subtle but important difference is that UDP preserves message boundaries.
Each call to receive() on a DatagramSocket returns data from at most one call to send(). Moreover,
different calls to receive() will never return data from the same call to send().

When a call to write() on a TCP socket’s output stream returns, all the caller knows is that
the data has been copied into a buffer for transmission; the data may or may not have actu-
ally been transmitted yet. (This is covered in more detail in Chapter 6.) UDP, however, does not
provide recovery from network errors and, therefore, does not buffer data for possible retrans-
mission. This means that by the time a call to send() returns, the message has been passed to
the underlying channel for transmission and is (or soon will be) on its way out the door.

Between the time a message arrives from the network and the time its data is returned via
read() or receive(), the data is stored in a first-in, first-out (FIFO) queue of received data. With
a connected TCP socket, all received-but-not-yet-delivered bytes are treated as one continuous
sequence of bytes (see Chapter 6). For a UDP socket, however, the received data may have come
from different senders. A UDP socket’s received data is kept in a queue of messages, each with
associated information identifying its source. A call to receive() will never return more than
one message. However, if receive() is called with a DatagramPacket containing a buffer of size
n, and the size of the first message in the receive queue exceeds n, only the first n bytes of
the message are returned. The remaining bytes are quietly discarded, with no indication to the
receiving program that information has been lost!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2.3 UDP Sockets 37

For this reason, a receiver should always supply a DatagramPacket that has enough space
to hold the largest message allowed by the application protocol at the time it calls to receive().
This technique will guarantee that no data will be lost. The maximum amount of data that can
be transmitted in a DatagramPacket is 65,507 bytes—the largest payload that can be carried in
a UDP datagram. Thus it’s always safe to use a packet that has an array of size 65,600 or so.

It is also important to remember here that each instance of DatagramPacket has an inter-
nal notion of message length that may be changed whenever a message is received into
that instance (to reflect the number of bytes in the received message). Applications that call
receive() more than once with the same instance of DatagramPacket should explicitly reset the
internal length to the actual buffer length before each subsequent call to receive().

Another potential source of problems for beginners is the getData() method of
DatagramPacket, which always returns the entire original buffer, ignoring the internal offset
and length values. Receiving a message into the DatagramPacket only modifies those locations
of the buffer into which message data was placed. For example, suppose buf is a byte array of
size 20, which has been initialized so that each byte contains its index in the array:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Suppose also that dg is a DatagramPacket, and that we set dg ’s buffer to be the middle 10
bytes of buf :

dg.setData(buf,5,10);

Now suppose that dgsocket is a DatagramSocket, and that somebody sends an 8-byte message
containing

41 42 43 44 45 46 47 48

to dgsocket. The message is received into dg :

dgsocket.receive(dg);

Now, calling dg.getData() returns a reference to the original byte array buf, whose contents
are now

0 1 3 4 41 42 43 44 45 46 47 48 13 14 15 16 17 18 192

Note that only bytes 5–12 of buf have been modified and that, in general, the application
needs to use getOffset() and getData() to access just the received data. One possibility is to
copy the received data into a separate byte array, like this:

byte[] destBuf = new byte[dg.getLength()];
System.arraycopy(dg.getData(), dg.getOffset(), destBuf, 0, destBuf.length);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

38 Chapter 2: Basic Sockets

As of Java 1.6, we can do it in one step using the convenience method
Arrays.copyOfRange():

byte[] destBuf = Arrays.copyOfRange(dg.getData(),dg.getOffset(),
dg.getOffset()+dg.getLength());

We didn’t have to do this copying in UDPEchoServer.java because the server did not read the
data from the DatagramPacket at all.

2.4 Exercises

1. For TCPEchoServer.java, we explicitly specify the port to the socket in the constructor. We
said that a socket must have a port for communication, yet we do not specify a port in
TCPEchoClient.java. How is the echo client’s socket assigned a port?

2. When you make a phone call, it is usually the callee that answers with “Hello.” What
changes to our client and server examples would be needed to implement this?

3. What happens if a TCP server never calls accept()? What happens if a TCP client sends
data on a socket that has not yet been accept()ed at the server?

4. Servers are supposed to run for a long time without stopping—therefore, they must be
designed to provide good service no matter what their clients do. Examine the server
examples (TCPEchoServer.java and UDPEchoServer.java) and list anything you can think
of that a client might do to cause it to give poor service to other clients. Suggest
improvements to fix the problems that you find.

5. Modify TCPEchoServer.java to read and write only a single byte at a time, sleeping one
second between each byte. Verify that TCPEchoClient.java requires multiple reads to suc-
cessfully receive the entire echo string, even though it sent the echo string with one
write().

6. Modify TCPEchoServer.java to read and write a single byte and then close the socket.
What happens when the TCPEchoClient sends a multibyte string to this server? What is
happening? (Note that the response could vary by OS.)

7. Modify UDPEchoServer.java so that it only echoes every other datagram it receives. Verify
that UDPEchoClientTimeout.java retransmits datagrams until it either receives a reply or
exceeds the number of retries.

8. Modify UDPEchoServer.java so that ECHOMAX is much shorter (say, 5 bytes). Then use
UDPEchoClientTimeout.java to send an echo string that is too long. What happens?

9. Verify experimentally the size of the largest message you can send and receive using a
DatagramPacket.

10. While UDPEchoServer.java explicitly specifies its local port in the constructor, we do not
specify the local port in UDPEchoClientTimeout.java. How is the UDP echo client’s socket
given a port number? Hint: The answer is different for TCP.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c h a p t e r 3

Sending and Receiving Data

Typically you use sockets because your program needs to provide information to, or
use information provided by, another program. There is no magic: any programs that exchange
information must agree on how that information will be encoded—represented as a sequence
of bits—as well as which program sends what information when, and how the information
received affects the behavior of the program. This agreement regarding the form and meaning
of information exchanged over a communication channel is called a protocol ; a protocol used in
implementing a particular application is an application protocol. In our echo example from the
earlier chapters, the application protocol is trivial: neither the client’s nor the server’s behavior
is affected by the contents of the messages they exchange. Because in most real applications
the behavior of clients and servers depends upon the information they exchange, application
protocols are usually somewhat more complicated.

The TCP/IP protocols transport bytes of user data without examining or modifying them.
This allows applications great flexibility in how they encode their information for transmission.
Most application protocols are defined in terms of discrete messages made up of sequences of
fields. Each field contains a specific piece of information encoded as a sequence of bits. The
application protocol specifies exactly how these sequences of bits are to be arranged by the
sender and interpreted, or parsed, by the receiver so that the latter can extract the meaning
of each field. About the only constraint imposed by TCP/IP is that information must be sent
and received in chunks whose length in bits is a multiple of eight. So from now on we consider
messages to be sequences of bytes. Given this, it may be helpful to think of a transmitted
message as a sequence or array of numbers, each between 0 and 255. That corresponds to the
range of binary values that can be encoded in 8 bits: 00000000 for zero, 00000001 for one,
00000010 for two, and so on, up to 11111111 for 255.

39

http://lib.ommolketab.ir
http//lib.ommolketab.ir

40 Chapter 3: Sending and Receiving Data

When you build a program to exchange information via sockets with other programs, typi-
cally one of two situations applies: either you are designing/writing the programs on both sides
of the socket, in which case you are free to define the application protocol yourself, or you are
implementing a protocol that someone else has already specified, perhaps a protocol standard.
In either case, the basic principles of encoding and decoding different types of information
as bytes “on the wire” are the same. By the way, everything in this chapter also applies if the
“wire” is a file that is written by one program and then read by another.

3.1 Encoding Information

Let’s first consider the question of how simple values such as ints, longs, chars, and Strings
can be sent and received via sockets. We have seen that bytes of information can be transmitted
through a socket by writing them to an OutputStream (associated with a Socket) or encapsulating
them in a DatagramPacket (which is then sent via a DatagramSocket). However, the only data types
to which these operations can be applied are bytes and arrays of bytes. As a strongly typed
language, Java requires that other types—int, String, and so on—be explicitly converted to byte
arrays. Fortunately, the language has built-in facilities to help with such conversions. We saw
one of these in Section 2.2.1: in TCPEchoClient.java, the getBytes() method of String, which
converts the characters in a String instance to bytes in a standard way. Before considering the
details of that kind of conversion, we first consider the representation of the most basic data
types.

3.1.1 Primitive Integers

As we have already seen, TCP and UDP sockets give us the ability to send and receive sequences
(arrays) of bytes, i.e., integer values in the range 0–255. Using that ability, we can encode the
values of other (larger) primitive integer types. However, the sender and receiver have to agree
on several things first. One is the size (in bytes) of each integer to be transmitted. For example,
an int value in a Java program is represented as a 32-bit quantity. We can therefore transmit
the value of any variable or constant of type int using four bytes. Values of type short, on the
other hand, are represented using 16 bits and so only require two bytes to transmit, while longs
are 64 bits or eight bytes.

Let’s consider how we would encode a sequence of four integer values: a byte, a short, an
int, and a long, in that order, for transmission from sender to receiver. We need a total of 15
bytes: the first contains the value of the byte, the next two contain the value of the short, the
next four encode the value of the int, and the last eight bytes contain the long value, as shown
below:

byte short int long

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.1 Encoding Information 41

Are we ready to go? Not quite. For types that require more than one byte, we have to answer
the question of which order to send the bytes in. There are two obvious choices: start at the
right end of the integer, with the least significant byte—so-called little-endian order—or at the
left end, with the most significant byte—big-endian order. (Note that the ordering of bits within
bytes is, fortunately, handled by the implementation in a standard way.) Consider the long value
123456787654321L. Its 64-bit representation (in hexadecimal) is 0x0000704885F926B1. If we
transmit the bytes in big-endian order, the sequence of (decimal) byte values will look like this:

177382491337211200

order of transmission

If we transmit them in little-endian order, the sequence will be:

133 72 112 024938177

order of transmission

0

The main point is that for any multibyte integer quantity, the sender and receiver need to agree
on whether big-endian or little-endian order will be used.1 If the sender were to use little-
endian order to send the above integer, and the receiver were expecting big-endian, instead of
the correct value, the receiver would interpret the transmitted eight-byte sequence as the value
12765164544669515776L.

One last detail on which the sender and receiver must agree: whether the numbers trans-
mitted will be signed or unsigned. The four primitive integer types in Java are all signed; values
are stored in two’s-complement representation, which is the usual way of representing signed
numbers. When dealing with signed k-bit numbers, the two’s-complement representation of
the negative integer −n, 1 ≤ n ≤ 2k−1, is the binary value of 2k − n. The non-negative integer p,
0 ≤ p ≤ 2k−1 − 1, is encoded simply by the k-bit binary value of p. Thus, given k bits, we can
represent values in the range −2k−1 through 2k−1 − 1 using two’s-complement. Note that the
most significant bit (msb) tells whether the value is positive (msb = 0) or negative (msb = 1).
On the other hand, a k-bit, unsigned integer can encode values in the range 0 through 2k − 1
directly. So for example, the 32-bit value 0xffffffff (the all-ones value) when interpreted as
a signed, two’s complement integer represents −1; when interpreted as an unsigned integer,

1Java includes a class ByteOrder to denote these two possibilities. It has two static fields containing the (only)
instances: ByteOrder.BIG_ENDIAN and ByteOrder.LITTLE_ENDIAN. Chapter 5 contains further details about this
class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

42 Chapter 3: Sending and Receiving Data

it represents 4, 294, 967, 295. Because Java does not support unsigned integer types, encoding
and decoding unsigned numbers in Java requires a little care. Assume for now that we are
dealing with signed integer types.

So how do we get the correct values into the byte array of the message? To allow you
to see exactly what needs to happen, here’s how to do the encoding explicitly using “bit-
diddling” (shifting and masking) operations. The program BruteForceCoding.java features a
method encodeIntBigEndian() that can encode any value of one of the primitive types. Its
arguments are the byte array into which the value is to be placed, the value to be encoded
(represented as a long—which, as the largest type, can hold any of the other types), the offset
in the array at which the value should start, and the size in bytes of the value to be writ-
ten. If we encode at the sender, we must be able to decode at the receiver. BruteForceCoding
also provides the decodeIntBigEndian() method for decoding a subset of a byte array into a
Java long.

BruteForceCoding.java

0 public class BruteForceCoding {
1 private static byte byteVal = 101; // one hundred and one
2 private static short shortVal = 10001; // ten thousand and one
3 private static int intVal = 100000001; // one hundred million and one
4 private static long longVal = 1000000000001L;// one trillion and one
5
6 private final static int BSIZE = Byte.SIZE / Byte.SIZE;
7 private final static int SSIZE = Short.SIZE / Byte.SIZE;
8 private final static int ISIZE = Integer.SIZE / Byte.SIZE;
9 private final static int LSIZE = Long.SIZE / Byte.SIZE;

10
11 private final static int BYTEMASK = 0xFF; // 8 bits
12
13 public static String byteArrayToDecimalString(byte[] bArray) {
14 StringBuilder rtn = new StringBuilder();
15 for (byte b : bArray) {
16 rtn.append(b & BYTEMASK).append(" ");
17 }
18 return rtn.toString();
19 }
20
21 // Warning: Untested preconditions (e.g., 0 <= size <= 8)
22 public static int encodeIntBigEndian(byte[] dst, long val, int offset, int size) {
23 for (int i = 0; i < size; i++) {
24 dst[offset++] = (byte) (val >> ((size - i - 1) * Byte.SIZE));
25 }
26 return offset;
27 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.1 Encoding Information 43

28
29 // Warning: Untested preconditions (e.g., 0 <= size <= 8)
30 public static long decodeIntBigEndian(byte[] val, int offset, int size) {
31 long rtn = 0;
32 for (int i = 0; i < size; i++) {
33 rtn = (rtn << Byte.SIZE) | ((long) val[offset + i] & BYTEMASK);
34 }
35 return rtn;
36 }
37
38 public static void main(String[] args) {
39 byte[] message = new byte[BSIZE + SSIZE + ISIZE + LSIZE];
40 // Encode the fields in the target byte array
41 int offset = encodeIntBigEndian(message, byteVal, 0, BSIZE);
42 offset = encodeIntBigEndian(message, shortVal, offset, SSIZE);
43 offset = encodeIntBigEndian(message, intVal, offset, ISIZE);
44 encodeIntBigEndian(message, longVal, offset, LSIZE);
45 System.out.println("Encoded message: " + byteArrayToDecimalString(message));
46
47 // Decode several fields
48 long value = decodeIntBigEndian(message, BSIZE, SSIZE);
49 System.out.println("Decoded short = " + value);
50 value = decodeIntBigEndian(message, BSIZE + SSIZE + ISIZE, LSIZE);
51 System.out.println("Decoded long = " + value);
52
53 // Demonstrate dangers of conversion
54 offset = 4;
55 value = decodeIntBigEndian(message, offset, BSIZE);
56 System.out.println("Decoded value (offset " + offset + ", size " + BSIZE + ") = "
57 + value);
58 byte bVal = (byte) decodeIntBigEndian(message, offset, BSIZE);
59 System.out.println("Same value as byte = " + bVal);
60 }
61
62 }

BruteForceCoding.java

1. Data items to encode: lines 1–4

2. Numbers of bytes in Java integer primitives: lines 6–9

3. byteArrayToDecimalString(): lines 13–19
This method prints each byte from the given array as an unsigned decimal value.
BYTEMASK keeps the byte value from being sign-extended when it is converted to an int
in the call to append(), thus rendering it as an unsigned integer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

44 Chapter 3: Sending and Receiving Data

4. encodeIntBigEndian(): lines 22–27
The right-hand side of the assignment statement first shifts the value to the right so the
byte we are interested in is in the low-order eight bits. The resulting value is then cast to
the type byte, which throws away all but the low-order eight bits, and placed in the array
at the appropriate location. This is iterated over size bytes of the given value, val. The new
offset is returned so we need not keep track of it.

5. decodeIntBigEndian(): lines 30–36
Iterate over size bytes of the given array, accumulating the result in a long, which is shifted
left at each iteration.

6. Demonstrate methods: lines 38–60

� Prepare array to receive series of integers: line 39

� Encode items: lines 40–44
The byte, short, int, and long are encoded into the array in the sequence described
earlier.

� Print contents of encoded array: line 45

� Decode several fields from encoded byte array: lines 47–51
Output should show the decoded values equal to the original constants.

� Conversion problems: lines 53–59
At offset 4, the byte value is 245 (decimal); however, when read as a signed byte value, it
should be −11 (recall two’s-complement representation of signed integers). If we place
the return value into a long, it simply becomes the last byte of a long, producing a value
of 245. Placing the return value into a byte yields a value of −11. Which answer is correct
depends on your application. If you expect a signed value from decoding N bytes, you
must place the (long) result in a primitive integer type that uses exactly N bytes. If
you expect an unsigned value from decoding N bytes, you must place the results in a
primitive integer type that uses at least N + 1 bytes.

Note that there are several preconditions we might consider testing at the beginning of
encodeIntBigEndian() and decodeIntBigEndian(), such as 0 ≤ size ≤ 8 and dst �= null . Can you
name any others?

Running the program produces output showing the following (decimal) byte values:

byte short int long

101 39 17 5 245 225 1 232 212 165 16 10 0 0

As you can see, the brute-force method requires the programmer to do quite a bit of work:
computing and naming the offset and size of each value, and invoking the encoding routine with
the appropriate arguments. It would be even worse if the encodeIntBigEndian() method were
not factored out as a separate method. For that reason, it is not the recommended approach,
because Java provides some built-in mechanisms that are easier to use. Note that it does have

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.1 Encoding Information 45

the advantage that, in addition to the standard Java integer sizes, encodeIntegerBigEndian()
works with any size integer from 1 to 8 bytes—for example, you can encode a seven-byte integer
if you like.

A relatively easy way to construct the message in this example is to use the Data-
OutputStream and ByteArrayOutputStream classes. The DataOutputStream allows you to write
primitive types like the integers we’ve been discussing to a stream: it provides writeByte(),
writeShort(), writeInt(), and writeLong() methods, which take an integer value and write it
to the stream in the appropriately sized big-endian two’s-complement representation. The
ByteArrayOutputStream class takes the sequence of bytes written to a stream and converts it
to a byte array. The code for building our message looks like this:

ByteArrayOutputStream buf = new ByteArrayOutputStream();
DataOutputStream out = new DataOutputStream(buf);
out.writeByte(byteVal);
out.writeShort(shortVal);
out.writeInt(intVal);
out.writeLong(longVal);
out.flush();
byte[] msg = buf.toByteArray();

You may want to run this code to convince yourself that it produces the same output as
BruteForceEncoding.java.

So much for the sending side. How does the receiver recover the transmitted values? As
you might expect, there are input analogues for the output facilities we used, namely DataInput-
Stream and ByteArrayInputStream. We’ll show an example of their use later, when we discuss how
to parse incoming messages. Also, in Chapter 5, we’ll see another way of converting primitive
types to byte sequences, using the ByteBuffer class.

Finally, essentially everything in this subsection applies also to the BigInteger class, which
supports arbitrarily large integers. As with the primitive integer types, sender and receiver have
to agree on a specific size (number of bytes) to represent the value. However, this defeats the
purpose of using a BigInteger, which can be arbitrarily large. One approach is to use length-
based framing, which we’ll see in Section 3.3.

3.1.2 Strings and Text

Old-fashioned text—strings of printable (displayable) characters—is perhaps the most com-
mon way to represent information. Text is convenient because humans are accustomed to
dealing with all kinds of information represented as strings of characters in books, newspa-
pers, and on computer displays. Thus, once we know how to encode text for transmission,
we can send almost any other kind of data: first represent it as text, then encode the text.
Obviously we can represent numbers and boolean values as Strings—for example "123478962",
"6.02e23", "true", "false". And we’ve already seen that a string can be converted to a byte

http://lib.ommolketab.ir
http//lib.ommolketab.ir

46 Chapter 3: Sending and Receiving Data

array by calling the getBytes() method (see TCPEchoClient.java). Alas, there is more to it
than that.

To better understand what’s going on, we first need to consider that text is made up of
symbols or characters. In fact every String instance corresponds to a sequence (array) of char-
acters (type char[]). A char value in Java is represented internally as an integer. For example, the
character "a", that is, the symbol for the letter “a”, corresponds to the integer 97. The character
"X" corresponds to 88, and the symbol "!" (exclamation mark) corresponds to 33.

A mapping between a set of symbols and a set of integers is called a coded character set.
You may have heard of the coded character set known as ASCII —American Standard Code for
Information Interchange. ASCII maps the letters of the English alphabet, digits, punctuation and
some other special (non-printable) symbols to integers between 0 and 127. It has been used
for data transmission since the 1960s, and is used extensively in application protocols such as
HTTP (the protocol used for the World Wide Web), even today. However, because it omits symbols
used by many languages other than English, it is less than ideal for developing applications and
protocols designed to function in today’s global economy.

Java therefore uses an international standard coded character set called Unicode to rep-
resent values of type char and String. Unicode maps symbols from “most of the languages
and symbol systems of the world” [19] to integers between 0 and 65,535, and is much better
suited for internationalized programs. For example, the Japanese Hiragana symbol for the
syllable “o” maps to the integer 12,362. Unicode includes ASCII: each symbol defined by ASCII
maps to the same integer in Unicode as it does in ASCII. This provides a degree of backward
compatibility between ASCII and Unicode.

So sender and receiver have to agree on a mapping from symbols to integers in order to
communicate using text messages. Is that all they need to agree on? It depends. For a small
set of characters with no integer value larger than 255, nothing more is needed because each
character can be encoded as a single byte. For a code that may use larger integer values that
require more than a single byte to represent, there is more than one way to encode those values
on the wire. Thus, sender and receiver need to agree on how those integers will be represented
as byte sequences—that is, an encoding scheme. The combination of a coded character set and a
character encoding scheme is called a charset (see RFC 2278). It is possible to define your own
charset, but there is hardly ever a reason to do so. A large number of different standardized
charsets are in use around the world. Java provides support for the use of arbitrary charsets,
and every implementation is required to support at least the following: US-ASCII (another name
for ASCII), ISO-8859-1, UTF-8, UTF-16BE, UTF-16LE, UTF-16.

When you invoke the getBytes() method of a String instance, it returns a byte array
containing the String encoded according to the default charset for the platform. On many
platforms the default charset is UTF-8; however, in localities that make frequent use of
characters outside the ASCII charset, it may be something different. To ensure that a string is
encoded using a particular charset, you simply supply the name of the charset as a (String)
argument to the getBytes() method. The resulting byte array contains the representation of
the string in the given encoding. (Note that in the example TCP Echo Client/Server from
Section 2.2.1 the encoding was irrelevant because the server did not interpret the received
data at all.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.1 Encoding Information 47

For example, if you call "Test!".getBytes() on the platform on which this book was writ-
ten, you get back the encoding according to UTF-8: If you call "Test!".getBytes("UTF-16BE"), on

84 101 115 116 33

the other hand, you get the following array: In this case each value is encoded as a two-byte

0840 0 101 115 116 3300

sequence, with the high-order byte first. From "Test!".getBytes("IBM037"), the result is:

227 133 162 163 90

The moral of the story is that sender and receiver must agree on the representation for strings
of text. The easiest way for them to do that is to simply specify one of the standard charsets.

As we have seen, it is possible to write Strings to an OutputStream by first converting them
individually to bytes and then writing the result to the stream. That method requires that the
encoding be specified on every call to getBytes(). Later in the chapter we’ll see a way to simply
specify the encoding once when constructing text messages.

3.1.3 Bit-Diddling: Encoding Booleans

Bitmaps are a very compact way to encode boolean information, which is often used in protocols.
The idea of a bitmap is that each of the bits of an integer type can encode one boolean value—
typically with 0 representing false, and 1 representing true. To be able to manipulate bitmaps,
you need to know how to set and clear individual bits using Java’s “bit-diddling” operations. A
mask is an integer value that has one or more specific bits set to 1, and all others cleared (i.e.,
0). We’ll deal here mainly with int-sized bitmaps and masks (32 bits), but everything we say
applies to other integer types as well.

Let’s number the bits of a value of type int from 0 to 31, where bit 0 is the least significant
bit. In general, the int value that has a 1 in bit position i , and a zero in all other bit positions,
is just 2i . So bit 5 is represented by 32, bit 12 by 4096, etc. Here are some example mask
declarations:

final int BIT5 = (1<<5);
final int BIT7 = 0x80;
final int BITS2AND3 = 12; // 8+4
int bitmap = 1234567;

To set a particular bit in an int variable, combine it with the mask for that bit using the bitwise-
OR operation (|):

bitmap |= BIT5;
// bit 5 is now one

http://lib.ommolketab.ir
http//lib.ommolketab.ir

48 Chapter 3: Sending and Receiving Data

To clear a particular bit, bitwise-AND it with the bitwise complement of the mask for that bit
(which has ones everywhere except the particular bit, which is zero). The bitwise-AND operation
in Java is &, while the bitwise-complement operator is ~.

bitmap &= ~BIT7;
// bit 7 is now zero

You can set and clear multiple bits at once by OR-ing together the corresponding masks:

// clear bits 2, 3 and 5
bitmap &= ~(BITS2AND3|BIT5);

To test whether a bit is set, compare the result of the bitwise-AND of the mask and the value
with zero:

boolean bit6Set = (bitmap & (1<<6)) != 0;

3.2 Composing I/O Streams

Java’s stream classes can be composed to provide powerful capabilities. For example, we can
wrap the OutputStream of a Socket instance in a BufferedOutputStream instance to improve per-
formance by buffering bytes temporarily and flushing them to the underlying channel all at
once. We can then wrap that instance in a DataOutputStream to send primitive data types. We
would code this composition as follows:

Socket socket = new Socket(server, port);
DataOutputStream out = new DataOutputStream(

new BufferedOutputStream(socket.getOutputStream()));

DataOutputStream BufferedOutputStream OutputStream

writeInt(343)

writeDouble(3.14)

writeShort(800) 1
4
b
y
t
e
s

343

3.14

800

14bytes

DataInputStream BufferedInputStream InputStream

343(4bytes)

3.14(8bytes)

800(2bytes)

343(4bytes)

3.14(8bytes)

800(2bytes)

1
4
b
y
t
e
s

343

3.14

800

14bytesreadInt()

readDouble()

readShort()

Network

Figure 3.1: Stream composition.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.3 Framing and Parsing 49

I/O Class Function

Buffered[Input/Output]Stream Performs buffering for I/O optimization.

Checked[Input/Output]Stream Maintains a checksum on data.

Cipher[Input/Output]Stream Encrypt/Decrypt data.

Data[Input/Output]Stream Handles read/write for primitive date types.

Digest[Input/Output]Stream Maintains a digest on data.

GZIP[Input/Output]Stream De/compresses a byte stream in GZIP format.

Object[Input/Output]Stream Handles read/write objects and primitive data types.

PushbackInputStream Allows a byte or bytes to be “unread.”

PrintOutputStream Prints string representation of data type.

Zip[Input/Output]Stream De/compresses a byte stream in ZIP format.

Table 3.1: Java I/O Classes

Figure 3.1 demonstrates this composition. Here, we write our primitive data values, one by
one, to DataOutputStream, which writes the binary data to BufferedOutputStream, which buffers
the data from the three writes and then writes once to the socket OutputStream, which controls
writing to the network. We create a corresponding composition for the InputStream on the other
endpoint to efficiently receive primitive data types.

A complete description of the Java I/O API is beyond the scope of this text; however,
Table 3.1 provides a list of some of the relevant Java I/O classes as a starting point for exploiting
its capabilities.

3.3 Framing and Parsing

Converting data to wire format is, of course, only half the story; the original information must
be recovered at the receiver from the transmitted sequence of bytes. Application protocols
typically deal with discrete messages, which are viewed as collections of fields. Framing refers
to the problem of enabling the receiver to locate the beginning and end of a message. Whether
information is encoded as text, as multibyte binary numbers, or as some combination of the
two, the application protocol must specify how the receiver of a message can determine when
it has received all of the message.

Of course, if a complete message is sent as the payload of a DatagramPacket, the problem is
trivial: the payload of the DatagramPacket has a definite length, and the receiver knows exactly
where the message ends. For messages sent over TCP sockets, however, the situation can be
more complicated because TCP has no notion of message boundaries. If the fields in a message
all have fixed sizes and the message is made up of a fixed number of fields, then the size of
the message is known in advance and the receiver can simply read the expected number of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

50 Chapter 3: Sending and Receiving Data

bytes into a byte[] buffer. This technique was used in TCPEchoClient.java, where we knew the
number of bytes to expect from the server. However, when the message can vary in length—for
example, if it contains some variable-length arbitrary text strings—we do not know beforehand
how many bytes to read.

If a receiver tries to receive more bytes from the socket than were in the message, one of
two things can happen. If no other message is in the channel, the receiver will block and be
prevented from processing the message; if the sender is also blocked waiting for a reply, the
result will be deadlock. On the other hand, if another message is in the channel, the receiver
may read some or all of it as part of the first message, leading to protocol errors. Therefore
framing is an important consideration when using TCP sockets.

Note that some of the same considerations apply to finding the boundaries of the individ-
ual fields of the message: the receiver needs to know where one ends and another begins. Thus,
pretty much everything we say here about framing messages also applies to fields. However, it
is simplest, and also leads to the cleanest code, if you deal with these two problems separately:
first locate the end of the message, then parse the message as a whole. Here we focus on framing
complete messages.

Two general techniques enable a receiver to unambiguously find the end of the
message:

� Delimiter-based : The end of the message is indicated by a unique marker, an explicit byte
sequence that the sender transmits immediately following the data. The marker must be
known not to occur in the data.

� Explicit length: The variable-length field or message is preceded by a (fixed-size) length
field that tells how many bytes it contains.

A special case of the delimiter-based method can be used for the last message sent on a TCP
connection: the sender simply closes the sending side of the connection (using shutdownOutput()
or close()) after sending the message. After the receiver reads the last byte of the message, it
receives an end-of-stream indication (i.e., read() returns −1), and thus can tell that it has reached
the end of the message.

The delimiter-based approach is often used with messages encoded as text: A particular
character or sequence of characters is defined to mark the end of the message. The receiver
simply scans the input (as characters) looking for the delimiter sequence; it returns the charac-
ter string preceding the delimiter. The drawback is that the message itself must not contain the
delimiter, otherwise the receiver will find the end of the message prematurely. With a delimiter-
based framing method, the sender is responsible for ensuring that this precondition is satisfied.
Fortunately so-called stuffing techniques allow delimiters that occur naturally in the message
to be modified so the receiver will not recognize them as such; as it scans for the delimiter, it
also recognizes the modified delimiters and restores them in the output message so it matches
the original. The downside of such techniques is that both sender and receiver have to scan the
message.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.3 Framing and Parsing 51

The length-based approach is simpler, but requires a known upper bound on the size of
the message. The sender first determines the length of the message, encodes it as an integer,
and prefixes the result to the message. The upper bound on the message length determines the
number of bytes required to encode the length: one byte if messages always contain fewer than
256 bytes, two bytes if they are always shorter than 65,536 bytes, and so on.

In order to demonstrate these techniques, we introduce the interface Framer, which is
defined below. It has two methods: frameMsg() adds framing information and outputs a given
message to a given stream, while nextMsg() scans a given stream, extracting the next message.

Framer.java

0 import java.io.IOException;
1 import java.io.OutputStream;
2
3 public interface Framer {
4 void frameMsg(byte[] message, OutputStream out) throws IOException;
5 byte[] nextMsg() throws IOException;
6 }

Framer.java

The class DelimFramer.java implements delimiter-based framing using the “newline” char-
acter ("\n", byte value 10). The frameMethod() method does not do stuffing, but simply throws
an exception if the byte sequence to be framed contains the delimiter. (Extending the method
to do stuffing is left as an excercise.) The nextMsg() method scans the stream until it reads the
delimiter, then returns everything up to the delimiter; null is returned if the stream is empty.
If some bytes of a message are accumulated and the stream ends without finding a delimiter,
an exception is thrown to indicate a framing error.

DelimFramer.java

0 import java.io.ByteArrayOutputStream;
1 import java.io.EOFException;
2 import java.io.IOException;
3 import java.io.InputStream;
4 import java.io.OutputStream;
5
6 public class DelimFramer implements Framer {
7
8 private InputStream in; // data source
9 private static final byte DELIMITER = "\n"; // message delimiter

10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

52 Chapter 3: Sending and Receiving Data

11 public DelimFramer(InputStream in) {
12 this.in = in;
13 }
14
15 public void frameMsg(byte[] message, OutputStream out) throws IOException {
16 // ensure that the message does not contain the delimiter
17 for (byte b : message) {
18 if (b == DELIMITER) {
19 throw new IOException("Message contains delimiter");
20 }
21 }
22 out.write(message);
23 out.write(DELIMITER);
24 out.flush();
25 }
26
27 public byte[] nextMsg() throws IOException {
28 ByteArrayOutputStream messageBuffer = new ByteArrayOutputStream();
29 int nextByte;
30
31 // fetch bytes until find delimiter
32 while ((nextByte = in.read()) != DELIMITER) {
33 if (nextByte == -1) { // end of stream?
34 if (messageBuffer.size() == 0) { // if no byte read
35 return null;
36 } else { // if bytes followed by end of stream: framing error
37 throw new EOFException("Non-empty message without delimiter");
38 }
39 }
40 messageBuffer.write(nextByte); // write byte to buffer
41 }
42
43 return messageBuffer.toByteArray();
44 }
45 }

DelimFramer.java

1. Constructor: lines 11–13
The input stream from which messages are to be extracted is given as an argument.

2. frameMsg() adds framing information: lines 15–25

� Verify well-formedness: lines 17–21
Check that the given message does not contain the delimiter; if so, throw an
exception.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.3 Framing and Parsing 53

� Write message: line 22
Output the framed message to the stream

� Write delimiter: line 23

3. nextMsg() extracts messages from input: lines 27–44

� Read each byte in the stream until the delimiter is found: line 32

� Handle end of stream: lines 33–39
If the end of stream occurs before finding the delimiter, throw an exception if any bytes
have been read since construction of the framer or the last delimiter; otherwise return
null to indicate that all messages have been received.

� Write non-delimiter byte to message buffer: line 40

� Return contents of message buffer as byte array: line 43

There’s a limitation to our delimiting framer: it does not support multibyte delimiters. We leave
fixing this as an exercise for the reader.

The class LengthFramer.java implements length-based framing for messages up to 65,535
(216 − 1) bytes in length. The sender determines the length of the given message and writes
it to the output stream as a two-byte, big-endian integer, followed by the complete message.
On the receiving side, we use a DataInputStream to be able to read the length as an integer;
the readFully() method blocks until the given array is completely full, which is exactly what
we need here. Note that, with this framing method, the sender does not have to inspect the
content of the message being framed; it needs only to check that the message does not exceed
the length limit.

LengthFramer.java

0 import java.io.DataInputStream;
1 import java.io.EOFException;
2 import java.io.IOException;
3 import java.io.InputStream;
4 import java.io.OutputStream;
5
6 public class LengthFramer implements Framer {
7 public static final int MAXMESSAGELENGTH = 65535;
8 public static final int BYTEMASK = 0xff;
9 public static final int SHORTMASK = 0xffff;

10 public static final int BYTESHIFT = 8;
11
12 private DataInputStream in; // wrapper for data I/O
13
14 public LengthFramer(InputStream in) throws IOException {
15 this.in = new DataInputStream(in);
16 }
17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

54 Chapter 3: Sending and Receiving Data

18 public void frameMsg(byte[] message, OutputStream out) throws IOException {
19 if (message.length > MAXMESSAGELENGTH) {
20 throw new IOException("message too long");
21 }
22 // write length prefix
23 out.write((message.length >> BYTESHIFT) & BYTEMASK);
24 out.write(message.length & BYTEMASK);
25 // write message
26 out.write(message);
27 out.flush();
28 }
29
30 public byte[] nextMsg() throws IOException {
31 int length;
32 try {
33 length = in.readUnsignedShort(); // read 2 bytes
34 } catch (EOFException e) { // no (or 1 byte) message
35 return null;
36 }
37 // 0 <= length <= 65535
38 byte[] msg = new byte[length];
39 in.readFully(msg); // if exception, it's a framing error.
40 return msg;
41 }
42 }

LengthFramer.java

1. Constructor: lines 14–16
Take the input stream source for framed messages and wrap it in a DataInputStream.

2. frameMsg() adds framing information: lines 18–28

� Verify length: lines 19–21
Because we use a two-byte length field, the length cannot exceed 65,535. (Note that this
value is too big to store in a short, so we write it a byte at a time.)

� Output length field: lines 23–24
Output the message bytes prefixed by the length (unsigned short).

� Output message: line 26

3. nextMsg() extracts next frame from input: lines 30–41

� Read the prefix length: lines 32–36
The readUnsignedShort() method reads two bytes, interprets them as a big-endian
integer, and returns their value as an int.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.5 Constructing and Parsing Protocol Messages 55

� Read the specified number of bytes: lines 38–39
The readfully() method blocks until enough bytes to fill the given array have been
returned.

� Return bytes as message: line 40

3.4 Java-Specific Encodings

When you use sockets, generally either you are building the programs on both ends of the
communication channel—in which case you also have complete control over the protocol—or
you are communicating using a given protocol, which you have to implement. When you know
that (i) both ends of the communication will be implemented in Java, and (ii) you have complete
control over the protocol, you can make use of Java’s built-in facilities like the Serializable
interface or the Remote Method Invocation (RMI) facility. RMI lets you invoke methods on dif-
ferent Java virtual machines, hiding all the messy details of argument encoding and decoding.
Serialization handles conversion of actual Java objects to byte sequences for you, so you can
transfer actual instances of Java objects between virtual machines.

These capabilities might seem like communication Nirvana, but in reality they are not
always the best solution, for several reasons. First, because they are very general facilities, they
are not the most efficient in terms of communication overhead. For example, the serialized form
of an object generally includes information that is meaningless outside the context of the Java
Virtual Machine (JVM). Second, Serializable and Externalizable cannot be used when a different
wire format has already been specified—for example, by a standardized protocol. And finally,
custom-designed classes have to provide their own implementations of the serialization inter-
faces, and this is not easy to get right. Again, there are certainly situations where these built-in
facilities are useful; but sometimes it is simpler, easier, or more efficient to “roll your own.”

3.5 Constructing and Parsing Protocol Messages

We close this chapter with a simple example to illustrate some techniques you might use to
implement a protocol specified by someone else. The example is a simple “voting” protocol as
shown in Figure 3.2. Here a client sends a request message to a server; the message contains

Vote Request
Candidate5775

Vote Response
Candidate5775
Vote Count521,527

Figure 3.2: Voting protocol.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

56 Chapter 3: Sending and Receiving Data

a candidate ID, which is an integer between 0 and 1000. Two types of requests are supported.
An inquiry asks the server how many votes have been cast for the given candidate. The server
sends back a response message containing the original candidate ID and the vote total (as of
the time the request was received) for that candidate. A voting request actually casts a vote for
the indicated candidate. The server again responds with a message containing the candidate ID
and the vote total (which now includes the vote just cast).

In implementing a protocol, it is helpful to define a class to contain the information carried
in a message. The class provides methods for manipulating the fields of the message—while
maintaining the invariants that are supposed to hold among those fields. For our simple exam-
ple, the messages sent by client and server are very similar. The only difference is that the
messages sent by the server contain the vote count and a flag indicating that they are responses
(not requests). In this case, we can get away with a single class for both kinds of messages. The
VoteMsg.java class shows the basic information in each message:

� a boolean isInquiry, which is true if the requested transaction is an inquiry (and false if it
is an actual vote);

� a boolean isResponse indicating whether the message is a response (sent by the server) or
request;

� an integer candidateID that identifies the candidate;

� a long voteCount indicating the vote total for the requested candidate

The class maintains the following invariants among the fields:

� candidateID is in the range 0–1000.

� voteCount is only nonzero in response messages (isResponse is true).

� voteCount is non-negative.

VoteMsg.java

0 public class VoteMsg {
1 private boolean isInquiry; // true if inquiry; false if vote
2 private boolean isResponse;// true if response from server
3 private int candidateID; // in [0,1000]
4 private long voteCount; // nonzero only in response
5
6 public static final int MAX_CANDIDATE_ID = 1000;
7
8 public VoteMsg(boolean isResponse, boolean isInquiry, int candidateID, long voteCount)
9 throws IllegalArgumentException {

10 // check invariants
11 if (voteCount != 0 && !isResponse) {
12 throw new IllegalArgumentException("Request vote count must be zero");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.5 Constructing and Parsing Protocol Messages 57

13 }
14 if (candidateID < 0 || candidateID > MAX_CANDIDATE_ID) {
15 throw new IllegalArgumentException("Bad Candidate ID: " + candidateID);
16 }
17 if (voteCount < 0) {
18 throw new IllegalArgumentException("Total must be >= zero");
19 }
20 this.candidateID = candidateID;
21 this.isResponse = isResponse;
22 this.isInquiry = isInquiry;
23 this.voteCount = voteCount;
24 }
25
26 public void setInquiry(boolean isInquiry) {
27 this.isInquiry = isInquiry;
28 }
29
30 public void setResponse(boolean isResponse) {
31 this.isResponse = isResponse;
32 }
33
34 public boolean isInquiry() {
35 return isInquiry;
36 }
37
38 public boolean isResponse() {
39 return isResponse;
40 }
41
42 public void setCandidateID(int candidateID) throws IllegalArgumentException {
43 if (candidateID < 0 || candidateID > MAX_CANDIDATE_ID) {
44 throw new IllegalArgumentException("Bad Candidate ID: " + candidateID);
45 }
46 this.candidateID = candidateID;
47 }
48
49 public int getCandidateID() {
50 return candidateID;
51 }
52
53 public void setVoteCount(long count) {
54 if ((count != 0 && !isResponse) || count < 0) {
55 throw new IllegalArgumentException("Bad vote count");
56 }
57 voteCount = count;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

58 Chapter 3: Sending and Receiving Data

58 }
59
60 public long getVoteCount() {
61 return voteCount;
62 }
63
64 public String toString() {
65 String res = (isInquiry ? "inquiry" : "vote") + " for candidate " + candidateID;
66 if (isResponse) {
67 res = "response to " + res + " who now has " + voteCount + " vote(s)";
68 }
69 return res;
70 }
71 }

VoteMsg.java

Now that we have a Java representation of a vote message, we need some way to encode
and decode according to some protocol. A VoteMsgCoder provides the methods for vote message
serialization and deserialization.

VoteMsgCoder.java

0 import java.io.IOException;
1
2 public interface VoteMsgCoder {
3 byte[] toWire(VoteMsg msg) throws IOException;
4 VoteMsg fromWire(byte[] input) throws IOException;
5 }

VoteMsgCoder.java

The toWire() method converts the vote message to a sequence of bytes according to a particular
protocol, and the fromWire() method parses a given sequence of bytes according to the same
protocol and constructs an instance of the message class.

To illustrate the different methods of encoding information, we present two implementa-
tions of VoteMsgCoder, one using a text-based encoding and one using a binary encoding. If you
were guaranteed a single encoding that would never change, the toWire() and fromWire() meth-
ods could be specified as part of VoteMsg. Our purpose here is to emphasize that the abstract
representation is independent of the details of the encoding.

3.5.1 Text-Based Representation

We first present a version in which messages are encoded as text. The protocol specifies that
the text be encoded using the US-ASCII charset. The message begins with a so-called “magic

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.5 Constructing and Parsing Protocol Messages 59

string”—a sequence of characters that allows a recipient to quickly recognize the message as
a Voting protocol message, as opposed to random garbage that happened to arrive over the
network. The Vote/Inquiry boolean is encoded with the character ‘v’ for a vote or ‘i’ for an
inquiry. The message’s status as a response is indicated by the presence of the character ‘R’.
Then comes the candidate ID, followed by the vote count, both encoded as decimal strings. The
VoteMsgTextCoder provides a text-based encoding of VoteMsg.

VoteMsgTextCoder.java

0 import java.io.ByteArrayInputStream;
1 import java.io.IOException;
2 import java.io.InputStreamReader;
3 import java.util.Scanner;
4
5 public class VoteMsgTextCoder implements VoteMsgCoder {
6 /*
7 * Wire Format "VOTEPROTO" <"v"|"i"> [<RESPFLAG>] <CANDIDATE> [<VOTECNT>]
8 * Charset is fixed by the wire format.
9 */

10
11 // Manifest constants for encoding
12 public static final String MAGIC = "Voting";
13 public static final String VOTESTR = "v";
14 public static final String INQSTR = "i";
15 public static final String RESPONSESTR = "R";
16
17 public static final String CHARSETNAME = "US-ASCII";
18 public static final String DELIMSTR = " ";
19 public static final int MAX_WIRE_LENGTH = 2000;
20
21 public byte[] toWire(VoteMsg msg) throws IOException {
22 String msgString = MAGIC + DELIMSTR + (msg.isInquiry() ? INQSTR : VOTESTR)
23 + DELIMSTR + (msg.isResponse() ? RESPONSESTR + DELIMSTR : "")
24 + Integer.toString(msg.getCandidateID()) + DELIMSTR
25 + Long.toString(msg.getVoteCount());
26 byte data[] = msgString.getBytes(CHARSETNAME);
27 return data;
28 }
29
30 public VoteMsg fromWire(byte[] message) throws IOException {
31 ByteArrayInputStream msgStream = new ByteArrayInputStream(message);
32 Scanner s = new Scanner(new InputStreamReader(msgStream, CHARSETNAME));
33 boolean isInquiry;
34 boolean isResponse;
35 int candidateID;
36 long voteCount;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

60 Chapter 3: Sending and Receiving Data

37 String token;
38
39 try {
40 token = s.next();
41 if (!token.equals(MAGIC)) {
42 throw new IOException("Bad magic string: " + token);
43 }
44 token = s.next();
45 if (token.equals(VOTESTR)) {
46 isInquiry = false;
47 } else if (!token.equals(INQSTR)) {
48 throw new IOException("Bad vote/inq indicator: " + token);
49 } else {
50 isInquiry = true;
51 }
52
53 token = s.next();
54 if (token.equals(RESPONSESTR)) {
55 isResponse = true;
56 token = s.next();
57 } else {
58 isResponse = false;
59 }
60 // Current token is candidateID
61 // Note: isResponse now valid
62 candidateID = Integer.parseInt(token);
63 if (isResponse) {
64 token = s.next();
65 voteCount = Long.parseLong(token);
66 } else {
67 voteCount = 0;
68 }
69 } catch (IOException ioe) {
70 throw new IOException("Parse error...");
71 }
72 return new VoteMsg(isResponse, isInquiry, candidateID, voteCount);
73 }
74 }

VoteMsgTextCoder.java

The toWire() method simply constructs a string containing all the fields of the message,
separated by white space. The fromWire() method first looks for the “Magic” string; if it is
not the first thing in the message, it throws an exception. This illustrates a very important
point about implementing protocols: never assume anything about any input from the network.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.5 Constructing and Parsing Protocol Messages 61

Your program must always be prepared for any possible inputs, and handle them gracefully.
In this case, the fromWire() method throws an exception if the expected string is not present.
Otherwise, it gets the fields token by token, using the Scanner instance. Note that the number of
fields in the message depends on whether it is a request (sent by the client) or response (sent
by the server). fromWire() throws an exception if the input ends prematurely or is otherwise
malformed.

3.5.2 Binary Representation

Next we present a different way to encode the Voting protocol message. In contrast with the
text-based format, the binary format uses fixed-size messages. Each message begins with a
one-byte field that contains the “magic” value 010101 in its high-order six bits. This little bit
of redundancy provides the receiver with a small degree of assurance that it is receiving a
proper voting message. The two low-order bits of the first byte encode the two booleans. The
second byte of the message always contains zeros, and the third and fourth bytes contain the
candidateID. The final eight bytes of a response message (only) contain the vote count.

VoteMsgBinCoder.java

0 import java.io.ByteArrayInputStream;
1 import java.io.ByteArrayOutputStream;
2 import java.io.DataInputStream;
3 import java.io.DataOutputStream;
4 import java.io.IOException;
5
6 /* Wire Format
7 * 1 1 1 1 1 1
8 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
9 * +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

10 * | Magic |Flags| ZERO |
11 * +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
12 * | Candidate ID |
13 * +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
14 * | |
15 * | Vote Count (only in response) |
16 * | |
17 * | |
18 * +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
19 */
20 public class VoteMsgBinCoder implements VoteMsgCoder {
21
22 // manifest constants for encoding
23 public static final int MIN_WIRE_LENGTH = 4;
24 public static final int MAX_WIRE_LENGTH = 16;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

62 Chapter 3: Sending and Receiving Data

25 public static final int MAGIC = 0x5400;
26 public static final int MAGIC_MASK = 0xfc00;
27 public static final int MAGIC_SHIFT = 8;
28 public static final int RESPONSE_FLAG = 0x0200;
29 public static final int INQUIRE_FLAG = 0x0100;
30
31 public byte[] toWire(VoteMsg msg) throws IOException {
32 ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
33 DataOutputStream out = new DataOutputStream(byteStream); // converts ints
34
35 short magicAndFlags = MAGIC;
36 if (msg.isInquiry()) {
37 magicAndFlags |= INQUIRE_FLAG;
38 }
39 if (msg.isResponse()) {
40 magicAndFlags |= RESPONSE_FLAG;
41 }
42 out.writeShort(magicAndFlags);
43 // We know the candidate ID will fit in a short: it's > 0 && < 1000
44 out.writeShort((short) msg.getCandidateID());
45 if (msg.isResponse()) {
46 out.writeLong(msg.getVoteCount());
47 }
48 out.flush();
49 byte[] data = byteStream.toByteArray();
50 return data;
51 }
52
53 public VoteMsg fromWire(byte[] input) throws IOException {
54 // sanity checks
55 if (input.length < MIN_WIRE_LENGTH) {
56 throw new IOException("Runt message");
57 }
58 ByteArrayInputStream bs = new ByteArrayInputStream(input);
59 DataInputStream in = new DataInputStream(bs);
60 int magic = in.readShort();
61 if ((magic & MAGIC_MASK) != MAGIC) {
62 throw new IOException("Bad Magic #: " +
63 ((magic & MAGIC_MASK) >> MAGIC_SHIFT));
64 }
65 boolean resp = ((magic & RESPONSE_FLAG) != 0);
66 boolean inq = ((magic & INQUIRE_FLAG) != 0);
67 int candidateID = in.readShort();
68 if (candidateID < 0 || candidateID > 1000) {
69 throw new IOException("Bad candidate ID: " + candidateID);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.5 Constructing and Parsing Protocol Messages 63

70 }
71 long count = 0;
72 if (resp) {
73 count = in.readLong();
74 if (count < 0) {
75 throw new IOException("Bad vote count: " + count);
76 }
77 }
78 // Ignore any extra bytes
79 return new VoteMsg(resp, inq, candidateID, count);
80 }
81 }

VoteMsgBinCoder.java

As in Section 3.1.1, we create a ByteArrayOutputStream and wrap it in a DataOutputStream
to receive the result. The encoding method takes advantage of the fact that the high-order
two bytes of a valid candidateID are always zero. Note also the use of bitwise-or operations to
encode the booleans using a single bit each.

3.5.3 Sending and Receiving

Sending a message over a stream is as simple as creating it, calling toWire(), adding appropriate
framing information, and writing it. Receiving, of course, does things in the opposite order. This
approach applies to TCP; in UDP explicit framing is not necessary, because message boundaries
are preserved. To demonstrate this, consider a vote server that 1) maintains a mapping of
candidate IDs to number of votes, 2) counts submitted votes, and 3) responds to inquiries and
votes with the current count for the specified candidate. We begin by implementing a service
for use by vote servers. When a vote server receives a vote message, it handles the request by
calling the handleRequest() method of VoteService.

VoteService.java

0 import java.util.HashMap;
1 import java.util.Map;
2
3 public class VoteService {
4
5 // Map of candidates to number of votes
6 private Map<Integer, Long> results = new HashMap<Integer, Long>();
7
8 public VoteMsg handleRequest(VoteMsg msg) {
9 if (msg.isResponse()) { // If response, just send it back

http://lib.ommolketab.ir
http//lib.ommolketab.ir

64 Chapter 3: Sending and Receiving Data

10 return msg;
11 }
12 msg.setResponse(true); // Make message a response
13 // Get candidate ID and vote count
14 int candidate = msg.getCandidateID();
15 Long count = results.get(candidate);
16 if (count == null) {
17 count = 0L; // Candidate does not exist
18 }
19 if (!msg.isInquiry()) {
20 results.put(candidate, ++count); // If vote, increment count
21 }
22 msg.setVoteCount(count);
23 return msg;
24 }
25 }

VoteService.java

1. Create map of candidate ID to vote count: line 6
For inquiries, the given candidate ID is used to look up the candidate’s vote count in the
map. For votes, the incremented vote count is stored back in the map.

2. handleRequest(): lines 8–24

� Return a response: lines 9–12
If the vote message is already a response, we send it back without processing or
modification. Otherwise we set the response flag.

� Find current vote count: lines 13–18
Find the candidate by ID in the map and fetch the vote count. If the candidate ID does
not already exist in the map, set the count to 0.

� Update count, if vote: lines 19–21
If the candidate did not previously exist, this creates a new mapping; otherwise, it simply
modifies an existing mapping.

� Set vote count and return message: lines 22–23

Next we show how to implement a TCP voting client that connects over a TCP socket to
the voting server, sends an inquiry followed by a vote, and then receives the inquiry and vote
responses.

VoteClientTCP.java

0 import java.io.OutputStream;
1 import java.net.Socket;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.5 Constructing and Parsing Protocol Messages 65

2
3 public class VoteClientTCP {
4
5 public static final int CANDIDATEID = 888;
6
7 public static void main(String args[]) throws Exception {
8
9 if (args.length != 2) { // Test for correct # of args

10 throw new IllegalArgumentException("Parameter(s): <Server> <Port>");
11 }
12
13 String destAddr = args[0]; // Destination address
14 int destPort = Integer.parseInt(args[1]); // Destination port
15
16 Socket sock = new Socket(destAddr, destPort);
17 OutputStream out = sock.getOutputStream();
18
19 // Change Bin to Text for a different framing strategy
20 VoteMsgCoder coder = new VoteMsgBinCoder();
21 // Change Length to Delim for a different encoding strategy
22 Framer framer = new LengthFramer(sock.getInputStream());
23
24 // Create an inquiry request (2nd arg = true)
25 VoteMsg msg = new VoteMsg(false, true, CANDIDATEID, 0);
26 byte[] encodedMsg = coder.toWire(msg);
27
28 // Send request
29 System.out.println("Sending Inquiry (" + encodedMsg.length + " bytes): ");
30 System.out.println(msg);
31 framer.frameMsg(encodedMsg, out);
32
33 // Now send a vote
34 msg.setInquiry(false);
35 encodedMsg = coder.toWire(msg);
36 System.out.println("Sending Vote (" + encodedMsg.length + " bytes): ");
37 framer.frameMsg(encodedMsg, out);
38
39 // Receive inquiry response
40 encodedMsg = framer.nextMsg();
41 msg = coder.fromWire(encodedMsg);
42 System.out.println("Received Response (" + encodedMsg.length
43 + " bytes): ");
44 System.out.println(msg);
45
46 // Receive vote response

http://lib.ommolketab.ir
http//lib.ommolketab.ir

66 Chapter 3: Sending and Receiving Data

47 msg = coder.fromWire(framer.nextMsg());
48 System.out.println("Received Response (" + encodedMsg.length
49 + " bytes): ");
50 System.out.println(msg);
51
52 sock.close();
53 }
54 }

VoteClientTCP.java

1. Process arguments: lines 9–14

2. Create socket, get output stream: lines 16–17

3. Create binary coder and length-based framer: lines 20–22
We will encode/decode our vote messages using a coder. We elect to use a binary encoder
for our protocol. Next, since TCP is a stream-based service, we need to provide our own
framing. Here we use the LengthFramer, which prefixes each message with a length. Note
that we could easily switch to using delimiter-based framing and/or text encoding simply
by changing the concrete types of our VoteMsgCoder and Framer to VoteMsgTextCoder and
DelimFramer, respectively.

4. Create and send messages: lines 24–37
Create, encode, frame and send an inquiry, followed by a vote message for the same
candidate.

5. Get and parse responses: lines 39–50
The nextMsg() method returns the contents of the next encoded message, which we
parse/decode via fromWire().

6. Close socket: line 52

Next we demonstrate the TCP version of the vote server. Here the server repeatedly accepts
a new client connection and uses the VoteService to generate responses to the client vote
messages.

VoteServerTCP.java

0 import java.io.IOException;
1 import java.net.ServerSocket;
2 import java.net.Socket;
3
4 public class VoteServerTCP {
5
6 public static void main(String args[]) throws Exception {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.5 Constructing and Parsing Protocol Messages 67

7
8 if (args.length != 1) { // Test for correct # of args
9 throw new IllegalArgumentException("Parameter(s): <Port>");

10 }
11
12 int port = Integer.parseInt(args[0]); // Receiving Port
13
14 ServerSocket servSock = new ServerSocket(port);
15 // Change Bin to Text on both client and server for different encoding
16 VoteMsgCoder coder = new VoteMsgBinCoder();
17 VoteService service = new VoteService();
18
19 while (true) {
20 Socket clntSock = servSock.accept();
21 System.out.println("Handling client at " + clntSock.getRemoteSocketAddress());
22 // Change Length to Delim for a different framing strategy
23 Framer framer = new LengthFramer(clntSock.getInputStream());
24 try {
25 byte[] req;
26 while ((req = framer.nextMsg()) != null) {
27 System.out.println("Received message (" + req.length + " bytes)");
28 VoteMsg responseMsg = service.handleRequest(coder.fromWire(req));
29 framer.frameMsg(coder.toWire(responseMsg), clntSock.getOutputStream());
30 }
31 } catch (IOException ioe) {
32 System.err.println("Error handling client: " + ioe.getMessage());
33 } finally {
34 System.out.println("Closing connection");
35 clntSock.close();
36 }
37 }
38 }
39 }

VoteServerTCP.java

1. Establish coder and vote service for server: lines 15–17

2. Repeatedly accept and handle client connections: lines 19–37

� Accept new client, print address: lines 20–21

� Create framer for client: line 23

� Fetch and decode messages from client: lines 26–28
Repeatedly request next message from framer until it returns null, indicating an end of
messages.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

68 Chapter 3: Sending and Receiving Data

� Process message, send response: lines 28–29
Pass the decoded message to the voting service for handling. Encode, frame, and send
the returned response message.

The UDP voting client works very similarly to the TCP version. Note that for UDP we don’t
need to use a framer because UDP maintains message boundaries for us. For UDP, we use the
text encoding for our messages; however, this can be easily changed, as long as client and server
agree.

VoteClientUDP.java

0 import java.io.IOException;
1 import java.net.DatagramPacket;
2 import java.net.DatagramSocket;
3 import java.net.InetAddress;
4 import java.util.Arrays;
5
6 public class VoteClientUDP {
7
8 public static void main(String args[]) throws IOException {
9

10 if (args.length != 3) { // Test for correct # of args
11 throw new IllegalArgumentException("Parameter(s): <Destination>" +
12 " <Port> <Candidate#>");
13 }
14
15 InetAddress destAddr = InetAddress.getByName(args[0]); // Destination addr
16 int destPort = Integer.parseInt(args[1]); // Destination port
17 int candidate = Integer.parseInt(args[2]); // 0 <= candidate <= 1000 req'd
18
19 DatagramSocket sock = new DatagramSocket(); // UDP socket for sending
20 sock.connect(destAddr, destPort);
21
22 // Create a voting message (2nd param false = vote)
23 VoteMsg vote = new VoteMsg(false, false, candidate, 0);
24
25 // Change Text to Bin here for a different coding strategy
26 VoteMsgCoder coder = new VoteMsgTextCoder();
27
28 // Send request
29 byte[] encodedVote = coder.toWire(vote);
30 System.out.println("Sending Text-Encoded Request (" + encodedVote.length
31 + " bytes): ");
32 System.out.println(vote);
33 DatagramPacket message = new DatagramPacket(encodedVote, encodedVote.length);
34 sock.send(message);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.5 Constructing and Parsing Protocol Messages 69

35
36 // Receive response
37 message = new DatagramPacket(new byte[VoteMsgTextCoder.MAX_WIRE_LENGTH],
38 VoteMsgTextCoder.MAX_WIRE_LENGTH);
39 sock.receive(message);
40 encodedVote = Arrays.copyOfRange(message.getData(), 0, message.getLength());
41
42 System.out.println("Received Text-Encoded Response (" + encodedVote.length
43 + " bytes): ");
44 vote = coder.fromWire(encodedVote);
45 System.out.println(vote);
46 }
47 }

VoteClientUDP.java

1. Setup DatagramSocket and connect: lines 10–20
By calling connect(), we don’t have to 1) specify a remote address/port for each datagram
we send and 2) test the source of any datagrams we receive.

2. Create vote and coder: lines 22–26
This time we use a text coder; however, we could easily change to a binary coder. Note
that we don’t need a framer because UDP already preserves message boundaries for us as
long as each send contains exactly one vote message.

3. Send request to the server: lines 28–34

4. Receive, decode, and print server response: lines 36–45
When creating the DatagramPacket, we need to know the maximum message size to avoid
datagram truncation. Of course, when we decode the datagram, we only use the actual
bytes from the datagram so we use Arrays.copyOfRange() to copy the subsequence of the
datagram backing array.

Finally, here is the UDP voting server, which, again, is very similar to the TCP version.

VoteServerUDP.java

0 import java.io.IOException;
1 import java.net.DatagramPacket;
2 import java.net.DatagramSocket;
3 import java.util.Arrays;
4
5 public class VoteServerUDP {
6
7 public static void main(String[] args) throws IOException {
8
9 if (args.length != 1) { // Test for correct # of args

10 throw new IllegalArgumentException("Parameter(s): <Port>");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

70 Chapter 3: Sending and Receiving Data

11 }
12
13 int port = Integer.parseInt(args[0]); // Receiving Port
14
15 DatagramSocket sock = new DatagramSocket(port); // Receive socket
16
17 byte[] inBuffer = new byte[VoteMsgTextCoder.MAX_WIRE_LENGTH];
18 // Change Bin to Text for a different coding approach
19 VoteMsgCoder coder = new VoteMsgTextCoder();
20 VoteService service = new VoteService();
21
22 while (true) {
23 DatagramPacket packet = new DatagramPacket(inBuffer, inBuffer.length);
24 sock.receive(packet);
25 byte[] encodedMsg = Arrays.copyOfRange(packet.getData(), 0, packet.getLength());
26 System.out.println("Handling request from " + packet.getSocketAddress() + " ("
27 + encodedMsg.length + " bytes)");
28
29 try {
30 VoteMsg msg = coder.fromWire(encodedMsg);
31 msg = service.handleRequest(msg);
32 packet.setData(coder.toWire(msg));
33 System.out.println("Sending response (" + packet.getLength() + " bytes):");
34 System.out.println(msg);
35 sock.send(packet);
36 } catch (IOException ioe) {
37 System.err.println("Parse error in message: " + ioe.getMessage());
38 }
39 }
40 }
41 }

VoteServerUDP.java

1. Setup: lines 17–20
Create reception buffer, coder, and vote service for server.

2. Repeatedly accept and handle client vote messages: lines 22–39

� Set up DatagramPacket to receive: line 23
Reset the data area to the input buffer on each iteration.

� Receive datagram, extract data: lines 24–25
UDP does the framing for us!

� Decode and handle request: lines 30–31
The service returns a response to the message.

� Encode and send response message: lines 32–35

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3.7 Exercises 71

3.6 Wrapping Up

We have seen how primitive types can be represented as sequences of bytes for transmission
“on the wire.” We have also considered some of the subtleties of encoding text strings, and
some basic methods of framing and parsing messages. We saw examples of both text-oriented
and binary-encoded protocols.

It is probably worth reiterating something we said in the Preface: this chapter will by no
means make you an expert! That takes a great deal of experience. But the code from this chapter
can be used as a starting point for further explorations.

3.7 Exercises

1. Positive integers larger than 231 − 1 (and less than 232 − 1) cannot be represented as ints
in Java, yet they can be represented as 32-bit binary numbers. Write a method to write
such an integer to a stream. It should take a long and an OutputStream as parameters.

2. Extend the DelimFramer class to handle arbitrary multiple-byte delimiters. Be sure your
implementation is efficient.

3. Extend the DelimFramer to perform “byte stuffing,” so messages containing the delimiter
can be transmitted. (See any decent networking text for the algorithm.)

4. Assuming that all byte values are equally likely, what is the probability that a message
consisting of random bits will pass the “magic test” in VoteMsgBin? Suppose an ASCII-
encoded text message is sent to a program expecting a binary-encoded voteMsg. Which
characters would enable the message to pass the “magic test” if they are the first in the
message?

5. The encodeIntBigEndian() method of BruteForceEncoding only works if several precondi-
tions are met such as 0 ≤ size ≤ 8. Modify the method to test for these preconditions and
throw an exception if any are violated.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c h a p t e r 4

Beyond the Basics

The client and server examples in Chapter 2 demonstrate the basic model for
programming with sockets in Java. The next step is to apply these concepts in various
programming models, such as multitasking, nonblocking I/O, and broadcasting.

4.1 Multitasking

Our basic TCP echo server from Chapter 2 handles one client at a time. If a client connects
while another is already being serviced, the server will not echo the new client’s data until
it has finished with the current client, although the new client will be able to send data as
soon as it connects. This type of server is known as an iterative server. Iterative servers han-
dle clients sequentially, finishing with one client before servicing the next. They work best
for applications where each client requires a small, bounded amount of server connection
time; however, if the time to handle a client can be long, the wait experienced by subsequent
clients may be unacceptable.

To demonstrate the problem, add a 10-second sleep using Thread.sleep() after the Socket
constructor call in TCPEchoClient.java and experiment with several clients simultaneously
accessing the TCP echo server. Here the sleep call simulates an operation that takes significant
time, such as slow file or network I/O. Note that a new client must wait for all already-connected
clients to complete before it gets service.

What we need is some way for each connection to proceed independently, without
interfering with other connections. Java threads provide exactly that: a convenient mechanism

73

http://lib.ommolketab.ir
http//lib.ommolketab.ir

74 Chapter 4: Beyond the Basics

allowing servers to handle many clients simultaneously. Using threads, a single application
can work on several tasks concurrently, as if multiple copies of the Java Virtual Machine were
running. (In reality, a single copy of the JVM is shared or multiplexed among the different
threads.) In our echo server, we can give responsibility for each client to an independently
executing thread. All of the examples we have seen so far consist of a single thread, which
simply executes the main() method.

In this section we describe two approaches to coding concurrent servers, namely, thread-
per-client, where a new thread is spawned to handle each client connection, and thread pool,
where connections are assigned to a prespawned set of threads. We shall also describe the
built-in Java facilities that simplify the use of these strategies for multithreaded servers.

4.1.1 Java Threads

Java provides two approaches for performing a task in a new thread: 1) defining a subclass
of the Thread class with a run() method that performs the task, and instantiating it; or 2)
defining a class that implements the Runnable interface with a run() method that performs
the task, and passing an instance of that class to the Thread constructor. In either case, the
new thread does not begin execution until its start() method is invoked. The first approach
can only be used for classes that do not already extend some other class; therefore, we stick
with the second approach, which is always applicable. The Runnable interface contains a single
method prototype:

interface Runnable {
void run();

}

When the start() method of an instance of Thread is invoked, the JVM causes the
instance’s run() method to be executed in a new thread, concurrently with all others.
Meanwhile, the original thread returns from its call to start() and continues its execution
independently. (Note that directly calling run() does not create a new thread; instead, the
run() method is simply executed in the caller’s thread, just like any other method call.) The
statements of each thread’s run() method are interleaved in a nondeterministic fashion, so in
general it is not possible to predict precisely the order in which things will happen in different
threads.

In the following example, ThreadExample.java implements the Runnable interface with a
run() method that repeatedly prints a greeting to the system output stream.

ThreadExample.java

0 import java.util.concurrent.TimeUnit;
1
2 public class ThreadExample implements Runnable {
3
4 private String greeting; // Message to print to console

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.1 Multitasking 75

5
6 public ThreadExample(String greeting) {
7 this.greeting = greeting;
8 }
9

10 public void run() {
11 while (true) {
12 System.out.println(Thread.currentThread().getName() + ": " + greeting);
13 try {
14 // Sleep 0 to 100 milliseconds
15 TimeUnit.MILLISECONDS.sleep(((long) Math.random() * 100));
16 } catch (InterruptedException e) {
17 } // Should not happen
18 }
19 }
20
21 public static void main(String[] args) {
22 new Thread(new ThreadExample("Hello")).start();
23 new Thread(new ThreadExample("Aloha")).start();
24 new Thread(new ThreadExample("Ciao")).start();
25 }
26 }

ThreadExample.java

1. Declaration of implementation of the Runnable interface: line 2
Since ThreadExample implements the Runnable interface, it can be passed to the constructor
of Thread. If ThreadExample fails to provide a run() method, the compiler will complain.

2. Member variables and constructor: lines 4–8
Each instance of ThreadExample contains its own greeting string.

3. run(): lines 10–19
Loop forever performing:

� Print the thread name and instance greeting: line 12
The static method Thread.currentThread() returns a reference to the thread from which
it is called, and getName() returns a string containing the name of that thread.

� Suspend thread: lines 13–17
After printing its instance’s greeting message, each thread sleeps for a random amount
of time (between 0 and 100 milliseconds) by calling the static method Thread.sleep(),
which takes the number of milliseconds to sleep as a parameter. Math.random() returns
a random double between 0.0 and 1.0. Thread.sleep() can be interrupted by another
thread, in which case an InterruptedException is thrown. Our example does not include
an interrupt call, so the exception will not happen in this application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

76 Chapter 4: Beyond the Basics

4. main(): lines 21–25
Each of the three statements in main() does the following: 1) creates a new instance of
ThreadExample with a different greeting string, 2) passes this new instance to the con-
structor of Thread, and 3) calls the new Thread instance’s start() method. Each thread
independently executes the run() method of ThreadExample, while the main thread termi-
nates. Note that the JVM does not terminate until all nondaemon (see Thread API) threads
terminate.

Upon execution, an interleaving of the three greeting messages is printed to the con-
sole. The exact interleaving of the numbers depends upon various factors that in general are
not observable. Threads are perfect for implementing servers like our example, in which each
client’s processing is independent of that provided to every other client. However, it is a differ-
ent story when client processing involves updating information that is shared across threads
on the server. In that case, great care must be taken to ensure that different threads are prop-
erly synchronized with respect to the shared data; otherwise, the shared information can get
into an inconsistent state, and moreover, the problem can be very difficult to trace. A full treat-
ment of techniques and facilities for concurrency would require a book of its own. The book
by Goetz et al. [9], for example, is excellent.

4.1.2 Server Protocol

Since the multitasking server approaches we are going to describe are independent of
the particular client-server protocol, we want to be able to use the same protocol imple-
mentation for both. The code for the echo protocol is given in the class EchoProtocol.
This class encapsulates the per-client processing in the static method handleEchoClient().
This code is almost identical to the connection-handling portion of TCPEchoServer.java,
except that a logging capability (described shortly) has been added; the method takes refer-
ences to the client Socket and the Logger instance as arguments.

The class implements Runnable (the run() method simply invokes handle EchoClient()
with the instance’s Socket and Logger references), so we can create a thread that independently
executes run(). Alternatively, the server-side protocol processing can be invoked by calling
the static method directly (passing it the Socket and Logger references).

EchoProtocol.java

0 import java.io.IOException;
1 import java.io.InputStream;
2 import java.io.OutputStream;
3 import java.net.Socket;
4 import java.util.logging.Level;
5 import java.util.logging.Logger;
6
7 public class EchoProtocol implements Runnable {
8 private static final int BUFSIZE = 32; // Size (in bytes) of I/O buffer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.1 Multitasking 77

9 private Socket clntSock; // Socket connect to client
10 private Logger logger; // Server logger
11
12 public EchoProtocol(Socket clntSock, Logger logger) {
13 this.clntSock = clntSock;
14 this.logger = logger;
15 }
16
17 public static void handleEchoClient(Socket clntSock, Logger logger) {
18 try {
19 // Get the input and output I/O streams from socket
20 InputStream in = clntSock.getInputStream();
21 OutputStream out = clntSock.getOutputStream();
22
23 int recvMsgSize; // Size of received message
24 int totalBytesEchoed = 0; // Bytes received from client
25 byte[] echoBuffer = new byte[BUFSIZE]; // Receive Buffer
26 // Receive until client closes connection, indicated by -1
27 while ((recvMsgSize = in.read(echoBuffer)) != -1) {
28 out.write(echoBuffer, 0, recvMsgSize);
29 totalBytesEchoed += recvMsgSize;
30 }
31
32 logger.info("Client " + clntSock.getRemoteSocketAddress() + ", echoed "
33 + totalBytesEchoed + " bytes.");
34
35 } catch (IOException ex) {
36 logger.log(Level.WARNING, "Exception in echo protocol", ex);
37 } finally {
38 try {
39 clntSock.close();
40 } catch (IOException e) {
41 }
42 }
43 }
44
45 public void run() {
46 handleEchoClient(clntSock, logger);
47 }
48 }

EchoProtocol.java

1. Declaration of implementation of the Runnable interface: line 7

2. Member variables and constructor: lines 8–15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

78 Chapter 4: Beyond the Basics

Each instance of EchoProtocol contains a socket for the connection and a reference to the
logger instance.

3. handleEchoClient(): lines 17–43
Implement the echo protocol:

� Get the input/output streams from the socket: lines 20–21

� Receive and echo: lines 25–30
Loop until the connection is closed (as indicated by read() returning −1), writing
whatever is received back immediately.

� Record the connection details in the log: lines 32–33
Record the SocketAddress of the remote end along with the number of bytes echoed.

� Handle exceptions: line 36
Log any exceptions.

Your server is up and running with thousands of clients per minute. Now a user reports
a problem. How do you determine what happened? Is the problem at your server? Perhaps the
client is violating the protocol. To deal with this scenario, most servers log their activities. This
practice is so common that Java now includes built-in logging facilities in the java.util.logging
package. We provide a very basic introduction to logging here; however, be aware that there
are many more features to enterprise-level logging.

We begin with the Logger class, which represents a logging facility that may be local or
remote. Through an instance of this class, we can record the various server activities as shown
in EchoProtocol. You may use several loggers in your server, each serving a different purpose
and potentially behaving in a different way. For example, you may have separate loggers for
operations, security, and error messages. In Java each logger is identified by a globally unique
name. To get an instance of Logger, call the static factory method Logger.getLogger() as follows:

Logger logger = Logger.getLogger("practical");

This fetches the logger named “practical”. If a logger by that name does not exist, a new logger
is created; otherwise, the existing logger instance is returned. No matter how many times you
get the “practical” logger in your program, the same instance is returned.

Now that you have logging, what should you log? Well, it depends on what you are doing.
If the server is operating normally, you may not want to log every single step the server takes
because logging consumes resources such as space for storing log entries and server processor
time for writing each entry. On the other hand, if you are trying to debug, you may want to
log each and every step. To deal with this, logging typically includes the notion of the level, or
severity, of log entries. The Level class encapsulates the notion of the importance of messages.
Each instance of Logger has a current level, and each message logged has an associated level;
messages with levels below the instance’s current level are discarded (i.e., not logged). Each
level has an associated integer value, so that levels are comparable and can be ordered. Seven
system-recognized instances of Level are defined; other, user-specific, levels can be created,
but there is rarely any need to do so. The built-in levels (defined as static fields of the class
Level) are: severe, warning, info, config, fine, finer, and finest.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.1 Multitasking 79

So when you log, where do the messages go? The logger sends messages to one or more
Handlers, which “handle” publishing the messages. By default, a logger has a single ConsoleHan-
dler that prints messages to System.err. You can change the handler or add additional handlers
to a logger (e.g., FileHandler). Note that like a logger, a handler has a minimum log level, so for a
message to be published its level must be above both the logger and handlers’ threshold. Loggers
and handlers are highly configurable, including their minimum level.

An important characteristic of Logger for our purposes is that it is thread-safe—that
is, its methods can be called from different threads running concurrently without requiring
additional synchronization among the callers. Without this feature, different messages logged
by different threads might end up being interleaved in the log!

Logger: Finding/Creating

static Logger getLogger(String name)
static Logger getLogger(String name, String resourceBundleName)

The static factory methods return the named Logger, creating it if necessary.

Once we have the logger, we need to … well … log. Logger provides fine-grained logging facili-
ties that differentiate between the level and even context (method call, exception, etc.) of the
message.

Logger: Logging a message

void severe(String msg)
void warning(String msg)
void info(String msg)
void config(String msg)
void fine(String msg)
void finer(String msg)
void finest(String msg)

void entering(String sourceClass, String sourceMethod)
void entering(String sourceClass, String sourceMethod, Object param)
void entering(String sourceClass, String sourceMethod, Object[] params)
void exiting(String sourceClass, String sourceMethod)
void exiting(String sourceClass, String sourceMethod, Object result)
void throwing(String sourceClass, String sourceMethod, Throwable thrown)

void log(Level level, String msg)
void log(Level level, String msg, Throwable thrown)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

80 Chapter 4: Beyond the Basics

The severe(), warning(), etc. methods log the given message at the level specified by
the method name. The entering() and exiting() methods log entering and exiting the given
method from the given class. Note that you may optionally specify additional information
such as parameters and return values. The throwing() method logs an exception thrown in a
specific method. The log() methods provide a generic logging method where level, message,
and (optionally) exception can be logged. Note that many other logging methods exist; we are
only noting the major types here.

We may want to customize our logger by setting the minimum logging level or the handlers
for logging messages.

Logger: Setting/Getting the level and handlers

Handler[] getHandlers()
void addHandler(Handler handler)
void removeHandler(Handler handler)

Level getLevel()
void setLevel(Level newLevel)
boolean isLoggable(Level level)

The getHandlers() method returns an array of all handlers associated with the logger.
The addHandler() and removeHandler() methods allow addition/removal of handlers to/from
the logger. The getLevel() and setLevel() methods get/set the minimum logging level. The
isLoggable() method returns true if the given level will be logged by the logger.

We are now ready to introduce some different approaches to concurrent servers.

4.1.3 Thread-per-Client

In a thread-per-client server, a new thread is created to handle each connection. The server
executes a loop that runs forever, listening for connections on a specified port and repeatedly
accepting an incoming connection from a client and then spawning a new thread to handle
that connection.

TCPEchoServerThread.java implements the thread-per-client architecture. It is very similar
to the iterative server, using a single loop to receive and process client requests. The main
difference is that it creates a thread to handle the connection instead of handling it directly.
(This is possible because EchoProtocol implements the Runnable interface.) Thus, when several

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.1 Multitasking 81

clients connect at approximately the same time, later ones do not have to wait for the server
to finish with the earlier ones before they get service. Instead, they all appear to receive service
(albeit at a somewhat slower rate) at the same time.

TCPEchoServerThread.java

0 import java.io.IOException;
1 import java.net.ServerSocket;
2 import java.net.Socket;
3 import java.util.logging.Logger;
4
5 public class TCPEchoServerThread {
6
7 public static void main(String[] args) throws IOException {
8
9 if (args.length != 1) { // Test for correct # of args

10 throw new IllegalArgumentException("Parameter(s): <Port>");
11 }
12
13 int echoServPort = Integer.parseInt(args[0]); // Server port
14
15 // Create a server socket to accept client connection requests
16 ServerSocket servSock = new ServerSocket(echoServPort);
17
18 Logger logger = Logger.getLogger("practical");
19
20 // Run forever, accepting and spawning a thread for each connection
21 while (true) {
22 Socket clntSock = servSock.accept(); // Block waiting for connection
23 // Spawn thread to handle new connection
24 Thread thread = new Thread(new EchoProtocol(clntSock, logger));
25 thread.start();
26 logger.info("Created and started Thread " + thread.getName());
27 }
28 /* NOT REACHED */
29 }
30 }

TCPEchoServerThread.java

1. Parameter parsing and server socket/logger creation: lines 9–18

2. Loop forever, handling incoming connections: lines 21–27

� Accept an incoming connection: line 22

� Create a new instance of Thread to handle the new connection: line 24

http://lib.ommolketab.ir
http//lib.ommolketab.ir

82 Chapter 4: Beyond the Basics

Since EchoProtocol implements the Runnable interface, we can give our new instance
to the Thread constructor, and the new thread will execute the run() method of
EchoProtocol (which calls handleEchoClient()) when start() is invoked.

� Start the new thread for the connection and log it: lines 25–26
The getName() method of Thread returns a String containing a name for the new thread.

4.1.4 Thread Pool

Every new thread consumes system resources: spawning a thread takes CPU cycles and each
thread has its own data structures (e.g., stacks) that consume system memory. In addition,
when one thread blocks, the JVM saves its state, selects another thread to run, and restores
the state of the chosen thread in what is called a context switch. As the number of threads
increases, more and more system resources are consumed by thread overhead. Eventually, the
system is spending more time dealing with context switching and thread management than
with servicing connections. At that point, adding an additional thread may actually increase
client service time.

We can avoid this problem by limiting the total number of threads and reusing threads.
Instead of spawning a new thread for each connection, the server creates a thread pool on
start-up by spawning a fixed number of threads. When a new client connection arrives at the
server, it is assigned to a thread from the pool. When the thread finishes with the client, it
returns to the pool, ready to handle another request. Connection requests that arrive when all
threads in the pool are busy are queued to be serviced by the next available thread.

Like the thread-per-client server, a thread-pool server begins by creating a ServerSocket.
Then it spawns N threads, each of which loops forever, accepting connections from the (shared)
ServerSocket instance. When multiple threads simultaneously call accept() on the same Server-
Socket instance, they all block until a connection is established. Then the system selects one
thread, and the Socket instance for the new connection is returned only in that thread. The other
threads remain blocked until the next connection is established and another lucky winner is
chosen.

Since each thread in the pool loops forever, processing connections one by one, a
thread-pool server is really like a set of iterative servers. Unlike the thread-per-client server,
a thread-pool thread does not terminate when it finishes with a client. Instead, it starts
over again, blocking on accept(). An example of the thread-pool paradigm is shown in
TCPEchoServerPool.java.

TCPEchoServerPool.java

0 import java.io.IOException;
1 import java.net.ServerSocket;
2 import java.net.Socket;
3 import java.util.logging.Level;
4 import java.util.logging.Logger;
5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.1 Multitasking 83

6 public class TCPEchoServerPool {
7
8 public static void main(String[] args) throws IOException {
9

10 if (args.length != 2) { // Test for correct # of args
11 throw new IllegalArgumentException("Parameter(s): <Port> <Threads>");
12 }
13
14 int echoServPort = Integer.parseInt(args[0]); // Server port
15 int threadPoolSize = Integer.parseInt(args[1]);
16
17 // Create a server socket to accept client connection requests
18 final ServerSocket servSock = new ServerSocket(echoServPort);
19
20 final Logger logger = Logger.getLogger("practical");
21
22 // Spawn a fixed number of threads to service clients
23 for (int i = 0; i < threadPoolSize; i++) {
24 Thread thread = new Thread() {
25 public void run() {
26 while (true) {
27 try {
28 Socket clntSock = servSock.accept(); // Wait for a connection
29 EchoProtocol.handleEchoClient(clntSock, logger); // Handle it
30 } catch (IOException ex) {
31 logger.log(Level.WARNING, "Client accept failed", ex);
32 }
33 }
34 }
35 };
36 thread.start();
37 logger.info("Created and started Thread = " + thread.getName());
38 }
39 }
40 }

TCPEchoServerPool.java

1. Setup: lines 10–20
The port number to listen on and the number of threads are both passed as arguments
to main(). After parsing them we create the ServerSocket and Logger instances. Note that
both have to be declared final, because they are referenced inside the anonymous class
instance created below.

2. Create and start threadPoolSize new threads: lines 23–38
For each loop iteration, an instance of an anonymous class that extends Thread is created.
When the start() method of this instance is called, the thread executes the run() method

http://lib.ommolketab.ir
http//lib.ommolketab.ir

84 Chapter 4: Beyond the Basics

of this anonymous class. The run() method loops forever, accepting a connection and
then giving it to EchoProtocol for service.

� Accept an incoming connection: line 28
Since there are N different threads executing the same loop, up to N threads can
be blocked on servSock ’s accept(), waiting for an incoming connection. The system
ensures that only one thread gets a Socket for any particular connection. If no threads
are blocked on accept() when a client connection is established (that is, if they are all
busy servicing other connections), the new connection is queued by the system until
the next call to accept() (see Section 6.4.1).

� Pass the client socket to EchoProtocol.handleEchoClient: line 29
The handleEchoClient() method encapsulates knowledge of the protocol details. It logs
the connection when it finishes, as well as any exceptions encountered along the way.

� Handle exception from accept(): line 31

Since threads are reused, the thread-pool solution only pays the overhead of thread
creation N times, irrespective of the total number of client connections. Since we control
the maximum number of simultaneously executing threads, we can control scheduling and
resource overhead. Of course, if we spawn too few threads, we can still have clients waiting
a long time for service; therefore, the size of the thread pool needs to be tuned to the load,
so that client connection time is minimized. The ideal would be a dispatching facility that
expands the thread pool (up to a limit) when the load increases, and shrinks it to minimize
overhead during times when the load is light. It turns out that Java has just such a facility; we
describe it in the next section.

4.1.5 System-Managed Dispatching: The Executor Interface

In the previous subsections, we have seen that encapsulating the details of the client-server
protocol (as in EchoProtocol.java) lets us use different “dispatching” methods with the same
protocol implementation (e.g., TCPEchoServerThread.java and TCPEchoServerThreadPool.java). In
fact the same thing is true for the dispatching methods themselves. The interface Executor (part
of the java.util.concurrent package) represents an object that executes Runnable instances
according to some strategy, which may include details about queueing and scheduling, or how
jobs are selected for execution. The Executor interface specifies a single method:

interface Executor {
void execute(Runnable task);

}

Java provides a number of built-in implementations of Executor that are convenient and
simple to use, and others that are extensively configurable. Some of these offer handling for
messy details like thread maintenance. For example, if a thread stops because of an uncaught
exception or other failure, they automatically spawn a new thread to replace it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.1 Multitasking 85

The ExecutorService interface extends Executor to provide a more sophisticated facility
that allows a service to be shut down, either gracefully or abruptly. ExecutorService also allows
for tasks to return a result, through the Callable interface, which is like Runnable, only with a
return value.

Instances of ExecutorService can be obtained by calling various static factory methods of
the convenience class Executors. The program TCPEchoServerExecutor.java illustrates the use
of the basic Executor facilities.

TCPEchoServerExecutor.java

0 import java.io.IOException;
1 import java.net.ServerSocket;
2 import java.net.Socket;
3 import java.util.concurrent.Executor;
4 import java.util.concurrent.Executors;
5 import java.util.logging.Logger;
6
7 public class TCPEchoServerExecutor {
8
9 public static void main(String[] args) throws IOException {

10
11 if (args.length != 1) { // Test for correct # of args
12 throw new IllegalArgumentException("Parameter(s): <Port>");
13 }
14
15 int echoServPort = Integer.parseInt(args[0]); // Server port
16
17 // Create a server socket to accept client connection requests
18 ServerSocket servSock = new ServerSocket(echoServPort);
19
20 Logger logger = Logger.getLogger("practical");
21
22 Executor service = Executors.newCachedThreadPool(); // Dispatch svc
23
24 // Run forever, accepting and spawning a thread for each connection
25 while (true) {
26 Socket clntSock = servSock.accept(); // Block waiting for connection
27 service.execute(new EchoProtocol(clntSock, logger));
28 }
29 /* NOT REACHED */
30 }
31 }

TCPEchoServerExecutor.java

http://lib.ommolketab.ir
http//lib.ommolketab.ir

86 Chapter 4: Beyond the Basics

1. Setup: lines 11–20
The port is the only argument. We create the ServerSocket and Logger instances as before;
they need not be declared final here, because we do not need an anonymous Thread
subclass.

2. Get an Executor: line 22
The static factory method newCachedThreadPool() of class Executors creates an instance
of ExecutorService. When its execute() method is invoked with a Runnable instance, the
executor service creates a new thread to handle the task if necessary. However, it first
tries to reuse an existing thread. When a thread has been idle for at least 60 seconds, it
is removed from the pool. This is almost always going to be more efficient than either of
the last two TCPEchoServer* examples.

3. Loop forever, accepting connections and executing them: lines 25–28
When a new connection arrives, a new EchoProtocol instance is created and passed to the
execute() method of service, which either hands it off to an already-existing thread or
creates a new thread to handle it. Note that in the steady state, the cached thread pool
Executor service ends up having about the right number of threads, so that each thread
stays busy and creation/destruction of threads is rare.

Once we have a server designed to use Executor for dispatching clients, we can change
dispatching strategies simply by changing the kind of Executor we instantiate. For example,
if we wanted to use a fixed-size thread pool as in our TCPEchoServerPool.java example, it is a
matter of changing one line associated with setting the dispatch service:

Executor service = Executors.newFixedThreadPool(threadPoolSize);

We could switch to a single thread to execute all connections either by specifying a pool size
of 1, or by the following call:

Executor service = Executors.newSingleThreadExecutor();

In the Executor approach, if the single “worker” thread dies because of some failure, the Execu-
tor will replace it with a new thread. Also, tasks are queued inside the Executor, instead of being
queued inside the networking system, as they were in our original server. Note that we’ve only
scratched the surface of Java’s concurrency package.

4.2 Blocking and Timeouts

Socket I/O calls may block for several reasons. Data input methods read() and receive() block
if data is not available. A write() on a TCP socket may block if there is not sufficient space to
buffer the transmitted data. The accept() method of ServerSocket() and the Socket constructor
both block until a connection has been established (see Section 6.4). Meanwhile, long round-
trip times, high error rate connections, and slow (or deceased) servers may cause connection

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.2 Blocking and Timeouts 87

establishment to take a long time. In all of these cases, the method returns only after the
request has been satisfied. Of course, a blocked method call halts progress of the application
(and makes the thread that is running it useless).

What about a program that has other tasks to perform while waiting for call completion
(e.g., updating the “busy” cursor or responding to user requests)? These programs may have
no time to wait on a blocked method call. What about lost UDP datagrams? If we block waiting
to receive a datagram and it is lost, we could block indefinitely. Here we explore the various
blocking methods and approaches for limiting blocking behavior. In Chapter 5 we’ll encounter
the more powerful nonblocking facilities available through the NIO package.

4.2.1 accept(), read(), and receive()

For these methods, we can set a bound on the maximum time (in milliseconds) to block, using
the setSoTimeout() method of Socket, ServerSocket, and DatagramSocket. If the specified time
elapses before the method returns, an InterruptedIOException is thrown. For Socket instances,
we can also use the available() method of the socket’s InputStream to check for available data
before calling read().

4.2.2 Connecting and Writing

The Socket constructor attempts to establish a connection to the host and port supplied as
arguments, blocking until either the connection is established or a system-imposed timeout
occurs. Unfortunately, the system-imposed timeout is long, and Java does not provide any
means of shortening it. To fix this, call the parameterless constructor for Socket, which returns
an unconnected instance. To establish a connection, call the connect() method on the newly
constructed socket and specify both a remote endpoint and timeout (milliseconds).

A write() call blocks until the last byte written is copied into the TCP implementation’s
local buffer; if the available buffer space is smaller than the size of the write, some data must be
successfully transferred to the other end of the connection before the call to write() will return
(see Section 6.1 for details). Thus, the amount of time that a write() may block is ultimately
controlled by the receiving application. Unfortunately, Java currently does not provide any
way to cause a write() to time out, nor can it be interrupted by another thread. Therefore,
any protocol that sends a large enough amount of data over a Socket instance can block for
an unbounded amount of time. (See Section 6.2 for a discussion of the potentially disastrous
consequences of this.)

4.2.3 Limiting Per-Client Time

Suppose we want to implement the Echo protocol with a limit on the amount of time taken
to service each client. That is, we define a target, timelimit, and implement the protocol in
such a way that after timelimit milliseconds, the protocol instance is terminated. The protocol
instance keeps track of the amount of time remaining, and uses setSoTimeout() to ensure that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

88 Chapter 4: Beyond the Basics

no read() call blocks for longer than that time. Since there is no way to bound the duration
of a write() call, we cannot really guarantee that the time limit will hold. Nevertheless, Time-
limitEchoProtocol.java implements this approach; to use it with TCPEchoServerExecutor.java,
simply change the second line of the body of the while loop to:

service.execute(new TimeLimitEchoProtocol(clntSock, logger));

Again, Chapter 5 will cover more powerful mechanisms that can limit the time that threads
can block—on all I/O calls, including writes—using the facilities of the NIO package.

TimeLimitEchoProtocol.java

0 import java.io.IOException;
1 import java.io.InputStream;
2 import java.io.OutputStream;
3 import java.net.Socket;
4 import java.util.logging.Level;
5 import java.util.logging.Logger;
6
7 class TimelimitEchoProtocol implements Runnable {
8 private static final int BUFSIZE = 32; // Size (bytes) of buffer
9 private static final String TIMELIMIT = "10000"; // Default limit (ms)

10 private static final String TIMELIMITPROP = "Timelimit"; // Property
11
12 private static int timelimit;
13 private Socket clntSock;
14 private Logger logger;
15
16 public TimelimitEchoProtocol(Socket clntSock, Logger logger) {
17 this.clntSock = clntSock;
18 this.logger = logger;
19 // Get the time limit from the System properties or take the default
20 timelimit = Integer.parseInt(System.getProperty(TIMELIMITPROP,TIMELIMIT));
21 }
22
23 public static void handleEchoClient(Socket clntSock, Logger logger) {
24
25 try {
26 // Get the input and output I/O streams from socket
27 InputStream in = clntSock.getInputStream();
28 OutputStream out = clntSock.getOutputStream();
29 int recvMsgSize; // Size of received message
30 int totalBytesEchoed = 0; // Bytes received from client
31 byte[] echoBuffer = new byte[BUFSIZE]; // Receive buffer
32 long endTime = System.currentTimeMillis() + timelimit;
33 int timeBoundMillis = timelimit;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.3 Multiple Recipients 89

34
35 clntSock.setSoTimeout(timeBoundMillis);
36 // Receive until client closes connection, indicated by -1
37 while ((timeBoundMillis > 0) && // catch zero values
38 ((recvMsgSize = in.read(echoBuffer)) != -1)) {
39 out.write(echoBuffer, 0, recvMsgSize);
40 totalBytesEchoed += recvMsgSize;
41 timeBoundMillis = (int) (endTime - System.currentTimeMillis()) ;
42 clntSock.setSoTimeout(timeBoundMillis);
43 }
44 logger.info("Client " + clntSock.getRemoteSocketAddress() +
45 ", echoed " + totalBytesEchoed + " bytes.");
46 } catch (IOException ex) {
47 logger.log(Level.WARNING, "Exception in echo protocol", ex);
48 }
49 }
50
51 public void run() {
52 handleEchoClient(this.clntSock, this.logger);
53 }
54 }

TimeLimitEchoProtocol.java

The TimelimitEchoProtocol class is similar to the EchoProtocol class, except that it
attempts to bound the total time an echo connection can exist to 10 seconds. At the time
the handleEchoClient() method is invoked, a deadline is computed using the current time and
the time bound. After each read(), the time between the current time and the deadline is
computed, and the socket timeout is set to the remaining time.

4.3 Multiple Recipients

So far all of our sockets have dealt with communication between exactly two entities, usually
a server and a client. Such one-to-one communication is sometimes called unicast. Some infor-
mation is of interest to multiple recipients. In such cases, we could unicast a copy of the data
to each recipient, but this may be very inefficient. Unicasting multiple copies over a single net-
work connection wastes bandwidth by sending the same information multiple times. In fact,
if we want to send data at a fixed rate, the bandwidth of our network connection defines a
hard limit on the number of receivers we can support. For example, if our video server sends
1Mbps streams and its network connection is only 3Mbps (a healthy connection rate), we can
only support three simultaneous users.

Fortunately, networks provide a way to use bandwidth more efficiently. Instead of making
the sender responsible for duplicating packets, we can give this job to the network. In our

http://lib.ommolketab.ir
http//lib.ommolketab.ir

90 Chapter 4: Beyond the Basics

video server example, we send a single copy of the stream across the server’s connection
to the network, which then duplicates the data only when appropriate. With this model of
duplication, the server uses only 1Mbps across its connection to the network, irrespective of
the number of clients.

There are two types of one-to-many service: broadcast and multicast. With broadcast, all
hosts on the (local) network receive a copy of the message. With multicast, the message is sent
to a multicast address, and the network delivers it only to those hosts that have indicated that
they want to receive messages sent to that address. In general, only UDP sockets are allowed
to broadcast or multicast.

4.3.1 Broadcast

Broadcasting UDP datagrams is similar to unicasting datagrams, except that a broadcast
address is used instead of a regular (unicast) IP address. Note that IPv6 does not explicitly
provide broadcast addresses; however, there is a special all-nodes, link-local-scope multicast
address, FFO2::1, that multicasts to all nodes on a link. The IPv4 local broadcast address
(255.255.255.255) sends the message to every host on the same broadcast network. Local
broadcast messages are never forwarded by routers. A host on an Ethernet network can send
a message to all other hosts on that same Ethernet, but the message will not be forwarded by a
router. IPv4 also specifies directed broadcast addresses, which allow broadcasts to all hosts on
a specified network; however, since most Internet routers do not forward directed broadcasts,
we do not deal with them here.

There is no networkwide broadcast address that can be used to send a message to all
hosts. To see why, consider the impact of a broadcast to every host on the Internet. Sending
a single datagram would result in a very, very large number of packet duplications by the
routers, and bandwidth would be consumed on each and every network. The consequences of
misuse (malicious or accidental) are too great, so the designers of IP left such an Internetwide
broadcast facility out on purpose.

Even so, local broadcast can be very useful. Often, it is used in state exchange for net-
work games where the players are all on the same local (broadcast) network. In Java, the code
for unicasting and broadcasting is the same. To play with broadcasting applications, we can
simply use our VoteClientUDP.java with a broadcast destination address. There is one prob-
lem. Can you find it? Hint: You cannot use connect with broadcast. Run VoteServerUDP.java as
you did before (except that you can run several receivers at one time). Caveat: Some oper-
ating systems do not give regular users permission to broadcast, in which case this will
not work.

4.3.2 Multicast

As with broadcast, one of the main differences between multicast and unicast is the form of
the address. A multicast address identifies a set of receivers. The designers of IP allocated a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.3 Multiple Recipients 91

range of the address space dedicated to multicast, specifically 224.0.0.0 to 239.255.255.255
for IPv4 and any address starting with FF for IPv6. With the exception of a few reserved multi-
cast addresses, a sender can send datagrams addressed to any address in this range. In Java,
multicast applications generally communicate using an instance of MulticastSocket, a subclass
of DatagramSocket. It is important to understand that a MulticastSocket is actually a UDP socket
(DatagramSocket), with some extra multicast-specific attributes that can be controlled. Our next
examples implement a multicast sender and receiver of vote messages.

VoteMulticastSender.java

0 import java.io.IOException;
1 import java.net.DatagramPacket;
2 import java.net.InetAddress;
3 import java.net.MulticastSocket;
4
5 public class VoteMulticastSender {
6
7 public static final int CANDIDATEID = 475;
8
9 public static void main(String args[]) throws IOException {

10
11 if ((args.length < 2) || (args.length > 3)) { // Test # of args
12 throw new IllegalArgumentException("Parameter(s): <Multicast Addr> <Port> [<TTL>]");
13 }
14
15 InetAddress destAddr = InetAddress.getByName(args[0]); // Destination
16 if (!destAddr.isMulticastAddress()) { // Test if multicast address
17 throw new IllegalArgumentException("Not a multicast address");
18 }
19
20 int destPort = Integer.parseInt(args[1]); // Destination port
21 int TTL = (args.length == 3) ? Integer.parseInt(args[2]) : 1; // Set TTL
22
23 MulticastSocket sock = new MulticastSocket();
24 sock.setTimeToLive(TTL); // Set TTL for all datagrams
25
26 VoteMsgCoder coder = new VoteMsgTextCoder();
27
28 VoteMsg vote = new VoteMsg(true, true, CANDIDATEID, 1000001L);
29
30 // Create and send a datagram
31 byte[] msg = coder.toWire(vote);
32 DatagramPacket message = new DatagramPacket(msg, msg.length, destAddr, destPort);
33 System.out.println("Sending Text-Encoded Request (" + msg.length + " bytes): ");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

92 Chapter 4: Beyond the Basics

34 System.out.println(vote);
35 sock.send(message);
36
37 sock.close();
38 }
39 }

VoteMulticastSender.java

The only significant differences between our unicast and multicast senders are that 1) we
verify that the given address is multicast, and 2) we set the initial Time To Live (TTL) value for
the multicast datagram. Every IP datagram contains a TTL, initialized to some default value and
decremented (usually by one) by each router that forwards the packet. When the TTL reaches
zero, the packet is discarded. By setting the initial value of the TTL, we limit the distance a
packet can travel from the sender.1

Unlike broadcast, network multicast duplicates the message only to a specific set of
receivers. This set of receivers, called a multicast group, is identified by a shared multicast
(or group) address. Receivers need some mechanism to notify the network of their interest in
receiving data sent to a particular multicast address, so that the network can forward packets
to them. This notification, called joining a group, is accomplished with the joinGroup() method
of MulticastSocket. Our multicast receiver joins a specified group, receives and prints a single
multicast message from that group, and exits.

VoteMulticastReceiver.java

0 import java.io.IOException;
1 import java.net.DatagramPacket;
2 import java.net.InetAddress;
3 import java.net.MulticastSocket;
4 import java.util.Arrays;
5
6 public class VoteMulticastReceiver {
7
8 public static void main(String[] args) throws IOException {
9

10 if (args.length != 2) { // Test for correct # of args
11 throw new IllegalArgumentException("Parameter(s): <Multicast Addr> <Port>");
12 }
13
14 InetAddress address = InetAddress.getByName(args[0]); // Multicast address

1The rules for multicast TTL are actually not quite so simple. It is not necessarily the case that a packet
with TTL = 4 can travel four hops from the sender; however, it will not travel more than four hops.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.3 Multiple Recipients 93

15 if (!address.isMulticastAddress()) { // Test if multicast address
16 throw new IllegalArgumentException("Not a multicast address");
17 }
18
19 int port = Integer.parseInt(args[1]); // Multicast port
20 MulticastSocket sock = new MulticastSocket(port); // for receiving
21 sock.joinGroup(address); // Join the multicast group
22
23 VoteMsgTextCoder coder = new VoteMsgTextCoder();
24
25 // Receive a datagram
26 DatagramPacket packet = new DatagramPacket(new byte[VoteMsgTextCoder.MAX_WIRE_LENGTH],
27 VoteMsgTextCoder.MAX_WIRE_LENGTH);
28 sock.receive(packet);
29
30 VoteMsg vote = coder.fromWire(Arrays.copyOfRange(packet.getData(), 0, packet
31 .getLength()));
32
33 System.out.println("Received Text-Encoded Request (" + packet.getLength()
34 + " bytes): ");
35 System.out.println(vote);
36
37 sock.close();
38 }
39 }

VoteMulticastReceiver.java

The only significant difference between our multicast and unicast receiver is that the
multicast receiver must join the multicast group by supplying the desired multicast address.
The book’s Web site also contains another example of a sender and receiver multicast pair.
MulticastImageSender.java transmits a set of images (JPEG or GIF) specified on the command
line, in three-second intervals. MulticastImageReceiver.java receives each image and displays
it in a window.

Multicast datagrams can, in fact, be sent from a DatagramSocket by simply using a multi-
cast address. However, a MulticastSocket has a few capabilities that a DatagramSocket does not,
including 1) allowing specification of the datagram TTL, and 2) allowing the interface through
which datagrams are sent to the group to be specified/changed (an interface is identified by its
Internet address). A multicast receiver, on the other hand, must use a MulticastSocket because
it needs the ability to join a group.

MulticastSocket is a subclass of DatagramSocket, so it provides all of the DatagramSocket
methods. We only present methods specific to or adapted for MulticastSocket.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

94 Chapter 4: Beyond the Basics

MulticastSocket: Creation

MulticastSocket()
MulticastSocket(int localPort)
MulticastSocket(SocketAddress bindaddr)

These constructors create a multicast-capable UDP socket. If the local port is not spec-
ified, or is specified as 0, the socket is bound to any available local port. If the address is
specified, the socket is restricted to receiving only on that address.

If we wish to receive any datagrams, we need to join a multicast group.

MulticastSocket: Group management

void joinGroup(InetAddress groupAddress)
void joinGroup(SocketAddress mcastaddr, NetworkInterface netIf)
void leaveGroup(InetAddress groupAddress)
void leaveGroup(SocketAddress mcastaddr, NetworkInterface netIf)

The joinGroup() and leaveGroup() methods manage multicast group membership.
A socket may be a member of multiple groups simultaneously. Joining a group of which
this socket is already a member or leaving a group of which this socket is not a mem-
ber may generate an exception. Optionally, you may specify an interface on which to join/
leave.

MulticastSocket: Setting/Getting multicast options

int getTimeToLive()
void setTimeToLive(int ttl)
boolean getLoopbackMode()
void setLoopbackMode(boolean disable)
InetAddress getInterface()
NetworkInterface getNetworkInterface()
void setInterface(InetAddress inf)
void setNetworkInterface(NetworkInterface netIf)

The getTimeToLive() and setTimeToLive() methods get and set the time-to-live for all
datagrams sent on this socket. A socket with loopback mode enabled will receive the data-
grams it sends. The getLoopbackMode() and setLoopbackMode() methods set the loopback mode

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.4 Controlling Default Behaviors 95

for the multicast socket where setting the loopback mode to true disables loopback. The
getInterface(), setInterface(), getNetworkInterface(), setNetworkInterface() methods set the
outgoing interface used in sending multicast packets. This is primarily used on hosts with
multiple interfaces. The default multicast interface is platform dependent.

The decision to use broadcast or multicast depends on several factors, including the
network location of receivers and the knowledge of the communicating parties. The scope of a
broadcast on the Internet is restricted to a local broadcast network, placing severe restrictions
on the location of the broadcast receivers. Multicast communication may include receivers
anywhere in the network,2 so multicast has the advantage that it can cover a distributed set
of receivers. The disadvantage of IP multicast is that receivers must know the address of a
multicast group to join. Knowledge of an address is not required to receive broadcast. In some
contexts, this makes broadcast a better mechanism than multicast for discovery. All hosts can
receive broadcast by default, so it is simple to ask all hosts on a single network a question like
“Where’s the printer?”

UDP unicast, multicast, and broadcast are all implemented using an underlying UDP
socket. The semantics of most implementations are such that a UDP datagram will be delivered
to all sockets bound to the destination port of the packet. That is, a DatagramSocket or Multi-
castSocket instance bound to a local port X (with local address not specified, i.e., a wild card),
on a host with address Y will receive any UDP datagram destined for port X that is 1) unicast
with destination address Y, 2) multicast to a group that any application on Y has joined, or 3)
broadcast where it can reach host Y. A receiver can use connect() to limit the datagram source
address and port. Also, a DatagramSocket can specify the local unicast address, which prevents
delivery of multicast and broadcast packets. See UDPEchoClientTimeout.java for an example of
destination address verification and Section 6.5 for details on datagram demultiplexing.

4.4 Controlling Default Behaviors

The TCP/IP protocol developers spent a good deal of time thinking about the default behav-
iors that would satisfy most applications. (If you doubt this, read RFCs 1122 and 1123, which
describe in excruciating detail the recommended behaviors—based on years of experience—
for implementations of the TCP/IP protocols.) For most applications, the designers did a good
job; however, it is seldom the case that “one size fits all” really fits all. We have already
seen an example in our UDP echo client. By default, the receive() method of DatagramSocket
blocks indefinitely waiting on a datagram. In our example, we change that behavior by

2At the time of writing of this book, there are severe limitations on who can receive multicast traffic on
the Internet. Multicast should work if the sender and receivers are on the same LAN.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

96 Chapter 4: Beyond the Basics

specifying a timeout for the receive on the UDP socket and in the TimeLimitEchoProtocol, using
setSoTimeout().

4.4.1 Keep-Alive

If no data has been exchanged for a while, each endpoint may be wondering if the other is
still around. TCP provides a keep-alive mechanism where, after a certain time of inactivity, a
probe message is sent to the other endpoint. If the endpoint is alive and well, it sends an
acknowledgment. After a few retries without acknowledgment, the probe sender gives up and
closes the socket, eliciting an exception on the next attempted I/O operation. Note that the
application only sees keep-alive working if the probes fail.

Socket: KeepAlive

boolean getKeepAlive()
void setKeepAlive(boolean on)

By default, keep-alive is disabled. Call the setKeepAlive() method with true to enable
keep-alive.

4.4.2 Send and Receive Buffer Size

When a Socket or DatagramSocket is created, the operating system must allocate buffers to hold
incoming and outgoing data. (We talk about this in much greater detail in Section 6.1.)

Socket, DatagramSocket: Setting/Getting Send/Receive Buffer Size

int getReceiveBufferSize()
void setReceiveBufferSize(int size)
int getSendBufferSize()
void setSendBufferSize(int size)

The getReceiveBufferSize(), setReceiveBufferSize(), getSendBufferSize(), and setSend-
BufferSize() methods get and set the size (bytes) of the receive and send buffers. Note that
these sizes are taken as suggestions so the actual size may not be what you specified.

You can also specify the receive buffer size on a ServerSocket; however, this actually sets
the receive buffer size for new Socket instances created by accept(). Why can you only set the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.4 Controlling Default Behaviors 97

receive buffer size and not the send buffer? When you accept a new Socket, it can immediately
begin receiving data so you need the receive buffer size set before accept() completes the
connection. On the other hand, you control when you send on a newly accepted socket, which
gives you time to set the send buffer size before sending.

ServerSocket: Setting/Getting Accepted Socket Receive Buffer Size

int getReceiveBufferSize()
void setReceiveBufferSize(int size)

The getReceiveBufferSize() and setReceiveBufferSize() methods get and set the size
(bytes) of the receive buffer for Socket instances created by the accept().

4.4.3 Timeout

As we’ve already seen, many I/O operations will block if they cannot complete immediately:
reads block until at least 1 byte is available and accept blocks until a connection is initiated.
Unfortunately, the blocking time is not bounded. We can specify a maximum blocking time for
the various operations.

Socket, ServerSocket, DatagramSocket: Setting/Getting I/O Timeouts

int getSoTimeout()
void setSoTimeout(int timeout)

The getSoTimeout() and setSoTimeout() methods get and set the maximum time (milli-
seconds) to allow read/receive and accept operations to block. A timeout of 0 means the
operation never times out. If the timeout expires, an exception is thrown.

4.4.4 Address Reuse

Under some circumstances, you may want to allow multiple sockets to bind to the same socket
address. In the case of UDP multicast, you may have multiple applications on the same host
participating in the same multicast group. For TCP, when a connection is closed, one (or both)
endpoints must hang around for a while in “Time-Wait” state to vacuum up stray packets
(see Section 6.4.2). Unfortunately, you may not be able to wait for the Time-Wait to expire. In
both cases, you need the ability to bind to an address that’s in use. To enable this, you must
allow address reuse.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

98 Chapter 4: Beyond the Basics

Socket, ServerSocket, DatagramSocket: Setting/Getting Address Reuse

boolean getReuseAddress()
void setReuseAddress(boolean on)

The getReuseAddress() and setReuseAddress() methods get and set reuse address permis-
sions. A value of true means that address reuse is enabled.

4.4.5 Eliminating Buffering Delay

TCP attempts to help you avoid sending small packets, which waste network resources. It
does this by buffering data until it has more to send. While this is good for the network, your
application may not be so tolerant of this buffering delay. Fortunately, you can disable this
behavior.

Socket: Setting/Getting TCP Buffering Delay

boolean getTcpNoDelay()
void setTcpNoDelay(boolean on)

The getTcpNoDelay() and setTcpNoDelay() methods get and set the elimination of buffering
delay. A value of true means that buffering delay is disabled.

4.4.6 Urgent Data

Suppose you’ve sent a bunch of data to a slow receiver and suddenly you have some data that
the receiver needs right now. If you send the data in the output stream, it gets queued up
behind all of the regular data, and who knows when the receiver will see it? To deal with this
TCP includes the concept of urgent data that can (theoretically) skip ahead. Such data is called
out-of-band because it bypasses the normal stream.

Socket: Urgent Data

void sendUrgentData(int data)
boolean getOOBInline()
void setOOBInline(boolean on)

To send urgent data, call the sendUrgentData() method, which sends the least significant
byte of the int parameter. To receive this byte, the receiver must enable out-of-band data
by passing true to setOOBInline(). The byte is received in the input stream of the receiver.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.4 Controlling Default Behaviors 99

Data sent before the urgent byte will precede the urgent byte in the receiver’s input stream. If
reception of out-of-band data is not enabled, the urgent byte is silently discarded.

Note that Java can get little use from urgent data because urgent bytes are mixed in with
regular bytes in the order of transmission. In fact, a Java receiver cannot even tell that it’s
receiving urgent data.

4.4.7 Lingering after close

When you call close() on a socket, it immediately returns even if the socket is buffering unsent
data. The problem is that your host could then fail at a later time without sending all of the
data. You may optionally ask close() to “linger,” or block, by blocking until all of the data is
sent and acked or a timeout expires. See Section 6.4.2 for more details.

Socket: Linger on close()

int getSoLinger()
void setSoLinger(boolean on, int linger)

If you call setSoLinger() with on set to true, then a subsequent close() will block until
all data is acknowledged by the remote endpoint or the specified timeout (seconds) expires. If
the timeout expires, the TCP connection is forceably closed. The getSoLinger() method returns
the timeout if linger is enabled and −1 otherwise.

4.4.8 Broadcast Permission

Some operating systems require that you explicitly request permission to broadcast. You
can control broadcast permissions. As you already know, DatagramSockets provide broadcast
service.

DatagramSocket: Setting/Getting Broadcast Permissions

boolean getBroadcast()
void setBroadcast(boolean on)

The getBroadcast() and setBroadcast() methods get and set broadcast permissions.
A value of true means that broadcast is permitted. By default, Java permits broadcast.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

100 Chapter 4: Beyond the Basics

4.4.9 Traffic Class

Some networks offer enhanced or “premium” services to packets classified as being eligible
for the service. The traffic class of a packet is indicated by a value carried in the packet as it
is transmitted through the network. For example, some networks might give packets in the
“gold service” class higher priority, to provide reduced delay and/or reduced loss probability.
Others might use the indicated traffic class to choose a route for the packet. Beware, however,
that network providers charge extra for such services, so there is no guarantee these options
will actually have any effect.

Socket, DatagramSocket: Setting/Getting Traffic Class

int getTrafficClass()
void setTrafficClass(int tc)

The traffic class is specified as an integer or a set of bit flags. The number and meaning
of the bits depend on the version of IP you are using.

4.4.10 Performance-Based Protocol Selection

TCP may not be the only protocol available to a socket. Which protocol to use depends on
what’s important to your application. Java allows you to give “advice” to the implementation
regarding the importance of different performance characteristics to your application. The
underlying network system may use the advice to choose among different protocols that can
provide equivalent stream services with different performance characteristics.

Socket, ServerSocket: Specifying Protocol Preferences

void setPerformancePreferences(int connectionTime, int latency, int bandwidth)

The performance preference for the socket is expressed by three integers representing
connection time, delay, and bandwith. The specific values are not important; instead, Java
compares the relative values for each criterion and returns the closest-matching, available
protocol. For example, if connectionTime and latency both equal 0 and bandwidth equals 1, the
protocol maximizing bandwidth will be selected. Note that this method must be called before
the socket is connected to be effective.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.5 Closing Connections 101

4.5 Closing Connections

You’ve probably never given much thought to who closes a connection. In phone conversations,
either side can start the process of terminating the call. It typically goes something like this:

"Well, I guess I'd better go."
"Ok. Bye."
"Bye."

Network protocols, on the other hand, are typically very specific about who “closes” first.
In the echo protocol, Figure 4.1(a), the server dutifully echoes everything the client sends.
When the client is finished, it calls close(). After the server has received and echoed all of the
data sent before the client’s call to close(), its read operation returns a −1, indicating that
the client is finished. The server then calls close() on its socket. The close is a critical part of
the protocol because without it the server doesn’t know when the client is finished sending
characters to echo. In HTTP, Figure 4.1(b), it’s the server that initiates the connection close.
Here, the client sends a request (“get”) to the server, and the server responds by sending
a header (normally starting with “200 OK”), followed by the requested file. Since the client
does not know the size of the file, the server must indicate the end-of-file by closing the
socket.

Calling close() on a Socket terminates both directions (input and output) of data flow.
(Section 6.4.2 provides a more detailed description of TCP connection termination.) Once an
endpoint (client or server) closes the socket, it can no longer send or receive data. This means
that close() can only be used to signal the other end when the caller is completely finished
communicating. In the echo protocol, once the server receives the close from the client, it

E
ch

o
 C

li
en

t

"Or Not To Be"

"To Be"

"Or Not To Be"

E
ch

o
 S

er
v

er

"To Be"

Closed

Closed

(a) (b)

"Get /Guide.html ..."

"200 OK ...

...</HTML>"

Closed

Closed

W
eb

 B
ro

w
se

r

H
T

T
P
 S

er
v

er

<HTML>...

Figure 4.1: Echo (a) and HTTP (b) protocol termination.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

102 Chapter 4: Beyond the Basics

immediately closes. In effect, the client close indicates that the communication is completed.
HTTP works the same way, except that the server is the terminator.

Let’s consider a different protocol. Suppose you want a compression server that takes a
stream of bytes, compresses them, and sends the compressed stream back to the client. Which
endpoint should close the connection? Since the stream of bytes from the client is arbitrarily
long, the client needs to close the connection so that the server knows when the stream of
bytes to be compressed ends. When should the client call close()? If the client calls close()
on the socket immediately after it sends the last byte of data, it will not be able to receive
the last bytes of compressed data. Perhaps the client could wait until it receives all of the
compressed data before it closes, as the echo protocol does. Unfortunately, neither the server
nor the client knows how many bytes to expect, so this will not work either. What is needed is a
way to tell the other end of the connection “I am through sending,” without losing the ability to
receive.

Fortunately, sockets provide a way to do this. The shutdownInput() and shutdownOutput()
methods of Socket allow the I/O streams to be closed independently. After shutdownInput(),
the socket’s input stream can no longer be used. Any undelivered data is silently discarded,
and any attempt to read from the socket’s input stream will return −1. After shutdownOutput()
is called on a Socket, no more data may be sent on the socket’s output stream. Attempts to
write to the stream throw an IOException. Any data written before the call to shutdownOutput()
may be read by the remote socket. After that, a read on the input stream of the remote socket
will return −1. An application calling shutdownOutput can continue to read from the socket and,
similarly, data can be written after calling shutdownInput.

In the compression protocol (see Figure 4.2), the client writes the bytes to be compressed,
closing the output stream using shutdownOutput when finished sending, and reads the com-
pressed byte stream from the server. The server repeatedly reads the uncompressed data and
writes the compressed data until the client performs a shutdown, causing the server read
to return −1, indicating an end-of-stream. The server then closes the connection and exits.

Closed

<Uncompressed Bytes>

<Uncompressed Bytes>

C
o
m

p
re

ss
io

n
 C

li
en

t

C
o
m

p
re

ss
io

n
 S

er
v

er

<Compressed Bytes>

<Compressed Bytes>

Shutdown

Figure 4.2: Compression protocol termination.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.5 Closing Connections 103

After the client calls shutdownOutput, it needs to read any remaining compressed bytes from
the server.

Our compression client, CompressClient.java, implements the client side of the compres-
sion protocol. The uncompressed bytes are read from the file specified on the command line,
and the compressed bytes are written to a new file. If the uncompressed filename is “data”, the
compressed filename is “data.gz”. Note that this implementation works for small files, but that
there is a flaw that causes deadlock for large files. (We discuss and correct this shortcoming
in Section 6.2.)

CompressClient.java

0 import java.net.Socket;
1 import java.io.IOException;
2 import java.io.InputStream;
3 import java.io.OutputStream;
4 import java.io.FileInputStream;
5 import java.io.FileOutputStream;
6
7 /* WARNING: this code can deadlock if a large file (more than a few
8 * 10's of thousands of bytes) is sent.
9 */

10
11 public class CompressClient {
12
13 public static final int BUFSIZE = 256; // Size of read buffer
14
15 public static void main(String[] args) throws IOException {
16
17 if (args.length != 3) { // Test for correct # of args
18 throw new IllegalArgumentException("Parameter(s): <Server> <Port> <File>");
19 }
20
21 String server = args[0]; // Server name or IP address
22 int port = Integer.parseInt(args[1]); // Server port
23 String filename = args[2]; // File to read data from
24
25 // Open input and output file (named input.gz)
26 FileInputStream fileIn = new FileInputStream(filename);
27 FileOutputStream fileOut = new FileOutputStream(filename + ".gz");
28
29 // Create socket connected to server on specified port
30 Socket sock = new Socket(server, port);
31
32 // Send uncompressed byte stream to server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

104 Chapter 4: Beyond the Basics

33 sendBytes(sock, fileIn);
34
35 // Receive compressed byte stream from server
36 InputStream sockIn = sock.getInputStream();
37 int bytesRead; // Number of bytes read
38 byte[] buffer = new byte[BUFSIZE]; // Byte buffer
39 while ((bytesRead = sockIn.read(buffer)) != -1) {
40 fileOut.write(buffer, 0, bytesRead);
41 System.out.print("R"); // Reading progress indicator
42 }
43 System.out.println(); // End progress indicator line
44
45 sock.close(); // Close the socket and its streams
46 fileIn.close(); // Close file streams
47 fileOut.close();
48 }
49
50 private static void sendBytes(Socket sock, InputStream fileIn)
51 throws IOException {
52 OutputStream sockOut = sock.getOutputStream();
53 int bytesRead; // Number of bytes read
54 byte[] buffer = new byte[BUFSIZE]; // Byte buffer
55 while ((bytesRead = fileIn.read(buffer)) != -1) {
56 sockOut.write(buffer, 0, bytesRead);
57 System.out.print("W"); // Writing progress indicator
58 }
59 sock.shutdownOutput(); // Finished sending
60 }
61 }

CompressClient.java

1. Application setup and parameter parsing: lines 17–23

2. Create socket and open files: lines 25–30

3. Invoke sendBytes() to transmit bytes: line 33

4. Receive the compressed data stream: lines 35–42
The while loop receives the compressed data stream and writes the bytes to the output
file until an end-of-stream is signaled by a −1 from read().

5. Close socket and file streams: lines 45–47

6. sendBytes(): lines 50–60
Given a socket connected to a compression server and the file input stream, read all of
the uncompressed bytes from the file and write them to the socket output stream.

� Get socket output stream: line 52

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.5 Closing Connections 105

� Send uncompressed bytes to compression server: lines 55–58
The while loop reads from the input stream (in this case from a file) and repeats the
bytes to the socket output stream until end-of-file, indicated by −1 from read(). Each
write is indicated by a “W” printed to the console.

� Shut down the socket output stream: line 59
After reading and sending all of the bytes from the input file, shut down the output
stream, notifying the server that the client is finished sending. The close will cause a
−1 return from read() on the server.

To implement the compression server, we simply write a protocol for our threaded server
architecture. Our protocol implementation, CompressProtocol.java, implements the server-side
compression protocol using the GZIP compression algorithm. The server receives the uncom-
pressed bytes from the client and writes them to a GZIPOutputStream, which wraps the socket’s
output stream.

CompressProtocol.java

0 import java.net.Socket;
1 import java.io.IOException;
2 import java.io.InputStream;
3 import java.io.OutputStream;
4 import java.util.zip.GZIPOutputStream;
5 import java.util.logging.Logger;
6 import java.util.logging.Level;
7
8 public class CompressProtocol implements Runnable {
9

10 public static final int BUFSIZE = 1024; // Size of receive buffer
11 private Socket clntSock;
12 private Logger logger;
13
14 public CompressProtocol(Socket clntSock, Logger logger) {
15 this.clntSock = clntSock;
16 this.logger = logger;
17 }
18
19 public static void handleCompressClient(Socket clntSock, Logger logger) {
20 try {
21 // Get the input and output streams from socket
22 InputStream in = clntSock.getInputStream();
23 GZIPOutputStream out = new GZIPOutputStream(clntSock.getOutputStream());
24
25 byte[] buffer = new byte[BUFSIZE]; // Allocate read/write buffer
26 int bytesRead; // Number of bytes read

http://lib.ommolketab.ir
http//lib.ommolketab.ir

106 Chapter 4: Beyond the Basics

27 // Receive until client closes connection, indicated by -1 return
28 while ((bytesRead = in.read(buffer)) != -1)
29 out.write(buffer, 0, bytesRead);
30 out.finish(); // Flush bytes from GZIPOutputStream
31
32 logger.info("Client " + clntSock.getRemoteSocketAddress() + " finished");
33 } catch (IOException ex) {
34 logger.log(Level.WARNING, "Exception in echo protocol", ex);
35 }
36
37 try { // Close socket
38 clntSock.close();
39 } catch (IOException e) {
40 logger.info("Exception = " + e.getMessage());
41 }
42 }
43
44 public void run() {
45 handleCompressClient(this.clntSock, this.logger);
46 }
47 }

CompressProtocol.java

1. Variables and constructors: lines 10–17

2. handleCompressClient(): lines 19–42
Given a socket connected to the compression client, read the uncompressed bytes from
the client and write the compressed bytes back.

� Get socket I/O streams: lines 22–23
The socket’s output stream is wrapped in a GZIPOutputStream. The sequence of bytes
written to this stream is compressed, using the GZIP algorithm, before being written
to the underlying output stream.

� Read uncompressed and write compressed bytes: lines 28–29
The while loop reads from the socket input stream and writes to the GZIPOutputStream,
which in turn writes to the socket output stream, until the end-of-stream indication is
received.

� Flush and close: lines 30–42
Calling finish on the GZIPOutputStream is necessary to flush any bytes that may be
buffered by the compression algorithm.

� run() method: lines 44–46
The run() method simply calls the handleCompressClient() method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4.7 Wrapping Up 107

To use this protocol we simply modify TCPEchoServerExecutor.java to create an instance
of CompressProtocol instead of EchoProtocol:

service.execute(new CompressProtocol(clntSock, logger));

4.6 Applets

Applets can perform network communication using TCP/IP sockets, but there are severe
restrictions on how and with whom they can converse. Without such restrictions, unsuspect-
ing Web browsers might execute malicious applets that could, for example, send fake email,
attempt to hack other systems while the browser user gets the blame, and so on. These secu-
rity restrictions are enforced by the Java security manager, and violations by the applet result
in a SecurityException. Typically, browsers only allow applets to communicate with the host
that served the applet. This means that applets are usually restricted to communicating with
applications executing on that host, usually a Web server originating the applet. The list of
security restrictions and general applet programming is beyond the scope of this book. It is
worth noting, however, that the default security restrictions can be altered, if allowed by the
browser user.

Suppose that you wanted to implement an applet that allowed users to type and save
notes to themselves on their browser. Browser security restrictions prevent applets from
saving data directly on the local file system, so you would need some other means besides
local disk I/O to save the notes. FileClientApplet.java (available from the book’s Web site)
is an applet that allows the user to type text into an editor window and, by clicking the
“Save” button, copy the text over the network to a server (running on port 5000). The server,
TCPFileServer.java (also on the book’s Web site), saves the data to a file. It takes a port (use
5000 to work with the applet) and the name of the file. The server must execute on the Web
server that serves the applet to the browser. Note that there is nothing applet-specific about
the server. FileClientApplet.html on the Web site demonstrates how to integrate the applet
into a Web page.

4.7 Wrapping Up

We have discussed some of the ways Java provides access to advanced features of the sockets
API, and how built-in features such as threads and executors can be used with socket programs.
In addition to these facilities, Java provides several mechanisms (not discussed here) that
operate on top of TCP or UDP and attempt to hide the complexity of protocol development. For
example, Java Remote Method Invocation (RMI) allows Java objects on different hosts to invoke
one another’s methods as if the objects all reside locally. The URL class and associated classes
provide a framework for developing Web-related programs. Many other standard Java library

http://lib.ommolketab.ir
http//lib.ommolketab.ir

108 Chapter 4: Beyond the Basics

mechanisms exist, providing an amazing range of services. These mechanisms are beyond the
scope of this book; however, we encourage you to look at the book’s Web site for descriptions
and code examples for some of these libraries.

4.8 Exercises

1. State precisely the conditions under which an iterative server is preferable to a multipro-
cessing server.

2. Would you ever need to implement a timeout in a client or server that uses TCP?

3. How can you determine the minimum and maximum allowable sizes for a socket’s send
and receive buffers? Determine the minimums for your system.

4. Modify TCPEchoClient.java so that it closes its output side of the connection before
attempting to receive any echoed data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c h a p t e r 5

NIO

This chapter introduces the main facilities of the “New I/O” packages. There are
two important parts: the java.nio.channels package, which introduces the Selector and
Channel abstractions, and the java.nio package, which introduces the Buffer abstraction. These
are fairly advanced features, with a number of subtle details related to their usage. Therefore
this chapter is organized a little differently than the earlier ones. In the first subsection we’ll
motivate the NIO features by describing some problems that they are intended to solve—
specifically, challenges that arise in building high-performance servers without them. (If you
don’t care about the “why?” question, feel free to skip this section.) In Section 5.2, we present
(as usual) a client for the (TCP) “echo” protocol that shows the use of SocketChannel and Buffer
classes, as well as the nonblocking features of Channel, which differ from those we saw in
Section 4.2. In Section 5.3, we show a server that uses the Selector, Channel, and Buffer abstrac-
tions. Then we go back and cover the details of usage of the main abstractions, each in its own
section. Finally, Section 5.7 introduces the DatagramChannel class (the channelized version of
DatagramSocket).

5.1 Why Do We Need This?

Basic Java Sockets work well for small-scale systems. But when it comes to servers that have to
deal with many thousands of clients simultaneously, certain issues arise. We saw signs of this
in Chapter 4: the thread-per-client approach is limited in terms of scalability because of the
overhead associated with creating, maintaining, and swapping between threads. Using a thread

109

http://lib.ommolketab.ir
http//lib.ommolketab.ir

110 Chapter 5: NIO

pool saves on that kind of overhead while still allowing an implementor to take advantage of
parallel hardware, but for protocols with long-lived connections, the size of the thread pool
still limits the number of clients that can be handled simultaneously. Consider an instant mes-
saging server that relays messages between clients. Clients must be continuously connected to
receive messages, so the thread pool size limits the total number of clients that can be served.
Increasing the thread pool size increases the thread-handling overhead without improving
performance, because most of the time clients are idle.

If this were all there is to it, NIO might not be needed. Unfortunately, there are other,
more subtle challenges involved with using threads for scalability. One is that the program-
mer has very little control over which threads receive service when. You can set a Thread
instance’s priority (higher-priority threads get preference over lower-priority ones), but ulti-
mately the priority is just “advice”—which thread is chosen to run next is entirely up to
the implementation.1 Thus, if a programmer wants to ensure that certain connections get
served before others, or impose a specific order of service, threads may make it harder to
do that.

But the most important issue with threads is probably one we haven’t encountered yet.
That’s because in our “echo service” examples, each client served is completely independent
of all others; clients do not interact with each other or affect the state of the server. How-
ever, some (most) servers have some information—what we call “state”—that needs to be
accessed or modified by different clients at the same time. Think of a service that allows
citizens to reserve parking spaces for one-hour blocks in a big city, for example. The schedule of
who gets which space for which time blocks must be kept consistent; the server may also need
to ensure that the same user does not reserve more than one space at a time. These constraints
require that some state information (i.e., the schedule) be shared across all clients. This in turn
requires that access to that state be carefully synchronized through the use of locks or other
mutual exclusion mechanisms. Otherwise, since the scheduler can interleave program steps
from different threads more or less arbitrarily, different threads that are trying to update the
schedule concurrently might overwrite each other’s changes.

The need to synchronize access to shared state makes it significantly harder to think
about both correctness and performance of a threaded server. The reasons for this added
complexity are beyond the scope of this book, but suffice it to say that the use of the required
synchronization mechanisms adds still more scheduling and context-switching overhead, over
which the programmer has essentially no control.

Because of these complications, some programmers prefer to stick with a single-threaded
approach, in which the server has only one thread, which deals with all clients—not sequen-
tially, but all at once. Such a server cannot afford to block on an I/O operation with any
one client, and must use nonblocking I/O exclusively. Recall that with nonblocking I/O, we

1One of the “official” reference books on Java says it this way: “There are no guarantees, only a general
expectation that preference is typically given to running higher-priority threads.… Do not rely on thread
priority for algorithm correctness” [1], pages 358–359.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.1 Why Do We Need This? 111

specify the maximum amount of time that a call to an I/O method may block (including zero).
We saw an example of this in Chapter 4, where we set a timeout on the accept operation
(via the setSoTimeout() method of ServerSocket). When we call accept() on that ServerSocket
instance, if a new connection is pending, accept() returns immediately; otherwise it blocks
until either a connection comes in or the timer expires, whichever comes first. This allows
a single thread to handle multiple connections. Unfortunately, the approach requires that
we constantly poll all sources of I/O, and that kind of “busy waiting” approach again intro-
duces a lot of overhead from cycling through connections just to find out that they have
nothing to do.

What we need is a way to poll a set of clients all at once, to find out which ones need
service. That is exactly the point of the Selector and Channel abstractions introduced in NIO.
A Channel instance represents a “pollable” I/O target such as a socket (or a file, or a device).
Channels can register an instance of class Selector. The select() method of Selector allows
you to ask “Among the set of channels, which ones are currently ready to be serviced (i.e.,
accepted, read, or written)?” There are numerous details to be covered later, but that’s the
basic motivation for Selector and Channel, both of which are part of the java.nio.channels
package.

The other major feature introduced in NIO is the Buffer class. Just as selectors and chan-
nels give greater control and predictability of the overhead involved with handling many clients
at once, Buffer enables more efficient, predictable I/O than is possible with the Stream abstrac-
tion. The nice thing about the stream abstraction is that it hides the finiteness of the underlying
buffering, providing the illusion of an arbitrary-length container. The bad thing is that imple-
menting that illusion may require either lots of memory allocation or lots of context-switching,
or both. As with threads, this overhead is buried in the implementation, and is therefore not
controllable or predictable. That approach makes it easy to write programs, but harder to
tune their performance. Unfortunately, if you use the Java Socket abstraction, streams are all
you’ve got.

That’s why channels are designed around the use of Buffer instances to pass data
around. The Buffer abstraction represents a finite-capacity container for data—essentially,
an array with associated pointers indicating where to put data in, and where to read data
out. There are two main advantages to using Buffer. First, the overhead associated with
reading from and writing to the buffer is exposed to the programmer. For example, if you
want to put data into a buffer but there’s not enough room, you have to do something to
make more room (i.e., get some data out, or move data that’s already there to make more
room, or create a new instance). This represents extra work, but you (the programmer) con-
trol how, whether, and when it happens. A smart programmer, who knows the application
requirements well, can often reduce overhead by tweaking these choices. Second, some spe-
cialized flavors of Buffer map operations on the Java object directly to operations on resources
of the underlying platform (for example, to buffers in the operating system). This saves
some copying of data between different address spaces—an expensive operation on modern
architectures.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

112 Chapter 5: NIO

5.2 Using Channels with Buffers

As we said above, a Channel instance represents a connection to a device through which we can
perform I/O. In fact the basic ideas are very similar to what we’ve already seen with plain sock-
ets. For TCP, use the ServerSocketChannel and SocketChannel. There are other types of channels
for other devices (e.g., FileChannel), and most of what we say here applies to them as well,
although we do not mention them further. One difference between channels and sockets is
that typically one obtains a channel instance by calling a static factory method:

SocketChannel clntChan = SocketChannel.open();
ServerSocketChannel servChan = ServerSocketChannel.open();

Channels do not use streams; instead, they send/receive data from/to buffers. An
instance of Buffer or any of its subclasses can be viewed as a fixed-length sequence of ele-
ments of a single primitive Java type. Unlike streams, buffers have fixed, finite capacity, and
internal (but accessible) state that keeps track of how much data has been put in or taken
out; they behave something like queues with finite capacity. The Buffer class is abstract;
you get a buffer by creating an instance of one of its subtypes, each of which is designed
to hold one of the primitive Java types (with the exception of boolean). Thus each instance is a
FloatBuffer, or an IntBuffer, or a ByteBuffer, etc. (The ByteBuffer is the most flexible of these
and will be used in most of our examples.) As with channels, constructors are not typically used
to create buffer instances; instead they are created either by calling allocate(), specifying a
capacity:

ByteBuffer buffer = ByteBuffer.allocate(CAPACITY);

or by wrapping an existing array:

ByteBuffer buffer = ByteBuffer.wrap(byteArray);

Part of the power of NIO comes from the fact that channels can be made nonblocking.
Recall that some socket operations can block indefinitely. For example, a call to accept() can
block waiting for a client to connect; a call to read() can block until data arrives from the other
end of a connection. In general, I/O calls that make/accept a connection or read/write data
can block indefinitely until something happens in the underlying network implementations.
A slow, lossy, or just plain broken network can cause an arbitrary delay. Unfortunately, in
general we don’t know if a method call will block before we make it. An important feature
of the NIO channel abstraction is that we can make a channel nonblocking by configuring its
blocking behavior:

clntChan.configureBlocking(false);

Calls to methods on a nonblocking channel always return immediately. The return
value of such a call indicates the extent to which the requested operation was achieved.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.2 Using Channels with Buffers 113

For example, a call to accept() on a nonblocking ServerSocketChannel returns the client
SocketChannel if a connection is pending and null otherwise.

Let’s construct a nonblocking TCP echo client. The I/O operations that may block
include connecting, reading, and writing. With a nonblocking channel, these operations return
immediately. We must repeatedly call these operations until we have successfully completed
all I/O.

TCPEchoClientNonblocking.java

0 import java.net.InetSocketAddress;
1 import java.net.SocketException;
2 import java.nio.ByteBuffer;
3 import java.nio.channels.SocketChannel;
4
5 public class TCPEchoClientNonblocking {
6
7 public static void main(String args[]) throws Exception {
8
9 if ((args.length < 2) || (args.length > 3)) // Test for correct # of args

10 throw new IllegalArgumentException("Parameter(s): <Server> <Word> [<Port>]");
11
12 String server = args[0]; // Server name or IP address
13 // Convert input String to bytes using the default charset
14 byte[] argument = args[1].getBytes();
15
16 int servPort = (args.length == 3) ? Integer.parseInt(args[2]) : 7;
17
18 // Create channel and set to nonblocking
19 SocketChannel clntChan = SocketChannel.open();
20 clntChan.configureBlocking(false);
21
22 // Initiate connection to server and repeatedly poll until complete
23 if (!clntChan.connect(new InetSocketAddress(server, servPort))) {
24 while (!clntChan.finishConnect()) {
25 System.out.print("."); // Do something else
26 }
27 }
28 ByteBuffer writeBuf = ByteBuffer.wrap(argument);
29 ByteBuffer readBuf = ByteBuffer.allocate(argument.length);
30 int totalBytesRcvd = 0; // Total bytes received so far
31 int bytesRcvd; // Bytes received in last read
32 while (totalBytesRcvd < argument.length) {
33 if (writeBuf.hasRemaining()) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

114 Chapter 5: NIO

34 clntChan.write(writeBuf);
35 }
36 if ((bytesRcvd = clntChan.read(readBuf)) == -1) {
37 throw new SocketException("Connection closed prematurely");
38 }
39 totalBytesRcvd += bytesRcvd;
40 System.out.print("."); // Do something else
41 }
42
43 System.out.println("Received: " + // convert to String per default charset
44 new String(readBuf.array(), 0, totalBytesRcvd));
45 clntChan.close();
46 }
47 }

TCPEchoClientNonblocking.java

1. Get and convert arguments: lines 9–16

2. Create nonblocking SocketChannel: lines 19–20

3. Connect to server: lines 23–27
Because the socket is nonblocking, the call to connect() may return before the connection
is established; the method returns true if the connection completes before it returns,
false otherwise. In the latter case, any attempt to send/receive will throw a NotYetConnect-
edException, so we “poll” the status continually by calling finishConnect(), which returns
false until the connection completes. The print operation demonstrates that we can
perform other tasks while waiting for the connection to complete. Such a busy wait is
generally wasteful; we do it here to illustrate the use of the methods.

4. Create read/write buffers: lines 28–29
We create the ByteBuffer instances we’ll use for writing and reading by wrapping the
byte[] containing the string we want to send, and allocating a new instance the same size
as that array, respectively.

5. Loop until we have sent and received all the bytes: lines 32–41
Call write() as long as the output buffer has anything left in it. The call to read() does not
block but rather returns 0 when no data is available to return. Again, the print operation
demonstrates that we can perform other tasks while waiting for the communication to
complete.

6. Print the received data: lines 43–44

7. Close the channel: line 45
Like sockets, channels should be closed when they are no longer needed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.3 Selectors 115

5.3 Selectors

As noted in the first section of this chapter, the Selector class allows us to avoid the wasteful
“busy waiting” approach we saw in the nonblocking client. Consider an Instant Messaging
server, for example. Thousands of clients may be connected, but only a few (possibly none)
have messages waiting to be read and relayed at any time. We need a way to block just until
at least one channel is ready for I/O, and to tell which channels are ready. NIO selectors do
all of this. An instance of Selector can simultaneously check (and wait, if desired) for I/O
opportunities on a set of channels. In technical terms, a selector is a multiplexor because a
single selector can manage I/O on multiple channels.

To use a selector, create it (using the static factory method open()) and register it
with the channels that you wish to monitor (note that this is done via a method of the
channel, not the selector). Finally, call the selector’s select() method, which blocks until
one or more channels are ready for I/O or a timeout expires. When select() returns,
it tells you the number of channels ready for I/O. Now, in a single thread, we can
check for ready I/O on several channels by calling select(). If no I/O becomes ready
after a certain amount of time, select() returns 0 and allows us to continue on with
other tasks.

Let’s look at an example. Suppose we want to implement an echo server using channels
and a selector without using multiple threads or busy waiting. To make it easier to use this
basic server pattern with different protocols, we have factored out the protocol-specific details
of how each type of I/O (accepting, reading, and writing) is handled through the channel.
TCPProtocol defines the interface between the generic TCPSelectorServer.java and the specific
protocol. It includes three methods, one for each form of I/O; the server simply invokes the
appropriate method once a channel becomes ready.

TCPProtocol.java

0 import java.nio.channels.SelectionKey;
1 import java.io.IOException;
2
3 public interface TCPProtocol {
4 void handleAccept(SelectionKey key) throws IOException;
5 void handleRead(SelectionKey key) throws IOException;
6 void handleWrite(SelectionKey key) throws IOException;
7 }

TCPProtocol.java

Now for the server. We create a selector and register it with a ServerSocketChannel for
each socket on which the server listens for incoming client connections. Then we loop forever,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

116 Chapter 5: NIO

invoking select(), and calling the appropriate handler routine for whatever type of I/O is
appropriate.

TCPServerSelector.java

0 import java.io.IOException;
1 import java.net.InetSocketAddress;
2 import java.nio.channels.SelectionKey;
3 import java.nio.channels.Selector;
4 import java.nio.channels.ServerSocketChannel;
5 import java.util.Iterator;
6
7 public class TCPServerSelector {
8
9 private static final int BUFSIZE = 256; // Buffer size (bytes)

10 private static final int TIMEOUT = 3000; // Wait timeout (milliseconds)
11
12 public static void main(String[] args) throws IOException {
13
14 if (args.length < 1) { // Test for correct # of args
15 throw new IllegalArgumentException("Parameter(s): <Port> ...");
16 }
17
18 // Create a selector to multiplex listening sockets and connections
19 Selector selector = Selector.open();
20
21 // Create listening socket channel for each port and register selector
22 for (String arg : args) {
23 ServerSocketChannel listnChannel = ServerSocketChannel.open();
24 listnChannel.socket().bind(new InetSocketAddress(Integer.parseInt(arg)));
25 listnChannel.configureBlocking(false); // must be nonblocking to register
26 // Register selector with channel. The returned key is ignored
27 listnChannel.register(selector, SelectionKey.OP_ACCEPT);
28 }
29
30 // Create a handler that will implement the protocol
31 TCPProtocol protocol = new EchoSelectorProtocol(BUFSIZE);
32
33 while (true) { // Run forever, processing available I/O operations
34 // Wait for some channel to be ready (or timeout)
35 if (selector.select(TIMEOUT) == 0) { // returns # of ready chans
36 System.out.print(".");
37 continue;
38 }
39

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.3 Selectors 117

40 // Get iterator on set of keys with I/O to process
41 Iterator<SelectionKey> keyIter = selector.selectedKeys().iterator();
42 while (keyIter.hasNext()) {
43 SelectionKey key = keyIter.next(); // Key is bit mask
44 // Server socket channel has pending connection requests?
45 if (key.isAcceptable()) {
46 protocol.handleAccept(key);
47 }
48 // Client socket channel has pending data?
49 if (key.isReadable()) {
50 protocol.handleRead(key);
51 }
52 // Client socket channel is available for writing and
53 // key is valid (i.e., channel not closed)?
54 if (key.isValid() && key.isWritable()) {
55 protocol.handleWrite(key);
56 }
57 keyIter.remove(); // remove from set of selected keys
58 }
59 }
60 }
61 }

TCPServerSelector.java

1. Setup: lines 14–19
Verify at least one argument, create a Selector instance.

2. Create a ServerSocketChannel for each port: lines 22–28
� Create a ServerSocketChannel: line 23

� Make it listen on the given port: line 24
We have to fetch the underlying ServerSocket and invoke its bind() method on the port
given as argument. Any argument other than a number in the appropriate range will
result in an IOException.

� Make it nonblocking: line 25
Only nonblocking channels can register selectors, so we configure the blocking state
appropriately.

� Register selector with channel: line 27
We indicate our interest in the “accept” operation during registration.

3. Create protocol handler: line 31
To get access to the handler methods for the Echo protocol, we create an instance of the
EchoSelectorProtocol, which exports the required methods.

4. Loop forever, waiting for I/O, invoking handler: lines 33–59

http://lib.ommolketab.ir
http//lib.ommolketab.ir

118 Chapter 5: NIO

� Select: line 35
This version of the select() method blocks until some channel becomes ready or until
the timeout expires. It returns the number of ready channels; zero indicates that the
timeout expired, in which case we print a dot to mark the passage of time and iterate.

� Get selected key set: line 41
The selectedKeys() method returns a Set, for which we get an Iterator. The set contains
the SelectionKey (created at registration time) of each channel that is ready for one
of the I/O operations of interest (specified at registration time).

� Iterate over keys, checking ready operations: lines 42–58
For each key, we check whether it is ready for accept(), readable, and/or writable,
invoking the appropriate handler method to perform the indicated operation in
each case.

� Remove the key from the set: line 57
The select() operation only adds to the set of selected keys associated with a Selector.
Therefore if we do not remove each key as we process it, it will remain in the set across
the next call to select(), and a useless operation may be invoked on it.

TCPServerSelector is protocol agnostic for the most part; only the single line of code
assigning the value of protocol is protocol-specific. All protocol details are contained in the
implementation of the TCPProtocol interface. EchoSelectorProtocol provides an implementation
of the handlers for the Echo protocol. You could easily write your own protocol handlers for
other protocols or performance improvements on our Echo protocol handler implementation.

EchoSelectorProtocol.java

0 import java.nio.channels.SelectionKey;
1 import java.nio.channels.SocketChannel;
2 import java.nio.channels.ServerSocketChannel;
3 import java.nio.ByteBuffer;
4 import java.io.IOException;
5
6 public class EchoSelectorProtocol implements TCPProtocol {
7
8 private int bufSize; // Size of I/O buffer
9

10 public EchoSelectorProtocol(int bufSize) {
11 this.bufSize = bufSize;
12 }
13
14 public void handleAccept(SelectionKey key) throws IOException {
15 SocketChannel clntChan = ((ServerSocketChannel) key.channel()).accept();
16 clntChan.configureBlocking(false); // Must be nonblocking to register
17 // Register the selector with new channel for read and attach byte buffer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.3 Selectors 119

18 clntChan.register(key.selector(), SelectionKey.OP_READ, ByteBuffer.allocate(bufSize));
19
20 }
21
22 public void handleRead(SelectionKey key) throws IOException {
23 // Client socket channel has pending data
24 SocketChannel clntChan = (SocketChannel) key.channel();
25 ByteBuffer buf = (ByteBuffer) key.attachment();
26 long bytesRead = clntChan.read(buf);
27 if (bytesRead == -1) { // Did the other end close?
28 clntChan.close();
29 } else if (bytesRead > 0) {
30 // Indicate via key that reading/writing are both of interest now.
31 key.interestOps(SelectionKey.OP_READ | SelectionKey.OP_WRITE);
32 }
33 }
34
35 public void handleWrite(SelectionKey key) throws IOException {
36 /*
37 * Channel is available for writing, and key is valid (i.e., client channel
38 * not closed).
39 */
40 // Retrieve data read earlier
41 ByteBuffer buf = (ByteBuffer) key.attachment();
42 buf.flip(); // Prepare buffer for writing
43 SocketChannel clntChan = (SocketChannel) key.channel();
44 clntChan.write(buf);
45 if (!buf.hasRemaining()) { // Buffer completely written?
46 // Nothing left, so no longer interested in writes
47 key.interestOps(SelectionKey.OP_READ);
48 }
49 buf.compact(); // Make room for more data to be read in
50 }
51
52 }

EchoSelectorProtocol.java

1. Declaration of implementation of the TCPProtocol interface: line 6

2. Member variables and constructor: lines 8–12
Each instance contains the size of buffer to be created for each client channel.

3. handleAccept(): lines 14–20

� Get channel from key and accept connection: line 15
The channel() method returns the Channel that created the key at registration time. (We
know it’s a ServerSocketChannel because that’s the only kind we registered with that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

120 Chapter 5: NIO

supports the “accept” operation.) The accept() method returns a SocketChannel for the
incoming connection.

� Make nonblocking: line 16
Again, we cannot register with a blocking channel.

� Register selector with channel: lines 18–19
As with the channel, we can retrieve the Selector associated with the SelectionKey via
its selector() method. We create a new ByteBuffer of the required size, and pass it
as argument to register(). It will be associated as an attachment to the SelectionKey
instance returned by the register() method. (We ignore the returned key now, but will
access it through the selected keys set if the channel becomes ready for I/O.)

4. handleRead(): lines 22–33

� Get channel associated with key: line 24
We know this is a SocketChannel because it supports reading.

� Get buffer associated with key: line 25
When the connection was associated, a ByteBuffer was attached to this SelectionKey
instance.

� Read from the channel: line 27

� Check for end of stream and close channel: lines 27–28
If the read() returns −1, we know the underlying connection closed, and close the
channel in that case. Closing the channel removes its associated key from the selector’s
various sets.

� If data received, indicate interest in writing: lines 29–31
Note that we are still interested in reading, although there may not be any room left in
the buffer.

5. handleWrite(): lines 35–50

� Retrieve buffer containing received data: line 41
The ByteBuffer attached to the given SelectionKey contains data read earlier from the
channel.

� Prepare buffer for writing: line 42
The Buffer’s internal state indicates where to put data next, and how much space is left.
The flip() operation modifies the state so it indicates from where to get data for the
write() operation, and how much data is left. (This is explained in detail in the next
section.) The effect is that the write operation will start consuming the data produced
by the earlier read.

� Get channel: line 43

� Write to channel: line 44

� If buffer empty, lose interest in writing: lines 45–48
If there is no received data left in the buffer, we modify the interest set associated with
the key so that it indicates only read is of interest.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.4 Buffers in Detail 121

� Compact the buffer: line 49
If there is data remaining in the buffer, this operation moves it to the front of the
buffer so more data can be read on the next iteration (semantics of this operation
are covered in more detail in Section 5.4.5). In any case, the operation resets the
state so the buffer is again ready for reading. Note that the buffer associated with
a channel is always set up for reading except when control is inside the handleWrite()
method.

We are now ready to delve into the details of the three main NIO abstractions.

5.4 Buffers in Detail

As you’ve already seen, in NIO data is read into and written from buffers. Channels read data
into buffers. We then access the data through the buffer. To write data, we first fill the buffer
with data in the order we wish to send it. Basically, a buffer is just a list where all of the elements
are a single primitive type (typically bytes). A buffer is fixed-length; it cannot expand like some
other classes (e.g., List, StringBuffer, etc). Note that ByteBuffer is commonly used because 1) it
provides methods for reading and writing other types, and 2) the channel read/write methods
accept only ByteBuffers. So what good are IntBuffer, DoubleBuffer, and the others? Stay tuned!
The answer will be revealed in Section 5.4.6.

5.4.1 Buffer Indices

A buffer goes beyond just storing a list of elements. It has internal state that keeps track of
the current position when reading data from or writing data to the buffer, as well as the end
of valid data for reading, etc. To do this, each buffer maintains four indices into its list of
elements; they are shown in Table 5.1. (We’ll see shortly how the indices are modified by the
various buffer methods.)

Index Description Accessor/Mutator/Usage

capacity Number of elements in buffer (Immutable) int capacity()

position Next element to read/write int position()

(numbered from 0) Buffer position(int newPosition)

limit First unreadable/unwritable element int limit()

Buffer limit(int newLimit)

mark User-chosen prev. value of position, or 0 Buffer mark()

Buffer reset()

Table 5.1: Buffer Internal State

http://lib.ommolketab.ir
http//lib.ommolketab.ir

122 Chapter 5: NIO

The distance between the position and limit tells us the number of bytes available for
getting/putting. Java provides two convenience methods for evaluating this distance.

ByteBuffer: Remaining Bytes

boolean hasRemaining()
int remaining()

hasRemaining() returns true if at least one element is available, and remaining() returns
the number of elements available.

The following relationships among these variables are maintained as an invariant:

0 ≤ mark ≤ position ≤ limit ≤ capacity

The mark value “remembers” a position so you can come back to it later; the reset() method
returns the position to the value it had when mark() was last called (unless doing so would
violate the above invariant).

5.4.2 Buffer Creation

Typically, we create buffers either by allocation or by wrapping an array of primitives. The
static factory methods for creating a ByteBuffer are shown in Table 5.2, along with the initial
values of capacity, position, and limit for the returned instance. The initial value of mark is
undefined for all newly created Buffer instances; attempts to reset() the position before calling
mark() result in an InvalidMarkException.

To allocate a fresh instance, we simply call the static allocate() method for the type of
buffer we want, specifying the number of elements:

ByteBuffer byteBuf = ByteBuffer.allocate(20);
DoubleBuffer dblBuf = DoubleBuffer.allocate(5);

Method Capacity Position Limit

ByteBuffer allocate(int capacity) capacity 0 capacity

ByteBuffer allocateDirect(int capacity) capacity 0 capacity

ByteBuffer wrap(byte[] array) array.length 0 array.length

ByteBuffer wrap(byte[] array, int offset, int length) array.length offset offset + length

Table 5.2: ByteBuffer Creation Methods

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.4 Buffers in Detail 123

Here byteBuf holds 20 bytes, and dblBuf holds 5 Java doubles. These buffers are fixed-size so
they can never be expanded or contracted. If you find that the buffer you just allocated is too
short, your only option is to allocate a new, correctly sized buffer.

We can also create a buffer from an existing array by calling the static wrap() method and
passing the array to be wrapped

byteArray[] = new byte[BUFFERSIZE];
// ...Fill array...
ByteBuffer byteWrap = ByteBuffer.wrap(byteArray);
ByteBuffer subByteWrap = ByteBuffer.wrap(byteArray, 3, 3);

A buffer created by wrapping contains the data from the wrapped array. In fact, wrap() simply
creates a buffer with a reference to the wrapped array, called the backing array. Any change
to the data in the backing array changes the data in the buffer and vice versa. If we specify
an offset and length to wrap(), the buffer is backed by the entire array with position and limit
initially set to offset and offset + length. The elements preceding the offset and following the
length are still accessible via the buffer.

Creation of a buffer by allocation isn’t really so different from wrapping. The only real
difference is that allocate() creates its own backing array. You can get a reference to this
backing array by calling array() on the buffer. You can even get the offset into the backing
array of the first element used by the buffer by calling arrayOffset(). A buffer created with
wrap() with a nonzero offset still has an array offset of 0.

So far, all of our buffers store data in Java-allocated backing arrays. Typically, the
underlying platform (operating system) cannot use these buffers to perform I/O. Instead the
OS must use its own buffers for I/O and copy the results to/from the buffer’s backing array.
Such copying can get expensive, especially if there are many reads and writes requiring copy-
ing. Java NIO provides direct buffers as a way around this problem. With a direct buffer, Java
allocates the backing store of the buffer from storage that the platform can use for I/O directly,
so copying is unnecessary. Such low-level, native I/O generally operates at the byte level, so
only ByteBuffers can be directly allocated.

ByteBuffer byteBufDirect = ByteBuffer.allocateDirect(BUFFERSIZE);

You can test whether a buffer is direct by calling isDirect(). Since a direct buffer does not
have a backing array, calling array() or arrayOffset() on a direct buffer will throw an Unsup-
portedOperationException. There are a few caveats to remember when considering whether
to use direct buffers. Calling allocateDirect() doesn’t guarantee you are allocated a direct
buffer—your platform or JVM may not support this operation, so you have to call isDirect()
after attempting to allocate. Also, allocation and deallocation of a direct buffer is typically
more expensive than for nondirect buffers, because the backing store of a direct buffer typi-
cally lives outside the JVM, requiring interaction with the operating system for management.
Consequently, you should only allocate direct buffers when they will be used for a long time,
over many I/O operations. In fact, it is a good idea to use direct buffers only if they provide a
measurable increase in performance over nondirect buffers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

124 Chapter 5: NIO

5.4.3 Storing and Retrieving Data

Once you have a buffer, it’s time to use it to hold data. As “containers” for data, buffers are
used for both input and output; this is different from streams, which transfer data in only one
direction. We place data into a buffer using put(), and retrieve data from a buffer using get().
A channel read() implicitly calls put(), and a channel write() implicitly calls get() on the given
buffer. Below we present the get() and put() methods for ByteBuffer; however, the other buffer
types have similar methods.

ByteBuffer: Getting and putting bytes

Relative:
byte get()
ByteBuffer get(byte[] dst)
ByteBuffer get(byte[] dst, int offset, int length)
ByteBuffer put(byte b)
ByteBuffer put(byte[] src)
ByteBuffer put(byte[] src, int offset, int length)
ByteBuffer put(ByteBuffer src)
Absolute:
byte get(int index)
ByteBuffer put(int index, byte b)

There are two types of get() and put(): relative and absolute. The relative variants
get/put data from/to the “next” location in the buffer according to the value of position,
and then increment position by an appropriate amount (that is, by one for the single-
byte form, by array.length for the array form, and by length for the array/offset/length
form). Thus, each call to put() appends after elements already contained in the buffer,
and each call to get() retrieves the next element from the buffer. However, if doing so
would cause position to go past limit, a get() throws a BufferUnderflowException, while
a put() throws a BufferOverflowException. For example, if the destination array passed
to get() is longer than the available remaining elements in the buffer, get() throws
BufferUnderflowException; partial gets/puts are not allowed. The absolute variants of get()
and put() take a specific index for getting and putting data; the absolute forms do not modify
position. They do, however, throw IndexOutOfBoundsException if the given index exceeds limit.

The class ByteBuffer provides additional methods for relative and absolute get/put of
other types besides bytes; in this way, it’s like a DataOutputStream.

ByteBuffer: Getting and putting Java multibyte primitives

〈type〉 get〈Type〉()
〈type〉 get〈Type〉(int index)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.4 Buffers in Detail 125

ByteBuffer put〈Type〉(〈type〉 value)
ByteBuffer put〈Type〉(int index, 〈type〉 value)
where “〈Type〉” stands for one of Char, Double, Int, Long, Short
and “〈type〉” stands for one of char, double, int, long, short

Each call to a relative put() or get() advances the value of position by the length of
the particular parameter type: 2 for short, 4 for int, etc. However, if doing so would cause
position to exceed limit, a BufferUnderflowException (get) or BufferOverflowException (put) is
thrown: partial gets and puts are not allowed. In the case of under/overflow, position does not
change.

You may have noticed that many get/put methods return a ByteBuffer. In fact, they return
the same instance of ByteBuffer that was passed as an argument. This allows call chaining,
where the result of the first call is used to make a subsequent call. For example, we can put
the integers 1 and 2 in the ByteBuffer instance myBuffer as follows:

myBuffer.putInt(1).putInt(2);

Recall from Chapter 3 that multibyte values have a byte order, namely big- or little-
endian. By default Java uses big-endian. You can get and set the order in which multibyte
values are written to a byte buffer, using the built-in instances ByteOrder.BIG_ENDIAN and
ByteOrder.LITTLE_ENDIAN.

ByteBuffer: Byte ordering in buffer

ByteOrder order()
ByteBuffer order(ByteOrder order)

The first method returns the buffer’s current byte order, as one of the constants of
the ByteOrder class. The second allows you to set the byte order used to write multibyte
quantities.

Let’s look at an example using byte order:

ByteBuffer buffer = ByteBuffer.allocate(4);
buffer.putShort((short) 1);
buffer.order(ByteOrder.LITTLE_ENDIAN);
buffer.putShort((short) 1);
// Predict the byte values for buffer and test your prediction

With all of this talk about byte ordering, you may be wondering about the byte order of your
processor. ByteOrder defines a method to answer your question:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

126 Chapter 5: NIO

ByteOrder: Finding byte order

static final ByteOrder BIG_ENDIAN
static final ByteOrder LITTLE_ENDIAN
static ByteOrder nativeOrder()

The method nativeOrder() returns one of the two constants BIG_ENDIAN or LITTLE_ENDIAN.

5.4.4 Preparing Buffers: clear(), flip(), and rewind()

Before using a buffer for input or output, we need to make sure the buffer is correctly prepared
with position and limit set to the proper values. Consider a CharBuffer created with capacity
seven, which has been populated by successive calls to put() or read():

limit

position

0 1 2 3 4 5 6

‘H’ ‘i’ ‘o’‘ ’ ‘m’‘M’

If we now want to use this buffer to do a channel write, since write() will start getting data
at position, and stop at limit, we need to set limit to the current value of position, and set
position to 0.

limit

position

‘H’ ‘i’ ‘o’‘ ’ ‘m’‘M’

0 1 2 3 4 5 6

We could handle this ourselves, but fortunately Java provides some convenience methods to
do the work for us; they are shown in Table 5.3.

Note that these methods do not change the buffer’s data, only its indices. The clear()
method prepares the buffer to accept new data from a buffer put or channel read by setting
position to zero and limit to capacity. Continuing the example above, after clear() the situation
looks like this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.4 Buffers in Detail 127

limit

position

0 1 2 3 4 5 6

‘H’ ‘i’ ‘o’‘ ’ ‘m’‘M’

Resulting Value of

ByteBuffer Method Prepares Buffer for Position Limit Mark

ByteBuffer clear() read()/put() into buffer 0 capacity undefined

ByteBuffer flip() write()/get() from buffer 0 position undefined

ByteBuffer rewind() rewrite()/get() from buffer 0 unchanged undefined

Table 5.3: Instance Methods of ByteBuffer

Subsequent calls to put()/read() fill the buffer, starting from the first element and filling up to
the limit, which is set to the capacity.

// Start with buffer in unknown state
buffer.clear(); // Prepare buffer for input, ignoring existing state
channel.read(buffer); // Read new data into buffer, starting at first element

Despite its name, clear() doesn’t actually change the buffer’s data; it simply resets the buffer’s
main index values. Consider a buffer recently populated with data (say, 3 characters) from
put() and/or read(). The position value indicates the first element that does not contain valid
data:

limit

position

0 1 2 3 4 5 6

‘H’ ‘i’ ‘o’‘ ’ ‘m’‘M’

The flip() method prepares for data transfer out of the buffer, by setting limit to the
current position and position to zero:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

128 Chapter 5: NIO

limit

position

0 1 2 3 4 5 6

‘H’ ‘i’ ‘o’‘ ’ ‘m’‘M’

Subsequent calls to get()/write() retrieve data from the buffer starting from the first element
and proceeding up to the limit. Here is an example of flip()’s usage:

// ... put data in buffer with put() or read() ...
buffer.flip(); // Set position to 0, limit to old position
while (buffer.hasRemaining()) // Write buffer data from the first element up to limit
channel.write(buffer);

Suppose you’ve written some or all of the data from a buffer and you’d like to go back to
the beginning of the buffer to write the same information again (for example, you want to send
it on another channel). The rewind() method sets position to zero and invalidates the mark. It’s
similar to flip() except limit remains unchanged. When might you use this? Well, you might
want to write everything you send over the network to a logger:

// Start with buffer ready for writing
while (buffer.hasRemaining()) // Write all data to network
networkChannel.write(buffer);

buffer.rewind(); // Reset buffer to write again
while (buffer.hasRemaining()) // Write all data to logger
loggerChannel.write(buffer);

5.4.5 Compacting Data in a Buffer

The compact() operation copies the elements between position and limit to the start of the
buffer, to make room for subsequent put()/read() calls. The value of position is set to the
length of the copied data, the value of limit is set to the capacity, and mark becomes undefined.
Consider the following buffer state before compact() is called:

limit

position

0 1 2 3 4 5 6

‘H’ ‘i’ ‘o’‘ ’ ‘m’‘M’

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.4 Buffers in Detail 129

Here is the situation after compact():

limit

position

0 1 2 3 4 5 6

‘M’ ‘o’ ‘o’‘m’ ‘m’‘M’

Why use this operation? Suppose you have a buffer for writing data. Recall that a
nonblocking call to write() only uses the data it can send without blocking; therefore, write()
will not necessarily send all elements of the buffer. Now you need to read() new data into
the buffer, after the unwritten data. One way to handle this is to simply set position = limit
and limit = capacity. Of course, you’ll need to reset these values later, after reading but
before you call write() again. The problem is that eventually the buffer will run out of space;
in the figures above, there would only be room for one more byte. Moreover, any space at
the beginning of the buffer is wasted. This is exactly the problem compact() is designed to
solve. By calling compact() after the write() but before the read() that will add more data, we
move all the “left over” data to the start of the buffer, freeing up the maximum space for
new data.

// Start with buffer ready for reading
while (channel.read(buffer) != -1) {
buffer.flip();
channel.write(buffer);
buffer.compact();

}
while (buffer.hasRemaining())
channel.write(buffer);

Note, however, that as we mentioned at the beginning of the chapter, copying data is a rather
expensive operation, so compact() should be used sparingly.

5.4.6 Buffer Perspectives: duplicate(), slice(), etc.

NIO provides several ways of creating a new buffer that shares content with a given buffer, but
differs on the processing of the elements. Basically, the new buffer has its own independent
state variables (position, limit, capacity, and mark) but shares the backing storage with the
original buffer. Any changes to the new buffer are shared with the original. Think of this as an
alternate perspective on the same data. Table 5.4 lists the relevant methods.

The duplicate() method creates a new buffer that shares the content of the original buffer.
The new buffer’s position, limit, mark, and capacity initially match the original buffer’s index

http://lib.ommolketab.ir
http//lib.ommolketab.ir

130 Chapter 5: NIO

New Buffer’s Initial Value of

Method Capacity Position Limit Mark

ByteBuffer duplicate() capacity position limit mark

ByteBuffer slice() remaining() 0 remaining() undefined

ByteBuffer asReadOnlyBuffer() capacity position limit mark

CharBuffer asCharBuffer() remaining()/2 0 remaining()/2 undefined

DoubleBuffer asDoubleBuffer() remaining()/8 0 remaining()/8 undefined

FloatBuffer asFloatBuffer() remaining()/4 0 remaining()/4 undefined

IntBuffer asIntBuffer() remaining()/4 0 remaining()/4 undefined

LongBuffer asLongBuffer() remaining()/8 0 remaining()/8 undefined

ShortBuffer asShortBuffer() remaining()/2 0 remaining()/2 undefined

Table 5.4: Methods for Creating Different Perspectives on a Buffer

values; however, the values are independent. Since the content is shared, changes to the original
buffer or any duplicates will be visible to all. Let’s return to our example above where you want
to write everything you send over the network to a logger.

// Start with buffer ready for writing
ByteBuffer logBuffer = buffer.duplicate();
while (buffer.hasRemaining()) // Write all data to network
networkChannel.write(buffer);

while (logBuffer.hasRemaining()) // Write all data to logger
loggerChannel.write(buffer);

Note that with buffer duplication, writing to the network and log could be done in parallel
using different threads.

The slice() method creates a new buffer that shares some subsequence of the original
buffer. The new buffer’s position is zero, and its limit and capacity are both equal to the
difference between the limit and position of the original buffer. slice() sets the new buffer’s
array offset to the original buffer’s position; however, calling array() on the new buffer still
returns the entire array.

Channel reads and writes take only ByteBuffers; however, we may be interested in com-
municating using other primitive types. A ByteBuffer can create a separate “view buffer” that
interprets its contents as some other primitive type (e.g., CharBuffer). Data of the new type can
then be read from (and written to, although that is an optional operation) this buffer. The new
buffer shares the backing storage of the original ByteBuffer; therefore, changes to either buffer
are seen in both new and original buffers. A newly created view buffer has its position set to
zero, and its contents start at the original buffer’s position. This is very similar to the slice()
operation; however, since the view buffer operates over multibyte elements, the capacity and
limit of the new buffer is the remaining number of bytes divided by the number of bytes in the
corresponding primitive type (e.g., divide by 8 when creating a DoubleBuffer).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.4 Buffers in Detail 131

Let’s look at an example. Suppose you have received (via some Channel) a message that
consists of a single byte, followed by a number of two-byte integers (i.e., shorts), in big-endian
order. Because the message arrives over a Channel, it’s in a ByteBuffer, buf. The first byte of the
message contains the number of two-byte integers that make up the rest of the message. You
might call buf.getShort() the number of times indicated by the first byte. Or you can get all
the integers at once, like this:

// ...get message by calling channel.read(buf) ...
int numShorts = (int)buf.get();
if (numShorts < 0) {

throw new SomeException()
} else {

short[] shortArray = new short[numShorts];
ShortBuffer sbuf = buf.asShortBuffer();
sbuf.get(shortArray); // note: will throw if header was incorrect!

}

The asReadOnlyBuffer() method works just like duplicate() except that all mutator meth-
ods on the new buffer will always throw a ReadOnlyBufferException. This includes all forms of
put(), compact(), etc. Even calls to array() and arrayOffset() for a nondirect buffer throw this
exception. Of course, changes to the non-read-only buffer that generated this read-only buffer
will still be shared. Like a buffer created with duplicate(), read-only buffers have independent
buffer state variables. You can use the isReadOnly() method to test if a buffer is read-only. If a
buffer is already read-only, calling duplicate() or slice() will create a read-only buffer.

5.4.7 Character Coding

Recall from Chapter 3 that characters are encoded as sequences of bytes, and that there are
various mappings (called charsets) between sets of characters and byte sequences. Another
use of NIO buffers is to convert among various charsets. To use this facility, you need to know
about two additional classes in the java.nio.charset package (we have already encountered
Charset in Chapter 3): CharsetEncoder and CharsetDecoder.

To encode, use a Charset instance to create an encoder and call encode:

Charset charSet = Charset.forName("US-ASCII");
CharsetEncoder encoder = charSet.newEncoder();
ByteBuffer buffer = encoder.encode(CharBuffer.wrap("Hi mom"));

To decode, use the Charset instance to create a decoder and call decode:

CharsetDecoder decoder = charSet.newDecoder();
CharBuffer cBuf = decoder.decode(buffer);

While this approach certainly works, it can be inefficient when coding multiple times. For
example, each call to encode/decode creates a new Byte/CharBuffer. Other inefficiencies crop
up relating to coder creation and operation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

132 Chapter 5: NIO

encoder.reset();
if (encoder.encode(CharBuffer.wrap("Hi "),buffer,false) == CoderResult.OVERFLOW) {
// ... deal with lack of space in buffer ...

}
if (encoder.encode(CharBuffer.wrap("Mom"),buffer,true) == CoderResult.OVERFLOW) {
// ... ditto ...

}
encoder.flush(buffer);

The encode() method converts the given CharBuffer into a byte sequence and writes the
bytes to the given buffer. If the buffer is too small, encode() returns a CoderResult.OVERFLOW. If
the input is completely consumed and the encoder is ready for more, CoderResult.UNDERFLOW
is returned; otherwise the input is malformed in some way, and a CoderResult object is
returned that indicates the nature and location of the problem. We set the final boolean
parameter to true only when we have reached the end of input to the encoder. flush()
pushes any buffered encoder state to the buffer. Note that it is not strictly necessary to call
reset(), which sets up the encoder’s internal state so it can encode again, on a freshly created
encoder.

5.5 Stream (TCP) Channels in Detail

Stream channels come in two varieties: SocketChannel and ServerSocketChannel. Like its Socket
counterpart, a SocketChannel is a communication channel for connected endpoints.

SocketChannel: Creating, connecting, and closing

static SocketChannel open(SocketAddress remote)
static SocketChannel open()
boolean connect(SocketAddress remote)
boolean isConnected()
void close()
boolean isOpen()
Socket socket()

A SocketChannel is created by calling the open() factory method. The first form of open()
takes a SocketAddress (see Chapter 2) and returns a SocketChannel connected to the specified
server; note that this method may block for an indefinite period. The parameterless form of
open() creates an unconnected SocketChannel, which may be connected to an endpoint with the
connect() method. When you are finished with a SocketChannel, call the close() method. One
important point is that each instance of SocketChannel “wraps” a basic Java Socket, which you
may access using the socket() method. This will allow you to call basic Socket methods to bind,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.5 Stream (TCP) Channels in Detail 133

set socket options, etc. See TCPEchoClientNonblocking.java (pages 113−114) for an example of
SocketChannel creation, connection, and closing.

After you create and connect your SocketChannel, you perform I/O with the channel’s read
and write methods.

SocketChannel: Reading and writing

int read(ByteBuffer dst)
long read(ByteBuffer[] dsts)
long read(ByteBuffer[] dsts, int offset, int length)
int write(ByteBuffer src)
long write(ByteBuffer[] srcs)
long write(ByteBuffer[] srcs, int offset, int length)

The most basic form of read takes a single ByteBuffer and reads up to the number of bytes
remaining in the buffer. The other form of read takes an array of ByteBuffers and reads up
to the number of bytes remaining in all of the buffers by filling each buffer in array order.
This is called a scattering read because it scatters the incoming bytes over multiple buffers.
It’s important to note that the scattering read isn’t obligated to fill all the buffer(s); the total
amount of buffer space is simply an upper bound.

The most basic form of write takes a single ByteBuffer and attempts to write the bytes
remaining in the buffer to the channel. The other form of write takes an array of ByteBuffers
and attempts to write the bytes remaining in all buffers. This is called a gathering write because
it gathers up bytes from multiple buffers to send together. See TCPEchoClientNonblocking.java
(pages 113−114) and TCPServerSelector.java (pages 116−117) for examples of using read and
write.

Like its ServerSocket counterpart, a ServerSocketChannel is a channel for listening for
client connections.

ServerSocketChannel: Creating, accepting, and closing

static ServerSocketChannel open()
ServerSocket socket()
SocketChannel accept()
void close()
boolean isOpen()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

134 Chapter 5: NIO

A ServerSocketChannel is created by calling the open() factory method. Each instance wraps an
instance of ServerSocket, which you can access using the socket() method. As illustrated in the
earlier examples, you must access the underlying ServerSocket instance to bind it to a desired
port, set any socket options, etc. After creating and binding, you are ready to accept client con-
nections by calling the accept() method, which returns the new, connected SocketChannel. When
you are finished with a ServerSocketChannel, call the close()method. See TCPServerSelector.java
(pages 116–117) for an example of using ServerSocket.

As we’ve already mentioned, blocking channels provide little advantage over regular
sockets, except that they can (must) be used with Buffers. You will therefore almost always be
setting your channels to be nonblocking.

SocketChannel, Server SocketChannel: Setting blocking behavior

SelectableChannel configureBlocking(boolean block)
boolean isBlocking()

To set a SocketChannel or ServerSocketChannel to nonblocking, call configureBlocking(false).
The configureBlocking() method returns a SelectableChannel, the superclass of both Sock-
etChannel and ServerSocketChannel.

Consider setting up a connection for a SocketChannel. If you give the open() factory method
of SocketChannel a remote address, the call blocks until the connection completes. To avoid
this, use the parameterless version of open(), configure the channel to be nonblocking, and
call connect(), specifying the remote endpoint address. If the connection can be made without
blocking, connect() returns true ; otherwise, you need some way to determine when the socket
becomes connected.

SocketChannel: Testing connectivity

boolean finishConnect()
boolean isConnected()
boolean isConnectionPending()

With a nonblocking SocketChannel, once a connection has been initiated, the underlying socket
may be neither connected nor disconnected; instead, a connection is “in progress.” Because
of the way the underlying protocol mechanisms work (see Chapter 6), the socket may per-
sist in this state for an indefinite time. The finishConnect() method provides a way to check
the status of an in-progress connection attempt on a nonblocking socket, or to block until

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.6 Selectors in Detail 135

the connection is completed, for a blocking socket. For example, you might configure the
channel to be nonblocking, initiate a connection via connect(), do some other work, con-
figure the channel back to blocking, then call finishConnect() to wait until the connection
completes. Or you can leave the channel nonblocking and call finishConnect() repeatedly, as
in TCPEchoClientNonblocking.java.

The isConnected() method allows you to determine whether the socket is connected so
you can avoid having a NotYetConnectedException thrown (say, by read() or write()). You can
use isConnectionPending() to check whether a connection has been initiated on this channel.
You want to know this because finishConnect() throws NoConnectionPendingException if invoked
when one hasn’t been.

5.6 Selectors in Detail

The example TCPEchoServerSelector shows the basics of using Selector. Here we consider some
of the details.

Selector: Creating and closing

static Selector open()
boolean isOpen()
void close()

You create a selector by calling the open() factory method. A selector is either “open” or
“closed”; it is created open, and stays that way until you tell the system you are finished with it
by invoking its close() method. You can tell whether a selector has been closed yet by calling
isOpen().

5.6.1 Registering Interest in Channels

As we have seen, each selector has an associated set of channels which it monitors for specific
I/O “operations of interest” to that channel. The association between a Selector and a Channel
is represented by an instance of SelectionKey. (Note that a Channel instance can register more
than one Selector instance, and so can have more than one associated instance of SelectionKey.)
The SelectionKey maintains information about the kinds of operations that are of interest for
a channel in a bitmap, which is just an int in which individual bits have assigned meanings.

The possible operations of interest are defined by constants of the SelectionKey class;
each such constant is a bitmask (see Section 3.1.3) with exactly one bit set.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

136 Chapter 5: NIO

SelectionKey: Interest sets

static int OP_ ACCEPT
static int OP_CONNECT
static int OP_READ
static int OP_WRITE
int interestOps()
SelectionKey interestOps(int ops)

We specify an operation set with a bit vector created by OR-ing together the appropriate
constants out of OP_ ACCEPT, OP_CONNECT, OP_READ, and OP_WRITE. For example, an operation set
containing read and write is specified by the expression (OP_READ | OP_WRITE). The interestOps()
method with no parameters returns a bitmap in which each bit set indicates an operation
for which the channel will be monitored. The other method takes such a bitmap to indicate
which operations should be monitored. Caveat: Any change to the interest set associated with
a key (channel) does not take effect until the associated selector’s select() method is next
invoked.

SocketChannel, Server SocketChannel: Registering Selectors

SelectionKey register(Selector sel, int ops)
SelectionKey register(Selector sel, int ops, Object attachment)
int validOps()
boolean isRegistered()
SelectionKey keyFor(Selector sel)

A channel is registered with a selector by calling the channel’s register() method. At reg-
istration time we specify the initial interest set by means of a bitmap stored in an int (see
“SelectionKey: Interest sets” above); register() returns a SelectionKey instance that represents
the association between this channel and the given selector. The validOps() method returns
a bitmap indicating the set of valid I/O operations for this channel. For a ServerSocketChan-
nel, accept is the only valid operation, while for a SocketChannel, read, write, and connect are
valid. For a DatagramChannel() (Section 5.7) only read and write are valid. A channel may only be
registered once with a selector, so subsequent calls to register() simply update the operation
interest set of the key. You can find out if a channel is registered with any selector by call-
ing the isRegistered() method. The keyFor() method returns the same SelectionKey that was
returned when register() was first called, or if the channel is not registered with the given
selector.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.6 Selectors in Detail 137

The following code registers a channel for both reading and writing:

SelectionKey key = clientChannel.register(selector,
SelectionKey.OP_READ | SelectionKey.OP_WRITE);

Figure 5.1 shows a selector with a key set containing keys representing seven registered
channels: two server channels on ports 4000 and 4001, and five client channels created from
the server channels.

SelectionKey: Retrieving and canceling

Selector selector()
SelectableChannel channel()
void cancel()

The Selector and Channel instances with which a key is associated are returned by its
selector() and channel() methods, respectively. The cancel() method invalidates the key (per-
manently) and places it in the selector’s canceled set (Figure 5.1). The key will be removed
from all key sets of the selector on the next call to select(), and the associated channel will
no longer be monitored (unless it is re-registered).

C
a
n
c
e
l
l
e
d

K
e
y

S
e
t

S
e
l
e
c
t
e
d

K
e
y

S
e
t

K
e
y

S
e
t

K1
accept

4000

4001

4000

4001

4000

4000

4001

ServerSocketChannel

ServerSocketChannel

SocketChannel

SocketChannel

SocketChannel

SocketChannel

SocketChannel

accept

read

read

read

read,write

write

Interest Sets

Selector

K2

K3

K4

K5

K6

K7

Socket

Socket

SocketChannel

SocketChannel

SocketChannel

Figure 5.1: Selector with associated key sets.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

138 Chapter 5: NIO

5.6.2 Selecting and Identifying Ready Channels

With our channels registered with the selector and the associated keys specifying the set of
I/O operations of interest, we just need to sit back and wait for I/O. We do this using the
selector.

Selector: Waiting for channels to be ready

int select()
int select(long timeout)
int selectNow()
Selector wakeup()

The select() methods all return a count of how many registered channels are ready for
I/O operations in their interest set to be performed. (For example, a channel with OP_READ in the
interest set has data ready to be read, or a channel with OP_ACCEPT has a connection ready to
accept.) The three methods differ only in their blocking behavior. The parameterless method
blocks until at least one registered channel has at least one operation in its interest set ready,
or another thread invokes this selector’s wakeup() method (in which case it may return 0).
The form that takes a timeout parameter blocks until at least one channel is ready, or until
the indicated (positive) number of milliseconds has elapsed, or another thread calls wakeup().
The selectNow() is a nonblocking version: it always returns immediately; if no channels are
ready, it returns 0. The wakeup() method causes any invocation of one of the select meth-
ods that is currently blocked (i.e., in another thread) to return immediately, or, if none
is currently blocked, the next invocation of any of the three select methods will return
immediately.

After selection, we need to know which channels have ready I/O of interest. Each selector
maintains a selected-key set containing the keys from the key set whose associated channels
have impending I/O of interest. We access the selected-key set by calling the selectedKeys()
method of the selector, which returns a set of SelectionKeys. We can then iterate over this set
of keys, handling pending I/O for each:

Iterator<SelectionKey> keyIter = selector.selectedKeys().iterator();
while (keyIter.hasNext()) {
SelectionKey key = keyIter.next();
// ...Handle I/O for key's channel...
keyIter.remove();

}

The selector in Figure 5.1 has two keys in its selected-key set: K2 and K5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.6 Selectors in Detail 139

Selector: Getting key sets

Set<SelectionKey> keys()
Set<SelectionKey> selectedKeys()

These methods return the selector’s different key sets. The keys() method returns
all currently registered keys. The returned key set is immutable: any attempt to directly
modify it (e.g., by calling its remove() method) will result in an UnsupportedOperation-
Exception. The selectedKeys() method returns those keys that were “selected” as having ready
I/O operations during the last call to select(). Caveat: The set returned by selectedKeys() is
mutable, and in fact must be emptied “manually” between calls to select(). In other words,
the select methods only add keys to the selected key set; they do not create a new set.

The selected-key set tells us which channels have available I/O. For each of these channels,
we need to know the specific ready I/O operations. In addition to the interest set, each key also
maintains a set of pending I/O operations called its ready set.

SelectionKey: Find ready I/O operations

int readyOps()
boolean isAcceptable()
boolean isConnectable()
boolean isReadable()
boolean isValid()
boolean isWritable()

We can determine which operations in the interest set are available for a given key by using
either the readyOps() method or the other predicate methods. readyOps() returns the entire
ready set as a bitmap. The other methods allow each operation to be tested individually.

For example, to see if the channel associated with a key has a read pending we can either use:

(key.readyOps() & SelectionKey.OP_READ) != 0

or

key.isReadable()

The keys in a selector’s selected-key set and the operations in each key’s ready set are
determined by select(). Over time, this information can become stale. Some other thread may

http://lib.ommolketab.ir
http//lib.ommolketab.ir

140 Chapter 5: NIO

handle the ready I/O. Also, keys don’t live forever. A key becomes invalid when its associated
channel or selector is closed. A key may be explicitly invalidated by calling its cancel() method.
You can test the validity of a key by calling its isValid() method. Invalid keys are added to
the cancelled-key set of the selector and removed from its key set at the next invocation of
any form of select(), or close(). (Of course, removing a key from the key set means that its
associated channel will no longer be monitored.)

5.6.3 Channel Attachments

When a channel is ready for I/O, we often need additional information to process the request.
For example, with our Echo protocol, when a client channel is ready to write, we need data. Of
course, the data we need to write was collected earlier by reading it from the same channel, but
where do we store it until it can be written? Another example is the framing procedure from
Chapter 3. If a message arrives a few bytes at a time, we may need to store the parts received so
far until we have the complete message. In both cases, we need to associate state information
with each channel. Well, we’re in luck! SelectionKeys make storing per-channel state easy with
attachments.

SelectionKey: Find ready I/O operations

Object attach(Object ob)
Object attachment()

Each key can have one attachment, which can be any object. An attachment can be associ-
ated when the channel’s register() method is first called, or added directly to the key later, with
the attach() method. A key’s attachment can be accessed using the SelectionKey’s attachment()
method.

5.6.4 Selectors in a Nutshell

To summarize, here are the steps in using a Selector:

I. Create a selector instance.

II. Register it with various channels, specifying I/O operations of interest for each channel.

III. Repeatedly:

1. Call one of the select methods.

2. Get the list of selected keys.

3. For each key in the selected-keys set,

a. Fetch the channel and (if applicable) attachment from the key

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.7 Datagram (UDP) Channels 141

b. Determine which operations are ready and perform them. If an accept oper-
ation, set the accepted channel to nonblocking and register it with the
selector

c. Modify the key’s operation interest set if needed

d. Remove the key from the selected-keys set

If selectors tell you when I/O is ready, do you still need nonblocking I/O? Yes. A channel’s
key in the selected-keys set doesn’t guarantee nonblocking I/O because key set information
can become stale after select(). In addition, a blocking write blocks until all bytes are written;
however, an OP_WRITE in the ready set only indicates that at least one byte can be written.
In fact, you cannot register a channel with a selector unless it is in nonblocking mode: the
register() method of SelectableChannel throws an IllegalBlockingModeException if invoked
when the channel is in blocking mode.

5.7 Datagram (UDP) Channels

Java NIO provides datagram (UDP) channels with the DatagramChannel class. As with the other
forms of SelectableChannel we’ve seen, a DatagramChannel adds selection and nonblocking
behavior and Buffer-based I/O to the capabilities of a DatagramSocket.

DatagramChannel: Creating, connecting, and closing

static DatagramChannel open()
boolean isOpen()
DatagramSocket socket() void close()

A DatagramChannel is created by calling the open() factory method, which creates an unbound
DatagramChannel. The DatagramChannel is simply a wrapper around a basic DatagramSocket. You
may directly access the particular DatagramSocket instance using the socket() method. This will
allow you to call basic DatagramSocket methods to bind, set socket options, etc. When you are
finished with a DatagramChannel, call the close() method.

Once you create a DatagramChannel, sending and receiving is fairly straightforward.

DatagramChannel: Sending and receiving

int send(ByteBuffer src, SocketAddress target)
SocketAddress receive(ByteBuffer dst)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

142 Chapter 5: NIO

The send() method constructs a datagram containing the data from the given ByteBuffer and
transmits it to the SocketAddress specifying the destination. The receive() method prepares to
accept a datagram into the specified buffer and return the address of the sender. Caveat: If the
buffer’s remaining space is smaller than the datagram, any excess bytes are silently discarded.

The following code segment creates a DatagramChannel and sends the UTF-16 encoded string
“Hello” to a UDP server running on the same host on port 5000.

DatagramChannel channel = DatagramChannel.open();
ByteBuffer buffer = ByteBuffer.wrap("Hello".getBytes("UTF-16"));
channel.send(buffer, new InetSocketAddress("localhost", 5000));

The following code segment creates a DatagramChannel, binds the underlying socket to
port 5000, receives a datagram with a maximum of 20 bytes, and converts the bytes to a string
using UTF-16 encoding.

DatagramChannel channel = DatagramChannel.open();
channel.socket().bind(new InetSocketAddress(5000));
ByteBuffer buffer = ByteBuffer.allocateDirect(20);
SocketAddress address = channel.receive(buffer);
buffer.flip();
String received = Charset.forName("UTF-16").newDecoder().decode(buffer).toString();

In the send() example above, we don’t explicitly bind to a local port so a random port is chosen
for us when send() is called. The corresponding receive() method returns a SocketAddress,
which includes the port.

If we’re always going to send to and receive from the same remote endpoint, we can
optionally call the connect() method and specify the SocketAddress of a remote endpoint.

DatagramChannel: Connecting DatagramChannels

DatagramChannel connect(SocketAddress remote)
DatagramChannel disconnect()
boolean isConnected()
int read(ByteBuffer dst)
long read(ByteBuffer[] dsts)
long read(ByteBuffer[] dsts, int offset, int length)
int write(ByteBuffer src)
long write(ByteBuffer[] srcs)
long write(ByteBuffer[] srcs, int offset, int length)

These methods restrict us to only sending to and receiving from the specified address. Why
do this? One reason is that after connect(), instead of receive() and send(), we can use read()
and write(), which don’t need to deal with remote addresses. The read() and write() methods

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.7 Datagram (UDP) Channels 143

receive and send a single datagram. The scattering read, which takes an array of ByteBuffers,
only receives a single datagram, filling in the buffers in order. The gathering write transmits a
single datagram created by concatenating the bytes from all of the array buffers. Caveat: The
largest datagram that can be sent today is 65,507 bytes; attempts to send more will be silently
truncated.

Another advantage of connect() is that a connected datagram channel may only receive
datagrams from the specified endpoint so we don’t have to test for spurious reception. Note
that connect() for a DatagramChannel does nothing more than restrict send and receive end-
points; no packets are exchanged as they are for connect() on a SocketChannel, and there is no
need to wait or test for the connection to be completed, as there is with a SocketChannel. (See
Chapter 6.)

So far, DatagramChannels look a lot like DatagramSockets. The major difference between
datagram channels and sockets is the ability of a channel to perform nonblocking I/O oper-
ations and use selectors. Selector creation, channel registration, selection, etc., work almost
identically to the SocketChannel. One difference is that you cannot register for connect I/O
operations, but you wouldn’t want to, since a DatagramChannel’s connect() never blocks anyway.

DatagramChannel: Setting blocking behavior and using selectors

SelectableChannel configureBlocking(boolean block)
boolean isBlocking()
SelectionKey register(Selector sel, int ops)
SelectionKey register(Selector sel, int ops, Object attachment)
boolean isRegistered()
int validOps()
SelectionKey keyFor(Selector sel)

These methods have the same behavior as for SocketChannel and ServerSocketChannel.

Let’s rewrite our DatagramSocket UDP echo server from Chapter 4 using DatagramChannel.
The server listens on the specified port and simply echoes back any datagram it receives. The
main difference is that this server doesn’t block on send() and receive().

UDPEchoServerSelector.java

0 import java.io.IOException;
1 import java.net.InetSocketAddress;
2 import java.net.SocketAddress;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

144 Chapter 5: NIO

3 import java.nio.ByteBuffer;
4 import java.nio.channels.DatagramChannel;
5 import java.nio.channels.SelectionKey;
6 import java.nio.channels.Selector;
7 import java.util.Iterator;
8
9 public class UDPEchoServerSelector {

10
11 private static final int TIMEOUT = 3000; // Wait timeout (milliseconds)
12
13 private static final int ECHOMAX = 255; // Maximum size of echo datagram
14
15 public static void main(String[] args) throws IOException {
16
17 if (args.length != 1) // Test for correct argument list
18 throw new IllegalArgumentException("Parameter(s): <Port>");
19
20 int servPort = Integer.parseInt(args[0]);
21
22 // Create a selector to multiplex client connections.
23 Selector selector = Selector.open();
24
25 DatagramChannel channel = DatagramChannel.open();
26 channel.configureBlocking(false);
27 channel.socket().bind(new InetSocketAddress(servPort));
28 channel.register(selector, SelectionKey.OP_READ, new ClientRecord());
29
30 while (true) { // Run forever, receiving and echoing datagrams
31 // Wait for task or until timeout expires
32 if (selector.select(TIMEOUT) == 0) {
33 System.out.print(".");
34 continue;
35 }
36
37 // Get iterator on set of keys with I/O to process
38 Iterator<SelectionKey> keyIter = selector.selectedKeys().iterator();
39 while (keyIter.hasNext()) {
40 SelectionKey key = keyIter.next(); // Key is bit mask
41
42 // Client socket channel has pending data?
43 if (key.isReadable())
44 handleRead(key);
45
46 // Client socket channel is available for writing and
47 // key is valid (i.e., channel not closed).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5.8 Exercises 145

48 if (key.isValid() && key.isWritable())
49 handleWrite(key);
50
51 keyIter.remove();
52 }
53 }
54 }
55
56 public static void handleRead(SelectionKey key) throws IOException {
57 DatagramChannel channel = (DatagramChannel) key.channel();
58 ClientRecord clntRec = (ClientRecord) key.attachment();
59 clntRec.buffer.clear(); // Prepare buffer for receiving
60 clntRec.clientAddress = channel.receive(clntRec.buffer);
61 if (clntRec.clientAddress != null) { // Did we receive something?
62 // Register write with the selector
63 key.interestOps(SelectionKey.OP_WRITE);
64 }
65 }
66
67 public static void handleWrite(SelectionKey key) throws IOException {
68 DatagramChannel channel = (DatagramChannel) key.channel();
69 ClientRecord clntRec = (ClientRecord) key.attachment();
70 clntRec.buffer.flip(); // Prepare buffer for sending
71 int bytesSent = channel.send(clntRec.buffer, clntRec.clientAddress);
72 if (bytesSent != 0) { // Buffer completely written?
73 // No longer interested in writes
74 key.interestOps(SelectionKey.OP_READ);
75 }
76 }
77
78 static class ClientRecord {
79 public SocketAddress clientAddress;
80 public ByteBuffer buffer = ByteBuffer.allocate(ECHOMAX);
81 }
82 }

UDPEchoServerSelector.java

5.8 Exercises

1. Modify TCPEchoClientNonblocking.java to use a fixed-length write buffer.

2. Write an echo client that uses Buffer and DatagramChannel.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c h a p t e r 6

Under the Hood

Some of the subtleties of network programming are difficult to grasp without some
understanding of the data structures associated with the socket implementation and cer-
tain details of how the underlying protocols work. This is especially true of TCP sockets (i.e.,
instances of Socket). This chapter describes some of what goes on under the hood when you
create and use an instance of Socket or ServerSocket. (The initial discussion and Section 6.5
apply as well to DatagramSocket and MulticastSocket. Also, since each SocketChannel has an
underlying Socket (and similarly for the other flavors of channels), the discussion applies to
them as well. However, most of this chapter focuses on TCP sockets, that is, Socket and Server-
Socket.) Please note that this description covers only the normal sequence of events and glosses
over many details. Nevertheless, we believe that even this basic level of understanding is help-
ful. Readers who want the full story are referred to the TCP specification [15] or to one of the
more comprehensive treatises on the subject [5,18].

Figure 6.1 is a simplified view of some of the information associated with a Socket
instance. The classes are supported by an underlying implementation that is provided by the
JVM and/or the platform on which it is running (i.e., the “socket layer” of the host’s OS).
Operations on the Java objects are translated into manipulations of this underlying abstrac-
tion. In this chapter, “Socket” refers generically to one of the classes in Figure 6.1, while “socket”
refers to the underlying abstraction, whether it is provided by an underlying OS or the JVM
implementation itself (e.g., in an embedded system). It is important to note that other (possibly
non-Java) programs running on the same host may be using the network via the underlying

147

http://lib.ommolketab.ir
http//lib.ommolketab.ir

148 Chapter 6: Under the Hood

Socket, DatagramSocket,

MulticastSocket or

ServerSocket instance

local port

Closed

Underlying socket structurelocal IP

remote port

remote IP

U
n

d
er

ly
in

g
Im

p
le

m
en

ta
ti

o
n

A
p

p
li

ca
ti

o
n

P
ro

g
ra

m

RecvQ

SendQ

In
p

u
tS

tr
ea

m

O
u

tp
u

tS
tr

ea
m

To Network

Figure 6.1: Data structures associated with a socket.

socket abstraction, and thus competing with Java Socket instances for resources such as
ports.

By “socket structure” here we mean the collection of data structures in the underlying
implementation (of both the JVM and TCP/IP, but primarily the latter) that contain the informa-
tion associated with a particular Socket instance. For example, the socket structure contains,
among other information

� The local and remote Internet addresses and port numbers associated with the socket. The
local Internet address (labeled “Local IP” in the figure) is one of those assigned to the
local host; the local port is set at Socket creation time. The remote address and port
identify the remote socket, if any, to which the local socket is connected. We will say more
about how and when these values are determined shortly (Section 6.5 contains a concise
summary).

� A FIFO queue of received data waiting to be delivered and a queue for data waiting to be
transmitted.

� For a TCP socket, additional protocol state information relevant to the opening and closing
TCP handshakes. In Figure 6.1, the state is “Closed”; all sockets start out in the Closed
state.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6: Under the Hood 149

Some general-purpose operating systems provide tools that enable users to obtain a “snapshot”
of these underlying data structures. One such tool is netstat, which is typically available on
both Unix (Linux) and Windows platforms. Given appropriate options, netstat displays exactly
the information indicated in Figure 6.1: number of bytes in SendQ and RecvQ, local and remote
IP addresses and port numbers, and the connection state. Command-line options may vary,
but the output should look something like this:

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:36045 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:53363 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN
tcp 0 0 128.133.190.219:34077 4.71.104.187:80 TIME_WAIT
tcp 0 0 128.133.190.219:43346 79.62.132.8:22 ESTABLISHED
tcp 0 0 128.133.190.219:875 128.133.190.43:2049 ESTABLISHED
tcp6 0 0 :::22 :::* LISTEN

The first four lines and the last line depict server sockets listening for connections. (The last
line is a listening socket bound to an IPv6 address.) The fifth line corresponds to a connection
to a Web server (port 80) that is partially shut down (see Section 6.4.2 below). The next-to-last
two lines are existing TCP connections. You may want to play with netstat, if it is available on
your system, to examine the status of connections in the scenarios depicted below. Be aware,
however, that because the transitions between states depicted in the figures happen so quickly,
it may be difficult to catch them in the “snapshot” provided by netstat.

Knowing that these data structures exist and how they are affected by the underlying
protocols is useful because they control various aspects of the behavior of the various Socket
objects. For example, because TCP provides a reliable byte-stream service, a copy of any data
written to a Socket’s OutputStream must be kept until it has been successfully received at the
other end of the connection. Writing data to the output stream does not imply that the data has
actually been sent—only that it has been copied into the local buffer. Even flush()ing a Socket’s
OutputStream doesn’t guarantee that anything goes over the wire immediately. Moreover, the
nature of the byte-stream service means that message boundaries are not preserved in the
input stream. As we saw in Section 3.3, this complicates the process of receiving and parsing
for some protocols. On the other hand, with a DatagramSocket, packets are not buffered for
retransmission, and by the time a call to the send() method returns, the data has been given to
the network subsystem for transmission. If the network subsystem cannot handle the message
for some reason, the packet is silently dropped (but this is rare).

The next three sections deal with some of the subtleties of sending and receiving with
TCP’s byte-stream service. Then, Section 6.4 considers the connection establishment and ter-
mination of the TCP protocol. Finally, Section 6.5 discusses the process of matching incoming
packets to sockets and the rules about binding to port numbers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

150 Chapter 6: Under the Hood

6.1 Buffering and TCP

As a programmer, the most important thing to remember when using a TCP socket is this:

You cannot assume any correspondence between writes to the output stream at
one end of the connection and reads from the input stream at the other end.

In particular, data passed in a single invocation of the output stream’s write() method
at the sender can be spread across multiple invocations of the input stream’s read() method
at the other end; and a single read() may return data passed in multiple write()s.

To see this, consider a program that does the following:

byte[] buffer0 = new byte[1000];
byte[] buffer1 = new byte[2000];
byte[] buffer2 = new byte[5000];
...
Socket s = new Socket(destAddr, destPort);
OutputStream out = s.getOutputStream();
...
out.write(buffer0);
...
out.write(buffer1);
...
out.write(buffer2);
...
s.close();

where the ellipses represent code that sets up the data in the buffers but contains no other
calls to out.write(). Throughout this discussion, “in” refers to the InputStream of the receiver’s
Socket, and “out” refers to the OutputStream of the sender’s Socket.

This TCP connection transfers 8000 bytes to the receiver. The way these 8000 bytes are
grouped for delivery at the receiving end of the connection depends on the timing between
the out.write()s and in.read()s at the two ends of the connection—as well as the size of the
buffers provided to the in.read() calls.

We can think of the sequence of all bytes sent (in one direction) on a TCP connection up
to a particular instant in time as being divided into three FIFO queues:

1. SendQ : Bytes buffered in the underlying implementation at the sender that have been
written to the output stream but not yet successfully transmitted to the receiving host.

2. RecvQ : Bytes buffered in the underlying implementation at the receiver waiting to be
delivered to the receiving program—that is, read from the input stream.

3. Delivered : Bytes already read from the input stream by the receiver.

A call to out.write() at the sender appends bytes to SendQ. The TCP protocol is respon-
sible for moving bytes—in order—from SendQ to RecvQ. It is important to realize that this
transfer cannot be controlled or directly observed by the user program, and that it occurs in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.1 Buffering and TCP 151

chunks whose sizes are more or less independent of the size of the buffers passed in write()s.
Bytes are moved from RecvQ to Delivered as they are read from the Socket’s InputStream by
the receiving program; the size of the transferred chunks depends on the amount of data in
RecvQ and the size of the buffer given to read().

Figure 6.2 shows one possible state of the three queues after the three out.write()s in
the example above, but before any in.read()s at the other end. The different shading patterns
denote bytes passed in the three different invocations of write() shown above.

The output of netstat on the sending host at the instant depicted in Figure 6.2 would
contain a line like:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 6500 10.21.44.33:43346 192.0.2.8:22 ESTABLISHED

On the receiving host, netstat shows:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 1500 0 192.0.2.8:22 10.21.44.33:43346 ESTABLISHED

Now suppose the receiver calls read() with a byte array of size 2000. The read() call will
move all of the 1500 bytes present in the waiting-for-delivery (RecvQ) queue into the byte
array and return the value 1500. Note that this data includes bytes passed in both the first and
second calls to write(). At some time later, after TCP has completed transfer of more data, the
three partitions might be in the state shown in Figure 6.3.

If the receiver now calls read() with a buffer of size 4000, that many bytes will be moved
from the waiting-for-delivery (RecvQ) queue to the already-delivered (Delivered) queue; this
includes the remaining 1500 bytes from the second write(), plus the first 2500 bytes from the
third write(). The resulting state of the queues is shown in Figure 6.4.

The number of bytes returned by the next call to read() depends on the size of the
buffer and the timing of the transfer of data over the network from the send-side socket/TCP

SendQ RecvQ Delivered

1500 bytes6500 bytes

First write (1000 bytes) Second write (2000 bytes) Third write (5000 bytes)

send() TCP protocol recv()

Receiving Implementation Receiving ProgramSending Implementation

Figure 6.2: State of the three queues after three writes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

152 Chapter 6: Under the Hood

SendQ Delivered

Receiving Implementation Receiving ProgramSending Implementation

1500 bytes500 bytes

RecvQ

6000 bytes

First write (1000 bytes) Second write (2000 bytes) Third write (5000 bytes)

Figure 6.3: After first read().

Receiving Implementation Receiving ProgramSending Implementation

5500 bytes500 bytes 2000 bytes

RecvQ DeliveredSendQ

First write (1000 bytes) Second write (2000 bytes) Third write (5000 bytes)

Figure 6.4: After another read().

implementation to the receive-side implementation. The movement of data from the SendQ
to the RecvQ buffer has important implications for the design of application protocols. We
have already encountered the need to parse messages as they are received via a Socket when
in-band delimiters are used for framing (see Section 3.3). In the following sections, we consider
two more subtle ramifications.

6.2 Deadlock Danger

Application protocols have to be designed with some care to avoid deadlock—that is, a state in
which each peer is blocked waiting for the other to do something. For example, it is pretty obvi-
ous that if both client and server try to receive immediately after a connection is established,
deadlock will result. Deadlock can also occur in less immediate ways.

The buffers SendQ and RecvQ in the implementation have limits on their capacity.
Although the actual amount of memory they use may grow and shrink dynamically, a hard
limit is necessary to prevent all of the system’s memory from being gobbled up by a single
TCP connection under control of a misbehaving program. Because these buffers are finite, they

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.2 Deadlock Danger 153

can fill up, and it is this fact, coupled with TCP’s flow control mechanism, that leads to the
possibility of another form of deadlock.

Once RecvQ is full, the TCP flow control mechanism kicks in and prevents the transfer of
any bytes from the sending host’s SendQ, until space becomes available in RecvQ as a result
of the receiver calling the input stream’s read() method. (The purpose of the flow control
mechanism is to ensure that the sender does not transmit more data than the receiving system
can handle.) A sending program can continue to write output until SendQ is full; however, once
SendQ is full, a call to out.write() will block until space becomes available, that is, until some
bytes are transferred to the receiving socket’s RecvQ. If RecvQ is also full, everything stops
until the receiving program calls in.read() and some bytes are transferred to Delivered.

Let’s assume the sizes of SendQ and RecvQ are SQS and RQS, respectively. A write() call
with a byte array of size n such that n > SQS will not return until at least n − SQS bytes have
been transferred to RecvQ at the receiving host. If n exceeds (SQS + RQS), write() cannot return
until after the receiving program has read at least n − (SQS + RQS) bytes from the input stream.
If the receiving program does not call read(), a large send() may not complete successfully.
In particular, if both ends of the connection invoke their respective output streams’ write()
method simultaneously with buffers greater than SQS + RQS, deadlock will result: neither write
will ever complete, and both programs will remain blocked forever.

As a concrete example, consider a connection between a program on Host A and a pro-
gram on Host B. Assume SQS and RQS are 500 at both A and B. Figure 6.5 shows what happens
when both programs try to send 1500 bytes at the same time. The first 500 bytes of data in the
program at Host A have been transferred to the other end; another 500 bytes have been copied
into SendQ at Host A. The remaining 500 bytes cannot be sent—and therefore out.write() will
not return—until space frees up in RecvQ at Host B. Unfortunately, the same situation holds
in the program at Host B. Therefore, neither program’s write() call will ever complete.

Host A Host B

RecvQDelivered SendQ To be sent

RecvQ DeliveredSendQTo be sent

send(s,buffer,1500,0); send(s,buffer,1500,0);

Implementationprogram programImplementation

Figure 6.5: Deadlock due to simultaneous write()s to output streams at opposite ends of the connection.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

154 Chapter 6: Under the Hood

The moral of the story: Design the protocol carefully to avoid sending large
quantities of data simultaneously in both directions.

Can this really happen? Let’s review the compression protocol example in Section 4.5.
Try running the compression client with a large file that is still large after compression. The
precise definition of “large” here depends on your system, but a file that is already com-
pressed and exceeds 2MB should do nicely. For each read/write, the compression client prints
an “R”/“W” to the console. If both the uncompressed and compressed versions of the file are
large enough, your client will print a series of Ws and then stop without terminating or printing
any Rs.

Why does this happen? The program CompressClient.java sends all of the uncompressed
data to the compression server before it attempts to read anything from the compressed
stream. The server, on the other hand, simply reads the uncompressed byte sequence and
writes the compressed sequence back to the client. (The number of bytes the server reads
before it writes some compressed data depends on the compression algorithm it uses.) Con-
sider the case where SendQ and RecvQ for both client and server hold 500 bytes each and the
client sends a 10,000-byte (uncompressed) file. Suppose also that for this file the server reads
about 1000 bytes and then writes 500 bytes, for a 2:1 compression ratio. After the client sends
2000 bytes, the server will eventually have read them all and sent back 1000 bytes, and the
client’s RecvQ and the server’s SendQ will both be full. After the client sends another 1000
bytes and the server reads them, the server’s subsequent attempt to write will block. When the
client sends the next 1000 bytes, the client’s SendQ and the server’s RecvQ will both fill up.
The next client write will block, creating deadlock.

How do we solve this problem? One solution is to execute the client writing and reading
loop in separate threads. One thread repeatedly reads uncompressed bytes from a file and
sends them to the server until the end of the file is reached, whereupon it calls shutdownOutput()
on the socket. The other thread repeatedly reads compressed bytes from the input stream
connected to the server and writes them to the output file, until the input stream ends (i.e., the
server closes the socket). When one thread blocks, the other thread can proceed independently.
We can easily modify our client to follow this approach by putting the call to SendBytes() in
CompressClient.java inside a thread as follows:

Thread thread = new Thread() {
public void run() {
try {
SendBytes(sock, fileIn);

} catch (Exception ignored) {}
}

};
thread.start();

See CompressClientNoDeadlock.java on the book’s Web site for the complete example.
Of course, the problem can also be solved without using threads, through the use of

nonblocking Channels and Selectors, as described in Chapter 5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.4 TCP Socket Life Cycle 155

6.3 Performance Implications

The TCP implementation’s need to copy user data into SendQ for potential retransmission
also has implications for performance. In particular, the sizes of the SendQ and RecvQ buffers
affect the throughput achievable over a TCP connection. Throughput refers to the rate at which
bytes of user data from the sender are made available to the receiving program; in programs
that transfer a large amount of data, we want to maximize this rate. In the absence of network
capacity or other limitations, bigger buffers generally result in higher throughput.

The reason for this has to do with the cost of transferring data into and out of the buffers
in the underlying implementation. If you want to transfer n bytes of data (where n is large),
it is generally much more efficient to call write() once with a buffer of size n than it is to call
it n times with a single byte.1 However, if you call write() with a size parameter that is much
larger than SQS (the size of SendQ), the system has to transfer the data from the user address
space in SQS -sized chunks. That is, the socket implementation fills up the SendQ buffer, waits
for data to be transferred out of it by the TCP protocol, refills SendQ, waits some more, and so
on. Each time the socket implementation has to wait for data to be removed from SendQ, some
time is wasted in the form of overhead (a context switch occurs). This overhead is comparable
to that incurred by a completely new call to write(). Thus, the effective size of a call to write()
is limited by the actual SQS. For reading from the InputStream, the same principle applies:
however large the buffer we give to read(), it will be copied out in chunks no larger than RQS,
with overhead incurred between chunks.

If you are writing a program for which throughput is an important performance metric,
you will want to change the send and receive buffer sizes using the setSendBufferSize() and
setReceiveBufferSize() methods of Socket. Although there is always a system-imposed maxi-
mum size for each buffer, it is typically significantly larger than the default on modern systems.
Remember that these considerations apply only if your program needs to send an amount of
data significantly larger than the buffer size, all at once. Note also that these factors may make
little difference if the program deals with some higher-level stream derived from the Socket’s
basic input stream (say, by using it to create an instance of FilterOutputStream or PrintWriter),
which may perform its own internal buffering or add other overhead.

6.4 TCP Socket Life Cycle

When a new instance of the Socket class is created—either via one of the public constructors
or by calling the accept() method of a ServerSocket—it can immediately be used for send-
ing and receiving data. That is, when the instance is returned, it is already connected to a

1The same thing generally applies to reading data from the Socket’s InputStream, although calling read()
with a larger buffer does not guarantee that more data will be returned.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

156 Chapter 6: Under the Hood

remote peer and the opening TCP message exchange, or handshake, has been completed by
the implementation.

Let us therefore consider in more detail how the underlying structure gets to and from
the connected, or “Established,” state; as you’ll see later (see Section 6.4.2), these details
affect the definition of reliability and the ability to create a Socket or ServerSocket bound to a
particular port.

6.4.1 Connecting

The relationship between an invocation of the Socket constructor and the protocol events
associated with connection establishment at the client are illustrated in Figure 6.6. In this and
the remaining figures of this section, the large arrows depict external events that cause the
underlying socket structures to change state. Events that occur in the application program—
that is, method calls and returns—are shown in the upper part of the figure; events such as
message arrivals are shown in the lower part of the figure. Time proceeds left to right in these
figures. The client’s Internet address is depicted as A.B.C.D, while the server’s is W.X.Y.Z; the
server’s port number is Q. (We have depicted IPv4 addresses, but everything here applies to
both IPv4 and IPv6.)

When the client calls the Socket constructor with the server’s Internet address, W.X.Y.Z,
and port, Q, the underlying implementation creates a socket instance; it is initially in the Closed
state. If the client did not specify the local address/port in the constructor call, a local port
number (P), not already in use by another TCP socket, is chosen by the implementation. The
local Internet address is also assigned; if not explicitly specified, the address of the network
interface through which packets will be sent to the server is used. The implementation copies
the local and remote addresses and ports into the underlying socket structure, and initiates
the TCP connection establishment handshake.

Call Socket(W.X.Y.Z, Q)

A
p

p
li

ca
ti

o
n

P
ro

g
ra

m

Blocks

local port

Closed

P

Q

A.B.C.D

W.X.Y.Z

remote port

local IP

remote IP

local port

Connecting

remote port

local IP

remote IP

P

Q

A.B.C.D

W.X.Y.Z

local port

remote port

local IP

remote IP

Returns instance

Established

U
n

d
er

ly
in

g
Im

p
le

m
en

ta
ti

o
n

Create
structure

Send connection
request to

server

Handshake
completes

Fill in local and
remote address

Figure 6.6: Client-side connection establishment.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.4 TCP Socket Life Cycle 157

The TCP opening handshake is known as a 3-way handshake because it typically involves
three messages: a connection request from client to server, an acknowledgment from server
to client, and another acknowledgment from client back to server. The client TCP considers
the connection to be established as soon as it receives the acknowledgment from the server.
In the normal case, this happens quickly. However, the Internet is a best-effort network, and
either the client’s initial message or the server’s response can get lost. For this reason, the TCP
implementation retransmits handshake messages multiple times, at increasing intervals. If the
client TCP does not receive a response from the server after some time, it times out and gives
up. In this case the constructor throws an IOException. The connection timeout is generally
long, and thus it can take on the order of minutes for a Socket constructor to fail.

After the initial handshake message is sent and before the reply from the server is
received (i.e., the middle part of Figure 6.6), the output from netstat on the client host would
look something like:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 A.B.C.D:P W.X.Y.Z:Q SYN_SENT

where “SYN_SENT” is the technical name of the client’s state between the first and second
messages of the handshake.

If the server is not accepting connections—say, if there is no program associated with
the given port at the destination—the server-side TCP will send a rejection message instead
of an acknowledgment, and the constructor will throw an IOException almost immediately.
Otherwise, after the client receives a positive reply from the server, the netstat output would
look like:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 A.B.C.D:P W.X.Y.Z:Q ESTABLISHED

The sequence of events at the server side is rather different; we describe it in Figures 6.7,
6.8, and 6.9. The server first creates an instance of ServerSocket associated with its well-
known port (here, Q). The socket implementation creates an underlying socket structure for
the new ServerSocket instance, and fills in Q as the local port and the special wildcard address
(“*” in the figures) for the local IP address. (The server may also specify a local IP address
in the constructor, but typically it does not. In case the server host has more than one IP
address, not specifying the local address allows the socket to receive connections addressed
to any of the server host’s addresses.) The state of the socket is set to “LISTENING”, indi-
cating that it is ready to accept incoming connection requests addressed to its port. This
sequence is depicted in Figure 6.7. The output from netstat on the server would include a
line like:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:Q 0.0.0.0:0 LISTENING

http://lib.ommolketab.ir
http//lib.ommolketab.ir

158 Chapter 6: Under the Hood

U
n

d
er

ly
in

g
Im

p
le

m
en

ta
ti

o
n

A
p

p
li

ca
ti

o
n

P
ro

g
ra

m

Call ServerSocket(Q)

Blocks Returns instance

Create
structure

Fill in local port,
set state

local port

Closed

remote port

local IP

remote IP

Q

∗

∗

∗

local port

Listening

remote port

local IP

remote IP

Figure 6.7: Server-side socket setup.

The server can now call the ServerSocket’s accept() method, which blocks until the TCP
opening handshake has been completed with some client and a new connection has been estab-
lished. We therefore focus (in Figure 6.8) on the events that occur in the TCP implementation
when a client connection request arrives. Note that everything depicted in this figure happens
“under the covers,” in the TCP implementation.

When the request for a connection arrives from the client, a new socket structure is cre-
ated for the connection. The new socket’s addresses are filled in based on the arriving packet:
the packet’s destination Internet address and port (W.X.Y.Z and Q, respectively) become the
local Internet address and port; the packet’s source address and port (A.B.C.D and P) become
the remote Internet address and port. Note that the local port number of the new socket is
always the same as that of the ServerSocket. The new socket’s state is set to indicate that it
is “Connecting” (technically called SYN_RCVD at the server side), and it is added to a list of not-
quite-connected sockets associated with the socket structure of the ServerSocket. Note that the
ServerSocket itself does not change state, nor does any of its address information change. At
this point the output of netstat should show both the original, listening socket and the newly
created one:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:Q 0.0.0.0:0 LISTENING
tcp 0 0 W.X.Y.Z:Q A.B.C.D:P SYN_RCVD

In addition to creating a new underlying socket structure, the server-side TCP implemen-
tation sends an acknowledging TCP handshake message back to the client. However, the server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.4 TCP Socket Life Cycle 159

Incoming
connection

request
from

A.B.C.D/P

Handshake
completes

U
n

d
er

ly
in

g
 I

m
p

le
m

en
ta

ti
o
n

Create new structure

and continue handshake

S
e
r
v
e
r
S
o
c
k
e
t
 s

tr
u

ct
u

re
A

ss
o
ci

at
ed

S
o
c
k
e
t
 s

tr
u

ct
u

re
s

Q

∗

∗

∗

local port

Listening

remote port

local IP

remote IP

Q

∗

∗

∗

local port

Listening

remote port

local IP

remote IP

Q

∗

∗

∗

local port

Listening

remote port

local IP

remote IP

Q

P

W.X.Y.Z

A.B.C.D

local port

Connecting

remote port

local IP

remote IP

Q

P

W.X.Y.Z

A.B.C.D

local port

remote port

local IP

remote IP

Established

Figure 6.8: Incoming connection request processing.

TCP does not consider the handshake complete until the third message of the 3-way handshake
is received from the client. When that message eventually arrives, the new structure’s state is
set to “ESTABLISHED”, and it is then (and only then) moved to a list of socket structures asso-
ciated with the ServerSocket structure, which represent established connections ready to be
accept()ed via the ServerSocket. (If the third handshake message fails to arrive, eventually the
“Connecting” structure is deleted.) Output from netstat would include:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:Q 0.0.0.0:0 LISTENING
tcp 0 0 W.X.Y.Z:Q A.B.C.D:P ESTABLISHED

Now we can consider (in Figure 6.9) what happens when the server program calls the
ServerSocket’s accept() method. The call unblocks as soon as there is something in its associ-
ated list of socket structures for new connections. (Note that this list may already be non-empty
when accept() is called.) At that time, one of the new connection structures is removed
from the list, and an instance of Socket is created for it and returned as the result of the
accept().

It is important to note that each structure in the ServerSocket’s associated list represents
a fully established TCP connection with a client at the other end. Indeed, the client can send
data as soon as it receives the second message of the opening handshake—which may be long
before the server calls accept() to get a Socket instance for it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

160 Chapter 6: Under the Hood

Blocks until new
connection is established

Events of Figure 5.8

A
p

p
li

ca
ti

o
n

 P
ro

g
ra

m

Call
accept()

Returns Socket instance
for this structure

U
n

d
er

ly
in

g
 I

m
p

le
m

en
ta

ti
o
n

A
ss

o
ci

at
ed

S
o
c
k
e
t
 s

tr
u

ct
u

re
s

S
e
r
v
e
r

S
o
c
k
e
t
 s

tr
u

ct
u

re

Q

∗

∗

∗

local port

Listening

remote port

local IP

remote IP

Q

∗

∗

∗

local port

Listening

remote port

local IP

remote IP

Q

∗

∗

∗

local port

Listening

remote port

local IP

remote IP

Q

P

W.X.Y.Z

A.B.C.D

local port

remote port

local IP

remote IP

Established

Figure 6.9: accept() processing.

6.4.2 Closing a TCP Connection

TCP has a graceful close mechanism that allows applications to terminate a connection without
having to worry about loss of data that might still be in transit. The mechanism is also designed
to allow data transfers in each direction to be terminated independently, as in the compres-
sion example of Section 4.5. It works like this: the application indicates that it is finished
sending data on a connected socket by calling close() or by calling shutdownOutput(). At that
point, the underlying TCP implementation first transmits any data remaining in SendQ (sub-
ject to available space in RecvQ at the other end), and then sends a closing TCP handshake
message to the other end. This closing handshake message can be thought of as an end-of-
stream marker: it tells the receiving TCP that no more bytes will be placed in RecvQ. (Note that
the closing handshake message itself is not passed to the receiving application, but that its
position in the byte stream is indicated by read() returning −1.) The closing TCP waits for an
acknowledgment of its closing handshake message, which indicates that all data sent on the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.4 TCP Socket Life Cycle 161

connection made it safely to RecvQ. Once that acknowledgment is received, the connection is
“Half closed.” The connection is not completely closed until a symmetric handshake happens
in the other direction—that is, until both ends have indicated that they have no more data
to send.

The closing event sequence in TCP can happen in two ways: either one application calls
close() (or shutdownOutput()) and completes its closing handshake before the other calls close(),
or both call close() simultaneously, so that their closing handshake messages cross in the
network. Figure 6.10 shows the sequence of events in the implementation when the application
on one end invokes close() before the other end closes. The closing handshake message is
sent, the state of the socket structure is set to indicate that it is “Closing,” (technically called
“FIN_WAIT_1”) and the call returns. After this point, further reads and writes on the Socket are
disallowed (they throw an exception). When the acknowledgment for the close handshake is
received, the state changes to “Half closed” (technically, “FIN_WAIT_2”) where it remains until
the other end’s close handshake message is received. At this point the output of netstat on
the client would show the status of the connection as:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 A.B.C.D:P W.X.Y.Z:Q FIN_WAIT_2

(FIN_WAIT_2 is the technical name for the “Half-closed” state at the host that initiates close first.
The state denoted by “Closing” in the figure is technically called FIN_WAIT_1, but it is transient
and is difficult to catch with netstat.)

Note that if the remote endpoint goes away while the connection is in this state, the
local underlying structure will stay around indefinitely. When the other end’s close handshake
message arrives, an acknowledgment is sent and the state is changed to “Time-Wait.” Although
the corresponding Socket instance in the application program may have long since vanished,
the associated underlying structure continues to exist in the implementation for a minute or
more; the reasons for this are discussed on page 163.

Call
close()/shutdownOutput()

Returns immediately

A
p

p
li

ca
ti

o
n

P
ro

g
ra

m

Start close
handshake

Close
handshake
completes

Close
handshake

initiated

by remote
completes

U
n

d
er

ly
in

g
Im

p
le

m
en

ta
ti

o
n

P

Q

A.B.C.D

W.X.Y.Z

local port

Established

remote port

local IP

remote IP

P

Q

A.B.C.D

W.X.Y.Z

local port

Closing

remote port

local IP

remote IP

P

Q

A.B.C.D

W.X.Y.Z

local port

Half–Closed

remote port

local IP

remote IP

P

Q

A.B.C.D

W.X.Y.Z

local port

Time–Wait

remote port

local IP

remote IP

Figure 6.10: Closing a TCP connection first.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

162 Chapter 6: Under the Hood

The output of netstat at the right end of Figure 6.10 includes:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 A.B.C.D:P W.X.Y.Z:Q TIME_WAIT

Figure 6.11 shows the simpler sequence of events at the endpoint that does not close
first. When the closing handshake message arrives, an acknowledgment is sent immediately,
and the connection state becomes “Close-Wait.” The output of netstat on this host shows:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 W.X.Y.Z:Q A.B.C.D:P CLOSE_WAIT

At this point, we are just waiting for the application to invoke the Socket’s close() method.
When it does, the final close handshake is initiated and the underlying socket structure is
deallocated, although references to its original Socket instance may persist in the Java program.

In view of the fact that both close() and shutdownOutput() return without waiting for the
closing handshake to complete, you may wonder how the sender can be assured that sent data
has actually made it to the receiving program (i.e., to Delivered). In fact, it is possible for an
application to call close() or shutdownOutput() and have it complete successfully (i.e., not throw
an Exception) while there is still data in SendQ. If either end of the connection then crashes
before the data makes it to RecvQ, data may be lost without the sending application knowing
about it.

The best solution is to design the application protocol so that the side that calls close()
first does so only after receiving application-level assurance that its data was received. For
example, when our TCPEchoClient program receives the echoed copy of the data it sent, it
knows there is nothing more in transit in either direction, so it is safe to close the connection.

Java does provide a way to modify the behavior of the Socket’s close() method,
namely, the setSoLinger() method. setSoLinger() controls whether close() waits for the closing

A
p

p
li

ca
ti

o
n

P
ro

g
ra

m

Finish close handshake,
delete structure

Call
close()

Returns immediately

U
n

d
er

ly
in

g
Im

p
le

m
en

ta
ti

o
n

Close
handshake

initiated

by remote
completes

P

Q

A.B.C.D

W.X.Y.Z

local port

Established

remote port

local IP

remote IP

P

Q

A.B.C.D

W.X.Y.Z

local port

Close–Wait

remote port

local IP

remote IP

Figure 6.11: Closing after the other end closes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.5 Demultiplexing Demystified 163

handshake to complete before returning. It takes two parameters, a boolean that indicates
whether to wait, and an integer specifying the number of seconds to wait before giving up.
That is, when a timeout is specified via setSoLinger(), close() blocks until the closing hand-
shake is completed, or until the specified amount of time passes. At the time of this writing,
however, close() provides no indication that the closing handshake failed to complete, even
if the time limit set by setSoLinger() expires before the closing sequence completes. In other
words, setSoLinger() does not provide any additional assurance to the application in current
implementations.

The final subtlety of closing a TCP connection revolves around the need for the Time-
Wait state. The TCP specification requires that when a connection terminates, at least one of
the sockets persists in the Time-Wait state for a period of time after both closing handshakes
complete. This requirement is motivated by the possibility of messages being delayed in the
network. If both ends’ underlying structures go away as soon as both closing handshakes
complete, and a new connection is immediately established between the same pair of socket
addresses, a message from the previous connection, which happened to be delayed in the
network, could arrive just after the new connection is established. Because it would contain
the same source and destination addresses, the old message could be mistaken for a message
belonging to the new connection, and its data might (incorrectly) be delivered to the application.

Unlikely though this scenario may be, TCP employs multiple mechanisms to prevent it,
including the Time-Wait state. The Time-Wait state ensures that every TCP connection ends
with a quiet time, during which no data is sent. The quiet time is supposed to be equal to
twice the maximum amount of time a packet can remain in the network. Thus, by the time a
connection goes away completely (i.e., the socket structure leaves the Time-Wait state and is
deallocated) and clears the way for a new connection between the same pair of addresses, no
messages from the old instance can still be in the network. In practice, the length of the quiet
time is implementation dependent, because there is no real mechanism that limits how long a
packet can be delayed by the network. Values in use range from 4 minutes down to 30 seconds
or even shorter.

The most important consequence of Time-Wait is that as long as the underlying socket
structure exists, no other socket is permitted to be associated with the same local port. In
particular, any attempt to create a Socket instance using that port will throw an IOException.

6.5 Demultiplexing Demystified

The fact that different sockets on the same machine can have the same local address and
port number is implicit in the discussions above. For example, on a machine with only one IP
address, every new Socket instance accept()ed via a ServerSocket will have the same local port
number as the ServerSocket. Clearly the process of deciding to which socket an incoming packet
should be delivered—that is, the demultiplexing process—involves looking at more than just
the packet’s destination address and port. Otherwise there could be ambiguity about which

http://lib.ommolketab.ir
http//lib.ommolketab.ir

164 Chapter 6: Under the Hood

0 21

local port

local IP

remote port

remote IP

99

∗

∗

∗

Listening

local port

local IP

remote port

remote IP

99

∗

10.1.2.3

∗

local port

local IP

remote port

remote IP

99

192.168.3.2

30001

172.16.1.9

local port

local IP

remote port

remote IP 10.5.5.8

10.1.2.3

1025

25

EstablishedEstablishedListening

Figure 6.12: Demultiplexing with multiple matching sockets.

socket an incoming packet is intended for. The process of matching an incoming packet to a
socket is actually the same for both TCP and UDP, and can be summarized by the following
points:

� The local port in the socket structure must match the destination port number in the
incoming packet.

� Any address fields in the socket structure that contain the wildcard value (*) are
considered to match any value in the corresponding field in the packet.

� If there is more than one socket structure that matches an incoming packet for all four
address fields, the one that matches using the fewest wildcards gets the packet.

For example, consider a host with two IP addresses, 10.1.2.3 and 192.168.3.2, and with
a subset of its active TCP socket structures shown in Figure 6.12. The structure labeled 0 is
associated with a ServerSocket and has port 99 with a wildcard local address. Socket struc-
ture 1 is also for a ServerSocket on the same port, but with the local IP address 10.1.2.3
specified (so it will only accept connection requests to that address). Structure 2 is for a con-
nection that was accepted via the ServerSocket for structure 0, and thus has the same local
port number, but also has its local and remote Internet addresses filled in. Other sockets
belong to other active connections. Now consider a packet with source IP address 172.16.1.10,
source port 56789, destination IP address 10.1.2.3, and destination port 99. It will be deliv-
ered to the socket associated with structure 1, because that one matches with the fewest
wildcards.

When a program attempts to create a socket with a particular local port number, the
existing sockets are checked to make sure that no socket is already using that local port.
A Socket constructor will throw an exception if any socket matches the local port and local IP
address (if any) specified in the constructor. This can cause problems in the following scenario:

1. A client program creates a Socket with a specific local port number, say, P , and uses it to
communicate with a server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6.6 Exercises 165

2. The client closes the Socket, and the underlying structure goes into the Time-Wait state.

3. The client program terminates and is immediately restarted.

If the new incarnation of the client attempts to use the same local port number, the Socket
constructor will throw an IOException, because of the other structure in the Time-Wait state.
As of this writing, the only way around this is to wait until the underlying structure leaves the
Time-Wait state.

So what determines the local/foreign address/port? For a ServerSocket, all construc-
tors require the local port. The local address may be specified to the constructor; oth-
erwise, the local address is the wildcard (*) address. The foreign address and port for a
ServerSocket are always wildcards. For a Socket, all constructors require specification of the
foreign address and port. The local address and/or port may be specified to the constructor.
Otherwise, the local address is the address of the network interface through which the connec-
tion to the server is established, and the local port is a randomly selected, unused port number
greater than 1023. For a Socket instance returned by accept(), the local address is the destina-
tion address from the initial handshake message from the client, the local port is the local port
of the ServerSocket, and the foreign address/port is the local address/port of the client. For a
DatagramSocket, the local address and/or port may be specified to the constructor. Otherwise
the local address is the wildcard address, and the local port is a randomly selected, unused
port number greater than 1023. The foreign address and port are initially both wildcards, and
remain that way unless the connect() method is invoked to specify particular values.

6.6 Exercises

1. The TCP protocol is designed so that simultaneous connection attempts will succeed.
That is, if an application using port P and Internet address W.X.Y.Z attempts to connect
to address A.B.C.D, port Q, at the same time as an application using the same address
and port tries to connect to W.X.Y.Z, port P, they will end up connected to each other.
Can this be made to happen when the programs use the sockets API?

2. The first example of “buffer deadlock” in this chapter involves the programs on both
ends of a connection trying to send large messages. However, this is not necessary for
deadlock. How could the TCPEchoClient from Chapter 2 be made to deadlock when it
connects to the TCPEchoServer from that chapter?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Bibliography

[1] Arnold, Ken, Gosling, James, and Holmes, David, The Java Programming Language, Fourth
Edition, Addison Wesley, 2006.

[2] Braden, R., editor, “Requirements for Internet Hosts—Communication Layers,” Internet
Request for Comments 1122, October 1989.

[3] Braden, R., editor, “Requirements for Internet Hosts—Applications and Support,” Internet
Request for Comments 1123, October 1989.

[4] Comer, Douglas E., Internetworking with TCP/IP, Volume I: Principles, Protocols, and
Architecture (fourth edition), Prentice-Hall, 2000.

[5] Comer, Douglas E., and Stevens, David L., Internetworking with TCP/IP, Volume II: Design,
Implementation, and Internals (third edition), Prentice-Hall, 1999.

[6] Comer, Douglas E., and Stevens, David L., Internetworking with TCP/IP, Volume III: Client-
Server Programming and Applications (Linux/POSIX Sockets Version), Prentice-Hall, 2001.

[7] Deering, S., and Hinden, R, “Internet Protocol, Version 6 (IPv6) Specification,” Internet
Request for Comments 2460, December 1998.

[8] Freed, Ned, and Postel, J., “IANA Charset Registration Procedures,” Internet Request for
Comments 2278, January 1998.

[9] Goetz, Brian, with T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea, Java Concurrency
in Practice, Pearson Education, 2006.

[10] Mockapetris, Paul, “Domain Names—Concepts and Facilities,” Internet Request for Com-
ments 1034, November 1987.

167

http://lib.ommolketab.ir
http//lib.ommolketab.ir

168 Bibliography

[11] Mockapetris, Paul, “Domain Names—Implementation and Specification,” Internet Request
for Comments 1035, November 1987.

[12] Peterson, Larry L., and Davie, Bruce S., Computer Networks: A Systems Approach (third
edition), Morgan Kaufmann, 2003.

[13] Postel, John, “User Datagram Protocol,” Internet Request for Comments 768, August 1980.

[14] Postel, John, “Internet Protocol,” Internet Request for Comments 791, September 1981.

[15] Postel, John, “Transmission Control Protocol,” Internet Request for Comments 793,
September 1981.

[16] Stevens, W. Richard, UNIX Network Programming: Networking APIs: Sockets and XTI
(second edition), Prentice-Hall, 1997.

[17] Stevens, W. Richard, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994.

[18] Wright, Gary R., and Stevens, W. Richard, TCP/IP Illustrated, Volume 2: The Implemen-
tation, Addison Wesley, 1995.

[19] The Unicode Consortium, The Unicode Standard, Version 5.0, Addison Wesley, 2006.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

3-way handshake, 157, 159

A
accept() method, 21, 22–23, 24,

84, 87, 159–160
addHandlers() method, 80
addresses

autoconfiguration, 5
broadcast, 90
creating/accessing, 13, 20–21
datagram packets, 27–28
datagram sockets, 33
described, 3, 4–6
destination, 9
dotted-quad notation, 4
getAddress() method, 13
getAllByName() method, 13
getHostAddress() method,

12, 13
getInetAddresses() method,

11, 15, 33
getLocalAddress() method, 33
getLocalSocketAddress()

method, 33
getRemoteSocketAddress()

method, 23
getReuseAddress() method, 98
InetAddress, 9–15, 19–21,

23–24
InetAddressExample.java,

10–13
InetSocketAddress, 20–21, 23

port numbers, 3, 4, 5
resolving names, 6, 9, 12, 21
reusing, 97–98
scope identifier, 12, 13–14
setReuseAddress() method, 98
socket addresses, 9–15
socket creation, 19
string representations, 13–14
testing properties, 14–15
types of, 5–6
wildcard, 33, 157, 164–165

applets, 107
application protocols, 3, 39
applications, 7
array()method, 123, 130, 131
arrayOffset()method, 123, 131
ASCII encoding, 46
asReadOnlyBuffer() method, 130,

131
autoconfiguration addresses, 5
available() method, input

stream, 26, 87

B
backing arrays, 123
big-endian order, 41–42, 44–45,

71, 125–126
binary vote messages, 61–63
bind() method, 24, 117
bit-diddling, 42, 47–48
bitmaps, 47, 135
bitmask, 135

bitwise complements, 48

blocking and timeouts, 86–89

accept(), read(), and
receive() methods, 87

connecting and writing, 87

limiting per-client time,
87–89

TimeLimitEchoProtocol.java,
88–89

blocking channels, 134, 143

booleans, encoding, 47–48

broadcast addresses, 90

broadcasting

compared to multicasting, 95

concepts, 90

directed broadcast addresses,
90

local broadcast addresses, 90

operating system caveat, 90

permission, 99

BruteForceCoding.java, 42–44

BufferedInputStream, 48

BufferedOutputStream, 48–49

buffering

buffer creation, 122–123

buffer indices, 121–122

buffer perspectives, 129–131

character coding, 131–132

169

http://lib.ommolketab.ir
http//lib.ommolketab.ir

170 Index

buffering (Continued)
compacting data in buffers,

121, 128–129
datagram packets, 36–38
direct buffers, 123
echo server receive buffer, 23
eliminating delay, 98
FIFO queue, 36, 148, 150
flush() method, 25
overflow/underflow, 124,

125, 132
preparing buffers, 126–128
RecvQ, 149, 150–155,

160–162
SendQ, 149, 150–155,

160–162
send/receive default buffer

size, 96–97
storing/retrieving data,

ByteBuffer method,
124–126

using channels with buffers,
112–114

when using TCP, 150–152
BufferOverflowException,

124–125
BufferUnderflowException,

124–125
ByteBuffer method

byte ordering in buffer, 125
getting/putting bytes, 124
getting/putting Java

multibyte primitives,
124–125

preparing buffers, 120,
126–128

remaining bytes, 122
bytes

ByteArrayInputStream, 45
ByteArrayOutputStream, 45, 63
byteArrayToDecimalString()

method, 43
defined, 39
getBytes() method, 17, 40,

46–47
getting/putting, ByteBuffer

method, 124–126
order in multibyte integers,

41, 125–126
reliable byte-stream, 3, 7, 14

sendBytes() method, 104, 154
writeByte() method, 45

C
call chaining, 125
Callable interface, 85
canceling selection keys, 137
channels

attachments, 140
registering interest in,

135–137
selecting/identifying ready

channels, 138–140
stream channels, 132–135
using with buffers, 112–114

char values, 46
characters

coded character set, 46
coding, 131–132

charsets, 46, 131
Checked[Input/Output]Stream, 49
Cipher[Input/Output]Stream, 49
clear() method, 126–128
clearing bits, 48
clients

client-server
communications, 6–7

compression, 103–105
establishing connections,

156–160
limiting per-client time,

87–89
TCP clients, 16–21
TCP voting clients, 64–66
thread-per-client servers, 74,

80–82
UDP clients, 29–34
UDP voting clients, 68–69

closing
client sockets, 23
compression protocols,

102–107, 154
connections, 101–107
datagram (UDP) channels,

141
datagram sockets, 29, 32–33
echo and HTTP protocols,

101–102
graceful close mechanism,

160

lingering after close, 99,
162–163

selectors, 135
server socket channels,

133–134
socket channels, 132–133
TCP connections, 160–163
Time-Wait state, 97, 161, 163,

165
coded character set, 46, 131–132
communication channels, 2
compacting data in buffers, 121,

128–129
composing I/O streams, 48–49
compression

closing connections,
102–107, 154

CompressClient.java, 103–105
CompressProtocol.java,

105–107
concurrent servers, 74
configureBlocking() method, 134
connect() method, 19, 29, 33, 69,

87, 95, 114
connection-oriented protocol, 3
connections

blocking and timeouts, 87
buffering, 150–152
datagram channels, 142–143
datagram sockets, 32–33
flow control, 153
performance implications,

155
socket channels, 132–133
TCP sockets, 19, 156–160
writing and blocking, 87

ConsoleHandler, 79
context switch, thread, 82
copyOfRange() method, 69
createUnresolved() method, 21
creating

addresses, 13, 20–21
datagram channels, 141
datagram packets, 27–28,

31–32, 35
datagram sockets, 31, 32
network interfaces, 15
server socket channels,

133–134

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 171

socket channels, 132–133
TCP sockets, 17–18, 19, 22,

23–24

D
data

compacting, in buffers, 121,
128–129

getData() method, 29, 37–38
setData() method, 29
storing/retrieving, ByteBuffer

method, 124–126
data structures and sockets,

147–149
datagram channels, 141–145

connecting, 142–143
creating/closing, 141
sending/receiving, 141–142
setting blocking behavior, 143
UDPEchoServerSelector.java,

143–145
datagram packets

addressing, 28
buffers, 36–38
creating, 27–28, 31–32, 35
handling data, 28–29
length and offset fields, 27,

28, 29, 36
maximum size, 37
sending/receiving, 36–38

datagram sockets
addressing, 33
connection/closing, 29,

32–33
creating, 31, 32
introduction, 7–8
options, 34
sending/receiving, 33–34
timeouts, 30, 31, 87, 96, 97,

111
DatagramPacket, 27–29, 31–38,

40, 49, 69–70
datagrams

described, 3, 26
maximum size, 143
unicast addresses, 33

DataInputStream, 45, 48, 49,
53, 54

DataOutputStream, 45, 48, 49, 63
deadlock danger, 152–154

decoding. See
encoding/decoding

default behavior
address reuse, 97–98
broadcast permission, 99
charsets, 46
eliminating buffering delay,

98
keep-alive mechanism, 96
lingering after close, 99,

162–163
performance-based protocol

selection, 100
send/receive buffers, 96–97
timeouts, 95, 97
traffic class, 100
urgent data, 98–99

DelimFramer.java, 51–53
delimiter-based method for

framing, 50
Delivered, 150–153
demultiplexing process, 163–165
destination address, 9
Digest[Input/Output]Stream, 49
direct buffers, 123
directed broadcast addresses, 90
dispatching methods, 84
DNS (Domain Name System), 6
domain names, 6, 13, 14
dotted-quad address notation, 4
duplicate() method, 129–131

E
echo clients

TCPEchoClientGUI.java, 19
TCPEchoClient.java, 16–18
TCPEchoClientNonblocking.java,

113–114, 133, 135
UDPEchoClientTimeout.java,

30–32
echo protocol

EchoProtocol.java, 76–78
EchoSelectorProtocol.java,

118–121
multitasking, 76–78
time limits, 87–89

echo servers
closing connections, 101–102
TCPEchoServerExecutor.java,

85–86

TCPEchoServer.java, 21–23
TCPEchoServerPool.java,

82–84
TCPEchoServerThread.java,

81–82
UDPEchoServer.java, 35–36, 38
UDPEchoServerSelector.java,

143–145
ECHOMAX characters, 34, 35
EchoProtocol.java, 76–78
EchoSelectorProtocol.java,

118–121
encode() method, 132
encoding/decoding

binary vote messages, 61–63
bit-diddling, 42, 47–48
BruteForceCoding.java, 42–44
conversion problems, 44
decodeIntBigEndian() method,

42, 44
encoded, defined, 39
encodeIntBigEndian() method,

42, 44
encoding scheme, 46
introduction, 40
Java-specific encodings, 55
primitive integers, 40–45
strings and text, 45–47
text-based vote messages,

58–61
vote messages, 58

end-of stream indication, 50
end-to-end transport

protocols, 3
entering() method, 80
error recovery, 3, 4, 36
exceptions

BufferOverflowException,
124–125

BufferUnderflowException,
124–125

IllegalArgumentException, 28
IllegalBlockingModeException,

141
IndexOutOfBoundsException,

124
InterruptedException, 75
InterruptedIOException, 32,

34, 87
InvalidMarkException, 122

http://lib.ommolketab.ir
http//lib.ommolketab.ir

172 Index

exceptions (Continued)
IOException, 18, 24, 26, 102,

117, 157, 163, 165
NoConnectionPendingException,

135
NotYetConnectedException,

114, 135
ReadOnlyBufferException, 131
SecurityException, 107
SocketException, 12
UnsupportedOperationException,

123, 139
execute() method, 86
Executor interface, 84–86
exiting() method, 80
explicit length method for

framing, 50
Externalizable interface, 55

F
fields, messages, 39
FIFO (first-in, first-out) queue,

36, 148, 150
FileClientApplet.java, 107
finishConnect() method, 114,

134–135
flip() method, 120, 126–128
flow control, 153
flush() method, output stream,

25
forwarding information, 2
frameMethod() method, 51
frameMsg() method, 51, 52, 54
Framer.java, 51
framing and parsing

deadlocks, 50
delimiter-based and/or text

encoding, 66
delimiter-based method,

50–53
explicit length method, 50
field boundaries, 50
interface, 51
introduction, 49–51
length-based, 51, 53–55
stuffing techniques, 50

fromWire() method, 58, 60–61,
66

FTP (File Transfer Protocol), 7
fully qualified domain name, 14

G
gathering write, 133
getAddress() method, 13
getAllByName() method, 13
getBroadcast() method, 99
getBytes() method, 17, 40,

46–47
getCanonicalName() method, 14
getData() method, 29, 37–38
getHandlers() method, 80
getHostAddress() method, 12, 13
getHostName() method, 12, 14, 21
getInetAddresses() method, 11, 15
getInterface() method, 95
getLevel() method, 80
getLocalAddress() method, 33
getLocalPort() method, 33
getLocalSocketAddress() method,

33
getLoopbackMode() method, 94
getName() method, 11, 15, 75, 82
getNetworkInterfaces() method,

11, 12, 15
getOffset() method, 29, 37–38
getPort() method, 33
getReceiveBufferSize() method,

96–97
getRemoteSocketAddress()

method, 23
getReuseAddress() method, 98
getSendBufferSize() method, 96
getSoLinger() method, 99
getSoTimeout() method, 34, 97
getTcpNoDelay() method, 98
getTimeToLive() method, 94
getting/putting

bytes, 124
Java multibyte primitives,

124–125
getTrafficClass() method, 100
group management of multicast

sockets, 94
GZIP format, 49, 105, 106
GZIPInputStream, 49
GZIPOutputStream, 49, 105–106,

106

H
Half-closed connection, 161
handleAccept() method, 119

handleEchoClient() method, 76,
78, 82, 84, 89

handleRequest() method, 63, 64
handlers, logger, 79, 80
handshake messages

closing connections, 160–163
described, 4
establishing connections,

156–160
hasRemaining() method, 122
hosts

defined, 1–2
getHostAddress() method, 12,

13
getHostName() method, 12, 14,

21
HTTP (HyperText Transfer

Protocol)
closing connections, 101–102
purpose of, 2

I
IANA (Internet Assigned Number

Authority), 7
IBM037 encoding, 47
IllegalArgumentException, 28
IllegalBlockingModeException,

141
IndexOutOfBoundsException, 124
InetAddress, 10–15, 19–20, 33
InetAddressExample.java, 10–13
InetSocketAddress, 20–21, 23
input streams

BufferedInputStream, 48
buffering and TCP, 150–152
ByteArrayInputStream, 45
Checked[Input/Output]Stream,

49
Cipher[Input/Output]Stream,

49
DataInputStream, 45, 48, 49,

53, 54
Digest[Input/Output]Stream,

49
GZIPInputStream, 49
Object[Input/Output]Stream,

49
operation, 25–26
PushbackInputStream, 49
TCP clients, 16, 18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 173

TCP servers, 21, 23
Zip[Input/Output]Stream, 49

input/output. See I/O
(input/output)

InputStream, 16–18, 21–23, 25,
49, 150–151, 155

integers
big-endian order, 41–42,

44–45, 71, 125–126
encoding primitive integers,

40–45
little-endian order, 41,

125–126
signed/unsigned, 41
two’s-complement

representation, 41
interest sets, selection keys, 136
interestOps() method, 136
Internet addresses, 4–5, 9–15

creating/accessing, 13
socket structure, 148
string representations, 13–14
TCP clients/servers, 19–21,

23–24
testing properties, 14–15

Internet Protocol (IP), 2–4
InterruptedException, 75
InterruptedIOException, 32,

34, 87
InvalidMarkException, 122
I/O (input/output). See also NIO

(New I/O)
Java classes, 49
nonblocking, 110–111
pollable, 111
stream composition, 48–49
streams, 25–26

IOException, 18, 24, 26, 102, 117,
157, 163, 165

IPv4/v6 addresses, 4–6
isConnected(),

isConnectionPending()
132, 134

isDirect() method, 123
isLoggable() method, 80
isReadOnly() method, 131
isRegistered() method, 136
isUnresolved() method, 21
iterative server, 73

J
java.nio package, 109
java.nio.channels package, 109,

111
java.nio.charset package, 131
Java-specific encodings, 55
joinGroup() method, 92, 94
JVM (Java Virtual Machine), 55,

74, 76, 82, 123, 147–148

K
KeepAlive() method, 96
key sets, 118, 137–141
keyFor() method, 136
keys() method, 139

L
layers, protocol, 2–4
leaveGroup() method, 94
LengthFramer.java, 53–55, 66
levels, logger, 78, 80
limiting per-client time, 87–89
lingering after close, 99,

162–163
link-local addresses

described, 5
scope identifier, 12, 13–14

little-endian order, 41, 125–126
local broadcast addresses, 90
locks, thread, 110
Logger class, 78–80
loggers

concepts, 78–79
finding/creating, 79
handlers, 79, 80
isLoggable() method, 80
levels, 78, 80
logging messages, 79–80
setting/getting level and

handlers, 80
thread-safe feature, 79

loopback, 5, 14, 94–95

M
masks, 47
message boundaries, 18, 26,

36–38
messages

described, 39
handshake, 4, 156–163
logging, 79–80

multicast addresses, 6, 90–91
scopes of, 14

multicast group, 92, 94
multicast sockets

creating, 93–94
group management, 94
setting/getting options,

94–95
MulticastImageSender.java, 93
multicasting

compared to broadcasting, 95
joining groups, 92
receiver, vote messages,

92–93
sender, vote messages, 91–92

MulticastSocket, 91, 92, 93–95
multiple recipients

broadcast method, 90
comparing networking

methods, 95
concepts, 89–90
multicast method, 90–95

multitasking
concepts, 73–74
EchoProtocol.java, 76–78
Java threads, 74–76
server protocol, 76–80
system-managed dispatching

and Executor interface,
84–86

TCPEchoServerExecutor.java,
85–86

TCPEchoServerPool.java,
82–84

TCPEchoServerThread.java,
81–82

thread pools, 74, 82–84, 110
ThreadExample.java, 74–76
thread-per-client servers, 74,

80–82

N
names, 6

domain names, 6, 13, 14
fully qualified domain name,

14
getCanonicalName() method,

14
getHostName() method, 12,

14, 21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

174 Index

names (Continued)
getName() method, 11, 15,

75, 82
nativeOrder() method, 126
netstat tool, 149, 151, 157–159,

161–162
network address translation

(NAT) device, 5
Network Interface, 10, 11, 15
network interfaces, 4–5

creating/getting information,
15

getNetworkInterfaces()
method, 11, 12, 15

list of, caveat, 15
network layer, 3
networks, defined, 2
newCachedThreadPool() method,

86
nextMsg() method, 51, 53, 54, 66
NIO (New I/O)

buffer creation, 122–123
buffer indices, 121–122
buffer perspectives, 129–131
character coding, 131–132
compacting data in buffers,

121, 128–129
direct buffers, 123
features/advantages of,

109–111
java.nio package, 109
java.nio.channels package,

109, 111
java.nio.charset package,

131
preparing buffers, 126–128
ready I/O operations, 139
selectors, 115–121
storing/retrieving data,

ByteBuffer method,
124–126

TCPEchoClientNonblocking.java,
113–114, 133, 135

using channels with buffers,
112–114

NoConnectionPendingException,
135

nonblocking channels, setting
blocking behavior, 134

nonblocking I/O, 110–111

nonblocking TCP echo client,
113–114

NotYetConnectedException, 114,
135

O
Object[Input/Output]Stream, 49
offset, datagram packets, 27, 28,

29
open() factory method, 132, 134,

135, 141
output streams

BufferedOutputStream, 48–49
buffering and TCP, 150–152
ByteArrayOutputStream, 45, 63
Checked[Input/Output]Stream,

49
Cipher[Input/Output]Stream,

49
DataOutputStream, 45, 48, 49,

63
Digest[Input/Output]Stream,

49
flush() method, 25
GZIPOutputStream, 49,

105–106, 106
Object[Input/Output]Stream,

49
operation, 25
PrintOutputStream, 49
TCP clients, 16, 18
TCP servers, 21, 23
Zip[Input/Output]Stream, 49

OutputStream, 16–18, 21–23, 25,
49, 149

overflow, buffer, 124, 125, 132

P
packets, 2. See also datagram

packets
parsed data, 39
parsing

framing and, 49–55
voting protocol messages, 58,

66

peers, 7
performance

protocol selection based on,
100

TCP implementation, 155
perspectives, buffer, 129–131
ping test, 12–13
polling, 111, 114
port numbers

addresses, 4, 5
assignments, 7
echo port, default, 17
Internet addresses, 3
protocols and sockets,

7–8
valid, for server sockets, 24

ports
bind() method, 24, 117
getLocalPort() method, 33
getPort() method, 33
server socket creation,

23–24
socket creation, 19

primitive integers, 40–45
primitives, getting/putting Java

multibyte, 124–126
PrintOutputStream, 49
private-use addresses, 5
probe messages, 96
protocol suites, 2
protocols

CompressProtocol.java,
105–107

defined, 2
EchoProtocol.java, 76–78
EchoSelectorProtocol.java,

118–121
multitasking server, 76–80
performance-based selection,

100
sending/receiving data, 39
sockets, 7–8
standard, 40
TCP/IP networks, 2–4
TCPProtocol.java, 115
TimeLimitEchoProtocol.java,

88–89
PushbackInputStream, 49
putting. See getting/putting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 175

R
rates, data, 89, 155
read() method, 18, 23, 87,

150–152
readFully() method, 53
ReadOnlyBufferException, 131
readShort() method, 54
ready channels, 138–140
receive() method, 27–32, 34,

36–37, 87, 95, 142–143
receiver, multicast, 92–93
receiving. See sending/receiving
RecvQ, 149, 150–155, 160–162
register() method, 120, 136,

140, 141
registering

interest in channels, 135–137
selectors, 120, 136

reliable byte-stream, 3, 7, 14
Remote Method Invocation (RMI),

55, 107
removeHandlers() method, 80
resolving names, 6, 9. See also

addresses
createUnresolved() method,

21
delays, 12
isUnresolved() method, 21

retrieving selection keys, 137
rewind() method, 126–128
RFCs (Request For Comments),

46, 95
routers, 1–2
run() method, 74–76, 82–84, 106
Runnable interface, 74–77, 80, 82

S
Scanner, 61
scattering read, 133, 143
scope identifier, 12, 13–14
SecurityException, 107
select() method, 111, 115–116,

118, 136–140
selectedKeys() method, 118,

138–139
selection keys, 118, 120, 135

find ready I/O operations,
139–140

interest sets, 136
retrieving/canceling, 137

selectNow() method, 138
selectors, 115–121, 135–141

canceled set, 137
channel attachments, 140
concepts, 115
creating and closing, 135
EchoSelectorProtocol.java,

118–121
key sets, 118, 137–141
registering interest in

channels, 135–137
selecting/identifying ready

channels, 138–140
steps in using, 140–141
TCPProtocol.java, 115
TCPServerSelector.java,

116–118, 133, 134
UDPEchoServerSelector.java,

143–145
waiting for channels to be

ready, 138
send() method, 27, 29, 32, 34,

36, 142–143, 151
sendBytes() method, 104,

154
sender, multicast, 91–92
sending/receiving

blocking and timeouts, 86–89
buffer size defaults, 96–97
buffering and TCP, 150–152
datagram channels, 141–142
multicast, vote messages,

91–93
RecvQ , 149, 150–155,

160–162
SendQ , 149, 150–155,

160–162
with UDP sockets, 36–38
vote messages, 63–70

SendQ , 149, 150–155, 160–162
sendUrgentData() method, 98
Serializable interface, 55
server socket channels

creating, accepting, and
closing, 133–134

registering selectors, 136
setting blocking behavior, 134

server sockets
creating, 23–24
getting attributes, 24

operations, 24
TCP echo server, 21–23

servers
client-server

communications, 6–7
compression, 105–107
concurrent, 74
echo server, 16–18
establishing connections,

156–160
iterative, 73
multitasking server protocol,

76–80
TCP selector, 116–118, 133,

134
TCP servers, 21–24
TCP voting servers, 66–68
thread-per-client servers, 74,

80–82
UDP echo servers, 34–36
UDP echo servers, datagram

channel, 143–145
UDP voting servers, 69–70

ServerSocket, 21–24, 97–98, 100,
155–159, 163–165

ServerSocketChannel, 112–113,
115, 117, 119, 132, 134

setBroadcast() method, 99
setData() method, 29
setInterface() method, 95
setLength() method, 28, 36
setLevel() method, 80
setLoopbackMode() method, 94
setOOBInline() method, 98
setReceiveBufferSize() method,

96–97, 155
setReuseAddress() method, 98
setSendBufferSize() method, 96,

155
setSoLinger() method, 99,

162–163
setSoTimeout() method, 30, 87,

96, 97, 111
setTcpNoDelay() method, 98
setTimeToLive() method, 94
setting bits, 47
setTrafficClass() method, 100
severe() method, 80
shutdownInput() method, 102

http://lib.ommolketab.ir
http//lib.ommolketab.ir

176 Index

shutDownInput/Output() methods,
19–20

shutdownOutput() method, 50,
102, 154, 160–162

sign-extended values, 43
sleep, 73
slice() method, 129–131
socket channels

creating, connecting, and
closing, 132–133

reading/writing, 133
registering selectors, 136
setting blocking behavior, 134
testing connectivity,

134–135
Socket class, 16–21
SocketAddress, 19–21, 23, 28, 33,

132, 142
SocketChannel, 112–113, 114,

120, 132–134, 136, 143
SocketException, 12
sockets

comparing TCP and UDP, 26,
36–38

creating, 19
data structures associated

with, 147–149
defined, 7
getting/testing attributes, 20
implementation caveat, 20
multicast, 93–95
operations, 19–20
socket layer, 147
TCP. See TCP sockets
types of, 7–8
UDP. See UDP sockets

sockets API (Application
Programming Interface),
2, 7

start() method, 74, 76, 82, 83
streams. See also I/O

(input/output)
composition, 48–49
end-of stream indication, 50
stream channels, 132–135
stream sockets, 7–8

strings
encoding information, 45–47
representing addresses,

13–14

toString() method, 13, 21, 23
stuffing techniques, 50
synchronizing threads, 76, 110
System.err, 79
system-managed dispatching

and Executor interface,
84–86

T
TCP (Transmission Control

Protocol)
buffering, 150–152
connection life cycle, 155–163
connection-oriented protocol,

3
deadlock danger, 152–154
demultiplexing, 163–165
described, 2–4
message boundaries not

preserved by, 18
performance implications,

155
reliable byte-stream, 3, 7, 14
TCP/IP networks, 2–4

TCP channels. See streams
TCP clients, 16–21

creating TCP sockets, 17–18,
19

creating/accessing socket
addresses, 20–21

getting/testing socket
attributes, 20

socket operations, 19–20
TCPEchoClientGUI.java, 19
TCPEchoClient.java, 16–18
TCPEchoClientNonblock-

ing.java, 113–114, 133,
135

VoteClientTCP.java, 64–66
voting clients, 64–66

TCP servers, 21–24
accepting incoming

connection, 22–23
creating server sockets, 22,

23–24
getting socket attributes, 24
socket operations, 24
TCPEchoServerExecutor.java,

85–86
TCPEchoServer.java, 21–23

TCPEchoServerPool.java,
82–84

TCPEchoServerThread.java,
81–82

TCPServerSelector.java,
116–118, 133, 134

voting servers, 66–68
TCP sockets

clients, 16–21
closing, 160–163
compared to UDP sockets, 26,

36–38
connecting, 156–160
input/output streams, 16, 18,

21, 23, 25–26
introduction, 7–8, 15–16
life cycle, introduction,

155–156
servers, 21–24
socket structure, 147–149

TCPEchoClientGUI.java, 19
TCPEchoClientNonblocking.java,

113–114, 133, 135
TCPEchoServerExecutor.java,

85–86
TCPEchoServerPool.java, 82–84
TCPFileServer.java, 107
TCPProtocol.java, 115
TCPServerSelector.java,

116–118, 133, 134
telnet program, 16
testing properties

of addresses, 14–15
of socket attributes, 20

text, encoding information,
45–47

threads
blocking, 82
concepts, 73–74
context switch, 82
locks, 110
priority, 110
single-threaded approach,

110
synchronized, 76, 110
thread pools, 74, 82–84, 110
ThreadExample.java, 74–76
thread-per-client servers, 74,

80–82

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 177

Thread.sleep() method, 73,
75

throwing() method, 80
TimeLimitEchoProtocol.java,

88–89
timeouts

accept(), read(), and
receive() methods, 87

blocking and, 86–89
connecting and writing, 87
datagram sockets, 30, 31, 87,

96, 97, 111
default behavior, 95, 97
limiting per-client time,

87–89
TimeLimitEchoProtocol.java,

88–89
timer expiration for datagram

reception, 32, 34
time-to-live (TTL) value, 15,

92–93
Time-Wait state, 97, 161, 163,

165
toString() method, 13, 21, 23
toWire() method, 58, 60
traffic class, 100
transport layer, 3
transport protocols, end-to-

end, 3
two’s-complement

representation, 41

U
UDP (User Datagram Protocol)

described, 2–4
demultiplexing, 163–165
message boundaries

preserved by, 26
UDP channels. See datagram

channels

UDP clients
concepts, 29–30
echo clients, 30–32
voting clients, 68–69

UDP servers
concepts, 34
UDPEchoServer.java, 35–36
UDPEchoServerSelector.java,

143–145
VoteServerUDP.java, 69–70

UDP sockets
clients, 29–34
compared to TCP sockets, 26,

36–38
datagram packets, 27–29
introduction, 7–8, 26–27
sending/receiving with,

36–38
servers, 34–36

UDPEchoClientTimeout.java,
30–32

UDPEchoServer.java, 35–36, 38
UDPEchoServerSelector.java,

143–145
underflow, buffer, 124, 125, 132
unicast addresses, 6, 33
unicast communication, 89
Unicode, 46
unique markers, 50
UnsupportedOperationException,

123, 139
urgent data, 98–99
URL (Universal Resource

Locator), 7
US-ASCII encoding, 46, 58
UTF encoding, 46–47, 142

V
validOps() method, 136
VoteClientTCP.java, 64–66
VoteClientUDP.java, 68–69
VoteMsgBinCoder.java, 61–63
VoteMsgCoder.java, 58

VoteMsg.java, 56–58
VoteMsgTextCoder.java, 59–61
VoteMulticastReceiver.java,

92–93
VoteMulticastSender.java, 91–92
VoteServerTCP.java, 66–68
VoteServerUDP.java, 69–70
VoteService.java, 63–64
voting protocols

binary representation, 61–63
binary vote messages, 61–63
encoding/decoding, 58
inquiries, 56
message information, 56
sending/receiving, 63–70
TCP voting client/server,

64–68
text-based encoding, 59–61
text-based representations,

58–61
UDP voting client/server,

68–70
vote messages, 56–58
vote service, 63–64
voting requests, 56

W
wakeup() method, 138
warning() method, 80
wildcard addresses, 33, 157,

164–165
wrap() method, 123
write() method, 18, 23, 25, 87,

150–152
writeByte() method, 45
writeInt() method, 45
writeLong() method, 45
writeShort() method, 45

Z
ZIP format, 49
Zip[Input/Output]Stream, 49

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

